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1. Introduction.

Consider the second order linear recurrences defined by

un+2 = Pun+1 − Qun, u0 = 0, u1 = 1, (1)

vn+2 = Pvn+1 − Qvn, v0 = 2, v1 = P, (2)

and
wn+2 = Pwn+1 − Qwn, w0, w1 arbitrary. (3)

The sequences 〈un〉 and 〈vn〉 were studied extensively by Lucas [17], and the sequence
〈wn〉 was popularized by Horadam [10], [11], [12], and also studied by Zeitlin [23], [26],
[27]. The sequence 〈un〉 is known as the fundamental Lucas sequence and the sequence
〈vn〉 is known as the primordial Lucas sequence.

The relationship between wn and the pair of sequences un and vn is well known.
Horadam [10] gives several formulas for wn:

wn =
(2w1 − Pw0)un + w0vn

2
(4)

wn = (w1 − Pw0)un + w0un+1 (5)
wn = w1un − Qw0un−1. (6)

In [19], it was shown that Algorithm LucasSimplify could be used to prove any
polynomial identity involving expressions of the form uan+b and van+b. Since wn can be
expressed in terms of un and vn, this means that we can algorithmically prove any poly-
nomial identity involving expressions of the form wan+b using Algorithm LucasSimplify.

However, Algorithm LucasSimplify, when applied to an expression involving w’s will
return a simplified expression involving u’s and v’s. Since it may be of interest to get
results in terms of w’s, we will now develop new algorithms that can be used to transform
expressions involving w’s from one form to another.

For example, Melham and Shannon [18] found an “addition formula” for simplifying
wm+n:

wm+n =
(2wm+1 − Pwm)un + wmvn

2
.

Unfortunately, this formula involves the sequences 〈un〉 and 〈vn〉. We call an identity
impure if it contains terms involving u’s or v’s. Otherwise, if the identity only involves
w’s, we call it pure. It is our goal to find a pure formula for wn+m and related expressions.
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2. Overview.

Two expressions occur frequently enough, that we shall give them names:

D = P 2 − 4Q and e = w0w2 − w2
1. (7)

Since w2 = Pw1 − Qw0, an equivalent formula for e is

e = Pw0w1 − Qw2
0 − w2

1. (8)

The quantity D is the discriminant of the characteristic equation for the recurrence, and
the quantity e is known as the characteristic number of the sequence [2], [1]. Throughout
this paper, we shall assume that

Q �= 0, D �= 0, and e �= 0. (9)

In section 3 we develop the Purification Theorem, which shows how to transform
impure identities into pure identities. In subsequent sections, we then find the pure analogs
(for wn) of all the classic identities known for un and vn, either by giving a reference to
the literature where the pure identity was discovered, or by deriving the pure identity
ourselves. If a simpler proof of the result can be given without using the Purification
Theorem, then we present the simpler proof. We then give algorithms that allow pure
expressions to be transformed from one form to another.

3. The Purification Theorem.

To achieve our goal of finding pure identities, we need only express un and vn in terms
of members of the sequence 〈wn〉.

Theorem 1 (The Purification Theorem). Any identity involving u’s, v’s, and w’s
can be transformed into a pure identity (involving only w’s). In particular,

un =
w0wn+1 − w1wn

e
,

vn =
(Pw0 − 2w1)wn+1 − (2Qw0 − Pw1)wn

e
.

(10)

Proof: Algorithm LucasSimplify allows us to express both wn and wn+1 in terms of
un and vn. Solving these two equations for un and vn gives us formula (10). Thus any
expression involving u’s and v’s can be transformed into expressions involving w’s.
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4. The Addition Formula.

The addition formulas for un and vn are well known:

um+n =
umvn + unvm

2

vm+n =
vmvn + Dumun

2
.

(11)

We would like to find a similar formula for wm+n. Horadam [10] gives several such
formulas:

wn+m = umwn+1 − Qum−1wn (12)
wn+m = (um+1 − Pum)wn + umwn+1

wn+m = wmun+1 − Qwm−1un

wn+m = wnum+1 − Qwn−1um

wn+m = wm−jun+j+1 − Qwm−j−1un+j

wn+m = wn+jum−j+1 − Qwn+j−1um−j

however, these are all impure.
Applying LucasSimplify to um−1 gives um−1 = (Pum − vm)/2Q. Substituting this

value of um−1 into Horadam’s addition formula (12) and then applying the Purification
Theorem gives us:

wn+m =
(w0wm+1 − w1wm)wn+1 − (w1wm+1 − w2wm)wn

e
.

We state this in another form in the following theorem.

Theorem 2 (The Addition Formula for w). For all integers n and m,

wn+m = −1
e

∣
∣
∣
∣
∣
∣

w0 w1 wm

w1 w2 wm+1

wn wn+1 0

∣
∣
∣
∣
∣
∣

. (13)

5. The Negation Formula.

Having found the addition formula entirely in terms of w’s, we now proceed to express
all the other standard formulas in the same manner.

Horadam [10] expressed the negation formula in the following ways:

w−n = Q−n(w0un+1 − w1un)

w−n = Q−n(w0vn − wn).

He also found the interesting formula wnw−n = w2
0 + eQ−nu2

n.
Unfortunately, these formulas are all impure. We can use the Purification Theorem

to remove the u’s and v’s to arrive at a pure negation formula.
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Theorem 3 (The Negation Formula for w). For all integers n,

w−n =
(w2

1 − Qw2
0)wn + w0(Pw0 − 2w1)wn+1

eQn

= − 1
eQn

∣
∣
∣
∣
∣
∣

w−1 w0 w1

w0 w1 Qw0

wn wn+1 0

∣
∣
∣
∣
∣
∣

.

(14)

Solving equation (14) for wn+1 gives us a useful formula that allows one to express
wn+1 in terms of wn and w−n.

Theorem 4 (The Symmetrization Formula). For all integers n,

wn+1 =
(w2

1 − Qw2
0)wn − eQnw−n

w0(2w1 − Pw0)
(15)

provided that the denominator is not 0.

6. The Subtraction Formula.

Melham and Shannon [18] expressed the subtraction formula in the following form:

wm−n =
wmun+1 − wm+1un

Qn
.

Again, this is an impure formula. We can now combine the negation formula with the
addition formula to get a pure subtraction formula.

Theorem 5 (The Subtraction Formula for w). For all integers n and m,

wn−m = − 1
eQm

∣
∣
∣
∣
∣
∣

w−1 w0 wn+1

w0 w1 Qwn

wm wm+1 0

∣
∣
∣
∣
∣
∣

. (16)

Proof: Horadam [10] found wn+m +Qmwn−m = wnvm. Solve for wn−m and then expand
wn+m by the addition formula and express vm in terms of wm and wm+1 by the Purification
Theorem. Upon simplifying, we get the desired result.

7. The Binet Form.

The Binet form (see [10]) for wn is given by the following theorem.
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Theorem 6 (The Binet Form). If r1 and r2 are the roots of the characteristic equation

x2 − Px + Q = 0,

then
wn = Arn

1 + Brn
2 (17)

where
A =

w1 − w0r2

r1 − r2
and B =

w0r1 − w1

r1 − r2
. (18)

This generalizes the result for Fibonacci numbers found by Binet [3].
Note that r1 �= r2 since P 2 − 4Q �= 0. One should also note that

AB =
e

D
and A + B = w0. (19)

We also have
r1 − r2 =

√
D. (20)

Since wn+1 = (Ar1)rn
1 + (Br2)rn

2 , we can solve the system consisting of this equation
and equation (17) for rn

1 and rn
2 . We get the following:

rn
1 =

wn+1 − r2wn

w1 − r2w0
and rn

2 =
wn+1 − r1wn

w1 − r1w0
. (21)

These formulas may be used to replace powers of r1 and r2 (with variable exponents) by
simpler expressions involving r1 and r2.

If we let xn = wn+1−Qwn−1, then xn may be considered to be a companion sequence
to wn, in the same way that vn is the companion of un. A little computation shows that

rn
1 =

1
2
(xn + wn(r1 − r2))/(w1 − r2w0).

This gives us the following theorem, since (rn
1 )k = rkn

1 .

Theorem 7 (Demoivre’s Formula for wn). If xn = wn+1 − Qwn−1 and c = w1 −
r2w0 �= 0, then for all integers k > 0,

(

xn + wn

√
D

2c

)k

=
xkn + wkn

√
D

2c
. (22)

This theorem is so named because of its resemblance to Demoivre’s trigonometry formula.
If 〈wn〉 = 〈un〉, we have

(

vn + un

√
D

2

)k

=
vkn + ukn

√
D

2
.
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8. Simson’s Formula.

In 1753, Robert Simson [21] found the formula

Fn−1Fn+1 − F 2
n = (−1)n.

The analog for the sequence 〈wn〉 was found by Horadam [10]:

Theorem 8 (Simson’s Formula for w). For all integers n,

wn−1wn+1 − w2
n = Qn−1e. (23)

Theorem 8 can also be expressed in the following manner:

wnwn+2 − w2
n+1 = Qne. (24)

Horadam [10] also found the following generalization of Simson’s Formula:

Theorem 9 (Catalan’s Identity for w). For all integers n and r,

wn+rwn−r − w2
n = eQn−ru2

r. (25)

This generalizes a result found by Catalan for Fibonacci Numbers in 1886 [4].
The determinant form of Simson’s Theorem is

∣
∣
∣
∣

wn−1 wn

wn wn+1

∣
∣
∣
∣
= Qne. (26)

Horadam [10] generalized this to

∣
∣
∣
∣

wn−r wn+t

wn wn+r+t

∣
∣
∣
∣
= Qn−reurur+t (27)

which extends a result for generalized Fibonacci numbers found by Tagiuri [22] in 1901.
Horadam and Shannon [13] expressed this as

∣
∣
∣
∣

wn+r+s wn+s

wn+r wn

∣
∣
∣
∣
= eQnurus. (28).

In this form, it generalizes a 1960 result for Fibonacci numbers [7]. The special case of
identity (27) when r = 1, n = a + 1, and t = b − a − 1 is of interest:
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Theorem 10 (D’Ocagne’s Identity for w). For all integers a and b,

∣
∣
∣
∣

wa wb

wa+1 wb+1

∣
∣
∣
∣
= Qaeub−a. (29)

This generalizes a result found by d’Ocagne for Fibonacci Numbers in 1885 [6]. The special
case of formula (27) when n = a + r and t = b − a − r is also of interest:

∣
∣
∣
∣

wa wb

wa+r wb+r

∣
∣
∣
∣
= Qaeurub−a. (30)

This formulation (with a = n and b = n + s) comes from [13]. Catalan’s identity can be
expressed as wn+rwn−r = w2

n + eQn−ru2
r.

Letting r = 1 and r = 2 in this formula and multiplying the results together yields a
polynomial with w4

n and w2
n terms. The w2

n term can be made to vanish in the case when
Q = −P 2. This gives the following result.

Theorem 11. If P 2 + Q = 0, then

w4
n − wn−2wn−1wn+1wn+2 = (eQn−1)2. (31)

This generalizes the identity F 4
n − Fn−2Fn−1Fn+1Fn+2 = 1 that was stated by Gelin

in 1880 and proved by Cesàro [5]. For another generalization of the Gelin-Cesàro Identity,
see [13].

Letting r = n in formula (25) gives another interesting case.

Theorem 12. For all integers n,

w0w2n − w2
n = eu2

n. (32)

Gilbert [8] found an interesting pure formula in the form of a 3 × 3 determinant:

Theorem 13. For all integers a, b, c, x, y, and z,

∣
∣
∣
∣
∣
∣

wa+x wa+y wa+z

wb+x wb+y wb+z

wc+x wc+y wc+z

∣
∣
∣
∣
∣
∣

= 0. (33)

9. Change of Basis.

We often wish to change an expression involving wn and wn+1 into one involving wn+a

and wn+b for two distinct integers a and b.
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Theorem 14. For all integers n,

(
wn

wn+1

)

=
1

wa+1wb − wawb+1

(

w1 −w0

w2 −w1

) (

wb −wa

wb+1 −wa+1

) (
wn+a

wn+b

)

. (34)

Proof: Use the Addition Formula to express wa+1 and wb+1 in terms of wn and wn+1.
This gives two equations in the two variables wn and wn+1. We can thus solve for these
variables. Putting the result in matrix form gives us the above formula.

Note that the basis change is not always possible. The denominator can be written
in the form −Qaeub−a by formula (29). Thus, the change of basis is possible if and only if
ub−a �= 0.

10. The Fundamental Identity.

Theorem 15 (The Fundamental Identity). The fundamental identity connecting wn

and wn+1 is
Pwnwn+1 − Qw2

n − w2
n+1 = eQn. (35)

Proof: This follows immediately from Formula (24), after replacing wn+2 by the value
given in equation (3).

This result is not new; it is equivalent to Simson’s Theorem. If a is a constant, then
the fundamental identity connecting wn and wn+a is

vawnwn+a − Qaw2
n − w2

n+a = eQnu2
a. (36)

This was obtained by using formula (34) on the fundamental identity, changing the
basis from {wn, wn+1} to {wn, wn+a}. Changing n to x and n+a to y gives the fundamental
identity connecting wx and wy:

vy−xwxwy − Qy−xw2
x − w2

y = eQxu2
y−x. (37)

11. Removal of P and Q.

It is occasionally useful to be able to remove the quantity P from an expression. If
the expression is a polynomial in the variables P and wci where the ci are constants and
if P always occurs in a product with one of the wci , then we can use the following results
to accomplish our goal.
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Theorem 16. If k is a positive integer, then

P kw0 =
k∑

j=0

(
k

j

)

Qjwk−2j . (38)

Applying the Translation Theorem (see Section 17) yields:

Theorem 17. If k is a positive integer and r is an integer, then

P kwr =
k∑

j=0

(
k

j

)

Qjwk+r−2j . (39)

We also have:

Theorem 18. If k is a positive integer and r is an integer, then

Qkwr = (−1)k
k∑

j=0

(
k

j

)

(−P )jw2k+r−j =
k∑

j=0

(
k

j

)

(−1)jP k−jwk+r+j . (40)

12. The Double Argument Formula.

Horadam [10] found the double argument formula in the following form

w2n = (−Q)n
n∑

j=0

(
n

j

)

(−P

Q
)n−jwn−j . (41)

However, this is not a closed form.
Horadam also found a closed form (for w0 �= 0): w2n = (w2

n + eu2
n)/w0. Shannon

and Horadam [20] found the double argument formula in the following form: w2n =
vnwn − w0Q

n.
Unfortunately, both these formulas are impure. To get a pure formula, let m = n in

the addition formula. We obtain the following result.

Theorem 19 (The Double Argument Formula for w). For all integers n,

w2n =
w2w

2
n − 2w1wnwn+1 + w0w

2
n+1

e
=

−

∣
∣
∣
∣
∣
∣

w0 w1 wn

w1 w2 wn+1

wn wn+1 0

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣

w0 w1

w1 w2

∣
∣
∣
∣

. (42)
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13. Formulas for wkn.

To find expressions for wkn where k is a positive integer constant, you can use the
recurrence found by Zeitlin [24]:

wkn = vnw(k−1)n − Qnw(k−2)n, k ≥ 2. (43)

Lee [16] found a more direct formula for multiple argument reduction. For k > 1,

wkn = wnS(k) − w0Q
nS(k − 1) (44)

where

S(k) =
�(k−1)/2�

∑

j=0

(
k − j − 1

j

)

(−Qn)jvk−2j−1
n . (45)

Jarden [14] found the following interesting formula:

wkn+s =
k∑

i=0

(
k

i

)

ui
n(−Qun−1)k−iwi+s. (46)

Zeitlin has found many related formulas. For example, Zeitlin ([27], equation 1.14, with
m = 0 and n = 0) found the following interesting formula:

wkn =
1
2k

k∑

j=0

cj

(
k

j

)

D�j/2�uj
nvk−j

n where cj =
{

w0, if j is even,
2w1 − Pw0, if j is odd. (47)

Formula (46) can be converted into a pure formula for wkn be letting s = 0 and
substituting un = (w0wn+1 − w1wn)/e and un−1 = (w1wn+1 − w2wn)/(eQ). We get the
following.

Theorem 20. If k ≥ 0, then

wkn =
1
ek

k∑

i=0

(
k

i

)

(w0wn+1 − w1wn)i(w2wn − w1wn+1)k−iwi. (48)

This can be exanded out as a polynomial in wn and wn+1. Computer experiments
suggest the following result:

Conjecture 21 (The Multiple Argument Formula for w). If k is an integer larger
than 1, then

wkn =
1

ek−1

k∑

i=0

ci

(
k

i

)

(−1)k−iwi
nwk−i

n+1, (49)

where

ci =
k−2∑

j=0

(
k − 2

j

)

(−Qw0)jwk−2−j
1 wi−j . (50)
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14. Expansion of Products.

Horadam [10] found
wnvm = wn+m + Qmwn−m. (51)

But we would really like to express wnwm as a sum of w’s. To do that, we can proceed as
follows. Changing m to m + 1 in equation (51) gives

wnvm+1 = wn+m+1 + Qmwn−m−1. (52)

But it is easy to show that

wm =
D1

D
vm +

D2

D
vm+1 (53)

where

D = P 2 − 4Q, D1 = P 2w0 − 2Qw0 − Pw1, and D2 = 2w1 − Pw0. (54)

Multiplying (51) by D1/D, multiplying (52) by D2/D, and adding the results gives us the
following theorem.

Theorem 22 (The Product Formula for w). For all integers n and m,

wmwn =
1
D

[

Qm+1D2wn−(m+1) + QmD1wn−m + D1wn+m + D2wn+m+1

]

(55)

where D, D1, and D2 are as given in (54).
Applying the symmetrization formula and also expressing wn−(m+1) in terms of wn−m

and wn−m+1 permits us to obtain another variation of the product formula.

Theorem 23 (Symmetric Product Formula for w). If w0 �= 0, then for all integers
n and m,

wmwn =
1

Dw0

[

eQnwm−n − eQm+nw−n−m + eQmwn−m + (Dw2
0 − e)wm+n

]

(56)

If m = n in formula (55), we get

w2
n =

1
D

[2eQn + D1w2n + D2w2n+1] (57)

which can be used to turn squares into sums. Using formula (56), this can also be written
as

Dw0w
2
n = (Dw2

0 − e)w2n + 2ew0Q
n − ew−2nQ2n. (58)
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Theorem 24. If k is a positive integer, then wk
n can be expressed in the form

(Dw0)k−1wk
n =

k∑

i=0

ck,iQ
inw(k−2i)n (59)

where ck,i is a polynomial in d, e, and w0, with integer coefficients, where d = Dw2
0.

Proof: The proof is by induction. The case k = 2 is given above in formula (58). Assuming
it is true for wk

n, take the formula for wk
n and multiply it by (Dw0)wn. The Symmetric

Product Formula then gives the answer in the desired form.

15. The Power Expansion Formula.

In 1878, Lucas (section XII of [17]) found an explicit formula for wn in terms of w0,
w1, P , and Q (see also [25], [12] and [16]):

Theorem 25. For all n > 0,

wn =
�(n+1)/2�

∑

k=1

Pn−2k(−Q)k−1

[(
n − k

k − 1

)

w1P −
(

n − k − 1
k − 1

)

w0Q

]

. (60)

16. The Universal Recurrence.

We can solve the system of equations

wn+2 = Pwn+1 − Qwn

wn+3 = Pwn+2 − Qwn+1

for P and Q. Thus, any four consecutive terms of the sequence 〈wn〉 are enough to
determine P and Q. The result is:

P =
wnwn+3 − wn+1wn+2

wnwn+2 − w2
n+1

and Q =
wn+1wn+3 − w2

n+2

wnwn+2 − w2
n+1

. (61)

We can substitute these values of P and Q into the identity wn+4 = Pwn+3 −Qwn+2

to arrive at a recurrence for 〈wn〉 that does not involve P , Q, w0, or w1. The result is the
following.
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Theorem 26 (The Universal Recurrence). Any second order linear recurrence 〈wn〉
with constant coefficients satisfies the recurrence

wn+4 =
w3

n+2 − 2wn+1wn+2wn+3 + wnw2
n+3

wnwn+2 − w2
n+1

. (62)

We call this the universal recurrence since it is satisfied by any second-order linear recur-
rence no matter what the coefficients or initial conditions, subject only to the restriction
that the denominator should not be 0. [This is equivalent to the condition that e �= 0 and
Q �= 0 by formula (24).]

The Universal Recurrence can be written in the form

∣
∣
∣
∣
∣
∣

wn+4 wn+3 wn+2

wn+3 wn+2 wn+1

wn+2 wn+1 wn

∣
∣
∣
∣
∣
∣

= 0. (63)

In this form, the result is due to Casorati.

17. The Recurrence for Multiples.

Zeitlin [24] found the recurrence satisfied by the sequence 〈wkn〉 where k is a fixed
positive integer:

wkn = vkwk(n−1) − Qkwk(n−2). (64)

This recurrence can be made pure by substituting the value for vk given by formula (10).

Theorem 27 (The Translation Theorem). Let a be a nonzero integer. Given an
identity involving wn, un, and vn, we can create another valid identity by replacing all
occurrences of wx by wx+a. This operation is called a translation by a.

Proof: Since the original identity is true for a completely arbitrary second-order linear
recurrence, 〈wn〉, it must be true for the particular second-order linear recurrence 〈wn+a〉.

Theorem 28 (The Dilation Theorem). Let k be a positive integer. Given an identity
involving wn, un, and vn, we can create another valid identity by replacing all occurrences
of wx by wkx provided that we also replace ux by ukx/uk, vx by vkx, Q by Qk, P by vk,
and e by eu2

k. This operation is called a dilation by k.
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Proof: The sequence 〈wkn〉 satisfies the second-order linear recurrence given by equation
(64). Since the original identity is true for a completely arbitrary second-order linear
recurrence, 〈wn〉, it must be true for the particular second-order linear recurrence 〈wkn〉.
However, this new recurrence has different parameters; namely P ′ = vk and Q′ = Qk. If
Wn = wkn, then the fundamental Lucas sequence 〈Un〉 that corresponds to 〈Wn〉 would
satisfy the recurrence Un = vkUn−1 − QkUn−2 with initial conditions U0 = 0 and U1 = 1.
But the sequence ukn satisfies this recurrence, by (64). To meet the initial conditions, we
need only scale it down by a factor of uk. Thus Uk = ukn/uk. A similar remark holds for
the corresponding primordial Lucas sequence 〈Vn〉.

Thus, if we convert to these new parameters, we should obtain a valid identity. Note
that e = w0w2−w2

1 when converted becomes w0w2k−w2
k which is equal to eu2

k by Theorem
12.

18. The Recurrence for Powers.

Jarden [15] found the recurrence satisfied by the sequence 〈wt
n〉 where t is a fixed

positive integer:
t+1∑

j=0

(−1)jQj(j−1)/2

[
t + 1

j

]

u

wt
n−j = 0 (65)

where [
m

r

]

u

=
umum−1 · · ·um−r+1

u1u2 · · ·ur
,

[
m

0

]

u

= 1. (66)

See also [9] and [10] for some related identities. Zeitlin [23], [26] has found many
other identities involving powers of w’s.
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19. The Algorithms.

We now summarize the algorithms found earlier in this paper. For the reader’s con-
venience, we repeat some of the earlier formulas (leaving their original formula numbers).
All the algorithms listed here have been implemented in MathematicaTM, and are available
from the author via email.

Algorithm ConvertToUV to convert an expression involving w’s into one involving u’s and
v’s:

Apply the substitution

wn =
(2w1 − Pw0)un + w0vn

2
. (4)

Algorithm ConvertToW to convert expressions involving u’s and v’s into expressions in-
volving w’s:

Apply the identities:

un =
w0wn+1 − w1wn

e

vn =
(Pw0 − 2w1)wn+1 − (2Qw0 − Pw1)wn

e
.

(10)

Algorithm WReduce to remove sums in subscripts:

Repeatedly apply the addition formula

wn+m = −1
e

∣
∣
∣
∣
∣
∣

w0 w1 wm

w1 w2 wm+1

wn wn+1 0

∣
∣
∣
∣
∣
∣

. (13)

Algorithm WNegate to negate subscripts:

Use the identity

w−n =
(w2

1 − Qw2
0)wn + w0(Pw0 − 2w1)wn+1

eQn
. (14)

Algorithm WShift to change basis:

To convert an expression involving wn and wn+1 into one involving wn+a and wn+b, apply
the substitutions

(
wn

wn+1

)

=
1

wa+1wb − wawb+1

(

w1 −w0

w2 −w1

) (

wb −wa

wb+1 −wa+1

) (
wn+a

wn+b

)

. (34)
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Algorithm WExpand to turn products into sums:

Repeatedly apply the substitution

wmwn =
1
D

[

Qm+1D2wn−m−1 + QmD1wn−m + D1wn+m + D2wn+m+1

]

(55)

where D = P 2 − 4Q, D1 = P 2w0 − 2Qw0 − Pw1, and D2 = 2w1 − Pw0.

Algorithm WRemoveP to remove P in coefficients with terms involving wc:

If c is a constant, use the identity

P kwc =
k∑

j=0

(
k

j

)

Qjwk+c−2j . (39)

Algorithm WRemoveQ to remove Q in coefficients with terms involving wc:

If c is a constant, use the identity

Qkwc =
k∑

j=0

(
k

j

)

(−1)jP k−jwk+c+j . (40)

Algorithm RemovePowersOfWPlus1 to remove powers of wn+1:

Use the identity
w2

n+1 = Pwnwn+1 − Qw2
n − eQn (67)

repeatedly until no wn+1 term has an exponent larger than 1. This identity comes from
formula (35).

Algorithm RemovePowersOfW to remove powers of wn:

Use the identity

w2
n =

Pwnwn+1 − w2
n+1 − eQn

Q
(68)

repeatedly until no wn term has an exponent larger than 1. This identity comes from
formula (35).
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Algorithm RemovePowersOfQ to remove variable powers of Q:

To remove any expressions of the form Qan+b from an expression, where n is a variable
and a and b are independent of n with a �= 0, write Qan+b as Qb(Qn)a if a > 0 and as
Qb(Q−n)−a if a < 0. Then replace Q±n by the substitution

Q±n =
Pw±nw±n+1 − Qw2

±n − w2
±n+1

e
(69)

which come from formula (35). If a < 0, we cannot in general replace Qan by any poly-
nomial in the w’s with subscripts consisting only of positive multiples of n. However, if
Q happens to be a root of unity, then simplification is possible. The cases Q = −1 and
Q = 1 frequently occur and are of this form. Let m be the smallest positive integer such
that Qm = 1. Write Qan+b as QbQan. Let b be the residue of a modulo m, i.e. the positive
integer such that 0 ≤ b < m and b ≡ a (mod m). Then Qa = Qb, so we can replace Qan

by Qbn with b ≥ 0. If b > 0, we proceed as in the previous case.

Definition. A w-polynomial is any polynomial f(x1, x2, . . . , xr) with constant coefficients
where each xi is of the form wx, ux, vx, or Qx, with each x of the form a1n1 +a2n2 + · · ·+
aknk + b, where b and the ai are integer constants and the ni are variables. For purposes
of this definition, the quantities P , Q, w0, and w1 are to be considered constants.
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Algorithm WSimplify to convert an expression to canonical form:

INPUT: A w-polynomial.

OUTPUT: Its “canonical form”. Two expressions that are identical will have the
same canonical form. In particular, an expression is identically 0 if and only if its canonical
form is 0.

STEP 1: [Convert to w.] If any expression of the form ux or vx occurs, apply
algorithm ConvertToW to remove it.

STEP 2: [Remove variable sums in subscripts.] If any expression of the form
a1n1 + a2n2 occurs in a subscript, apply algorithm WReduce to remove
such sums. Treat a1n1 − a2n2 as a1n1 + (−a2)n2.

STEP 3: [Make multipliers positive.] All subscripts are now of the form an + b
where a and b are integers and n is a variable. For any term in which
the multiplier a is negative, apply algorithm WNegate.

STEP 4: [Remove multipliers.] All subscripts are now of the form an + b where
a is a nonnegative integer, b is an integer, and n is a variable. If a > 1,
write an + b as n + n + · · · + n + b with a copies of n and then apply
algorithm WReduce repeatedly until all these subscripts are of the form
n + c where c is an integer.

STEP 5: [Remove constants in subscripts.] If any expression of the form n + b
with b �= 0 and b �= 1 occurs in a subscript, apply algorithm WReduce
to remove such sums.

STEP 6: [Remove powers of wn+1.] If any term involves an expression of the
form wk

n+1 where k > 1 and n is a variable, apply algorithm Remove-
PowersOfWPlus1 to leave only linear terms in wn+1.

STEP 7: [Evaluate constants.] If any term involves an expression of the form wk
c

where c is an integer constant, replace wc by its numerical equivalent.
If the symbols D or e occur, replace them by their equivalent values
from formula (7).

STEP 8: [Simplify Powers of Q.] If Q is a primitive m-th root of unity, then
replace all constants appearing in an exponent with base Q by their
residues modulo m.

The canonical form is a polynomial f(x1, x2, . . . , xr) with constant coefficients where
each xi is of the form wni , wni+1, or Q±ni , where the ni are variables, and the degree of
each wni+1 term is 0 or 1. If Q is a root of unity, then no exponent with base Q is negative.

Alternatively, to prove an identity, you can apply algorithm LucasSimplify and show
that the resulting canonical form is 0.
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l’Académie des Sciences (Paris) 17(1843)561–565.
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