O(n $\left.{ }^{3}\right)$ Bounds for the Area of a Convex Lattice n-gon

by Stanley Rabinowitz
MathPro Press
12 Vine Brook Road
Westford, MA 01886 USA

A lattice point in the plane is a point with integer coordinates. A lattice polygon is a polygon whose vertices are all lattice points. A polygon with n vertices will be referred to as an n-gon.
Recently, Simpson [12] conjectured that for a convex lattice n-gon with area A, we must have $A \geq c n^{3}$ for some constant $c>0$.
I. Bárány has informed me [7] that this result is already known - namely that Arnol'd
[2] proved in 1980 that

$$
A \geq \frac{n^{3}}{2 \cdot 16^{3}}
$$

It is the purpose of this note to give a better bound for A.
Theorem. If A is the area of a convex lattice n-gon, then

$$
\begin{equation*}
A>\frac{n^{3}}{8 \pi^{2}} \tag{1}
\end{equation*}
$$

Proof. Let $K=P_{1} P_{2} \ldots P_{n}$ be a convex lattice n-gon with area A. Let the area of $\triangle P_{i-1} P_{i} P_{i+1}$ be A_{i}, where $P_{n+1} \equiv P_{1}$ and let

$$
f(K)=\frac{1}{A^{n}} \prod_{i=1}^{n} A_{i}
$$

By a result of Rényi and Sulanke [10], we have $f(K)$ is maximal when and only when K is an affine transformation of R_{n}, a regular n-gon. It is straightforward to show that this maximum value is

$$
f\left(R_{n}\right)=\left(\frac{4 \sin ^{2} \frac{\pi}{n}}{n}\right)^{n}
$$

so that $f(K) \leq f\left(R_{n}\right)$. But since $\sin x<x$ for $x>0$, we have

$$
\prod_{i=1}^{n} A_{i}<A^{n}\left(\frac{4 \pi^{2}}{n^{3}}\right)^{n}
$$

By the pigeonhole principle, we can conclude that there is some i such that

$$
A_{i}<\frac{4 \pi^{2} A}{n^{3}}
$$

From Pick's Formula ([5], p. 209), it follows that the area of a lattice triangle is not less than $1 / 2$. Hence $A>A_{i} n^{3} / 4 \pi^{2} \geq n^{3} / 8 \pi^{2}$. This concludes the proof.

Let $A(n)$ be the smallest possible area for a convex lattice n-gon. Then, since $2 A(n)$ must be an integer, we can round our lower bound for $2 A$ up to the next larger integer and write

$$
\begin{equation*}
\left\lceil\frac{n^{3}}{4 \pi^{2}}\right\rceil \leq 2 A(n) \leq 2\binom{\lceil n / 2\rceil}{ 3}+n-2 \tag{2}
\end{equation*}
$$

where the upper bound comes from [12].
Let $g(n)$ be the smallest number of lattice points that can be in the interior of a convex lattice n-gon. The functions $A(n)$ and $g(n)$ are related by the formula

$$
A(n)=g(n)+n / 2-1
$$

(Proposition 7.2.5 of [8] and Theorem 1 of [12]). Thus

$$
\begin{equation*}
\left\lceil\frac{n^{3}}{8 \pi^{2}}-\frac{n}{2}+1\right\rceil \leq g(n) \leq\binom{\lceil n / 2\rceil}{ 3} \tag{3}
\end{equation*}
$$

This proves Rabinowitz's conjecture [9], that there exists a constant $c>0$ such that $g(n)>c n^{3}$.
We can compare our bounds for $2 A(n)$ against the actual values obtained by Simpson [12] and Rabinowitz [9]:

n	lower bound for $2 A(n)$	actual value of $2 A(n)$	upper bound for $2 A(n)$
3	1	1	1
4	2	2	2
5	4	5	5
6	6	6	6
7	9	13	13
8	13	14	14
9	19	21	27
10	26	28	28
11	34	$[39,43]$	49
12	44	48	50
13	56	65	81
14	70	80	82
15	86	$[99,109]$	125
16	104	118	126
17	125	$[147,173]$	183
18	148	174	184

19	174	$[209,241]$	257
20	203	242	258
21	235	$[285,327]$	349
22	270	328	350

The square brackets define a closed interval known to contain the value.
Related inequalities of interest can be found in [1], [3], [4], [6], and [11].

Open Questions.

1. What is the exact value of $A(11)$?
2. Can the bounds for $A(n)$ in equation (2) be improved?

References

[1] George E. Andrews, "A Lower Bound for the Volume of Strictly Convex Bodies with many Boundary Lattice Points", Transactions of the American Mathematical Society. 106(1963)270-279.
[2] V. I. Arnol'd, "Statistics of Integral Convex Polygons", Functional Analysis and its Applications. 14(1980)79-80.
[3] I. Bárány and D. G. Larman, "Convex Bodies, Economic Cap Coverings, Random Polytopes", Mathematika. 35(1988)274-291.
[4] Charles J. Colbourn and R. J. Simpson, "A Note on Bounds on the Minimum Area of Convex Lattice Polygons", Bulletin of the Australian Mathematical Society. 45(1992)237-240.
[5] H. S. M. Coxeter, Introduction to Geometry, second edition. John Wiley and Sons, Inc. New York: 1980.
[6] S. V. Konyagin and K. A. Sevast'yanov, "A Bound, in terms of its Volume, for the Number of Vertices of a Convex Polyhedron when the Vertices have Integer Coordinates", Functional Analysis and its Applications. 18(1984)11-13.
[7] personal correspondence via E. Makai, Jr.
[8] Stanley Rabinowitz, Convex Lattice Polytopes, Ph. D. Dissertation. Polytechnic University. Brooklyn, NY: 1986.
[9] Stanley Rabinowitz, "On the Number of Lattice Points Inside a Convex Lattice n-gon", Congressus Numerantium. 73(1990)99-124.
[10] A. Rényi und R. Sulanke, "Über die konvexe Hülle von n zufällig gewählten Punkten", Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete. 2(1963)75-84.
[11] Wolfgang M. Schmidt, "Integer Points on Curves and Surfaces", Monatshefte für Mathematik. 99(1985)45-72.
[12] R. J. Simpson, "Convex Lattice Polygons of Minimum Area", Bulletin of the Australian Mathematical Society. 42(1990)353-367.

