Mixed Exponential and Polynomial Congruences

Stanley Rabinowitz
12 Vine Brook Road
Westford, MA 01886 USA
stan@MathProPress.com

Rarely in the mathematical literature does one find a divisibility result or a congruence that includes both an exponential term and a polynomial term. For example, for all positive integers n,

$$
64 \mid\left(3^{2 n+3}+40 n-27\right)
$$

and

$$
3^{2 n+5}+160 n^{2} \equiv 56 n+243 \quad(\bmod 512)
$$

which come from chapter 16 of Wolstenholme [2]. It is the purpose of this note to investigate such congruences.

We start with a preliminary result.
Lemma. Let c, d, k, and m be integers with $c>0, \operatorname{gcd}(c, m)=1$, and $\operatorname{gcd}(k, m)=1$. If there exists a polynomial $f(x)$ of degree d such that for all integers $n \geq 0$,

$$
k \cdot c^{n} \equiv f(n) \quad(\bmod m)
$$

then

$$
m \mid(c-1)^{d+1}
$$

Proof. Suppose such a polynomial $f(x)$ exists. Let Δ denote the forward difference operator. That is, for any function $h(n)$,

$$
\Delta h(n)=h(n+1)-h(n) .
$$

Let Δ^{d} represent a d-fold repetition of Δ. It is well known (Boole [1]) or easily shown by induction that

$$
\begin{gathered}
\Delta k f(n)=k \Delta f(n) \\
\Delta^{d} c^{n}=c^{n-d}(c-1)^{d}
\end{gathered}
$$

and

$$
\Delta^{d+1} f(n)=0 \quad \text { if } \operatorname{deg} f=d
$$

Applying the difference operator $d+1$ times in succession to the equation $k \cdot c^{n} \equiv f(n)$ $(\bmod m)$ yields

$$
k \cdot c^{n-d-1}(c-1)^{d+1} \equiv 0 \quad(\bmod m)
$$

or $m \mid k \cdot c^{n-d-1}(c-1)^{d+1}$. But since $\operatorname{gcd}(m, c)=1$ and $\operatorname{gcd}(m, k)=1$, we must have $m \mid(c-1)^{d+1}$ as required.

Now we can state our result in more generality.
Theorem 1. Let a, b, c, d, k, and m be integers with $a>0, c>0, \operatorname{gcd}(c, m)=1$, and $\operatorname{gcd}(k, m)=1$. If there exists a polynomial $f(x)$ of degree d such that for all integers $n \geq 0$,

$$
k \cdot c^{a n+b} \equiv f(n) \quad(\bmod m)
$$

then

$$
m \mid\left(c^{a}-1\right)^{d+1}
$$

Proof. Replace c by c^{a} is our lemma, noting that if $\operatorname{gcd}\left(c^{a}, m\right)=1$, then $\operatorname{gcd}(c, m)=1$. Also, replace k by $k \cdot c^{b}$, noting that if $\operatorname{gcd}(k, m)=1$ and $\operatorname{gcd}(c, m)=1$, then $\operatorname{gcd}\left(k \cdot c^{b}, m\right)=$ 1. This gives us Theorem 1.

We can also prove the converse.
Theorem 2. Let a, b, c, d, k, and m be positive integers such that

$$
m \mid\left(c^{a}-1\right)^{d+1}
$$

Then there exists a polynomial $f(x)$ of degree at most d such that for all integers $n \geq 0$,

$$
k \cdot c^{a n+b} \equiv f(n) \quad(\bmod m)
$$

In particular, one such polynomial is

$$
\begin{equation*}
f(x)=\sum_{j=0}^{d}\binom{x}{j} k c^{b}\left(c^{a}-1\right)^{j} \tag{*}
\end{equation*}
$$

Proof. By the Binomial Theorem, we have

$$
(y+1)^{n}=\sum_{j=0}^{n}\binom{n}{j} y^{j}
$$

Let $y=c^{a}-1$ and note that every term involving y^{j} where $j>d$ is divisible by $y^{d+1}=$ $\left(c^{a}-1\right)^{d+1}$ and thus is also divisible by m by our hypothesis that $m \mid\left(c^{a}-1\right)^{d+1}$. Thus, these terms are congruent to 0 modulo m, and we are left with

$$
(y+1)^{n} \equiv \sum_{j=0}^{d}\binom{n}{j} y^{j} \quad(\bmod m)
$$

or

$$
c^{a n} \equiv \sum_{j=0}^{d}\binom{n}{j}\left(c^{a}-1\right)^{j} \quad(\bmod m) .
$$

Multiplying both sides by $k \cdot c^{b}$ shows that $\left({ }^{*}\right)$ is indeed the desired polynomial function of degree at most d.

Note that the function f is not unique; there may be other polynomial functions of degree d meeting the given conditions. Note also that if $m \mid\left(c^{a}-1\right)^{d+1}$, then it is not hard to show that c and m are relatively prime. Note also that the polynomial f that we found has degree exactly d if $\operatorname{gcd}(k, m)=1$ and m does not divide $\left(c^{a}-1\right)^{d}$.

Examples.

Now that we have our general results, we can crank out interesting examples. Here are but just a few.

$$
\begin{aligned}
29^{2 n} & \equiv 140 n+1 \quad(\bmod 700), \\
2002^{n} & \equiv 138 n+1 \quad(\bmod 207), \\
11^{n} & \equiv 50 n^{2}-40 n+1 \quad(\bmod 1000), \\
19^{n} & \equiv 18 n^{2}+1 \quad(\bmod 72), \\
5^{n} & \equiv 96 n^{3}-24 n^{2}-68 n+1 \quad(\bmod 256), \\
5^{2 n} & \equiv 162 n^{5}+540 n^{4}+846 n^{3}+288 n^{2}-354 n+1 \quad(\bmod 1458) .
\end{aligned}
$$

REFERENCES

[1] George Boole, A Treatise on the Calculus of Finite Differences. MacMillan and Co. London: 1872.
[2] Joseph Wolstenholme, Mathematical Problems on the first and second divisions of the schedule of subjects for the Cambridge Mathematical Tripos Examinations, 2nd edition. MacMillan and Co. London: 1878.

