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ABSTRACT. Some Bonnesen-style isoperimetric inequalities
for triangles in the plane are presented. For example, it is
shown that L2 − 12

√
3A ≥ 35.098 r(R − 2r) for triangles with

perimeter L, area A, inradius r, and circumradius R. Equality
holds when and only when either the triangle is equilateral or
the triangle is similar to the isosceles triangle with sides 1, 1,
and λ where λ ≈ 1.23628634 is the largest root of the equation
31x3 − 28x2 − 16x + 4 = 0.

The classical isoperimetric inequality for convex sets says that amongst all convex sets
in the plane with a given perimeter, the disc (i.e. a circle and its interior) is the one with
the largest area. In symbols,

L2 − 4πA ≥ 0 (1)

where L denotes the perimeter of the set and A denotes its area. The quantity, L2−4πA is
known as the isoperimetric deficit for the set. It is of interest to find lower bounds (larger
than 0) for the isoperimetric deficit.

During the 1920’s, Bonnesen ([2], [3], [4]) found many such inequalities. These have
come to be known as Bonnesen-style inequalities. For example,

L2 − 4πA ≥ (L − 2πr)2 (2)

L2 − 4πA ≥ (
A

r
− πr)2 (3)

L2 − 4πA ≥ (L − 2A

r
)2 (4)

L2 − 4πA ≥ (2πR − L)2 (5)
L2 − 4πA ≥ π2(R − r)2 (6)

L2 − 4πA ≥ (πR − A

R
)2 (7)

L2 − 4πA ≥ (L − 2A

R
)2 (8)

L2 − 4πA ≥ A2(
1
r
− 1

R
)2 (9)

L2 − 4πA ≥ L2 (R − r)2

(R + r)2
(10)

where r denotes the radius of a circle inscribed in the set and R denotes the radius of the
circle circumscribed about the set (see also [12] and [5]).
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The analog for triangles of the isoperimetric inequality is well known [6]: Of all tri-
angles with a given perimeter, the equilateral triangle is the one with the largest area. In
other words, for triangles,

L2 − 12
√

3A ≥ 0. (1′)

Furthermore, equality holds if and only if the triangle is equilateral.
In this note, we will find analogs for some of the Bonnesen-style inequalities for trian-

gles. It is believed that the inequalities of theorems 2, 3, and 4 are new since they do not
appear in the standard reference works [6] and [10].

First note, as Osserman did in [12], that the following lemma is a direct consequence
of simple algebraic manipulation:
Osserman’s Lemma. If A, L, ρ, and π denote any positive real numbers, then the
inequalities

L2 − 4πA ≥ (L − 2πρ)2

L2 − 4πA ≥ (
A

ρ
− πρ)2

L2 − 4πA ≥ (L − 2A

ρ
)2

are each algebraically equivalent to

ρL ≥ A + πρ2.

We now state some Bonnesen-style inequalities for triangles.
Theorem 1. If A, L, r, R denote the area, perimeter, inradius, and circumradius of a
triangle, then

L2 − 12
√

3A ≥ (L − 6
√

3r)2 (2′)

L2 − 12
√

3A ≥ (
A

r
− 3

√
3r)2 (3′)

L2 − 12
√

3A ≥ (L − 2A

r
)2 (4′)

and in each case, equality holds if and only if the triangle is equilateral.
Proof. By Osserman’s Lemma (changing ρ to r and π to 3

√
3), we see that inequalities

(2′), (3′), and (4′) are equivalent. It is well known [8] that for a triangle, A = rs where
s denotes the semiperimeter (L/2). Thus inequality (4′) is equivalent to (1′) because
L − 2A/r = L − 2s = 0. Hence all three inequalities are valid.

Inequality (2′) can be found in [9].
The standard Bonnesen inequalities have the property that each side of the inequality

is 0 when the convex figure is a disc. In our triangle analogs, we want each side of the
inequality to be 0 when the triangle is equilateral. Thus the triangle analog of “L2 −4πA”
is “L2 − 12

√
3A”.

Inequality (5) has the expression “2πR−L” on the right, which is 0 for a circle. The
analog for triangles is “3

√
3R − L” since it is known that for all triangles, 3

√
3R ≥ L
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with equality when and only when the triangle is equilateral [6]. However, there is no
Bonnesen-style analog of the form

L2 − 12
√

3A ≥ k(3
√

3R − L)2

with k > 0 for it is straightforward to show that the ratio (L2 − 12
√

3A)/(3
√

3R − L)2

approaches 0 as the triangle approaches a degenerate triangle.
A referee has pointed out that the reason that inequalities of the form (5)–(10) do not

exist for triangles is because Osserman’s inequality

xL ≥ A + πx2

(which is true for convex sets when r ≤ x ≤ R) is not valid for x = R when π is replaced
by 3

√
3.

Instead, we have the following analog to inequality (5):

Theorem 2. If A, L, r, R denote the area, perimeter, inradius, and circumradius of a
triangle, then

L2 − 12
√

3A ≥ 64
9

√
3 r(3

√
3R − L) (5′)

with equality when and only when the triangle is either an equilateral triangle or a degen-
erate isosceles triangle (with sides a, a, and 2a).

The equality case is straightforward. If the sides of a triangle are a, a, and x, then

lim
x↑2a

L2 − 12
√

3A

r(3
√

3R − L)
= lim

x↑2a

L2 − 12
√

3A

(3
√

3Rr − rL)

= lim
x↑2a

(2a + x)2 − 12
√

3A

(3
√

3a2x
2L − 2A)

=
(4a)2 − 0

3
√

3a2(2a)
8a − 0

=
64
9

√
3.

We have used above the facts that in a triangle, r = 2A/L and R = abc/4A [8].
To prove the inequality in general will require some machinery. Before proceeding to

the proof, we review the proof technique devised by Blundon [1]. Other expositions of this
technique can be found in [7] and [11].

Given an ordered triple (R, r, s) of positive real numbers, a triangle with circumradius
R, inradius r, and semiperimeter s exists if and only if the triple satisfies Blundon’s
Fundamental Inequality:

s2(18Rr − 9r2 − s2)2 ≤ (s2 − 3r2 − 12Rr)3. (11)
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This is a homogeneous polynomial in R, r, and s, so only the ratios of R, r, and s are of
interest. Following a variation of Bottema [7], we let

x =
r

R

y =
s

R

(12)

and consider x and y as Cartesian coordinates in the Euclidean plane. Inequality (11)
transforms into

(x2 + y2)2 + 12x3 − 20xy2 + 48x2 − 4y2 + 64x ≤ 0. (13)

Each point in the x-y plane corresponds to an equivalence class of triples (R, r, s). Those
triples that determine a triangle lie inside the region, K, bounded by the y-axis and the
hypocycloid whose parametric representation is given by

x =
4t2(1 − t2)
(1 + t2)2

y =
8t

(1 + t2)2

0 < t < 1. (14)

The region K has cusps at (0, 0), (0, 2), and (1/2, 3
√

3/2). The points on the bounding
hypocycloid correspond to isosceles triangles. The points of K on the y-axis correspond
to degenerate triangles.

To verify a proposed homogeneous inequality between R, r, and s, one need only show
that the graph of the proposed inequality in this x-y plane contains the region K.
Proof of Theorem 2.

We want to find the largest value of k such that the inequality

L2 − 12
√

3A ≥ kr(3
√

3R − L) (15)

holds for all triangles. Let L = 2s and A = rs. Apply the transformation (12) to get

f(x, y) = 4y2 + 2(k − 6
√

3)xy − 3kx
√

3 ≥ 0. (16)

The graph of f(x, y) = 0 is an ellipse and a point satisfies inequality (16) if it lies on or
outside this ellipse. We therefore need only show that the region K lies on or outside
this ellipse. It will suffice to show that the boundary of K lies on or outside the ellipse.
Applying the transformation (14), we see that this sufficiency condition is equivalent to

64t2 + 16(k − 6
√

3)t3(1 − t2) − 3k
√

3(1 + t2)2t2(1 − t2) ≥ 0

for 0 < t < 1.
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This is equivalent to

k ≤ 64 − 96
√

3t(1 − t2)
(1 − t2)

[
3
√

3(1 + t2)2 − 16t
] .

Let z = t
√

3 to get
k

96
√

3
≤ 2 − z(3 − z2)

(3 − z2) [(3 + z2)2 − 16z]

for 0 < z <
√

3. Invert and cancel the common factor (z − 1)2 and we get:

96
√

3
k

≥ (3 − z2)(z2 + 2z + 9)
z + 2

= −z3 − 6z + 18 − 9
z + 2

≡ h(z). (17)

We are looking for the largest value of k for which the inequality (17) holds for all z in
the interval (0,

√
3). In other words, we need to determine the maximum value of h(z) for

z ∈ (0,
√

3). It is straightforward to verify that, in the interval (0,
√

3), h(z) monotonically
decreases from 27/2 to 0, so the maximum value of h(z) is 27/2. We thus see that the
largest value that k can have occurs when 96

√
3/k = 27/2, i.e. when k = 64

√
3/9.

Equality holds when and only when z = 0 or equivalently, (x, y) = (0, 0). The point
(0, 0) of region K corresponds to degenerate isosceles triangles.

A more remarkable theorem comes about as the analog of inequality (6). Again,
the term “(R − r)” should be replaced by “(R − 2r)” since it is well-known that for all
triangles, R ≥ 2r with equality when and only when the triangle is equilateral [6]. It is
also straightforward to show that there is no analog of the form

L2 − 12
√

3A ≥ k(R − 2r)2

with k > 0 because the ratio (L2 − 12
√

3A)/(R − 2r)2 approaches 0 as the triangle ap-
proaches an equilateral triangle. We have, however, the following analog:
Theorem 3. If A, L, r, R denote the area, perimeter, inradius, and circumradius of a
triangle, then

L2 − 12
√

3A ≥ µ r(R − 2r) (8′)

where µ ≈ 35.098131 is a root of the equation w3 −280w2 +10368w−62208 = 0. Equality
holds when and only when either the triangle is equilateral or the triangle is similar to the
isosceles triangle with sides 1, 1, and λ where λ ≈ 1.23628634 is the largest root of the
equation 31x3 − 28x2 − 16x + 4 = 0.
Proof. We again apply the technique of Blundon. We want to find the largest value of k
such that the inequality

L2 − 12
√

3A ≥ kr(R − 2r)

holds for all triangles. Let L = 2s and A = rs. Apply the transformation (12) to get

f(x, y) ≡ 4y2 + 2kx2 − 12xy
√

3 − kx ≥ 0. (18)
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The graph of f(x, y) = 0 is an ellipse and it suffices to show that the boundary of K lies
on or outside this ellipse, i.e. that the boundary of K satisfies inequality (18). Applying
the transformation (14) shows that this sufficiency condition is equivalent to

256t2 + 32kt4(1 − t2)2 − 384t3(1 − t2)
√

3 − 4kt2(1 − t2)(1 + t2)2 ≥ 0

for 0 < t < 1. Solving for k and letting z = t
√

3 gives

k ≤ 96(z + 2)
(z + 1)2(3 − z2)

(19)

for 0 < z <
√

3. We are therefore looking for the largest value of k for which

h(z) ≡ −z3 + 2z + 2 − 1
z + 2

≤ 96
k

in the interval 0 < z <
√

3. Thus, for this k, 96/k is the maximum value of h(z) in the
interval (0,

√
3). We note that

h′(z) = −3z2 + 2 +
1

(z + 2)2

and that h′(z) = 0 if and only if

(z + 1)(3z3 + 9z2 + z − 9) = 0.

This equation is true for only one positive value of z, so h(z) has one relative maximum in
the interval (0,

√
3). The value of h(z) at this extremal point, z0, is larger than the value

of h(0) = 3/2 or h(
√

3) = 0, so this is the absolute maximum on that interval.
Equality occurs when and only when z = z0, where z0 ≈ 0.841399865 is a solution of

the equation
3z3 + 9z2 + z − 9 = 0. (20)

Thus k0, the corresponding value of k, is obtained from the equality condition in inequality
(19):

k0 =
96(z0 + 2)

(z0 + 1)2(3 − z2
0)

≈ 35.0981313.

It is straightforward to check that

96(z + 2)
(z + 1)2(3 − z2)

≡ −4(33z2 + 45z − 70) (mod 3z3 + 9z2 + z − 9)

so that
k0 = −4(33z2

0 + 45z0 − 70).

It is also straightforward to check that

k3
0 − 280k2

0 + 10368k0 − 62208 ≡ 0 (mod 3z3 + 9z2 + z − 9)

showing that k0 is a root of the equation w3 − 280w2 + 10368w − 62208 = 0 as claimed.
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Note that equality occurs on the boundary of K, i.e. when the triangle is isosceles.
As an aside, had we known this in advance, we could have proceeded as follows:

Assume that the triangle that achieves the minimum value of

L2 − 12
√

3A

r(R − 2r)

has sides 1, 1, and x. Then

k =
L2 − 12

√
3A

r(R − 2r)
= 2(x + 2)2

(x + 2)
√

4 − x2 + 3x(x − 2)
√

3
(x − 1)2x

√
4 − x2

≡ f(x)

where x can vary from 0 to 2. It is straightforward to calculate that

lim
x↓0

f(x) = ∞

and
lim
x↑2

f(x) = 64,

so the minimum value of f does not occur at an endpoint of the interval (0, 2). Also,

lim
x→1

f(x) = 36 > 35.098,

so the minimum does not occur at x = 1. The minimum must therefore occur at a point
where f ′(x) = 0. Taking the derivative, we find that

f ′(x) = −4(x + 2)
(x + 2)(4x − 1)

√
4 − x2 + 3

√
3x2(2x − 5)

(x − 1)3x2
√

4 − x2
.

The derivative vanishes if

(x + 2)(4x − 1)
√

4 − x2 = 3
√

3x2(5 − 2x)

since x = −2 is of no concern to us and x = 1 and x = 2 have already been ruled out.
Squaring both sides gives

(x + 2)2(4x − 1)2(4 − x2) = 27x4(5 − 2x)2.

Bringing all terms to the same side and factoring gives

4(x − 1)3(31x3 − 28x2 − 16x + 4) = 0.

The value x = 1 has already been ruled out, so we see that the minimum must occur
when x is a zero of 31x3 − 28x2 − 16x + 4. This polynomial has three zeroes, x ≈ −0.53,
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x ≈ 0.197, and x ≈ 1.2362863384. The first zero is ruled out because it is negative and the
second zero is ruled out because it produces a larger value for f(x) than the third zero.

Part of Theorem 1 states that L2−12
√

3A ≥ (A/r−3
√

3r)2 holds for all triangles with
equality for equilateral triangles. This fact alone does not rule out a stronger inequality of
the form L2 − 12

√
3A ≥ k(A/r− 3

√
3r)2 for some k > 1 since both sides of this inequality

are 0 when the triangle is equilateral. In fact, this inequality is true for k = 4 since in that
case it is equivalent (using A = rs) to inequality (2′). Applying Blundon’s method shows,
furthermore, that k = 4 yields the best possible inequality of this form. Various other
possible analogs of the Bonnesen inequalities (2)–(10) were investigated by this method.
Since the proof techniques are no different than those shown in the proofs of Theorems 2
and 3, the tedious details will be omitted and the results are stated as Theorem 4.
Theorem 4. In the Bonnesen-style inequalities:

L2 − 12
√

3A ≥ k1(L − 6
√

3r)2 (1′′)

L2 − 12
√

3A ≥ k2(
A

r
− 3

√
3r)2 (2′′)

L2 − 12
√

3A ≥ k3r(L − 6
√

3r) (3′′)

L2 − 12
√

3A ≥ k4r(3
√

3R − L) (4′′)

L2 − 12
√

3A ≥ k5r(R − 2r) (5′′)

L2 − 12
√

3A ≥ k6r(
3
4

√
3R − A

R
) (6′′)

L2 − 12
√

3A ≥ k7(L − 4A

R
)2 (7′′)

L2 − 12
√

3A ≥ k8A
2(

1
2r

− 1
R

)2 (8′′)

L2 − 12
√

3A ≥ k9L
2 (R − 2r)2

(R + 2r)2
(9′′)

L2 − 12
√

3A ≥ k10r(
A

r
− 3

√
3r) (10′′)

L2 − 12
√

3A ≥ k11r(L − 4A

R
) (11′′)

1. The best possible triangle inequality of the form (1′′) occurs when k1 = 1. In that
case, equality occurs when and only when the triangle is either an equilateral triangle
or a degenerate isosceles triangle. This inequality is equivalent to L ≥ 6

√
3r.

2. Inequality (2′′) is equivalent to inequality (1′′) with k2 = 4k1.
3. The best possible triangle inequality of the form (3′′) occurs when k3 = 6

√
3. In that

case, equality occurs when and only when the triangle is equilateral. Inequality (3′′)
is equivalent to the condition {L = 6

√
3r or L ≥ k3r}.

4. The best possible triangle inequality of the form (4′′) occurs when k4 = 64
√

3/9. In
that case, equality occurs when and only when the triangle is either an equilateral
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triangle or a degenerate isosceles triangle. This is the same as Theorem 2 but is
restated here to show the correspondence between inequalities (2)-(10) and (1′′)-(9′′).

5. The best possible triangle inequality of the form (5′′) occurs when k5 ≈ 35.0981313 is
the second largest root of the equation x3−280x2 +10368x−62208 = 0. In that case,
equality occurs when and only when either the triangle is equilateral or the triangle
is similar to the triangle with sides 1, 1, and λ where λ ≈ 1.23628634 is the largest
root of the equation 31x3 − 28x2 − 16x + 4 = 0. This is the same as Theorem 3.

6. The best possible triangle inequality of the form (6′′) occurs when k6 ≈ 19.9777234.
In that case, equality occurs when and only when either the triangle is equilateral or
the triangle is similar to the triangle with sides 1, 1, and λ where λ ≈ 1.23983866 is
the smallest real root of the equation 7x8 + 45x7 + 60x6 − 162x5 − 447x4 − 99x3 +
488x2 + 324x + 108 = 0.

7. The best possible triangle inequality of the form (7′′) occurs when k7 ≈ 0.87281834.
In that case, equality occurs when and only when either the triangle is equilateral or
the triangle is similar to the triangle with sides 1, 1, and λ where λ ≈ 1.956272 is the
largest root of the equation 28x4 + 10x3 − 69x2 − 94x − 37 = 0.

8. Inequality (8′′) is equivalent to inequality (7′′) with k8 = 16k7.
9. The best possible triangle inequality of the form (9′′) occurs when k9 ≈ 0.94204112.

In that case, equality occurs when and only when either the triangle is equilateral or
the triangle is similar to the triangle with sides 1, 1, and λ where λ ≈ 1.9913932 is the
largest real root of the equation 27x6−54x5 +193x4−392x3 +354x2−538x−229 = 0.

10. Inequality (10′′) is equivalent to inequality (3′′) with k10 = 2k3.
11. The best possible triangle inequality of the form (11′′) occurs when k11 ≈ 6.829212.

In that case, equality occurs when and only when either the triangle is equilateral or
the triangle is similar to the triangle with sides 1, 1, and λ where λ ≈ 1.129475 is the
second largest real root of the equation 7x4 − 18x3 + 5x2 + 9x − 2 = 0.

There are no triangle inequalities with any of the forms

L2 − 12
√

3A ≥ k(3
√

3R − L)2

L2 − 12
√

3A ≥ k(R − 2r)2

L2 − 12
√

3A ≥ k(
3
4

√
3R − A

R
)2

with k > 0.
Note. The forms considered as possible analogs of the Bonnesen inequalities have the
property that the left side of the inequality represents the “isoperimetric deficit”. Both
sides of the inequality should be 0 for the equilateral triangle. In justifying the forms
considered above, we point out the following known inequalities (with equality when and
only when the triangle is equilateral): R ≥ 2r, 3

√
3R ≥ L, L ≥ 6

√
3r, and 3

√
3r2 ≤ A ≤

3
4

√
3R2 [6].
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