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On the Number of Lattice Points Inside a Convex Lattice n-gon

Stanley Rabinowitz
Westford, MA 01886

A lattice point in the plane is a point with integer coordinates. A lattice polygon is a
polygon whose vertices are all lattice points.

In this paper, we will investigate inequalities between the number of vertices, v, of a
convex lattice polygon and the number, g, of lattice points in the interior of the polygon
(“the interior lattice points”). If G denotes the number of lattice points inside or on the
polygon, we will also discuss the relationship between v and G. If K is a set of points in
the plane, then G(K) denotes the number of lattice points int he set K.

A polygon with n vertices will be referred to as an n-gon.
In 1980, Arkinstall proved the Lattice Pentagon Theorem, which states that any

convex lattice pentagon must contain an interior lattice point. We will investigate further
similar relationships between v and g for lattice polygons.

To understand when two lattice polygons are “equivalent”, we must first review some
definitions concerning standard transformations of the plane. An affine transformation is a
linear transformation followed by a translation. A unimodular transformation is one that
preserves area. To be unimodular, the matrix corresponding to a linear transformation
must have determinant ±1. If furthermore, the entries of the matrix are integers, then
the transformation is known as an integral unimodular affine transformation. If f is an
integral unimodular affine transformation, then f has the property that for any convex
set, K, G(f(K)) = G(K) (i.e. f preserves the number of lattice points in sets). An
integral unimodular affine transformation (also known as an equiaffinity) in the plane can
be expressed by the 3 × 3 matrix in the equation




a b e
c d f
0 0 1







x
y
1


 =




x′

y′

1




where a, b, c, d, e, and f are integers and |ad−bc| = 1. This includes an integral translation
by the vector (e, f).

Two lattice polygons are said to be lattice equivalent if one can be transformed into
the other via an integral unimodular affine transformation.

1. Known results

Arkinstall [1] was the first to note that certain types of lattice polygons must neces-
sarily have lattice points in their interior. For example, a convex lattice trapezium must
contain an interior lattice point. (Recall that a trapezium is a quadrilateral with no two
sides parallel.) We state below some of theorems that he proved which we will need to use
later in this paper.
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The Lattice Trapezium Theorem (Arkinstall). A convex lattice trapezium must
contain an interior lattice point.

The Lattice Pentagon Theorem (Arkinstall). A convex lattice pentagon must con-
tain an interior lattice point.

This theorem will be used heavily in the remainder of this paper, so for completeness,
we will reproduce Arkinstall’s proof.

Figure 1-1

Proof. Let ABCDE be a convex lattice pentagon. Since the sum of the interior angles
of a pentagon is 3π, the sum of the 5 pairs of adjacent interior angles is 6π. Hence some
pair of adjacent angles must sum to more than π. We may thus assume without loss of
generality that � A + � B > π (see figure 1-1). We may also assume that point C is not
further from line AB than point E. Constructing parallelogram ABCX, we see that rays
AX and CX lie inside angles A and C respectively. Thus point X lies inside the pentagon.
But if three vertices of a parallelogram are lattice points, the fourth vertex must also be a
lattice point.

The Central Hexagon Theorem (Arkinstall). Let K be a convex lattice hexagon
with precisely one interior lattice point. Then K is lattice equivalent to the centrally
symmetric hexagon with vertices at (1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), and (0,−1).

We will also occasional need to use the following result by Scott [5]. This result
established a relationship between the number of lattice points on the boundary of a
convex lattice polygon and the number of lattice points in its interior.

Theorem (Scott’s Bound for b). If a convex lattice polygon has g interior lattice points
(g > 0) and b lattice points on its boundary, then b ≤ 2g + 7. If v > 3, then b ≤ 2g + 6.

In 1989, Rabinowitz [4] catalogued all convex lattice polygons with at most one in-
terior lattice point. The following two theorems (Census-0 and Census-1) summarize his
results. They characterize those convex lattice polygons containing no lattice points and
those containing precisely one interior lattice point, respectively.
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Theorem (Census-0). If K is a convex lattice polygon with no interior lattice points,
then K is lattice equivalent to one of the following polygons:

1. the triangle whose vertices are (0, 0), (2, 0), and (0, 2)
2. the triangle whose vertices are (0, 0), (p, 0), and (0, 1)
3. the trapezoid whose vertices are (0, 0), (p, 0), (0, 1), and (q, 1)

where p and q are any positive integers.

Theorem (Census-1). If K is a convex lattice polygon with exactly one interior lattice
point, then K is lattice equivalent to precisely one of the following 15 polygons:
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Figure 1-2
All convex lattice polygons with g=1

The dots represent lattice points and the circles represent the vertices of the polygon.
The plus signs denote the interior lattice point.

2. Inequalities with v fixed

If we fix v, then g can get arbitrarily large. For given any polygon, K, with v vertices,
we can expand it by any amount (by applying the transformation that maps (x, y) into
(nx, ny) for some positive integer n). The resulting polygon has the same number of
vertices, but g can get arbitrarily large. In other words, for a fixed v,

sup{g(K)|v(K) = v} = ∞.

A more interesting problem is to find the minimum value that g can have when we fix
v.
Notation. If K is a convex lattice polygon, then g(K) denotes the number of lattice
points in the interior of K, b(K) denotes the number of lattice points on the boundary of
K, and G(K) = b(K) + g(K) denotes the number of lattice points inside or on K. Also,
v(K) represents the number of vertices of K. If K is implicit, these quantities may simply
be referred to as g, b, G, and v, respectively.

The next two propositions follow immediately from Census-0.
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Proposition 2.1. A lattice triangle need not have any interior lattice points. We have
v = 3 and g = 0 when and only when K is lattice equivalent to either

1. the triangle whose vertices are (0, 0), (2, 0), and (0, 2) or

2. the triangle whose vertices are (0, 0), (p, 0), and (0, 1)

for some positive integer p.

Proposition 2.2. If v = 4 then g ≥ 0. Equality occurs when and only when K is lattice
equivalent to the trapezoid whose vertices are (0, 0), (p, 0), (0, 1), and (q, 1) for some
positive integers p and q.

The situation for pentagons is determined by the Lattice Pentagon Theorem, ensuring
that there is at least one interior lattice point. The equality case (v = 5 and g = 1) is
determined by Census-1. This gives us the following proposition.

Proposition 2.3. If v = 5 then g ≥ 1. Equality holds when and only when K is lattice
equivalent to one of the following three pentagons:

. o . . o . o o .
o . o o . o . . o
o . o o o . o . o

Figure 2-1
Only convex lattice polygons with v=5

and smallest g

Definition. A lattice polygon is lean if all its boundary lattice points are vertices.

In other words, a lattice polygon, K, is lean if b(K) = v(K).

Coleman’s Lemma ([2]). Let ABCDE be a convex lattice pentagon. If �ACE has
no interior lattice points, then AC or CE must contain an interior lattice point. If,
furthermore, AE has at least one interior lattice point, then both AC and EC contain an
interior lattice point.

We will give a more combinatorial proof than Coleman’s original proof in [2].

Proof. In pentagon ABCDE, assume that �ACE contains no interior lattice points. Let
X be the lattice point inside �ABC that is closest to AC. If there is no such lattice point,
take X be B. Similarly, let Y be the lattice point inside �CDE that is closest to CE. If
there is no such lattice point, take Y to be D. (See figure 2-2a.)
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Figure 2-2a and 2-2b

Pentagon AXCY E contains an interior lattice point by the Lattice Pentagon Theo-
rem. This lattice point cannot be inside triangle AXC by hypothesis. It cannot be inside
triangle ABC for then it would be closer to AC than X is, contradicting the manner in
which point X was chosen. Similarly, it cannot be inside triangle CY E. Therefore, it must
lie on either AC or CE.

Now suppose that, in addition, edge AE contains a lattice point, P . We have already
seen that either AC or CE contains a lattice point. Without loss of generality, assume that
lattice point X lies on AC (figure 2-2b). Again, let Y be the lattice point inside �CDE
that is closest to CE. If there is no such lattice point, let Y be D. Then CXPEY is a
convex lattice pentagon, so by the Lattice Pentagon Theorem, it must contain an interior
lattice point. This lattice point cannot occur in �CY E or it would be closer to CE than
Y and it cannot lie inside �ACE by hypothesis. Hence it must lie on CE. Thus both AC
and CE contain lattice points.

The Fat Pentagon Theorem. Let K be a convex lattice pentagon and suppose one
edge of K contains two interior lattice points. Then K contains at least two interior
lattice points.

Proof. From Census-1, we see that if K had only one interior lattice point, no edge of K
would contain two interior lattice points.

The following proposition follows from the Central Hexagon Theorem.

Proposition 2.4. If v = 6 then g ≥ 1. Equality occurs when and only when K is lattice
equivalent to the centrally symmetric hexagon shown in figure 2-3.

. o o
o . o
o o .

Figure 2-3
Unique convex lattice polygon with v=6

and smallest g
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The Fat Hexagon Theorem. A non-lean convex lattice hexagon contains at least two
interior lattice points.

Proof. If the hexagon had exactly one interior lattice point, then it would have to be lean
by the Central Hexagon Theorem.

Arkinstall [1] showed that v = 7 implies g ≥ 2. We will give a slightly simpler proof
and then show that v = 7 implies g ≥ 4.

Lemma 2.5. If v = 7 then g ≥ 2.

Figure 2-4

Proof. Let ABCDEFG be a convex lattice heptagon. Then ABCDE is a convex lattice
pentagon so must contain an interior lattice point, X, by the Lattice Pentagon Theorem
(see figure 2-4). Then AXEFG is another convex lattice pentagon, so it must contain an
interior lattice point, Y .

Proposition 2.6. If v ≥ 7, then the interior lattice points of K can not colline.

Proof. Suppose v ≥ 7 and that all the lattice points interior to K lie on a line L. Since
v ≥ 7 implies g ≥ 4, there are at least two lattice points, say P and Q, on line L inside
K. Line L can meet K at at most 2 points, so there are at least 5 vertices of K that do
not lie on L. Line L divides the plane into two regions, and we have 5 points, so at least
3 of these vertices, say A, B, and C, lie in one of the regions. Then ABCPQ would be
a convex lattice pentagon and thus we would have an interior lattice point by the Lattice
Pentagon Theorem. The existence of this point contradicts the fact that all the lattice
points interior to K lie on L.

Lemma 2.7. Let K be a convex lattice polygon. If v = 7 and g ≤ 3 then the line joining
any two interior lattice points must pass through two vertices of K.

Proof. Let X and Y be any two interior lattice points. The line XY divides the heptagon
into two pieces. If one of these pieces contains exactly 1 or 2 vertices (not on XY ) and
XY does not pass through 2 vertices, this would be a contradiction, for in the other
piece, we would be able to create a heptagon (XY CDEFG in figure 2-5a), thereby finding
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another 2 interior lattice points by lemma 2.5 or we would be able to find a non-lean
hexagon (XCDEFG in figure 2-5b) also implying 2 more interior lattice points by the Fat
Hexagon Theorem.

Figure 2-5a and 2-5b

If one of these pieces contains exactly three vertices (not on XY ) and XY doesn’t pass
through two vertices, this would also be a contradiction, for we would find two pentagons
present, one in each piece (XABCY and Y DEFX in figure 2-6), thereby finding another
two interior lattice points by the Lattice Pentagon Theorem.

Figure 2-6

This covers all cases.

Proposition 2.8. If v = 7 then g ≥ 4. Equality can hold as can be seen by the heptagons
in figure 2-7 in which v = 7 and g = 4.
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Figure 2-7
Some convex lattice polygons with v=7

and smallest g

Proof. Let ABCDEFG be a convex lattice heptagon. There must be two interior lattice
points, X and Y , by lemma 2.5. Then, by lemma 2.7, line XY passes through two vertices,
say P and Q. Of the other 5 vertices of the heptagon, at least 3 of them must fall on one
side of PQ. Call these A, B and C, in order, with A nearest to P .

Figure 2-8

Pentagon XY CBA must contain a lattice point. Call it Z. Suppose g = 3. Then by
lemma 2.7, XZ must pass through B or C. If it passes through C we would get pentagon
GABCX yielding another interior lattice point, a contradiction (see figure 2-8). Thus XZ
must pass through B. In the same manner, we find that Y Z must also pass through B.
This is a contradiction because line BZ cannot pass through both X and Y . Thus, the
assumption that g = 3 is false and we must have g ≥ 4.

There are many figures for which equality holds, so we will not bother to list them all
here. A few examples are shown above in figure 2-7.

The Central Octagon Theorem. If K is a convex lattice polygon with v = 8 and g = 4,
then K is lattice equivalent to the centrally symmetric octagon shown in figure 2-9.

. o o .
o . . o
o . . o
. o o .

Figure 2-9
Unique convex lattice polygon with v=8

and smallest g
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Proof. Let the octagon be ABCDEFGH. Quadrilateral ABCD can’t contain an interior
lattice point, P , for then APDEFGH would be a 7-gon and we would thus have an
additional 4 lattice points interior to K (by Proposition 2.8). Therefore AD ‖ BC by the
Lattice Trapezium Theorem and Census-0. Similarly, HC ‖ AB.

Let diagonals AD and CH meet at point P . We have just shown that ABCP is a
parallelogram. Since points A, B, and C are lattice points, it follows that P must be a
lattice point.

In a similar manner, we find the other three interior lattice points, Q, R, and S and see
that the four interior lattice points form a parallelogram. A suitable integral unimodular
affine transformation transforms this parallelogram into a square. This transformation also
forces each vertex of the octagon to be in fixed positions on the extensions of the sides of
the square; so we see that the resulting octagon is lattice equivalent to the one shown.

Corollary 2.9. If v = 8 then g ≥ 4. Equality occurs when and only when K is lattice
equivalent to the centrally symmetric octagon shown in figure 2-9.

Proof. If v = 8, then remove one vertex to get a convex lattice polygon with v = 7
which implies there are at least 4 interior lattice points (by Proposition 2.8). The equality
condition follows from the Central Octagon Theorem.

The Quadrangular Segment Theorem. Let A, B, C, and D be four consecutive
vertices of a convex lattice polygon, K, with v > 4. Then either quadrilateral ABCD
contains an interior lattice point, or chord AD contains an interior lattice point.

Proof. (following [2]) Let E be the vertex of K adjacent to D and on the other side from
C. Since ABCDE is a convex lattice pentagon, by Coleman’s Lemma, there is either a
lattice point inside �ACD, or there is a lattice point on AC or on AD.

Theorem 2.10. Let PA, PB, PC be three distinct diagonals of a convex lattice polygon.
Then quadrilateral PABC contains an interior lattice point.

Proof. (following [2]) Let X be a vertex of K on the side of PA that does not contain B.
Let Y be a vertex of K on the side of PC that does not contain B. (See figure 2-10.)

Figure 2-10
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Suppose that quadrilateral PABC did not contain an interior lattice point. Applying
Colemen’s Lemma to pentagon PABCY , we find that diagonal PC must contain an in-
terior lattice point, say Z. Applying Coleman’s Lemma to pentagon PXABC, since PC
contains an interior lattice point, we must either have a lattice point inside �PAC or a
lattice point in the interior of segment AC. In either case, we reach a contradiction, having
found a lattice point inside quadrilateral PABC.

Proposition 2.11. If wx is the horizontal width of a lean convex lattice polygon, K, then
v(K) ≤ 2(wx + 1).

Recall that the horizontal width of a convex figure is the distance between its two
vertical support lines.

Proof. The two vertical support lines must both be of the form x = k where k is an
integer. There are wx + 1 vertical lattice lines between and including these two support
lines. Each such line intersects K in at most two points, and every vertex of K must lie
on at least one of these lines. Hence v(K) ≤ 2(wx) + 1.

The same result holds true for the vertical width (the distance between the two hori-
zontal support lines). That is, if wy is the vertical width of a lean convex lattice polygon,
K, then v(K) ≤ 2(wy + 1).

3. The Interior Hull

Definition. Let K be a convex body in the plane. Then H(K) is the boundary of the
convex hull of the lattice points interior to K. H(K) is called the interior hull of K.

This will frequently be denoted by just H, if K is fixed.
Loosely speaking, H is the largest convex lattice polygon contained within K. Note,

however, that H might degenerate into a line segment, a point, or the null set.

In this section, we will investigate the relationship between a convex lattice polygon,
K, and its interior hull. In particular, we will show that the number of vertices of the
interior hull must be at least half the number of vertices of K (if v(K) is large enough).
Also, we will show that the number of lattice points on the boundary of the interior hull
must be at least 2/3 the number of vertices of K (if v(K) is large enough).

Definition. Let K be a convex polygon with edge AB. Then h(AB) denotes the open
halfplane bounded by AB that is exterior to K.

Proposition 3.1 (The 3-vertex Restriction). Let K be a convex lattice polygon and
let H be the interior hull of K. Let AB be an edge of H. Then h(AB) contains at most
two vertices of K.
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Figure 3-1

Proof. Suppose this open halfplane contains 3 vertices of K, say X, Y , and Z (see figure
3-1). Consider the five points: A, B, X, Y , and Z. The point X can not be in the convex
hull of the other four points because then X would be an interior point of K and not a
vertex of K. A similar argument holds for Y and Z. Thus ABXY Z is a convex lattice
pentagon with no interior lattice points contradicting the Lattice Pentagon Theorem.

Theorem (The Interior Hull Vertex Inequality). Let K be a convex lattice polygon
and let H = H(K). If v(K) ≥ 7, then v(K) ≤ 2v(H).

Proof. Since v ≥ 7, the interior lattice points of K do not colline. Thus, the interior hull
forms a polygon. The number of edges of this polygon is at most v(H). By the lemma, for
each edge AB of this polygon, h(AB) contains at most two vertices of K. These halfplanes
cover all of the vertices of K. Thus the total number of vertices of K is at most 2v(H).
Hence v(K) ≤ 2v(H).

Corollary 3.2. Let K be a convex lattice polygon with interior hull H. If v(K) ≥ 7, then
v(H) ≥ � 1

2v(K)�.

Corollary 3.3. Let K be a convex lattice polygon with v ≥ 9. Then the interior lattice
points of K do not lie on two parallel lines.

Proof. If the interior lattice points fell on two parallel lines, then the boundary of the
interior hull would have at most 4 vertices. Thus v(H) ≤ 4 which contradicts the fact that
(by the Interior Hull Vertex Inequality) v(H) ≥ v(K)/2 ≥ 9/2 > 4.

It is not known if the coefficient “2” in the Interior Hull Vertex Inequality is best
possible for large v.

As for inequalities in the reverse direction, it might be thought that the interior hull
could not have more vertices than the original polygon. However, this conjecture is false
as can be seen by the following figure in which v(H) > 2v(K). The plus signs represent
the vertices of H.
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Figure 3-2
Convex lattice polygon with v(H)>2v(K)

Theorem (The Interior Hull Boundary Inequality). Let K be a convex lattice
polygon and let H = H(K). If v(K) ≥ 9, then 2v(K) ≤ 3b(H).

Proof. By the Interior Hull Vertex Inequality, we see that v(K) ≥ 9 implies v(H) ≥ 5.
By the Lattice Pentagon Theorem, we have g(H) ≥ 1. Thus, there is a lattice point, P , in
the interior of H.

If we draw rays from P to each of the lattice points on the boundary of H, there will
be no lattice points between any two adjacent rays. Also, the angle between two adjacent
rays will always be smaller than π. We have thus divided H into at most b(H) wedges.

Figure 3-3

For purposes of this proof, define an element of K to be either a vertex of K or
an (open) edge of K. Consider any wedge, with rays PX and PY where X and Y are
successive lattice points along the boundary of H. The wedge consists of the two bounding
rays and the space between them.

Claim. No wedge intercepts 5 or more elements of K.
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The elements of K alternate: vertex, edge, vertex, . . ..
A wedge cannot intercept the elements: (vertex, edge, vertex, edge, vertex) since that

would contradict the 3-vertex Restriction (figure 3-4a).
A wedge cannot intercept the elements: (edge, vertex, edge, vertex, edge) for then

there would be two vertices of K, A and B strictly inside the wedge (figure 3-4b). Let
Q be the lattice point in the interior of H that is strictly inside the wedge and is closest
to segment XY . If there are no such points, set Q to be P . Then ABXQY is a convex
lattice pentagon implying that the wedge contained another interior lattice point. This is
a contradiction.

Figure 3-4a and 3-4b

Thus each wedge intercepts at most 4 elements of K. Since each ray intercepts exactly
one element, these elements will be counted twice if we add up all the elements intercepted
by the wedges. There are exactly b(H) such elements. Thus the total number of elements
in all can’t be more than 4b(H) minus b(H). But, the total number of elements is just
2v(K), so 2v(K) ≤ 4b(H) − b(H) or 3b(H) ≥ 2v(K).

Corollary. Let K be a convex lattice polygon with interior hull H. If v(K) ≥ 9 then
b(H) ≥ � 2

3v(K)�.

Proposition 3.4 (The Outer Parallel Condition). Let K be a convex lattice polygon
with interior hull H. Let XY be an edge of H. If h(XY ) contains two vertices of K, say
A and B, then AB ‖ XY .

Proof. First note that by the 3-vertex Restriction (Proposition 3.1), h(XY ) contains at
most 2 vertices of K. Since ABXY is a quadrilateral containing no interior lattice points,
it must be a trapezoid by the Lattice Trapezium Theorem. If AB is not parallel to XY ,



14

then we would have AY ‖ BX. But then, from Census-0, we would find that there would
be a lattice point on either AY or BX, a contradiction. Thus AB ‖ XY .

Note that in fact, AB is the parallel lattice line closest to XY . (A lattice line is a line
through two lattice points.) This gives us an aid in locating the vertices of K if we are
given H. For each edge of H, we draw the parallel lattice line outside H that is closest to
that edge. The vertices of K must then lie on these “outer parallel” lines. Each of these
lines will contain 0, 1, or 2 vertices of K.

4. Properties of g(v)

Notation. Let g(v) = min{g(K)|v(K) = v} where the minimum is taken over all convex
lattice polygons, K.

We have already shown that g(3) = 0, g(4) = 0, g(5) = 1, g(6) = 1, g(7) = 4, and
g(8) = 4. We wish now to study the properties of g(v).

Note that there should be no confusion between this function, g(v) and the lattice
point counting function, g(K), since the domain of g(v) is the set of positive integers,
whereas the domain of g(K) is the set of convex lattice polygons in the plane.

The earliest bound on g(v) comes from Scott’s Bound for b: b ≤ 2g +6 (for g > 0 and
v > 3). Since v ≤ b, this gives us the inequality g ≥ (v − 6)/2, so we have

g(v) ≥
⌈v

2

⌉
− 3.

This bound is very crude. In this section of this paper, we will find better bounds for g(v).

Proposition 4.1. The function g(v) is monotone.

Proof. Let K be any convex v-gon. Remove one vertex from K to get a convex (v−1)-gon
called K∗. Polygon K∗ has at least g(v − 1) interior lattice points. Since each K has at
least g(v − 1) interior lattice points, so must the the minimum over all K have at least
g(v − 1) interior lattice points. Thus g(v) ≥ g(v − 1).

Lemma 4.2. If v ≥ 5, then g(v + 2) ≥ g(v) + 1.

Figure 4-1
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Proof. Let A1A2A3A4A5 . . . Av+2 be a convex (v+2)-gon with v ≥ 5. Polygon A1A2A3A4A5

is a convex lattice pentagon, so it must contain a lattice point, P , in its interior (see fig-
ure 4-1). Polygon A1PA5A6 . . . Av+2 is a convex lattice v-gon, so it must contain g(v)
additional lattice points. Thus K contains at least g(v) + 1 interior lattice points.

Proposition 4.3. If v ≥ 5, then g(v + 2) ≥ g(v) + 2.

Proof. Let K be a convex (v +2)-gon and let H be the interior hull of K. By proposition
2.8, K contains at least 4 interior lattice points. Let P and Q be two lattice points on the
boundary of H.

Line PQ divides K into 2 parts. Let h(PQ) be the open halfplane bounded by PQ
that contains no points of H. Let h∗(PQ) be the other open halfplane bounded by PQ.

Halfplane h(PQ) must contain fewer than 3 vertices of K by the 3-vertex Restriction.
Line PQ can contain at most 2 vertices of K and h(PQ) can contain at most 2 vertices of
K, so h∗(PQ) contains at least v − 2 vertices of K (figure 4-2).

Figure 4-2

These plus P and Q yield a convex v-gon which must have at least g(v) interior lattice
points by definition. Thus K contains at least g(v) + 2 interior lattice points.

Corollary 4.4. If v = 9 then g ≥ 6.

This follows immediately from the fact that g(7) = 4.

Proposition 4.5. If n ≥ 4 then g(2n − 1) ≥ 2n − 4 and g(2n) ≥ 2n − 4.

This follows by induction on n and the fact that g(7) = g(8) = 4.

Corollary 4.6. If v ≥ 7, then g(v) ≥ 2� v−3
2 	.

This improves the inequality g(v) ≥ � v−2
2 	 (for v ≥ 7) found by Coleman [2].

Corollary 4.7. If v ≥ 7, then g(v) ≥ v − 4.

This improves the inequality g(v) ≥ v − 5 (for v ≥ 7) found by Coleman [2]. In
Coleman’s paper, Coleman also made a conjecture that is related to the present topic. It
is a generalization of Scott’s Bound for b.
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Coleman’s Conjecture. If a convex lattice polygon has v vertices, g interior lattice
points (g > 0), and b boundary lattice points, then b ≤ 2g + 10 − v.

The conjecture is known to be true for v = 3 and v = 4 by Scott’s Bound for b.
Rabinowitz ([3], theorem 5.1.4) has shown it to be true for v = 5. The conjecture is still
unproven for arbitrary v.

In Corollary 4.7, we have shown (for sufficiently large v) that g(v) is at least v (minus
a constant). We will now show (for sufficiently large v) that g(v) is at least 3

2v (minus a
constant). First we start with a lemma.

Lemma 4.8. Let K be a convex lattice polygon with v vertices and g interior lattice
points. Let H be the interior hull of K. If g(K) = g(v − 2) + 2, then H is lean.

Proof. If H were not lean, then there would be some support line of H, L, containing
3 or more lattice points on the boundary of H, say P , Q, and R. L divides K into two
pieces. Let K1 be the piece that does not contain any portion of H in its interior and let
K2 be the other piece. Then K1 must have fewer than 3 vertices (not counting any on L)
by the 3-vertex Restriction.

Thus K2 must contain at least v − 2 vertices (including any that might be endpoints
of L). But any (v − 2)-gon must contain at least g(v − 2) interior lattice points. Those,
plus the 3 on L show that K contains at least 3 + g(v − 2) lattice points, a contradiction.
Thus H is lean.

In general, it is not true that an edge of H must pass through any vertices of K; for
example, see figure 4-3. However, we shall show that if g is small enough, this condition
must obtain.

. . o . o . .

. . + . + . .
o + . . . + o
. . . . . . .
o + . . . + o
. . + . + . .
. . o . o . .

Figure 4-3
Convex lattice polygon with no edge of H

passing through a vertex of K

Proposition 4.9. Let K be a convex v-gon with at most g(v) + 1 interior lattice points.
Then each edge of H(K) passes through some vertex of K.

Proof. Let XY be an edge of H. Then h(XY ) contains at most 2 vertices of K. Let
h∗(XY ) denote the vertices of K not in h(XY ). If XY passes through no vertices of K,
then h∗(XY ) contains at least v − 2 vertices of K. These plus X and Y form a convex
v-gon. It has at least g(v) interior lattice points. Thus K has g(v) + 2 interior lattice
points, a contradiction.
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Theorem 4.10. If v ≥ 2n + 1 then g ≥ 3n − 5.

Proof. We proceed by induction. The theorem has already been shown to be true if n = 2
or n = 3. (It is trivially true for n = 0 and n = 1.) So suppose it is true for all integers
smaller than n, we will now show it is true for n (n ≥ 4).

Let K be a convex lattice polygon with 2n + 1 sides with n > 1. By the induction
hypothesis, we know that g(2n − 1) ≥ 3(n − 1) − 5 = 3n − 8. Hence, by Proposition 4.3,
g(2n + 1) ≥ 3n − 6.

Let H be the interior hull of K. If G(H) = 3n − 5, then we are done, and since
G(H) = g(2n + 1) ≥ 3n − 6, we may assume that G(H) = 3n − 6.

By Lemma 4.8, H is lean. Thus v(H) = b(H).
Claim. v(H) < � 4n+4

3 	.
Proof. Suppose H has � 4n+4

3 	 or more vertices. There are three cases to consider, de-
pending on the remainder when n is divided by 3. We will reach a contradiction by showing
that in each case, G(H) > 3n − 6.

We first note that v(H) > n + 1. This is because � 4n+4
3 	 ≥ 4n+4

3 − 1 = 4n+1
3 > n + 1

(since n > 2).
Case 1: n = 3k.

In this case, v(H) is at least � 12k+4
3 	 = 4k+1. But 4k+1 < 2n+1, so by the inductive

hypothesis, g(H) ≥ 6k − 5 = 2n − 5. Thus G(H) ≥ v(H) + g(H) > (n + 1) + (2n − 5) =
3n − 4 > 3n − 6, the desired contradiction.
Case 2: n = 3k + 1.

In this case, v(H) is at least � 12k+8
3 	 = 4k + 2 > 4k + 1. But 4k + 1 < 2n + 1, so

by the inductive hypothesis, g(H) ≥ 6k − 5 = 2n − 7. Thus G(H) ≥ v(H) + g(H) >
(n + 1) + (2n − 7) = 3n − 6, the desired contradiction.
Case 3: n = 3k + 2.

In this case, v(H) is at least � 12k+12
3 	 = 4k + 4 > 4k + 3. But 4k + 3 < 2n + 1,

so by the inductive hypothesis, g(H) ≥ 6k − 2 = 2n − 6. Thus G(H) ≥ v(H) + g(H) >
(n + 1) + (2n − 6) = 3n − 5 > 3n − 6, the desired contradiction.

This proves our claim.
We have just shown that v(H) = b(H) < � 4n+4

3 	 or b(H) ≤ � 4n+4
3 	 − 1. By the

Interior Hull Boundary Inequality, we have

v(K) ≤ 3
2
b(H) ≤ 3

2

⌊4n + 4
3

⌋
− 3

2
≤ 3

2

(4n + 4
3

)
− 3

2
= 2n +

1
2

< 2n + 1

contradicting the fact that v(K) = 2n + 1. Hence our assumption that g(K) = 3n − 6 is
incorrect, and we must have g(K) ≥ 3n − 5.

Corollary 4.11. g(2n + 1) ≥ 3n − 5.

Corollary 4.12. g(2n + 2) ≥ 3n − 5.

Corollary 4.13. g(v) ≥ 3� v−1
2 	 − 5.

This comes from combining the previous two inequalities. Also note that the result is
trivially true if v = 3 or v = 4.
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Corollary 4.14. g(v) ≥ 3
2v − 8.

We now prove a few properties about convex lattice polygons, K, with g(K) = g(v).

Lemma 4.15. Let ABCDE . . . be a convex lattice v-gon, K, with g(K) = g(v). Then
triangle ABC has no interior lattice points.

Proof. If there were a lattice point, X, in the interior of �ABC, then AXCDE . . . would
be a convex lattice v-gon so would have at least g(v) interior lattice points. This would be
a contradiction because it would show that g(K) was at least g(v) + 1.

Proposition 4.16. For any integer v (v ≥ 3), there is a lean convex lattice v-gon, K,
with g(K) = g(v).

Proof. By the definition of g(v), there is at least one convex lattice v-gon, K, with
g(K) = g(v). Let ABCDE . . . be a convex lattice v-gon, K, with g(K) = g(v) and
minimal b. Suppose K were not lean. Then there would be a lattice point, X, in the
interior of some edge, say AB. Triangle ABC contains no interior lattice points by Lemma
4.15. Thus AXCDE . . . would be a convex lattice v-gon witht he same number of interior
lattice points as K, but with smaller b. This is a contradiction.

We now move on to considering the cases v = 9 and v = 10.

Proposition 4.17. If v = 9 then g ≥ 7. Equality holds when and only when K is lattice
equivalent to the nonagon shown in figure 4-4.

. . o o .

. o . . o

. . . . o
o . . o .
o o . . .

Figure 4-4
Unique convex lattice polygon with v=9

and smallest g

Proof. Letting v = 9 in Corollary 4.13 shows that g ≥ 7.
To show that the pictured polygon is unique, we can proceed as follows. Let H be the

convex hull of a lattice nonagon, K, with g(K) = 7. Since v(K) = 9, we must have b(H) ≥
6 and v(H) ≥ 5 by the Interior Hull Inequalities. Since v(H) ≤ b(H) ≤ G(H) = g(K) = 7,
v(H) is either 5, 6, or 7. We can’t have v(H) = 7, for a lattice heptagon would have
another 4 interior lattice points, making g(K) at least 11. If v(H) = 5, then g(H) ≥ 1, so
b(H) ≤ 6. Thus b(H) = 6 and H is not lean. By Census-1, we see that H must be lattice
equivalent to the pentagon ABCDE shown in figure 4-5a.
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. . c . . . . o o o

. b A d . . o + + o
a E . B e o + . + o
n D . C f o + + o .
m k j h g o o o . .

Figures 4-5a and 4-5b

By the Outer Parallel Condition (Proposition 3.4), the vertices of K must be 9 out
of the 12 lattice points marked a-n in figure 4-5a. Clearly, point c must be a vertex of K
since bd cannot be an edge of K. Since each of the 5 outer parallel lines can contain at
most 2 vertices of K, the edges of K must cut away the four vertices e, g, m, and a. But
this leaves only 8 lattice points left, contradicting the fact that K is a 9-gon.

Thus H must be a hexagon. Also, H must be lean because otherwise there would be
7 lattice points on the boundary of H and at least one inside, contradicting the fact that
g(K) = 7. Thus H is a lattice hexagon and g(H) = 1 so H is uniquely determined by the
Central Hexagon Theorem. We show H in figure 4-5b as the six points marked by plus
signs. The Outer Parallel Condition limits the vertices of K to be 7 of the 12 lattice points
marked by circles. Symmetry considerations then shows that K must be lattice equivalent
to figure 4-4.

Corollary 4.18. A non-lean convex lattice nongaon must contain at least 8 interior lattice
points.

Lemma 4.19. If v = 10, then g ≥ 9.

Proof. Let H be the interior hull of K, a lattice decagon. Then b(H) ≥ 7 and v(H) ≥ 5
by the Interior Hull Inequalities. If v(H) ≥ 7, then g(H) ≥ 4, so g(K) ≥ 11 and we would
be done. Hence we may assume that v(H) < 7. In that case, H cannot be lean, since
b(H) ≥ 7. Thus some edge of H, say XY , contains an interior lattice point Z. (See figure
4-5.)

Figure 4-5

Without loss of generality, we may assume that K is a decagon with the smallest
number of interior lattice points; i.e. g(K) = g(10). Then by Proposition 4.9, edge XY
must pass through at least one vertex (say A) of the decagon ABCDEFGHIJ . By the
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3-vertex Restriction, h(XY ) cannot contain 3 vertices of K, so h(XY ) cannot contain
vertex D (although XY might pass through D). Thus AY EFGHIJ is a convex lattice
octagon. It must contain at least 6 interior lattice points by the Fat Octagon Theorem.
Hence K must have at least 9 interior lattice points (these plus X, Y , and Z).

It should also be noted that if some edge of H does not pass through two vertices
of K, then K must contain at least 10 interior lattice points. For, as in the above proof,
assume AXY does not pass through D. Then AY DEFGHIJ would be a non-lean convex
lattice nonagon and would thus contain at least 8 interior lattice points by Corollary 4.18.
These plus X and Y would show that K contained at least 10 interior lattice points.

Lemma 4.19 shows that g(10) is at least 9. In an attempt to determine the precise value
of g(10), the author wrote a computer program that generated all convex lattice polygons
within the rectangle bounded by x = −10, x = 10, y = 0, and y = 10. Examining this
collection of lattice polygons, it was found that when v = 10, g was always at least 10.
Furthermore, there was precisely one convex lattice decagon with g = 10 (it is shown
below in figure 4-6). This is strong evidence for the following conjecture; however, there
is no proof that some decagon with g = 9 might have been missed by the computer search
(because it does not fit in the rectangle limiting the search).

Conjecture 4.20. If v = 10, then g ≥ 10. Equality holds when and only when K is
lattice equivalent to the decagon shown in figure 4-6.

. . . o o .

. o . . . o
o . . . . o
o . . . o .
. o o . . .

Figure 4-6
Conjectured unique convex lattice polygon with v=10

and smallest g

We note that this polygon is lean. Hence we have as an immediate corollary:

Conjecture (The Fat Decagon Theorem). A non-lean convex lattice decagon contains
at least 11 interior lattice points.

The following conjecture is suggested by figures 2-3, 2-9, and 4-6:
Conjecture 4.21. If v is even, v > 4, and K is a convex lattice v-gon with g(K) = g(v),

then K is central symmetric.

Lemma 4.22. If v = 11, then g ≥ 11.

Proof. We will follow the same method of proof as used to prove Lemma 4.19. Let K be
a convex lattice 11-gon. Let H be the interior hull of K. By the Interior Hull Inequalities,
we have v(H) ≥ 6 and b(H) ≥ 8. If v(H) ≥ 7, then we would be done since a 7-gon must
contain at least 4 interior lattice points. Thus we may assume that v(H) = 6. But since
b(H) ≥ 8, we conclude that H is not lean. Thus H contains some edge XY that contains



21

an interior lattice point, Z. By the 3-vertex Restriction, h(XY ) contains at most 2 vertices
of K. Since XY passes through at most 2 vertices of K, this means that there are at least
7 vertices of K in h∗(XY ), the open halfplane bounded by XY on the same side as H.
These 7 vertices plus X and Y form a convex lattice 9-gon, P . Since P is not lean, it must
contain at least 8 interior lattice points by Corollary 4.18. These 8 lattice points plus X,
Y , and Z, show that K contains at least 11 interior lattice points.

In Corollary 4.14, we showed that g(v) ≥ 3
2v−8. We now improve this (for sufficiently

large v) to g(v) ≥ 3
2v − 6.

Proposition 4.23. If v ≥ 10, then g(v) ≥
⌈

3
2v

⌉
− 6.

Proof. We will show that for v ≥ 10, g(v) ≥ 3
2v − 6. The result then follows since g(v)

must be an integer. We will proceed by induction on v. The proposition is already known
to be true for v = 10 and v = 11, so assume v ≥ 12. Let H be the interior hull of K,
a convex lattice v-gon. By the Interior Hull Inequalities, we know that v(H) ≥ v/2 and
b(H) ≥ 2v/3.
Case 1: v(H) ≥ 2

3v. In this case, by Corollary 4.14, we have g(H) ≥ 3
2

(
2
3v

)
− 8 = v − 8.

Thus g(K) = g(H) + b(H) ≥ v − 8 + 2
3v. But, for v ≥ 12, this is greater than or equal to

3
2v − 6 and we are done.
Case 2: v(H) < 2

3v. In this case, H is not lean because b(H) ≥ 2
3v. Thus there is some

edge of H, XY , that contains an inerior lattice point, Z. Halfplane h(XY ) contains at
most 2 vertices of K and XY passes through at most two vertices of K, so the open
halfplane bounded by XY on the same side as H contains at least v − 4 vertices of K.
These plus X and Y form a convex lattice (v− 2)-gon, P . By the induction hypothesis, P
contains at least 3

2 (v − 2) − 6 interior lattice points. These plus X, Y , and Z, show that
K contains at least 3

2v − 6 interior lattice points.

Corollary 4.24. g(12) ≥ 12.

Proposition 4.25. g(v) ≥ v for v ≥ 11.

This follows from Proposition 4.3 and the fact that g(11) ≥ 11 and g(12) ≥ 12.

To find an upper bound for g(v), we need only exhibit a polygon with v vertices and
g interior lattice points.

Proposition 4.26. There is a convex lattice polygon with v = 2n and g =
(
n
3

)
.

Proof. Let A1 = (0, 0) and B1 = (1, 0). We define Ak recursively by Ak+1 = Ak+(k+1, 1)
for k = 1, 2, . . . , n − 1. That is, to get to Ak+1 from Bk, you move right k + 1 units and
then up 1 unit. We define Bk recursively by saying that Bk+1 = Bk + (n + 1 − k, 1) for
k = 1, 2, . . . , n − 1.

This polygon is shown in figure 4-7 for the case n = 5.
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. . . . . . . . . . o o

. . . . . . o . . . o .

. . . o . . . . o . . .

. o . . . o . . . . . .
o o . . . . . . . . . .

Figure 4-7

This polygon has 2n vertices, all at lattice points.
Since the abscissae increase in steps of 1, 2, . . . , n − 1 for both the Ak and the Bk,

it follows that An is one unit to the left of Bn since A1 was one unit to the left of B1.
This fact, plus the way the slopes of the sides were chosen, assures us that the polygon is
convex.

We will now count the number of lattice points interior to this polygon. The polygon
has a height of n− 1, so there are n− 2 horizontal lines upon which interior lattice points
may lie. They lie on the line segments AkBk, k = 2, 3, . . . n − 1. It is easy to sum up the
abscissae to find

Ak = (
k−1∑
i=1

i, k − 1)

and

Bk = (1 +
k−1∑
i=1

(n − i), k − 1)

so that the distance from Ak to Bk is

1 +
k−1∑
i=1

(n − i) −
k−1∑
i=1

i = 1 +
k−1∑
i=1

(n − 2i)

= 1 +
k−1∑
i=1

n − 2
k−1∑
i=1

i

= 1 + n(k − 1) − k(k − 1) = 1 + (n − k)(k − 1).

Thus the number of lattice points on this line segment and inside K is just (n−k)(k−1).
The total number of lattice points inside K is therefore

n−1∑
k=1

(n − k)(k − 1) =
n−1∑
k=1

(n + 1)k −
n−1∑
k=1

k2 −
n−1∑
k=1

n

= (n + 1)
n(n − 1)

2
− (n − 1)n(2n − 1)

6
− (n − 1)n

=
n(n − 1)(n − 2)

6
.

(We could start summing at k = 1 because we know that A1B1 contributes 0 to the
sum.) This final answer shows that g =

(
n
3

)
as claimed.
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Since vertex A1 can be removed from the polygon exhibited above without changing
the number of interior lattice points, we have the following result:

Corollary 4.27. There is a convex lattice polygon with v = 2n − 1 and g =
(
n
3

)
.

Corollary 4.28. g(2n) ≤ n(n − 1)(n − 2)/6 and g(2n − 1) ≤ n(n − 1)(n − 2)/6.

Corollary 4.29. g(n) ≤
(�n/2�

3

)
.

Corollary 4.30. g(10) ≤ 10, g(11) ≤ 20, g(12) ≤ 20, g(13) ≤ 35, g(14) ≤ 35, g(15) ≤ 56,
g(16) ≤ 56, and g(17) ≤ 84.

Proposition 4.31. g(11) ≤ 17, g(12) ≤ 19, g(13) ≤ 27, g(14) ≤ 34, g(15) ≤ 48, and
g(16) ≤ 56.

We need only exhibit the appropriate polygon. (See figures 4-8 through 4-13.)

. . . . . . o o .

. . . . o . . . o

. . . . . . . . o

. o . . . . . o .
o . . . . o . . .
o o . . . . . . .

Figure 4-8
Convex lattice polygon with v=11 and g=17

. . . . o o .

. . o . . . o

. o . . . . o

. . . . . . .
o . . . . o .
o . . . o . .
. o o . . . .

Figure 4-9
Convex lattice polygon with v=12 and g=19

. . . . . . . . . o o .

. . . . . . o . . . . o
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. . . . . . . . . . o .
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o . . . . o . . . . . .
o o . . . . . . . . . .

Figure 4-10
Convex lattice polygon with v=13 and g=27



24

. . . . . . . o o .

. . . . o . . . . o

. . o . . . . . . o

. o . . . . . . . .

. . . . . . . . o .
o . . . . . . o . .
o . . . . o . . . .
. o o . . . . . . .

Figure 4-11
Convex lattice polygon with v=14 and g=34
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Figure 4-12
Convex lattice polygon with v=15 and g=48
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Figure 4-13
Convex lattice polygon with v=16 and g=56

We may summarize as follows:

Theorem 4.32. Let g(v) = inf{g(K)|v(K) = v}. Then

a. g(3) = 0.

b. g(4) = 0.

c. g(5) = 1.

d. g(6) = 1.

e. g(7) = 4.

f. g(8) = 4.

g. g(9) = 7.

h. g(10) = 9 or 10.
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i. 11 ≤ g(11) ≤ 17.
j. 12 ≤ g(12) ≤ 19.
k. 14 ≤ g(13) ≤ 27.
l. 15 ≤ g(14) ≤ 34.

m. 17 ≤ g(15) ≤ 48.
n. 18 ≤ g(16) ≤ 56.
o. g(v) ≥ g(v − 2) + 2 for v ≥ 7.
p. g(2n + 1) ≥ 3n − 5.

q. 3� v−1
2 	 − 5 ≤ g(v) ≤

(�v/2�
3

)
.

It remains an open problem to find better bounds for g(v) or a good asymptotic
formula for g(v). The author feels that the lower bound of 3� v−1

2 	 − 5 is far from best-
possible and makes the following conjecture:

Conjecture. g(v) = O(v3).

5. Inequalities with g fixed

We now look at the related problem of finding the bounds on v for any given value of
g.

Proposition 5.1. Let K be a convex lattice polygon. Then

inf{v(K)|g(K) = g} = 3.

Proof. We need only exhibit a triangle containing g interior lattice points for any given
g. The triangle with vertices (0, 0), (1, 2), and (g + 1, 1) has this property.

A more interesting problem is to find the maximum value that v can have when we
fix g.

Proposition 5.2. If g = 0 then v ≤ 4. Equality occurs when and only when K is lattice
equivalent to the trapezoid whose vertices are (0, 0), (p, 0), (0, 1), and (q, 1) for some
positive integers p and q.

If v were greater than 4, there would be an interior lattice point by the Lattice
Pentagon Theorem. The equality condition follows from Census-0.

Proposition 5.3. If g = 1 then v ≤ 6. Equality occurs when and only when K is lattice
equivalent to the centrally symmetric hexagon shown in figure 5-1.

. o o
o . o
o o .

Figure 5-1
Unique convex lattice polygon with g=1

and largest v

This follows from the fact that v ≥ 7 implies g ≥ 4 > 1. Equality is determined by
the Central Hexagon Theorem.
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Proposition 5.4. If g = 2 then v ≤ 6. Equality can hold as can be seen by figure 5-2 in
which v = 6 and g = 2.

. o o . . o o . . o . o . o . o . . o o
o . . o o . . o o . . o o . . o o . . o
. o o . o . o . o . o . o o . . o o . .

Figure 5-2
Some convex lattice polygons with g=2

and largest v

This follows from the fact that v ≥ 7 implies g ≥ 4 > 2.

Proposition 5.5. If g = 3 then v ≤ 6. Equality can hold as can be seen by figure 5-3 in
which v = 6 and g = 3.

. . o .

. . . o . o o . . . o . o .
o . . o o . . . o o . . . o
o . o . . o o . . o . . o .

Figure 5-3
Some convex lattice polygons with g=3

and largest v

This follows from the fact that v ≥ 7 implies g ≥ 4 > 3.

Proposition 5.6. If g = 4 then v ≤ 8. Equality holds when and only when K is lattice
equivalent to the centrally symmetric octagon shown in figure 5-4.

. o o .
o . . o
o . . o
. o o .

Figure 5-4
Unique convex lattice polygon with g=4

and largest v

This follows from the fact that v ≥ 9 implies g ≥ 7 > 4. Equality is determined by
the Central Octagon Theorem.

Proposition 5.7. If g = 5 then v ≤ 7. Equality can hold as can be seen by figure 5-5 in
which v = 7 and g = 5.
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Figure 5-5
Some convex lattice polygons with g=5

and largest v

We know that v = 9 implies that g ≥ 7. Thus, if g = 5, then v ≤ 8. However, it is not
possible for g to be 5 and v to be 8 (we will show this below). Thus g = 5 implies v ≤ 7.

This result is unusual enough to warrant calling it to the reader’s attention.

Proposition (The Octagon Anomaly). A convex lattice octagon can have 4 interior
lattice points or 6 interior lattice points, but it can’t have exactly 5 interior lattice points.

This anomaly was first observed by Rabinowitz [3] in 1986, and proved by Steinberg
[6] in 1988. The following proof is a simplification of Steinberg’s proof.

Proof. Suppose we had a convex lattice octagon, K, that contained precisely 5 interior
lattice points, A, B, C, D, and E. Let H denote the convex hull of these 5 points. By
the Interior Hull Vertex Inequality, v(H) ≥ 4. We cannot have v(H) = 5 by the Lattice
Pentagon Theorem. Thus, v(H) = 4 and region H forms a quadrilateral, say ABCD.
Lattice point, E, can lie inside this quadrilateral or on one of the edges (say CD).

Figure 5-6

Of the four halfplanes, h(AB), h(BC), h(CD), h(DA), each one can contain at most
two of the vertices of K. Since K has exactly 8 vertices, we conclude that each halfplane
contains exactly two vertices of K and the intersections of two halfplanes contain no
vertices of K. Let X and Y be the two vertices of K in h(AB) but not in h(DA) or h(BC)
(see figure 5-6). (Points X and Y might lie on CB or DA extended.) Then AEBXY is
a convex lattice pentagon containing no interior lattice points, contradicting the Lattice
Pentagon Theorem.
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Thus our assumption that the lattice octagon K has exactly 5 interior lattice points
has been proven to be incorrect.

The Fat Octagon Theorem. A non-lean convex lattice octagon contains at least 6
interior lattice points.

Proof. The octagon must contain at least 5 interior lattice points by Corollary 2.9. It
cannot contain exactly 5 interior lattice points by the Octagon Anomaly. Hence it must
contain at least 6 interior lattice points.

Proposition 5.8. If g = 6 then v ≤ 8. Equality can hold as can be seen by figure 5-7 in
which v = 8 and g = 6.

. o o . .
o . . . o
o . . . o
. o o . .

Figure 5-7
Convex lattice polygon with g=6

and largest v

This follows from the fact that v ≥ 9 implies g ≥ 7 > 6.

Proposition 5.9. If g = 7 then v ≤ 9. Equality occurs when and only when K is lattice
equivalent to the nonagon shown in figure 5-8.

. . o o .
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o . . o .
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Figure 5-8
Unique convex lattice polygon with g=7

and largest v

This follows from the fact that v ≥ 10 implies g ≥ 10 > 7. Equality follows from
Proposition 4.28.

A computer search revealed the following interesting anomaly:

Conjecture (The Nonagon Anomaly). A convex lattice nonagon can have 7 interior
lattice points or 10 interior lattice points, but it can’t have either 8 or 9 interior lattice
points.

The fact that 10 interior lattice points can occur is shown in figure 5-9.
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. . o . .

. o . o .

. . . . .
o . . . o
o . . . o
. o . o .

Figure 5-9
A convex lattice nonagon with g=10

A consequence of this anomaly is the following two results:

Conjecture 5.10. If g = 8 then v ≤ 8. Equality can hold as can be seen by figure 5-10
in which v = 8 and g = 8.

. o o . . .
o . . . . o
o . . . . o
. o o . . .

Figure 5-10
Convex lattice polygon with g=8

and largest v

If g = 8, then we must have v ≤ 9 since v = 10 implies g ≥ 9. However, assuming the
Nonagon Anomaly is true, we can’t have v = 9. Hence v ≤ 8.

Conjecture 5.11. If g = 9 then v ≤ 8. Equality can hold as can be seen by figure 5-11
in which v = 8 and g = 9.

. o o . . . .
o . . . . . o
o . . . . o .
. o o . . . .

Figure 5-11
Convex lattice polygon with g=9

and largest v

If g = 9, then we would have v ≤ 9 since v = 10 implies g ≥ 10 (by Conjecture 4.20).
However, by the Nonagon Anomaly, we can’t have v = 9. Hence v ≤ 8.

Conjecture (The Fat Nonagon Theorem). A non-lean convex lattice nonagon con-
tains at least 10 interior lattice points.

If v = 9, then by Proposition 4.17 we must have g ≥ 7. But there is a unique polygon
with v = 9 and g = 7 and it is lean. Hence we must have g ≥ 8. Assuming the Nonagon
Anomaly is true, g = 8 and g = 9 are ruled out; so we must have g ≥ 10.
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Proposition 5.12. If g = 10 then v ≤ 10.

This follows from Lemma 4.22, for if v were greater than 10 then we would have
g ≥ 11.

Conjecture 5.13. Equality in Proposition 5.12 occurs when and only when K is lattice
equivalent to the decagon shown in figure 5-12.

. . . o o .

. o . . . o
o . . . . o
o . . . o .
. o o . . .

Figure 5-12
Conjectured unique convex lattice polygon with g=10

and largest v

This follows from conjecture 4.20.
We may summarize as follows:

Theorem 5.14. Let v(g) = sup{v(K)|g(K) = g}. Then

a. v(0) = 4.

b. v(1) = 6.

c. v(2) = 6.

d. v(3) = 6.

e. v(4) = 8.

f. v(5) = 7.

g. v(6) = 8.

h. v(7) = 9.

i. v(8) = 8 or 9.

j. v(9) = 8 or 9.

k. v(10) = 10.

It is interesting to note that v(g) is not monotone.

6. Inequalities for G with v fixed

.
In this section, we study convex lattice polygons, K, with v vertices. Let G denote

the number of lattice points inside or on K. We let G(v) = inf{G(K)|v(K) = v} and
g(v) = inf{g(K)|v(K) = v}.

We can expand a lattice polygon by any amount (by an integer scaling about the
origin) keeping v fixed and making G get as large as we want. This gives us the following
proposition.
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Proposition 6.1. If v is fixed, then G can be arbitrarily large.

Proposition 6.2. If K is a convex lattice polygon with v fixed and smallest G, then K
is lean.

Proof. Suppose P is a lattice point on side A2A3 of polygon A1A2A3A4A5 . . . Av. Then
polygon A1PA3A4A5 . . . Av would have the same number of vertices but smaller G.

Corollary 6.3. G(v) = g(v) + v.

So now we know what the smallest G can be. We look at the cases of equality.

Proposition 6.4. If v = 3 then G ≥ 3. Equality occurs when and only when K is lattice
equivalent to the isosceles right triangle shown in figure 6-1.

o .
o o

Figure 6-1
Unique convex lattice polygon with v=3

and smallest G

From G(v) = g(v) + v and g(3) = 0, we see that G(3) = 3. The uniqueness of figure
6-1 follows from Census-0.

Proposition 6.5. If v = 4 then G ≥ 4. Equality occurs when and only when K is lattice
equivalent to the unit square shown in figure 6-2.

o o
o o

Figure 6-2
Unique convex lattice polygon with v=4

and smallest G

From G(v) = g(v) + v and g(4) = 0, we see that G(4) = 4. The uniqueness of figure
6-2 follows from Census-0.

Proposition 6.6. If v = 5 then G ≥ 6. Equality occurs when and only when K is lattice
equivalent to the pentagon shown below.

. o .
o . o
o o .

Figure 6-3
Unique convex lattice polygon with v=5

and smallest G

From G(v) = g(v) + v and g(5) = 1, we see that G(5) = 6. The uniqueness of figure
6-3 follows from Proposition 2.3.
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Proposition 6.7. If v = 6 then G ≥ 7. Equality occurs when and only when K is lattice
equivalent to the centrally symmetric hexagon shown below.

. o o
o . o
o o .

Figure 6-4
Unique convex lattice polygon with v=6

and smallest G

From G(v) = g(v) + v and g(6) = 1, we see that G(6) = 7. The uniqueness of figure
6-4 follows from The Central Hexagon Theorem.

Lemma 6.8. If K is a convex lattice polygon with v = 7 and g = 4, then no three interior
lattice points can colline.

Proof. Suppose X, Y , and Z are three interior lattice points that all lie on line L. If both
sides of L each contain three vertices of K, then let A, B, and C be three vertices on the
side of L that does not contain the fourth interior lattice point (figure 6-5a). Thus convex
lattice pentagon ABCZX is lattice-point-free, a contradiction.

Figure 6-5a and 6-5b and 6-5c

If one side of L contained four vertices of K, A, B, C, and D, (figure 6-5b), then
hexagon ABCDZX would contain at most one interior lattice point, contradicting the
Fat Hexagon Theorem.

The only other case is that L passes through two vertices of K, say A and E and
one side of L contains three vertices of K, say B, C, and D (figure 6-5c). Then pentagon
ABCDE would contain at most one interior lattice point, contradicting the Fat Pentagon
Theorem.

Lemma 6.9. If v = 7 and g = 4, then the 4 interior lattice points form a parallelogram.

Proof. By Lemma 6.8, no three of the interior lattice points colline, so they form a
polygon. This polygon cannot be a triangle by the Interior Hull Vertex Inequality. This
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polygon cannot be a trapezium by the Lattice Trapezium Theorem. It cannot be a (proper)
trapezoid by Census-0. Hence it must be a parallelogram.

Proposition 6.10. If v = 7 then G ≥ 11. Equality occurs when and only when K is
lattice equivalent to one of the heptagons shown below.

. o . . . o o .
o . . o . . . o
o . . o o . . o
. o o . o o . .

Figure 6-6
Only convex lattice polygons with v=7

and smallest G

Proof. From G(v) = g(v) + v and g(7) = 4, we see that G(7) = 11. If v = 7 and G = 11,
then g = 4. By Lemma 6.9, the 4 interior lattice points form a parallelogram. Applying an
appropriate integral unimodular affine transformation, we can map these 4 lattice points
into a square. They are shown by plus signs in figure 6-7.

a b c d
n + + e
m + + f
k j h g

Figure 6-7

By the Outer Parallel Condition, the vertices of K must be 7 of the 12 lattice points
labelled a-n in Figure 6-7. If no corner lattice point (a, d, g, or k) belongs to K, then we
must choose 7 out of 8 remaining vertices. This gives us a figure that is lattice equivalent
to the first polygon shown in figure 6-6. If one corner lattice point belongs to K, say point
k, then the two adjacent lattice points, j and m, must also be vertices of K and it is then
easy to see that the polygon must be lattice equivalent to the second polygon shown in
figure 6-6.

Proposition 6.11. If v = 8 then G ≥ 12. Equality occurs when and only when K is
lattice equivalent to the centrally symmetric octagon shown below.

. o o .
o . . o
o . . o
. o o .

Figure 6-8
Unique convex lattice polygon with v=8

and smallest G

From G(v) = g(v) + v and g(8) = 4, we see that G(8) = 12. The uniqueness of figure
6-8 follows from The Central Octagon Theorem.
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Proposition 6.12. If v = 9 then G ≥ 16. Equality occurs when and only when K is
lattice equivalent to the nonagon shown below.

. . o o .

. o . . o

. . . . o
o . . o .
o o . . .

Figure 6-9
Unique convex lattice polygon with v=9

and smallest G

From G(v) = g(v) + v and g(9) = 7, we see that G(9) = 16. The uniqueness of figure
6-9 follows from Proposition 4.17.

From G(v) = g(v)+v and g(10) =9 or 10, we see that G(10) is 19 or 20. The following
result would then follow from Conjecture 4.20.

Conjecture 6.13. If v = 10 then G ≥ 20. Equality occurs when and only when K is
lattice equivalent to the decagon shown below.

. . . o o .

. o . . . o
o . . . . o
o . . . o .
. o o . . .

Figure 6-10
Conjectured unique convex lattice polygon with v=10

and smallest G

Proposition 6.14. The function G(v) is monotone.

This follows from the fact that G(v) = g(v) + v and both g(v) and v are monotone
(non-decreasing).

We may summarize this data as follows:

Theorem 6.15. Let G(v) = inf{G(K)|v(K) = v}. Then
a. G(3) = 3.
b. G(4) = 4.
c. G(5) = 6.
d. G(6) = 7.
e. G(7) = 11.
f. G(8) = 12.
g. G(9) = 16.
h. G(10) = 19 or 20.
i. G(v) = g(v) + v.
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