Algorithmic Manipulation of Third-Order Linear Recurrences

Stanley Rabinowitz
12 Vine Brook Road
Westford, MA 01886

1. Introduction.

In [12] we showed how to algorithmically prove all polynomial identities involving a certain class of elements from second-order linear recurrences with constant coefficients. In this paper, we attempt to extend these results to third-order linear recurrences.

Let $\left\langle S_{n}\right\rangle$ be a sequence defined by the third-order linear recurrence

$$
\begin{equation*}
S_{n}=p S_{n-1}+q S_{n-2}+r S_{n-3} \tag{1}
\end{equation*}
$$

where $r \neq 0$. We will consider three special such sequences, $\left\langle X_{n}\right\rangle,\left\langle Y_{n}\right\rangle$, and $\left\langle Z_{n}\right\rangle$ given by the following initial conditions:

$$
\begin{align*}
& X_{0}=0, \quad X_{1}=0, \quad X_{2}=1 ; \\
& Y_{0}=0, \quad Y_{1}=1, \quad Y_{2}=0 ; \tag{2}\\
& Z_{0}=1, \quad Z_{1}=0, \quad Z_{2}=0 .
\end{align*}
$$

These initial conditions were chosen so that the three sequences form a basis for the set of all third-order linear recurrences with constant coefficients, and because they will allow us (in a future paper) to generalize our results to higher-order recurrences. These three sequences also have nice Binet forms.

Given any sequence $\left\langle S_{n}\right\rangle$ that satisfies recurrence (1), we can write its elements as a linear combination of X_{n}, Y_{n}, and Z_{n}, namely

$$
\begin{equation*}
S_{n}=S_{2} X_{n}+S_{1} Y_{n}+S_{0} Z_{n} \tag{3}
\end{equation*}
$$

Thus, it suffices to show that we can algorithmically prove any identity involving X_{n}, Y_{n}, and Z_{n}.

The sequence $\left\langle S_{n}\right\rangle$ can be defined for negative values of n by using the recurrence (1) to extend the sequence backwards, or equivalently, by using the recurrence

$$
\begin{equation*}
S_{-n}=\left(-q S_{-n+1}-p S_{-n+2}+S_{-n+3}\right) / r \tag{4}
\end{equation*}
$$

A short table of values of X_{n}, Y_{n}, and Z_{n} for small values of n is given below:

n	-2	-1	0	1	2	3	4	5
X_{n}	$-q / r^{2}$	$1 / r$	0	0	1	p	$p^{2}+q$	$p^{3}+2 p q+r$
Y_{n}	$(p q+r) / r^{2}$	$-p / r$	0	1	0	q	$p q+r$	$p^{2} q+p r+q^{2}$
Z_{n}	$\left(q^{2}-p r\right) / r^{2}$	$-q / r$	1	0	0	r	$p r$	$r\left(p^{2}+q\right)$

The characteristic equation for recurrence (1) is

$$
\begin{equation*}
x^{3}-p x^{2}-q x-r=0 \tag{5}
\end{equation*}
$$

$\overline{\text { Reprinted from The Fibonacci Quarterly, 34(1996)447-464 }}$

Let the roots of this equation be r_{1}, r_{2}, and r_{3}, which we shall assume are distinct. The condition that these roots are distinct is that Δ, the discriminant, is nonzero. That is,

$$
\begin{equation*}
\Delta^{2}=\left(r_{1}-r_{2}\right)^{2}\left(r_{2}-r_{3}\right)^{2}\left(r_{3}-r_{1}\right)^{2}=p^{2} q^{2}-27 r^{2}+4 q^{3}-4 p^{3} r-18 p q r>0 \tag{6}
\end{equation*}
$$

The Binet forms for our sequences are given by:

$$
\begin{align*}
X_{n} & =A_{1} r_{1}^{n}+B_{1} r_{2}^{n}+C_{1} r_{3}^{n}, \\
Y_{n} & =A_{2} r_{1}^{n}+B_{2} r_{2}^{n}+C_{2} r_{3}^{n}, \tag{7}\\
Z_{n} & =A_{3} r_{1}^{n}+B_{3} r_{2}^{n}+C_{3} r_{3}^{n},
\end{align*}
$$

where

$$
\begin{align*}
& A_{1}=\frac{1}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)}, \quad B_{1}=\frac{1}{\left(r_{2}-r_{3}\right)\left(r_{2}-r_{1}\right)}, \quad C_{1}=\frac{1}{\left(r_{3}-r_{1}\right)\left(r_{3}-r_{2}\right)} ; \\
& A_{2}=\frac{-\left(r_{2}+r_{3}\right)}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)}, \quad B_{2}=\frac{-\left(r_{3}+r_{1}\right)}{\left(r_{2}-r_{3}\right)\left(r_{2}-r_{1}\right)}, \quad C_{2}=\frac{-\left(r_{1}+r_{2}\right)}{\left(r_{3}-r_{1}\right)\left(r_{3}-r_{2}\right)} ; \tag{8}\\
& A_{3}=\frac{r_{2} r_{3}}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)}, \quad B_{3}=\frac{r_{3} r_{1}}{\left(r_{2}-r_{3}\right)\left(r_{2}-r_{1}\right)}, \quad C_{3}=\frac{r_{1} r_{2}}{\left(r_{3}-r_{1}\right)\left(r_{3}-r_{2}\right)} .
\end{align*}
$$

Another sequence of interest is

$$
W_{n}=X_{n+2}+Y_{n+1}+Z_{n}=p X_{n+1}+2 q X_{n}+3 r X_{n-1}=\left(p^{2}+2 q\right) X_{n}+p Y_{n}+3 Z_{n}
$$

because W_{n} has the Binet form

$$
\begin{equation*}
W_{n}=r_{1}^{n}+r_{2}^{n}+r_{3}^{n} \tag{9}
\end{equation*}
$$

We can solve the equations in (7) for the r_{i}^{n}. We get

$$
\begin{align*}
& r_{1}^{n}=r_{1}^{2} X_{n}+r_{1} Y_{n}+Z_{n} \\
& r_{2}^{n}=r_{2}^{2} X_{n}+r_{2} Y_{n}+Z_{n} \tag{10}\\
& r_{3}^{n}=r_{3}^{2} X_{n}+r_{3} Y_{n}+Z_{n} .
\end{align*}
$$

This idea was suggested by Murray Klamkin. It also follows from Lemma 1 of [11]. These equations let us convert an expression involving powers of r_{i}, where a variable n occurs in the exponents, to expressions involving X_{n}, Y_{n}, and Z_{n}.

From the relationship between the roots and coefficients of a cubic, we have

$$
\begin{align*}
r_{1}+r_{2}+r_{3} & =p \\
r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1} & =-q \tag{11}\\
r_{1} r_{2} r_{3} & =r .
\end{align*}
$$

Thus any symmetric polynomial involving r_{1}, r_{2}, and r_{3} can be expressed in terms of p, q, and r. An algorithmic method (Waring's Algorithm) for performing this transformation can be found on page 14 in [5].

An explicit formula for X_{n} in terms of p, q, and r was given in [13], namely

$$
X_{n+2}=\sum_{a+2 b+3 c=n}\left(\begin{array}{ccc}
a+b+c \tag{12}\\
a & b & c
\end{array}\right) p^{a} q^{b} r^{c}
$$

Similar formulas for Y_{n} and Z_{n} can be obtained from the facts that $Y_{n}=X_{n+1}-p X_{n}$ and $Z_{n}=r X_{n-1}$.

Matrix formulations were given in [17] and [20]:

$$
\begin{align*}
& \left(\begin{array}{c}
S_{n+2} \\
S_{n+1} \\
S_{n}
\end{array}\right)=\left(\begin{array}{lll}
p & q & r \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{n}\left(\begin{array}{c}
S_{2} \\
S_{1} \\
S_{0}
\end{array}\right), \tag{13}\\
& \left(\begin{array}{c}
X_{n} \\
Y_{n} \\
Z_{n}
\end{array}\right)=\left(\begin{array}{lll}
p & 1 & 0 \\
q & 0 & 1 \\
r & 0 & 0
\end{array}\right)^{n-2}\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right), \tag{14}
\end{align*}
$$

and

$$
\left(\begin{array}{lll}
X_{n+2} & Y_{n+2} & Z_{n+2} \tag{15}\\
X_{n+1} & Y_{n+1} & Z_{n+1} \\
X_{n} & Y_{n} & Z_{n}
\end{array}\right)=\left(\begin{array}{ccc}
p & q & r \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{n} .
$$

2. The Basic Algorithms.

ALGORITHM "TribEvaluate":

Given an integer constant n, to evaluate X_{n}, Y_{n}, or Z_{n} numerically, apply the following algorithm:
STEP 1: [Make subscript positive]. If $n<0$, apply algorithm "TribNegate" given below. STEP 2: [Recurse]. If $n>2$, apply the recursion:

$$
S_{n}=p S_{n-1}+q S_{n-2}+r S_{n-3}
$$

This reduces the subscript by 1 , so the recursion must eventually terminate. If n is 0,1 , or 2 , use the values in display (2).
NOTE: While this may not be the fastest way to evaluate X_{n}, Y_{n}, and Z_{n}, it is nevertheless an effective algorithm.

The key idea to algorithmically proving identities involving polynomials in $X_{a n+b}$, $Y_{a n+b}$, and $Z_{a n+b}$ is to first reduce them to polynomials in X_{n}, Y_{n}, and Z_{n}. To do that, we need reduction formulas for X_{m+n}, Y_{m+n}, and Z_{m+n}. Such formulas can be obtained from equations (7), (8), (10), and (11).

From equation (10), we can compute r_{i}^{n+m} by multiplying together r_{i}^{n} and r_{i}^{m}. Then equation (7) gives us X_{m+n}. Thus, $X_{n+m}=A_{1}\left(r_{1}^{2} X_{n}+r_{1} Y_{n}+Z_{n}\right)\left(r_{1}^{2} X_{m}+r_{1} Y_{m}+Z_{m}\right)+$
$B_{1}\left(r_{2}^{2} X_{n}+r_{2} Y_{n}+Z_{n}\right)\left(r_{2}^{2} X_{m}+r_{2} Y_{m}+Z_{m}\right)+C_{1}\left(r_{3}^{2} X_{n}+r_{3} Y_{n}+Z_{n}\right)\left(r_{3}^{2} X_{m}+r_{3} Y_{m}+Z_{m}\right)$. Substituting in the values of the A_{1}, B_{1}, and C_{1} from equation (8) gives us an expression that is symmetric in r_{1}, r_{2}, and r_{3}. Applying Waring's Algorithm allows us to express this in terms of p, q, and r using equation (11). We can do the same for Y_{n+m} and Z_{n+m}. The results obtained are given by the following algorithm.

ALGORITHM "TribReduce" TO REMOVE SUMS IN SUBSCRIPTS.

Use the identities:

$$
\begin{align*}
X_{m+n} & =\left(p^{2}+q\right) X_{m} X_{n}+p\left(X_{n} Y_{m}+X_{m} Y_{n}\right)+X_{n} Z_{m}+X_{m} Z_{n}+Y_{m} Y_{n} \\
Y_{m+n} & =(p q+r) X_{m} X_{n}+q\left(X_{n} Y_{m}+X_{m} Y_{n}\right)+Y_{n} Z_{m}+Y_{m} Z_{n} \tag{16}\\
Z_{m+n} & =\quad p r X_{m} X_{n}+r\left(X_{n} Y_{m}+X_{m} Y_{n}\right)+Z_{m} Z_{n}
\end{align*}
$$

These are also known as the addition formulas.
From the table of initial values, we find that the reduction formulas can also be written in the form

$$
\begin{align*}
X_{m+n} & =X_{4} X_{m} X_{n}+X_{3}\left(X_{n} Y_{m}+X_{m} Y_{n}\right)+X_{n} Z_{m}+X_{m} Z_{n}+Y_{m} Y_{n} \\
Y_{m+n} & =Y_{4} X_{m} X_{n}+Y_{3}\left(X_{n} Y_{m}+X_{m} Y_{n}\right)+Y_{n} Z_{m}+Y_{m} Z_{n} \tag{17}\\
Z_{m+n} & =Z_{4} X_{m} X_{n}+Z_{3}\left(X_{n} Y_{m}+X_{m} Y_{n}\right)+Z_{m} Z_{n}
\end{align*}
$$

The matrix formulation is

$$
X_{m+n}=\left(\begin{array}{c}
X_{m} \tag{18}\\
Y_{m} \\
Z_{m}
\end{array}\right)^{\mathrm{T}}\left(\begin{array}{lll}
X_{4} & X_{3} & X_{2} \\
X_{3} & X_{2} & X_{1} \\
X_{2} & X_{1} & X_{0}
\end{array}\right)\left(\begin{array}{c}
X_{n} \\
Y_{n} \\
Z_{n}
\end{array}\right)
$$

with similar expressions for Y_{m+n} and Z_{m+n}.
If we allow subscripts on the right other than " n " and " m ", simpler forms of the reduction formula can be found. For example, [18] gives the following:

$$
\begin{equation*}
S_{n+m}=X_{m} S_{n+2}+Y_{m} S_{n+1}+Z_{m} S_{n} \tag{19}
\end{equation*}
$$

Similar expressions can be found in [7] and [17]. In matrix form, they can be expressed as

$$
\left(\begin{array}{l}
S_{n+m} \tag{20}\\
S_{n+m-1} \\
S_{n+m-2}
\end{array}\right)=\left(\begin{array}{lll}
X_{m+1} & Y_{m+1} & Z_{m+1} \\
X_{m} & Y_{m} & Z_{m} \\
X_{m-1} & Y_{m-1} & Z_{m-1}
\end{array}\right)\left(\begin{array}{l}
S_{n+1} \\
S_{n} \\
S_{n-1}
\end{array}\right) .
$$

These formulations come from [18] and [20].
Algorithm "TribReduce" allows us to replace any term of the form $S_{a n+b}$ where a and b are positive integers by terms of the form S_{n}. To allow a and b to be negative integers as well, we can also use equation (16), however, then we will obtain expressions of the form S_{-n}. Since we would like to express these in the form S_{n}, we must find formulas for S_{-n}. The same procedure we used before works again. For example, from equation (10), we can compute r_{i}^{-n} as $1 / r_{i}^{n}$. Equation (7) then gives $X_{-n}=A_{1} /\left(r_{1}^{2} X_{n}+r_{1} Y_{n}+Z_{n}\right)+$ $B_{1} /\left(r_{2}^{2} X_{n}+r_{2} Y_{n}+Z_{n}\right)+C_{1} /\left(r_{3}^{2} X_{n}+r_{3} Y_{n}+Z_{n}\right)$. Again we apply Waring's Algorithm and we get the following result.

ALGORITHM "TribNegate" TO REMOVE NEGATIVE SUBSCRIPTS.

Use the identities:

$$
\begin{align*}
X_{-n} & =\frac{p X_{n} Y_{n}-q X_{n}^{2}+Y_{n}^{2}-X_{n} Z_{n}}{r^{n}} \\
Y_{-n} & =\frac{(p q+r) X_{n}^{2}-p^{2} X_{n} Y_{n}-p Y_{n}^{2}-Y_{n} Z_{n}}{r^{n}} \tag{21}\\
Z_{-n} & =\frac{\left(q^{2}-p r\right) X_{n}^{2}-(p q+r) X_{n} Y_{n}-q Y_{n}^{2}+\left(p^{2}+2 q\right) X_{n} Z_{n}+p Y_{n} Z_{n}+Z_{n}^{2}}{r^{n}} .
\end{align*}
$$

If we allow subscripts on the right other than " n ", simpler forms can be found. For example,

$$
\begin{align*}
X_{-n} & =\left(X_{n+1} Y_{n}-X_{n} Y_{n+1}\right) / r^{n} \\
Y_{-n} & =\left(X_{n} Y_{n+2}-X_{n+2} Y_{n}\right) / r^{n} \tag{22}\\
Z_{-n} & =\left(X_{n+2} Y_{n+1}-X_{n+1} Y_{n+2}\right) / r^{n}
\end{align*}
$$

3. The Fundamental Identity Connecting X, Y, and Z.

The Fibonacci and Lucas numbers are connected by the fundamental identity

$$
\begin{equation*}
L_{n}^{2}=5 F_{n}^{2}+4(-1)^{n} \tag{23}
\end{equation*}
$$

Furthermore, it can be shown that if $f\left(F_{n}, L_{n}\right)$ is any non-constant polynomial (with coefficients that are constants or of the form $(-1)^{n}$) that is 0 for all integral values of n, then this polynomial must be divisible by $L_{n}^{2}-5 F_{n}^{2}-4(-1)^{n}$. That is, equation (23) is the unique identity connecting F_{n} and L_{n}.

A similar result holds for arbitrary second-order linear recurrences. For third-order linear recurrences, we believe there is also exactly one fundamental identity connecting X_{n}, Y_{n}, and Z_{n}. In this section, we will find such an identity, but we do not prove that this identity is unique.

To obtain an identity connecting X_{n}, Y_{n}, and Z_{n}, we can multiply together the equations in display (10). The result is a symmetric polynomial in r_{1}, r_{2}, and r_{3} and can thus be expressed in terms of p, q, and r. The result is the following.
THE FUNDAMENTAL IDENTITY:

$$
\begin{align*}
r^{n} & =r^{2} X_{n}^{3}+r Y_{n}^{3}+Z_{n}^{3}+\left(q^{2}-2 p r\right) X_{n}^{2} Z_{n}-q r X_{n}^{2} Y_{n}+p r X_{n} Y_{n}^{2} \\
& +\left(p^{2}+2 q\right) X_{n} Z_{n}^{2}-q Y_{n}^{2} Z_{n}+p Y_{n} Z_{n}^{2}-(p q+3 r) X_{n} Y_{n} Z_{n} \tag{24}
\end{align*}
$$

If we allow subscripts on the right other than " n ", simpler forms of the fundamental identity can be found. For example, [15] gives the following equivalent formulation:

$$
\left|\begin{array}{ccc}
X_{n+2} & X_{n+1} & X_{n} \tag{25}\\
Y_{n+2} & Y_{n+1} & Y_{n} \\
Z_{n+2} & Z_{n+1} & Z_{n}
\end{array}\right|=r^{n}
$$

4. The Simplification Algorithm.

Let us be given a polynomial function of elements of the form X_{w}, Y_{w}, and Z_{w}, where the subscripts of X, Y, and Z are of the form $a_{1} n_{1}+a_{2} n_{2}+\cdots+a_{k} n_{k}+b$ where b and the a_{i} are integer constants and the n_{i} are variables. To put this expression in "canonical form", we apply the following algorithm:

ALGORITHM "TribSimplify" TO TRANSFORM AN EXPRESSION TO CANONICAL FORM.

STEP 1: [Remove sums in subscripts]. Apply Algorithm"TribReduce" to remove any sums (or differences) in subscripts.
STEP 2: [Make multipliers positive]. All subscripts are now of the form $c n$ where c is an integer. For any term in which the multiplier c is negative, apply Algorithm "TribNegate". STEP 3: [Remove multipliers]. All subscripts are now of the form $c n$ where c is a positive integer. For any term in which the multiplier c is not 1, apply Algorithm "TribReduce" successively until all subscripts are variables.
STEP 4: [Remove powers of Z]. If any term involves an expression of the form Z_{n}^{k} where $k>2$ reduce the exponent by 1 by replacing Z_{n}^{3} by its equivalent value as given by the fundamental identity (24), namely

$$
\begin{align*}
Z_{n}^{3} & =r^{n}-r^{2} X_{n}^{3}-r Y_{n}^{3}-\left(q^{2}-2 p r\right) X_{n}^{2} Z_{n}+q r X_{n}^{2} Y_{n}-p r X_{n} Y_{n}^{2} \\
& -\left(p^{2}+2 q\right) X_{n} Z_{n}^{2}+q Y_{n}^{2} Z_{n}-p Y_{n} Z_{n}^{2}+(p q+3 r) X_{n} Y_{n} Z_{n} \tag{26}
\end{align*}
$$

Continue doing this until no Z_{n} term has an exponent larger than 2.

PROVING IDENTITIES.

To prove that an expression is identically 0 , it suffices to apply algorithm "TribSimplify". If the resulting canonical form is 0 , then the expression is identically 0 . We believe that the converse is true as well; that is, an expression is identically 0 if and only if algorithm "TribSimplify" transforms it to 0 . A formal proof can probably be given along the lines of [18], however, we do not do so. Suffice it to say that algorithm "TribSimplify" was checked on about 100 identities culled from the literature and it worked every time. A selection of these identities is given in the appendix. See also [6] for a related algorithm for trigonometric polynomials.

5. Other Algorithms.

These algorithms can be verified by applying algorithm "TribSimplify".

ALGORITHM "ConvertToX" TO CHANGE Y's AND Z's to X's

Use the identities:

$$
\begin{align*}
& Y_{n}=-p X_{n}+X_{n+1} \\
& Z_{n}=r X_{n-1} \tag{27}
\end{align*}
$$

ALGORITHM "ConvertToY" TO CHANGE Z's AND X's to Y's

Use the identities:

$$
\begin{align*}
Z_{n} & =\left(r Y_{n+1}-q r Y_{n-1}\right) /(p q+r) \\
X_{n} & =\left(p Y_{n+1}+r Y_{n-1}\right) /(p q+r) \tag{28}
\end{align*}
$$

ALGORITHM "ConvertToZ" TO CHANGE X's AND Y's to Z's

Use the identities:

$$
\begin{align*}
X_{n} & =Z_{n+1} / r \\
Y_{n} & =Z_{n-1}+q Z_{n} / r \tag{29}
\end{align*}
$$

ALGORITHM "Removepqr" TO REMOVE p's, q's, AND r's

Use the identities:

$$
\begin{align*}
p & =\left(X_{n+1}-Y_{n}\right) / X_{n} \\
q & =\left(Y_{n+1}-Z_{n}\right) / X_{n} \tag{30}\\
r & =Z_{n+1} / X_{n} .
\end{align*}
$$

ALGORITHM "TribShiftDown1" TO DECREASE A SUBSCRIPT BY 1

Use the identities:

$$
\begin{align*}
X_{n+1} & =p X_{n}+Y_{n} \\
Y_{n+1} & =q X_{n}+Z_{n} \tag{31}\\
Z_{n+1} & =r X_{n} .
\end{align*}
$$

These can be found in [10].

ALGORITHM "TribShiftUp1" TO INCREASE A SUBSCRIPT BY 1

Use the identities:

$$
\begin{align*}
X_{n-1} & =Z_{n} / r \\
Y_{n-1} & =X_{n}-p Z_{n} / r \tag{32}\\
Z_{n-1} & =Y_{n}-q Z_{n} / r .
\end{align*}
$$

SUBTRACTION FORMULAS

Use the identities:

$$
\begin{align*}
X_{m-n}= & \left(r X_{n}\left(X_{n} Y_{m}-X_{m} Y_{n}\right)-\left(q X_{n}+Z_{n}\right)\left(X_{n} Z_{m}-X_{m} Z_{n}\right)\right. \\
& \left.+\left(p X_{n}+Y_{n}\right)\left(Y_{n} Z_{m}-Y_{m} Z_{n}\right)\right) / r^{n} \\
Y_{m-n}= & \left(r\left(p X_{n}+Y_{n}\right)\left(X_{m} Y_{n}-X_{n} Y_{m}\right)+(p q+r) X_{n}\left(X_{n} Z_{m}-X_{m} Z_{n}\right)\right. \\
& \left.-\left(p(p+1) X_{n}-Z_{n}\right)\left(Y_{n} Z_{m}-Y_{m} Z_{n}\right)\right) / r^{n} \tag{33}\\
Z_{m-n}= & \left(r^{2} X_{m} X_{n}^{2}-q r X_{n}^{2} Y_{m}+p r X_{n} Y_{m} Y_{n}+r Y_{m} Y_{n}^{2}+q^{2} X_{n}^{2} Z_{m}-p r X_{n}^{2} Z_{m}\right. \\
& -p q X_{n} Y_{n} Z_{m}-r X_{n} Y_{n} Z_{m}-q Y_{n}^{2} Z_{m}-p r X_{m} X_{n} Z_{n}-r X_{n} Y_{m} Z_{n} \\
& \left.-r X_{m} Y_{n} Z_{n}+p^{2} X_{n} Z_{m} Z_{n}+2 q X_{n} Z_{m} Z_{n}+p Y_{n} Z_{m} Z_{n}+Z_{m} Z_{n}^{2}\right) / r^{n} .
\end{align*}
$$

If we allow subscripts on the right other than simple variables, simpler subtraction
formulas can be found. For example, [2] gives the following equivalent formulation:

$$
\begin{align*}
X_{m-n} & =\left|\begin{array}{ccc}
Z_{m} & Y_{m} & X_{m} \\
Z_{n} & Y_{n} & X_{n} \\
Z_{n+1} & Y_{n+1} & X_{n+1}
\end{array}\right| / r^{n} \\
Y_{m-n} & =\left|\begin{array}{ccc}
Z_{m} & Y_{m} & X_{m} \\
Z_{n} & Y_{n} & X_{n} \\
Z_{n+2} & Y_{n+2} & X_{n+2}
\end{array}\right| / r^{n} \tag{34}\\
Z_{m-n} & =\left|\begin{array}{ccc}
Z_{m} & Y_{m} & X_{m} \\
Z_{n+1} & Y_{n+1} & X_{n+1} \\
Z_{n+2} & Y_{n+2} & X_{n+2}
\end{array}\right| / r^{n} .
\end{align*}
$$

DOUBLE ARGUMENT FORMULAS

Letting $m=n$ in equation (16) gives us the following.

$$
\begin{align*}
X_{2 n} & =\left(p^{2}+q\right) X_{n}^{2}+2 p X_{n} Y_{n}+Y_{n}^{2}+2 X_{n} Z_{n} \\
Y_{2 n} & =(p q+r) X_{n}^{2}+2 q X_{n} Y_{n}+2 Y_{n} Z_{n} \tag{35}\\
Z_{2 n} & =p r X_{n}^{2}+2 r X_{n} Y_{n}+Z_{n}^{2}
\end{align*}
$$

TO REMOVE SCALAR MULTIPLES OF ARGUMENTS IN SUBSCRIPTS

An expression of the form $S_{k n}$ where k is a positive integer can be thought of as being of the form $S_{n+n+\cdots+n}$ where there are k terms in the subscript. This can be expanded out in terms of S_{n} by $k-1$ repeated applications of the reduction formula (16). For example, for $k=3$ we get the following identities.

$$
\begin{aligned}
X_{3 n}= & \left(p^{4}+3 p^{2} q+q^{2}+2 p r\right) X_{n}^{3}+3\left(p^{3}+2 p q+r\right) X_{n}^{2} Y_{n}+3\left(p^{2}+q\right) X_{n} Y_{n}^{2} \\
& +p Y_{n}^{3}+3\left(p^{2}+q\right) X_{n}^{2} Z_{n}+6 p X_{n} Y_{n} Z_{n}+3 Y_{n}^{2} Z_{n}+3 X_{n} Z_{n}^{2} \\
Y_{3 n}= & \left(p^{3} q+2 p q^{2}+p^{2} r+2 q r\right) X_{n}^{3}+3\left(p^{2} q+q^{2}+p r\right) X_{n}^{2} Y_{n}+3(p q+r) X_{n} Y_{n}^{2} \\
& +q Y_{n}^{3}+3(p q+r) X_{n}^{2} Z_{n}+6 q X_{n} Y_{n} Z_{n}+3 Y_{n} Z_{n}^{2} \\
Z_{3 n}= & \left(p^{3} r+2 p q r+r^{2}\right) X_{n}^{3}+3 r\left(p^{2}+q\right) X_{n}^{2} Y_{n}+3 p r X_{n} Y_{n}^{2}+r Y_{n}^{3}+3 p r X_{n}^{2} Z_{n} \\
& +6 r X_{n} Y_{n} Z_{n}+Z_{n}^{3} .
\end{aligned}
$$

In general, we have

$$
S_{k n}=\sum_{a+b+c=k}\left(\begin{array}{lll}
& k & \tag{36}\\
a & b & c
\end{array}\right) S_{2 a+b} X_{n}^{a} Y_{n}^{b} Z_{n}^{c}
$$

where $\left(\begin{array}{cc}k & k \\ a & b\end{array}\right)$ denotes the trinomial coefficient $\frac{k!}{a!b!c!}$. Formula (36) can be proven by induction on k.

CHANGE OF BASIS (Shift Formulas)

ALGORITHM "TribShift" TO TRANSFORM AN EXPRESSION INVOLVING X_{n}, Y_{n}, Z_{n} INTO ONE INVOLVING $X_{n+a}, Y_{n+b}, Z_{n+c}$
Use identities such as:

$$
X_{n}=\frac{1}{D}\left(\left|\begin{array}{cc}
q X_{b}+Z_{b} & Y_{b} \\
r X_{c} & Z_{c}
\end{array}\right| X_{n+a}-\left|\begin{array}{cc}
p X_{a}+Y_{a} & X_{a} \\
r X_{c} & Z_{c}
\end{array}\right| Y_{n+b}+\left|\begin{array}{cc}
p X_{a}+Y_{a} & X_{a} \\
q X_{b}+Z_{b} & Y_{b}
\end{array}\right| Z_{n+c}\right)
$$

where

$$
D=\left|\begin{array}{ccc}
\left(p^{2}+q\right) X_{a}+p Y_{a}+Z_{a} & p X_{a}+Y_{a} & X_{a} \tag{37}\\
(p q+r) X_{b}+q Y_{b} & q X_{b}+Z_{b} & Y_{b} \\
p r X_{c}+r Y_{c} & r X_{c} & Z_{c}
\end{array}\right|
$$

which can be obtained by solving the linear equations

$$
\begin{aligned}
X_{n+a} & =\left(p^{2}+q\right) X_{a} X_{n}+p\left(X_{n} Y_{a}+X_{a} Y_{n}\right)+X_{n} Z_{a}+X_{a} Z_{n}+Y_{a} Y_{n} \\
Y_{n+b} & =(p q+r) X_{b} X_{n}+q\left(X_{n} Y_{b}+X_{b} Y_{n}\right)+Y_{n} Z_{b}+Y_{b} Z_{n} \\
Z_{n+c} & =p r X_{c} X_{n}+r\left(X_{n} Y_{c}+X_{c} Y_{n}\right)+Z_{c} Z_{n}
\end{aligned}
$$

for X_{n}, Y_{n}, and Z_{n}.
One can change from the basis $\left(X_{n}, Y_{n}, Z_{n}\right)$ to the basis $\left(X_{n+a}, X_{n+b}, X_{n+c}\right)$ in a similar manner. Other combinations can be found in the same way. To change from an arbitrary basis to another, apply algorithm "TribReduce" to transform the given expression to the basis $\left(X_{n}, Y_{n}, Z_{n}\right)$. Then use one of the above formulas.

6. Turning Squares into Sums.

For Lucas Numbers, there is the well-known formula

$$
\begin{equation*}
L_{n}^{2}=L_{2 n}-2(-1)^{n} \tag{38}
\end{equation*}
$$

which allows us to replace the square of a term with a sum of terms. To find an analog for third-order recurrences, we can proceed as follows.

Combining equations (21) and (35) gives us 6 equations in the 6 variables $X_{n} Y_{n}$, $Y_{n} Z_{n}, X_{n} Z_{n}, X_{n}^{2}, Y_{n}^{2}$, and Z_{n}^{2}. We can then solve these equations for X_{n}^{2}, Y_{n}^{2}, and Z_{n}^{2} in terms of $X_{2 n}, Y_{2 n}, Z_{2 n}, X_{-n}, Y_{-n}$, and Z_{-n}. We get the following (computer-generated) result.

ALGORITHM "TribExpandSquares" TO TURN SQUARES INTO SUMS:

$$
\begin{align*}
d X_{n}^{2}= & r^{n}\left[2\left(p^{4}+5 p^{2} q+4 q^{2}+6 p r\right) X_{-n}+2\left(p^{3}+4 p q+9 r\right) Y_{-n}+2\left(p^{2}+3 q\right) Z_{-n}\right] \\
& +2\left(3 p r-q^{2}\right) X_{2 n}+(p q+9 r) Y_{2 n}-2\left(p^{2}+3 q\right) Z_{2 n} \tag{39}\\
d Y_{n}^{2}= & r^{n}\left[2\left(p^{6}+6 p^{4} q+8 p^{2} q^{2}+8 p^{3} r+16 p q r+9 r^{2}\right) X_{-n}\right. \\
& \left.+2\left(p^{5}+5 p^{3} q+4 p q^{2}+7 p^{2} r+3 q r\right) Y_{-n}+2\left(p^{4}+4 p^{2} q+q^{2}+6 p r\right) Z_{-n}\right] \\
& +\left(9 r^{2}-p^{2} q^{2}-2 q^{3}+2 p^{3} r+4 p q r\right) X_{2 n}+\left(p^{3} q+3 p q^{2}+p^{2} r+3 q r\right) Y_{2 n} \tag{40}
\end{align*}
$$

$$
\begin{align*}
& -2\left(p^{4}+4 p^{2} q+q^{2}+6 p r\right) Z_{2 n} \\
d Z_{n}^{2}= & r^{n}\left[2 r\left(p^{5}+6 p^{3} q+8 p q^{2}+7 p^{2} r+12 q r\right) X_{-n}\right. \\
& \left.+2 r\left(p^{4}+5 p^{2} q+4 q^{2}+6 p r\right) Y_{-n}+2 r\left(p^{3}+4 p q+9 r\right) Z_{-n}\right] \\
& -2 r^{2}\left(p^{2}+3 q\right) X_{2 n}+r\left(p^{2} q+4 q^{2}-3 p r\right) Y_{2 n} \tag{41}\\
& +\left(9 r^{2}-p^{2} q^{2}-4 q^{3}+2 p^{3} r+10 p q r\right) Z_{2 n}
\end{align*}
$$

where $d=27 r^{2}-p^{2} q^{2}-4 q^{3}+4 p^{3} r+18 p q r$.
These formulas are a bit outrageous. Are there any simpler formulas? Can these be put in simpler form? To be more specific, we ask the following.
Query. Is there a simpler formula than formula (41) that allows us to express Z_{n}^{2} as a linear combination of terms, each of the form $X_{a n+b}, Y_{a n+b}$, or $Z_{a n+b}$? The coefficients may include the constants p, q, and r as well as the non-linear expression r^{n}.

7. Turning Products into Simpler Products.

For Lucas Numbers, there is the well-known formula

$$
\begin{equation*}
L_{m} L_{n}=L_{m+n}+(-1)^{n} L_{m-n} \tag{42}
\end{equation*}
$$

which allows you to turn products into sums. For third-order recurrences, there probably is no corresponding formula. However, there is a formula that allows us to turn products of three or more terms into sums of products consisting of just two terms.

To find a formula for $X_{m} X_{n} X_{s}$, we can proceed as follows. From equation (7), we have

$$
X_{m} X_{n} X_{s}=\left(A_{1} r_{1}^{m}+A_{2} r_{2}^{m}+A_{3} r_{3}^{m}\right)\left(A_{1} r_{1}^{n}+A_{2} r_{2}^{n}+A_{3} r_{3}^{n}\right)\left(A_{1} r_{1}^{s}+A_{2} r_{2}^{s}+A_{3} r_{3}^{s}\right) .
$$

After expanding this out, replace any term of the form $r_{1}^{a} r_{2}^{b} r_{3}^{c}$ (with $a, b, c>0$) by $r^{s} r_{1}^{a-s} r_{2}^{b-s} r_{3}^{c-s}$, which is equivalent because $r_{1} r_{2} r_{3}=r$. Since one of a, b, c is equal to s, this substitution turns this term into one involving the product of only two powers of the r_{i}. Use equation (10) to convert powers of r_{1}, r_{2}, and r_{3} back to expressions involving X, Y, and Z. Then use Waring's algorithm and equations (8) and (11) to replace A_{1}, A_{2}, A_{3}, r_{1}, r_{2}, and r_{3}, by p, q, and r. We get the following (computer generated) result.

$$
\begin{aligned}
X_{m} X_{n} X_{s}= & {\left[-c_{8} X_{m+n} X_{s}-c_{8} X_{n} X_{m+s}-c_{8} X_{m} X_{n+s}+c_{6} X_{m+n+s}-c_{7} X_{n+s} Y_{m}\right.} \\
& -c_{7} X_{m+s} Y_{n}-c_{3} X_{s} Y_{m+n}-c_{7} X_{m+n} Y_{s}-c_{6} Y_{m+n} Y_{s}-c_{3} X_{n} Y_{m+s} \\
& -c_{6} Y_{n} Y_{m+s}-c_{3} X_{m} Y_{n+s}-c_{6} Y_{m} Y_{n+s}-c_{5} Y_{m+n+s}-c_{6} X_{n+s} Z_{m} \\
& +c_{5} Y_{n+s} Z_{m}-c_{6} X_{m+s} Z_{n}+c_{5} Y_{m+s} Z_{n}-c_{2} X_{s} Z_{m+n}+c_{5} Y_{s} Z_{m+n} \\
& -c_{6} X_{m+n} Z_{s}+c_{5} Y_{m+n} Z_{s}+3 c_{1} Z_{m+n} Z_{s}-c_{2} X_{n} Z_{m+s}+c_{5} Y_{n} Z_{m+s} \\
& +3 c_{1} Z_{n} Z_{m+s}-c_{2} X_{m} Z_{n+s}+c_{5} Y_{m} Z_{n+s}+3 c_{1} Z_{m} Z_{n+s} \\
& -3 c_{1} Z_{m+n+s}-r^{s}\left(-2 c_{8} X_{m-s} X_{n-s}+c_{9} X_{n-s} Y_{m-s}\right. \\
& +c_{9} X_{m-s} Y_{n-s}-2 c_{6} Y_{m-s} Y_{n-s}+2 c_{4} X_{n-s} Z_{m-s}+2 c_{5} Y_{n-s} Z_{m-s} \\
& \left.\left.+2 c_{4} X_{m-s} Z_{n-s}+2 c_{5} Y_{m-s} Z_{n-s}+6 c_{1} Z_{m-s} Z_{n-s}\right)\right] / d^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& c_{1}=p^{2} q^{2}+4 q^{3}-4 p^{3} r-18 p q r-27 r^{2} \\
& c_{2}=-2 p^{4} q^{2}-13 p^{2} q^{3}-20 q^{4}+8 p^{5} r+56 p^{3} q r+90 p q^{2} r+54 p^{2} r^{2}+135 q r^{2} \\
& c_{3}=p^{3} q^{3}+4 p q^{4}-4 p^{4} q r-12 p^{2} q^{2} r+24 q^{3} r-24 p^{3} r^{2}-135 p q r^{2}-162 r^{3} \\
& c_{4}=p^{4} q^{2}+6 p^{2} q^{3}+8 q^{4}-4 p^{5} r-27 p^{3} q r-36 p q^{2} r-27 p^{2} r^{2}-54 q r^{2} \\
& c_{5}=p c_{1} \\
& c_{6}=q c_{1} \\
& c_{7}=-3 c_{1} r \\
& c_{8}=-p^{2} q^{4}-4 q^{5}+6 p^{3} q^{2} r+26 p q^{3} r-8 p^{4} r^{2}-36 p^{2} q r^{2}+27 q^{2} r^{2}-54 p r^{3} \\
& c_{9}=-p^{3} q^{3}-4 p q^{4}+4 p^{4} q r+15 p^{2} q^{2} r-12 q^{3} r+12 p^{3} r^{2}+81 p q r^{2}+81 r^{3}
\end{aligned}
$$

and

$$
d=27 r^{2}-p^{2} q^{2}-4 q^{3}+4 p^{3} r+18 p q r .
$$

These formulas can be simplified. Using the first formula in display (16), we can remove any terms of the form $Y_{m} Y_{n}$. Using the second formula in display (16), we can remove any terms of the form $Y_{n} Z_{m}+Y_{m} Z_{n}$. Using the third formula in display (16), we can remove any terms of the form $Z_{m} Z_{n}$. Upon doing this, we get the following.

$$
\begin{align*}
d X_{m} X_{n} X_{s}= & 2\left(q^{2}-3 p r\right)\left[X_{s} X_{m+n}+X_{n} X_{s+m}+X_{m} X_{n+s}-2 r^{s} X_{m-s} X_{n-s}\right] \\
& -2 q\left[X_{m+n+s}-r^{s} X_{m+n-2 s}\right]+2 p\left[Y_{m+n+s}-r^{s} Y_{m+n-2 s}\right] \\
& +6\left[Z_{m+n+s}-r^{s} Z_{m+n-2 s}\right] \\
& -(p q+9 r)\left[X_{s} Y_{m+n}+X_{n} Y_{s+m}+X_{m} Y_{n+s}\right. \tag{43}\\
& \left.\quad-r^{s}\left(X_{m-s} Y_{n-s}+X_{n-s} Y_{m-s}\right)\right] \\
+ & 2\left(p^{2}+3 q\right)\left[X_{s} Z_{m+n}+X_{n} Z_{s+m}+X_{m} Z_{n+s}\right. \\
& \left.\quad-r^{s}\left(X_{m-s} Z_{n-s}+X_{n-s} Z_{m-s}\right)\right] .
\end{align*}
$$

This can also be expressed in the following form:

ALGORITHM "TribShortenProducts" TO TURN PRODUCTS OF MANY TERMS INTO PRODUCTS OF TWO TERMS:

$$
\begin{align*}
X_{m} X_{n} X_{s}= & {\left[X_{s} C_{m+n}+X_{n} C_{s+m}+X_{m} C_{n+s}\right.} \\
& -r^{s}\left(X_{m-s} C_{n-s}+X_{n-s} C_{m-s}\right) \\
& -2 q X_{m+n+s}+2 p Y_{m+n+s}+6 Z_{m+n+s} \tag{44}\\
& \left.-r^{s}\left(-2 q X_{m+n-2 s}+2 p Y_{m+n-2 s}+6 Z_{m+n-2 s}\right)\right] / d
\end{align*}
$$

where $d=27 r^{2}-p^{2} q^{2}-4 q^{3}+4 p^{3} r+18 p q r$ and

$$
C_{n}=2\left(q^{2}-3 p r\right) X_{n}-(p q+9 r) Y_{n}+2\left(p^{2}+3 q\right) Z_{n}
$$

For products of three terms not all involving X 's, first apply algorithm "ConvertToX", formula (27), to change any Y or Z terms to X terms. For products of more than three terms, this procedure can be repeated, three terms at a time, until only products of two terms remain.

Formula (44) is still pretty messy. Can it be simplified? Can it be made to look symmetric under permutations of (m, n, s) ?

8. Simson's Formula.

For Fibonacci numbers, there is the well-known Simson Formula, $F_{n+1} F_{n-1}-F_{n}^{2}=$ $(-1)^{n}$. This can be written in the form

$$
\left|\begin{array}{cc}
F_{n+1} & F_{n} \tag{45}\\
F_{n} & F_{n-1}
\end{array}\right|=-(-1)^{n-1} .
$$

The generalization of this to third-order recurrences is

$$
\left|\begin{array}{ccc}
X_{n+2} & X_{n+1} & X_{n} \tag{46}\\
X_{n+1} & X_{n} & X_{n-1} \\
X_{n} & X_{n-1} & X_{n-2}
\end{array}\right|=-r^{n-2}
$$

which can be further generalized to

$$
\left|\begin{array}{ccc}
S_{n+4} & S_{n+3} & S_{n+2} \tag{47}\\
S_{n+3} & S_{n+2} & S_{n+1} \\
S_{n+2} & S_{n+1} & S_{n}
\end{array}\right|=r^{n}\left|\begin{array}{ccc}
S_{4} & S_{3} & S_{2} \\
S_{3} & S_{2} & S_{1} \\
S_{2} & S_{1} & S_{0}
\end{array}\right| .
$$

These formulas come from [15].

9. Summations.

We can perform indefinite summations of expressions involving X_{n}, Y_{n}, and Z_{n} any time we can perform such summations with a^{n} instead, since by (7), these terms are actually exponentials with bases r_{1}, r_{2}, and r_{3}.

First, the expression is converted to exponential form using equation (7). Then it is summed. The result is converted back to X^{\prime} 's, Y 's, and Z's by using equation (10). Then r_{1}, r_{2}, and r_{3} are converted to p, q, and r using equation (11).

The following summations were found using this method.

$$
\begin{align*}
\sum_{k=1}^{n} x^{k} X_{k}= & \frac{-x^{2}+x^{n+1}\left(X_{n+1}+x Y_{n+1}+x^{2} Z_{n+1}\right)}{-1+p x+q x^{2}+r x^{3}} \tag{48}\\
\sum_{k=0}^{n} X_{a k+b}= & {\left[\left(Y_{a+b}-Y_{(n+1) a+b}\right)\left\{r X_{a}^{2}+\left(p X_{a}+Y_{a}\right)\left(Z_{a}-1\right)\right\}\right.} \\
& +\left(X_{a+b}-X_{(n+1) a+b}\right)\left\{\left(Z_{a}-1\right)^{2}-r X_{a} Y_{a}+q X_{a}\left(Z_{a}-1\right)\right\} \\
& \left.+\left(Z_{a+b}-Z_{(n+1) a+b}\right)\left\{\left(p X_{a}+Y_{a}\right) Y_{a}-q X_{a}^{2}-X_{a}\left(Z_{a}-1\right)\right\}\right]
\end{align*}
$$

$$
\begin{align*}
& /\left[r^{2} X_{a}^{3}+r Y_{a}^{3}+\left(Z_{a}-1\right)^{3}-q Y_{a}^{2}\left(Z_{a}-1\right)\right. \tag{49}\\
& +X_{a}^{2}\left(\left(q^{2}-2 p r\right)\left(Z_{a}-1\right)-q r Y_{a}\right)+p Y_{a}\left(Z_{a}-1\right)^{2} \\
& \left.+X_{a}\left(\left(p^{2}+2 q\right)\left(Z_{a}-1\right)^{2}+p r Y_{a}^{2}-Y_{a}(p q+3 r)\left(Z_{a}-1\right)\right)\right] \\
\sum_{k=1}^{n} k X_{k}= & {\left[2-p+r-(n+1)(2 r+q+1) X_{n+1}+n(2 r+q+1) X_{n+2}\right.} \\
& +(n+1)(p-r-2) Y_{n+1}-n(p-r-2) Y_{n+2} \tag{50}\\
& \left.+(n+1)(2 p+q-3) Z_{n+1}-n(2 p+q-3) Z_{n+2}\right] /(p+q+r-1)^{2} \\
\sum_{k=1}^{n} k^{2} X_{k}= & {\left[(1 + 3 q - p q + 7 r - 3 p r + r ^ { 2 }) \left\{-(n+1)^{2} X_{n+1}\right.\right.} \\
& \left.+\left(2 n^{2}+2 n-1\right) X_{n+2}-n^{2} X_{n+3}\right\} \\
& +\left(3-3 p+p^{2}+q+6 r-3 p r-q r\right)\left\{-(n+1)^{2} Y_{n+1}\right. \tag{51}\\
& \left.+\left(2 n^{2}+2 n-1\right) Y_{n+2}-n^{2} Y_{n+3}\right\} \\
& +\left(6-8 p+3 p^{2}-3 q+3 p q+q^{2}+3 r-p r\right)\left\{-(n+1)^{2} Z_{n+1}\right. \\
& \left.\left.+\left(2 n^{2}+2 n-1\right) Z_{n+2}-n^{2} Z_{n+3}\right\}\right] /(p+q+r-1)^{3} \\
\sum_{k=0}^{n} X_{k} X_{n-k}= & {\left[-(n+1) p r X_{n}+(9 r-n p q-3 n r) X_{n+1}+q(n-1) X_{n+2}-3 r(n+1) Y_{n}\right.} \\
& +\left(n p^{2}-p^{2}-3 q+n q\right) Y_{n+1}-p(n-1) Y_{n+2}+(n+1)\left(p^{2}+4 q\right) Z_{n} \tag{52}\\
& \left.+2 n p Z_{n+1}-3(n-1) Z_{n+2}\right] /\left(p^{2} q^{2}+4 q^{3}-27 r^{2}-4 p^{3} r-18 p q r\right) .
\end{align*}
$$

Most of the above formulas are special cases of formula (5.2) of [22].

10. The Tribonacci Sequence.

The Tribonacci Sequence, $\left\langle T_{n}\right\rangle$, may be defined by

$$
\begin{equation*}
T_{n}=T_{n-1}+T_{n-2}+T_{n-3} \tag{53}
\end{equation*}
$$

with initial conditions $T_{0}=0, T_{1}=1$, and $T_{2}=1$. A basis can be formed from $\left(T_{n}, T_{n+1}, T_{n+2}\right)$.

For this sequence, we have $T_{n}=X_{n+1}$ with $p=q=r=1$. To convert X 's, Y 's, and Z 's to T 's, use the identities

$$
\begin{align*}
X_{n} & =T_{n+2}-T_{n+1}-T_{n} \\
Y_{n} & =2 T_{n}+T_{n+1}-T_{n+2} \tag{54}\\
Z_{n} & =2 T_{n+1}-T_{n+2} .
\end{align*}
$$

The reduction formulas are:

$$
\begin{align*}
T_{n+m}= & T_{n}\left(2 T_{m+1}-T_{m+2}\right)+T_{n+1}\left(2 T_{m}+T_{m+1}-T_{m+2}\right) \tag{55}\\
& -T_{n+2}\left(T_{m}+T_{m+1}-T_{m+2}\right)
\end{align*}
$$

and

$$
\begin{align*}
T_{n-m}= & T_{n}\left(T_{m+1}^{2}-T_{m} T_{m+2}\right)+T_{n+1}\left(T_{m+2}^{2}-T_{m} T_{m+1}-T_{m+2} T_{m}-T_{m+2} T_{m+1}\right) \tag{56}\\
& +T_{n+2}\left(T_{m}^{2}+T_{m} T_{m+1}+T_{m+1}^{2}-T_{m+1} T_{m+2}\right)
\end{align*}
$$

A form of the addition formula was first found by Agronomof in 1914 [1].
The double argument formula is

$$
\begin{equation*}
T_{2 n}=T_{n+2}^{2}+T_{n+1}^{2}+4 T_{n} T_{n+1}-2 T_{n} T_{n+2}-2 T_{n+1} T_{n+2} \tag{57}
\end{equation*}
$$

A form of this can also be found in [1].
The negation formula is

$$
\begin{equation*}
T_{-n}=T_{n+2}^{2}+T_{n+1}^{2}+T_{n}^{2}-T_{n+2}\left(2 T_{n+1}+T_{n}\right) \tag{58}
\end{equation*}
$$

The fundamental identity connecting T_{n}, T_{n+1}, and T_{n+2} is
$T_{n}^{3}+2 T_{n+1}^{3}+T_{n+2}^{3}+2 T_{n} T_{n+1}\left(T_{n}+T_{n+1}\right)+T_{n} T_{n+2}\left(T_{n}-T_{n+2}-2 T_{n+1}\right)-2 T_{n+1} T_{n+2}^{2}=1$.
The formula to expand squares is

$$
\begin{equation*}
T_{n}^{2}=\left(5 T_{2 n+2}-3 T_{2 n+1}-4 T_{2 n}+4 T_{-n}+10 T_{-n-1}-2 T_{-n-2}\right) / 22 \tag{60}
\end{equation*}
$$

The analog of Simson's formula is

$$
\left|\begin{array}{ccc}
T_{n+2} & T_{n+1} & T_{n} \tag{61}\\
T_{n+1} & T_{n} & T_{n-1} \\
T_{n} & T_{n-1} & T_{n-2}
\end{array}\right|=-1
$$

which was found by Miles [9] along with generalizations to higher order recurrences.
Miles [9] also generalized the relationship between Fibonacci numbers and binomial coefficients from Pascal's triangle,

$$
F_{n+1}=\sum_{a+2 b=n}\binom{a+b}{a}
$$

to the following formula which relates Tribonacci numbers and trinomial coefficients from Pascal's pyramid:

$$
T_{n+1}=\sum_{a+2 b+3 c=n}\left(\begin{array}{ccc}
a+b+c \tag{62}\\
a & b & c
\end{array}\right) .
$$

The following summation was found using the methods of Section 9.

$$
\begin{equation*}
\sum_{k=1}^{n} T_{k}^{2}=\left[1+4 T_{n} T_{n+1}-\left(T_{n+1}-T_{n-1}\right)^{2}\right] / 4 \tag{63}
\end{equation*}
$$

Appendix 1: Selected Identities.

We present below some selected identities culled from the literature. All these identities were successfully checked by algorithm "TribSimplify". Recall that W_{n} is defined by equation (9).

The following six identities come from Jarden [7]:

$$
\begin{gathered}
S_{n+m}=r X_{m} S_{n-1}+X_{m+1}\left(S_{n+1}-p S_{n}\right)+X_{m+2} S_{n} \\
X_{2 n}=\left(2 r X_{n-1}+q X_{n}\right) X_{n}+X_{n+1}^{2} \\
X_{2 n+1}=r X_{n}^{2}+\left(2 X_{n+2}-p X_{n+1}\right) X_{n+1} \\
X_{2 n}=X_{n} W_{n}+r^{n} X_{-n} \\
W_{2 n}=W_{n}^{2}-2 r^{n} W_{-n} \\
X_{2 n+1}=X_{n+1} W_{n}+r^{n} X_{1-n}
\end{gathered}
$$

The following three identities come from Yalavigi [21]:

$$
\begin{gathered}
2 W_{3 n}=W_{n}\left(3 W_{2 n}-W_{n}^{2}\right)+6 r^{n} \\
W_{4 n}=W_{n} W_{3 n}-W_{2 n}\left(W_{n}^{2}-W_{2 n}\right) / 2+r^{n} W_{n} \\
W_{4 n+4 m}-W_{4 n}=W_{n+m} W_{3 n+3 m}-W_{n} W_{3 n}-W_{2 n+2 m}\left(W_{n+m}^{2}-2 W_{2 n+2 m}\right) / 2 \\
+W_{2 n}\left(W_{n}^{2}-2 W_{2 n}\right) / 2+r^{n}\left(W_{n+m}-W_{n}\right)
\end{gathered}
$$

The following three identities come from Yalavigi [20]:

$$
\begin{gathered}
S_{m+n}=X_{m+2} S_{n}+Y_{m+2} S_{n-1}+Z_{m+2} S_{n-2} \\
S_{2 n}=X_{n+2} S_{n}+Y_{n+2} S_{n-1}+Z_{n+2} S_{n-2} \\
S_{m+n}=X_{m+h+2} S_{n-h}+Y_{m+h+2} S_{n-h-1}+Z_{m+h+2} S_{n-h-2}
\end{gathered}
$$

The following identity comes from Shannon and Horadam [15]:

$$
Y_{n}=q X_{n-1}+r X_{n-2}
$$

The following ten identities come from Carlitz [4]: Both ρ_{n} and σ_{n} satisfy thirdorder linear recurrences with $r=1$ and the same p and q with initial conditions $\rho_{0}=1$, $\rho_{1}=\rho_{2}=0, \sigma_{0}=3, \sigma_{1}=p, \sigma_{2}=p^{2}+2 q$. In particular, with $r=1$, we have $\sigma_{n}=W_{n}$ and $\rho_{n}=Z_{n}$.

$$
\begin{gathered}
2 \rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}-\rho_{m-1} \rho_{n+1}=\sigma_{m-3} \sigma_{n-3}-\sigma_{m+n-6}-\sigma_{m-3} \rho_{n-3}-\sigma_{n-3} \rho_{m-3}+2 \rho_{m+n-6} \\
\sigma_{m+3 n}-\sigma_{m+2 n} \sigma_{n}+\sigma_{m+n} \sigma_{-n}-\sigma_{m}=0 \\
\sigma_{2 n}=\sigma_{n}^{2}-2 \sigma_{-n}
\end{gathered}
$$

$$
\begin{gathered}
\sigma_{3 n}=\sigma_{n}^{3}-3 \sigma_{n} \sigma_{-n}+3 \\
\rho_{n}^{2}-\rho_{n+1} \rho_{n-1}=\rho_{3-n} \\
\rho_{n}^{2}-\rho_{n+1} \rho_{n-1}=\rho_{2 n-6}-\rho_{n-3} \sigma_{n-3}+\sigma_{3-n} \\
\rho_{m} \sigma_{n}=\rho_{m+n}+\rho_{m-n} \sigma_{-n}-\rho_{m-2 n} \\
\sigma_{m} \sigma_{n}=\sigma_{m+n}+\sigma_{m-n} \sigma_{-n}-\sigma_{m-2 n} \\
\rho_{2 n}=\rho_{n} \sigma_{n}-\sigma_{-n}+\rho_{-n} \\
\rho_{3 n}=\rho_{n} \sigma_{n}^{2}-\sigma_{n} \sigma_{-n}+\rho_{-n} \sigma_{n}-\rho_{n} \sigma_{-n}+1
\end{gathered}
$$

The following nine identities come from Waddill [17]: In their notation, we have $U_{n}=$ X_{n+1}.

$$
\begin{gathered}
S_{n+m}=U_{n-k} S_{m+k+1}+Y_{n-k+1} S_{m+k}+r U_{n-k-1} S_{m+k-1} \\
S_{n+m}=U_{m-k} S_{n+k+1}+Y_{m-k+1} S_{n+k}+r U_{m-k-1} S_{n+k-1} \\
S_{n}^{2}+q S_{n-1}^{2}+2 r S_{n-1} S_{n-2}=S_{2} S_{2 n-2}+\left(q S_{1}+r S_{0}\right) S_{2 n-3}+r S_{1} S_{2 n-4} \\
U_{2 n-1}=U_{n}^{2}+q U_{n-1}^{2}+2 r U_{n-1} U_{n-2} \\
U_{2 n-1}=U_{n+1} U_{n-1}+r U_{n-1} U_{n-2}+U_{n}^{2}-p U_{n} U_{n-1} \\
q U_{2 n-1}=U_{n+1}^{2}-p U_{n+1} U_{n}+\left(r-p q U_{n} U_{n-1}+q U_{n}^{2}-p r\left(U_{n} U_{n-2}+U_{n-1}^{2}\right)\right. \\
-q r U_{n-1} U_{n-2}-r^{2}\left(U_{n-1} U_{n-3}+U_{n-2}^{2}\right) \\
U_{3 n-1}=U_{n-1}\left(U_{n+1}^{2}+Y_{n+2} U_{n}+r U_{n-1} U_{n}\right)+Y_{n}\left(U_{n} U_{n+1}+Y_{n+1} U_{n}+r U_{n-1}^{2}\right) \\
+r U_{n-2}\left(U_{n-1} U_{n+1}+Y_{n} U_{n}+r U_{n-2} U_{n-1}\right) \\
\left|\begin{array}{c}
S_{n+m+h} \\
S_{n+m+k} \\
S_{n+j+h} \\
S_{n+j+k} \\
S_{n+m} \\
S_{n+h} \\
S_{n+k}
\end{array}\right|=r^{n}\left|\begin{array}{lll}
U_{h-1} & U_{h} \\
U_{k-1} & U_{k}
\end{array}\right| \cdot\left|\begin{array}{ccc}
S_{m+2} & S_{m+1} & S_{m} \\
S_{j+2} & S_{j+1} & S_{j} \\
S_{2} & S_{1} & S_{0}
\end{array}\right| \\
\left|\begin{array}{ccc}
S_{5 n} & S_{4 n} & S_{3 n} \\
S_{4 n} & S_{3 n} & S_{2 n} \\
S_{3 n} & S_{2 n} & S_{n}
\end{array}\right|=r^{n}\left|\begin{array}{ccc}
U_{2 n-1} & U_{2 n} \\
U_{n-1} & U_{n}
\end{array}\right| \cdot\left|\begin{array}{ccc}
S_{2 n+2} & S_{2 n+1} & S_{2 n} \\
S_{n+2} & S_{n+1} & S_{n} \\
S_{2} & S_{1} & S_{0}
\end{array}\right|
\end{gathered}
$$

The following five identities were found by Zeitlin [23]:

$$
\begin{aligned}
& S_{n+6}^{2}=\left(p^{2}+q\right) S_{n+5}^{2}+\left(q^{2}+q p^{2}+r p\right) S_{n+4}^{2}+\left(2 r^{2}+r p^{3}+4 p q r-q^{3}\right) S_{n+3}^{2} \\
&+\left(r^{2} p^{2}-r p q^{2}-r^{2} q\right) S_{n+2}^{2}+\left(r^{2} q^{2}-r^{3} p\right) S_{n+1}^{2}-r^{4} S_{n}^{2} \\
& S_{2 n+6}-\left(p^{2}+2 q\right) S_{2 n+4}+\left(q^{2}-2 r p\right) S_{2 n+2}-r^{2} S_{2 n}=0 \\
& r^{n} S_{-n}=S_{0}\left(W_{n}^{2}-W_{2 n}\right) / 2-W_{n} S_{n}+S_{2 n}
\end{aligned}
$$

$$
\begin{gathered}
(n-1) X_{n+1}=p \sum_{j=0}^{n+2} X_{j} X_{n+2-j}+2 q \sum_{j=0}^{n+1} X_{j} X_{n+1-j}+3 r \sum_{j=0}^{n} X_{j} X_{n-j} \\
\sum_{k=0}^{n} X_{k} X_{n-k}=\frac{(9 r+p q)(n-1) X_{n+1}-\left(6 q+2 p^{2}\right) n Y_{n+1}+\left(4 q^{2}-3 p r+p^{2} q\right)(n+1) X_{n}}{27 r^{2}-p^{2} q^{2}-4 q^{3}+4 p^{3} r+18 p q r}
\end{gathered}
$$

See [19] for other identities.

Appendix 2: Selected Tribonacci Identities.

We present below selected identities from the literature in which $p=q=r=1$. All these identities were successfully checked by algorithm "TribSimplify".

The following three identities come from Agronomof [1]:

$$
\begin{gathered}
T_{n+m}=T_{m+1} T_{n}+\left(T_{m}+T_{m-1}\right) T_{n-1}+T_{m} T_{n-2} \\
T_{2 n}=T_{n-1}^{2}+T_{n}\left(T_{n+1}+T_{n-1}+T_{n-2}\right) \\
T_{2 n-1}=T_{n}^{2}+T_{n-1}\left(T_{n-1}+2 T_{n-2}\right)
\end{gathered}
$$

The following three identities come from Lin [8]: In their notation, we have $U_{n}=Y_{n+2}$, with $p=q=r=1$.

$$
\begin{gathered}
U_{4 n+1} U_{4 n+3}+U_{4 n+2} U_{4 n+4}=T_{4 n+4}^{2}-T_{4 n+2}^{2} \\
U_{n+1}^{2}+U_{n-1}^{2}=2\left(T_{n}^{2}+T_{n+1}^{2}\right) \\
T_{n+1}^{2}-T_{n}^{2}=U_{n+1} U_{n-1}
\end{gathered}
$$

The following five identities were found by Zeitlin [23]:

$$
\left.\begin{array}{c}
T_{n+6+a} T_{n+6+b}=2 T_{n+5+a} T_{n+5+b}+3 T_{n+4+a} T_{n+4+b}+6 T_{n+3+a} T_{n+3+b} \\
\\
-T_{n+2+a} T_{n+2+b}-T_{n+a} T_{n+b} \\
-\left(1-2 x-3 x^{2}-6 x^{3}+x^{4}+x^{6}\right) \sum_{k=0}^{n} T_{k}^{2} x^{k}= \\
T_{n+1}^{2} x^{n+1}+\left(T_{n+2}^{2}-2 T_{n+1}^{2}\right) x^{n+2} \\
\\
+\left(T_{n+3}^{2}-2 T_{n+2}^{2}-3 T_{n+1}^{2}\right) x^{n+3} \\
\\
+\left(T_{n+4}^{2}-2 T_{n+3}^{2}-3 T_{n+2}^{2}-6 T_{n+1}^{2}\right) x^{n+4} \\
\\
\quad-T_{n-1}^{2} x^{n+5}-T_{n}^{2} x^{n+6}-x+x^{2}+x^{3}+x^{4} \\
8 \sum_{k=0}^{n} T_{k}^{2}=T_{n+5}^{2}-T_{n+4}^{2}-4 T_{n+3}^{2}-10 T_{n+2}^{2}-9 T_{n+1}^{2}-T_{n}^{2}+2
\end{array}\right\} \begin{array}{r}
T_{-n}=-W_{n} T_{n}+T_{2 n}
\end{array}
$$

$$
22 \sum_{j=0}^{n-2} T_{j} T_{n-2-j}=5(n-1) T_{n}-2(n-1) T_{n-1}-4 n T_{n-2}
$$

The following two identities come from Shannon and Horadam [14]:

$$
\begin{gathered}
\left(S_{n} S_{n+4}\right)^{2}+\left(2\left(S_{n+1}+S_{n+2}\right) S_{n+3}\right)^{2}=\left(S_{n}^{2}+2\left(S_{n+1}+S_{n+2}\right) S_{n+3}\right)^{2} \\
4\left(S_{n+2} S_{n-1}-S_{n+2}^{2}\right)=S_{n-1}^{2}-S_{n+3}^{2}
\end{gathered}
$$

The following eleven identities come from Waddill and Sacks [16]: In their notation, we have $K_{n}=X_{n+1}, L_{n}=Y_{n+1}$, and $R_{n}=S_{n-1}+S_{n-2}$, with $p=q=r=1$.

$$
\begin{gathered}
L_{n}=K_{n-1}+K_{n-2} \\
S_{n+h}=K_{h+1} S_{n}+L_{h+1} S_{n-1}+K_{h} S_{n-2} \\
S_{2 n}=K_{n+1} S_{n}+L_{n+1} S_{n-1}+K_{n} S_{n-2} \\
S_{2 n-1}=K_{n} S_{n}+\left(K_{n-1}+K_{n-2}\right) S_{n-1}+K_{n-1} S_{n-2} \\
S_{n+h}=K_{h+m+1} S_{n-m}+L_{h+m+1} S_{n-m-1}+K_{h+m} S_{n-m-2} \\
S_{n}^{2}+S_{n-1}^{2}+2 S_{n-1} S_{n-2}=S_{2} S_{2 n-2}+R_{2} S_{2 n-3}+S_{1} S_{2 n-4} \\
\left|\begin{array}{ccc}
S_{n} & S_{n+h} & S_{n+h+k} \\
S_{n+t} & S_{n+h+t} & S_{n+h+k+t} \\
S_{n+m} & S_{n+h+m} & S_{n+h+k+m}
\end{array}\right|=\left|\begin{array}{cc}
K_{h} & K_{h+k} \\
L_{h+1} & L_{h+k+1}
\end{array}\right| \cdot\left|\begin{array}{ccc}
S_{t} & S_{t+1} & S_{t+2} \\
S_{m} & S_{m+1} & S_{m+2} \\
S_{0} & S_{1} & S_{2}
\end{array}\right| \\
\left|\begin{array}{ccc}
K_{n} & K_{n+h} & K_{n+h+k} \\
K_{n+t} & K_{n+h+t} & K_{n+h+k+t} \\
K_{n+m} & K_{n+h+m} & K_{n+h+k+m}
\end{array}\right|=\left|\begin{array}{ccc}
K_{h} \\
K_{h+k} & K_{h-1} & K_{h+k-1}
\end{array}\right| \cdot\left|\begin{array}{ccc}
K_{m} & K_{t} \\
K_{m-1} & K_{t-1}
\end{array}\right| \\
\left|\begin{array}{ccc}
K_{n+1} & K_{n} & K_{n+h} \\
K_{n+h+1} & K_{n+h} & K_{n+2 h} \\
K_{n+2 h+1} & K_{n+2 h} & K_{n+3 h}
\end{array}\right|=K_{h-1} \cdot\left|\begin{array}{ccc}
K_{h} & K_{h-1} \\
K_{2 h} & K_{2 h-1}
\end{array}\right| \\
\left|\begin{array}{ccc}
K_{n} & K_{n+h} & K_{n+m} \\
K_{n+h} & K_{n+2 h} & K_{n+h+m} \\
K_{n+m} & K_{n+h+m} & K_{n+2 m}
\end{array}\right|=-\left|\begin{array}{ccc}
K_{h} & K_{m} \\
K_{h-1} & K_{m-1}
\end{array}\right|
\end{gathered}
$$

Errata.

Computer verification of the various identities encountered in the references consulted during this research revealed a number of typographical errors in the literature. We list the corrections below to set the record straight.

In [4], equation (1.15) should be the same as equation (4.1). Also, equation (1.16) should be the same as equation (3.14).

In [10], equation (2.1) should read " $J_{n+1}=P J_{n}+K_{n}$ ".
In [13], in equation (1.4), " $t_{2}=P^{2}+Q$ " should be " $t_{2}=P^{2}+2 Q$ ". Equation (2.2) should read " $t_{n}=P s_{n-1}+2 Q s_{n-2}+3 R s_{n-3}$ ".

In [16], the last term of equation (21) should be " $K_{h+k} P_{n-2}$ ", not " $K_{n+k} P_{n-1}$ ". Also, the final subscript in equation (41) should be " $h-1$ ", not " $n-1$ ". In equation (42), " P_{n+h+m} " should be " R_{n+h+m} " and " K_{n+k} " should be " K_{h+k} ".

Acknowledgment.

I would like to thank Paul S. Bruckman, A. F. Horadam, Murray S. Klamkin, Tony Shannon, Lawrence Somer, and David Zeitlin for their fruitful discussions and advice. I also gratefully acknowledge the suggestions made by an anonymous referee.

References

[1] M. Agronomof, "Sur une suite récurrente", Mathesis. (series 4) 4(1914)125-126.
[2] E. T. Bell, "Notes on Recurring Series of the Third Order", The Tôhoku Mathematical Journal. 24(1924)168-184.
[3] Brother Alfred Brousseau, "Algorithms for Third-Order Recursion Sequences", The Fibonacci Quarterly. 12.2(1974)167-174.
[4] L. Carlitz, "Recurrences of the Third Order and Related Combinatorial Identities", The Fibonacci Quarterly. 16.1(1978)11-18.
[5] J. H. Davenport, Y. Siret, and E. Tournier, Computer Algebra. Academic Press. London: 1988.
[6] David E. Dobbs and Robert Hanks, A Modern Course on the Theory of Equations. Polygonal Publishing House. Passaic, NJ: 1980.
[7] Dov Jarden, Third Order Recurring Sequences (in Recurring Sequences, second edition, by Dov Jarden). Riveon Lematematika. Jerusalem, Israel: 1966, pp. 86-89.
[8] Pin-Yen Lin, "De Moivre-Type Identities for the Tribonacci Numbers", The Fibonacci Quarterly. 26.2(1988)131-134.
[9] E. P. Miles, Jr., "Generalized Fibonacci Numbers and Associated Matrices", American Mathematical Monthly. 67(1960)745-752.
[10] S. Pethe, "Some Identities for Tribonacci Sequences", The Fibonacci Quarterly. $\mathbf{2 6 . 2}$ (1988)144-151.
[11] S. Pethe, On Sequences Having Third-Order Recurrence Relations (in Fibonacci Numbers and Their Applications, A. N. Philippou et al., eds.). D. Reidel Publishing Company. Dordrecht, The Netherlands: 1986, pp. 185-192.
[12] Stanley Rabinowitz, Algorithmic Manipulation of Fibonacci Identities (in Applications of Fibonacci Numbers, Volume 6, G. E. Bergum et al., eds.). Kluwer Academic Publishers. Dordrecht, The Netherlands: 1996.
[13] A. G. Shannon, "Iterative Formulas Associated with Generalized Third-Order Recurrence Relations", Siam Journal of Applied Mathematics. 23(1972)364-368.
[14] A. G. Shannon and A. F. Horadam, "A Generalized Pythagorean Theorem", The Fibonacci Quarterly. 9.3(1971)307-312.
[15] A. G. Shannon and A. F. Horadam, "Some Properties of Third-Order Recurrence Relations", The Fibonacci Quarterly. 10.2(1972)135-145.
[16] Marcellus E. Waddill and Louis Sacks, "Another Generalized Fibonacci Sequence", The Fibonacci Quarterly. 5.3(1967)209-222.
[17] Marcellus E. Waddill, Using Matrix Techniques to Establish Properties of a Generalized Tribonacci Sequence (in Applications of Fibonacci Numbers, Volume 4, G. E. Bergum et al., eds.). Kluwer Academic Publishers. Dordrecht, The Netherlands: 1991, pp. 299-308.
[18] M. Ward, "The Algebra of Recurring Series", Annals of Mathematics. 32(1931)1-9.
[19] H. C. Williams, "Properties of Some Functions Similar to Lucas Functions", The Fibonacci Quarterly. 15.2(1977)97-112.
[20] C. C. Yalavigi, "A Note on 'Another Generalized Fibonacci Sequence'", The Mathematics Student. 39(1971)407-408.
[21] C. C. Yalavigi, "Properties of Tribonacci Numbers", The Fibonacci Quarterly. 10.3 (1972)231-246.
[22] David Zeitlin, "On Summation Formulas and Identities for Fibonacci Numbers", The Fibonacci Quarterly. 5.1(1967)1-43.
[23] David Zeitlin, personal correspondence.
AMS Classification Numbers: 11Y16, 11B37

