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Rarely in the mathematical literature does one find a divisibility result or a congruence
that includes both an exponential term and a polynomial term. For example, for all positive
integers n,

64 | (32n+3 + 40n − 27)

and
32n+5 + 160n2 ≡ 56n + 243 (mod 512)

which come from chapter 16 of Wolstenholme [2]. It is the purpose of this note to investigate
such congruences.

We start with a preliminary result.
Lemma. Let c, d, k, and m be integers with c > 0, gcd(c, m) = 1, and gcd(k, m) = 1. If
there exists a polynomial f(x) of degree d such that for all integers n ≥ 0,

k · cn ≡ f(n) (mod m),

then
m | (c − 1)d+1.

Proof. Suppose such a polynomial f(x) exists. Let ∆ denote the forward difference op-
erator. That is, for any function h(n),

∆h(n) = h(n + 1) − h(n).

Let ∆d represent a d-fold repetition of ∆. It is well known (Boole [1]) or easily shown by
induction that

∆kf(n) = k∆f(n),

∆dcn = cn−d(c − 1)d,

and
∆d+1f(n) = 0 if deg f = d.

Applying the difference operator d + 1 times in succession to the equation k · cn ≡ f(n)
(mod m) yields

k · cn−d−1(c − 1)d+1 ≡ 0 (mod m),

or m | k · cn−d−1(c − 1)d+1. But since gcd(m, c) = 1 and gcd(m, k) = 1, we must have
m | (c − 1)d+1 as required.
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Now we can state our result in more generality.
Theorem 1. Let a, b, c, d, k, and m be integers with a > 0, c > 0, gcd(c, m) = 1,
and gcd(k, m) = 1. If there exists a polynomial f(x) of degree d such that for all integers
n ≥ 0,

k · can+b ≡ f(n) (mod m),

then
m | (ca − 1)d+1.

Proof. Replace c by ca is our lemma, noting that if gcd(ca, m) = 1, then gcd(c, m) = 1.
Also, replace k by k·cb, noting that if gcd(k, m) = 1 and gcd(c, m) = 1, then gcd(k·cb, m) =
1. This gives us Theorem 1.

We can also prove the converse.
Theorem 2. Let a, b, c, d, k, and m be positive integers such that

m | (ca − 1)d+1.

Then there exists a polynomial f(x) of degree at most d such that for all integers n ≥ 0,

k · can+b ≡ f(n) (mod m).

In particular, one such polynomial is

f(x) =
d∑

j=0

(
x

j

)
kcb(ca − 1)j . (∗)

Proof. By the Binomial Theorem, we have

(y + 1)n =
n∑

j=0

(
n

j

)
yj .

Let y = ca − 1 and note that every term involving yj where j > d is divisible by yd+1 =
(ca − 1)d+1 and thus is also divisible by m by our hypothesis that m | (ca − 1)d+1. Thus,
these terms are congruent to 0 modulo m, and we are left with

(y + 1)n ≡
d∑

j=0

(
n

j

)
yj (mod m)

or

can ≡
d∑

j=0

(
n

j

)
(ca − 1)j (mod m).
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Multiplying both sides by k · cb shows that (*) is indeed the desired polynomial function
of degree at most d.

Note that the function f is not unique; there may be other polynomial functions of
degree d meeting the given conditions. Note also that if m | (ca − 1)d+1, then it is not
hard to show that c and m are relatively prime. Note also that the polynomial f that we
found has degree exactly d if gcd(k, m) = 1 and m does not divide (ca − 1)d.
Examples.

Now that we have our general results, we can crank out interesting examples. Here
are but just a few.

292n ≡ 140n + 1 (mod 700),
2002n ≡ 138n + 1 (mod 207),

11n ≡ 50n2 − 40n + 1 (mod 1000),

19n ≡ 18n2 + 1 (mod 72),

5n ≡ 96n3 − 24n2 − 68n + 1 (mod 256),

52n ≡ 162n5 + 540n4 + 846n3 + 288n2 − 354n + 1 (mod 1458).
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