Supplement to The Computer Solution of Symmetric Homogeneous Triangle Inequalities

Stanley Rabinowitz
MathPro Press
Chelmsford, MA 01824
stan@MathProPress.com
January 25, 2005

Because of space constraints, the proof of several theorems from the paper [1] had to be omitted. The computer-generated proofs of these theorems are given below. See [1] for the notation and details of how the proofs were generated.

Theorem T2.

$$
\begin{align*}
& \sum \sin A \leq \frac{3}{2} \sqrt{3} \tag{1}\\
& \sum \sin ^{2} A \leq \frac{9}{4} \tag{2}\\
& \sum \sin A \geq \sum \sin 2 A \tag{3}\\
& \prod \sin A \leq \frac{3}{8} \sqrt{3} \tag{4}\\
& 1<\sum \cos A \tag{5}\\
& \sum \cos A \leq \frac{3}{2} \tag{6}\\
& \frac{3}{4} \leq \sum \cos ^{2} A \tag{7}\\
& \sum \cos ^{2} A<3 \tag{8}\\
& \sum \cos A \cos B \leq \frac{3}{4} \tag{9}\\
& \prod \cos A \leq \frac{1}{8} \tag{10}\\
& \prod \cos A \leq \frac{1}{24} \sum \cos ^{2}(A-B) \tag{11}\\
& \sum \cot A \geq \sqrt{3} \tag{12}\\
& \sum \cot ^{2} A \geq 1 \tag{13}\\
& \sum \csc A \geq 2 \sqrt{3} \tag{14}\\
& \sum \csc ^{2} A \geq 4 \tag{15}\\
& \frac{1+\prod \cos A}{\prod \sin A} \geq \sqrt{3} \tag{16}\\
& 2 \sum \cot A \geq \sum \csc A \tag{17}
\end{align*}
$$

Computer Proof of Theorem T2.

(1) is equivalent to $27[4,2,0]+27[3,3,0] \geq 5[4,1,1]+30[3,2,1]+19[2,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
5[4,2,0] & \geq 5[4,1,1] \\
22[4,2,0] & \geq 22[3,2,1] \\
8[3,3,0] & \geq 8[3,2,1] \\
19[3,3,0] & \geq 19[2,2,2] .
\end{aligned}
$$

(2) is equivalent to $9[4,2,0]+9[3,3,0] \geq 7[4,1,1]+10[3,2,1]+[2,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
7[4,2,0] & \geq 7[4,1,1] \\
2[4,2,0] & \geq 2[3,2,1] \\
8[3,3,0] & \geq 8[3,2,1] \\
{[3,3,0] } & \geq[2,2,2]
\end{aligned}
$$

(3) is equivalent to $[2,1,0] \geq[1,1,1]$ which follows from Muirhead's Theorem.
(4) is equivalent to $27[8,4,0]+108[8,3,1]+81[8,2,2]+108[7,5,0]+540[7,4,1]+1080[7,3,2]+81[6,6,0]+$ $1080[6,5,1]+2862[6,4,2]+1944[5,5,2] \geq 104[6,3,3]+5268[5,4,3]+2539[4,4,4]$ which follows from the following majorizations:

$$
\begin{aligned}
27[8,4,0] & \geq 27[6,3,3] \\
77[8,3,1] & \geq 77[6,3,3] \\
31[8,3,1] & \geq 31[5,4,3] \\
81[8,2,2] & \geq 81[5,4,3] \\
108[7,5,0] & \geq 108[5,4,3] \\
540[7,4,1] & \geq 540[5,4,3] \\
1080[7,3,2] & \geq 1080[5,4,3] \\
81[6,6,0] & \geq 81[5,4,3] \\
1080[6,5,1] & \geq 1080[5,4,3] \\
2298[6,4,2] & \geq 2298[5,4,3] \\
595[6,4,2] & \geq 595[4,4,4] \\
1944[5,5,2] & \geq 1944[4,4,4] .
\end{aligned}
$$

(5) is equivalent to $8 x y z>0$ which follows because a sum of positive terms is positive.
(6) is equivalent to $[2,1,0] \geq[1,1,1]$ which follows from Muirhead's Theorem.
(7) is equivalent to $9[4,2,0]+9[3,3,0] \geq 7[4,1,1]+10[3,2,1]+[2,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
7[4,2,0] & \geq 7[4,1,1] \\
2[4,2,0] & \geq 2[3,2,1] \\
8[3,3,0] & \geq 8[3,2,1] \\
{[3,3,0] } & \geq[2,2,2] .
\end{aligned}
$$

(8) is equivalent to $32 \sum x^{4} y z+64 \sum!x^{3} y^{2} z+96 x^{2} y^{2} z^{2}>0$ which is true because a sum of positive terms is positive.
(9) is equivalent to $7[4,2,0]+7[3,3,0] \geq[4,1,1]+6[3,2,1]+7[2,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
{[4,2,0] } & \geq[4,1,1] \\
6[4,2,0] & \geq 6[3,2,1] \\
7[3,3,0] & \geq 7[2,2,2] .
\end{aligned}
$$

(10) is equivalent to $9[4,2,0]+9[3,3,0] \geq 7[4,1,1]+10[3,2,1]+[2,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
7[4,2,0] & \geq 7[4,1,1] \\
2[4,2,0] & \geq 2[3,2,1] \\
8[3,3,0] & \geq 8[3,2,1] \\
{[3,3,0] } & \geq[2,2,2]
\end{aligned}
$$

(11) is equivalent to $27[8,4,0]+108[7,5,0]+60[7,4,1]+81[6,6,0]+240[6,5,1]+5[4,4,4] \geq 12[8,3,1]+$ $7[8,2,2]+104[7,3,2]+106[6,4,2]+120[6,3,3]+16[5,5,2]+156[5,4,3]$ which follows from the following majorizations:

$$
\begin{aligned}
& 5[6,6,0]+5[4,4,4] \geq 10[6,4,2] \\
& 12[8,4,0] \geq 12[8,3,1] \\
& 7[8,4,0] \geq 7[8,2,2] \\
& 8[8,4,0] \geq 8[7,3,2] \\
& 96[7,5,0] \geq 96[7,3,2] \\
& 12[7,5,0] \geq 12[6,4,2] \\
& 60[7,4,1] \geq 60[6,4,2] \\
& 24[6,6,0] \geq 24[6,4,2] \\
& 52[6,6,0] \geq 52[6,3,3] \\
& 68[6,5,1] \geq 68[6,3,3] \\
& 16[6,5,1] \geq 16[5,5,2] \\
& 156[6,5,1] \geq 156[5,4,3] .
\end{aligned}
$$

(12) is equivalent to $[4,0,0]+4[3,1,0]+3[2,2,0] \geq 8[2,1,1]$ which follows from the following majorizations:

$$
\begin{aligned}
3[2,2,0] & \geq 3[2,1,1] \\
4[3,1,0] & \geq 4[2,1,1] \\
{[4,0,0] } & \geq[2,1,1]
\end{aligned}
$$

(13) is equivalent to $[4,0,0]+4[3,1,0]+3[2,2,0] \geq 8[2,1,1]$ which follows from the following majorizations:

$$
\begin{aligned}
3[2,2,0] & \geq 3[2,1,1] \\
4[3,1,0] & \geq 4[2,1,1] \\
{[4,0,0] } & \geq[2,1,1]
\end{aligned}
$$

(14) is equivalent to $[4,0,0]+12[3,1,0]+11[2,2,0] \geq 24[2,1,1]$ which follows from the following majorizations:

$$
11[2,2,0] \geq 11[2,1,1]
$$

$$
\begin{aligned}
12[3,1,0] & \geq 12[2,1,1] \\
{[4,0,0] } & \geq[2,1,1] .
\end{aligned}
$$

(15) is equivalent to $[4,0,0]+4[3,1,0]+3[2,2,0] \geq 8[2,1,1]$ which follows from the following majorizations:

$$
\begin{aligned}
3[2,2,0] & \geq 3[2,1,1] \\
4[3,1,0] & \geq 4[2,1,1] \\
{[4,0,0] } & \geq[2,1,1] .
\end{aligned}
$$

(16) is equivalent to $[6,0,0]+8[5,1,0]+16[4,2,0]+2[4,1,1]+10[3,3,0] \geq 24[3,2,1]+13[2,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
{[6,0,0] } & \geq[3,2,1] \\
8[5,1,0] & \geq 8[3,2,1] \\
15[4,2,0] & \geq 15[3,2,1] \\
{[4,2,0] } & \geq[2,2,2] \\
2[4,1,1] & \geq 2[2,2,2] \\
10[3,3,0] & \geq 10[2,2,2] .
\end{aligned}
$$

(17) is equivalent to $[2,0,0] \geq[1,1,0]$ which follows from Muirhead's Theorem.

Theorem T4.

$$
\begin{gather*}
s^{2} \geq 3 K \sqrt{3} \tag{1}\\
s^{2} \geq 3 K \sqrt{3}+\frac{1}{2} \sum(a-b)^{2} \tag{2}\\
\sum a^{2} \geq 4 K \sqrt{3} \tag{3}\\
\sum a b \geq 4 K \sqrt{3} \tag{4}\\
\sum a b \geq 4 K \sqrt{3}+\frac{1}{2} \sum(a-b)^{2} \tag{5}\\
4 K \sqrt{3}+\sum(a-b)^{2} \leq \sum a^{2} \tag{6}\\
\sum a^{2} \leq 4 K \sqrt{3}+3 \sum(a-b)^{2} \tag{7}\\
12 K \sqrt{3}+2 \sum(a-b)^{2} \leq\left(\sum a\right)^{2} \tag{8}\\
\left(\sum a\right)^{2} \leq 12 K \sqrt{3}+8 \sum(a-b)^{2} \tag{9}\\
\sum a^{4} \geq 16 K^{2} \tag{10}\\
\sum a^{4} \geq 16 K^{2}+4 K \sqrt{3} \sum(a-b)^{2}+\frac{1}{2}\left(\sum(a-b)^{2}\right)^{2} \tag{11}\\
\sum a^{2} b^{2} \geq 16 K^{2} \tag{12}\\
4 K \sqrt{3} \leq \frac{9 a b c}{\sum a} \tag{13}\\
(a b c)^{2} \geq\left(\frac{4 K}{\sqrt{3}}\right)^{3} \tag{14}\\
\frac{1}{12}\left(\sum a b-\frac{1}{2} \sum a^{2}\right)\left(3 \sum a b-\frac{5}{2} \sum a^{2}\right) \leq K^{2} \tag{15}\\
K^{2} \leq \frac{1}{12}\left(\sum a b-\frac{1}{2} \sum a^{2}\right)^{2} \tag{16}\\
27 \prod\left(b^{2}+c^{2}-a^{2}\right)^{2} \leq(4 K)^{6} \tag{17}
\end{gather*}
$$

Computer Proof of Theorem T4.

(1) is equivalent to $[3,0,0]+6[2,1,0] \geq 7[1,1,1]$ which follows from the following majorizations:

$$
\begin{aligned}
{[3,0,0] } & \succ[1,1,1] \\
6[2,1,0] & \succ 6[1,1,1] .
\end{aligned}
$$

(2) is equivalent to $[2,2,0] \geq[2,1,1]$ which follows from Muirhead's Theorem.
(3) is equivalent to $[4,0,0]+4[3,1,0]+3[2,2,0] \geq 8[2,1,1]$ which follows from the following majorizations:

$$
\begin{gathered}
{[4,0,0] \succ[2,1,1]} \\
4[3,1,0] \succ 4[2,1,1] \\
3[2,2,0] \succ 3[2,1,1] .
\end{gathered}
$$

(4) is equivalent to $[4,0,0]+12[3,1,0]+11[2,2,0] \geq 24[2,1,1]$ which follows from the following majorizations:

$$
\begin{aligned}
{[4,0,0] } & \succ[2,1,1] \\
12[3,1,0] & \succ 12[2,1,1] \\
11[2,2,0] & \succ 11[2,1,1] .
\end{aligned}
$$

(5) is equivalent to $[2,2,0] \geq[2,1,1]$ which follows from Muirhead's Theorem.
(6) is equivalent to $[2,2,0] \geq[2,1,1]$ which follows from Muirhead's Theorem.
(7) could not be handled by Algorithm K.
(8) is equivalent to $[2,2,0] \geq[2,1,1]$ which follows from Muirhead's Theorem.
(9) could not be handled by Algorithm K.
(10) is equivalent to $[4,0,0]+4[3,1,0]+3[2,2,0] \geq 8[2,1,1]$ which follows from the following majorizations:

$$
\begin{aligned}
{[4,0,0] } & \succ[2,1,1] \\
4[3,1,0] & \succ 4[2,1,1] \\
3[2,2,0] & \succ 3[2,1,1] .
\end{aligned}
$$

(11) is equivalent to $2[6,2,0]+2[4,4,0]+8[4,2,2]+[3,3,2] \geq[6,1,1]+2[5,2,1]+10[4,3,1]$ which Algorithm K could not prove automatically.
(12) is equivalent to $[4,0,0]+4[3,1,0]+3[2,2,0] \geq 8[2,1,1]$ which follows from the following majorizations:

$$
\begin{gathered}
{[4,0,0] \succ[2,1,1]} \\
4[3,1,0] \succ 4[2,1,1] \\
3[2,2,0] \\
\succ 3[2,1,1] .
\end{gathered}
$$

(13) is equivalent to $27[4,2,0]+27[3,3,0] \geq 5[4,1,1]+30[3,2,1]+19[2,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
5[4,2,0] & \succ 5[4,1,1] \\
22[4,2,0] & \succ 22[3,2,1] \\
8[3,3,0] & \succ 8[3,2,1] \\
19[3,3,0] & \succ 19[2,2,2] .
\end{aligned}
$$

(14) is equivalent to $3[4,2,0]+3[4,1,1]+3[3,3,0]+18[3,2,1]+5[2,2,2] \geq 32[2,1,1]$ which follows from the following majorizations:

$$
3[4,2,0] \succ 3[2,1,1]
$$

$$
\begin{aligned}
3[4,1,1] & \succ 3[2,1,1] \\
3[3,3,0] & \succ 3[2,1,1] \\
18[3,2,1] & \succ 18[2,1,1] \\
5[2,2,2] & \succ 5[2,1,1]
\end{aligned}
$$

(15) is equivalent to $[3,1,0] \geq[2,2,0]$ which follows from Muirhead's Theorem.
(16) is equivalent to $[2,2,0] \geq[2,1,1]$ which follows from Muirhead's Theorem.
(17) is equivalent to $108[8,3,1]+324[7,4,1]+432[6,5,1]+19[4,4,4] \geq 27[8,4,0]+81[8,2,2]+108[7,5,0]+$ $216[7,3,2]+81[6,6,0]+54[6,4,2]+184[6,3,3]+132[5,4,3]$ which Algorithm K could not prove automatically.
Theorem T5.

$$
\begin{gather*}
2 r \leq R \tag{1}\\
\sum a \leq 3 R \sqrt{3} \tag{2}\\
s \leq 2 R+(3 \sqrt{3}-4) r \tag{3}\\
9 r(4 R+r) \leq 3 s^{2} \tag{4}\\
3 s^{2} \leq(4 R+r)^{2} \tag{5}\\
6 r(4 R+r) \leq 2 s^{2} \tag{6}\\
2 s^{2} \leq 2(2 R+r)^{2}+R^{2} \tag{7}\\
2 s^{2}(2 R-r) \leq R(4 R+r)^{2} \tag{8}\\
r(16 R-5 r) \leq s^{2} \tag{9}\\
s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \tag{10}\\
s^{2} \geq 27 r^{2} \tag{11}\\
2 s^{2} \geq 27 R r \tag{12}\\
36 r^{2} \leq \sum a^{2} \tag{13}\\
\sum a^{2} \leq 9 R^{2} \tag{14}\\
24 R r-12 r^{2} \leq \sum a^{2} \tag{15}\\
\sum a^{2} \leq 8 R^{2}+4 r^{2} \tag{16}\\
36 r^{2} \leq \sum a b \tag{17}\\
\sum a b \leq 9 R^{2} \tag{18}\\
4 r(5 R-r) \leq \sum a b \tag{19}\\
\sum a b \leq 4(R+r)^{2} \tag{20}\\
36 r^{2} \leq 4 r(5 R-r) \tag{21}\\
4 r(5 R-r) \leq \sum a b \tag{22}\\
4(R+r)^{2} \leq 9 R^{2} \tag{23}\\
\left.\left.\sum a\right)\right) \leq 9 R r \tag{24}\\
2
\end{gather*}
$$

$$
\begin{gather*}
a b c \leq 8 R^{2} r+(12 \sqrt{3}-16) R r^{2} \tag{25}\\
\frac{\sqrt{3}}{R} \leq \sum \frac{1}{a} \tag{26}\\
\sum \frac{1}{a} \leq \frac{\sqrt{3}}{2 r} \tag{27}\\
\frac{3 \sqrt{3}}{2(R+r)} \leq \sum \frac{1}{a} \tag{28}\\
\frac{1}{R^{2}} \leq \sum \frac{1}{a b} \tag{29}\\
\sum \frac{1}{a b} \leq \frac{1}{4 r^{2}} \tag{30}\\
8 r(R-2 r) \leq \sum(a-b)^{2} \tag{31}\\
\sum(a-b)^{2} \leq 8 R(R-2 r) \tag{32}\\
4 r^{2} \leq \frac{a b c}{\sum a} \tag{33}\\
a b c \leq(R \sqrt{3})^{3} \tag{34}\\
5 R-r \geq s \sqrt{3} \tag{35}\\
54 R r \leq 3 \sum a b \tag{36}
\end{gather*}
$$

Computer Proof of Theorem T5.

(1) is equivalent to $[2,1,0] \geq[1,1,1]$ which follows from Muirhead's Theorem.
(2) is equivalent to $27[4,2,0]+27[3,3,0] \geq 5[4,1,1]+30[3,2,1]+19[2,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
5[4,2,0] & \geq 5[4,1,1] \\
22[4,2,0] & \geq 22[3,2,1] \\
8[3,3,0] & \geq 8[3,2,1] \\
19[3,3,0] & \geq 19[2,2,2]
\end{aligned}
$$

(3) could not be handled because of a bug in the implementation of Algorithm K.
(4) is equivalent to $[3,0,0]+6[2,1,0]+2[1,1,1] \geq 18[1,1,0]$ which algorithm K could not prove automatically. (5) is equivalent to $2[6,2,0]+8[5,3,0]+6[4,4,0]+4[4,3,1] \geq[6,1,1]+2[5,2,1]+7[4,2,2]+10[3,3,2]$ which follows from the following majorizations:

$$
\begin{aligned}
{[6,2,0] } & \geq[6,1,1] \\
{[6,2,0] } & \geq[5,2,1] \\
{[5,3,0] } & \geq[5,2,1] \\
7[5,3,0] & \geq 7[4,2,2] \\
6[4,4,0] & \geq 6[3,3,2] \\
4[4,3,1] & \geq 4[3,3,2] .
\end{aligned}
$$

(6) is equivalent to $[3,0,0] \geq[1,1,1]$ which follows from Muirhead's Theorem.
(7) is equivalent to $9[6,2,0]+36[5,3,0]+27[4,4,0]+10[4,3,1] \geq 7[6,1,1]+20[5,2,1]+28[4,2,2]+27[3,3,2]$ which follows from the following majorizations:

$$
\begin{aligned}
7[6,2,0] & \geq 7[6,1,1] \\
2[6,2,0] & \geq 2[5,2,1] \\
18[5,3,0] & \geq 18[5,2,1] \\
18[5,3,0] & \geq 18[4,2,2] \\
10[4,4,0] & \geq 10[4,2,2] \\
17[4,4,0] & \geq 17[3,3,2] \\
10[4,3,1] & \geq 10[3,3,2] .
\end{aligned}
$$

(8) is equivalent to $[8,3,0]+5[7,4,0]+10[6,5,0]+[6,4,1]+2[5,5,1]+5[4,4,3] \geq[8,2,1]+2[7,3,1]+3[7,2,2]+$ $10[6,3,2]+7[5,4,2]+[5,3,3]$ which algorithm K could not prove automatically.
(9) is equivalent to $[4,0,0]+[2,1,1] \geq 2[2,2,0]$ which follows from the following majorizations:

$$
\begin{gathered}
{[4,0,0]+[2,1,1] \geq 2[3,1,0]} \\
2[3,1,0] \geq 2[2,2,0]
\end{gathered}
$$

(10) is equivalent to $[4,2,0]+[3,3,0]+[2,2,2] \geq[4,1,1]+2[3,2,1]$ which follows from the following majorizations:

$$
\begin{gathered}
{[3,3,0]+[2,2,2] \geq 2[3,2,1]} \\
{[4,2,0] \geq[4,1,1]}
\end{gathered}
$$

(11) is equivalent to $[3,0,0]+6[2,1,0] \geq 7[1,1,1]$ which follows from the following majorizations:

$$
\begin{gathered}
6[2,1,0] \geq 6[1,1,1] \\
{[3,0,0] \geq[1,1,1]}
\end{gathered}
$$

(12) is equivalent to $4[3,0,0] \geq 3[2,1,0]+[1,1,1]$ which follows from the following majorizations:

$$
\begin{gathered}
3[3,0,0] \geq 3[2,1,0] \\
{[3,0,0] \geq[1,1,1]}
\end{gathered}
$$

(13) is equivalent to $[3,0,0]+4[2,1,0] \geq 5[1,1,1]$ which follows from the following majorizations:

$$
\begin{gathered}
4[2,1,0] \geq 4[1,1,1] \\
{[3,0,0] \geq[1,1,1]}
\end{gathered}
$$

(14) is equivalent to $9[4,2,0]+9[3,3,0] \geq 7[4,1,1]+10[3,2,1]+[2,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
7[4,2,0] & \geq 7[4,1,1] \\
2[4,2,0] & \geq 2[3,2,1] \\
8[3,3,0] & \geq 8[3,2,1] \\
{[3,3,0] } & \geq[2,2,2] .
\end{aligned}
$$

(15) is equivalent to $[4,0,0]+[2,1,1] \geq 2[2,2,0]$ which follows from the following majorizations:

$$
\begin{gathered}
{[4,0,0]+[2,1,1] \geq 2[3,1,0]} \\
2[3,1,0] \geq 2[2,2,0]
\end{gathered}
$$

(16) is equivalent to $[4,2,0]+[3,3,0]+[2,2,2] \geq[4,1,1]+2[3,2,1]$ which follows from the following majorizations:

$$
\begin{gathered}
{[3,3,0]+[2,2,2] \geq 2[3,2,1]} \\
{[4,2,0] \geq[4,1,1]}
\end{gathered}
$$

(17) is equivalent to $[3,0,0]+8[2,1,0] \geq 9[1,1,1]$ which follows from the following majorizations:

$$
\begin{aligned}
8[2,1,0] & \geq 8[1,1,1] \\
{[3,0,0] } & \geq[1,1,1]
\end{aligned}
$$

(18) is equivalent to $9[4,2,0]+[4,1,1]+9[3,3,0] \geq 10[3,2,1]+9[2,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
9[4,2,0] & \geq 9[3,2,1] \\
{[4,1,1] } & \geq[3,2,1] \\
9[3,3,0] & \geq 9[2,2,2] .
\end{aligned}
$$

(19) is equivalent to $[4,0,0]+[2,1,1] \geq 2[2,2,0]$ which follows from the following majorizations:

$$
\begin{gathered}
{[4,0,0]+[2,1,1] \geq 2[3,1,0]} \\
2[3,1,0] \geq 2[2,2,0]
\end{gathered}
$$

(20) is equivalent to $[4,2,0]+[3,3,0]+[2,2,2] \geq[4,1,1]+2[3,2,1]$ which follows from the following majorizations:

$$
\begin{gathered}
{[3,3,0]+[2,2,2] \geq 2[3,2,1]} \\
{[4,2,0] \geq[4,1,1]}
\end{gathered}
$$

(21) is equivalent to $[2,1,0] \geq[1,1,1]$ which follows from Muirhead's Theorem.
(22) is equivalent to $[4,0,0]+[2,1,1] \geq 2[2,2,0]$ which follows from the following majorizations:

$$
\begin{gathered}
{[4,0,0]+[2,1,1] \geq 2[3,1,0]} \\
2[3,1,0] \geq 2[2,2,0]
\end{gathered}
$$

(23) is equivalent to $5[6,2,0]+5[6,1,1]+20[5,3,0]+28[5,2,1]+15[4,4,0]+34[4,3,1] \geq 28[4,2,2]+79[3,3,2]$ which follows from the following majorizations:

$$
\begin{aligned}
5[6,2,0] & \geq 5[4,2,2] \\
5[6,1,1] & \geq 5[4,2,2] \\
18[5,3,0] & \geq 18[4,2,2] \\
2[5,3,0] & \geq 2[3,3,2] \\
28[5,2,1] & \geq 28[3,3,2] \\
15[4,4,0] & \geq 15[3,3,2] \\
34[4,3,1] & \geq 34[3,3,2] .
\end{aligned}
$$

(24) is equivalent to $[2,1,0] \geq[1,1,1]$ which follows from Muirhead's Theorem.
(25) could not be handled because of a bug in the implementation of Algorithm K.
(26) is equivalent to $[4,0,0]+12[3,1,0]+11[2,2,0] \geq 24[2,1,1]$ which follows from the following majorizations:

$$
\begin{aligned}
11[2,2,0] & \geq 11[2,1,1] \\
12[3,1,0] & \geq 12[2,1,1] \\
{[4,0,0] } & \geq[2,1,1]
\end{aligned}
$$

(27) is equivalent to $3[5,2,0]+[5,1,1]+9[4,3,0]+3[4,2,1] \geq[3,3,1]+15[3,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
{[5,2,0] } & \geq[3,3,1] \\
2[5,2,0] & \geq 2[3,2,2] \\
{[5,1,1] } & \geq[3,2,2] \\
9[4,3,0] & \geq 9[3,2,2] \\
3[4,2,1] & \geq 3[3,2,2] .
\end{aligned}
$$

(28) is equivalent to $[10,2,0]+[10,1,1]+10[9,3,0]+38[9,2,1]+41[8,4,0]+132[8,3,1]+99[8,2,2]+90[7,5,0]+$ $198[7,4,1]+296[7,3,2]+58[6,6,0]+182[6,5,1]+18[6,4,2] \geq 32[6,3,3]+117[5,5,2]+798[5,4,3]+217[4,4,4]$ which follows from the following majorizations:

$$
\begin{aligned}
{[10,2,0] } & \geq[6,3,3] \\
{[10,1,1] } & \geq[6,3,3] \\
10[9,3,0] & \geq 10[6,3,3] \\
20[9,2,1] & \geq 20[6,3,3] \\
18[9,2,1] & \geq 18[5,5,2] \\
41[8,4,0] & \geq 41[5,5,2] \\
58[8,3,1] & \geq 58[5,5,2] \\
74[8,3,1] & \geq 74[5,4,3] \\
99[8,2,2] & \geq 99[5,4,3] \\
90[7,5,0] & \geq 90[5,4,3] \\
198[7,4,1] & \geq 198[5,4,3] \\
296[7,3,2] & \geq 296[5,4,3] \\
41[6,6,0] & \geq 41[5,4,3] \\
17[6,6,0] & \geq 17[4,4,4] \\
182[6,5,1] & \geq 182[4,4,4] \\
18[6,4,2] & \geq 18[4,4,4] .
\end{aligned}
$$

(29) is equivalent to $[2,1,0] \geq[1,1,1]$ which follows from Muirhead's Theorem.
(30) is equivalent to $[4,1,0]+3[3,2,0] \geq[3,1,1]+3[2,2,1]$ which follows from the following majorizations:

$$
\begin{gathered}
{[4,1,0] \geq[3,1,1]} \\
3[3,2,0] \geq 3[2,2,1] .
\end{gathered}
$$

(31) is equivalent to $[4,0,0]+[2,1,1] \geq 2[2,2,0]$ which follows from the following majorizations:

$$
\begin{gathered}
{[4,0,0]+[2,1,1] \geq 2[3,1,0]} \\
2[3,1,0] \geq 2[2,2,0]
\end{gathered}
$$

(32) is equivalent to $[4,2,0]+[3,3,0]+[2,2,2] \geq[4,1,1]+2[3,2,1]$ which follows from the following majorizations:

$$
\begin{gathered}
{[3,3,0]+[2,2,2] \geq 2[3,2,1]} \\
{[4,2,0] \geq[4,1,1]}
\end{gathered}
$$

(33) is equivalent to $[4,1,0]+3[3,2,0] \geq[3,1,1]+3[2,2,1]$ which follows from the following majorizations:

$$
\begin{gathered}
{[4,1,0] \geq[3,1,1]} \\
3[3,2,0] \geq 3[2,2,1] .
\end{gathered}
$$

(34) is equivalent to $27[8,4,0]+108[8,3,1]+81[8,2,2]+108[7,5,0]+540[7,4,1]+1080[7,3,2]+81[6,6,0]+$ $1080[6,5,1]+2862[6,4,2]+1944[5,5,2] \geq 104[6,3,3]+5268[5,4,3]+2539[4,4,4]$ which follows from the following majorizations:

$$
\begin{aligned}
27[8,4,0] & \geq 27[6,3,3] \\
77[8,3,1] & \geq 77[6,3,3] \\
31[8,3,1] & \geq 31[5,4,3] \\
81[8,2,2] & \geq 81[5,4,3] \\
108[7,5,0] & \geq 108[5,4,3] \\
540[7,4,1] & \geq 540[5,4,3] \\
1080[7,3,2] & \geq 1080[5,4,3] \\
81[6,6,0] & \geq 81[5,4,3] \\
1080[6,5,1] & \geq 1080[5,4,3] \\
2267[6,4,2] & \geq 2267[5,4,3] \\
595[6,4,2] & \geq 595[4,4,4] \\
1944[5,5,2] & \geq 1944[4,4,4] .
\end{aligned}
$$

(35) is equivalent to $25[6,2,0]+[6,1,1]+100[5,3,0]+20[5,2,1]+75[4,4,0]+50[4,3,1] \geq 92[4,2,2]+179[3,3,2]$ which follows from the following majorizations:

$$
\begin{aligned}
25[6,2,0] & \geq 25[4,2,2] \\
{[6,1,1] } & \geq[4,2,2] \\
66[5,3,0] & \geq 66[4,2,2] \\
34[5,3,0] & \geq 34[3,3,2] \\
20[5,2,1] & \geq 20[3,3,2] \\
75[4,4,0] & \geq 75[3,3,2] \\
50[4,3,1] & \geq 50[3,3,2] .
\end{aligned}
$$

(36) is equivalent to $[3,0,0] \geq[2,1,0]$ which follows from Muirhead's Theorem.

Theorem T6.

$$
\begin{gather*}
2 \sum h_{a} \leq \sqrt{3} \sum a \tag{1}\\
3 \sum a b \geq \sum h_{a} h_{b} \tag{2}\\
\sum a^{3}>\frac{8}{7} \sum h_{a}^{3} \tag{3}\\
\sum \frac{a^{2}}{h_{b}^{2}+h_{c}^{2}} \geq 2 \tag{4}\\
\sum h_{a} \geq 9 r \tag{5}\\
\sum h_{a} \leq 3(R+r) \tag{6}\\
\sum h_{a} \leq 2 R+5 r \tag{7}\\
\frac{2 r(5 R-r)}{R} \leq \sum h_{a} \tag{8}\\
\sum h_{a} \leq \frac{2(R+r)^{2}}{R} \tag{9}\\
2 \sum h_{a} h_{b} \leq 6 K \sqrt{3} \tag{10}\\
6 K \sqrt{3} \leq 27 R r \tag{11}\\
\prod h_{a} \geq 27 r^{3} \tag{12}\\
\sum \frac{1}{h_{a}-2 r} \geq \frac{3}{r} \tag{13}\\
\sum \frac{h_{a}+r}{h_{a}-r} \geq 6 \tag{14}\\
\sum
\end{gather*}
$$

Computer Proof of Theorem T6.

(1) is equivalent to $3[6,2,0]+[6,1,1]+12[5,3,0]+8[5,2,1]+9[4,4,0]+10[4,3,1] \geq 12[4,2,2]+31[3,3,2]$ which follows from the following majorizations:

$$
\begin{aligned}
3[6,2,0] & \geq 3[4,2,2] \\
{[6,1,1] } & \geq[4,2,2] \\
8[5,3,0] & \geq 8[4,2,2] \\
4[5,3,0] & \geq 4[3,3,2] \\
8[5,2,1] & \geq 8[3,3,2] \\
9[4,4,0] & \geq 9[3,3,2] \\
10[4,3,1] & \geq 10[3,3,2] .
\end{aligned}
$$

(2) is equivalent to $6 \sum!x^{4} y+24 \sum!x^{3} y^{2}+32 \sum x^{3} y z+52 \sum x^{2} y^{2} z \geq 0$ which follows because a sum of positive terms is positive.
(3) is equivalent to

$$
\begin{aligned}
& 196[18,6,0]+1176[18,5,1]+2940[18,4,2]+1764[17,7,0] \\
+ & 12348[17,6,1]+37044[17,5,2]+24876[17,4,3]+7497[16,8,0] \\
+ & 59976[16,7,1]+209916[16,6,2]+272376[16,5,3]+102651[16,4,4] \\
+ & 20188[15,9,0]+181692[15,8,1]+726768[15,7,2] \\
+ & 1335344[15,6,3]+1265736[15,5,4]+38808[14,10,0] \\
+ & 389256[14,9,1]+1753416[14,8,2]+4036800[14,7,3] \\
+ & 4936224[14,6,4]+2271672[14,5,5]+56448[13,11,0] \\
+ & 629748[13,10,1]+3167556[13,9,2]+8582304[13,8,3] \\
+ & 12977280[13,7,4]+12716328[13,6,5]+31899[12,12,0] \\
+ & 795564[12,11,1]+4459392[12,10,2]+13760220[12,9,3] \\
+ & 24732570[12,8,4]+27555960[12,7,5]+12815024[12,6,6] \\
+ & 2494296[11,11,2]+17278752[11,10,3]+35818764[11,9,4] \\
+ & 46177704[11,8,5]+43019088[11,7,6]+20209620[10,10,4] \\
+ & 59783100[10,9,5]+59875008[10,8,6]+27070128[10,7,7] \\
+ & 33566236[9,9,6]+59149692[9,8,7]+9236871[8,8,8] \\
> & 88[18,3,3]
\end{aligned}
$$

which follows from the majorization:

$$
88[18,4,2] \geq 88[18,3,3]
$$

(4) is equivalent to $5[8,2,0]+20[7,3,0]+40[6,4,0]+28[6,3,1]+25[5,5,0]+78[5,4,1] \geq 3[8,1,1]+4[7,2,1]+$ $20[6,2,2]+64[5,3,2]+25[4,4,2]+80[4,3,3]$ which follows from the following majorizations:

$$
\begin{aligned}
3[8,2,0] & \geq 3[8,1,1] \\
2[8,2,0] & \geq 2[7,2,1] \\
2[7,3,0] & \geq 2[7,2,1] \\
18[7,3,0] & \geq 18[6,2,2] \\
2[6,4,0] & \geq 2[6,2,2] \\
38[6,4,0] & \geq 38[5,3,2] \\
26[6,3,1] & \geq 26[5,3,2] \\
2[6,3,1] & \geq 2[4,4,2] \\
23[5,5,0] & \geq 23[4,4,2] \\
2[5,5,0] & \geq 2[4,3,3] \\
78[5,4,1] & \geq 78[4,3,3] .
\end{aligned}
$$

(5) is equivalent to $2[6,0,0]+[4,1,1]+5[3,3,0]+[2,2,2] \geq 4[5,1,0]+3[4,2,0]+2[3,2,1]$ which Algorithm K could not prove automatically.
(6) is equivalent to $3[5,2,0]+9[4,3,0]+[3,3,1] \geq[5,1,1]+[4,2,1]+11[3,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
& {[5,2,0] \geq[5,1,1]} \\
& {[5,2,0] \geq[4,2,1]}
\end{aligned}
$$

$$
\begin{aligned}
{[5,2,0] } & \geq[3,2,2] \\
9[4,3,0] & \geq 9[3,2,2] \\
{[3,3,1] } & \geq[3,2,2]
\end{aligned}
$$

(7) is equivalent to $[5,2,0]+3[4,3,0]+[3,3,1] \geq[5,1,1]+[4,2,1]+3[3,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
{[5,2,0] } & \geq[5,1,1] \\
{[4,3,0] } & \geq[4,2,1] \\
2[4,3,0] & \geq 2[3,2,2] \\
{[3,3,1] } & \geq[3,2,2]
\end{aligned}
$$

(8) is equivalent to $[8,0,0]+2[6,1,1]+4[5,2,1]+6[4,4,0]+5[4,2,2] \geq 8[6,2,0]+8[4,3,1]+2[3,3,2]$ which Algorithm K could not prove automatically.
(9) is equivalent to $[4,2,0]+[3,3,0]+[2,2,2] \geq[4,1,1]+2[3,2,1]$ which follows from the following majorizations:

$$
\begin{gathered}
{[3,3,0]+[2,2,2] \geq 2[3,2,1]} \\
{[4,2,0] \geq[4,1,1]}
\end{gathered}
$$

(10) is equivalent to $27[4,2,0]+27[3,3,0] \geq 5[4,1,1]+30[3,2,1]+19[2,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
5[4,2,0] & \geq 5[4,1,1] \\
22[4,2,0] & \geq 22[3,2,1] \\
8[3,3,0] & \geq 8[3,2,1] \\
19[3,3,0] & \geq 19[2,2,2] .
\end{aligned}
$$

(11) is equivalent to $27[4,2,0]+27[3,3,0] \geq 5[4,1,1]+30[3,2,1]+19[2,2,2]$ which follows from the following majorizations:

$$
\begin{aligned}
5[4,2,0] & \geq 5[4,1,1] \\
22[4,2,0] & \geq 22[3,2,1] \\
8[3,3,0] & \geq 8[3,2,1] \\
19[3,3,0] & \geq 19[2,2,2] .
\end{aligned}
$$

(12) is equivalent to $32[6,0,0]+73[3,3,0]+6[3,2,1]+15[2,2,2] \geq 48[5,1,0]+39[4,2,0]+39[4,1,1]$ which Algorithm K could not prove automatically.
(13) is equivalent to $[2,1,0] \geq[1,1,1]$ which follows from Muirhead's theorem.
(14) is equivalent to $[3,0,0]+[2,1,0] \geq 2[1,1,1]$ which follows from the following majorizations:

$$
\begin{aligned}
& {[2,1,0] \geq[1,1,1]} \\
& {[3,0,0] \geq[1,1,1]}
\end{aligned}
$$

REFERENCE

[1] Stanley Rabinowitz, "On The Computer Solution of Symmetric Homogeneous Triangle Inequalities", from Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation (ISAAC '89), Association for Computing Machinery, Portland, OR: 1989, pp. 272-286.

