How to Find the Square Root of a Complex Number

Stanley Rabinowitz
12 Vine Brook Road
Westford, Massachusetts 01886 USA

It is known that every polynomial with complex coefficients has a complex root. This is called "The Fundamental Theorem of Algebra". In particular, the equation

$$
z^{2}=c
$$

where c is a complex number, always has a solution. In other words, every complex number has a square root. We could write this square root as \sqrt{c}. But - it would be nice to find an explicit representation for that square root in the form $p+q i$ where p and q are real numbers. It is the purpose of this note to show how to actually find the square root of a given complex number. This method is not new (see for example page 95 of Mostowski and Stark [1]) but appears to be little-known.

Let us start with the complex number

$$
c=a+b i
$$

where a and b are real $(b \neq 0)$ and attempt to find an explicit representation for its square root. Of course, every complex number (other than 0) will have two square roots. If w is one square root, then the other one will be $-w$. We will find the one whose real part is non-negative.

Let us assume that a square root of c is $p+q i$ where p and q are real. Then we have

$$
(p+q i)^{2}=a+b i
$$

Equating the real and imaginary parts gives us the two equations

$$
\begin{align*}
p^{2}-q^{2} & =a \tag{1}\\
2 p q & =b . \tag{2}
\end{align*}
$$

We must have $p \neq 0$ since $b \neq 0$. Solving equation (2) for q gives

$$
\begin{equation*}
q=\frac{b}{2 p} \tag{3}
\end{equation*}
$$

and we can substitute this value for q into equation (1) to get

$$
p^{2}-\left(\frac{b}{2 p}\right)^{2}=a
$$

$\overline{\text { Reprinted from Mathematics and Informatics Quarterly, 3(1993)54-56 }}$
or

$$
4 p^{4}-4 a p^{2}-b^{2}=0
$$

This is a quadratic in p^{2}, so we can solve for p^{2} using the quadratic formula. We get (taking just the positive solution):

$$
p^{2}=\frac{a+\sqrt{a^{2}+b^{2}}}{2}
$$

so that

$$
p=\frac{1}{\sqrt{2}} \sqrt{a+\sqrt{a^{2}+b^{2}}} .
$$

From equation (3), we find

$$
\begin{aligned}
q=\frac{b}{2 p} & =\frac{b}{\frac{2}{\sqrt{2}} \sqrt{\sqrt{a^{2}+b^{2}+a}}} \\
& =\frac{b}{\frac{2}{\sqrt{2}} \sqrt{\sqrt{a^{2}+b^{2}}+a}} \cdot \frac{\sqrt{\sqrt{a^{2}+b^{2}}-a}}{\sqrt{\sqrt{a^{2}+b^{2}}-a}} \\
& =\frac{b}{\sqrt{2}} \frac{\sqrt{\sqrt{a^{2}+b^{2}}-a}}{\sqrt{\left.a^{2}+b^{2}\right)-a^{2}}} \\
& =\frac{b}{\sqrt{2}} \frac{\sqrt{\sqrt{a^{2}+b^{2}}-a}}{\sqrt{b^{2}}}=\frac{b}{\sqrt{2}} \frac{\sqrt{\sqrt{a^{2}+b^{2}}-a}}{|b|} \\
& =\frac{\operatorname{sgn} b}{\sqrt{2}} \sqrt{\sqrt{a^{2}+b^{2}}-a} .
\end{aligned}
$$

Note that $\sqrt{b^{2}}=|b|$, so that $b /|b|=\operatorname{sgn}(b)$, the sign of b (defined to be +1 if $b>0$ and -1 if $b<0$).

Thus we have our answer:
Theorem 1. If a and b are real $(b \neq 0)$, then

$$
\sqrt{a+b i}=p+q i
$$

where p and q are real and are given by

$$
p=\frac{1}{\sqrt{2}} \sqrt{\sqrt{a^{2}+b^{2}}+a}
$$

and

$$
q=\frac{\operatorname{sgn} b}{\sqrt{2}} \sqrt{\sqrt{a^{2}+b^{2}}-a} .
$$

In practice, square roots of complex numbers are more easily found by first converting to polar form and then using DeMoivre's Theorem. Any complex number $a+b i$ can be written as

$$
r(\cos \theta+i \sin \theta)
$$

where

$$
\begin{equation*}
r=\sqrt{a^{2}+b^{2}}, \quad \cos \theta=\frac{a}{r}, \quad \text { and } \quad \sin \theta=\frac{b}{r} \tag{4}
\end{equation*}
$$

DeMoivre's Theorem states that if n is any positive real number, then

$$
(a+b i)^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

In particular, if $n=1 / 2$, we have

$$
\begin{equation*}
\sqrt{a+b i}=\sqrt{r}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right) . \tag{5}
\end{equation*}
$$

This gives us a straightforward way to calculate $\sqrt{a+b i}$.
This method also gives us an alternate proof of Theorem 1. If we apply the half-angle formulae

$$
\cos \frac{\theta}{2}= \pm \sqrt{\frac{1+\cos \theta}{2}}
$$

and

$$
\sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}}
$$

to equation (5), we get

$$
\sqrt{a+b i}=\sqrt{r}\left(\sqrt{\frac{1+\cos \theta}{2}} \pm i \sqrt{\frac{1-\cos \theta}{2}}\right)
$$

where we have arbitrarily chosen the " + " sign for the first radical. Using the value for $\cos \theta$ from equation (4), we get

$$
\begin{aligned}
\sqrt{a+b i} & =\sqrt{r}\left(\sqrt{\frac{1+a / r}{2}} \pm i \sqrt{\frac{1-a / r}{2}}\right) \\
& =\sqrt{\frac{r+a}{2}} \pm i \sqrt{\frac{r-a}{2}} \\
& =\sqrt{\frac{\sqrt{a^{2}+b^{2}}+a}{2} \pm i \sqrt{\frac{\sqrt{a^{2}+b^{2}}-a}{2}}}
\end{aligned}
$$

which is equivalent to Theorem 1. As before, the " \pm " sign should be chosen to be the same as the sign of b.

We sometimes need to find the square root of an expression of the form $s+\sqrt{-d}$ where s and d are real numbers and $d>0$. We can use Theorem 1 to get an explicit formula for this square root which is of the form $p+q i$ where p and q are real. Since $s+\sqrt{-d}=s+i \sqrt{d}$, we can let $a=s$ and $b=\sqrt{d}$ in Theorem 1, to get the result:
Theorem 2. If s and d are real with $d>0$, then

$$
\sqrt{s+\sqrt{-d}}=\frac{1}{\sqrt{2}} \sqrt{\sqrt{s^{2}+d}+s}+i \frac{1}{\sqrt{2}} \sqrt{\sqrt{s^{2}+d}-s}
$$

Reference

[1] A. Mostowski and M. Stark, Introduction to Higher Algebra. Pergamon Press. New York: 1964.

