
INDEX TO Mathematical Problems 1975–1979

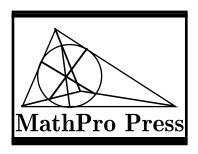
A Compendium of over 5,000 Problems

with Subject, Keyword, Author and Citation Indexes

Indexes to Mathematical Problems

Series Editor:

Stanley Rabinowitz


MathPro Press, Westford, Massachusetts, USA

Editorial Board:

George Berzsenyi
Rose-Hulman Institute of Technology, Terre Haute, Indiana, USA
Clark Kimberling
University of Evansville, Evansville, Indiana, USA
Murray S. Klamkin
University of Alberta, Alberta, Canada
Jordan Tabov
Bulgarian Academy of Sciences, Sofia, Bulgaria

INDEX TO MATHEMATICAL PROBLEMS 1975–1979

edited by Stanley Rabinowitz and Mark Bowron

Westford, Massachusetts USA

1991 Mathematics Subject Classification: Primary 00A20, Secondary 00A07.

Copyright © 1999 by Stanley Rabinowitz. All rights reserved.

This ebook is offered free of charge but it contains copyrighted material that requires permission from the rights holders to reproduce, store in a retrieval system, or transmit in any form or by any means. For publisher information see the Journal Issue Checklist on page 401 or consult the web.

Publisher's Cataloging-in-Publication Data

AACR2

Main entry under title:

Index to Mathematical Problems 1975 –1979

/ edited by Stanley Rabinowitz and Mark Bowron

-Westford, MA: MathPro, 1999

ix, 510 p.; 29 cm. - (Indexes to Mathematical Problems; v. 2)

Bibliography: p. 431 Includes indexes.

- 1. Mathematics Periodicals Indexes
- 2. Mathematics Problems, exercises, etc.
- I. Rabinowitz, Stanley, 1947-
- II. Bowron, Mark W., 1959- III. Series.

QA43.I462 1999 510.3'016I342 - dc20

ISBN 0-9626401-3-1

96-079097

Library of Congress Catalog Card Number: 96-079097. ISBN 0-9626401-3-1.

TABLE OF CONTENTS

<u>Section</u> <u>Pa</u>	<u>ge</u>
Foreword	٧
Acknowledgment	νi
Preface	ii
Original Preface vi	ii
Dedication	iχ
How to Use this Index	1
Notation	3
Subject Classification Scheme	7
Subject Index	15
Journal and Contest Abbreviations	17
Algebra	18
Analysis	47
Applied Mathematics	79
Combinatorics	83
Game Theory	96
Geometry	02
Higher Álgebra	44
Linear Algebra	51
Number Theory 1	57
Probability	29
Recreational Mathematics	42
Set Theory	64
Solid Geometry	66
Topology	73
Trigonometry	76
Problem Chronology	82
Author Index	16
Pseudonyms	54
Title Index	55
Journal Issue Checklist	01
Unsolved Problems	13
Author Index for Unsolved Problems 47	22
	23
Abbreviations Used	24
References to Problems 47	25
Contest References 43	30
Biographical Notes 43	30
9 !	30
Reviews of Problem Books 43	30
Bibliography	31
	38
Keyword Index	40
	09

FOREWORD

A few years ago, MathPro Press published an index to mathematical problems published between 1980 and 1984, and announced an ambitious program to publish other volumes extending this project both forward and backward in time. I was fortunate to have that volume available during my five-year term as Editor of the Problems and Solutions column of the *American Mathematical Monthly*. The system for classifying problems by topic, by itself, adds an important level of organization, as does the section on notation, but the Index goes beyond this to allow related problems to be identified, and locates individuals and journals associated with these related problems. The wealth of information about the problems and their means of publication is an enormous service to anyone facing the task of preparing a list of problems.

In his foreword to the 1980–1984 Index, Murray S. Klamkin was critical of the indexing information on problems provided by journals. Although I was in a position to move one journal in the direction that he indicated, there was little change. It thus falls on me to defend the present state of indexing of problems in journals. It is not really an answer to say that I was never asked to develop a better index, since I am sure that anything along these lines that I produced would have been used. The system has some inertia based on the way that various tasks are assigned to meet publication deadlines, although sweeping changes are often made when there is a change of editor. However, the fans of Problem Sections also tend to have strong opinions. Removing the distinction between Elementary and Advanced problems had already generated strong comments: half opposed to the change, and half in favor. While the subject classification of this volume is useful for organizing thousands of problems, it is not clear that such a classification would be useful for fewer than one hundred problems. Indexing by author has the nice feature that it encourages the reader to use the name of the author as the key to locating a distinctive problem or solution. Those whose skill in formulating problems and writing insightful solutions deserve to be closely identified with their work. Additional indexing may well be better confined to indexes of broader scope. The continuation of this project will raise the general level of awareness of this aspect of doing mathematics, and give a better picture of the high value placed on this activity.

The spectrum of problems runs from routine exercises to the great problems capable of inspiring the development of mathematics for a century or more. Those represented here are chosen from a smaller range from contest problems allowing an hour or so to journal problems for which several months of work are needed for an adequate solution. Although this avoids the extremes of the spectrum, there is still room for significant difference in difficulty. Since the reader is expected to be able to solve these problems, it is reasonable to expect that each problem contains the seeds of its solution. Also, full statements of problems are given, so the Index may be enjoyed by someone interested in the subject, as well as (indeed, probably more than) those who need it in their work. A beginner may need guidance in selecting problems suitable to his present level of training, but an experienced mathematician should develop an irresistible urge to pick up pencil and paper after opening the book to a random page in the Subject Index. I would go so far as to suggest that this Index is the ideal retirement gift for a mathematician to allow the fun of the subject to be rediscovered after a career that has reached the point of research on a highly specialized topic and teaching of the same old subjects.

RICHARD T. BUMBY PROFESSOR OF MATHEMATICS RUTGERS UNIVERSITY

ACKNOWLEDGMENT

The effort of many people went into producing this second volume in the *Indexes to Mathematical Problems* series. Their help is greatly appreciated. Data entry and proofreading were done by **Selma Burrows**, **Mark Buxbaum**, **Michael Clarke**, **Anne R. Costa**, **Joan Duprey**, **Kathi Duprey**, **Cheryl Hoffman**, **Helen Metcalf**, **Carol Anderson Peters**, **Stanley Rabinowitz**, **Dennis Spellman**, and **Mindy Swartz**. The monumental task of producing a book like this could not have been completed without their help.

I want to thank everyone else who performed translations into English, including George Berzsenyi, Roel Lipsch, Susan Oliver, Dennis Spellman, and Jordan Tabov. The editorial board (George Berzsenyi, Clark Kimberling, Murray S. Klamkin, Leroy F. Meyers, and Jordan Tabov) did an exceptional job in reviewing all of the material from my many mailings. They offered good advice and were instrumental in the shaping of this index. Many thanks to Richard T. Bumby for writing the foreword to this volume, and to Murray Klamkin for his continuing encouragement. Problems were classified by Mark Bowron, Joan Duprey, Stanley Rabinowitz, and Dennis Spellman. Special thanks to Mark Bowron for adding the cross-referencing scheme to the keyword index, to Mark Buxbaum for valuable help with that index, and to Herb Jacobs for his help in many phases of the book production. The cover was designed and composed by Kathi Duprey at Ad Infinitum Graphics.

This index gives credit to the many authors of the problems indexed herein and also carefully cites the sources (names of the journals and page numbers) in which these problems were originally posed. Consult the Problem Chronology (page 282) to determine the original source for any problem listed. I wish to thank the following organizations for giving me permission to re-print their problems in this index:

The Mathematical Association of America (for The American Mathematical Monthly, Mathematics Magazine, The Two-Year College Mathematics Journal), The MATYC Journal, Inc. (for The MATYC Journal), the Canadian Mathematical Society (for Crux Mathematicorum and The Canadian Mathematical Bulletin), the Fibonacci Association (for The Fibonacci Quarterly), Baywood Publishers (for The Journal of Recreational Mathematics), the National Council of Teachers of Mathematics (for The Mathematics Student Journal), the University of Waterloo (for The Ontario Secondary School Mathematics Bulletin), Kappa Mu Epsilon (for The Pentagon), the councilors of Pi Mu Epsilon (for The Pi Mu Epsilon Journal), the Society for Industrial and Applied Mathematics (for SIAM Review), School Science and Mathematics Association (for School Science and Mathematics), the editorial committee of Function, the Malaysian Mathematical Society (for Menemui Matematik), the Association of Mathematics Teachers of New York State (for The New York State Mathematics Teachers' Journal), the Ontario Association for Mathematics Education (for the Ontario Mathematics Gazette), the editor of Mathematical Spectrum, and Stickting Mathematisch Centrum (for Nieuw Archief voor Wiskunde).

I am indebted to Donald Knuth for designing the TeX system for typesetting technical text which was used to typeset the mathematical portions of this book, and to Michael Spivak, who designed the MathTime family of fonts.

I wish to thank the many people who supplied details about unsolved problems and papers that reference problems:
Julia Abrahams, Ed Barbeau, Petter Bjørstad, F. S. Cater, Peter Giblin, Jacob E. Goodman, Doug Hensley,
James Hirschfeld, Melvin Hochster, David M. Jackson, Kenneth R. Kellum, Dan J. Kleitman, Robert Leslie,
John S. Lew, Colin L. Mallows, Armel Mercier, Eric Milner, Thomas E. Moore, Harry Nelson, Louis Nirenberg, Joseph O'Rourke, Carl Pomerance, James Propp, David Singmaster, Dan Sokolowsky, Lloyd N.
Trefethen, Peter Ungar, and J. Ernest Wilkins.

The following people helped me in locating journals, contests, pseudonyms, and bibliographic references:

Bength Ahlin, Seung-Jin Bang, Leon Bankoff, Ed Barbeau, Dieter Bennewitz, George Berzsenyi, Mark
Bowron, Steven Conrad, Curtis Cooper, Michel Criton, Clayton Dodge, Richard Gibbs, Heiko Harborth, Mark
Hesse, Paul Jainta, George P. Jelliss, Erwin Just, Robert Kennedy, Murray Klamkin, Joe Konhauser, Hans
Lausch, Peter Messer, Leroy Meyers, Bill Sands, Mark Saul, Joseph V. Saverino, Norman Schaumberger,
Jordan Tabov, Peter Taylor, L. J. Upton, and Stan Wagon.

Finally, I wish to thank all the problemists out there who have enriched my life and the lives of many others by contributing such fine problems to the mathematical literature. I hope they will understand the few cases where I have had to edit their creations in order to remove extraneous matter and fit the space constraints of this index. A great thank you must go to all those problem column editors who endure a thankless task but provide an invaluable service to the mathematics community.

- Stan -

PREFACE TO THIS PDF EDITION

This ebook contains many corrections and revisions to the original book. Hyperlinks and text search eliminate the need for any Problem Locator, so that section has been removed. In the Subject Index, the relatively short Statistics and Symbolic Logic sections have been subsumed under Probability and Set Theory, respectively.

Many solutions are now readily available online. Links colored green below represent free unlimited access. Blue links represent JSTOR, which offers free but limited access (the Putnam page leads to JSTOR). Red links represent paid access.

AMM American Mathematical Monthly https://www.jstor.org/journal/amermathmont

CRUX Crux Mathematicorum https://cms.math.ca/crux/

FQ The Fibonacci Quarterly https://www.fq.math.ca/list-of-issues.html
MM Mathematics Magazine https://www.jstor.org/journal/mathmaga

PARAB Parabola https://www.parabola.unsw.edu.au/2010-2019/volume-54-2018/issue-1

PENT The Pentagon http://www.kappamuepsilon.org/pages/a/pentagon.php

PME The Pi Mu Epsilon Journal http://www.pme-math.org/journal/issues.html SIAM SIAM Review https://epubs.siam.org/toc/siread/current

SPECT Mathematical Spectrum http://www.appliedprobability.org/content.aspx?Group=ms&Page=allmsissues

SSM School Science and Mathematics https://onlinelibrary.wiley.com/loi/19498594
TYCMJ The Two-Year College Mathematics J. https://www.jstor.org/journal/twoyearcollmathj

PUTNAM The Putnam Mathematical Competition https://kskedlaya.org/putnam-archive/USA U.S.A. Mathematical Olympiad https://mks.mff.cuni.cz/kalva/usa.html

Separate permissions were obtained from all of the rights holders for this electronic version to be made available at no charge, for which we are grateful. We may do the same for Volume 1, which covers the years 1980-1984.

Stanley Rabinowitz Mark Bowron Litchfield, NH Laughlin, NV

stan.rabinowitz@comcast.net mathematrucker@gmail.com

PREFACE TO THE ORIGINAL BOOK

In the preface to the first edition of their book *Concrete Mathematics* published in 1989, Graham, Knuth, and Patashnik state that *they have not been able to pin down the sources of many problems that have become part of the folklore*. The same year that book was published, a new company called MathPro Press was founded by Stanley Rabinowitz to reference the world's problem literature in a comprehensive way. In 1992, Rabinowitz introduced a series of books called *Indexes to Mathematical Problems*. The first volume in that series, *Index to Mathematical Problems 1980-1984*, represented a milestone in problem indexing: never before had so many problems from so many sources been gathered together into a single volume. To problemists worldwide, the introduction of this remarkable book brought the hope that problems and their references might eventually become very easy to locate.

As one might guess, the production of such an index requires an enormous amount of work. But it was not expected that nine years would pass from the time the first volume was published until the time this second one was published. The main culprit behind the delay was a seemingly endless variety of loose ends and details that needed tending to. In addition, the editors were not able to devote as much attention to the project as they would have liked during the past few years, because their full-time jobs demanded most of their time. A great deal of work was performed by generous volunteers. Given the unique and valuable nature of this project, it is hoped that some sort of alliance may be forged with one or more of the various mathematical associations that publish problem columns and contests, in order to accelerate book production in the future.

We were saddened by the passing of our friend and advisor Leroy F. Meyers in 1995. He played an important role in the success of these indexes, offering many detailed comments (especially with respect to the proper spelling of people's names) and providing English translations of problems originally published in Dutch. He is missed by all of us at MathPro Press.

To the many people who offered encouragement and miscellaneous help, we salute

Gary Barna, Cathy Bence, George and Roberta Berry, Mark Buxbaum, Anton and Peggy Chernoff, Anne and Peter Costa, Bill and Tricia Fisher, Peter Gilbert, Tim and Cheryl Hoffman, Herb Jacobs, Clark Kimberling, Murray Klamkin, Joe Konhauser, Hank Lieberman, Erwin Lutwak, Walter Mientka, Peter O'Halloran, Bill Perkins, Susan Perkins, Eric and Carol Peters, Jack and Fay Rabinowitz, Jim and Sharon Ravan, Leanne Robertson, Josh Rosen, Léo Sauvé, Dave Scheifler, Leo Schneider, Larry Somer, Rob and Marty Spence, Judy Swank, Rick Swift, Craig Thomas, and Marijke van Gans.

Except for the specific problems indexed, there are few differences between the first two volumes. A new cross-referencing feature was added to the keyword index that allows users to readily browse all classifications containing a given keyword. This feature adds a new dimension to the classification scheme: while still grouping similar problems together as before, now it can also be used to conduct keyword searches. Partly as a result of this, and partly because the overall database is growing, more detail was added to the lower-level classification categories in this volume.

Another difference between the two volumes is in the typefaces used. The first volume was typeset with the Computer Modern family of fonts created by Donald Knuth, whereas this volume was typeset with the MathTime family of fonts created by Michael Spivak. Finally, Volume 1 contained a very comprehensive list of journals with problem columns; this section has been omitted from the present volume to avoid redundancy. (The list can also be viewed online at our website address: www.mathpropress.com.)

It should be noted that the collection of contests referenced in this volume is by no means comprehensive. There are dozens of fine contests held around the globe each year. Ones missing from this volume were either too difficult to obtain, or unknown to us. Readers are encouraged to submit information regarding any contests missing from this series (or journals missing from the list mentioned above), so they may be included in future volumes.

It is hoped that users will find this volume at least as useful as Volume 1, if not more useful. The editors must apologize for any errors or omissions in the presentation. It seemed better to publish with errors than to err by not publishing at all. Please report any typos or mistakes to MathPro Press so they may be corrected in future editions. We are constantly striving to improve our methods of problem indexing, so all comments and suggestions for future enhancements are heartily welcomed.

Stanley Rabinowitz Chelmsford, MA Mark Bowron Laughlin, NV For Roma the librarian, who so dutifully reshelved all those hundreds of books and journals wildly torn from the shelf during frantic problem-hunting sprees...

HOW TO USE THIS INDEX

WHAT IS INDEXED?

To determine which journals and contests have been indexed, see the list on page 17. A more detailed list can be found in the Journal Issue Checklist (page 401). That section also tells you which columns in these journals were indexed.

SEARCH BY TOPIC

Given a topic that you are interested in, consult the Subject Classification Scheme (page 7) to find the classification closest to your topic of interest. Click on that topic and scan the problems looking for those of interest to you. A quick overview of the classification scheme can be found in the Table of Contents.

SEARCH BY KEYWORD

You can look in the Keyword Index (page 440) under various keywords that pertain to your topic of interest to locate specific problems associated with this keyword. This is particularly useful when you remember a memorable word or phrase from the problem you are searching for. You can also check the Title Index (page 355) to see if the keyword appears in the title of a problem.

SEARCH BY AUTHOR

If you know the author of a problem (or are interested in problems by a specific author), use the Author Index (page 316). For references to biographical information about problemists, see page 430.

LOCATING A PROBLEM

Given a problem number (for example, one listed in the Keyword Index), click on it to jump to the page in this index where the text of the problem is printed. Scanning around on that page may also show you related problems that may be of interest to you.

Note that the text for the problem as printed in this index may only be a summary of the full text as originally printed. We have omitted extraneous information and may have reworded the problem to make the notation consistent. To find the original complete wording for this problem, consult the Problem Chronology (page 282) to find the journal, volume, and page number where the problem was proposed.

When a problem number is not a hyperlink, this means that the text of the problem does not appear in this index (because the problem was not published during the years 1975–1979). Consult the Problem Chronology (page 282) to find a reference to a solution or comment concerning this problem.

To find problems of a certain type or difficulty level, determine which journals or contests normally publish problems of the kind that you are interested in. Then scan the appropriate portion of the subject index for problems from these journals.

LOCATING A SOLUTION

Once you find a specific problem that interests you, click the problem number to jump to the Problem Chronology (page 282). You will then find references to where the problem was published (journal, volume, issue, and page number) as well as references to all published solutions, partial solutions, and comments related to this problem. Additional references may be found in the Citation Index (page 423), which lists journal articles that reference problems covered by this index.

CONTESTS

Consult the Citation Index (page 423) to find references to specific contest problems. Articles about complete contests (frequently reprinting the problems from the contest and often containing solutions) can be located in the Contest References section of the Citation Index (page 430).

LOCATING A JOURNAL

The list of abbreviations for the journal names can be found on page 17. A more complete list of journal abbreviations is given in Volume 1, on page 437 of that volume. If you want to examine a problem or solution from some journal and that journal is not in your library, consult the Journal Information section (page 435 of Volume 1) for data about the journal, such as the ISSN number. Your librarian should be able to help you locate a library that carries this journal from the bibliographic in-formation given. The name of the publisher is also given, along with the address to write to for subscription information if the journal is still active. (The list of journals can also be viewed online at our website address: www.mathpropress.com.)

NOTATION

For unfamiliar terms or notation, consult the Notation (page 3) or the Glossary (page 438).

UNSOLVED PROBLEMS

A convenient compilation of those problems proposed during the years 1975–1979 that remain unsolved as of 1991 can be found on page 413. An author index to the proposers of these unsolved problems can be found on page 422. Consult the Problem Chronology (page 282) to locate references to partial solutions to these problems. Additional references to these problems in the literature can be found in the Citation Index (page 423).

PROBLEM BOOKS

A list of problem books that have been reviewed during the years 1975–1979 can be found on page 430.

BIBLIOGRAPHY

References to journal articles appear in square brackets. See page 431 for the full bibliographic citation.

ADDITIONAL INFORMATION

Each section of this index also includes additional details on how to use that section.

α	1975-	-1979	$\{x \mid \text{condition}\}$
therefore have me purposes of cons	ted to use a common notation and may odified the statement of a problem for the sistency. The most frequently appearing below. Consult the glossary on page 438 for	$\phi(n)$	Euler's totient function: number of positive integers less than or equal to n that are relatively prime to n . the null set.
additional informations Since the problem portion of the field	ation about some of the terms used herein. is covered by this index encompass a large d of mathematics, it is not possible to list d. For symbols not appearing in this list,	$\psi(z)$ ω	digamma function: $\psi(z) = \Gamma'(z)/\Gamma(z)$. Brocard angle of a triangle ABC : $\cot \omega = \cot A + \cot B + \cot C$.
the original source	dual problem in question and/or go back to e of the problem where more detail about be given. For problems dealing with very	∞ ±	infinity. plus or minus.
specialized topics with the specialize on the subject if	, it is assumed that the reader is familiar ed notation. Consult any standard textbook you need further information about such	$ \begin{array}{c} x \times y \\ m \times n \\ \angle ABC \end{array} $	x times y , also written $x \cdot y$ or just xy . m by n (as in an $m \times n$ array). angle ABC .
specialized notation	DII.	$\triangle ABC$	triangle ABC .
α	In problems about Fibonacci numbers,	[ABC]	area of triangle ABC .
β	$\alpha = (1 + \sqrt{5})/2.$ In problems about Fibonacci numbers,	AB	line segment AB or line AB . May also refer to the length of line segment AB . Sometimes written as \overline{AB} .
B(m,n)	$\beta = (1 - \sqrt{5})/2.$ Beta function:	\overrightarrow{AB}	vector AB or ray from A through B .
	$B(m,n) = \Gamma(m)\Gamma(n)/\Gamma(m+n).$	\vec{x}	vector x.
γ	Euler's constant: $\gamma = \lim_{n \to \infty} (\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} - \ln n).$		arc of circle from A to B . triangles ABC and XYZ are
$\Gamma(x)$	gamma function: $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$. If n is a nonnegative integer, $\Gamma(n+1) = n!$.		congruent. triangles ABC and XYZ are similar.
$\Delta f(x)$	First difference: $\Delta f(x) = f(x+1) - f(x)$.	$f(x) \sim g(x)$ $AB \ CD$	f is asymptotic to g: $f(x)/g(x) \to 1$. AB is parallel to CD.
$\Delta^n f(x)$	$ \begin{array}{ll} \text{nth difference:} \\ \Delta^n f(x) = \Delta \left(\Delta^{n-1} f(x) \right). \end{array} $	$\begin{vmatrix} AB \perp CD \\ A \end{vmatrix}$	AB is perpendicular to CD . norm of matrix A .
$\zeta(s)$	Riemann Zeta Function: $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$.	A^{T} A^*	transpose of matrix A . conjugate transpose of matrix A .
u(m)	Möbius mu function: $\mu(1) = 1$,	$d \mid n$	d divides n .
$\mu(n)$	$\mu(n) = 0$ if n has a squared factor,	$d \nmid n$	d does not divide n .
	$\mu(p_1p_2\dots p_k)=(-1)^k$ if all the primes	m:n	ratio of m to n .
π	p_1, p_2, \dots, p_k are different. pi: ratio of circumference of a circle to	m/n	m divided by n . Usage note: a/bc means $a/(bc)$.
	its diameter.	$m \div n$	same as m/n .
$\prod_{k=m}^{n} f(k)$	product of terms of the form $f(k)$ as the integer k ranges from m to n . Also written as $\prod_{k=m}^{n} f(k)$.	$\left(\frac{n}{p}\right)$	Also written as (n/p) . Legendre symbol: If p is an odd prime, $(n/p) = 1$ if there is an x such that
$\sigma(n)$	sum of the divisors of n (including 1 and n).		$x^2 \equiv n \pmod{p}$ and $(n/p) = -1$ otherwise.
$\sum_{i=1}^{n} f(I_i)$	sum of terms of the form $f(k)$ as the		absolute value of real number x : $ x = x$ if $x \ge 0$ and $ x = -x$ if $x < 0$.
$\sum_{k=m} f(k)$	integer k ranges from m to n . Also written as $\sum_{k=m}^{n} f(k)$.		norm of complex number z : If $z = a + bi$ where a and b are real, then $ z = \sqrt{a^2 + b^2}$.
$\sum_{k \in S} f(k)$	sum of terms of the form $f(k)$ as k ranges through all elements in set S .		x is less than y . x is less than or equal to y .
	Symmetric sum:	$x \leq y$ x > y	x is greater than y .
$\sum f(x_1,\ldots,x_n)$	sum of terms of the form	x > y $x \ge y$	x is greater than or equal to y .
sym	$f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$ as σ ranges through	$x \leq y$ $x \prec y$	x precedes y in some ordering.
	all permutations of $(1, \ldots, n)$.	$x \wedge y$ $x \succ y$	x follows y in some ordering.
	Can also denote the sum, over all $\binom{n}{r}$ subsets of r variables among n given	x = y	x = y in some ordering.
	variables, of a symmetric function f of	$x \neq y$	x is not equal to y .
au(n)	r variables. number of divisors of the positive	$\{x \mid \text{condition}\}$	the set of all x such that the specified condition is true.
	integer n .	1	Also written as $\{x : \text{condition}\}.$

$\{x_n\}$	1975	-1979	$\operatorname{arccot} x$
$\{x_n\}$	the sequence $x_1, x_2, x_3 \dots$	$D^n f$	nth derivative of f .
(a,b)	point with coordinates a and b .	$\frac{df(x)}{dx}$	derivative of $f(x)$ with respect to x .
	Also ordered pair.		nth derivative of $f(x)$ with respect
(a_1,a_2,\ldots,a_n)	point with specified coordinates. Also ordered <i>n</i> -tuple.	$\frac{d^n f(x)}{dx^n}$	to x .
(a,b)	open interval from a to b .	$\frac{\partial f}{\partial x}$	partial derivative of f with respect to x .
[a,b]	closed interval from a to b .	∂S	boundary of set S.
(a, b], [a, b)	half-open intervals.	$[f(x)]_{x=a}$	function $f(x)$ evaluated when $x = a$.
n!	Factorial: $n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$. Usage note: $2n!$ means $2(n!)$.	$\int f(x) dx$	indefinite integral of $f(x)$.
	By definition, $0! = 1$.	$\int_a^b f(x) dx$	definite integral of $f(x)$ from a to b .
$x \in A$	x is an element of the set A .	$\int_{\mathbb{R}}$	integral over the real line.
$x \notin A$	x is not an element of the set A .	$\int_{\mathbb{C}}$	integral over the complex plane.
¢	monetary amount in cents.		complex conjugate of the complex
\$	monetary amount in dollars.	\overline{z}	number z: If $z = a + bi$ where a and b
£	monetary amount in pounds sterling.		are real, then $\overline{z} = a - bi$.
$x \approx y$	x is approximately equal to y .	$A \Rightarrow B$	A implies B.
$y \propto x$	y is proportional to x: there is a	n°	n degrees.
<i>o</i>	constant k such that $y = kx$.	ABCDE	This font indicates that the letters
$A \cup B$	union of sets A and B . $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$		represent successive digits of a number written in the usual radix form. If no radix is specified, base 10 is assumed.
$A \cap B$	intersection of sets A and B .	$ABCDE_b$	a number written to base b .
	$A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$		binomial coefficient (" n choose k "):
$AB \cap CD$	point that is the intersection of lines AB and CD .	$\binom{n}{k}$	$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$
$A \setminus B$	set difference: $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}.$	$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling number of the first kind ("Stirling cycle number"):
\overline{A}	topological closure of set A .		$x^{\overline{n}} = \sum_{k} {n \brack k} x^{k}.$
$x \equiv y \pmod{m}$	$m \mid (x - y)$.	$\left\{ egin{array}{l} n \\ k \end{array} \right\}$	Stirling number of the second kind
$x \not\equiv y \pmod{m}$	$m \nmid (x-y)$.	(κ)	("Stirling subset number"):
$x \mod y$	remainder: $x - y \lfloor x/y \rfloor$.		$x^n = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}}.$
$\{x\}$	fractional part: $x \mod 1$.	\sqrt{x}	square root of x .
$\lfloor x \rfloor$	floor: greatest integer not larger than	$\sqrt[n]{x}$	nth root of x .
	x : $\lfloor x \rfloor = \max\{n \mid n \in \mathbb{Z} \text{ and } n \leq x\}.$	x^n	x to the n th power.
$\lceil x \rceil$	ceiling: smallest integer not less than x : $\lceil x \rceil = \min\{n \mid n \in \mathbb{Z} \text{ and } x \leq n\}$.	$x^{\underline{n}}$	falling factorial: $x^{\underline{n}} = x(x-1)(x-2)\cdots(x-n+1).$
$f^n(x)$	nth iterate of the function f , i.e.	$x^{\overline{n}}$	rising factorial:
	$f(f(f(\dots f(x)\dots)))$. Exception: For trigonometric functions, the		$x^{\overline{n}} = x(x+1)(x+2)\cdots(x+n-1).$ Sometimes written as $(x)_k$
	superscript represents an exponent. For example, $\sin^n \theta$ means $(\sin \theta)^n$.	K[x]	("Pochhammer's symbol"). ring of polynomials in the variable x
$f: A \to B$	a function f that maps A into B .	K[x]	with coefficients from the field K .
[G:H]	index of subgroup H in group G .	K[x,y]	ring of polynomials in the variables x
G/H	quotient group by normal subgroup H .	[, , , ,	and y with coefficients from the field
$G \cong H$	groups G and H are isomorphic.		K.
G	order of group G : the number of	A_n	alternating group on <i>n</i> elements.
	elements in the group.	a, b, c	In problems about $\triangle ABC$, a , b , and c denote the lengths of the sides of the
f'(x)	first derivative of $f(x)$ with respect to x .	A, B, C	triangle. In problems about $\triangle ABC = A = B$ and
f''(x)	second derivative of $f(x)$ with respect		In problems about $\triangle ABC$, A , B , and C denote the angles of the triangle.
£/// ()	to x .	$\forall x$	for all x .
f'''(x)	third derivative of $f(x)$ with respect to x .	$\operatorname{adj} A$	(classical) adjoint of matrix A .
$f^{(n)}(x)$	nth derivative of the function f at x .	$\arccos x$	principal value of angle whose cosine is x . Also written as $\cos^{-1} x$.
\dot{x} \ddot{x}	derivative of x with respect to t . second derivative of x with respect to t .	$\operatorname{arccot} x$	principal value of angle whose cotangent is x . Also written as $\cot^{-1} x$.

$\arcsin x$	1975-	-1979	\mathbb{R}^n
$\arcsin x$	principal value of angle whose sine is x .	inf	infimum.
$\arctan x$	Also written as $\sin^{-1} x$. principal value of angle whose tangent	$J_{ u}(z)$	Bessel function (of the first kind): $J_{\nu}(z) =$
ar coair w	is x . Also written as $\tan^{-1} x$.		$\frac{(x/2)^{\nu}}{\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \int_0^\infty \cos(x\cos(t))(\sin^{2\nu}t) dt.$
$\arg z$ B_n	argument of complex number z : If $z = r(\cos \theta + i \sin \theta)$, then $\arg z = \theta$. Bernoulli number:	K	In problems about $\triangle ABC$, K denotes the area of the triangle. (F is sometimes used in the literature.)
— <i>1</i> 1	Bernoulli number: $\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} B_n \frac{z^n}{n!}.$	L_n	Lucas number: nth term in the
\mathbb{C} C^k	the set of complex numbers. the set of k times differentiable functions.		sequence 1, 3, 4, 7, 11, 18, 29, defined by the recurrence: $L_0 = 2$, $L_1 = 1$, and $L_n = L_{n-1} + L_{n-2}$.
C^{∞}	the set of infinitely differentiable functions.	$L^p[a,b]$	space of p -times differentiable functions on the interval $[a, b]$.
card(A)	cardinality of a set A : the number of elements in A .	$\operatorname{lcm}[m,n]$	least common multiple of integers m and n .
	Sometimes written as $ A $.	$\lg x$	binary logarithm: $\log_2 x$.
$\cos \theta$	cosine of the angle θ .	$\lim_{x \to a} f(x)$	limit of $f(x)$ as x approaches a .
$ \cosh \theta $ $ \cot \theta $	hyperbolic cosine of the angle θ . cotangent of the angle θ .	$\lim_{x \to a+} f(x)$	limit of $f(x)$ as x approaches a from above.
$\csc \theta$ $\operatorname{csch} \theta$	cosecant of the angle θ . hyperbolic cosecant of the angle θ .	$\lim_{x \to a-} f(x)$	limit of $f(x)$ as x approaches a from below.
$\det(A)$	determinant of square matrix A .	lim inf	greatest lower limit. Also written as
$\operatorname{diag}(a_1,\ldots,a_n)$	$n \times n$ diagonal matrix with elements a_1, a_2, \ldots, a_n along the diagonal.	1.	lim.
e	base of natural logarithms:	lim sup	least upper limit. Also written as lim.
	$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$.	$\frac{\ln x}{1}$	natural logarithm: $\log_e x$.
E^n $E[x]$	Euclidean <i>n</i> -space. expected value.	$\log x$	common logarithm: $\log_{10} x$. Usage note: $\log x/\log y$ means $(\log x)/(\log y)$.
$\exists x$	there exists an x such that.	$\log_b x$	logarithm of x to the base b .
$\operatorname{erf}(x)$	error function: $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$.	m(A)	Lebesgue measure of the set A .
$\exp(x)$ F_n	exponential function: e^x . Fibonacci number: n th term in the	m_a, m_b, m_c	In problems about $\triangle ABC$, m_a , m_b , and m_c denote the lengths of the medians of the triangle.
1 11	sequence $1, 1, 2, 3, 5, 8, 13, \dots$ defined	$\max(a, b, \ldots)$	maximum of a set of numbers.
	by the recurrence: $F_0 = 0$, $F_1 = 1$, and	$\min(a, b, \ldots)$	minimum of a set of numbers.
$f_n(x)$	$F_n = F_{n-1} + F_{n-2}$. Fibonacci polynomial defined by the	N	the set of natural numbers (integers larger than 0).
	recurrence $f_n(x) = x f_{n-1}(x) + f_{n-2}(x)$ with initial conditions $f_1(x) = 1$ and	o(n)	$k = o(n)$ means that $k/n \to 0$.
/ 1)	$f_2(x) = x$. also written as	O(f(n))	$g(n) = O(f(n))$ means that there is a constant C such that $ g(n) \le C f(n) $.
$_{m}F_{n}\left(\begin{array}{c} a_{1},\ldots,a_{m} \\ b_{1},\ldots,b_{n} \end{array} \middle z \right)$	$_{m}F_{n}(a_{1},\ldots,a_{m};b_{1},\ldots,b_{n};z).$ hypergeometric function:	P_n	Pell number (of the first kind): n th term in the sequence defined by the
	$F\left(\begin{smallmatrix} a_1,\dots,a_m\\b_1,\dots,b_n \end{smallmatrix} \middle z\right) = \sum_{k>0} \frac{a_1^{\overline{k}} \cdots a_m^{\overline{k}}}{b_1^{\overline{k}} \cdots b_n^{\overline{k}}} \frac{z^k}{k!}.$		recurrence: $P_0 = 0$, $P_1 = 1$, and $P_n = 2P_{n-1} + P_{n-2}$.
	The subscripts m and n may be omitted if their values are clear.	$P_n(x)$	Legendre polynomial: $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$
$\gcd(m,n)$	greatest common divisor of integers m and n .	P(n,k)	Permutation: $P(n,k) = n(n-1)(n-2)\cdots(n-k+1).$
$GF(q^n)$	Galois field with q^n elements.	per(A)	permanent of square matrix A .
H_n	Harmonic number: $H_n = \sum_{k=1}^n \frac{1}{k}$.	P(x)	probability that event x is true.
h_a, h_b, h_c	In problems about $\triangle ABC$, h_a , h_b , and	Q	the set of rational numbers.
	h_c denote the lengths of the altitudes of the triangle.	Q_n	Pell number of the second kind: n th term in the sequence defined by the
i	imaginary unit: $i = \sqrt{-1}$.		recurrence: $Q_0 = 1$, $Q_1 = 1$, and
iff	if and only if.	\mathbb{R}	$Q_n = 2Q_{n-1} + Q_{n-2}.$ the set of real numbers.
$\operatorname{Im}(z)$	imaginary part of the complex number z : If $z = a + bi$ where a and b are real,	\mathbb{R}^n	for our purposes, same as E^n ,
	then $\text{Im}(z) = b$.	ш.	Euclidean n -space.

R	1975	-1979	Z[G]
\overline{R}	In problems about $\triangle ABC$, R denotes the length of the circumradius of the triangle.	$ sinh \theta $ $ sgn(x) $	hyperbolic sine of the angle θ . sign of x : $sgn(0) = 0$, $sgn(x) = 1$ if $x > 0$, and $sgn(x) = -1$ if $x < 0$.
r	In problems about $\triangle ABC$, r denotes the length of the inradius of the triangle.	$\sup_{T_n(x)}$	supremum. Chebyshev polynomial of the first kind:
r_a, r_b, r_c	In problems about $\triangle ABC$, r_a , r_b , and r_c denote the lengths of the exradii of the triangle.	t_a,t_b,t_c	$T_n(x) = \cos(n \arccos x)$. In problems about $\triangle ABC$, t_a , t_b , and t_c denote the lengths of the angle
$\operatorname{Re}(z)$	real part of the complex number z : If $z = a + bi$ where a and b are real, then $\text{Re}(z) = a$.	an heta an heta	bisectors of the triangle. tangent of the angle θ . hyperbolic tangent of the angle θ .
S_n	symmetric group on n elements. In problems about $\triangle ABC$, s denotes the semiperimeter of the triangle:	$\operatorname{tr}(A)$ $U_n(x)$	trace of the matrix A: sum of the elements along the main diagonal. Chebyshev polynomial of the second
$\sec \theta$ $\operatorname{sech} \theta$ $\operatorname{sin} \theta$	s = (a + b + c)/2. secant of the angle θ . hyperbolic secant of the angle θ . sine of the angle θ .	\mathbb{Z} $Z[G]$	kind: $U_n(x) = \sin[(n+1)\arccos x]/\sin(\arccos x)$. the set of integers. center of group G .
		1	

Algebra: Absolute value 1975–1979 Analysis: Functions

Algebra	Measuring problems	Theory of equations
	Metric conversions Money problems	constraints inequalities
Absolute value Age problems	change	integer roots
different times	coins	real roots
digits	combinations	roots
sum and product	denominations	systems of equations
Algorithms	devaluation interchanged digits	table of values Uniform growth
Calendar problems calendar cycles	stamps	Venn diagrams
day of week	sum equals product	Weights
Friday the 13th	word problems	Word problems
significant dates	Monotone functions	counting problems
Clock problems	Numerical calculations	percent problems
chimes hands	Numerical inequalities Partial fractions	population problems ratios
stopped clock	Polynomial divisibility	140105
time computation	Polynomials	
Complex numbers	Chebyshev polynomials	Analysis
cube roots	coefficients	Banach spaces
exponential equations	complex polynomials degree 4	Bessel functions
identities inequalities	derivatives	Cantor set
powers	fixed points	Complex variables
radicals	integer coefficients	analytic functions
Determinants	interpolation	conformal mappings
Discriminants	number of terms	convolutions harmonic functions
Exponential equations Fair division	roots and coefficients zeros	inequalities
Finite products	Radicals	number theory
Finite sums	approximations	polynomials
arithmetic progressions	arithmetic progressions	rational functions
binomial coefficients	irrational numbers	several variables
exponentials	nested radicals	Curves curve tracing
fractions permutations	reciprocals simplification	inequalities
radicals	Rate problems	inflection points
Floor function	cars	normals
Functional equations	distance	simple closed curves
1 parameter	exponential growth	space filling curves tangents
2 parameters 3 parameters	flow problems rivers	unit square
derivatives	running	Derivatives
fallacies	sheep	continued fractions
integrals	spaceships	finite products
periodic functions	traffic lights	finite sums
polynomials Functions	trains trips	gradients higher derivatives
Generalized binomial theorem	Recurrences	inequalities
Geometry of zeros	Roots of unity	maxima and minima
Identities	Sequences	one-sided derivatives
Inequalities	Solution of equations	product rule
absolute value degree 2	binomial coefficients degree 2	roots trigonometric function
degree 2 degree 3	degree 2 degree 20	Differential equations
degree 4	degree 4	Bernoulli equation
exponentials	determinants	Bessel functions
finite products	exponential equations	determinants
finite sums	linear	functional equations
fractions functional inequalities	logarithms radicals	initial value problems Laplacian
iterated functions	Sports	order 1
logarithms	Substitution	order 2
numerical inequalities	Sum of powers	order 4
polynomials	Systems of equations	order n
powers	2 variables	systems of equations
radicals Infinite series	3 variables 4 variables	Differential operators Elliptic integrals
Interest problems	5 variables	Exponential function
Iterated functions	6 variables	Fourier series
Logarithms	13 variables	Functional analysis
Maxima and minima	n variables	Functions
Means	logarithms	bounded variation

1975-1979 Combinatorics: Graph theory Analysis: Functions C^{∞} radicals fluids composition of functions unit circle force fields continuous functions Measure theory gravity particles convex functions arcs differentiable functions Borel sets projectiles function spaces rods digits rolling objects entire functions geometry exponentials integrals solid geometry Lebesgue outer measure systems of differential equations infinite series iterated functions monotone functions temperature probability measures tunnels linear independence uniform integrability monotone functions nearest integer function Numerical analysis Combinatorics Numerical approximations periodic functions Partial derivatives polynomials Algorithms real-valued functions Point sets Arrays Power series transcendental functions 0-1 matrices Pursuit problems Gamma function binary arrays Rate problems Haar functions circular arrays Riemann zeta function Hankel function distinct rows Harmonic functions Sequences inequalities cluster points Hypergeometric functions Latin rectangles complex numbers Identities maxima and minima convergence Inequalities symmetric arrays inequalities Infinite products transformations monotone sequences Integral equations triangular arrays pairs of sequences Integral inequalities Card shuffles rearrangements Integrals Cards recurrences area Coloring problems tetration asymptotic expansions trigonometry evaluations concyclic points graphs Series functions arrays gamma function hexagons binomial coefficients improper double integrals pennies closed form expressions improper integrals pentagons complex numbers limits points in plane continuous functions multiple integrals sets cubes trigonometry tournaments differentiable functions Intervals triangles divergent series Jacobians ${\bf Compositions}$ evaluations Laplace transforms Configurations exponential function Laurent series chains hyperbolic functions Legendre polynomials circular arrays inequalities Limits committees integrals arithmetic means concyclic points iterated functions binomial coefficients couples iterated logarithms elementary symmetric functions digital displays monotone sequences exponentials maxima and minima pairs of sequences factorials money problems pairs of series finite products people tail series finite sums Counting problems floor function geometric figures Weierstrass zeta function functional inequalities jukeboxes functions ordered pairs infinite series **Applied** paths integrals sequences logarithms **Mathematics** subsets sequences tournaments trigonometry Acoustics words Location of zeros Astronomy Distribution problems complex polynomials Demographics Geometry complex variables Electrical networks coloring problems entire functions Engineering concyclic points limits Geography dissection problems Maclaurin series Meteorology points in plane Maxima and minima Navigation points in space Operations research Graph theory bounds complex numbers bipartite graphs Optics constraints **Physics** complete graphs counting problems derivatives center of gravity covering problems integrals limits equilibrium directed graphs polynomials falling bodies family trees

Combinatorics: Graph theory 1975-1979 Geometry: Maxima and minima friends and strangers polar curves regular pentagons isomorphic graphs tangents regular polygons map problems maxima and minima triangles right triangles Angle measures squares trees Billiards triangles Ellipses Josephus problem Butterfly problem Latin squares Cake cutting Envelopes Equilateral triangles Lattice points Circles Paths $2 \,\, \mathrm{circles}$ exterior point Permutations 3 circles interior point isosceles triangles Selection problems 4 circles Sequences midpoints arcs Sets area orthogonal projection cardinality chords sides determinants circumference and diameter similar triangles inscribed rectangles Fallacies differences family of subsets interior point Family of lines partitions Grazing goat isosceles right triangles sums line segments Heptagons Sorting mixtilinear triangles Hexagons Tournaments orthogonal circles Hyperbolas chess tournaments surrounding chains Inequalities elimination tournaments tangents incomplete information Combinatorial geometry cyclic quadrilaterals maxima and minima concyclic points points in plane counting problems equilateral triangles soccer polygons tennis quadrilaterals triangular matches intervals rectangles Tower of Hanoi lines in plane right triangles Urns squares packing problems triangles planes Isosceles right triangles points in space Game Theory polygons Ladders triangles Lattice points Betting games triangulations circles Board games Concyclic points collinear points Bridge Conics convexity Card games Constructions counting problems Chess problems Cribbage angle bisectors ellipses angles equilateral triangles Dots and Pairs chords mappings Mastermind circles maxima and minima Nim variants *n*-dimensional geometry compass only 1 pile squares 3 piles triangles equilateral triangles opponent decrees line segments Limiting figures stars lines Locus Target Nim parallel lines angles Selection games pentagons circles arrays points conics dates quadrilaterals ellipses players select digits rectangles equal distances players select integers right triangles equilateral triangles polynomials rulers lines Tic-tac-toe variants rusty compass linkages Yes or no questions midpoint squares straightedge only rotating lines triangles trapezoids Geometry triangles Map problems Affine transformations Convexity Maxima and minima Analytic geometry Covering problems angles Cyclic polygons circular arcs circles Cyclic quadrilaterals Cycloids collinear points concyclic points convex hull conics Discs equilateral triangles curves Dissection problems isosceles triangles ellipses Euclidean geometry angles line segments equilateral triangles paths exponentials family of lines isosceles right triangles quadrilaterals line segments floor function rectangles folium of Descartes regular polygons partitions of the plane polygons right triangles lines

rectangles

locus

semicircles

Geometry: Maxima and minima 1975-1979 Linear Algebra: Matrices shortest paths incircle pedal triangles solid geometry mean proportionals perpendiculars thumbtacks perspectivities ratios relations among parts triangles sequences n-dimensional geometry Rolling sides Semicircles similar triangles 4-space special triangles convexity Simple closed curves curves Squares squares trisected sides inequalities 2 squares simplexes angles volume circles **Higher Algebra** circumscribed triangle Non-Euclidean geometry Octagons erected figures Algebras Packing problems inscribed circles Binary operations Paper folding interior point Category theory algorithms limits Fields $cu\bar{b}es$ line segments complex numbers equilateral triangles lines extension fields rectangles moats finite fields regular pentagons Stars number fields regular polygons Symmetry perfect fields squares Tesselations polynomials strips Tiling rational functions Parabolas Trapezoids subfield chains Triangle inequalities Parallelograms subfields Pentagons altitudes vector spaces Perspective drawings angle bisectors and medians Galois theory Point spacing angle bisectors extended ${\bf Groupoids}$ Points in plane angles Groups broken lines angles and radii abelian groups circles angles and sides alternating groups distances centroids associativity parallel lines circumcenter and incenter finite groups partitions circumradius group presentations perpendicular bisectors Gergonne point matrices rational distances half angles permutation groups triangles interior point subgroups Polygons medians and sides torsion groups 13-gons radii transformations 17-gons sides Lattices convex polygons Triangles Loops equilateral polygons 2 triangles Quaternions 3 triangles interior point Rings visibility 30 degree angle Boolean rings 60 degree angle Projective geometry characteristic Quadrilaterals 120 degree angle commutative rings adventitious triangles angle bisectors finite rings area altitudes ideals circumscribed quadrilateral angle bisectors integral domains determinants angle measures matrices diagonals angle trisectors nonassociative rings erected figures area number of idempotents inscribed circles centroids polynomials maxima and minima Ceva's theorem power series cevians sides regular rings supplementary angles circles subrings triangles circumcircles Rectangles ellipses Linear Algebra Regular heptagons equal angles Regular hexagons equal areas Regular octagons erected figures Affine spaces Regular pentagons escribed circles Determinants Regular polygons Euler line block matrices cyclic polygons inscribed circles complex numbers diagonals inscribed triangles evaluations exterior point interior point identities inscribed polygons isogonal conjugates recurrences isosceles triangles symmetric matrices limits point on circumcircle line segments Eigenvalues Right triangles lines Lattices medians angle measures Linear transformations nine-point circle circles Matrices

orthocenter

0-1 matrices

erected figures

Linear Algebra: Matrices 1975-1979 Number Theory: Forms of numbers adjoints Composed operations factorials floor function block matrices Composite numbers characteristic polynomial Continued fractions geometry Hermitian matrices convergents polynomials identity matrix evaluations powers of 2 products maxima and minima identities Moore-Penrose inverse periodic continued fractions triangular numbers norms word problems pi orthogonal matrices Divisors radicals permutations Decimal representations Equations polynomials Determinants Euler totient positive definite matrices 0-1 matrices divisors power series binomial coefficients fractions inequalities congruences powers products counting problems primes quotients similar matrices factorials spectral radius solution of equations identities stochastic matrices solution of equations **Factorials** symmetric matrices Difference equations Factorizations unitary matrices Digit problems Farey sequences arithmetic progressions Matrix equations Fermat's Last Theorem base systems Fermat's Little Theorem Matrix sequences Normed spaces cancellation Fermat numbers consecutive digits Vector spaces Fibonacci and Lucas numbers counting problems arrays cubes congruences **Number Theory** cyclic shift determinants digit reversals divisibility digital roots distinct digits Abundant numbers finite sums Algorithms golden ratio Approximations divisibility identities Arithmetic operations division infinite series primes Arithmetic progressions factorials coprime integers fractions recurrences geometric progressions Fibonacci numbers juxtapositions maxima and minima leading digits algorithms primes matrices ancestors maxima and minima ratios composite numbers missing digits congruences roots continued fractions subsequences multiples sum of terms number of digits determinants Arrays operations digit problems divisibility pandigital numbers Base systems cubes permutations Euler totient powers digit permutations finite sums digit reversals primes forms divisibility products generating functions greatest common divisor factorials squares limits sum of cubes identities maxima and minima sum of digits inequalities sum of powers modular arithmetic infinite series sum of squares terminal digits number of digits Pell's equation population problems palindromes primes pandigital numbers triangular numbers Diophantine equations polygonal numbers recurrences degree 2 systems of equations powers products degree 3 triangular numbers repeating fractions degree 4 trigonometric functions Finite products square roots degree 5 Floor function squares degree 6 sum of digits exponentials degree ntriangular numbers exponentials finite sums Binomial coefficients factorials identities arithmetic progressions linear inequalities congruences mediants integrals divisibility radicals iterated functions solution in rationals maxima and minima finite sums generating functions systems of equations primes Divisibility maxima and minima sequences number representations consecutive integers solution of equations Forms of numbers odd and even cube roots difference of squares primes decimal representations

exponentials

Collatz problem

difference of consecutive cubes

Number Theory: Forms of numbers	1975–1979	Number Theory: Sequence
difference of powers	reciprocals	powers
difference of squares	solution of equations	prime chains
perfect numbers	squares	products
powers of 2	sum of squares	recurrences
prime divisors	systems of congruences	sequences sum of primes
product of consecutive integers	Multinomial coefficients	Products
squares	Multiplication tables	Pythagorean triples
sum of consecutive cubes	Normal numbers	area
sum of consecutive integers	Number of divisors Number representations	area and perimeter
sum of consecutive odd integers sum of consecutive squares	Fibonacci numbers	arithmetic progressions
sum of cubes	fractions	counting problems
sum of divisors	Lucas numbers	digit problems
sum of factorials	perfect numbers	divisibility
sum of squared reciprocals	polygonal numbers	Fibonacci and Lucas numbers
sum of squares	ratios	generators
sum of two squares	sets	hypotenuse
unit fractions	standard symbols	inequalities inradius
ractional parts	unit fractions	inscribed squares
ractions	Palindromes	odd and even
unctional equations	Pandigital numbers	partitions
aussian integers	Partitions	primes
denerating functions	Pascal's triangle Pell numbers	reciprocals
Geometry cubes	Pen numbers Perfect numbers	squares
cubes cyclic quadrilaterals	Permutations	systems of equations
lattice points	derangements	Quadratic fields
quadrilaterals	fixed points	Quadratic reciprocity
rectangles	inequalities	Quadratic residues
rectangular parallelepipeds	modular arithmetic	Rational expressions
right triangles	order	Rational numbers Rectangles
semicircles	powers	Recurrences
Freatest common divisor	Polygonal numbers	arrays
Iarmonic series	consecutive integers	finite sums
nequalities	formulas	floor function
binomial coefficients	heptagonal numbers	fractions
congruences	hexagonal numbers	generalized Fibonacci sequences
exponentials fractional parts	modular arithmetic	inequalities
logarithms	octagonal numbers pentagonal numbers	limits
powers	Polyhedral numbers	modular arithmetic
powers of 2	Polynomials	multiplicative Fibonacci sequence
products	2 variables	order 1 order 2
radicals	3 variables	order 3
simultaneous inequalities	age problems	rates of divergence
sum and product	congruences	square roots
sum of squared differences	cyclotomic polynomials	sum of digits
ifinite products	degree 2	systems of recurrences
rational numbers	degree 5	Repdigits
east common multiple	evaluations	Repunits
egendre symbol imits	inequalities injections	Riemann zeta function
ucas numbers	products	Sequences
binomial coefficients	roots	binary sequences
congruences	Powers	binomial coefficients
cubes	differences	consecutive integers counts
digit problems	integers	density
divisibility	powers of 2	digits
sequences	powers of 2 and 3	divisibility
sets	radicals	family of sequences
Intrices	tetration	finite sequences
Iaxima and minima	Primes	floor function
feans	arithmetic progressions	inequalities
fersenne numbers	complete residue systems	law of formation
löbius function	congruences	limits
Iodular arithmetic	digit permutations	monotone sequences
complete residue systems	digit reversals	partitions
coprime integers fields	forms of numbers	products rational numbers
groups	gaps generators	rational numbers
permutations	greatest prime factor	subsequences
powers	pi function	subsequences sum of consecutive terms

Number Theory: Series 1975-1979 Recreational Mathematics: Logic puzzles Series perimeter points alternating series primes sets arithmetic progressions binomial coefficients right triangles socks scalene triangles sum of squares congruences similar triangles sums Triangular numbers counting problems digit problems divisibility unit interval urns factorials forms of numbers Sequences floor function Sets identities geometric series palindromes Slide rules identities polynomials Sports Statistics inequalities series Stochastic processes infinite series squares least common multiple Student's t-distribution sum of squares Twin primes Tournaments limits logarithms Transportation multinomial coefficients Waiting times **Probability** multiples permutations Recreational Arrays polynomials power series Bingo **Mathematics** Biology powers Birthdays powers of 2 Alphametics Cards primes animals Cauchy distribution Stirling numbers chess moves subseries Coin tossing Christmas Coloring problems sum of squares congruences Conditional probability unit fractions constructions Density functions
Dice problems cubes arithmetic means division arithmetic progressions independent trials doubly true closed under product loaded dice elements matching problems equations density divisibility *n*-sided dice food family of sets number of occurrences letters irrational numbers octahedral dice money maxima and minima Digit problems multiplication Distribution functions *n*-tuples names Distribution problems partitions numbers polynomials Examinations phrases prime divisors Gambler's ruin places subsets Game theory planets sum of elements card games radicals triples coin tossing simultaneous alphametics unit fractions dice games squares selection games Square roots states TV game shows Squares story problems Geometry Sum and product words Sum of consecutive odd integers boxes Arrays Sum of divisors circles Chess tours almost perfect numbers concyclic points Chessboard problems density divisibility convex hull coloring problems discs counting problems covering problems evaluations point spacing polygons polyhedra iterated functions deleted squares number of divisors distribution problems maxima and minima perfect numbers quadrilaterals rectangles prime factorizations n queens problem products squares paths sets triangles probability Independent trials Cryptarithms Sum of powers alphabet Inequalities Triangles 60 degree angle Jury decisions chess moves Number theory 120 degree angle encrypted messages area Order statistics hand codes area and perimeter Permutations powers base and altitude Random variables products consecutive integers Random vectors skeletons counting problems Relative motion tournaments Selection problems Logic puzzles geometric progressions distribution problems Caliban puzzles isosceles triangles nonisosceles triangles horse racing incomplete information obtuse triangles limits labeled boxes

Recreational Mathematics: Logic puzzles 1975–1979 Trigonometry: Triangles

Lattice points

liars and truthtellers relationships statements switches transportationyes or no questions Magic configurations gnomon magic squares hexagons magic pentagrams magic squares triangles Mazes Polyominoes coloring problems dominoes maxima and minima pentominoes tiling Puzzles block puzzles crossnumber puzzles peg solitaire picture puzzles sliding tile puzzles Riddles Shunting problems Word problems Words

Set Theory

Chains
Mappings
Power set
Relations
Subsets
Symbolic logic

Solid Geometry

Analytic geometry Boxes Complexes Convexity Covering problems Cubes Curves Cylinders Dissection problems

Lines Locus Maxima and minima Octahedra Packing problems
Paper folding Pentahedra Plane figures Points in space Polyhedra combinatorial geometry convex polyhedra pentagons spheres $\bar{squares}$ Projective geometry Pyramids Rectangular parallelepipeds Regular tetrahedra Right circular cones Skew quadrilaterals Solids of revolution Space curves Spheres Spherical geometry Surfaces Tetrahedra altitudes dihedral angles faces family of tetrahedra incenter inscribed spheres maxima and minima octahedra opposite edges planes triangular pyramids Triangles

Topology

Banach spaces Cantor set Compactifications Composed operations Connected sets Euclidean plane Function spaces Functions
Graph of a function
Hilbert spaces
Knots
Locally convex spaces
Metric spaces
Product spaces
Separation properties
Sets
Subspaces
Surfaces
Topological groups
Topological vector spaces
Unit interval

Trigonometry

Approximations Calculator problems Determinants Fallacies Identities constraints inverse trigonometric functions multiple angles sin sin and cos tan Inequalities Huygens \sin sin and cos sin and tan tan tan and cot tan and sec Infinite products Infinite series Numerical evaluations Recurrences Series Solution of equations arctan sin and cos tan and sec Systems of equations

Triangles

SUBJECT INDEX

(Problems sorted by topic)

Use this section to

- · find problems related to a given topic
- · find problems similar to a given problem
- · locate the text for a specific problem

In this section, we list all problems that were published during the years 1975–1979 sorted by topic. The full text of each problem is frequently given, but in many cases, only a summary of the problem will appear. The intent is to print enough of the problem so that you can locate the problem or result you are looking for without having to consult secondary references. We have taken the liberty of removing all extraneous matter from the text of the problems. Once a suitable problem has been found, you should consult the original source for more information. The proposer may have included additional information or references. We have also attempted to standardize the terminology and notation of the problems so that a consistent notation is used throughout this index. See the Glossary (page 438) or the Notation (page 3) for any unfamiliar terms or notation.

To locate the reference to where a problem originally appeared, click on the problem number to consult the Problem Chronology (page 282). The chronology will also give you references to where you can find the solution to the problem or comments about the problem. See also the Citation Index (page 423) to locate articles that reference this problem.

The Subject Classification Scheme used can be found beginning on page 7 of this index; or you can just browse around through the problems until you find the subject area you are interested in. If you are looking for a specific problem for which you remember some memorable phrase or concept, you may find it easier to locate the problem using the Keyword Index (page 440).

In many cases, a problem could be classified under more than one topic. We have chosen the one topic that we feel best represents the problem. Thus, each problem appears just once in this index. The Keyword Index (page 440) may be useful in locating a problem from secondary topics.

This index is not a problem book. The solutions to the problems are not printed here. To find the solution to a given problem, use the Problem Chronology (page 282) to locate the volume and page number of the journal in which the solution is published. Go to that journal for more information. Links to many journal archives appear in the Preface on page ix.

To the right of each problem number is the name of the person that proposed the problem. Not all journals require that published problems be original. If the journal indicated that the problem was not new, we use the phrase "submitted by" before the submitter's name. If no author's name is given, this means that the editor selected the problem from the mathematical folklore.

If two problems are identical or nearly the same, both problem numbers are listed in succession and then the text for the problem is printed just once.

Problems marked with an asterisk appear in the Unsolved Problems section (page 413).

When making references to a given problem in scholarly articles, you should give the original reference to the problem (or solution) in your paper. You should not reference this index. When referencing a problem or solution from a problem column in a bibliography or list of references, be sure to include the author's name and a proper reference to the journal containing the problem or solution. You should also go back to the original source and check out the exact text of the problem. Remember that the text as printed in this index may be a summary only and may contain omissions or revisions. Be sure to check the chronology of the problem (page 282) to see if there were any corrections printed for the original statement of the problem. You should also check out the comments and solutions published for the problem — there may be other notes there too concerning corrections to the statement of the problem. If you cannot locate the journal containing the problem, you can use the Journal Issue Checklist (page 401) to get the full name of the journal, as it was known at the time the problem was published, for inclusion in your bibliography. Use the Problem Chronology (page 282) to get the volume and page number where the problem was proposed. The Journal Information section (page 435 of Volume 1) may be useful to you in locating a library that holds the journal you are interested in.

JOURNALS AND CONTESTS COVERED BY THE SUBJECT INDEX

Journals: Abbreviation Name

AMM The American Mathematical Monthly CMB Canadian Mathematical Bulletin

CRUX Crux Mathematicorum

DELTA Delta

FQ The Fibonacci Quarterly

FUNCT Function

ISMJ Indiana State Mathematics Journal JRM Journal of Recreational Mathematics

MATYC The MATYC Journal
MENEMUI Menemui Matematik
MM Mathematics Magazine

MSJ The Mathematics Student Journal NAvW Nieuw Archief voor Wiskunde

NYSMTJ The New York State Mathematics Teachers' Journal

OMG Ontario Mathematics Gazette

OSSMB Ontario Secondary School Mathematics Bulletin

PARAB Parabola PENT The Pentagon

PME The Pi Mu Epsilon Journal

SIAM SIAM Review

SPECT Mathematical Spectrum

SSM School Science and Mathematics

TYCMJ The Two-Year College Mathematics Journal

Contests: Abbreviation Name

AUSTRALIA Australian Mathematical Olympiad
CANADA Canadian Mathematics Olympiad
IMO International Mathematical Olympiad

KURSCHAK Kurschak Mathematical Competition of Hungary
PUTNAM The William Lowell Putnam Mathematical Competition

USA U.S.A. Mathematical Olympiad

Absolute value Problems sorted by topic Age problems: sum and product

Absolute value

SSM 3664.

by Albert White

Let a and b be real numbers. Prove that

$$|a+b| + |a-b| = |a| + |b|$$

if and only if |a| = |b|.

SSM 3671.

by Al White

Show that if x, y, and z are real numbers such that

$$|x + y + z| = |x| + |y| + |z|,$$

then $(x \ge 0, y \ge 0, \text{ and } z \ge 0)$ or $(x \le 0, y \le 0, \text{ and } z \le 0)$.

Age problems: different times

PME 449. by Richard I. Hess

A fairly young man was married at the beginning of the month. At the end of the month his wife gave him a chess set for his birthday. If he was married and received the chess set on the same day of the week he was born, how old was he when he got married?

MATYC 135. by Frank Kocher

Miss Cohen is in her prime. Today is her birthday and her age is (as it was last year) the product of two primes, p_1 and p_2 . The difference $p_1 - p_2$ is the product of two other primes, p_3 and p_4 , but $p_3 - p_4 = p_5$ where p_5 is a fifth prime.

Assuming that Miss Cohen's age is less than a century, determine her age.

OMG 17.3.5.

A man was x years old in the year x^2 . How old was he in 1960?

OMG 17.3.4.

When Ernie was as old as Bert is now, Bert's age was half of Ernie's present age. When Bert will be as old as Ernie is now, the sum of their ages will be 99. Find Bert's present age.

JRM 393. by Les Marvin

In the year 2000, if I live that long, my age will be a perfect cube, and my son's age a perfect square. Not too many years ago the situation was reversed. How old are we?

FUNCT 3.1.6.

Hanging over a pulley is a rope with a weight at one end. At the other end, there is a monkey of equal weight. The rope weighs 250 gm per meter. The combined ages of the monkey and its father total 4 years, and the weight of the monkey is as many kilograms as his father is years old. The father is twice as old as the monkey was when the father was half as old as the monkey will be when the monkey is three times as old as the father was when he was three times as old as the monkey was. The weight of the weight plus the weight of the rope is half as much again as the difference between the weight of the weight and the weight of the weight plus the weight of the monkey. How long is the rope?

PARAB 332.

In a number of years equal to the number of times a pig's mother is as old as the pig, the pig's father will be as many times as old as the pig as the pig is years old now. The pig's mother is twice as old as the pig will be when the pig's father is twice as old as the pig will be when the pig's mother is less by the difference in ages between the father and the mother than three times as old as the pig will be when the pig's father is one year less than twelve times as old as the pig is when the pig's mother is eight times the age of the pig.

When the pig is as old as the pig's mother will be when the difference in ages between the pig's father and the pig is less than the age of the pig's mother by twice the difference in ages between the pig's father and the pig's mother, the pig's mother will be five times as old as the pig will be when the pig's father is one year more than ten times as old as the pig is when the pig is less by four years than one-seventh of the combined ages of his father and mother. Find their respective ages. (For the purposes of this problem, the pig may be considered to be immortal.)

PARAB 309.

In a family with 6 children, the five elder children are respectively 2, 6, 8, 12, and 14 years older than the youngest. The age of each is a prime number of years. How old are they? Show that their ages will never again all be prime numbers (even if they live indefinitely).

Age problems: digits

JRM 794.

by Arthur G. Bradbury

"How old is grandfather?" David asked. His father replied, "His age, like mine, is one more than six times the sum of its digits." How old is David's grandfather?

PARAB 262.

On his birthday in 1975, John reaches an age equal to the sum of the digits in the year he was born. What year was that?

Age problems: sum and product

CRUX 329.

by Gilbert W. Kessler

"The Product of the ages of my three children is less than 100," said Bill, "but even if I told you the exact product and even told you the sum of their ages you still couldn't figure out each child's age."

"I would have trouble if different ages are very close" said John as he looked at the children, "but tell me the product anyway."

Bill told him and John confidently told each child his

If you can now also tell the three ages, what are they?

JRM 699. by L. R. Ford, Jr.

Over the punchbowl, my host said, "Having been married on the twenty-ninth of February, we don't get to celebrate our anniversary very often: in fact this is only the fifth one. I usually ask visiting mathematicians to determine the ages of my three children given the sum and product of their ages, but since Professor Smith failed tonight, and Professor Jones also failed at our last party, I am going to let you

"Oh, don't do that," I replied, "I have already heard all the information I will need."

How old were the children?

Age problems: sum and product

Problems sorted by topic

Calendar problems: day of week

JRM 659.

by David L. Silverman

"I see that the sum of your children's ages is 36, the same as mine," said Alice to Barbara, "and the product of their ages is also the same as the product of my children's ages." "Then I know the ages of all the children, but of course I don't know which family is which," said Carol, who is known as a lightning calculator. "Well, my son is the oldest of all the children," said Barbara.

What are the ages of the children?

MSJ 437. PENT 314.

by Paul Weinberg by H. Laurence Ridge

Two mathematicians were seeing each other again for the first time in many years. One said, "Since I last saw you, I have had three children." "Well," said the other, "What are their ages?" "The product of their ages is 36, and the sum of their ages is the same as your house number," replied the first. The second thought for a moment and then said that he would need more information. "Oh, the oldest one looks like me," the first added, whereupon his friend quickly figured out their ages. What were the ages of the three children?

OSSMB 79-1.

One morning after church the verger, pointing to three departing parishioners, asked the bishop, "How old are those three people?" The bishop replied, "The product of their ages is 2450, and the sum of their ages is twice your age." The verger thought for some moments and said, "I'm afraid I still don't know." The bishop answered, "I'm older than any of them." "Aha!" said the verger. "Now I know." How old was the bishop? (Ages are in whole numbers of years and no one is over 100.)

Algorithms

SSM 3690. by Louis J. Hall

Establish the following generalization of a method for finding cube roots and fifth roots using the square-root key of a hand calculator: The rth root of any positive number N can be approximated by the iterative formula

$$x_{n+1} = (Nx_n^i)^{1/2^m},$$

where x_n is the *n*th approximation, m is the smallest positive integer such that $2^m \ge r$, and $i = 2^m - r$.

PUTNAM 1977/B.3.

An ordered triple (x_1, x_2, x_3) of positive irrational numbers with $x_1 + x_2 + x_3 = 1$ is called balanced if each $x_i < 1/2$. If a triple is not balanced, say if $x_j > 1/2$, one performs the following

$$B(x_1, x_2, x_3) = (x'_1, x'_2, x'_3),$$

where $x'_i = 2x_i$ if $i \neq j$ and $x'_j = 2x_j - 1$. If the new triple is not balanced, repeat the procedure. Does continuation of this process always lead to a balanced triple after a finite number of repetitions?

FUNCT 3.3.3.

Give an algorithm for multiplying any two numbers (given, say, to four significant figures) using your school trigonometric tables.

PARAB 314.

Bob set himself the task of arranging all the positive rational numbers in a list. He did it as follows:

$$a_1 = 1/1$$
, $a_2 = 1/2$, $a_3 = 2/1$, $a_4 = 1/3$, $a_5 = 2/2$, $a_6 = 3/1$, $a_7 = 1/4$, $a_8 = 2/3$, $a_9 = 3/2$, $a_{10} = 4/1$, $a_{11} = 1/5$

(Thus the rational number p/q precedes h/k in the list if p+q< h+k or if p+q=h+k and p< h.) His friend Joe asked him how he knew that every rational number would appear in the list. Bob answered by writing down a formula, giving the value of n when the rational number $p/q=a_n$ would appear. Joe, still unconvinced, wanted to know what the 1001st number in the list would be. After a few calculations, Bob answered him. Duplicate Bob's formula and find a_{1001} .

JRM 755. by Friend H. Kierstead, Jr.

Write a program which will read a decimal number and print it out as a roman numeral. Although the letters I,V,X,L,C,D, and M will have to be contained within the program as constants, there should be no constants within the program which include two or more of these letters.

Calendar problems: calendar cycles

SSM 3769. by Kathryn W. Lynch

There is a mathematical pattern for determining the years in which Christmas is observed on Sunday. Show that you have discovered the pattern for years since the last calendar change (1752). After December 25, 1978, state the years involved through the year 2025 A.D. How long will this pattern continue?

CRUX 231. by Viktors Linis

Find the period P of the Easter dates based on Gauss's algorithm, that is, the smallest positive integer P satisfying the conditions:

$$D(Y+P) = D(Y)$$
 and $M(Y+P) = M(Y)$

for all Y, where D and M are the day and month functions of year number Y.

JRM 419. by Sidney Kravitz

Our calendar has 97 Leap years in every 400-year period. Every fourth year is a Leap year except that the years 2100, 2200, and 2300 will not be Leap years, but 2000 and 2400 will be. The average length of the calendar year is thus $365\frac{97}{400}$ days.

On which day in the 400-year cycle will the calendar time be the maximum behind the average true time and on which day will it be the maximum ahead? What is the variation between these extremes?

Calendar problems: day of week

$ISMJ\ J10.1.$

If a girl's 13th birthday is Tuesday, October 8, 1974, on what day of the week was she born?

FUNCT 2.1.3.

Is 2/22/2022 a Tuesday? How about 2/2/2202?

Calendar problems: Friday the 13th Problems sorted by topic Complex numbers: inequalities

Calendar problems: Friday the 13th

FUNCT 1.1.1.

Show that the 13th day of the month is more likely to fall on a Friday than on any other day of the week.

OMG 18.1.2.

On the average, over a period of years, how frequently does Friday the 13th occur?

FUNCT 3.2.1.

Prove that every year contains at least one Friday the 13th.

PARAB 273.

What is the largest possible number of Friday the 13ths that can occur in any calendar year? What is the smallest?

Calendar problems: significant dates

JRM C9. by Ray Lipman

Easter is defined as the first Sunday after the full moon, on or after the vernal equinox. Using the Gregorian calendar and taking into account those known astronomical processes which will in the long run affect either the occurrence of the equinoxes or the length of the lunar period, write a program capable of listing the month and day of Easter for every year up to one million A.D.

Clock problems: chimes

OMG 18.3.1.

A clock strikes the hours and once each half hour. If you woke up at night and heard the clock strike "one", what is the longest time you would have to lie awake to be sure of the time?

Clock problems: hands

ISMJ 14.24.

Suppose the two hands of a clock are indistinguishable, that they both point exactly at minute marks, and they are 9 minutes apart. What can you deduce about the time?

ISMJ J10.2.

The hour and minute hands of a clock are each exactly on a minute mark and the angle between the hands is exactly 36° . What time is it?

ISMJ J10.9.

The hour and minute hands of a clock form a right angle. How long before they will form a right angle again?

OMG 15.3.8.

On a twelve-hour clock, how often are the minute and hour hands at right angles in 12 hours?

FUNCT 3.3.2.

The hour hand, the minute hand, and the second hand of a standard 12-hour clock are all together on the twelve at noon. If the clock keeps perfect time, they are all together again at midnight. Do they coincide at any other time? If so, when? If not, when do they most nearly coincide? When do the hands come closest to trisecting the clock-face?

OMG 18.1.8.

A clock hangs on the wall of a railway station. The wall is 71 ft 9 in. long and 10 ft 4 in. high. If the hands of the clock were pointing in opposite directions, and were parallel to one of the diagonals of the wall, what was the time?

MM 940. by Edwin P. McCravy

Suppose a clock has minute and hour hands of the same length and indistinguishable. Of the set of all instants in a 12-hour period, consider the partition:

A = set of all instants when the clock reading would be ambiguous;

B= set of all instants when the reading would not be ambiguous.

Which, if either, of these sets is finite?

Clock problems: stopped clock

PENT 278. by Kenneth M. Wilke

Dr. Knowitall noticed that his clock had stopped. So he wound it, noted the time to be 6:00 PM, and went to a friend's house to play chess. He arrived at 8:30 according to the clock in his friend's house. Dr. Knowitall left at 11:00. When he arrived home, the time, according to his clock, was 12:30 AMHe reset his clock to the correct time. Assuming that Dr. Knowitall walked at the same rate in both directions and assuming that his friend's clock kept perfect time, what was the correct time when Dr. Knowitall reset his clock?

Clock problems: time computation

OMG 17.3.3.

If at a certain instant it is 7 o'clock, what time is it 11,999,999,994 hours later?

Complex numbers: cube roots

CRUX 4. by Léo Sauvé

It is easy to verify that $2\sqrt{3} + i$ is a cube root of $18\sqrt{3} + 35i$. What are the other two cube roots?

ISMJ 12.12.

Find a and b so that $(a + bi)^3 = i$.

Complex numbers: exponential equations

CRUX 10. by Jacques Marion

Does the equation $e^z = z$ have any complex roots?

Complex numbers: identities

PME 353. by Clayton W. Dodge

Prove that if a, b, and c are complex numbers such that a+b+c=0 and |a|=|b|=|c|, then $a^3=b^3=c^3$. Can this result be extended to more than three numbers?

Complex numbers: inequalities

AMM E2616. by Andrew Odlyzko and Lloyd Welch

Let a be a complex number with |a| < 1, and let $\varepsilon > 0$. Prove or disprove: There exists an algebraic integer b such that $|a - b| < \varepsilon$ and all conjugates of b lie in the annulus

$$|a| - \varepsilon < |z| < 1 + \varepsilon$$
.

Complex numbers: inequalities

Problems sorted by topic

Fair division

MM Q663.

Prove that $|1+z| \le |1+z|^2 + |z|$ for complex z.

PUTNAM 1979/B.6.

For $k=1,2,\ldots,n$ let $z_k=x_k+iy_k$, where the x_k and y_k are real and $i=\sqrt{-1}$. Let r be the absolute value of the real part of

$$\pm \sqrt{z_1^2 + z_2^2 + \dots + z_n^2}.$$

Prove that $r \leq |x_1| + |x_2| + \cdots + |x_n|$.

Complex numbers: powers

MATYC 118. ISMJ 12.11.

by Lawrence Cohen

Prove that i^i is real and find its value.

Complex numbers: radicals

PME 345.

by Vladimir F. Ivanoff

Resolve the paradox:

$$i(\sqrt{i} + \sqrt{-i}) = i\sqrt{i} + i\sqrt{-i} = \sqrt{-i} + \sqrt{i} = \sqrt{i} + \sqrt{-i}.$$

Determinants

SIAM 78-3. by H. L. Langhaar and R. E. Miller

A special case of a more general conjecture on determinants that has been corroborated numerically by operations with random determinants generated by a digital computer is expressed by the equation $\Omega = \Delta^{n+1}$, in which

$$\Delta = |a_1 b_2 \cdots q_{n-1} r_n|$$

is any nth order determinant, and Ω is a determinant of order n(n+1)/2, constructed from the elements of Δ as follows: The first row in Ω consists of all terms that occur in the expansion of $(a_1 + a_2 + \cdots + a_n)^2$. A similar construction applies for rows $2, 3, \ldots, n$. Row n+1 consists of expressions that occur in the expansion of

$$(a_1 + a_2 + \cdots + a_n) (b_1 + b_2 + \cdots + b_n).$$

A similar construction applies for the remaining rows. The letters in the columns in Ω are ordered in the same way as the subscripts in the rows. Prove or disprove the conjecture $\Omega = \Delta^{n+1}$.

PUTNAM 1978/A.2.

Let $a, b, p_1, p_2, \ldots, p_n$ be real numbers with $a \neq b$.

$$f(x) = (p_1 - x)(p_2 - x)(p_3 - x) \cdots (p_n - x).$$

Show that

$$\det \begin{pmatrix} p_1 & a & a & a & \cdots & a & a \\ b & p_2 & a & a & \cdots & a & a \\ b & b & p_3 & a & \cdots & a & a \\ b & b & b & p_4 & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ b & b & b & b & \cdots & p_{n-1} & a \\ b & b & b & b & \cdots & b & p_n \end{pmatrix}$$

$$=\frac{bf(a)-af(b)}{b-a}.$$

AMM E2735.

by I. P. Goulden and D. M. Jackson

Let n be a fixed integer and define

$$f_k(x) = \sum_{r>0} \frac{x^{nr+k}}{(nr+k)!}, \quad 0 \le k \le n-1.$$

For $P \subset S = \{0,1,\ldots,n-1\}$, let F(P;x) = F(P) be the square matrix whose entries are indexed by elements of P and the (i,j)-th entry is $f_{i-j}(x)$, $i,j \in P$. (We set $f_r(x) = f_k(x)$ if $r \equiv k \mod n$.)

If n is even, show that $\det F(P) = \det F(S \backslash P)$ for all $P \subset S$. Generalize.

Discriminants

PME 414.

by Steven R. Conrad

In discussing the discriminant of a quadratic equation, a certain textbook says, "... if a, b, and c are integers with $a \neq 0$ and if $b^2 - 4ac = 79$, the roots of $ax^2 + bx + c = 0$ will be real, irrational, and unequal." Explain why this is incorrect.

Exponential equations

MATYC 131.

by Jeffrey Goldstein

Let a > 1. Prove that there exist real numbers b and c such that $a^b = 2bc$ where -1 < b < c < 0.

TYCMJ 114.

by Larry Hoehn

Find all real solutions of $8^x(3x+1)=4$.

MM 1078.

by R. P. Boas

Describe as fully as possible the solutions of

$$xe^y + ue^x = 0.$$

MM 1081.

by Edwin P. McCravy

Find all real t such that for all x > y > 0,

$$(x-y)^t(x+y)^t = (x^t - y^t)^t(x^t + y^t)^{2-t}.$$

Fair division

JRM 527.

by David L. Silverman

It has been established that when a taxicab carries several passengers, not all picked up at the same time, the equitable way to determine each passenger's share of the total fare is to divide the trip into uninterrupted legs, i.e., legs between consecutive pickups, assign to each leg a prorated share of the total fare based on relative distance, and to each passenger during that leg a fraction of that share, prorated on the basis of the total number of passengers during that leg.

- (a) Mr. and Mrs. N reside at 1/N on the real line for $N=1,2,3,\ldots$. A taxicab drives from 1 to 0, picking up successively all the Mmes. N and depositing them at 0 to attend a Female Liberation meeting. If the total fare is a dollar, how much is owed by Mrs. One?
- (b) The cab returns from 0 to 1, picking up all the Messrs. N ($N=2,3,4,\ldots$) in reverse order and depositing them at Mr. One's home to attend a Male Domination meeting. The total fare is again a dollar. What is the maximum share owed by any passenger?

Fair division Problems sorted by topic Finite sums: binomial coefficients

FUNCT 1.3.1.

by Michael Moses

Three men go fishing and catch a certain number of fish. During the night, one man awakes and decides to go home. Without waking the others, he makes 3 equal shares and finds 2 fish left over. He takes his share and the 2 left over and goes home.

A little while later another awakes and makes 3 shares of what is left, finds 2 left over, takes these and his share, and leaves.

The last man also makes 3 shares, finds 2 left over, and takes these 2 and his share and leaves.

How many fish did they catch?

Generalize this problem so as to answer the same question but now for M men, with a remainder of N ($0 \le N < M$).

OMG 17.1.9.

Two men sold their herd of x cows at x dollars per head. With the proceeds, they bought sheep at \$10 each and a single lamb costing less than \$10. Each man received the same number of animals but the one receiving the lamb had to be compensated so as to make the division equitable. How much money did he receive from the other man?

Finite products

SSM 3675.

by Steven R. Conrad

Simplify the product

$$\prod_{k=1}^{n} \left(x^{2^k} - a^{2^{k-1}} x^{2^{k-1}} + a^{2^k} \right).$$

AMM 6044.

by Jacques Gilles

Show that $\prod (\alpha^4 + \alpha + 1) \neq 83^3$, the product being taken over all the roots of the equation $\alpha^{49} = 1$ except $\alpha = 1$.

Finite sums: arithmetic progressions

OMG 16.1.7.

What is the sum of the first 30 odd natural numbers?

SSM 3585.

by Herta T. Freitag

Consider $\{a_i\}$, an arithmetic progression of difference d and $\{b_i\}$, a geometric progression of ratio r. Let the first n terms of these sequences "intermingle" to form the series

$$\sum_{i=0}^{n} a_i b_i.$$

- (a) Obtain a formula for this summation.
- (b) What happens if n grows beyond bound?

SSM 3663.

by George Nichols and Robert A. Carman

Find a formula for the sum of the following "combined arithmetic-geometric" progression:

$$a + (a + d)r + (a + 2d)r^{2} + (a + 3d)r^{3} + \dots + (a + nd)r^{n}$$
.

Finite sums: binomial coefficients

CRUX 366.

by A. Liu

Evaluate

$$\sum_{i=n}^{2n-1} \binom{i-1}{n-1} 2^{1-i}.$$

PUTNAM 1976/B.5.

Evaluate

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (x-k)^n.$$

SIAM 76-14.*

by L. Carlitz

Prove that

$$\sum_{i=0}^{m} \sum_{j=0}^{n} (-1)^{i+j} \binom{i+j}{i} \binom{m-i+j}{m-i} \binom{i+n-j}{i}$$

$$\cdot \binom{m-i+n-j}{m-i} = \begin{cases} \binom{\frac{1}{2}(m+n)}{\frac{1}{2}m}^2, & (m, n \text{ both even}), \\ 0, & \text{otherwise}, \end{cases}$$

$$\sum_{i=0}^{m} \sum_{j=0}^{n} (-1)^{i+j} \frac{\binom{m}{i}^2 \binom{n}{j}^2}{\binom{m+n}{i+j}} = \delta_{mn},$$

$$\sum_{r=0}^{\min(i,j,k)} \frac{\binom{i}{r}\binom{j}{r}\binom{k}{r}}{\binom{i+j+k}{r}} = \frac{(j+k)!(k+i)!(i+j)!}{i!j!k!(i+j+k)!} \ .$$

AMM E2601.

by Robert Weinstock

Prove that

$$\sum_{k=0}^{\lfloor n/2\rfloor} \frac{\binom{2n-k}{k}}{\binom{2n-k}{n}} \frac{2n-4k-1}{2n-2k+1} 2^{n-2k} = 1.$$

AMM E2602.

by C. L. Mallows

Prove that

$$\begin{split} \sum_{i=0}^{a-1} \binom{b+i-1}{b-1} \binom{2n-b-i}{n-b} \\ &= \sum_{i=b}^{n} \binom{a+i-1}{a-1} \binom{2n-a-i}{n-a}. \end{split}$$

AMM E2681.

by David Burman

If x + y = 1, show that

$$\sum_{i=0}^{m-1} \binom{n+i-1}{i} x^i y^n + \sum_{j=0}^{n-1} \binom{m+j-1}{j} x^m y^j = 1.$$

Finite sums: exponentials Problems sorted by topic

Finite sums: exponentials

SIAM 75-3.

by U. G. Haussmann

Let

$$f(u) = \frac{\exp(u + nu) + \exp(-nu)}{1 + \exp u},$$

where

$$\cosh u = 1 + \frac{x}{2}.$$

If y = f[u(x)], then show that

$$y(x) = \sum_{k=0}^{n} \binom{n+k}{2k} x^{k}.$$

Finite sums: fractions

CANADA 1975/1.

Simplify

$$\left(\frac{1\cdot 2\cdot 4 + 2\cdot 4\cdot 8 + \dots + n\cdot 2n\cdot 4n}{1\cdot 3\cdot 9 + 2\cdot 6\cdot 18 + \dots + n\cdot 3n\cdot 9n}\right)^{1/3}.$$

OSSMB G75.1-3.

Find the sum

$$\sum_{k=1}^{n} \frac{x^{k-1}}{(1+x^k)(1+x^{k+1})} .$$

OSSMB G76.1-5.

Consider the sequence defined by

$$t_n = \frac{n}{1 + n^2 + n^4}, \quad n = 1, 2, 3, \dots$$

Find the sum of the first n terms of this sequence.

OSSMB G79.3-6.

Sum to n terms the series whose ith term is

$$\frac{i^4 + 2i^3 + i^2 - 1}{i^2 + i}.$$

MSJ 429.

by Joanne B. Rudnytsky

For x > 1, find a formula for

$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{x^k}.$$

FQ H-245.

by P. Bruckman

Prove the identity

$$\sum_{k=0}^{n} \frac{x^{\frac{1}{2}k(k-1)}}{(x)_k(x)_{n-k}} = \frac{2 \prod_{r=1}^{n-1} (1+x^r)}{(x)_n},$$

 $(n=1,2,\ldots)$, where

$$(x)_n = (1-x)(1-x^2)(1-x^3)\cdots(1-x^n),$$

$$(n = 1, 2, \dots; (x)_0 = 1).$$

CRUX 393.

by Sahib Ram Mandan

Functional equations: 1 parameter

 If

$$f_n(a_i) = (a_i - a_1) \cdots (a_i - a_{i-1})(a_i - a_{i+1}) \cdots (a_i - a_n),$$

prove that, for $k = 0, 1, \dots, n-2,$

$$\sum_{i=1}^{n} \frac{a_i^k}{f_n(a_i)} = 0.$$

Finite sums: permutations

CRUX 78.

by Jacques Sauvé

Is there a simple formula for the sum of all the permutations

$$\sum_{r=0}^{n} P(n,r)?$$

Finite sums: radicals

CRUX 214.

by Steven R. Conrad

Prove that if the sequence (a_i) is an arithmetic progression, then

$$\sum_{k=1}^{n-1} \frac{1}{\sqrt{a_k} + \sqrt{a_{k+1}}} = \frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}.$$

Floor function

MM 1080.

by Marlow Sholander

Some calculators have an "int" key. The "integral part of x" is given by int $x = ||x|| \operatorname{sgn} x$.

We have $|x| = x \operatorname{sgn} x$ and $\max(x, y) = (x + y + |x - y|)/2$ as examples of familiar functions that can be expressed in terms of "sgn" together with the operations $\{+, -, \times, \div\}$. Show that these functions can be similarly expressed in terms of "int".

Functional equations: 1 parameter

CRUX 343.*

by Steven R. Conrad

The greatest integer function satisfies the functional equation

$$f(nx) = \sum_{k=0}^{n-1} f\left(x + \frac{k}{n}\right)$$

for all real x and positive integers n. Are there other functions which satisfy this equation?

AMM E2677.

by Erwin Just

Let $n \geq 2$ be an integer. Show that there exists a function $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(x) + f(2x) + \dots + f(nx) = 0$$

for all x and f(x) = 0 if and only if x = 0.

PUTNAM 1977/A.3.

Let u, f and g be functions, defined for all real numbers x, such that

$$\frac{u(x+1) + u(x-1)}{2} = f(x)$$

and

$$\frac{u(x+4) + u(x-4)}{2} = g(x).$$

Determine u(x) in terms of f and g.

Functional equations: 1 parameter

Functional equations: 3 parameters

AMM 6106.

by D. S. Mitrinović and P. M. Vasić

Find the general solution to the functional equation

$$\sum_{k=1}^{n} f(x^{k}) = \sum_{k=1}^{n} f(x^{-k}).$$

FQ B-325.

by Verner E. Hoggatt, Jr.

Let $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$. Prove that there does not exist an even, single-valued function G such that

$$x + G(x^2) = G(\alpha x) + G(\beta x)$$

on $-\alpha < x < \alpha$.

PUTNAM 1979/A.2.

Establish necessary and sufficient conditions on the constant k for the existence of a continuous real valued function f(x) satisfying $f(f(x)) = kx^9$ for all real x.

MM 990.

by Harry W. Hickey

Prove that the identity

$$f(x+1)/g(x+1) - f(x)/g(x) = h(1/x)$$

is not satisfied by any non-constant polynomials $f,\ g,$ and h.

Functional equations: 2 parameters

AMM 6226. by Marlow Sholander

Domain D consists of the real numbers \mathbb{R} from which a finite set is deleted. On domain D, the functions f, F, and G are continuous and satisfy the identity

$$f(r) - f(s) = (r - s)F(r)G(s).$$

Describe f(x) on domain \mathbb{R} .

AMM E2575.

by David Shelupsky

Solve the functional equation

$$f\left(\frac{x-y}{\log x - \log y}\right) = \frac{1}{2}f(x) + \frac{1}{2}f(y),$$

this to hold for all distinct $x,y\in(0,\infty)$ and $f\colon(0,\infty)\to\mathbb{R}$ to be continuous.

AMM E2583.

by C. L. Mallows

Find all continuous $g: \mathbb{R} \to \mathbb{R}$ such that, for some continuous $f: \mathbb{R}^2 \to \mathbb{R}$, we have g(xy) = f(x, g(y)) for all $x, y \in \mathbb{R}$.

AMM E2661.

by Steve Galovich

Find all functions f that satisfy the three conditions

- (i) f(x,x) = x,
- (ii) f(x, y) = f(y, x),
- (iii) (x + y)f(x, y) = yf(x, x + y),

assuming that the variables and the values of f are positive integers.

CRUX 314.

by Michael Ecker

Find all functions $f:\mathbb{R}\to\mathbb{R}$, continuous at x=0, satisfying the functional relation

$$f(x) \cdot f(y) = \left[f\left(\frac{x+y}{2}\right) \right]^2$$

for all $x, y \in \mathbb{R}$.

CRUX PS7-1.

(a) Determine F(x) if, for all real x and y,

$$F(x)F(y) - F(xy) = x + y.$$

(b) Generalize.

MM Q609.

by Julian H. Blau

Which real functions satisfy

$$f(x+y)^2 = f(x)^2 + f(y)^2$$
?

OSSMB 79-9.

In each of (a), (b) below, f denotes a real-valued function of a real variable, not identically zero and differentiable at x = 0.

(a) If f(x)f(y) = f(x+y) for all x, y, prove that f has derivatives of all orders at all points x, and that

$$\sum_{n=0}^{\infty} f(n) = \frac{1}{1 - f(1)} \quad \text{if} \quad f(1) < 1.$$

(b) If
$$f(x)f(y) = f(x - y)$$
 for all x, y , find f .

TYCMJ 102.

by Mangho Ahuja and Leonard Palmer

Find all real-valued functions f on $(0, \infty)$ such that $f(x) \cdot f(y) = f(x-y)$ for all real x and y.

TYCMJ 106. by James W. Murdock

Let f be a real-valued function with domain $(-\infty, \infty)$ such that f(xy) = [f(x) + f(y)]/(x+y) for all x and y. Does there exist a value of x for which $f(x) \neq 0$?

TYCMJ 71. by Peter A. Lindstrom

Let f and g be real-valued, nonconstant functions such that, for all real numbers x and y,

$$f(x+y) = f(x)g(y) + g(x)f(y)$$

and

$$g(x + y) = g(x)g(y) - f(x)f(y).$$

What are the possible values of f(0) and g(0)?

ISMJ 13.13.

What are the continuous solutions of the functional equation f(xy) = f(x) + f(y)?

TYCMJ 92.

by Wm. R. Klinger

Let f be a real-valued function defined on $(0,\infty)$ such that f(xy)=f(x)+f(y) for all $x,y\in(0,\infty)$. Prove that if f is continuous at 1, then f is continuous on $(0,\infty)$.

Functional equations: 3 parameters

AMM E2607.

by E. Montana College Prob. Group

Solve the functional equation

$$f(x,y) + f(y,z) + f(z,x) = 3f\left(\frac{1}{3}(x+y+z), \frac{1}{3}(x+y+z)\right)$$

in the class of all continuous functions $\mathbb{R}^2 \to \mathbb{R}$.

What can be said about the solutions in the class of all functions $\mathbb{R}^2 \to \mathbb{R}$?

Functional equations: derivatives

Problems sorted by topic

Geometry of zeros

Functional equations: derivatives

by Richard Stanley

Define a sequence of polynomials (with rational coefficients) as follows: $p_0(x) = 1$, $p_n(0) = 0$ if n > 0, and $p'_{n+1} = p_n(1-x)$ if n > 0. Thus $p_1(x) = x$, $p_2(x) = x - \frac{1}{2}x^2$, $p_3(x) = \frac{1}{2}x - \frac{1}{6}x^3$, etc. Find $p_n(x)$. In particular, what is

MATYC 129.

TYC 129. by Gino Fala Find all differentiable functions $f: \mathbb{R}^2 \to \mathbb{R}, z =$ f(x,y), such that the volumes of the tetrahedrons formed by the tangent planes and the coordinate planes remain constant.

Functional equations: fallacies

MATYC 72. by Gene Zirkel

Find the fallacy: One is given a function f such that $f^2 \equiv f$. Therefore

$$f^2 - f \equiv 0$$

$$f(f-1) \equiv 0.$$

Therefore f is a constant function.

Functional equations: integrals

SIAM 75-18. by O. G. Ruehr

Find a continuous function F(t) for $t \ge 0$ satisfying

$$t\{F(t)\}^{2} = \int_{0}^{1} \frac{F(ts) - F(t - ts)}{1 - 2s} ds$$

and F(0) = c > 0.

Functional equations: periodic functions

OSSMB 78-1.

A real-valued function f satisfies, for all real x,

$$f(x+1) = \frac{1+f(x)}{1-f(x)}.$$

Show that f is periodic.

Functional equations: polynomials

AMM E2731. by Bruce Reznick

Characterize all polynomials that satisfy P(x,y) =P(y,x) and P(x,y) = P(x,x-y) for all x and y.

IMO 1975/6.

Find all polynomials P, in two variables, with the following properties:

(1) for a positive integer n and all real t, x and y

$$P(tx, ty) = t^n P(x, y)$$

(2) for all real a, b and c,

$$P(b+c,a) + P(c+a,b) + P(a+b,c) = 0,$$

(3) P(1,0) = 1.

MATYC 100. by Steve Kahn

Characterize all polynomials P(x) with complex coefficients such that $P(x) = P^{-1}(x)$.

MM 965.

by Bernard B. Beard

Find all polynomials P(x) satisfying the equation P(F(x)) = F(P(x)), P(0) = 0, where F(x) is a given function satisfying F(x) > x for all $x \ge 0$.

PME 411.

by R. S. Luthar

Find all polynomials P(x) such that

$$P(x^{2} + 1) - [P(x)]^{2} - 2xP(x) = 0$$

and P(0) = 1.

TYCMJ 38.

by Warren Page

Determine all polynomials, P(x), satisfying P(0) = 0and P(x) = [P(x+1) + P(x-1)]/2.

TYCMJ 77.

by R. S. Luthar

Determine all polynomial functions, f, such that

$$(x-1)f(x+1) - (x+2)f(x) \equiv 0.$$

Functions

NYSMTJ 51.

Consider the composition of two functions f and g: $f \circ g = g \circ f$ if f = g, if $f = g^{-1}$, or if either function is the identity function. Aside from these examples, composition of functions is not generally commutative.

(a) Show that, for any first-degree polynomial

$$f(x) = ax + b,$$

there are an infinite number of functions g such that

$$f \circ q = q \circ f$$
.

- (b) Are there other polynomial functions that, similarly, commute?
- (c) How about other types of functions trigonometric, logarithmic, exponential, etc.?

Generalized binomial theorem

CRUX 352.

by Dan Sokolowsky

Let
$$x^{(0)} = 1;$$

$$x^{(n)} = \prod_{k=1}^{n} [x + (k-1)c]$$

c constant, $n = 1, 2, \dots$

Prove that

$$(a+b)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} a^{(n-k)} b^{(k)}, \quad n = 0, 1, 2, \dots$$

Geometry of zeros

TYCMJ 35.

by Richard Miller

Let P(z) be a polynomial with real coefficients such that each of the zeros of P(z) is pure imaginary. Prove that all but one of the zeros of P'(z) are pure imaginaries.

MM 1010. by Marius Solomon

Prove that if the roots of a fourth degree polynomial are in arithmetic progression, then the roots of its derivative are also in arithmetic progression.

Geometry of zeros Problems sorted by topic Inequalities: degree 2

NAvW 503.

by O. Bottema

The cubic equation with unknown u:

$$(x+8)u^3 - 3yu^2 - 3xu + y = 0$$

is mapped onto the point P(x,y) of a plane V with the rectangular frame OXY. Determine in V the regions corresponding to the sets of equations with

- (a) one positive and two imaginary roots,
- (b) one negative and two imaginary roots,
- (c) one positive and two negative roots,
- (d) one negative and two positive roots.

Identities

CRUX 316.

by Hippolyte Charles

Prove that

$$\frac{a-x}{x-b} = \frac{a-d}{b-c} \cdot \frac{c-y}{y-d}$$

implies

$$\frac{a-y}{y-b} = \frac{a-d}{b-c} \cdot \frac{c-x}{x-d}.$$

CRUX PS3-3.

If

$$\frac{a}{bc - a^2} + \frac{b}{ca - b^2} + \frac{c}{ab - c^2} = 0,$$

prove that also

$$\frac{a}{(bc-a^2)^2} + \frac{b}{(ca-b^2)^2} + \frac{c}{(ab-c^2)^2} = 0.$$

ISMJ J11.12.

Show that if abc = 1, then

$$\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1.$$

OSSMB G75.2-5.

Show that if

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c}$$

then

$$\frac{1}{a^{2n+1}} + \frac{1}{b^{2n+1}} + \frac{1}{c^{2n+1}} = \frac{1}{(a+b+c)^{2n+1}}.$$

OSSMB G75.3-6.

Show that if a, b, c are distinct, nonzero real numbers such that a+b+c=0, then

$$\left(\frac{b-c}{a} + \frac{c-a}{b} + \frac{a-b}{c}\right) \left(\frac{a}{b-c} + \frac{b}{c-a} + \frac{c}{a-c}\right) = 9.$$

PARAB 300.

Prove that if

$$\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} = \frac{1}{ab + bc + ca} \ ,$$

then the sum of two of the numbers a, b, and c is zero.

MSJ 469.

What general identity is exemplified by the following statements:

$$3(1^2 + 3^2 + 7^2) = 2^2 + 4^2 + 6^2 + 11^2,$$

$$3(2^2 + 11^2 + 16^2) = 5^2 + 9^2 + 14^2 + 29^2?$$

CRUX PS4-2.

If a, b, c, and d are real, prove that

$$\begin{cases} a^{2} + b^{2} = 2, \\ c^{2} + d^{2} = 2, \\ ac = bd, \end{cases}$$

if and only if

$$\begin{cases} a^2 + c^2 = 2, \\ b^2 + d^2 = 2, \\ ab = cd. \end{cases}$$

Inequalities: absolute value

TYCMJ 144.

by R. S. Luthar

Does there exist a nonconstant function, f, that obeys the inequality $(f(x) - f(y))^2 \le |x - y|^3$ for all x and y?

Inequalities: degree 2

CRUX 323.

by Jack Garfunkel and M. S. Klamkin

If xyz = (1-x)(1-y)(1-z) where $0 \le x, y, z \le 1$, show that

$$x(1-z) + y(1-x) + z(1-y) \ge 3/4.$$

PARAB 290.

If x_1, x_2, x_3, x_4 , and x_5 are all positive numbers, prove that

$$(x_1 + x_2 + x_3 + x_4 + x_5)^2$$

> $4(x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5 + x_5x_1)$.

PARAB 394.

Prove that, if $a^2 + b^2 = x^2 + y^2 = 1$, then $ax + by \le 1$.

PME 443. by R. S. Luthar

If x and y are any real numbers, prove that

$$x^2 + 5y^2 \ge 4xy.$$

PUTNAM 1977/B.5.

Suppose that a_1, a_2, \ldots, a_n are real (n > 1) and

$$A + \sum_{i=1}^{n} a_i^2 < \frac{1}{n-1} \left(\sum_{i=1}^{n} a_i \right)^2.$$

Prove that $A < 2a_i a_j$ for $1 \le i \le j \le n$.

PARAB 377.

Let $x_i, y_i \ (i=1,2,\ldots n)$ be real numbers such that $x_1 \geq x_2 \geq \cdots \geq x_n$ and $y_1 \geq y_2 \geq \cdots \geq y_n$.

Prove that if z_1, z_2, \ldots, z_n is any given rearrangement of y_1, y_2, \ldots, y_n , then

$$\sum_{i=1}^{n} (x_i - y_i)^2 \le \sum_{i=1}^{n} (x_i - z_i)^2.$$

Inequalities: degree 3 Problems sorted by topic Inequalities: finite sums

Inequalities: degree 3

CRUX PS1-3.

(a) If $a, b, c \ge 0$ and (1 + a)(1 + b)(1 + c) = 8, prove that

$$abc \leq 1$$
.

(b) If $a, b, c \ge 1$, prove that

$$4(abc+1) > (1+a)(1+b)(1+c).$$

CRUX PS6-3.

If $x, y, z \ge 0$, prove that

$$x^3 + y^3 + z^3 = y^2z + z^2x + x^2y$$

and determine when there is equality.

SIAM 77-12. by Peter Flor

Establish or disprove the following inequalities where all the variables are positive:

$$a^{3} + b^{3} + c^{3} + 3abc \ge a^{2}(b+c) + b^{2}(c+a) + c^{2}(a+b);$$

$$39a^{3} + 15a(b^{2} + c^{2}) + 20ad^{2} + 5bc(b+c+d)$$
$$\geq 10a^{2}(b+c) + 43a^{2}d + 39abc + ad(b+c);$$

$$5(a^{4} + b^{4} + c^{4} + d^{4}) + 6(a^{2}c^{2} + b^{2}d^{2}) + 12(a^{2} + c^{2})bd$$
$$+12(b^{2} + d^{2})ac \ge 2(a^{3} + b^{3} + c^{3} + d^{2})(a + b + c + d)$$

$$+4(a+c)(b+d)(ac+bd) + 2(a^2+c^2)(b^2+d^2) + 8abcd.$$

Inequalities: degree 4

ISMJ 10.3.

CMB P261.

Show that

$$\frac{x^3 - 1}{3} \le \frac{x^4 - 1}{4}$$

for all real numbers x.

Inequalities: exponentials

MM Q658.

by M. S. Klamkin by R. Schramm

If a, b > 0, prove that $a^b + b^a > 1$.

NYSMTJ 40. by David E. Bock

Prove that, if a and b are positive real numbers, then

$$a^a b^b \ge (ab)^{(a+b)/2}.$$

PME 378. by M. L. Glasser and M. S. Klamkin Show that

$$\left\{\frac{x^x}{(1+x)^{1+x}}\right\}^x > (1-x) + \left\{\frac{x}{1+x}\right\}^{1+x} > \frac{1}{(1+x)^{1+x}}$$

for 1 > x > 0.

SPECT 11.7.

Show that $e^{kx} + k(1 - e^x) \ge 1$ for every real number x and every integer k.

TYCMJ 123.

by V. N. Murty

Let x and y be positive numbers. Prove that

$$x^x \cdot y^y \ge \left(\frac{x+y}{2}\right)^{x+y}$$

with equality if and only if x = y.

TYCMJ 149. by V. N. Murty

Let a, b, and α be positive with a + b = 1. Prove or disprove that

$$\left(a+\frac{1}{a}\right)^{\alpha}+\left(b+\frac{1}{b}\right)^{\alpha}\geq \frac{5^{\alpha}}{2^{\alpha-1}}\ .$$

AMM E2547.

by T. S. Bolis

Let p and q be positive numbers with p+q=1. Show that for all x,

$$pe^{x/p} + qe^{-x/q} \le e^{x^2/8p^2q^2}$$
.

AMM S6. by M. S. Klamkin and A. Meir

Let $x_i > 0$ for i = 1, 2, ..., n with $n \ge 2$. Prove that

$$(x_1)^{x_2} + (x_2)^{x_3} + \dots + (x_{n-1})^{x_n} + (x_n)^{x_1} \ge 1.$$

SPECT 10.3. by T. B. Cruddis

The positive real numbers $p,\ q,\ r$ are such that $q\neq r$ and 2p=q+r. Show that

$$\frac{p^{q+r}}{a^q r^r} < 1.$$

Inequalities: finite products

AMM 6254

by Thomas E. Elsner

For real numbers r_{ij} with $0 \le r_{ij} \le 1$ for i = 1, 2, ..., m and j = 1, 2, ..., n, prove that

$$1 - \prod_{j=1}^{n} \left(1 - \prod_{i=1}^{m} r_{ij} \right) \le \prod_{i=1}^{m} \left[1 - \prod_{j=1}^{n} (1 - r_{ij}) \right].$$

CMB P270.

by M. S. Klamkin

Prove that

$$2^{n}P\left\{\frac{x_{1}^{n}+x_{2}^{n}+\cdots+x_{n}^{n}}{n}\right\}^{n-1}\geq\prod_{i=1}^{n}\{x_{i}^{n}+P\}$$

where $P = x_1 x_2 \cdots x_n$, $x_i \ge 0$, and there is equality if and only if $x_i = \text{constant}$.

AMM E2691. by Živojin M. Mijalković and J. B. Keller

If $x_i > 0$ $(1 \le i \le n)$, show that

$$\left(\prod x_i\right)^{\sum x_i/n} \le \prod x_i^{x_i} \le \left(\frac{\sum x_i^2}{\sum x_i}\right)^{\sum x_i}.$$

Inequalities: finite sums

AMM E2656. by G. Tsintsifas Let a_2, a_3, \ldots, a_n be positive real numbers and

$$s = a_2 + a_3 + \dots + a_n.$$

Show that

$$\sum_{k=0}^{n} a_k^{1-1/k} < s + 2\sqrt{s}.$$

Inequalities: finite sums Problems sorted by topic Inequalities: fractions

PARAB 390.

Let b_1, b_2, \ldots, b_n be any positive numbers. Prove that

$$(b_1 + b_2 + \dots + b_n) \left(\frac{1}{b_1} + \frac{1}{b_2} + \dots + \frac{1}{b_n} \right) \ge n^2.$$

by M. M. Gupta

Suppose p and q are positive integers, p > q, and Z_1, \ldots, Z_p are arbitrary real numbers. Define

$$\alpha = p^{-2}q^{-2}(p-q)^{-1},$$

$$\beta_p = (Z_2 - 2Z_1)^2 + \sum_{i=2}^{p-1} (Z_{i-1} - 2Z_i + Z_{i+1})^2,$$

and

$$I_{p,q} = -2q^{3}\alpha Z_{1}Z_{p} + 2p^{3}\alpha Z_{1}Z_{q} - 2\alpha Z_{1}^{2} + (1 - 2\alpha)\beta_{p}.$$

Show that $I_{p,q} \geq 0$.

SPECT 9.3.

The real numbers $a_1, \ldots, a_n, b_1, \ldots, b_n \ (n \geq 1)$ are

$$a_1 \le \frac{1}{2}(a_1 + a_2) \le \frac{1}{3}(a_1 + a_2 + a_3)$$

 $\le \dots \le \frac{1}{n}(a_1 + a_2 + \dots + a_n),$

$$b_1 \le \frac{1}{2}(b_1 + b_2) \le \frac{1}{3}(b_1 + b_2 + b_3)$$

 $\le \dots \le \frac{1}{n}(b_1 + b_2 + \dots + b_n).$

Show that

$$\left(\sum_{k=1}^n a_k\right) \left(\sum_{k=1}^n b_k\right) \leq n \sum_{k=1}^n a_k b_k.$$

by Robert Sulek and Lester Suna

Assume $a_i \ge 0$, (i = 1, 2, ..., n), with $a_{n+1} = a_1$. Prove or disprove

$$\sum_{i=1}^{n} \left(\frac{a_i}{a_{i+1}}\right)^n \ge \sum_{i=1}^{n} \frac{a_{i+1}}{a_i} .$$

PUTNAM 1979/A.6.

Let $0 < p_i < 1$ for $i = 1, 2, \ldots, n$. Show that

$$\sum_{i=1}^{n} \frac{1}{|x - p_i|} \le 8n \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n - 1} \right)$$

for some x satisfying $0 \le x \le 1$.

PUTNAM 1978/B.6.

Let p and n be positive integers. Suppose that the numbers $c_{h,k}$ (h = 1, 2, ..., n; k = 1, 2, ..., ph) satisfy $0 \le c_{h,k} \le 1$. Prove that

$$\left(\sum \frac{c_{h,k}}{h}\right)^2 \le 2p \sum c_{h,k}.$$

where each summation is over all admissible ordered pairs (h,k).

AMM E2744.

by H. L. Montgomery

Let $a_n \geq 0$ and $a_{m+n} \leq a_m + a_n$ for $m, n = 1, 2, \dots$ Show that

$$\sum_{k=1}^{n} k^{-2} a_k \ge \frac{1}{4} n^{-1} a_n \log n.$$

AMM E2551.

by Hugh L. Montgomery

Let r_1, \ldots, r_n be real numbers such that $-1 \le r_i \le 1$ for i = 1, 2, ..., n and such that $r_1 + \cdots + r_n = 0$. It is easy to see that there is a permutation π of $\{1,\ldots,n\}$ with the property that all the partial sums

$$S_k(\pi) = \sum_{i=1}^k r_{\pi(i)}, \qquad k = 1, 2, \dots, n$$

lie in the interval [-1, 1]. Strengthen this as follows: Show that there exists a permutation π such that

$$\max_{k} S_k(\pi) - \min_{k} S_k(\pi) < 2 - n^{-1}.$$

Show also that if the right-hand side of the above inequality is replaced by $2-4n^{-1}$, then the assertion is false for certain arbitrarily large n.

by M. S. Klamkin

Let $S = x_1 + x_2 + \dots + x_n$, where $x_i > 0$, $T_0 = 1/S$

$$T_r = \sum_{\text{sym}} \{S - x_1 - x_2 - \dots - x_r\}^{-1}, \quad 1 \le r \le n - 1.$$

Prove that $(n-r)^2 T_r / {n-1 \choose r}$ is monotonically increasing in r from 0 to n-1.

MM Q664.

by M. S. Klamkin

Prove that

$$\sum_{k=1}^{n} (x_k + 1/x_k)^a \ge \frac{(n^2 + 1)^a}{n^{a-1}}$$

where $x_k > 0 \ (k = 1, 2, ..., n), \ a > 0 \ \text{and} \ x_1 + x_2 + \cdots + x_n = 0$

OSSMB G77.1-2.

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > 2\sqrt{n+1} - 2.$$

Inequalities: fractions

AMM E2603.

by M. S. Klamkin

Let $x_i > 0$, $1 \le i \le n$. Prove that

$$r \cdot \sum_{\text{sym}} \frac{x_1 x_2 \cdots x_r}{x_1 + x_2 + \cdots + x_r} \le \binom{n}{r} \left(\frac{x_1 + \cdots + x_n}{n}\right)^{r-1}$$

and that equality holds if and only if $x_1 = x_2 = \cdots = x_n$.

by Léo Sauvé

If a, b, c > 0 and a < b + c, show that

$$\frac{a}{1+a} < \frac{b}{1+b} + \frac{c}{1+c}$$

Inequalities: fractions Problems sorted by topic Inequalities: iterated functions

MM Q608.

by M. S. Klamkin

If x, y, and z are nonnegative and are not sides of a triangle, show that

$$1 + \frac{x}{y+z-x} + \frac{y}{z+x-y} + \frac{z}{x+y-z} \le 0.$$

MM Q618.

by M. S. Klamkin

If $1 \ge x, y, z \ge -1$, show that

$$\frac{1}{(1-x)(1-y)(1-z)} + \frac{1}{(1+x)(1+y)(1+z)} \ge 2$$

with equality if and only if x = y = z = 0.

MM Q655.

by Mark Kleiman

If a, b, c, and d are positive real numbers, prove that

$$\frac{a}{b+c} + \frac{b}{c+d} + \frac{c}{d+a} + \frac{d}{a+b} \ge 2.$$

When does equality hold?

MSJ 418.

by Peter A. Lindstrom

Find all real x such that

$$\frac{x(x-2)(x-4)}{(x-1)(x-3)(x-5)} < 0.$$

PARAB 370.

Prove that, when x > 0,

$$\frac{1+x^2+x^4}{x+x^3} \ge \frac{3}{2} \ .$$

SSM 3744.

by Bob Edwards

If r/s and p/q are two positive fractions in lowest terms and qr-ps=1, prove that all fractions lying between these two must have a denominator that is not less than q-s.

TYCMJ 87.

by Norman Schaumberger

Let a, b, c, and d be positive real numbers. Prove that

$$\begin{split} \frac{a^2+b^2+c^2}{a+b+c} + \frac{a^2+b^2+d^2}{a+b+d} + \frac{a^2+c^2+d^2}{a+c+d} \\ + \frac{b^2+c^2+d^2}{b+c+d} \geq a+b+c+d. \end{split}$$

CRUX 17.

by Viktors Linis

Prove the inequality

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{999999}{1000000} < \frac{1}{1000}$$

ISMJ 12.23.

Find a number n large enough so that

$$\frac{1}{1} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} > 100.$$

ISMJ 13.5.

Given that a, b, c, and d are positive numbers and a/b < c/d, show that

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}.$$

ISMJ J11.2.

Prove that if a_1, a_2, a_3 and b_1, b_2, b_3 are positive numbers such that

$$\frac{a_1}{b_1} < \frac{a_2}{b_2} < \frac{a_3}{b_3} \text{ then } \frac{a_1}{b_1} < \frac{a_1 + a_2 + a_3}{b_1 + b_2 + b_3} < \frac{a_3}{b_3}.$$

CRUX 413.

by G. C. Giri

If a, b, c > 0, prove that

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \le \frac{a^8 + b^8 + c^8}{a^3 b^3 c^3}.$$

MSJ 484.

Let a, b, and c be positive numbers such that a+b+c=1. Prove that 1/a+1/b+1/c>9.

Inequalities: functional inequalities

ISMJ 12.16.

Let ϕ be a nonnegative function such that

$$\phi\left(\frac{t_1+t_2}{2}\right) < \frac{1}{3}[\phi(t_1) + \phi(t_2)]$$

for all real numbers t_1 and t_2 such that $t_1 \neq t_2$. Show that

$$\phi\left(\frac{s_1 + s_2 + s_3 + s_4}{4}\right) < \frac{1}{4}[\phi(s_1) + \phi(s_2) + \phi(s_3) + \phi(s_4)]$$

if s_1 , s_2 , s_3 , and s_4 are real numbers, no three of which are all equal.

KURSCHAK 1979/2.

The function f satisfies the following inequalities for every pair of real numbers x and y:

$$f(x) \le x,$$

$$f(x+y) \le f(x) + f(y).$$

Show that f(x) = x for every real number x.

IMO 1977/6. PARAB 368.

Let f(n) be a function defined on the set of all positive integers and having all its values in the same set. Prove that if

$$f(n+1) > f(f(n))$$

for each positive integer n, then

$$f(n) = n$$
 for each n .

Inequalities: iterated functions

OMG 16.2.6.

Let 0 < u < 1 and define

$$u_1 = 1 + u,$$

 $u_2 = 1/u_1 + u,$
 \vdots
 $u_{n+1} = 1/u_n + u,$ $n \ge 1.$

Show that $u_n > 1$ for all values of $n = 1, 2, 3, \ldots$

Inequalities: logarithms Problems sorted by topic Infinite series

Inequalities: logarithms

by Eliyahu Beller

Prove or disprove the following conjecture: For a > 1and x > 0, show that $-\log(1 - (1 - e^{-x})^a) < x^a$.

CRUX 98.

by Viktors Linis

Prove that, if 0 < a < b, then

$$\ln \frac{b^2}{a^2} < \frac{b}{a} - \frac{a}{b}.$$

PME 424.

by R. S. Luthar

Prove that

$$\left(x^{1/n} + y^{1/n}\right)^n > \left(\frac{x - y}{\ln x - \ln y}\right)(2n + 2),$$

where n is an odd integer and $n \ge 3$ and 0 < y < x.

ISMJ 12.17.

Show that

$$|\log_a b + \log_b a| \ge 2$$

if a and b are both positive real numbers.

FQ B-357. by Frank Higgins

Let m be a fixed positive integer, and let k be a real number such that

$$2m \le \frac{\log(\sqrt{5}k)}{\log \alpha} < 2m + 1,$$

where $\alpha = (1 + \sqrt{5})/2$. For how many positive integers n is $F_n \leq k$?

CRUX 304. by Viktors Linis

Prove the following inequality:

$$\frac{\ln x}{x-1} \le \frac{1+\sqrt[3]{x}}{x+\sqrt[3]{x}}, \quad x > 0, \ x \ne 1.$$

Inequalities: numerical inequalities

ISMJ 10.1.

Which is larger

$$\left(1 + \frac{1}{1000}\right)^{1001}$$
 or $\left(1 + \frac{1}{1000}\right)^{1002}$?

MM 937. by Norman Schaumberger

Which is greater: e^{π} or $(e^e \cdot \pi^e \cdot \pi^{\pi})^{1/3}$?

Inequalities: polynomials

by Michael W. Chamberlain

Prove that for integral $n \ge 2$ and 0 < x < n/(n+1), one has

$$(1-2x^n+x^{n+1})^n < (1-x^n)^{n+1}$$
.

by Robert Sulek and Lester Suna

Let n be a positive odd integer and x a positive real number. Prove that $x^n + 2 \ge 2x^{(n-1)/2} + x$, and

$$x^{36} + x^8 + x^4 + 1 \ge x^{15} + x^{14} + x^{13} + x^6$$
.

Inequalities: powers

ISMJ 10.7.

Given that x, y, m, and n are positive, prove that

$$x^m y^n + x^n y^m \le x^{m+n} + y^{m+n}.$$

SIAM 75-19. by K. B. Stolarsky and L. J. Yang If N and m+1 are positive integers, it is conjectured

that $L_m(x) \geq R_m(x)$ for all $x \geq 0$, where

$$L_m(x) = \left\{1 + \frac{1}{N^{2m-1}}\right\} \left\{x^2 + \frac{2}{N}x + 1\right\}^m,$$

$$R_m(x) =$$

$$(1)^{2m} (x)^{2m}$$

$$\left\{x + \frac{1}{N}\right\}^{2m} + \left\{1 + \frac{x}{N}\right\}^{2m} + (N-1)\left\{\frac{x-1}{N}\right\}^{2m}.$$

Inequalities: radicals

CRUX 295.

by Basil C. Rennie

If $0 < b \le a$, prove that

$$a+b-2\sqrt{ab} \ge \frac{1}{2} \frac{(a-b)^2}{a+b}.$$

CRUX 310.

by Jack Garfunkel

by V. N. Murty

Prove that

$$\frac{a}{\sqrt{a^2+b^2}} + \frac{b}{\sqrt{9a^2+b^2}} + \frac{2ab}{\sqrt{a^2+b^2} \cdot \sqrt{9a^2+b^2}} \leq \frac{3}{2}.$$

When is equality attained?

Assume that a, b, c, and d are real numbers satisfying ad - bc = 1. Prove that $a^2 + b^2 + c^2 + d^2 + ac + bd \ge \sqrt{3}$.

If a, b, c, d and e are positive numbers bounded by pand q, prove that

$$(a+b+c+d+e)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e}\right)$$

$$\leq 25 + 6\left(\sqrt{\frac{p}{q}} - \sqrt{\frac{q}{p}}\right)^2$$

and determine when there is equality.

by John R. Samborski

If $\sum_{k=1}^{\infty} 2^{-n_k}$ is the binary expansion of $(\sqrt{5}-1)/2$, show that $n_k \leq 5 \cdot 2^{k-2} - 1$.

Infinite series

FQ H-251.

by Paul Bruckman

Prove the identity:

$$\sum_{n=0}^{\infty} \frac{x^{n^2}}{[(x)_n]^2} = \sum_{n=0}^{\infty} \frac{x^n}{(x)_n} ,$$

where

$$(x)_n = (1-x)(1-x^2)\cdots(1-x^n), (x)_0 = 1.$$

Interest problems Problems sorted by topic Means

Interest problems

FUNCT 2.1.2.

I have the following options for depositing \$100 for one year. The bank will give me \$4 interest at the end of the year. A Housing Cooperative will give me interest at the rate of 2% per half-year (compound, so it pays interest in the second half also on the first half's interest). A Credit Union will give me interest at the rate of 1/3% per month, compound. A friend says he will give me interest equivalent to the 4% per annum rate, but compounding every instant! Which should I choose, and how much interest do I get?

TYCMJ 104. by Roger W. Pease, Jr.

A man wishes to purchase a new car. He finds that he can finance this car over a 36-month period for 0.8 percent interest per month on the unpaid balance. With \$1,000 in savings at 6 percent interest compounded quarterly, he wishes to decide whether to retain his savings or use it to finance the car.

He reasons that he should finance the car by borrowing the money because the difference between the sum of the 36 payments and the \$1,000 original principal is \$154.87 which is less than the interest of \$195.62 earned on the money in the bank if it is left on deposit for three years. Is this the best strategy for the car buyer to follow?

OMG 16.1.5.

A car depreciates at 20% per year for 3 years. What, at this time, is its percentage value of the original price?

Iterated functions

CANADA 1975/8.

Let k be a positive integer. Find all polynomials

$$P(x) = a_0 + a_1 x + \dots + a_n x^n,$$

where the a_i are real, which satisfy the equation

$$P(P(x)) = \{P(x)\}^k.$$

SSM 3659. If by Brother U. Alfred

 $f(x) = \sqrt{\frac{x^2 + 1}{x^2 - 1}}$

and $f^2(x) = f(f(x)), f^3(x) = f(f^2(x)), \dots$, for what values of n does $f^n(x) = f(x)$?

Logarithms

CRUX 41.

by Léo Sauvé

Given that $\log_6 3 = p$ and $\log_3 5 = q$, express $\log_{10} 5$ and $\log_{10} 6$ as functions of p and q.

OSSMB G77.1-5.

Show that if

$$\frac{x(y+z-x)}{\log x} = \frac{y(z+x-y)}{\log y} = \frac{z(x+y-z)}{\log z},$$

then $x^y y^x = z^y y^z = x^z z^x$.

OSSMB G79.2-6.

Prove that

$$\frac{\log_a n}{\log_{am} n} = 1 + \log_a m.$$

OSSMB G75.1-2.

by Peter Crippen

- (a) For a, b > 0, show that $\log_b a = 1/\log_a b$.
- (b) Simplify the following without the use of tables:

$$\frac{1}{\log_{1/2} 144} + \frac{1}{\log_2 144} + \frac{1}{\log_{12} 144}.$$

MATYC 139.

by J. F. Allison

Is there a nontrivial solution in real numbers to

$$\log(x + y + z) = \log(x)\log(y)\log(z)?$$

PENT 281.

by Kenneth M. Wilke

An algebra student encountered the following problem on an exam: Evaluate $\frac{\log A}{\log B}$. Being pressed for time, he cancelled common factors from both numerator and denominator to obtain the correct answer.

$$\frac{\log A}{\log B} = \frac{A}{B} = \frac{3}{4} \ .$$

What are A and B?

Maxima and minima

AMM E2573.

by Murray S. Klamkin

If n positive real numbers vary such that the sum of their reciprocals is fixed and equal to A, find the maximum value of the sum of the reciprocals of the $\binom{n}{j}$ sums of the n numbers taken j at a time.

SPECT 11.2.

by B. G. Eke

The positive numbers x, y, z are such that

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1.$$

Show that $(x-1)(y-1)(z-1) \ge 8$.

CRUX 487.

by Dan Sokolowsky

If a, b, c, and d are positive real numbers such that $c^2 + d^2 = (a^2 + b^2)^3$, prove that

$$\frac{a^3}{c} + \frac{b^3}{d} \ge 1,$$

with equality if and only if ad = bc.

MM 1059.

by David E. Daykin

How should n given nonnegative real numbers be indexed to minimize (maximize)

$$a_1a_2 + a_2a_3 + \cdots + a_{n-1}a_n + a_na_1$$
?

Means

CANADA 1979/1.

Given: (i) a, b > 0; (ii) a, A_1, A_2, b is an arithmetic progression; (iii) a, G_1, G_2, b is a geometric progression. Show that $A_1A_2 \geq G_1G_2$.

CRUX 247.

by Kenneth S. Williams

If $0 < a_1 \le a_2 \le \cdots \le a_n$, is there a constant k such that

$$k \frac{\sum_{1 \le i < j \le n} (a_i - a_j)^2}{a_n} \le \frac{a_i + \dots + a_n}{n} - \sqrt[n]{a_1 \dots a_n}$$
$$\le k \frac{\sum_{1 \le i < j \le n} (a_i - a_j)^2}{a_1}?$$

Means Problems sorted by topic Money problems

CRUX 362.

by Kenneth S. Williams

In the inequality

$$\frac{1}{2n^2} \frac{\sum_{1 \le i < j \le n} (a_i - a_j)^2}{a_n}$$

$$\le \frac{a_1 + \dots + a_n}{n} - \sqrt[n]{a_1 \dots a_n}$$

$$\le \frac{1}{2n^2} \frac{\sum_{1 \le i < j \le n} (a_i - a_j)^2}{a_i},$$

prove that the constant $1/2n^2$ is best possible.

CRUX 395.

by Kenneth S. Williams

The inequality

$$\frac{1}{2n^2} \frac{\sum_{1 \le i < j \le n} (a_i - a_j)^2}{a_n} \le A - G$$

$$\le \frac{1}{2n^2} \frac{\sum_{1 \le i < j \le n} (a_i - a_j)^2}{a_i}$$

is a refinement of the familiar inequality $A \geq G$ where A (resp. G) is the arithmetic (resp. geometric) mean of a_1, \ldots, a_n If H denotes the harmonic mean of a_1, \ldots, a_n , find the corresponding refinement of the familiar inequality $G \geq H$.

SSM 3713. by Alan Wayne

- (a) Find a necessary and sufficient condition so that the arithmetic mean of two unequal, positive numbers is closer to their geometric mean than their geometric mean is to the smaller number.
- (b) Find a necessary and sufficient condition so that the arithmetic mean of two unequal, positive numbers is closer to their harmonic mean than their harmonic mean is to the smaller number.

SSM 3755. by Alan Wayne

If a and b are numbers such that 0 < a < b, define their quadratic mean by $Q = \sqrt{\frac{(a^2 + b^2)}{2}}$.

- (a) Show that the quadratic mean lies between b and the arithmetic mean of a and b.
- (b) Show that the arithmetic mean is closer to the quadratic mean than the quadratic mean is to b.
- (c) Show that the arithmetic mean of a and b is the quadratic mean of their quadratic mean and their geometric mean

TYCMJ 39. by Norman Schaumberger

Let A = (x + y)/2 and $\tilde{G} = \sqrt{xy}$, where x and y are unequal, positive numbers. Prove that

$$A > \frac{(x-y)^2}{8(A-G)} > G.$$

MM 1000. by Murray S. Klamkin

Let T denote a cyclic permutation operator acting on the indices of a sequence (a_i) , that is, $T(a_1x_1 + a_2x_2 + \cdots + a_nx_n) = a_2x_1 + a_3x_2 + \cdots + a_1x_n$. If, for all $i, a_i \geq 0$ and $x_i > 0$, show that

$$\left\{ \sum_{i=1}^{n} \frac{a_i}{n} \right\}^n \ge \prod_{i=1}^{n} T^i \left\{ \frac{a_1 x_1 + a_2 x_2 + \dots + a_n x_n}{x_1 + x_2 + \dots + x_n} \right\} \ge \prod_{i=1}^{n} a_i.$$

Measuring problems

OMG 16.1.6.

If each volume of a twelve-book encyclopedia is 3 cm thick and the covers are 1 mm thick, what is the distance from the first page of volume 1 to the last page of volume 12 when they are stacked in order on a shelf?

PARAB 297.

A man has 3 bottles which hold exactly 8 liters, 5 liters, and 3 liters. The two smaller bottles are empty, but the largest one is full of wine which the man wishes to share with a friend. Without using any other means of measurement or any other container, how can he divide the wine into two equal amounts of 4 liters each?

NYSMTJ 96. by Samuel A. Greenspan

A man had an 8-gallon keg of wine and a jug. One day, he drew off a jugful of wine and filled up the keg with water. Later on, when the wine and water had been thoroughly mixed, he drew off another jugful, and again filled up the keg with water. The keg then contained equal quantities of wine and water. What was the capacity of the jug?

OMG 17.3.1.

A 16-quart radiator is filled with water. Four quarts are removed and replaced with pure antifreeze liquid. Then four quarts of the mixture are removed and replaced with pure antifreeze. This is done a third and fourth time. What part of the final mixture is water?

ISMJ 12.7.

An empty five gallon can A is filled with antifreeze. Some antifreeze is transferred from A to a second five gallon can B (originally empty). Can B is then filled with water and the contents are mixed. Enough of the mixture in B is then poured into A to fill it. Show that the mixture in A is at least 75% antifreeze.

Metric conversions

FUNCT 3.5.4.

The number of kilometers in a mile is often given as 8/5. Given only that the approximation is expressed in this form, estimate the error involved.

Money problems

JRM 735. by Frank Rubin

A housespouse has cents-off coupons for three different brands of detergent, all in different amounts. The regular prices, number of ounces, and number of wash loads per box are known for all three brands. If only one coupon can be used, how should one decide which?

PARAB 418.

Two classes organized a party. To meet the expenses, each pupil of class A paid \$5 and each pupil of class B paid \$3. If the pupils of class A had paid all the expenses, they would have paid k each. At a second similar event, the pupils of class A paid \$4 each and those of class B paid \$6 each; and the total sum was the same as if each pupil in class B had paid k. Find k. Which class had more pupils?

Algebra

Money problems: change Problems sorted by topic Money problems: word problems

Money problems: change

MSJ 459. by Albert Wilansky

I owed Mr. Smith an amount less than \$20. I offered him a \$20 bill, but he could not make change. So, I offered him a \$50 bill and he gave me the correct change. How much did I owe Mr. Smith?

Money problems: coins

PENT 290. by Charles Trigg

"Come on in, Bob," said Dan; "only small stakes tonight." "That's good," replied Bob, "I haven't quite three dollars in nickels, dimes, and quarters." "I haven't any pennies either," said Dan, "but I have the same number of coins that you have. That includes twice as many dimes as you have." "Correct," replied Bob, "but my number of nickels is twice yours. It also equals the number of all our quarters combined. The total value of your change is the same as mine." "Okay, let's go," said Dan; "it appears that my lucky half-dollar is the largest coin on the table."

How many coins of each type did Bob and Dan have?

Money problems: combinations

ISMJ 11.16.

In Ruritania, the basic unit of money is the farthing, however, farthings are no longer made. A forinth is worth m farthings and a schilling is worth n farthings, m and n integers, m < n. Schillings and forinths can be combined to make all but 35 monetary values in farthings. In particular 58 farthings can not be made from schillings and forinths. What are m and n?

JRM 447. by Sidney Kravitz

John has a dollar's worth of coins in his pocket, but no half dollars. He told me how many coins he had but I could not tell what those coins were because there were six different possible combinations.

How many coins does John have?

OMG 17.1.5.

Donald Corleone cashed a \$200 check at the bank and requested some one-dollar bills, 10 times as many two-dollar bills, and the balance in five-dollar bills. How did the cashier pay him?

OMG 18.2.4.

In the local Sunday School picnic, men are asked to pay 50 cents for refreshments, women are asked to pay 30 cents and children only 1 cent. At the last picnic, the total attendance was 100. If everyone paid the correct change, and the total receipts were exactly \$10, how many men, women and children attended?

Money problems: denominations

JRM 618. by Frank Rubin

Let S be any set of distinct positive-integer-valued coin denominations capable of making up any amount from one cent to a dollar. Let A(S) be the average of the *minimal* numbers of S-type coins required to make up the hundred totals from 1 to 100. Thus $A(1 \text{ cents}, 5 \text{ cents}, 10 \text{ cents}, 25 \text{ cents}, 50 \text{ cents}) = .01(1+2+3+4+1+2+\cdots+8+2) = 4.22$. Define the efficiency E(S) to be 1/[A(S)N(S)], where N(S) is the number of coin denominations in S. Thus $E(1,5,10,25,50) = 1/(4.22 \cdot 5) = .04739$.

- (a) What set is most efficient?
- (b) What set containing no coins of denomination greater than 100 is the least efficient?

Money problems: devaluation

FUNCT 1.1.5.

A newspaper report stated that the combined effect of Australia's 17.5% devaluation and New Zealand's 7% devaluation was to revalue the New Zealand dollar by 12.7% in comparison with the Australian dollar. Where does this figure come from? Is it correct?

Money problems: interchanged digits

PARAB 363.

An absent-minded bank clerk switched the dollars and cents when he cashed a check for Mr. Brown, giving him dollars instead of cents and cents instead of dollars. After buying a five-cent newspaper, Mr. Brown discovered that he had left exactly twice as much as his original check. What was the amount of his check?

Money problems: stamps

JRM 396. by Ray Lipman

The adjoining countries Angkor and Bangkor each have two denominations of postage stamps, all in the integral units of their common equivalent of the penny (the kor). One of Angkor's stamps is the 3-kor variety and one of Bangkor's is the 6-kor. The two types of stamps of neither country can be used to obtain all desired amounts of postage, but, curiously, the maximum postage unobtainable with Angkorian stamps is the same as the maximum unobtainable with Bangkorian stamps. What are the smallest possible values of the other two stamps?

Money problems: sum equals product

CRUX 297. by Kenneth M. Wilke

A young lady went to the store to purchase four items. In computing her bill, the nervous clerk multiplied the four amounts together and announced that the bill was \$6.75. Since the young lady had added the four amounts mentally and obtained the same total, she paid her bill and left. Assuming that the prices for each item are distinct, what are the individual prices?

Money problems: word problems

OMG 18.1.9.

A cattle dealer had 5 droves of animals consisting of oxen, pigs and sheep, with the same number of animals in each drove. He sold them all to 8 dealers. Each dealer bought the same number of animals, paying \$17 per ox, \$4 per pig and \$2 per sheep, and the dealer received \$301 in all. What was the greatest number of animals the dealer could have had and how many of each kind were there?

OSSMB 78-3.

A firm employs 350 people, some married and the rest single. It pays a total Christmas bonus of \$B, by giving to each single worker \$83.50 and to each married worker \$100, except that if both spouses of a married couple work for the firm, the wife gets \$100 and the husband nothing. If the total bonus can be determined when the percentage of married workers getting no bonus is known, how many male workers have wives employed by the firm?

Monotone functions Problems sorted by topic Polynomial divisibility

Monotone functions

SSM 3692. by Michael Brozinsky

Prove that $f(x) = (1 + \frac{1}{x})^x$ is an increasing function of x where x is a positive real number.

Numerical calculations

SSM 3568. by Alan Wayne

In the expression $(3/2)^2 - (1/2)^2$, Lucky Larry interpreted the exponents as multipliers, obtaining

$$2(3/2) - 2(1/2) = 2,$$

a correct equivalent of the given expression. Explain his success.

MM Q619. by Alan Wayne

Using "the distributivity of addition over multiplication" Lucky Larry obtained the correct answer to (0.5) + (0.2)(0.3) by multiplying 0.7 by 0.8. Explain his success.

NYSMTJ 62.

Here is an incorrect cancellation that produces a correct result:

$$\frac{16}{64} = \frac{1}{4}$$
.

Find other such fractions.

NYSMTJ 72.

Guess by what rule the following equalities are composed. Using the rule you have found, make up one more such equality:

$$12\times 42 = 21\times 24$$

$$13 \times 62 = 31 \times 26.$$

CRUX 340. by Léo Sauvé

Find a problem whose answer is $22/7 - \pi$.

CRUX 312. by R. Robinson Rowe

Evaluate

$$\left\{ \left(\sqrt[16]{1416317954} - 2 \right)^2 - 3 \right\}^2$$

to at least five significant figures.

Numerical inequalities

PENT 283. by Kenneth M. Wilke

On Professor Knowitall's College Algebra exam, the following question appeared:

Which is larger $\sqrt[6]{4}$ or $\sqrt[7]{5}$? Find the solution without

Young Percival Whizkid solved the problem easily. How did he do it?

Partial fractions

OSSMB G79.2-7.

Express $\frac{x}{1-5x+6x^2}$ as a sum of partial fractions. Then find the coefficient of x^r in the expansion of x(1-5x+ $6x^2)^{-1}$

Polynomial divisibility

FUNCT 3.2.2.

Let P(x), Q(x), and R(x) be polynomials that satisfy the identity

$$P(x^3) + xQ(x^3) = (1 + x + x^2)R(x).$$

Show that all three polynomials are exactly divisible by

MSJ 486.

Let P and Q be two polynomials satisfying the equation P(x)/Q(x) = (2x-1)/(x+2), and define R(x) = $P(x)^2 + Q(x)^2$. Prove that $x^2 + 1$ is a factor of R(x).

SPECT 10.5.

The real polynomials $f_1(x), \ldots, f_{n-1}(x), g(x)$ (n > 1)

$$f_1(x^n) + x f_2(x^n) + \dots + x^{n-2} f_{n-1}(x^n)$$

= $(1 + x + x^2 + \dots + x^{n-1})g(x)$.

Show that $f_1(x), \ldots, f_{n-1}(x)$ all have x-1 as a factor.

USA 1976/5.

If P(x), Q(x), R(x) and S(x) are all polynomials such

$$P(x^5) + xQ(x^5) + x^2R(x^5) = (x^4 + x^3 + x^2 + x + 1)S(x),$$

prove that $x - 1$ is a factor of $P(x)$.

CANADA 1976/7.

Let P(x, y) be a polynomial in two variables x and y such that P(x,y) = P(y,x) for every x and y. Given that (x-y) is a factor of P(x,y), show that $(x-y)^2$ is a factor of P(x, y).

PARAB 299.

Find all values of p, q such that $x^4 + px^2 + q$ is divisible by $x^2 + ax + b$.

PME 446. by Clayton W. Dodge

A teacher showing the factorization of

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$

emphasized that the second factor is not a square (not (x+y) squared), and then chose x=5 and y=3 at random, obtaining $x^2 + xy + y^2 = 49$, which is a square.

- (a) Explain this apparent contradiction.
- (b) Show that the equation $x^2 + xy + y^2 = 49$ illustrates that a 3:5:7 triangle has a 120° angle.

by H. G. Dworschak

Find a fifth degree polynomial P(x) such that P(x)+1is divisible by $(x-1)^3$ and P(x)-1 is divisible by $(x+1)^3$.

What is the remainder when $x + x^9 + x^{25} + x^{49} + x^{81}$ is divided by $x^3 - x$?

NT 288. by Charles Trigg Factor $6x^5 - 15x^4 + 20x^3 - 15x^2 + 6x - 1$. PENT 288.

Factor
$$6x^5 - 15x^4 + 20x^3 - 15x^2 + 6x - 1$$

Polynomial divisibility Problems sorted by topic Polynomials: fixed points

MM 1072.

by Peter Ørno

The professor is preparing her final exam for calculus. She wants to include the problem: "Find the relative maxima, relative minima, and points of inflection of the following function." The function should be a polynomial P(x) of degree 4 with three distinct relative extrema and two distinct points of inflection. In order to solve the problem, the students must be able to factor P'(x) and P''(x). But the typical calculus student in her class can factor a quadratic polynomial correctly only if its roots are integers between -20 and 20, and the student can factor a cubic polynomial only if it is x times a quadratic which the student can factor. Help the professor find such a polynomial.

Polynomials: Chebyshev polynomials

FQ B-373.

by V. E. Hoggatt, Jr.

The sequence of Chebyshev polynomials is defined by

$$T_0(x) = 1$$
, $T_1(x) = x$, and

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$$

for $n=2,3,\ldots$. Show that $\cos\frac{\pi}{(2n+1)}$ is a root of

$$[T_{n+1}(x) + T_n(x)]/(x+1) = 0$$

and use a particular case to show that $2\cos\frac{\pi}{5}$ is a root of $x^2 - x - 1 = 0$.

Polynomials: coefficients

OSSMB 77-17.

Consider polynomials in n symbols x_1, x_2, \ldots, x_n of the form

$$(x_1+\delta_1)(x_2+\delta_2)\dots(x_n+\delta_n)$$

where each $\delta_i = 1$ or -1. If $f(x_1, \ldots, x_n)$ and $g(x_1, \ldots, x_n)$ are any two such polynomials, show that the sum of the products of the coefficients of corresponding terms of f and g is 0.

OSSMB G75.3-5.

Show that if a, b, c, d be any four consecutive coefficients in the expansion of $(1+x)^n$, then

$$\frac{a}{a+b} + \frac{c}{c+d} = \frac{2b}{b+c}$$

OSSMB G79.1-6.

- (a) Find the number of homogeneous products of r dimensions that can be formed out of the letters a, b, c and their powers, that is, products of the form $a^x b^y c^z$ where x, y, z are nonnegative integers and x + y + z = r.
 - (b) Find the number of terms in the expansion of

$$(a+b+c)^{8}$$
.

- (c) Find the sum of the coefficients in $(a+b+c)^8$.
- (d) Find the coefficient of the term $a^2b^3c^4d$ in

$$(a-b-c+d)^{10}.$$

SIAM 76-22. by N. Liron and L. A. Rubenfeld Define

$$F(x) = B_m(x^2)\sin x - xA_n(x^2)\cos x,$$

where $B_m(z)$ and $A_n(z)$ are polynomials of orders m and n respectively, $B_m(0) = 1$ and where m - n = 0 or 1. Prove that the coefficients in the polynomials B_m and A_n can be uniquely chosen so that F(x) vanishes to maximum order at x = 0, and the order of the zero is 2(m + n) + 3.

CRUX 198. by Gali Salvatore

Find the coefficient of x^8 in the expansion of the polynomial

$$(1-2x+3x^2-4x^3+5x^4-6x^5+7x^6)^6$$
.

OSSMB G75.2-6.

Find the sum of the first n coefficients in

$$(1+x)^n(1-x)^{-2}$$
.

Polynomials: complex polynomials

AMM 6136.

by H. L. Montgomery

Let

$$P(z,w) = \sum c_{mn} z^m w^n$$

be a polynomial in $\mathbb{C}[z,w]$. Suppose that

$$Q(z, w) = P(z, w/z)$$

is also a polynomial: that is $c_{mn} = 0$ whenever n > m. Show that

$${P(z,w): |z| < 1, |w| < 1} = {Q(z,w): |z| < 1, |w| < 1}.$$

Polynomials: degree 4

PUTNAM 1978/B.5.

Find the largest A for which there exists a polynomial

$$P(x) = Ax^{4} + Bx^{3} + Cx^{2} + Dx + E,$$

with real coefficients, which satisfies

$$0 \le P(x) \le 1$$
 for $-1 \le x \le 1$.

Polynomials: derivatives

AMM E2550. by I. J. Schoenberg

Let q > 1, and let n be a natural number. Show that the polynomial

$$P(x) = \sum_{k=1}^{n} (-1)^{k+1} \binom{n}{k} \frac{x^{k} - 1}{q^{k} - 1}$$

has the property that for k = 1, 2, ..., n,

$$(-1)^{k+1}P^{(k)}(x) > 0$$
 if $x \le q$.

Polynomials: fixed points

PARAB 386.

Determine all polynomials $f(x) = ax^2 + bx + c$ such that

$$f(a) = a$$
, $f(b) = b$, and $f(c) = c$.

Polynomials: integer coefficients Problems sorted by topic Radicals: approximations

Polynomials: integer coefficients

PUTNAM 1976/A.2.

Let $P(x,y) = x^2y + xy^2$ and $Q(x,y) = x^2 + xy + y^2$. For n = 1, 2, 3, ..., let $F_n(x,y) = (x+y)^n - x^n - y^n$ and $G_n(x,y) = (x+y)^n + x^n + y^n$. Prove that for each n either F_n or G_n is expressible as a polynomial in P and Q with integer coefficients.

Let g(x) be a fixed polynomial with integer coefficients, and let $f(x) = x^2 + xg(x^3)$. Prove that f(x) can not be expressed in the form $(x^2 - x + 1) \cdot h(x)$, where h(x) is a polynomial with integer coefficients.

PUTNAM 1976/A.4.

Let r be a root of $P(x) = x^3 + ax^2 + bx - 1 = 0$ and r+1 be a root of $y^3+cy^2+dy+1=0$, where a,b,c and d are integers. Also let P(x) be irreducible over the rational numbers. Express another root s of P(x) = 0 as a function of r which does not explicitly involve a, b, c or d.

CRUX 254. by M. S. Klamkin

(a) If P(x) denotes a polynomial with integer coefficients such that

$$P(1000) = 1000, \quad P(2000) = 2000, \quad P(3000) = 4000,$$

prove that the zeros of P(x) cannot be integers.

(b) Prove that there is no such polynomial if

$$P(1000) = 1000, \quad P(2000) = 2000, \quad P(3000) = 1000.$$

JRM 589. by Frank Rubin

(a) Of all polynomials f(x) of degree less than or equal

to 3 and with integer coefficients all in the range [-10, 10], which one has a zero nearest in value to π ?

(b) Of all polynomials of degree less than or equal to 5 and with integer coefficients all in the range [-100, 100], which has a zero nearest in value to π ?

Polynomials: interpolation

USA 1975/3.

If P(x) denotes a polynomial of degree n such that P(k) = k/(k+1) for k = 0, 1, 2, ..., n, determine P(n+1).

Polynomials: number of terms

CRUX PS8-2.

Find all fourth-degree polynomials (with complex coefficients) with the property that the polynomial and its square each consist of exactly five terms.

Polynomials: roots and coefficients

CRUX 332. by Leroy F. Meyers

In the quadratic equation

$$A(\sqrt{3} - \sqrt{2})x^2 + \frac{B}{\sqrt{2} + \sqrt{3}}x + C = 0,$$

we are given:

$$A = \sqrt[4]{49 + 20\sqrt{6}};$$

B =the sum of the geometric series

$$8\sqrt{3} + (8\sqrt{6})(3^{-\frac{1}{2}}) + 16(3^{-\frac{1}{2}}) + \cdots;$$

and the difference of the roots is

$$(6\sqrt{6})^{\log 10 - 2\log \sqrt{5} + \log \sqrt{\log 18 + \log 72}}$$

where the base of the logarithms is 6. Find the value of C.

CRUX 128.

by Paul Khoury

Find real a, b, and c given that the equation $az^2 + bz +$ c=0 has as one of its roots $v+v^2+v^4$, where v is an imaginary root of $z^7 - 1 = 0$.

MSJ 427.

by J. Orten Gadd

The roots of the equation

$$z^4 + az^3 + bz^2 + cz + 62500 = 0$$

are $x \pm iy$ and $y \pm ix$. Find all solutions if x and y are positive integers with x < y.

CRUX 335. by Hippolyte Charles

Find necessary and sufficient conditions for the equation $ax^2 + bx + c = 0$, $a \neq 0$, to have one of its roots equal to the square of the other.

PUTNAM 1975/A.2.

(a) For which ordered pairs of real numbers b and c do both roots of the quadratic equation

$$z^2 + bz + c = 0$$

lie inside the unit disc $\{|z| < 1\}$ in the complex plane?

(b) Draw a reasonably accurate graph of the region in the real bc-plane for which the above condition holds. Identify precisely the boundary curves of this region.

Polynomials: zeros

CRUX 425.

by Gali Salvatore

Let $x_1, x_2, \dots x_n$ be the zeros of the polynomial

$$P(x) = x^{n} + ax^{n-1} + a^{n-1}x + 1, \quad n > 3$$

and consider the sum

$$\sum_{k=1}^{n} \frac{x_k + 2}{x_k - 1}.$$

Find all values of a and n for which this sum is defined and equal to n-3.

MATYC 128. by Steve Kahn

Find all real values of k such that the zeros of

$$x^4 - 2x^3 + (1 - 2k)x^2 + 2kx$$

are real, distinct, and form an arithmetic progression.

MSJ 488.

Let $f(x) = x^4 + x^3 - 1$, and $g(x) = x^4 - x^3 - 2x^2 + 1$. Prove that if f(x) = 0, then $g(x^2) = 0$.

MM Q659. by Peter Ørno

Show that for each complex number b the polynomial $P(z) = z^4 + 32z + b$ has a zero in $\{z \mid \text{Re}(z) > 1\}$.

Radicals: approximations

CRUX 207. by Ross Honsberger

Prove that $\frac{2r+5}{r+2}$ is always a better approximation to

Radicals: arithmetic progressions

Problems sorted by topic

Rate problems: cars

Radicals: arithmetic progressions

ISMJ 11.12.

Prove that the numbers $\sqrt{2}$, $\sqrt{3}$, and $\sqrt{5}$ cannot be terms of a single arithmetic progression.

Radicals: irrational numbers

CRUX 104.

by H. G. Dworschak

Prove that $\sqrt[3]{5} - \sqrt[4]{3}$ is irrational.

PARAB 287.

Show that

$$\sqrt{1976^{1977}+1978^{1979}}$$

is irrational.

Radicals: nested radicals

OMG 14.3.2.

- (a) What is the value of $\sqrt{6 + \sqrt{6 + \sqrt{6 + \cdots}}}$?
- (b) What is the sum of $\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \cdots$?

CRUX 8.

by Jacques Marion

Investigate the convergence of the sequence (a_n) defined by

$$a_n = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots + \sqrt{1}}}}, \quad (n \text{ radicals})$$

and determine $\lim_{n\to\infty} a_n$ if it exists.

CRUX 9.

by Jacques Marion

Investigate the convergence of the sequence (b_n) defined by

$$b_n = \sqrt{1 + \sqrt{2 + \sqrt{3 + \dots + \sqrt{n}}}}.$$

Radicals: reciprocals

OMG 15.3.4.

Given that $a+b\sqrt{2}$, with $a,b\in\mathbb{R}$, is a closed system under multiplication, what is the reciprocal of $3-2\sqrt{2}$ in the form $a+b\sqrt{2}$?

Radicals: simplification

CRUX 169.

by Kenneth S. Williams

Prove that

$$\sqrt{5} + \sqrt{22 + 2\sqrt{5}} = \sqrt{11 + 2\sqrt{29}} + \sqrt{16 - 2\sqrt{29} + 2\sqrt{55 - 10\sqrt{29}}}.$$

SSM 3711.

by William D. Markel

Simplify:

$$\sqrt[3]{\frac{5\sqrt{33}}{18} - \frac{3}{2}} - \sqrt[3]{\frac{5\sqrt{33}}{18} + \frac{3}{2}} \ .$$

Rate problems: cars

CRUX PS8-1.

At midnight, a truck starts from city A and goes to city B; at 2:40 AM a car starts along the same route from city B to city A. They pass at 4:00 AM. The car arrives at its destination 40 minutes later than the truck. Having completed their business, they start for home and pass each other on the road at 2:00 PM. Finally, they both arrive home at the same time. At what time did they arrive home?

ISMJ J10.11.

Two cars each traveling at a uniform speed set out at noon from A and travel to B. They reach B at 3 PM and 4 PM respectively. At what time was the slower car twice as far from B as the faster one?

OMG 18.2.9.

It is 52 kilometers by road from Hamilton to Toronto. At 10 AM, Peter Brown left Hamilton and traveled at a uniform pace, without stopping, to Toronto and back again. Some time later, Bill Storey left Toronto and drove his car at a uniform speed to Hamilton and back again. Storey passed Brown, on his outward journey, 15 kilometers from Toronto. He passed him again, on his return journey, 11 kilometers from Toronto. Storey was back in Toronto at 4:40 PM. What time was it when Brown arrived back in Hamilton?

OSSMB 75-3. by Murray Klamkin and Rodney Cooper

Al leaves at noon and drives at constant speed back and forth from town A to town B. Bob also leaves at noon, driving at 40 mph back and forth from town B to town A on the same highway as Al. Al arrives at town B twenty minutes after first passing Bob, whereas Bob arrives at town A 45 minutes after first passing Al. At what time do Al and Bob pass each other for the nth time?

OSSMB G79.1-1.

- (a) An automobile traveling at a rate of 30 feet per second is approaching an intersection. When the auto is 120 feet from the intersection, a truck traveling at 40 feet per second crosses the intersection. The roads are at right angles. How fast are the truck and the auto separating 2 seconds after the truck crosses the intersection?
- (b) Water is poured at the rate of 8 cubic feet per minute into a tank in the form of an inverted cone. The cone is 20 feet deep and 10 feet in diameter. If there is a leak in the bottom and the water level is rising at 1 inch per minute when the water is 16 feet deep, how fast is the water leaking?

PENT 294. by Léo Sauvé

Two cars leave at the same time from two towns A and B, going towards each other. When the faster car reaches the midpoint M, between A and B, the distance between them is 96 miles. They meet 45 minutes later. Finally, when the slower car reaches M, they are 160 miles apart. Find

- (a) the speed of each car, and
- (b) the distance between the two towns.

Rate problems: distance Problems sorted by topic Rate problems: running

Rate problems: distance

FUNCT 2.2.1.

A man walks in a straight line from A to B, starting at A, at a constant speed of 5 km/hr. A fly starts at B at the same time that the man sets off from A and flies to the man's nose, then back to B, then to the man's nose, and so on. The fly flies at twice the speed that the man walks. How far has the fly flown when the man reaches B?

MSJ 445. by Joanne B. Rudnytsky

Some hikers start in a walk at 3 PM and return at 9 PM. If their speed is 4 mph on level land, 6 mph downhill, and 3 mph uphill, how far did they walk? If the uphill rate were x mph and the downhill rate were y mph, what must be the rate, in mph, on the flat, for such a problem to have a unique solution?

OMG 18.3.3.

Dianne goes to school cycling at 12 kph and she is 10 minutes late. Next day she goes at 15 kph and reaches school 10 minutes early. Find the distance of the school from her house. At what speed should she cycle to reach school precisely on time?

Rate problems: exponential growth

CRUX 373. by Leroy F. Meyers

Suppose that the human population of the Earth is increasing exponentially at a constant relative rate k, that the average volume of a person stays at V_0 , and that the present population is N_0 . If people are assumed packed solidly into a sphere, how long will it be until the radius of that sphere is increasing at the speed of light, c, and what will the radius of the sphere be then?

The following approximate data may be used: $N_0=4\times 10^9,~k=1\%/{\rm yr},~1~{\rm yr}=365.25~{\rm days},~1~{\rm day}=24\cdot 60\cdot 60$ sec; and $V_0=0.1~{\rm m}^3$ and $c=3\times 10^8~{\rm m/sec}$.

Rate problems: flow problems

OMC 1727

If x men working x hours a day for each of x days produce x articles, determine the number of articles produced by y men working y hours a day for each of y days.

NYSMTJ OBG4.

Four pipes lead into a pool. When pipes 1, 2, and 3 are open, the pool is filled in 12 minutes; when pipes 2, 3, and 4 are open, it takes 15 minutes to fill the pool; when just pipes 1 and 4 are open, it takes 20 minutes. How long will it take to fill the pool if all four pipes are open?

Rate problems: rivers

CRUX 193. by L. F. Meyers

A river with a steady current flows into a still-water lake at Q. A swimmer swims down the river from P to Q, and then across the lake to R, in a total of 3 hours. If the swimmer had gone from R to Q to P, the trip would have taken 6 hours. If there had been a current in the lake equal to that in the river, then the downstream trip PQR would have taken $2^{1}/4$ hours. How long would the upstream trip RQP have taken under the same circumstances?

MATYC 123.

by Sarah Brooks

A mathematician went home along the bank of a stream, walking upstream at a rate 1 1/2 times the flow of the stream. He held in his hands his hat and his cane. At a certain time, his hat fell unnoticed into the stream; he continued to go upstream at the same rate. After a while, he realized his mistake, threw his cane into the stream, and ran back at the rate twice as great as that at which he had been going upstream. Upon reaching the floating hat, he immediately fished it out of the water, and walked upstream at his initial rate. Ten minutes after he had fished out the hat, he met his cane floating in the stream. How much earlier would he have arrived home if he had not dropped his hat into the water?

SPECT 11.4. by B. G. Eke

A man rows with uniform speed v mph in a straight line against a current of c mph. After 1 hour his hat falls off; after another hour he notices, turns back, and catches up with his hat where he first started rowing. Find v/c. If now his hat falls off after 1 mile instead of 1 hour, with all the other statements the same, determine c and comment on the fact that c is independent of v in this case.

MM 1004. by M. S. Klamkin

A river flows with a constant speed w. A motorboat cruises with a constant speed v with respect to the river, where v > w. If the path traveled by the boat is a square of side L with respect to the ground, the time of the traverse will vary with the orientation of the square. Determine the maximum and minimum time for the traverse.

Rate problems: running

CRUX 356. by R. Robinson Rowe

Jogging daily to a landmark windmill P on the north-easterly horizon, Joe wondered how far it was. Directly (path OP), his time was 25 minutes; jogging first 2 miles due North (path ONP) took 30 minutes, and jogging first 2 miles due East (path OEP) took 35 minutes. How far was Joe's jog (path OP)?

FUNCT 3.1.4.

A man and a horse run a race, one hundred meters straight, and return. The horse leaps 3 meters at each stride and the man only 2, but then the man makes three strides to each of the horse's two. Who wins the race?

JRM 770a. by Michael J. Messner

Our four favorite fiends have been chasing the caped crusader all over Gotham City. As he enters a tunnel with Penguin on his heels, an alarm is sounded and at that same time the other three fiends begin to converge toward the center of the tunnel system. Batman is in top condition and able to run faster than any of the fiends. He can go 15 kph indefinitely. Since good guys always turn right, the caped crusader turns right when he reaches the center of the tunnel system and heads toward Cat Woman. When he meets her, he turns and heads back toward the center. There he turns right again and continues in this manner until one of the fiends reaches the center and cuts off his retreat. Now caught between two of them, Batman runs back and forth until all three meet and he can go no further.

Which two wicked weasels will waylay our wary worshipped wonder, and how many miles does he run before they catch him? Penguin goes 3 kph, Cat Woman and Riddler 2 kph, and Joker can go 4 kph but he doesn't – he just sits and waits.

Rate problems: sheep Problems sorted by topic Recurrences

Rate problems: sheep

CRUX 71.

by Léo Sauvé

If ten sheep jump over a fence in ten seconds, how many would jump over the fence in ten minutes?

Rate problems: spaceships

OMG 17.2.6.

A 25-vehicle interterrestrial starship fleet took off from rebel headquarters, one ship departing every 5 earth minutes. Each ship traveled at the uniform speed of $4\frac{1}{2}$ intergalactic distance units per earth hour, attaining this velocity instantaneously, and each ship has to journey 12 earth hours before arriving at its destination. The first ship departed at 11 AM earth time. Find the total number of intergalactic distance units traveled by all these starships from 11 AM to 9 PM earth time that night.

Rate problems: traffic lights

FUNCT 3.4.1.

Five sets of traffic lights are spaced along a road at 200-meter intervals. For each set, the red signal lasts 30 sec, the green 28 sec, and the yellow 2 sec. The lights are synchronized in such a way that a car traveling at 36 kph, and just catching the first light, just catches the other four. The width of the cross-street at each light is 20 meters. Find all the speeds at which it is possible to travel without being held up at any of the lights.

JRM 730. by Frank Rubin

A traffic light has a one-minute cycle, divided into 25 seconds green, 5 seconds yellow, and 30 seconds red. A car approaches the light at a speed of 20 meters per second. The car can brake and accelerate at 5 meters per second. The driver has a one-second reaction time, and perfect judgment, i.e., if the light is red, he will brake at maximum rate so as to stop just at the intersection if this is possible; otherwise he will continue through the intersection at his normal speed. On the average, how much delay does the traffic light cause?

Rate problems: trains

OMG 17.3.6.

A freight train and an express train travel at constant speeds on straight parallel tracks. It takes 21 seconds for the trains to clear each other when passing in the same direction, but only 6 seconds when passing in opposite directions. Find the ratio of the speed of the freight train to the speed of the express train.

OMG 18.3.6.

Two trains start at 7 AM, one from A going to B and the other from B going to A. The first train makes the trip in 8 hours and the second in 12 hours. At what hour of the day will the two trains pass each other?

Rate problems: trips

PARAB 353.

In traveling from A to B, a distance of 100 km, a train accelerates uniformly, travels 80 km at a constant speed of 100 km/hr, and then decelerates uniformly. How long does the trip take?

PARAB 303.

Four men A, B, C, and D set out simultaneously from M to reach N, 5 kilometers away. One of them, D, owns a motorcycle. He gives A a lift for part of the way, then turns back and picks up B. When they overtake A, B alights and the unselfish D once more turns back to assist C. Eventually they all arrive at N at the same moment. If D always travels at a steady v km/hour, and A, B, and C all walk at w km/hr, how long did the trip from M to N take?

PARAB 348.

Four explorers are going to make a trip into the desert. Each man can carry enough water to last ten days. Each man can walk 24 kilometers a day. Obviously if all four stay together, they can manage a trip of only five days into the desert, leaving enough water to return. If our explorers are thinkers, how far can they manage to get into the desert before they have to return? Assume that the desert is so uninhabited that it is safe to leave water behind for the return trip, but no explorer can return to civilization to replenish his supply and then return to the desert.

Recurrences

SIAM 79-5. by L. Erlebach and O. Ruehr A sequence $\{a_n\}$ is defined as follows:

$$a_n = n(n-1)a_{n-1} + \frac{1}{2}n(n-1)^2a_{n-2},$$

 $n \ge 3$; $a_1 = 0$, $a_2 = 1$. Determine how a_n behaves for large n.

AMM E2520. by G. B. Huff

The nontrivial sequence a_0, a_1, \ldots satisfies the following recursion formula:

$$a_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k}^2 (n-2k)! a_k^2.$$

Find a_n .

CANADA 1977/6.

Let 0 < u < 1 and define

$$u_1 = 1 + u$$
, $u_2 = \frac{1}{u_1} + u$, ..., $u_{n+1} = \frac{1}{u_n} + u$, $n \ge 1$.

Show that $u_n > 1$ for all values of $n = 1, 2, 3, \ldots$

CRUX 162. by Viktors Linis If $x_0 = 5$ and $x_{n+1} = x_n + \frac{1}{x_n}$, show that

$$45 < x_{10000} < 45.1$$
.

AMM E2567.

by J. H. Conway and R. L. Graham

Define polynomials $f_m = f_m(x_1, \ldots, x_m)$ by $f_0 = 1$, $f_1 = x_1$, $f_k = x_k f_{k-1} - f_{k-2}$, $k \ge 2$. For a fixed $n \ge 3$, let y_1, y_2, \ldots satisfy $f_n(y_{k+1}, \ldots, y_{k+n}) = 1$ for all $k \ge 0$. Show that $y_{n+k+2} = y_k$ for all $k \ge 1$.

IMO 1976/2.

Let $P_1(x) = x^2 - 2$ and $P_j(x) = P_1(P_{j-1}(x))$ for $j = 2, 3, \ldots$ Show that, for any positive integer n, the roots of the equation $P_n(x) = x$ are real and distinct.

Recurrences Problems sorted by topic Solution of equations: degree 20

CRUX 191.

by R. Robinson Rowe

Consider the recurrence defined by

$$N_n N_{n-2} = N_{n-1} + e$$
.

(a) Find sets of square integers N_0 and N_1 for which $N_5 = N_0$ when e = 2.

(b) Find the general relation between N_0 and N_1 for any value of e.

AMM E2737. by Robert Ross Wilson

Define a sequence of polynomials by $P_0 = 1$, $P_1 = x+1$, and $P_{n+1} = P_n + xP_{n-1}$ $(n \ge 1)$. Show that all roots of each P_n are real.

Roots of unity

JRM 556. by Ray Lipman

Consider the *n*th roots of unity for $n=1,2,\ldots,100$. How many of these are distinct? What is the closest that two of them come to each other in the complex plane? Generalize.

OSSMB G79.2-3.

Given $w^3 = 1$, $w \neq 1$ (i.e., w is a complex cube root of unity), find the value of

$$(1-w)(1-w^2)(1-w^4)(1-w^5)(1-w^7)(1-w^8).$$

TYCMJ 82. by Norman Schaumberger

Choose w and r so that w is a primitive nth root of unity and $r^n \neq 1$. Prove that

$$\sum_{k=0}^{n-1} \frac{1}{1 - w^k r} = \frac{n}{1 - r^n} \ .$$

PUTNAM 1975/A.4.

Let n=2m, where m is an odd integer greater than 1. Let $\theta=e^{2\pi i/n}$. Express $(1-\theta)^{-1}$ explicitly as a polynomial in θ ,

$$a_k \theta^k + a_{k-1} \theta^{k-1} + \dots + a_1 \theta + a_0,$$

with integer coefficients a_i . [Note that θ is a primitive nth root of unity, and thus it satisfies all of the identities which hold for such roots.]

Sequences

OSSMB G78.3-1.

(a) The two middle terms of an arithmetic progression of 2n terms are a and b. Find the difference between the sum of the first n terms and the sum of the last n terms.

(b) Determine x such that

$$\sum_{k=0}^{n} (k+1) \left(x - \frac{k}{n} \right) = 0.$$

OSSMB G79.2-1.

Given any arithmetic progression t_1, t_2, \ldots such that $t_r = 0$ for some fixed r > 1, show that $t_1 + \cdots + t_{2r-1} = 0$.

CANADA 1975/2.

A sequence of numbers a_1, a_2, a_3, \ldots satisfies

$$(1) a_1 = \frac{1}{2},$$

(2) $a_1 + a_2 + \cdots + a_n = n^2 a_n \ (n \ge 1)$. Determine the value of $a_n \ (n \ge 1)$.

Solution of equations: binomial coefficients

SSM 3736.

by William D. Markel

Find the distinct roots of the equation

$$1 - \binom{n}{2}x^2 + \binom{n}{4}x^4 - \binom{n}{6}x^6 + \dots + (-1)^j \binom{n}{2j}x^{2j} = 0,$$

where

$$j = \begin{cases} n/2, & \text{if } n \text{ is even} \\ (n-1)/2, & \text{if } n \text{ is odd.} \end{cases}$$

Solution of equations: degree 2

CRUX 489.

by V. N. Murty

Find all real numbers x, y, and z such that

$$(1-x)^{2} + (x-y)^{2} + (y-z)^{2} + z^{2} = \frac{1}{4}.$$

CRUX 51.

by H. G. Dworschak

Solve the following equation for the positive integers \boldsymbol{x} and \boldsymbol{y} :

$$(360 + 3x)^2 = 492$$
y04.

FUNCT 3.2.7.

Let a, b, and c be real numbers that satisfy the equation

$$3a^2 + 4b^2 + 18c^2 - 4ab - 12ac = 0.$$

Prove that a = 2b = 3c.

NYSMTJ 87.

by Thomas Masters and Sidney Penner

Let t > 1 and a, b, c, d be nonnegative. If

$$(at+b)(ct+d) = (bt+a)(dt+c)$$

and d+c=2(a+b), show that d=2a and c=2b.

SSM 3725. by Robert A. Carman

Some students incorrectly try to solve quadratic equations by the method illustrated in the following examples:

$$(x+3)(4-x) = 6$$
 $(x+1)(2-x) = 2$
 $x+3=6 \text{ or } 4-x=6$ $x+1=2 \text{ or } 2-x=2$
 $x=3 \text{ or } x=-2$ $x=1 \text{ or } x=0$

Notice that in each case the correct answer is obtained. Under what conditions will this approach always yield the correct result?

Solution of equations: degree 4

OMG 18.1.7.

Solve:

$$(x+1)(x+3)(x+5)(x+7) = 9.$$

Solution of equations: degree 20

OSSMB 79-18.

(a) The first two terms of a 20th degree polynomial are $x^{20}-20x^{19}$ and the last term is 1. If all the roots are real and positive, find them.

(b) Show that if any subset of n+1 numbers is selected from the first 2n positive integers, the subset must contain two numbers that are relatively prime.

Solution of equations: determinants

Problems sorted by topic

Sum of powers

Solution of equations: determinants

CRUX 398.

by Murray S. Klamkin

Find the roots of the $n \times n$ determinantal equation

$$\left| \frac{1}{x\delta_{rs} + k_r} \right| = 0,$$

where δ_{rs} is the Kronecker delta.

Solution of equations: exponential equations

CRUX 262.

by Steven R. Conrad

Find the real values of x such that

$$3^{2x^2 - 7x + 3} = 4^{x^2 - x - 6}$$

JRM 653.

by J. A. H. Hunter

Given that $k = \left(\frac{r^x - 1}{r - 1}\right)^x$, r > 1, determine x in terms of k and r.

Solution of equations: linear

OSSMB G76.2-5.

Solve the equation

$$\frac{a+b-x}{c}+\frac{a+c-x}{b}+\frac{b+c-x}{a}+\frac{4x}{a+b+c}=1.$$

OSSMB G79.2-2.

Solve

$$\frac{x-ab}{a+b} + \frac{x-bc}{b+c} + \frac{x-ac}{a+c} = a+b+c$$

given that a, b, c are positive real constants.

Solution of equations: logarithms

MATYC 110.

by Louise Grinstein

Solve for x: $x + \log_a(x) = a$.

OSSMB G76.2-7.

Solve

$$2\log_x a + \log_{ax} a + 3\log_{a^2x} a = 0.$$

Solution of equations: radicals

CRUX 116.

by Viktors Linis

For which values of a, b, and c does the equation

$$\sqrt{x+a\sqrt{x}+b}+\sqrt{x}=c$$

have infinitely many solutions?

CRUX 287.

by M. S. Klamkin

Determine a real value of x satisfying

$$\sqrt{2ab+2ax+2bx-a^2-b^2-x^2}$$

$$= \sqrt{ax - a^2} + \sqrt{bx - b^2}$$

if x > a and b > 0.

MSJ 457.

Solve for x:

$$\sqrt{7x} - \sqrt{3x} = 7 - 3.$$

Sports

FUNCT 3.5.1.

by Ray Bence

Football score is calculated by adding the number of behinds to six times the number of goals. Some scores may be calculated correctly by multiplying the number of goals by the number of behinds. Give a list of all scores for which this is possible.

NYSMTJ 57.

by David Rosen

Assume that, in a simplified version of football, there are only two types of scoring: a 3-point play and a 7-point play. What is the largest total that cannot be achieved?

JRM 624. by Benedict Marukian

When the Latakia State University football team played Filter Tech in the Tobacco Bowl, the lead changed hands after each tally. Moreover, following each tally, each team's score was prime. Under these conditions the final score was as large as it could be. What was it?

"Tally" here is defined to be the points awarded for any scoring play, including, in the case of a touchdown, the conversion, if successful. Thus there are five different possible tallies: 2, 3, 6, 7, and 8.

MM 1024. by David A. Smith

In many athletic leagues the progress of teams is reported both in terms of winning percentage and in terms of "games behind" the league leader, defined as the difference in games won minus the difference in games lost, divided by 2. Sports fans often observe, especially early in the season, that the league leader in percentage (the official standard) is behind some other team in games.

Suppose team A is the percentage leader, but team B is ahead of Team A in games. Assume no ties.

- (a) Which team has played more games?
- (b) What is the minimum difference in number of games played?
- (c) Characterize possible won/lost records for the two teams if the difference in number of games played is minimal.
 - (d) Is it possible for this to occur late in the season?

Substitution

FQ B-394.

by Phil Mana

Let P(x) = x(x-1)(x-2)/6. Simplify the following expression:

$$P(x + y + z) - P(y + z) - P(x + z) - P(x + y) + P(x) + P(y) + P(z).$$

OSSMB G78.2-1.

When $x = (3 + 5\sqrt{-1})/2$, find the value of

$$2x^3 + 2x^2 - 7x + 72$$

and show that it is unaltered if $(3-5\sqrt{-1})/2$ is substituted for x.

Sum of powers

PARAB 337.

Let x and y be real numbers such that x + y = 1 and $x^4 + y^4 = 7$. Find $x^2 + y^2$ and $x^3 + y^3$.

Sum of powers

Problems sorted by topic

Systems of equations: 3 variables

PARAB 382.

Prove or disprove: There are two numbers x, y such that x+y=1, $x^2+y^2=2$, and $x^3+y^3=3$.

CRUX 143.

by Léo Sauvé

Suppose that

$$f(n) = x^n + y^n + z^n,$$

where (x, y, z) is a triple of complex numbers such that f(n) = n for n = 1, 2, 3. Show that the triple (x, y, z) cannot be real and calculate f(4), f(5), and f(6).

CRUX 156.

by Léo Sauvé

Find all integers n for which the following implication holds: For all real nonzero $a,\,b,\,$ and c with nonzero sum,

$$\begin{split} \frac{1}{a} + \frac{1}{b} + \frac{1}{c} &= \frac{1}{a+b+c} \\ &\Longrightarrow \frac{1}{a^n} + \frac{1}{b^n} + \frac{1}{c^n} = \frac{1}{a^n+b^n+c^n}. \end{split}$$

Systems of equations: 2 variables

CRUX 384.

by Hippolyte Charles

Solve the following system of equations for x and y:

$$\frac{(ab+1)(x^2+1)}{x+1} = \frac{(a^2+1)(xy+1)}{y+1}$$

$$\frac{(ab+1)(y^2+1)}{y+1} = \frac{(b^2+1)(xy+1)}{x+1}.$$

ISMJ J11.3.

Solve the simultaneous equations

$$\frac{x-y+1}{x+y-1} = a$$
$$\frac{x+y+1}{x-y-1} = b.$$

Does a solution exist for all values of a and b?

SSM 3596.

by Howard L. Prouse

Show that the system of equations

$$ax + by = c$$

$$dx + ey = f$$

always has the solution (-1,2) if a, b, c, d, e, and f form a nontrivial arithmetic sequence.

TYCMJ 126.

by R. C. Buck

If x=1.36 and y=1.69, calculation in the set of equations

$$x^{2} + y^{2} + xy = 7$$
$$3x^{2} - y^{2} - y = 1$$
$$-x^{2} + 3y^{2} - 2x = 4$$

suggests you have almost found a common solution. Does there exist a common solution?

CRUX 252.

by Richard S. Field

Discuss the solutions, if any, of the system

$$x^y = A$$

$$y^x = A + 1,$$

where $A \geq 2$ is an integer.

OSSMB G77.2-1.

Find the positive solutions of the equations

$$x^{x+y} = y^a$$
 and $y^{x+y} = x^{4a}$

where a > 0.

PARAB 280.

Find all solutions of the simultaneous equations:

$$y = x + \sqrt{x + \sqrt{x + \dots + \sqrt{x + \sqrt{y}}}}$$
$$x + y = 6,$$

where there are 1975 square roots in the first equation.

Systems of equations: 3 variables

CANADA 1978/3.

Determine the largest real number z such that

$$x + y + z = 5$$

$$xy + yz + xz = 3$$

and x and y are also real.

CRUX 438.

by Sahib Ram Mandan

Eliminate x, y, and z from the following three equations:

$$a_i x^2 + b_i y^2 + cz^2 + 2 f_i yz + 2 g_i zx + 2 h_i xy = 0, \quad i = 1, 2, 3.$$

OSSMB G78.3-2.

Solve

$$x - y = 1 - z$$
$$3(x^{2} - y^{2}) = 5(1 - z^{2})$$
$$7(x^{3} - y^{3}) = 19(1 - z^{3})$$

when $x \neq y$.

OMG 15.2.3.

Find all the ordered triples (x,y,z) such that when any one of these numbers is added to the product of the other two the result is 2.

MSJ 440.

by Harry Sitomer

Solve the system of equations:

$$x + y + z = 5$$
$$x + y - z = 7$$
$$(x - y)^{3} + (y - z)^{3} = (x - z)^{3}.$$

Systems of equations: 3 variables

Problems sorted by topic

Theory of equations: inequalities

CRUX 272.

by Steven R. Conrad

Solve the system of equations

$$z^x = y^{2x}$$
$$2^z = 2(4)^x$$

$$x + y + z = 16.$$

OSSMB G79.3-5.

Solve the system of equations:

$$x + y + z = 15$$

$$x^2 + y^2 + z^2 = 83$$

$$x^3 + y^3 + z^3 = 495.$$

Systems of equations: 4 variables

PUTNAM 1977/A.2.

Determine all solutions in real numbers x, y, z and w of the system

$$x + y + z = w$$

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{w}.$$

Systems of equations: 5 variables

USA 1978/1.

Given that a, b, c, d and e are real numbers such that

$$a + b + c + d + e = 8$$

$$a^2 + b^2 + c^2 + d^2 + e^2 = 16.$$

Determine the maximum value of e.

IMO 1979/5.

Find all real numbers a for which there exist non-negative real numbers x_1 , x_2 , x_3 , x_4 , x_5 satisfying the relations

$$\sum_{k=1}^{5} kx_k = a, \quad \sum_{k=1}^{5} k^3 x_k = a^2, \quad \sum_{k=1}^{5} k^5 x_k = a^3.$$

CRUX 299.

by M. S. Klamkin

Ιf

$$F_1 = (-r^2 + s^2 - 2t^2)(x^2 - y^2 - 2xy) -$$

$$2rs(x^2 - y^2 + 2xy) + 4rt(x^2 + y^2).$$

$$F_2 = 2rs(x^2 - y^2 + 2xy) + (r^2 + s^2 - 2t^2)(x^2 - y^2 - 2xy) +$$

$$4st(x^2+y^2),$$

$$F_3 = -2rt(x^2 - y^2 - 2xy) - 2st(x^2 - y^2 + 2xy) +$$

$$(r^2 + s^2 + 2t^2)(x^2 + y^2),$$

show that F_1 , F_2 , and F_3 are functionally dependent and find their functional relationship. Also, reduce the five-parameter representation of F_1 , F_2 , and F_3 to one of two parameters.

Systems of equations: 6 variables

CRUX 45.

by H. G. Dworschak

Find the constants A, B, C, D, p, and q such that

$$A(x-p)^{2} + B(x-q)^{2} = 5x^{2} + 8x + 14,$$

$$C(x-p)^2 + D(x-q)^2 = x^2 + 10x + 17.$$

Systems of equations: 13 variables

PARAB 288.

Find all solutions of the equations with 13 unknowns:

$$x_1x_2 = x_2x_3 = x_3x_4 = \dots = x_{12}x_{13} = x_{13}x_1 = 1.$$

Solve the similar set of equations with 12 unknowns.

Systems of equations: n variables

AMM E2587.

by Bruno O. Shubert

Consider the system of n equations

$$x_0+x_k=\min_{j=1,...,m}\max_{i=1,...,n}(a_{ijk}+x_i), \qquad k=1,\ldots,n,$$

in n+1 unknowns x_0, x_1, \ldots, x_n , where the a_{ijk} are given constants. Show that

- (a) the system always has a solution and that
- (b) the first component, x_0 , is unique.

MM 930.

by M. S. Klamkin

Solve the system of equations

$$(x_i - a_{i+1})(x_{i+1} - a_{i+3}) = a_{i+2}^2,$$

 $i=1,2,\ldots,n,$ for the x_i 's where $a_{n+i}=a_i,\,x_{n+i}=x_i,$ and $a_1a_2\cdots a_n\neq 0.$

Systems of equations: logarithms

PARAB 349.

Solve the system of equations

$$x^{\log y} + y^{\log \sqrt{x}} = 110, \quad xy = 1000.$$

Theory of equations: constraints

MM 1074.

by Chandrakant Raju and R. Shantaram

Suppose that all three roots of the cubic

$$x^3 - px + q = 0 \quad (p > 0, q > 0)$$

are real. Show that the numerically smallest root lies between q/p and 2q/p.

OMG 17.1.6.

Find all real values of k so that the equation

$$x^3 + x^2 - 4kx - 4k = 0$$

has two of its three roots equal.

Theory of equations: inequalities

SPECT 7.9.

by B. G. Eke

Let a be a positive integer and let b, c be integers. Suppose that $ax^2 + bx + c$ has two distinct roots in the range 0 < x < 1. Show that $a \ge 5$ and find such a quadratic with a = 5.

Theory of equations: integer roots

Problems sorted by topic

Theory of equations: table of values

Theory of equations: integer roots

CRUX 190.

by Kenneth M. Wilke

Find all integral values of m for which the polynomial

$$P(x) = x^3 - mx^2 - mx - (m^2 + 1)$$

has an integral zero.

Theory of equations: real roots

CRUX PS7-3.

Show that the polynomial equation with real coeffi-

$$P(x) \equiv a_0 x^n + a_1 x^{n-1} + \dots + a_{n-3} x^3 + x^2 + x + 1 = 0$$

cannot have all real roots.

MM Q626.

by Philip Tracy

If a, b, and c are real and $b^2 < 2ac$, prove that the cubic $x^3 + ax^2 + bx + c$ has only one distinct real root.

PARAB 282.

Let

$$f(x) = ax^2 + bx + c,$$

where a, b, c are real numbers. Prove that if the coefficients a, b, c are such that the equation f(x) = x has no real roots, then also the equation f(f(x)) = x has no real roots.

Theory of equations: roots

CRUX 298.

by Clayton W. Dodge

The equation $x^2 - 9x + 18 = 4$ has the property that, if the left side is factored, so that (x - 3)(x - 6) = 4, then one of the roots, x = 7, is found by illegally setting one of the factors equal to the constant on the right, x - 3 = 4. Unfortunately, the second root cannot be similarly found; it is not x - 6 = 4. Find all such quadratic equations in which both roots can be obtained by equating each factor in turn to the nonzero constant on the right.

PUTNAM 1978/B.3.

The sequence $\{Q_n(x)\}$ of polynomials is defined by

$$Q_1(x) = 1 + x$$
, $Q_2(x) = 1 + 2x$,

and for $m \geq 1$, by

$$Q_{2m+1}(x) = Q_{2m}(x) + (m+1)xQ_{2m-1}(x),$$

$$Q_{2m+2}(x) = Q_{2m+1}(x) + (m+1)xQ_{2m}(x).$$

Let x_n be the largest solution of $Q_n(x) = 0$. Prove that $\{x_n\}$ is an increasing sequence and that $\lim_{n\to\infty} x_n = 0$.

USA 1977/3.

If a and b are two of the roots of $x^4 + x^3 - 1 = 0$, prove that ab is a root of $x^6 + x^4 + x^3 - x^2 - 1 = 0$.

MATYC 138.

by Mangho Ahuja

If a, b, c, and d are in arithmetic progression, then prove that the roots of the equation

$$\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} + \frac{1}{x-d} = 0$$

are also in arithmetic progression.

OSSMB G79.1-5.

Show that the roots of the cubic equation

$$bx^3 + a^2x^2 + a^2x + b = 0$$

are in geometric progression.

CRUX 468.

by Viktors Linis

(a) Prove that the equation

$$a_1 x^{k_1} + a_2 x^{k_2} + \dots + a_n x^{k_n} - 1 = 0,$$

where a_1, \ldots, a_n are real and k_1, \ldots, k_n are natural numbers, has at most n positive roots.

(b) Prove that the equation

$$ax^{k}(x+1)^{p} + bx^{l}(x+1)^{q} + cx^{m}(x+1)^{r} - 1 = 0,$$

where a, b, c are real and k, l, m, p, q, r are natural numbers, has at most 14 positive roots.

TYCMJ 55. by Louis Rotando

Find the set of real values of b, b > 1, for which $\log_b x = x$ has

- (a) exactly one solution,
- (b) exactly two solutions, and
- (c) no solutions.

OSSMB G75.1-1.

Given that $x^3 + px + q = 0$ has 3 rational nonzero roots, α, β, γ , show that $\alpha y^2 + \beta y + \gamma = 0$ has rational roots.

CRUX 178.

by Gali Salvatore

Prove or disprove that the equation $ax^2 + bx + c = 0$ has no rational root if a, b, and c are all odd integers.

CRIIV 185

by H. G. Dworschak

Prove that, for any positive integer n > 1, the equation

$$1 + 2x + 3x^2 + \dots + nx^{n-1} = n^2$$

has a rational root between 1 and 2.

ISMJ 11.6.

Show that if p, q, p_1 , and q_1 are real numbers such that $pp_1=2(q+q_1)$, then at least one of the equations

$$x^{2} + px + q = 0$$
$$x^{2} + p_{1}x + q_{1} = 0$$

has real roots.

Theory of equations: systems of equations

MATYC 88.

by Roger Lindley

Show that the system

$$a_1x^2 - 2b_1xy - a_1y^2 + a_2x - b_2y + a_3 = 0$$
$$b_1x^2 + 2a_1xy - b_1y^2 + b_2x + a_2y + b_3 = 0$$

has at least one and at most two distinct real solutions.

Theory of equations: table of values

OMG 16.1.4.

Find an equation that would generate the following table of values.

$$\frac{n | 1 | 2 | 3 | 4}{s | 0 | 2 | 6 | 12}$$

Uniform growth Problems sorted by topic Weights

Uniform growth

JRM 655. by Friend H. Kierstead, Jr.

It is known that most of the human beings who have ever lived are still alive today. Using the simplifying assumptions that each individual lives to the age of 70, all babies are born when the mother is 20 years old, and the population is a continuous function of time, what birth rate is necessary to guarantee that the number of living is always just equal to the number of dead?

PME 426. by R. Robinson Rowe

After a cold, dry snow had been falling steadily for 72 hours, a niphometer showed a depth of 340 cm, compared to a reading of 175 cm after the first 24 hours. Assuming that underlying snow had been compacted only by the weight of its snow overburden, so that the depth varied as a power of time, what would have been the depths after 12 and 48 hours?

SSM 3577. by Max Sute

A Boy Scout troop has enough bread to last them 11 days; if there had been 400 more boys, each boy would have received 2 oz. less per day; if there had been 600 fewer boys, each boy's daily share could have been increased by 2 oz. and the Boy Scout troop would have had enough bread to last them 12 days. How many pounds of bread did the troop have, and what was each daily share?

CRUX 402. by R. Robinson Rowe

An army with an initial strength of A men is exactly decimated each day of a 5-day battle and reinforced each night with R men from the reserve pool of P men, winding up on the morning of the 6th day with 60% of its initial strength. At least how large must the initial strength have been if

- (a) R was a constant number each day;
- (b) R was exactly half the men available in the dwindling pool?

CRUX 1. by Léo Sauvé

In 12 days 75 cows have grazed all the grass in a 60-acre pasture, and 81 cows have in 15 days grazed all the grass in a 72-acre pasture. How many cows can in 18 days graze all the grass in a 96-acre pasture?

JRM 476. by Robert F. Josephson

Seven sheep will graze my modest pasture level in six days, and eight sheep in five days. How many sheep will the pasture sustain indefinitely?

Venn diagrams

OMG 18.3.2.

In grade 9, 160 students are enrolled in Mathematics, 175 in English and 60 in French. No student is permitted to take more than two of the three subjects, but every student is required to take at least one. With 350 grade 9 students, it is known that no student taking French is taking either of the other two subjects. How many students are taking both Mathematics and English?

OMG 17.1.2.

In a survey of year IV students, the numbers studying various Sciences were found to be: Chemistry - 28, Biology - 30, Physics - 42, Chemistry and Biology - 8, Chemistry and Physics - 10, Biology and Physics - 5, all three Sciences - 3. Find the number of students studying exactly one Science.

Weights

CRUX 123. by Walter Bluger

By means of only three weighings on a two-pan balance, you are to find among 13 dimes the one counterfeit coin and be able to tell whether it is heavier or lighter than a true coin. You are given the 13 coins and a balance, and you may bring anything you like with you that may help you in solving the problem.

JRM 448. by P. MacDonald

There are 17 coins of three different weights. Light coins weigh 1 ounce, regular coins weigh 2 ounces, and heavy coins weigh 3 ounces. They are sorted by weight and placed into three boxes as shown. All the light coins are in one box, all the regular in another, and all the heavy in the third. However, each box is mismarked.

Divide the 17 coins into two groups that will balance when placed on a balance scale. No preliminary weighings or inspections are allowed.

CANADA 1976/1.

Given four weights in geometric progression and an equal arm balance, show how to find the heaviest weight using the balance only twice.

PARAB 307.

I have 5 balls, identical in appearance, of which two are unequal in weight, one heavier and one lighter than each of the other 3. Together these 2 are equal in weight to two regular balls. Show how to distinguish the balls in three comparisons using a beam balance.

AMM 6224. by David P. Robbins

Suppose we are given N balls that are indistinguishable except that some are heavy and some are light (the heavy balls are alike in weight, as are the light balls). Using a balance scale, find the minimum number of weighings in which it is always possible

- (a) to identify one heavy and one light ball;
- (b) to determine the number of heavy and light balls.

MATYC 127. by Joseph Browne

A set of weights is desired that may be used in various combinations to equal every multiple of 10 gm from 10 gm to the total mass of the set. Give a formula for n, the minimum number of weights needed in the set if the largest mass ever required is w gm.

PARAB 291.

Among 11 apparently identical metal spheres, 2 are radioactive. We have an instrument which detects the presence of radioactivity. Show that it is possible to determine the radioactive spheres after 7 uses of the instrument.

Weights Problems sorted by topic Word problems: ratios

OMG 18.3.5.

There are ten bags, each containing ten weights, all of which look identical. In nine of the bags, each weight is 16 grams, but in one of the bags the weights are actually 17 grams each. How is it possible, in a single weighing on an accurate weighing scale, to determine which bag contains the 17 gram weights?

Word problems: counting problems

CRUX 11. by Léo Sauvé

A basket contains exactly 30 apples. The apples are distributed among 10 children, each child receiving n apples, where n is a positive integer. At the end of the distribution, there are n apples left in the basket. Find n.

JRM 761. by Harry Nelson

In 1776, thirteen colonies sent 56 representatives to Philadelphia who signed the Declaration of Independence. Pennsylvania had the most signers with nine. Four colonies had one more than the least. Four colonies had two more than the least. Two colonies had three more than Rhode Island. One colony had five more than Rhode Island. How many did Rhode Island have?

Word problems: percent problems

CRUX 28. by Léo Sauvé

If 7% of the population escapes getting a cold during any given year, how many days must the average inhabitant expect to wait from one cold to the next?

OMG 17.1.1.

A hockey team has won 5 out of 8 games played. With 16 games still to be played, how many more games must be won so that the team wins 75% of its season's schedule?

PENT 279. by Kenneth M. Wilke

In Moldavia, people pay an income tax equal to a percentage of the weekly wage based upon the number of ducats earned each week; e.g., on a weekly wage of 10 ducats, the rate is 10 percent. Assuming the maximum salary is 100 ducats per week, what is the optimum salary in Moldavia?

PENT 301. by Kenneth M. Wilke

If 65% of the populace have kidney trouble, 70% have diabetes, 85% have respiratory problems, and 90% have athlete's foot, what is the smallest portion of the populace who are afflicted with all four maladies?

SSM 3694. by Charles W. Trigg

There is a "Favorite Joke" quoted in PARADE Magazine: "Two drunks were talking about the fuel shortage. One said, 'Charlie, I installed a new carburetor, and it saved me 36 percent on gasoline. I had a new distributor put in, and it saved me 42 percent. I put new radial tires on my car, and they saved me 53 percent on gasoline. And then, by golly, I put in those new special spark plugs, and they saved me 66 percent on gasoline.' 'What happened?' asked Charlie. 'Well,' answered the first, 'I drove 426 miles, and the tank overflowed.'"

What is your reaction to this tall tale?

Word problems: population problems

SSM 3666. by Mary S. Krimmel

If a single cell of *E. coli*, under ideal circumstances, were to divide every twenty minutes, in a single day it could produce a colony equal in size and weight to the earth. What would the volume and mass of the original cell have to be for this to happen?

Word problems: ratios

JRM 563. by Michael J. Messner

Gandalf gave each of the four Hobbits one fifth of his magic biscuits, which they promptly ate, except for Frodo, who saved half of his. All the uneaten biscuits doubled overnight, and the next day Gandalf gave to each Hobbit a fifth of the biscuits he had left. Frodo ate eight of his share and put the remainder back into Gandalf's sack when he wasn't looking. Again the uneaten biscuits doubled and when Gandalf opened the sack the third day, he was amazed to find a dozen more biscuits than he expected. How many did the Hobbits eat?

MSJ 431. by Harry Sitomer

At a PTA affair, attended by parents and children, the number of females is 2/3 the number of males; 1/2 the males are boys; 28 of the females are girls; the husbands of 1/3 of the mothers in attendance are present, and the wives of 1/4 of the fathers in attendance are present. How many people are attending this affair?

MSJ 432. by Don Baker

Sam wanted to visit the fair maiden, but he had to cross six bridges to get to her house. At each bridge, the bridgekeeper took half of Sam's apples plus half an apple and let Sam continue on his journey. When he finally arrived at the fair maiden's house, he had only 13 apples left. How many apples did Sam start with?

NYSMTJ 89. by Norman Gore

A cookie distributor sells half of his cookies plus onehalf a cookie to his first customer, half of the remaining cookies plus one-half a cookie to his second customer, and so on. If no cookies are left after n sales are made in this manner, express the distributor's original number of cookies in terms of n.

OMG 17.2.4.

A traveler sets out to cross a desert. On the first day he covers 1/10 of the journey; on the second day he goes 2/3 of the distance already traveled. He continues on in this manner, alternating the days on which he does 1/10 of the distance still to be done, with days on which he travels 2/3 of the total distance already covered. At the end of the seventh day he finds that another 22.5 kilometers will see the end of his journey. How wide is the desert?

OMG 18.1.1.

Members of a local teenage club disagreed about the way a certain outing was managed, and 15 girls withdrew. This left two boys for each girl. The boys were unhappy about the new setup and 45 moved out, leaving only one boy for each five girls. Work out how many girls there were in the club at the time of the outing.

Banach spaces Problems sorted by topic Bessel functions

Banach spaces

CMB P272.

by Jon Borwein

Do there exist Banach spaces X, Y and a continuous linear operator $T: X \to Y$ with the adjoint mapping T^* having different norm and weak-star closures to its range?

AMM 6203. by Albert Wilansky

Let X, Y, and Z be Banach spaces, and let $T: X \to Z$ and $S: Y \to Z$ be continuous and linear functions. Show that the (equivalent) conditions

- (i) $\overline{TD}_1 \supset SD_{\varepsilon}$ for some $\varepsilon > 0$ (D_{ε} is the disc of radius ε).
- (ii) $\|S'(f)\| \le k \|T'(f)\|$ for all $f \in Z'$ for some k > 0, do not imply that $TX \supset SY$.

NAvW 549. by W. M. Dienske

Let X be a real-normed linear space that is not only $\{0\}$, and let Y be the set of all continuous bounded (but not necessarily linear) functions from X to \mathbb{R} . With the supremum norm, Y is a Banach space. For every $a \in X$, we define the function $f_a: X \to \mathbb{R}$ by

$$f_a(x) = ||x - a|| - ||x||$$

in which ||x|| is the norm of x. It follows easily that $f_a \in Y$. Let L be a line in X, and F[L] its image under the mapping

$$F: X \to Y$$

where $F(a) = f_a$. Show that F[L] is a curve in Y, at no point of which a tangent can be drawn.

NAvW 395. by D. van Dulst

A sequence $(X_n)_{n\in\mathbb{N}}$ of finite-dimensional subspaces of a Banach space X is called a finite-dimensional Schauder decomposition of X if every $x\in X$ can be uniquely written as

$$x = \sum_{n=1}^{\infty} x_n, \quad x_n \in X_n \quad (n = 1, 2, \ldots).$$

It is well known that in this case

$$\nu_{(X_n)_{n\in\mathbb{N}}} = \sup \{ \|P_k\| : k \in \mathbb{N} \} < \infty,$$

where, for $k = 1, 2, \ldots, P_k$ is the projection defined by

$$P_k(x) = \sum_{n=1}^k x_n, \qquad \left(x = \sum_{n=1}^\infty x_n \in X\right).$$

Prove that every infinite-dimensional Banach space Y contains an infinite-dimensional closed linear subspace X with the property that, for every $\varepsilon > 0$, X has a finite-dimensional Schauder decomposition $\left(X_n^{(\varepsilon)}\right)_{n \in \mathbb{N}}$ with

$$\nu_{\left(X_n^{(\varepsilon)}\right)_{n\in\mathbb{N}}} < 1 + \varepsilon.$$

Bessel functions

SIAM 75-20.

by M. L. Glasser

Show that

$$\lim_{n \to \infty} \int_0^\infty I_n(x) J_n(x) K_n(x) \ dx = 8^{-1/2},$$

where, as usual, I_n , J_n , and K_n are Bessel functions.

SIAM 76-10.*

by L. Wijnberg and M. L. Glasser

(a) If $\alpha > 0$, $v \ge 0$, and

$$S_v(x) \equiv \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} {m+n \choose m} (2\alpha)^m J_{v+m+2n+1}(x),$$

show that

$$\lim_{x \to \infty} e^{-\alpha x} S_v(x) = \frac{1}{2} \left\{ \frac{\left[(1 + \alpha^2)^{1/2} - \alpha \right]^v}{(1 + \alpha^2)^{1/2}} \right\}.$$

(b) For $1 < \alpha$, show that

$$S_v(x) = \frac{1}{2} \left\{ \frac{e^{\alpha x} \left[(1 + \alpha^2)^{1/2} - \alpha \right]^v}{(1 + \alpha^2)^{1/2} - G_v(\alpha, x)} \right\},$$

where

$$G_v(\alpha, x) = \sum_{k=0}^{\infty} \alpha^{-k-1} J_v^{(k)}(x).$$

- (c) Can a result corresponding to (b) be found for 0 < α < 1?
 - (d) Sum the series $G_v(\alpha, x)$.

SIAM 76-11. by B. C. Berndt

(a) Let $j_{v,n}$ denote the *n*th positive zero of the ordinary Bessel function $J_v(z)$, where v > -1. If $ai \neq 0, \pm j_{v,n}, 1 \leq n < \infty$, show that

$$\sum_{n=1}^{\infty} \frac{1}{j_{v,n}^2 + a^2} = \frac{1}{2ai} \frac{J_{v+1}(ai)}{J_v(ai)} .$$

(b) State and prove a general theorem on the summation of rational functions of zeros of Bessel functions for which the equation above is the special case corresponding to the rational function $1/(z^2+a^2)$.

SIAM 77-6. by J. E. Wilkins, Jr.

To complete the solution of a certain variational problem arising in physical optics, it is necessary to verify that

$$\left[\int_0^1 J_0(vx)x \, dx \right]^2 \int_0^1 J_0''^2(vx)x^5 \, dx$$

$$> \left[\int_0^1 J_0''(vx)x^3 \, dx \right]^2 \int_0^1 J_0^2(vx)x \, dx,$$

at least if $0 \le v \le v_0$, in which $v_0 = 2.29991$ is the smallest positive zero of

$$\int_{0}^{1} J_0''(vx) x^3 \, dx.$$

Numerical calculations indicate that the first equation is true when v = 0.(0.1)2.9, but not when v = 3.0. Establish the truth of the first equation when $0 \le v \le v_0$.

SIAM 77-8.

by M. L. Glasser

Prove that

$$\int_0^\infty \frac{\log |J_0(x)|}{x^2} \, dx = -\frac{\pi}{2} \; .$$

Bessel functions

Problems sorted by topic

SIAM 79-12.

by P. J. de Doelder

(a) Evaluate in closed form:

$$S(p,q,x) = \sum_{n=1}^{\infty} \frac{J_p(nx)J_q(nx)}{n^{2m}} ;$$

 $J_p(x)$ and $J_q(x)$ are Bessel functions of order p and $q; p+q=2l; \ p-q=2s; \ l=0,1,2,\ldots; \ s=0,1,2,\ldots; \ m=1,2,\ldots; \ 0\leq x\leq 2\pi.$

In particular, for p+q>2m, show that (a) is given by

$$\sum_{n=1}^{\infty} \frac{J_p(nx)J_q(nx)}{n^{2m}} =$$

$$\frac{1}{2} \frac{\Gamma(2m)\Gamma\left(l-m+\frac{1}{2}\right)}{\Gamma\left(m+s+\frac{1}{2}\right)\Gamma\left(m-s+\frac{1}{2}\right)\Gamma\left(m+l+\frac{1}{2}\right)} \left(\frac{x}{2}\right)^{2m-1}.$$

(b) Evaluate in closed form

$$T(p,q,x) = \sum_{n=1}^{\infty} \frac{J_p(nx)J_q(nx)}{n^{2m+1}}$$
;

 $p+q=2l+1; p-q=2s+1; l=0,1,2,\ldots; s=0,1,2,\ldots; m=0,1,2,\ldots; 0 \le x \le 2\pi.$

In particular, for p+q>2m+1, show that (b) is given by

$$\sum_{n=1}^{\infty} \frac{J_p(nx)J_q(nx)}{n^{2m+1}} =$$

$$\frac{1}{2}\frac{\Gamma(2m+1)\Gamma\left(l-m+\frac{1}{2}\right)}{\Gamma\left(m+l+\frac{3}{2}\right)\Gamma\left(m+s+\frac{3}{2}\right)\Gamma\left(m-s+\frac{1}{2}\right)}\left(-\frac{x^2}{4}\right)^m.$$

SIAM 79-18.

by M. L. Glasser

Show that for m a positive integer,

$$\sum_{n=1}^{\infty} (-1)^n \frac{J_{2m}(n\pi)}{a^2 - n^2} = \frac{\pi J_{2m}(a\pi)}{2a \sin a\pi} ,$$

$$\sum_{n=1}^{\infty} (-1)^n \frac{nJ_{2m-1}(n\pi)}{a^2 - n^2} = \frac{\pi J_{2m}(a\pi)}{2\sin a\pi} .$$

NAvW 419.

by H. K. Kuiken

Prove that, for a > 0

$$\int_0^\infty e^{-t} \frac{K_{\nu+1} \left(\sqrt{a^2+t^2}\,\right)}{(a^2+t^2)^{\frac{1}{2}(\nu+1)}} \, dt = a^{-2\nu-1} \int_a^\infty x^\nu K_\nu(x) \, dx,$$

where $K_{\nu}(z)$ stands for the modified Bessel function of the second kind of order ν .

NAvW 557.

by N. Ortner

Show that

$$\int_0^a J_0^2 \left(b \sqrt{a^2 - x^2} \right) dx = \frac{1}{2b} \int_0^{2ab} J_0(x) dx$$

and

$$\int_{0}^{\pi/2} J_{0}\left(c\sin\phi\right) J_{1}\left(c\sin\phi\right) \ d\phi = \frac{1 - J_{0}(2c)}{2c}$$

(a > 0, b > 0, c > 0).

Cantor set

NYSMTJ 44.

Given line segment AB, trisect the segment, and eliminate all points in the middle third, except the points of trisection. Then trisect each of the two remaining segments, again eliminating the middle thirds (except the points of trisection); then each of the remaining four segments, etc. If the coordinates of A and B are 0 and 1, respectively, which of the coordinates 1/4, 1/5, 1/10, 1/11 belongs to a point that always remains?

Complex variables: analytic functions

AMM 6045.

by J. B. Rosser

Complex variables: convolutions

Let D be a domain of the complex plane. For each fixed a, let D_a be the set of z's such that both a+z and a-z lie in D. Choose a fixed complex α and let f(z) be a function such that for each fixed a,

$$f(a+z) + \alpha f(a-z)$$

is analytic in D_a .

Can one conclude that f(z) is analytic throughout D? If not, give some additional weak conditions on f from which one could infer this.

AMM 6071. by J. G. Milcetich

The set of analytic functions defined on the unit disc, U, with the topology of uniform convergence on compact subsets of U forms a locally convex, linear topological space. In such a space, $\overline{\operatorname{co}}B$ denotes the closed convex hull of a subset B. Let K denote the set of analytic functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which map U onto a convex domain. Show that for $k \geq 2$, $z + a_k z^k \in \overline{\operatorname{co}} K$ if and only if $|a_k| \leq \frac{1}{2}$.

Complex variables: conformal mappings

AMM 6047.

by C. D. Minda

Let E_1 and E_2 be ellipses in the complex plane. Prove that there is a conformal mapping of the interior of E_1 onto the interior of E_2 that maps the foci of E_1 onto the foci of E_2 if and only if E_1 and E_2 have the same eccentricity. Moreover, show that if such a conformal mapping exists, then it must necessarily be of the form az + b for some complex numbers a and b with $a \neq 0$.

Complex variables: convolutions

AMM 6145.

by Michael Barr

Let $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$, \mathbb{C}^* the nonzero complex numbers. Suppose

$$\rho: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{C}^*$$

is a "kernel function" with the property that the convolution product defined on functions $\mathbb{N}_0 \to \mathbb{C}^*$ by the formula

$$(f *_{\rho} g)(n) = \sum_{i+j=n} \rho(i,j)f(i)g(j)$$

is associative. Show that there is a function $\sigma: \mathbb{N}_0 \to \mathbb{C}^*$ such that $f *_{\rho} g = \sigma^{-1}(\sigma f * g)$, where an unadorned * denotes the usual convolution with respect to the kernel, which is identically 1. Note that this implies that $f *_{\rho} g = g *_{\rho} f$ and ultimately that ρ is symmetric.

Complex variables: harmonic functions

Problems sorted by topic

Complex variables: harmonic functions

AMM 6198.

by Sanford S. Miller

Let u(z) = u(x,y) be harmonic in the unit disc D with u(0) = 1, and let g(t) be a real-valued function satisfying g(1) > 0 and $g(0) \le 1/2$. Show that if u satisfies $g(u) + xu_x + yu_y > 0$ for $z \in D$, then u(z) > 0 for $z \in D$. In particular, if $g(t) = \frac{1}{2}$, or $g(t) = t + \frac{1}{2}$, we obtain, respectively,

$$xu_x + yu_y > -\frac{1}{2} \Rightarrow u > 0,$$

$$u + xu_x + yu_y > -\frac{1}{2} \Rightarrow u > 0.$$

Complex variables: inequalities

AMM 6033.

by S. S. Miller

Let w(z) be regular in the unit disc D with w(0) = 0, and let A be a complex number such that Re $A \ge 1$. If $z \in D$, show that

$$|w^{2}(z) + Aw(z) + zw'(z)| < 1$$

implies |w(z)| < 1.

Complex variables: number theory

AMM 6109.

by Stuart P. Lloyd

The functions $S_1(z), S_2(z), \ldots$ are defined recursively by setting $S_1(z) = z$, $S_{n+1}(z) = \phi(S_n(z))$ for $n \ge 1$, where $\phi(s) = s + s^2$. When z is a positive integer, the series

$$\frac{1}{z} = \sum_{n=1}^{\infty} \frac{1}{S_n(z) + 1}$$

is the nonterminating Sylvester series for the rational number 1/z. Determine the region of convergence of this series in the complex z-plane.

AMM E2778.

by David J. Allwright

Let k and r be integers with $r \ge 1$, and let z be a complex number with |z| < 1. Calculate the sum of $z^{\|N\|}$ as

$$N = (n_0, n_1, \dots, n_r)$$

ranges over all (r+1)-tuples of integers such that

$$n_0 + n_1 + \cdots + n_r = k$$

and

$$||N|| = |n_0| + |n_1| + \dots + |n_r|.$$

Complex variables: polynomials

AMM E2808.

by P. Henrici

Let $p(z) = a_0 + a_1 z + \cdots + a_k z^k$, where the a_i are complex numbers and $a_0 \neq 0$. Ordinary iteration applied to p in the form

$$q_{n+1} = \frac{-a_0}{a_1 + q_n (a_2 + q_n (a_3 + \dots + q_n a_k) \dots)}$$

may or may not produce a sequence (q_n) that converges to a zero of p. Show, however, that if the above equation is replaced by

$$q_{n+1} = \frac{-a_0}{a_1 + q_n \left(a_2 + q_{n-1} \left(a_3 + \dots + q_{n-k+2} a_k\right) \dots\right)},$$

then for almost all choices $(q_1, q_2, \ldots, q_{k-1})$ of starting values, the sequence (q_n) converges to the zero of smallest modulus of p, if p has a single such zero.

Complex variables: rational functions

CMB P277.*

by Allan M. Krall and D. J. Allwright

Curves: simple closed curves

Let R(z) be a rational function of the complex variable z, and let Γ be the locus of R(ix) for x real. Prove that Γ partitions the plane into finitely many regions.

CRUX 130.

by Jacques Marion

Let A be the annulus $\{z \mid r \leq |z| \leq R\}$. Show that the function $f(z) = \frac{1}{z}$ is not a uniform limit of polynomials on A.

Complex variables: several variables

AMM 6091.

by H. S. Shapiro

Let Γ denote the set of complex numbers of modulus 1, and consider for positive integers m, n the map $T: \Gamma^n \to \mathbb{C}^m$ defined by

$$w_1 = z_1 + z_2 + \dots + z_n$$

$$w_2 = z_1^2 + z_2^2 + \dots + z_n^2$$

$$\vdots$$

$$w_m = z_1^m + z_2^m + \dots + z_n^m,$$

where each z_i ranges over Γ . Prove that for any m and any positive R, the range of T contains the ball $||w|| \leq R$ for all sufficiently large n.

Curves: curve tracing

CANADA 1978/6.

Sketch the graph of $x^3 + xy + y^3 = 3$.

Curves: inequalities

AMM S19.

by Anon

Let C be a smooth simple arc inside the unit disc, except for its endpoints, which are on the boundary. How long must C be if it cuts off one-third of the disc's area? Generalize.

Curves: inflection points

NAvW 481.

by O. Bottema and J. T. Groenman

With respect to a plane projective coordinate system, a cubic curve is given by the equation

$$x^2y + y^2z + z^2x - 3xyz = 0.$$

Determine the coordinates of its inflection points.

Curves: normals

MM 1067.

by M. S. Klamkin

Find the length of the shortest chord that is normal to the parabola $y^2=2ax,\ a>0,$ at one end. Give a completely "non-calculus" solution.

Curves: simple closed curves

AMM 6225.

by Edmund H. Anderson

Construct a homotopically trivial mapping from the three-sphere onto the two-sphere such that the pre-images of points are simple closed curves.

Curves: space filling curves Problems sorted by topic Derivatives: higher derivatives

Curves: space filling curves

SPECT 10.8.

Accepting as known the existence of a continuous square-filling curve, demonstrate the existence of a continuous curve that passes through every point of the entire plane.

Curves: tangents

AMM 6223. by Harry D. Ruderman

Let C be a convex curve. Let Q be a curve such that the two tangents to C from each point P of Q form an angle θ fixed in size. Assume that all points are in the same plane.

(a) If $\theta = 90^{\circ}$ and Q is a circle, must C be a circle or an ellipse?

(b) If C is an ellipse and $\theta \neq 90^{\circ},$ what is the nature of Q?

NYSMTJ 67.

Consider the function $y=a^x$ and its inverse $y=\log_a x$. For what value of a>1 will the two graphs be tangent to each other, and what will be the point of tangency?

PUTNAM 1979/B.1.

Prove or disprove: there is at least one straight line normal to the graph of $y = \cosh x$ at a point $(a, \cosh a)$ and also normal to the graph of $y = \sinh x$ at a point $(c, \sinh c)$.

Curves: unit square

AMM E2647. by Daniel Gallin

Let Γ_1 and Γ_2 be two continuous maps of the unit segment

$$I = \{x \mid 0 \le x \le 1\}$$

into the unit square I^2 . Suppose that $\Gamma_1(0) = (0,0)$, $\Gamma_1(1) = (1,1)$, $\Gamma_2(0) = (0,1)$, $\Gamma_2(1) = (1,0)$. Prove by elementary means (e.g., without using the Jordan Curve Theorem) that the two curves Γ_1 and Γ_2 meet.

Derivatives: continued fractions

MATYC 103. by Robert Carman

Find the derivative of the continued fraction

$$y = \frac{1}{x + \frac{1}{3x + \frac{4}{5x + \dots + \frac{n^2}{(2n+1)x}}}}$$

MATYC 89.

by J. Kapoor

Find the derivative of the continued fraction

$$y = 2x + \frac{3}{2x + \frac{3}{2x + \frac{3}{\cdots}}}.$$

Derivatives: finite products

AMM E2580.

by Clark Kimberling

Show that

$$\frac{d}{dx} \left[\prod_{k=0}^{n-1} \left(a - 2\sqrt{x} \cos \frac{(2k+1)\pi}{2n} \right) \right]$$
$$= -n \prod_{k=1}^{n-2} \left(a - 2\sqrt{x} \cos \frac{k\pi}{n-1} \right).$$

Derivatives: finite sums

MM 1053.

by Peter Ørno

Let f(x) be differentiable on [0,1] with f(0) = 0 and f(1) = 1. For each positive integer n, show that there exist distinct x_1, x_2, \ldots, x_n such that

$$\sum_{i=1}^{n} \frac{1}{f'(x_i)} = n.$$

Derivatives: gradients

NAvW 394.

by J. J. A. M. Brands

Let $B = \{x \in \mathbb{R}^n : |x| < 1\}$, where |x| is the Euclidean norm of x. Suppose $f \in C(\overline{B} \to \mathbb{R})$ is differentiable on B and $\max\{|f(x)| : |x| = 1\} \le 1$. Show that there exists a point $\xi \in B$ at which $|\operatorname{grad} f| \le 1$.

Derivatives: higher derivatives

MATYC 83.

by Aleksandras Zujus

Let

$$F(x) = \frac{1}{a^2 + x^2} \ .$$

Prove that

$$\frac{d^n}{dx^n}(F(x)) = \frac{(-1)^n \cdot n!}{a} \cdot \frac{\sin[(n+1)\alpha]}{(a^2 + x^2)^{(n+1)/2}} ,$$

where

$$\alpha = \tan^{-1}\left(\frac{a}{x}\right).$$

PENT 273.

by Gary Schmidt

Show that

$$\frac{d^2y}{dx^2} = \frac{-d^2x/dy^2}{(dx/dy)^3}$$

is an identity.

AMM E2748.

by Lance Littlejohn

If $f(x) = x^n \log x$, find

$$\lim_{n\to\infty}\frac{f^{(n)}\left(1/n\right)}{n!}.$$

TYCMJ 122.

by Lance Littlejohn

Let $y = x^n \ln x$ and let $y^{(n)}$ denote the *n*th derivative of y with respect to x. Prove that

$$\lim_{n \to \infty} y^{(n)} \left(\frac{1}{n}\right) / n! = \gamma,$$

where γ is Euler's constant.

Derivatives: higher derivatives

Problems sorted by topic

Differential equations: functional equations

SSM 3731.

by John Oman

If the second derivative f'' exists at the point a, prove

$$f''(a) = \lim_{h \to 0} \frac{f(a+h) + f(a-h) - 2f(a)}{h^2}.$$

AMM E2755.

by Michael Slater

Let $f \in C^{\infty}(\mathbb{R})$ and suppose that $f(x) = o(x^n)$ as $x \to \pm \infty$ for some integer $n \ge 0$. Show that $f^{(r)}$ has a zero for every $r \geq n + 1$. Is this conclusion the best possible?

Derivatives: inequalities

AMM E2759.* by Hugh L. Montgomery Suppose that $a^{-1} \leq f''(x) \leq 2a^{-1}$ for $0 \leq x \leq a$, where $a \geq 8$. Prove that there exists a lattice point (m, n)such that $0 \le m \le a$ and $|f(m) - n| \le 2a^{-1/2}$.

Derivatives: maxima and minima

AMM E2518.

by Derek A. Zave

Let F be the set of real polynomials f with nonnegative coefficients for which f(1) = 1. Let

$$0 < x_0 < 1$$
 and $0 < \alpha \le 1$

be fixed. Compute

$$m(x_0; \alpha) = \inf \{ f'(1) \mid f \in F \text{ and } f(x_0) \le \alpha \}.$$

Derivatives: one-sided derivatives

by D. A. Gregory

If f is a convex functional on a convex subset K of a vector space, then for all x and x + h in K, the one-sided directional derivatives

$$f'_{+}(x,h) = \lim_{\alpha \to 0^{+}} \frac{f(x+\alpha h) - f(x)}{\alpha}$$

exist in the extended reals and $f(x+h) \ge f(x) + f'_{+}(x,h)$. Is the converse true? If so, we have an analytic characterization of convex functionals.

CMB P280.

by F. S. Cater

Clearly any nowhere differentiable one-to-one function mapping the interval (0,1) onto (0,1) must be discontinuous at a dense set of points in (0,1). Does such a function exist that is left continuous at every point, has a right limit at every point, but is not left or right differentiable at any point?

Derivatives: product rule

FUNCT 1.4.3.

A student believed that

$$\frac{d}{dx}[u(x)v(x)] = u'(x)v'(x).$$

Using his formula, he correctly differentiated $(x+2)^2x^{-2}$. What relation must hold between a pair of functions u(x), v(x) for him to get a correct answer? Give some other examples.

Derivatives: roots

MM 997.

Let P be a polynomial of degree $n, n \geq 2$, with simple zeros z_1, z_2, \ldots, z_n . Let (g_k) be the sequence of functions defined by $g_1 = 1/P'$, and $g_{k+1} = g'_k/P'$. Prove for all k

$$\sum_{j=1}^{n} g_k(z_j) = 0.$$

Derivatives: trigonometric functions

by Joe Dan Austin

Let $f(x) = \frac{\sin x}{x} - \frac{99x}{4} + 1$ for x > 0. Show that $f'(x) \neq 0$ for x > 1.

Differential equations: Bernoulli equation

AMM E2568.

by Stroughton Bell

Show that the Bernoulli equation

$$y' + y^2 + xy = 0$$

has exactly two solutions on the entire real line for which y'' is nowhere zero.

Differential equations: Bessel functions

SIAM 77-20.

by I. Nåsell

Prove that the equation

$$I_{\nu}(x) = I'_{\nu}(x)$$

has exactly one positive solution $x = \xi(\nu)$ for each $\nu > 0$. Investigate the properties of the function ξ .

Differential equations: determinants

AMM E2767.

by James W. Burgmeier

Let f be a function with sufficiently many derivatives, and let D_n be the determinant

$$D_n = \begin{vmatrix} f' & f & 0 & 0 & \dots & 0 & 0 \\ \frac{f''}{2!} & f' & f & 0 & \dots & 0 & 0 \\ \frac{f'''}{3!} & \frac{f''}{2!} & f' & f & \dots & 0 & 0 \\ \vdots & & & & & & & \\ \frac{f^{(n)}}{n!} & \frac{f^{(n-1)}}{(n-1)!} & & & \dots & f' \end{vmatrix}.$$

Show that

$$D_{n+1} = f'D_n - \frac{1}{n+1}fD'_n.$$

Differential equations: functional equations

MATYC 81.

Let $g(x) = x^n$, n > 1, where n is a positive integer. Find all nonconstant differentiable functions f such that (f(g(x)))' = f'(x)g'(x) for all real numbers.

by G. Edgar

(a) Solve the following functional-differential equation for the complex-valued differentiable function f:

$$f(s+t) = f(s) + f(t) - f'(s)f'(t)$$

for all real s and t, and f(0) = 0.

(b) If the real part of f(t) is nonpositive for all real t, but f is not identically zero, show that f(t) = 0 only if t = 0.

Differential equations: functional equations

Differential equations: order n

TYCMJ 101.

by Louis Alpert and Jerry Brantley

Determine all functions f defined on $(-\infty, \infty)$ such that for all $a \neq b$, $f'(\frac{1}{2}(a+b)) = (f(b) - f(a))/(b-a)$.

AMM 6088. by Nathaniel Grossman

The functional-differential equation $f'=f^{-1}$ has a solution satisfying f(0)=0 and f'(x)>0 for x>0, namely, $f(x)=(1/\alpha)^{1/\alpha}x^{\alpha}$, where $\alpha=(1+\sqrt{5})/2$. Is this the only solution satisfying the given conditions for $x\geq 0$?

Differential equations: initial value problems

SIAM 79-20.

by J. D. Love

Derive a bounded solution of the equation

$$\frac{dy}{dt} = y(\lambda t), \qquad y(0) = 1,$$

where λ is a constant > 1.

Differential equations: Laplacian

CMB P260. by S. Zaidman

Let Ω be a bounded open set in \mathbb{R}^n and let $d(\Omega) = \sup_{x,y\in\Omega}|x-y|$. Suppose that $u\in C^2(\Omega)\cap C^0(\bar{\Omega})$ and satisfies the equation $\Delta u + Au = 0$ in Ω , where $A\in C^0(\bar{\Omega})$ and $\sup_{x,\in\bar{\Omega}}A(x) < 2nd^{-2}(\Omega)$. Show that, if u satisfies the boundary condition u(x) = 0 on $\partial\Omega$, then $u(x) \equiv 0$ in Ω .

Differential equations: order 1

MM 950. by Erwin Just

Show that there is a unique real number c such that for every differentiable function f on [0,1] with f(0)=0 and f(1)=1, the equation f'(x)=cx has a solution in (0,1).

SIAM 77-16.

by I. Rubinstein

Solve the differential equation

$$\frac{dr}{dt} + t^{-1}\sqrt{r^2 + a^2} = b, \qquad t > 1,$$

where $r(1) = r_0$ and a, b are constants.

Differential equations: order 2

$\mathbf{MM}\ \mathbf{1050}.$

by W. R. Utz

Consider the differential equation

$$y'' + P_1(x)y' + P_2(x)y = 0,$$

where P_1 and P_2 are polynomials not both constant. Show that this equation has at most one solution of the form $x^a e^{mx}$ for real a.

PUTNAM 1975/A.5.

On some interval I of the real line, let $y_1(x)$ and $y_2(x)$ be linearly independent solutions of the differential equation

$$y'' = f(x)y,$$

where f(x) is a continuous real-valued function. Suppose that $y_1(x) > 0$ and $y_2(x) > 0$ on I. Show that there exists a positive constant c such that, on I, the function

$$z(x) = c\sqrt{y_1(x)y_2(x)}$$

satisfies the equation

$$z'' + \frac{1}{z^3} = f(x)z.$$

State clearly how c depends on $y_1(x)$ and $y_2(x)$.

PUTNAM 1979/B.4.

(a) Find a solution that is not identically zero, of the homogeneous linear differential equation

$$(3x^{2} + x - 1)y'' - (9x^{2} + 9x - 2)y' + (18x + 3)y = 0.$$

(b) Let y = f(x) be the solution of the nonhomogeneous differential equation

$$(3x^2 + x - 1)y'' - (9x^2 + 9x - 2)y' + (18x + 3)y = 6(6x + 1)$$

that has f(0) = 1 and (f(-1) - 2)(f(1) - 6) = 1. Find integers a, b and c such that

$$(f(-2) - a)(f(2) - b) = c.$$

SIAM 75-6.*

by P. C. T. de Boer and G. S. S. Ludford

Show that there exists a continuous solution of

$$y'' = (2y^{\alpha} - x)y, \qquad \alpha > 0,$$

for $-\infty < x < \infty$ such that

$$y \sim (x/2)^{1/\alpha} \left[1 + (1 - \alpha)/\alpha^3 x^3 + \cdots \right]$$

as $x \to +\infty$; and that, for some $k(\alpha)$, $y \sim k \operatorname{Ai}(-x)$ as $x \to -\infty$.

SIAM 79-11.

by D. K. Ross

Find the general solution of the ordinary nonlinear differential equation

$$\frac{1}{x}\frac{d}{dx}\left(x\frac{dy}{dx}\right) = e^{-\varepsilon y}, \quad \text{with } x > 0$$

and where $\varepsilon = 1$ or -1.

Differential equations: order 4

MM Q631.

by M. S. Klamkin

Solve the differential equation

$$(xD^4 - axD + 3a)y = 0.$$

Differential equations: order n

NAvW 447.

by W. R. Utz

Assume that

$$y = (x - \alpha)^{-i}, \qquad i = 1, 2, \dots, n, \qquad (x \neq \alpha),$$

are solutions of the differential equation

$$(x-\alpha)^n y^{(n)} + P_{1,n}(x)y^{(n-1)} + \dots + P_{n,n}(x)y = 0.$$

It is easily seen that $P_{n,n}(x)$ depends only on n. Determine this function of n.

SIAM 76-6.

by M. S. Klamkin

Solve the differential equation

$$\left[x^{2n}\left(D - \frac{a}{x}\right)^n - k^n\right]y = 0.$$

Differential equations: systems of equations

Problems sorted by topic

Elliptic integrals

Differential equations: systems of equations

CRUX 498

by G. P. Henderson

Let $a_i(t)$, i = 1, 2, 3, be given functions whose Wronskian, w(t), never vanishes. Let

$$u(t) = \sqrt{\sum a_i^2}$$

and

$$v(t) = (\sum a_i^2)(\sum a_i'^2) - (\sum a_i a_i')^2.$$

Prove that the general solution of the system

$$x_1'/a_1 = x_2'/a_2 = x_3'/a_3$$

$$a_1x_1 + a_2x_2 + a_3x_3 = 0$$

can be expressed in terms of

$$\int \frac{uw}{v} dt,$$

no other quadratures being required.

SIAM 76-12.* by A. S. Perelson and C. Delisi The following system of nonlinear differential equations

$$\frac{dx_n}{dt} = 2k \sum_{m=1}^{n-1} x_{n-m} y_m - 2x_n (kS + k'n) + k' \sum_{m=n}^{\infty} (2x_m + y_m), \qquad n = 1, 2, \dots,$$

$$\frac{dy_n}{dt} = 4k \sum_{m=1}^{n} z_{n-m} x_m + k \sum_{m=1}^{n-1} y_{n-m} y_m - y_n \left[k(S+L) + (2n-1)k' \right] + 2k' \left[\sum_{m=n+1}^{\infty} x_m + \sum_{m=n+1}^{\infty} y_n + \sum_{m=n}^{\infty} z_m \right],$$

$$\frac{dz_n}{dt} = 2k \sum_{m=1}^{n} z_{n-m} y_m - 2z_n (kL + k'n) + k' \sum_{m=n+1}^{\infty} (2z_m + y_m), \qquad n = 0, 1, 2, \dots,$$

where

$$S = \sum_{m=1}^{\infty} y_m + 2 \sum_{m=0}^{\infty} z_m$$

and

$$L = \sum_{m=1}^{\infty} \left(y_m + 2x_m \right),\,$$

subject to the initial conditions $x_1(0) = a$, $x_n(0) = 0$ (n = 2, 3, ...), $y_n(0) = 0 = z_n(0)$ (n = 1, 2, ...), $z_0 = b$, with k and k' being nonnegative constants, can be solved by a combinatorial method. Can they be solved by a direct method?

MM 1005.

by Brian Hogan

Suppose f and g are differentiable functions for x > 0 and f'(x) = -g(x)/x and g'(x) = -f(x)/x. Characterize all such f and g.

SIAM 77-17.

by L. Carlitz

Solve the following system of differential equations:

$$F''(x) = F(x)^3 + F(x)G(x)^2,$$

$$G''(x) = 2G(x)F(x)^2,$$

where
$$F(0) = G'(0) = 1$$
, $F'(0) = G(0) = 0$.

Differential operators

SIAM 77-4.

ov A. Ungar

Let $x = (x_1, x_2, \dots, x_n)$ be a set of n real variables and let L be the linear differential operator

$$L\{f(x)\} = \sum_{i=1}^{N} a_{p_i}(x) \frac{\partial^{p_i} f(x)}{\partial x^{p_i}}.$$

Here p_i are multi-indices of order n. For a multi-index p of order n, $p = (p_1, p_2, \dots, p_n)$, where the entries are integers, $|p| = p_1 + p_2 + \dots + p_n$ and

$$\frac{\partial^p}{\partial x^p} = \frac{\partial^{|p|}}{\partial x_1^{p_1} \partial x_2^{p_2} \cdots \partial x_n^{p_n}} .$$

The coefficients $a_{p_i}(x)$ are functions of x and N is an integer.

Prove that

$$f(x) = S_1(x)A[S_2(x)],$$

where $S_1(x)$ and $S_2(x)$ are specified functions and A is an arbitrary suitably differentiable function of $S_2(x)$, satisfies the linear partial differential equation

$$L\left\{F(x)\right\} = 0$$

in a domain, if and only if

$$q(x) = S_1(x)e^{\alpha S_2(x)}$$

is a particular solution of $L\{F(x)\}=0$ in that domain, for every real α in some interval.

Elliptic integrals

NAvW 479.

by J. Boersma

Show that

$$\int_0^a \frac{kK(k)}{(1-k^2)\sqrt{a^2-k^2}} dk = \frac{\pi}{4\sqrt{1-a^2}} \log \frac{1+a}{1-a} , \qquad 0 \le a < 1,$$

where K(k) denotes the complete elliptic integral of the first kind

SIAM 78-10.

by A. V. Boyd

Prove that

$$\int_0^{\pi/2} K(t\sin\phi) \, d\phi = K^2 \left\{ \frac{\sqrt{1+t} - \sqrt{1-t}}{2} \right\}$$

for $-1 \le t \le 1$, where K(k) denotes the complete elliptic integral of the first kind.

Exponential function

Problems sorted by topic

Exponential function

PUTNAM 1975/B.5.

Let $f_0(x) = e^x$ and $f_{n+1}(x) = xf'_n(x)$ for $n = 0, 1, 2, \dots$ Show that

$$\sum_{n=0}^{\infty} \frac{f_n(1)}{n!} = e^e.$$

Fourier series

SIAM 79-9. by N. R. Pereira

For all real values of a, find the Fourier series for the function $[\operatorname{dn}(u) + ik\operatorname{sn}(u)]^a$. For integral values of a, the Fourier coefficients can be evaluated using contour integration and the results are well-known.

Functional analysis

AMM 6078. by Albert Wilansky

Is it possible for a continuous linear functional on a normed space to map every bounded closed set onto a closed set of scalars?

AMM 6278. by Stanley Wagon

Let X be the real vector space consisting of all bounded real-valued functions on the reals with bounded support. Is there a basis, B, for X that is closed under translation, i.e., if f is in B and t is real, then f_t is in B, where $f_t(x) = f(x+t)$?

NAvW 534. by S. T. M. Ackermans

Let A be a Banach algebra with identity element e, and let the elements b and c satisfy cb = c, $b \neq e$. The function f is analytic in a neighborhood of the spectrum of c and f(0) = 0. Show that f(bc) = bf(c).

AMM 6021.

by Charles R. Diminnie and Albert White

In l^p , p > 2, does

$$||x - y|| ||x + y|| = |||x||^2 - ||y||^2|,$$

with $x, y \neq 0$, imply that $y = \alpha x$ for some real α ?

AMM 6277. by Yasuo Watatani

If α and β are *-automorphisms of the algebra B(H) of all bounded linear operators acting on a Hilbert space H such that

$$\alpha(x) + \alpha^{-1}(x) = \beta(x) + \beta^{-1}(x)$$
 for $x \in B(H)$,

then prove that they commute.

CMB P246. by S. Zaidman

Let A be a self adjoint operator with domain D(A) in Hilbert space H. Let $f: \mathbb{R}^1 \to H$ be almost periodic and suppose that $u: \mathbb{R}^1 \to D(A)$ is an almost periodic $C^1(H)$ strong solution of the equation u' = Au + f. Then the real number $\lambda \neq 0$ belongs to the spectrum of f if and only if it belongs to the spectrum of u.

Functions: bounded variation

AMM 6256. by A. Kussmaul and P. E. Kopp

Prove or disprove the assertion that every countably additive real-valued set function on a ring R of sets is of bounded variation. Is the assertion true if R is an algebra of sets?

Functions: C^{∞}

AMM 6042. by F. T. Laseau, G. M. Leibowitz, C. H. Rasmussen, and S. J. Sidney

Is every C^{∞} real-valued function on the line that vanishes outside [0,1] expressible as a difference of two such functions that are nonnegative?

AMM E2756.

by Michael Slater

Functions: continuous functions

Let $f \in C^{\infty}(\mathbb{R})$, $f(0)f'(0) \geq 0$, and $f(x) \to 0$ as $x \to \infty$. Show that there exists a sequence (x_n) with

$$0 \le x_1 < x_2 < \cdots$$

such that $f^{(n)}(x_n) = 0$ for n = 1, 2, ...

Functions: composition of functions

AMM 6244.

by John Myhill

Let f_i , $i=0,1,2,\ldots$, be a sequence of (everywhere defined) real functions. Prove that there exist two functions ϕ , ψ such that each of the f_i can be obtained from ϕ and ψ by composition.

Functions: continuous functions

AMM 6120. by Jack Fishburn

Let f be a continuous function from the closed unit disc into the reals. If the line integral of f over every chord is zero, must f be identically zero?

What if the continuity of f is replaced by measurability? Must f = 0 almost everywhere?

AMM 6250.

by Harold Shapiro

Let w = f(z) be a continuous complex-valued function on the closed unit disc $|z| \le 1$, which is one-to-one on the open disc |z| < 1. Show that the set of boundary points of the image that have three or more distinct pre-images under the map f is at most countably infinite.

AMM E2706.

by David L. Lovelady

Let

$$f(t) = g(t) \int_0^t g(s)^{-\alpha} ds,$$

where $\alpha > 1$ and g is a positive continuous function on $[0, \infty)$. Prove that f is unbounded. Is this true if $\alpha = 1$?

AMM E2783.

by William Knight and Bruce Lund

Find all functions $\phi(z)$ such that ϕ is a one-to-one continuous map of the unit circle $\{z:|z|=1\}$ onto itself and $[\phi(z)]^2=\phi\left(z^2\right)$ for all z on the circle.

RIIX 20

by Jacques Marion

The function $f: \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = x$$
, if x is irrational,

$$f(x) = p \sin \frac{1}{q}$$
 if $x = \frac{p}{q}$ (rational and irreducible).

At which points is f continuous?

Functions: continuous functions Problems sorted by topic Functions: differentiable functions

NAvW 416.

by J. J. A. M. Brands and M. L. J. Hautus

Let g be a positive and continuous function on $(0, \infty)$ with the property that

$$\int_{1}^{\infty} (g(s))^{-1} ds < \infty.$$

Prove that there exists no positive and continuous function f on $(0, \infty)$ that satisfies

$$f(x+y) \ge yg(f(x)), \quad x > 0, \quad y > 0.$$

AMM 6100. by Eric Chandler

For fixed integer n > 1, find a bijection T on the real numbers such that T^m is a contraction if and only if m = kn for $k = 1, 2, \ldots$ Can T be continuous?

CRUX 184. by Hippolyte Charles

If $I = \{x \in R \mid a \le x \le b\}$ and if the function $f: I \to I$ is continuous, show that the equation f(x) = x has at least one solution in I.

AMM 6133. by J. Cano and A. Gruebler

Let $f:[a,b] \to [a,b]$ be continuous and denote

$$P(f) = \{x: f^n(x) = x \text{ for some } n = 1, 2, ...\},\$$

$$C(f) = \{x: f^m(x) \in P(f) \text{ for some } m = 1, 2, ...\},\$$

and L_x the set of limit points of the sequence

$${x, f(x), f^{2}(x), \dots, f^{n}(x), \dots}.$$

Here $f^n(x)$ is the *n*th iterate of f(x). Prove that for each $x \in [a, b], L_x \subset \overline{C(f)}$. Is this true in \mathbb{R}^2 ?

CRUX 100. by Léo Sauvé

Let f(x) be continuous and nonnegative for all $x \ge 0$. Suppose there exists a > 0 such that for all x > 0,

$$f(x) \le a \int_0^x f(t) dt.$$

Show that f(x) = 0 for all $x \ge 0$.

NAvW 427. by N. G. de Bruijn

Let u be a continuous function on $[0, \infty)$. Put

$$p(x) = \int_0^x u(t) dt - xu(x).$$

We assume that $x^{-1} \int_0^x u(t) dt \to 0 \ (x \to \infty)$, and that λ is a real number, $\lambda < 1$, with $p(x) = O(x^{\lambda}), (x \to \infty)$.

Show that
$$u(x) = O(x^{\lambda-1}), (x \to \infty).$$

MM 1069. by F. David Hammer

Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous and for every rational q there exists an n with $f^n(q) = 0$ (the nth iterate of f). Prove or disprove: For every real number t there is an n such that $f^n(t) = 0$.

TYCMJ 46. by Louis Alpert

Let f be a nonconstant, real-valued, continuous function defined on the real line such that its average value over any finite interval equals its value at the midpoint of that interval. Must f be a linear function?

CMB P281.

by M. S. Klamkin

It is well known that, if $a, c \ge 0$, $b^2 \le 4ac$ then

$$ax^2 + bxy + cy^2 > 0 \tag{1}$$

and

$$ax^4 + bx^2y^2 + cy^4 \ge 0 (2)$$

for all real x and y. Assume a, b, and c are continuous functions of x and y.

- (a) Given that b > 0, that $a, c \ge 0$ and that (2) is valid for all real x and y, is it necessary that $b^2 4ac \ge 0$?
- (b) Given that $a, c \ge 0$ and that (1) is valid for all real x and y, is it necessary that $b^2 4ac > 0$?

AMM E2537. by David Shelupsky

Find all continuous functions f defined on $(0, \infty)$ for which

$$f(x_1y) - f(x_2y)$$

is independent of y.

AMM 6142. by L. O. Chung

Find a function $f:[0,1] \to [0,1]$ that is continuous everywhere except on two countable dense subsets D_1, D_2 of rationals such that on D_1, f is right-continuous but not left-continuous, and on D_2, f is left-continuous but not right-continuous.

Functions: convex functions

MM 1027. by Daniel B. Shapiro

Let f(k) be a real-valued function on the nonnegative integers. Suppose that f(0) = 0 and that f(k) is a convex function. That is, for $k \ge 1$, f(k) is less than the average of f(k-1) and f(k+1). For integers k, $1 \le k \le n$, define

$$F_n(k) = f(k)q + f(r)$$
, for $n = kq + r$, $0 \le r < k$.

Prove that, for fixed n, $F_n(k)$ is strictly increasing for $1 \le k \le n$

Functions: differentiable functions

AMM 6027. by Philip Hanser

Let f be a continuous real function on \mathbb{R} , the reals. Must there exist a strictly increasing function $g: \mathbb{R} \to \mathbb{R}$ such that $g \circ f$ is everywhere differentiable?

CRUX 129. by Léo Sauvé

It has been known since Weierstrass that there exist functions continuous over the whole real axis but differentiable nowhere. Describe a function which is continuous over the whole real axis but differentiable only at

- (a) x = 0;
- (b) a finite number of points;
- (c) a countable number of points.

CRUX 174. by Leroy F. Meyers

Describe a function which is defined on $\mathbb R$ and is continuous and differentiable at each point in a set E (specified below), but is discontinuous at each point not in E.

- (a) $E = \{O\}$;
- (b) E is a finite set;
- (c) E is denumerable.

Functions: differentiable functions Problems sorted by topic Functions: digits

CRUX 374.

by Sidney Penner

Prove or disprove the following.

THEOREM. Let the function $f: \mathbb{R} \to \mathbb{R}$ be such that f''(x) exists, is continuous and is positive for every x in R. Let P_1 and P_2 be two distinct points on the graph of f. let L_1 be the line tangent to f at P_1 and define L_2 analogously. Let Q be the intersection of L_1 and L_2 and let S be the intersection of the graph of f with the vertical line through Q. Finally, let R_1 be the region bounded by segment P_1Q , segment SQ and P_1S , and define R_2 analogously. If, for each choice of P_1 and P_2 , the areas of R_1 and R_2 are equal, then the graph of f is a parabola with vertical axis.

TYCMJ 52. by Steven Kahn

Let f be a function that is differentiable on [0,1] such that f(0)=0, f(1)=1, and $f(x)\in [0,1]$ for each $x\in [0,1]$. Prove that there exist $a,b\in [0,1]$ such that $a\neq b$ and $f'(a)\cdot f'(b)=1$.

CRUX 176. by Hippolyte Charles

Let $f: \mathbb{R} \to \mathbb{R}$ be an even differentiable function. Show that the derivative f' is not even, unless f is a constant function.

PUTNAM 1976/A.6.

Suppose f(x) is a twice continuously differentiable real valued function defined for all real numbers x and satisfying $|f(x)| \leq 1$ for all x and

$$(f(0))^2 + (f'(0))^2 = 4.$$

Prove that there exists a real number x_0 , such that

$$f(x_0) + f''(x_0) = 0.$$

SIAM 79-10. by Y. P. Sabharwal and J. Kumar

Determine the general form of a function F(x) satisfying the following conditions for $x \ge 0$:

$$0 \le F(x) \le 1$$
,

$$\frac{d}{dx}F(x) > 0,$$

$$\frac{d}{dx} \left\{ \frac{F(x)}{x} \right\} < 0.$$

SIAM 75-16. by J. Walter

Let G denote a continuously differentiable positive function defined in some interval $[t_0,\infty)$ and a,b,c,x,y,z, and w be real numbers such that $0 < a \leq b,t_0 \leq x \leq y \leq z \leq w$. Prove the existence of a continuous function H(a,b,c) of three variables such that

$$\int_y^z \frac{dt}{G(t)} = a, \qquad \int_x^w \frac{dt}{G(t)} \le b, \qquad |G'(t)| \le c$$

for $t \in [t_0, \infty)$ imply that

$$\int_{x}^{w} G(t) dt \le H(a, b, c) \int_{y}^{z} G(t) dt.$$

NAvW 474.

by J. van de Lune

Let $f,g\colon [0,\infty)\to \mathbb{R}$ be two given functions satisfying the following conditions:

- (1) f(x) = g(x) = 1 for $0 \le x \le 1$,
- (2) f and g are continuous on $[0, \infty)$,
- (3) f and g are differentiable on $(1,\infty)$ such that, for x>1,

$$xf'(x) = -f(x-1)$$

and

$$xg'(x) = g(x-1).$$

Prove that

$$\int_0^x f(x-t)g(t) dt = x, \qquad x \ge 0.$$

CRUX 283.

by A. W. Goodman

The function

$$y = -\frac{2x \ln x}{1 - x^2}$$

is increasing for 0 < x < 1 and in fact y runs from 0 to 1 in this interval. Therefore an inverse function x = g(y) exists. Can this inverse function be expressed in closed form and if so what is it? If it cannot be expressed in closed form, is there some nice series expression for g(y)?

FQ H-292. by F. S. Cater and J. Daily

Find all real numbers $r \in (0, 1)$ for which there exists a one-to-one function f_r mapping (0, 1) onto (0, 1) such that

- (a) f_r and f_r^{-1} are infinitely many times differentiable on (0,1), and
- (b) the sequence of functions f_r , $f_r \circ f_r$, $f_r \circ f_r \circ f_r$, $f_r \circ f_r \circ f_r$, ... converges pointwise to r on (0,1).

MM 987. by Sidney Penner

Let f be differentiable with f' continuous on [a, b]. Show that if there is a number c in (a, b] such that f'(c) = 0, then we can find a number ξ in (a, b) such that

$$f'(\xi) = \frac{f(\xi) - f(a)}{b - a}.$$

AMM E2572.

by C. D. H. Cooper

Prove or give a counterexample: If $f: \mathbb{R} \to \mathbb{R}$ is differentiable everywhere and f' is differentiable at some point a, then f' is continuous in some neighborhood of a.

AMM E2663. by Marius Solomon

Let $f:(0,\infty)\to\mathbb{R}$ be differentiable, and assume that $f(x)+f'(x)\to 0$, when $x\to\infty$. Show that $f(x)\to 0$ as $x\to\infty$.

Functions: digits

AMM E2738.

by Michael W. Ecker

Let σ be a permutation of the digits $0, 1, \ldots, 9$. Let

$$f: [0,1] \to [0,1]$$

be the "extension" of σ , i.e., f(x) is obtained from x by applying σ to each digit in the decimal expansion of x. (For uniqueness of decimal expansions, we do not allow expansions with all but finitely many digits equal to 9.)

- (a) Find the points where f is continuous (or differentiable)
- (b) Show that f is Riemann integrable and compute the integral.

Functions: digits Problems sorted by topic Functions: monotone functions

CMB P269.

by J. Borwein

Let $q=(q_1,q_2,\ldots)$ be a sequence of positive real numbers with $\sum q_n=1$, and let $T_q\colon (0,1]\to (0,1]$ be given by $T_q(a)=\sum q_n a_n$, where $0\cdot a_1a_2a_3\cdots$ is the nonterminating binary expansion of a. Are there q and r such that $T_q^{-1}\{r\}$ is a set of positive Lebesgue measure?

Functions: entire functions

AMM 6117.

by M. J. Pelling

A well-known theorem asserts that given entire functions f(z), g(z) with no common zero, then there exist entire functions a(z), b(z) such that af + bg = 1 identically.

- (a) Show that it is always possible to choose a(z) to be zero-free.
- (b) Is it always possible to choose both a(z) and b(z)to be zero-free?

AMM 6118.

by M. J. Pelling

(a) Show there is no nonconstant solution to

$$e^{f(z)} + e^{g(z)} = 1$$

in entire functions f(z) and g(z).

(b) Is there a nonconstant solution to

$$e^{f(z)} + e^{g(z)} + e^{h(z)} = 1$$

in entire functions f, g, and h?

AMM 6279.

by Lee A. Rubel

Let f(z) be an entire function such that the maximum modulus over every closed line segment L is achieved at one of the endpoints a and b of L; that is,

$$\max\{|f(z)|: z \in L\} = \max\{|f(a)|, |f(b)|\}.$$

Prove that f(z) has either the form $A(z-B)^n$ or the form $A \exp Bz$, where A and B are constants and n is a nonnegative integer.

NAvW 464.

by J. van de Lune

Prove that the function f, defined for the real variable s (s > 1) by

$$f(s) = (s-1) \sum_{n=2}^{\infty} \frac{1}{n(\log n)^s}$$
,

can be extended in the complex plane to an entire function.

NAvW 520.

by J. van de Lune

Prove that all the zeros of the entire function

$$1 + 2^s + 3^s + 4^s$$

are simple.

Functions: exponentials

SPECT 9.1.

Prove that the exponential function e^x cannot be expressed in the form f(x)/g(x), where f(x) and g(x) are polynomials in x with real coefficients.

Functions: infinite series

NAvW 454.

by J. van de Lune

Prove that the function $\lambda: \mathbb{R} \to \mathbb{C}$ defined by

$$\lambda(t) = \sum_{n=1}^{\infty} n^{-1} (n+1)^{-1-it}, \qquad t \in \mathbb{R}$$

has no real zeros.

Functions: iterated functions

MM 993.

by F. David Hammer

Let g be a continuous function from [0,1] to [0,1] with g(0) = 0. If for each x in [0,1] there is a positive integer n(x) such that $q^{n(x)} = x$ (the n(x)-th iterate of q), then show that g(x) = x for all x in [0,1].

Functions: linear independence

by Maurice Machover

If $0 \le \theta_1 < \theta_2 < \theta_3 < \dots < \theta_n < 2\pi$, are the functions

$$\exp\left[i\cos(\theta-\theta_j)\right], \qquad j=1,2,\ldots,n$$

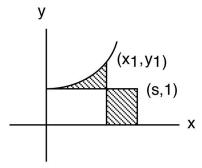
linearly independent over the complex numbers?

Functions: monotone functions

SIAM 77-5.*

by M. L. Glasser

Let


$$S(r) = \sum_{k=1}^{\infty} (-1)^{k+1} \sinh y \operatorname{csch} ky \left(y = \cosh^{-1} r \right).$$

Numerical evidence suggests that S(r) increases steadily between the values $S(1) = \log 2$ and $S(\infty) = 1$. Prove whether or not this is the case.

MATYC 134.

by William Stretton

Let y = f(x) be the increasing function shown, s be the arc length from (0,1) to (x_1,y_1) , and the shaded areas be equal. Find f(x).

NAvW 434.

by J. van de Lune

For s > 0, let

$$\lambda(s) = \frac{1}{\Gamma(s+1)} \int_0^s e^{-x} x^s dx.$$

For $n \in \mathbb{N}$, let

$$e(n) = e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!}$$
.

Prove that $\lambda(s)$ is increasing, e(n) is decreasing, and that they have the same limit.

Functions: monotone functions

Problems sorted by topic

NAvW 465.

by J. van de Lune

Prove that the function $f: \mathbb{R}^+ \to \mathbb{R}^+$ defined by

$$f(s) = \left(\frac{s^s}{\Gamma(s+1)}\right)^{1/s}$$

is monotone increasing.

AMM S15

by Joel L. Brenner

Let f(t) > 0 for $a \le t < b$ and u be a fixed real number. Show that the functional

$$\left[\frac{\int f^{s+u}}{\int f^s}\right]^{1/u}$$

increases with s.

MATYC 97.

by Benjamin G. Klein

Let k be a positive constant and let

$$f(x) = \frac{-\log(1-kx)}{\log(1+x)} .$$

Show that f(x) is an increasing function of x for x in (0,1/k).

Functions: nearest integer function

MATYC 80.

by Gino Fala

Define a function $f: \mathbb{R} \to [0, 1/2]$ verbally as follows: For every real number x, the image of x under f is the distance from x to the nearest integer.

Find a single formula y = f(x) for this function.

Functions: periodic functions

NAvW 409.

by O. P. Lossers

Let a and b be distinct real numbers. Suppose that f is a continuous function of the real variable x, such that

$$f(x) = o(x^2), \qquad (x \to \pm \infty),$$

and

$$f(x+a) + f(x+b) = \frac{1}{2}f(2x)$$
 for all $x \in \mathbb{R}$.

Show that f must be a periodic function.

SSM 3667.

by Steven R. Conrad

Prove that the function $\cos \sqrt{x}$ is not periodic.

CANADA 1975/7.

A function f(x) is periodic if there is a positive number p such that f(x+p) = f(x) for all x. Is the function $\sin(x^2)$ periodic? Prove your assertion.

SSM 3709.

by John Carpenter

Find a nonlinear function f such that $\cos f(x)$ is periodic.

Functions: polynomials

AMM 6208.

by Gary Gundersen

Functions: real-valued functions

Let p(z) and q(z) be two polynomials with

$$deg(q) \ge deg(p),$$

and suppose there is a discrete real sequence $\{x_j\}_{j=1}^{\infty}$ with cluster points at $\pm \infty$. Prove that if $q(z) \in \mathbb{R}$ whenever

$$p(z) \in \left\{ x_j \right\}_{j=1}^{\infty},$$

then

$$q(z) = \sum_{i=0}^{n} c_i \left(p(z) \right)^i,$$

where $c_i \in \mathbb{R} \ (0 \le i \le n)$.

Can the condition $deg(p) \leq deg(q)$ be dropped?

AMM E2796.

by P. Henrici

Prove that the polynomial p with degree less than or equal to n that agrees with a given function f(x) at the Chebyshev points $x_k = \cos \phi_k$, where

$$\phi_k = \frac{(2k+1)\pi}{(2n+2)}, \qquad k = 0, 1, \dots, n,$$

is, for x not in $\{x_0, \ldots, x_n\}$, given by p(x) = N(x)/D(x) with

$$N(x) = \sum_{k=0}^{n} \frac{\left(-1\right)^{k} f\left(x_{k}\right) \sin \phi_{k}}{x - x_{k}} ,$$

$$D(x) = \sum_{k=0}^{n} \frac{(-1)^k \sin \phi_k}{x - x_k} \ .$$

Functions: real-valued functions

AMM E2610.

by Hugh L. Montgomery

Let f be a real-valued function defined on the unit square $[0,1] \times [0,1]$. Suppose that f(x,y) is continuous in x for each fixed y and continuous in y for each fixed x. Show that if $f^{-1}(0)$ is dense in the unit square then f = 0.

AMM 6132. by Mihai Eşanu

Find all the functions $f: \mathbb{R} \to \mathbb{R}$ with the Darboux property such that for some $n \geq 1$, $f^n(x) = -x$ for all x.

PUTNAM 1977/A.6.

Let f(x,y) be a continuous function on the square

$$S = \{(x, y) : 0 \le x \le 1, \ 0 \le y \le 1\}.$$

For each point (a,b) in the interior of S, let $S_{(a,b)}$ be the largest square that is contained in S, is centered at (a,b), and has sides parallel to those of S. If

$$\int \int f(x,y) \, dx \, dy = 0$$

when taken over each square $S_{(a,b)}$, must f(x,y) be identically zero on S?

Functions: real-valued functions Problems sorted by topic Gamma function

AMM 6273.

by K. L. Chung

Let f be a real-valued function defined on $(-\infty, +\infty)$ and continuous from the right everywhere. Suppose also that the following is true:

$$\lim_{n \to \infty} \left[\max_{-\infty < k < \infty} \left| f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right) \right| \right] = 0$$

where n and k are integers, $n \geq 1$. Is f continuous in $(-\infty, +\infty)$?

AMM 6184. by Ole Jørsboe

Let $(\phi_n)_{n=1}^{\infty}$ be an orthonormal system of real-valued piecewise continuous functions on the interval [0,1] with the property that if f is a real-valued piecewise continuous function on [0,1] fulfilling

$$(f,\phi_n) = \int_0^1 f(x)\phi_n(x) dx = 0$$

for all $n \in \mathbb{N}$, then f is 0 at all points of continuity.

Does this imply that (ϕ_n) spans the space of all real-valued piecewise continuous functions on [0, 1], i.e., can every piecewise continuous function f be written in the form

$$f = \lim_{N \to \infty} \sum_{n=1}^{N} a_n \phi_n?$$

AMM 6054.

by Lung Ock Chung

Let

$$\phi: \{0, 1, \dots, N-1\} \to \{0, 1, \dots, N-1\}$$

be a permutation for $N \geq 2$. Then ϕ induces a function

$$\phi^*:(0,1)\to(0,1)$$

from the open unit interval to itself as

$$\phi^* \left(\sum_{i=1}^{\infty} \frac{m_i}{N^i} \right) = \sum \frac{\phi(m_i)}{N^i} ,$$

where $m_i \in \{0, 1, ..., N-1\}, m_i \not\to 0$, and

$$N^i = N \cdot N \cdots N$$
 (*i* times).

Find the subgroup H of the permutation group such that ϕ^* is continuous if $\phi \in H$. Further, show that ϕ^* is differentiable for such ϕ .

Functions: transcendental functions

CRUX 300.

by Léo Sauvé

Does there exist a dense subset E of the reals such that $\sin x$ and $\cos x$ are both algebraic for every $x \in E$?

Gamma function

AMM 6186.*

by Ronald Evans

Let $r, k \in \mathbb{N}$, where r is fixed. Fix $\beta > 1$. Let

$$F_r(k) = \sum (j_1 j_2 \cdots j_r)^{\beta - 1},$$

where the sum is over all vectors $(j_1, j_2, \dots, j_r) \in \mathbb{N}^r$ for which $j_1 + j_2 + \dots + j_r = k$. Prove that

$$F_r(k) \sim \frac{\Gamma^r(\beta)}{\Gamma(r\beta)} k^{\beta r - 1}$$
 as $k \to \infty$.

SIAM 75-11.

by D. K. Ross

Prove that

$$\begin{vmatrix} \Gamma(\alpha) & \Gamma(\alpha+\beta) & \Gamma(\alpha+2\beta) \\ \Gamma(\alpha+\beta) & \Gamma(\alpha+2\beta) & \Gamma(\alpha+3\beta) \\ \Gamma(\alpha+2\beta) & \Gamma(\alpha+3\beta) & \Gamma(\alpha+4\beta) \end{vmatrix} > 0,$$

provided that $\alpha, \beta > 0$, and generalize the result to include higher order determinants and other classes of special functions.

SIAM 76-21.*

by P. Barrucand

Define the polynomials $\{p_n(x, m, \gamma)\}$ by the generating function

$$\sum p_n(x, m, \gamma)t^n = \frac{\exp(xt)}{[\Gamma(1+\gamma+t)]^m} ,$$

m positive integer, $\gamma > -1$.

Prove that for every n, all the zeros of $p_n(x)$ are real and give an asymptotic formula for the lesser-in-modulus (i.e., the greater) negative zeros.

AMM 6067. by Ron Evans

Prove that for each real σ , there exist infinitely many t>0 for which $\Gamma(\sigma+it)<0$.

AMM 6269.

by Robert E. Shafer

Let
$$F(u) = u^{-u} \Gamma\left(u + \frac{1}{2}\right)$$
 and

$$G(x, s, t) =$$

$$\frac{1}{\left(x-s+\frac{1}{2}\right)\left(x-t+\frac{1}{2}\right)} - \frac{1}{\left(x+s+\frac{1}{2}\right)\left(x+t+\frac{1}{2}\right)} \ .$$

Prove that for $0 \le s < t \le x$,

$$e^{(s-t)G(x,s,t)/24}<\frac{F\left(x-t+\frac{1}{2}\right)F\left(x+t+\frac{1}{2}\right)}{F\left(x-s+\frac{1}{2}\right)F\left(x+s+\frac{1}{2}\right)}<1.$$

NAvW 462.

by P. J. de Doelder

Show that

$$\sum_{n=-\infty}^{\infty} \frac{1}{\Gamma(a+n)\Gamma(a-n)} = \frac{2^{2a-2}}{\Gamma(2a-1)} \;, \quad \text{Re } a > \frac{1}{2}.$$

NAvW 518.

by L. Kuipers

Let

$$\Phi(T) = \int_0^T \log \frac{\Gamma(pT+1)}{\Gamma(pt+1)\Gamma(pT-pt+1)} dt,$$

$$(p>0, T>0).$$

- (a) Prove that $T^{-2}\Phi(T) \to \frac{1}{2}p$ as $T \to \infty$.
- (b) If p is an integer, then prove that

$$\lim_{n \to \infty} n^{-2} \sum_{k=1}^{n} \log \binom{pn}{pk} = \frac{1}{2} p.$$

Haar functions Problems sorted by topic Inequalities

Haar functions

AMM 6013. by J. R. Higgins

Let $\{h_r(t)\}_{r=1}^{\infty}$ be the orthonormal Haar functions, defined by

$$h_1(t) = 1, t \in [0, 1]$$

$$h_r(t) = \begin{cases} 2^{m/2} \operatorname{sgn} \sin(2^{m+1}\pi t), & t \in \left(\frac{k-1}{2^m}, \frac{k}{2^m}\right) \\ 0, & \text{elsewhere in } [0, 1], \end{cases}$$

where $r = 2^m + k$, m = 0, 1, ..., and $k = 1, ..., 2^m$. Let p be any odd positive integer and q any positive integer such that $p < 2^q$. Set

$$I(p,q,m,k) = \int_0^{p/2^q} h_r(t) dt.$$

Show that

$$\sum_{m=0}^{q-1} \left\{ I(p,q,m,k) \right\}^2 = \frac{p}{2^q} \left(1 - \frac{p}{2^q} \right).$$

Hankel function

NAvW 470.

by P. J. de Doelder

Prove that

$$\int_0^\infty \frac{H_0^{(1)}\left(k\sqrt{y^2 + \alpha^2}\right)}{\sqrt{y^2 + 1}} dy = \frac{\pi i}{4} H_0^{(1)}\left(\frac{1}{2}k\alpha_1\right) H_0^{(1)}\left(\frac{1}{2}k\alpha_2\right),$$

where $H_0^{(1)}$ is a Hankel function, and α_1 and α_2 are the roots of $x^2 - 2\alpha x + 1 = 0$.

Harmonic functions

AMM 6280. by David Siegel

Let u be a harmonic function in a regular n-gon with sides s_1, \ldots, s_n and radii r_1, \ldots, r_n joining the center to the vertices. Show that

$$\sum_{i=1}^{n} \int_{s_{i}} u \ ds = 2 \sin \frac{\pi}{n} \sum_{i=1}^{n} \int_{r_{i}} u \ ds,$$

where the integrals are taken with respect to arc length.

Hypergeometric functions

NAvW 550. by P. J. de Doelder

Show that

$$_{2}F_{1}\left(\frac{1}{4},\frac{1}{2};\frac{3}{4};\frac{3}{4}\right) = 2^{3/2} \cdot 3^{-3/4}.$$

SIAM 77-2. by P. W. Karlsson Establish the identity

$$\begin{split} \frac{1-x}{a+c} {}_2F_1(a,1-b;a+c+1;1-x) {}_2F_1(b,1-a;b+c;x) \\ + \frac{x}{b+c} {}_2F_1(a,1-b;a+c;1-x) {}_2F_1(b,1-a;b+c+1;x) \\ = \frac{\Gamma(a+c)\Gamma(b+c)}{\Gamma(c+1)\Gamma(a+b+c)}. \end{split}$$

SIAM 75-17.

by H. M. Srivastava

Let

$$F\begin{bmatrix} a:b,b',\ldots;c,c',\ldots;\\ d,d',\ldots;e,e',\ldots; \end{bmatrix}$$

$$= \sum_{l,m,n=0}^{\infty} \frac{(a)_{l+m+n}(b)_{l+m}(b')_{l+m}\dots(c)_{l+n}(c')_{l+n}\dots}{(d)_{l+m}(d')_{l+m}\dots(e)_{l+n}(e')_{l+n}\dots}$$

$$\frac{x^l}{l!} \frac{y^m}{m!} \frac{z^n}{n!}$$

and

$$\phi(x, y, z) = \sum_{n=0}^{\infty} \frac{(\lambda)_n \prod_{j=1}^{p} (a_j)_n \prod_{j=1}^{r} (\alpha_j)_n}{n! \prod_{j=1}^{q} (b_j)_n \prod_{j=1}^{s} (\beta_j)_n} \left[\frac{xyz}{(1-z)^2} \right]^n \cdot G,$$

where

$$G = {}_{p+1}F_q \begin{bmatrix} \lambda+n, a_1+n, \dots, a_p+n; \\ & \frac{xz}{z-1} \end{bmatrix}$$
$$\times {}_{r+1}F_s \begin{bmatrix} \lambda+n, \alpha_1+n, \dots, \alpha_r+n; \\ & \frac{yz}{z-1} \end{bmatrix}.$$

Prove or disprove that

$$\phi(x, y, z) = F\begin{bmatrix} \lambda : a_1, \dots, a_p; \alpha_1, \dots, \alpha_r; & \\ b_1, \dots, b_q; \beta_1, \dots, \beta_s; & \frac{xyz}{1-z}, \frac{xz}{z-1}, \frac{yz}{z-1} \end{bmatrix}.$$

SIAM 76-19.

by R. I. Joseph

Evaluate the double integral

$$\alpha = \int_0^1 u \, du \int_0^\infty \, dv \, \frac{2F_1\left(\frac{3}{4}, \frac{5}{4}; 2; 4u/(u+v+1)^2\right)}{(u+v+1)^{3/2}(u+v)^{5/2}} \,\,,$$

where ${}_{2}F_{1}$ is Gauss' hypergeometric function

Identities

NAvW 433.

by J. van de Lune

Prove that

$$\left(\frac{e}{s}\right)^s \int_0^s e^{-x} x^s dx = s \sum_{k=1}^{\infty} \frac{k^k e^{-k}}{k!(s+k)}, \quad s > 0.$$

Inequalities

AMM 6084.

by Theodore J. Rivlin

Let

$$T_n(x) = t_0 + t_1 x + \dots + t_n x^n$$

denote the Chebyshev polynomial of degree n. Suppose that

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

is real-valued. Show that if $|p(\cos(j\pi/n))| \leq 1$ for $j = 0, 1, \ldots, n$, then

$$|a_{n-2m}| + |a_{n-2m-1}| \le |t_{n-2m}|,$$

Inequalities Problems sorted by topic Integral inequalities

AMM E2670.

by Shyam Johari and Stanley L. Sclove

Let

$$f(x,y) = \frac{xe^{-x} - ye^{-y}}{e^{-x} - e^{-y}} .$$

If $0 < a < b < c < \infty$ and $0 < x < y < z < \infty$, prove or disprove that

$$|f(a,b) + f(b,c) - f(x,y) - f(y,z)|$$

 $\leq 2 \max(|x-a|, |y-b|, |z-c|).$

AMM E2782.

by Robert E. Shafer

Prove that

$$2\arctan\frac{1}{2x-1} < \sum_{n=0}^{\infty} \frac{1}{(n+x)^2} < \frac{1}{x-\frac{1}{2}}$$

for $x > \frac{1}{2}$.

NAvW 458.

by P. J. van Albada

Wallis' inequality

$$\frac{2}{2n+1} \left\{ \frac{(2n)!!}{(2n-1)!!} \right\}^2 < \pi < \frac{1}{n} \left\{ \frac{(2n)!!}{(2n-1)!!} \right\}$$

restricts π to an interval of length $O\left(n^{-1}\right)$, $(n \to \infty)$. Gurland's amelioration restricts π to an interval of length $O\left(n^{-2}\right)$, $(n \to \infty)$. Find simple functions f and g such that

$$f(n) \left\{ \frac{(2n)!!}{(2n-1)!!} \right\}^2 < \pi < g(n) \left\{ \frac{(2n)!!}{(2n-1)!!} \right\}^2$$

is sharper than the inequalities quoted above.

Infinite products

PUTNAM 1977/B.1. OSSMB G76.3-6.

Evaluate the infinite product

$$\prod_{n=2}^{\infty} \frac{n^3 - 1}{n^3 + 1}.$$

AMM 6233. by James Lynch and Jan Mycielski

Prove that $\prod_{n=1}^{\infty} (1 - a^{-n})$ is irrational for every integer a with |a| > 1.

Integral equations

SIAM 79-1.* by I. Lux

Let V be an arbitrary three-dimensional spatial region. Let $P=(\mathbf{r},\omega)$, a six-dimensional phase space point, where $\mathbf{r}\in V$ and ω is a directional unit vector. Define a function $M_\lambda(P)$ through the following integral equation

$$M_{\lambda}(P) = 1 - e^{-D} + \frac{\lambda}{4\pi} \int_{0}^{D} e^{-\lambda x} dx \int M_{\lambda} (P') d\omega'$$

where $P' = (\mathbf{r} + x\omega, \omega')$, λ is an arbitrary but positive parameter, D is the distance between the point \mathbf{r} and the boundary of V along the direction ω and the integral over $d\omega'$ is a double integral over the surface of a unit sphere. Prove or disprove that

$$\frac{d}{d\lambda}M_{\lambda}(P)\Big|_{\lambda=1}\geq 0.$$

TYCMJ 151.

by Peter A. Lindstrom

The function f, defined by f(t) = 1/t, $t \in (0, \infty)$, is decreasing, has derivatives of all orders, and satisfies the equality

$$\int_{1}^{x} f(t) dt = \int_{y}^{xy} f(t) dt$$

for x, y > 0. Does there exist a function defined on $(0, \infty)$ that has these three properties but which, unlike f, has a graph that is concave downward?

SIAM 75-9.

by M. L. Glasser

Suppose

$$Z(s) = e^{-q} \int_0^1 dt \, \frac{Z(t)}{(1-st)^p} \, .$$

(a) Show that in the case $p=1,\ q=\ln\pi$, the exact solution of the above equation is

$$Z(s) = A(1-s)^{-1/2} K(s^{1/2}),$$

where K(k) denotes the complete elliptic integral of the first kind with modulus k and A is an arbitrary constant.

(b) Are there any other exactly solvable cases?

Integral inequalities

MENEMUI 1.3.3.*

by S. L. Lee

If f is continuously differentiable up to derivatives of 4th order and f(-1)=f(1)=0, find the least constant A such that

$$\left| \int_{-\sqrt{3}}^{\sqrt{3}} f(x) \, dx \right| \le A.$$

CMB P278.

by E. J. Barbeau

Let f(x) be a strictly increasing continuous function on the closed interval [0,1] for which f(0)=1 and f(1)=1. Suppose that g(x) is the composition inverse of f(x), so that f(g(x))=g(f(x))=x for $0\leq x\leq 1$. Is it necessarily true that

$$\int_0^1 f(x)^k g(x)^k \, dx \le \frac{1}{2k+1}$$

for each nonnegative real number k?

AMM E2622.

by S. Zaidman

Let $f:[a,b]\to\mathbb{R}$ be a continuous function that is twice differentiable in (a,b) and satisfies f(a)=f(b)=0. Prove that

$$\int_{a}^{b} |f(x)| dx \le \frac{1}{12} M(b-a)^{3},$$

where $M = \sup |f''(x)|$ for $x \in (a, b)$.

CRUX 79.

by John Thomas

Show that for x > 0,

$$\left| \int_{x}^{x+1} \sin(t^2) \, dt \, \right| < \frac{2}{x}.$$

Integral inequalities Problems sorted by topic Integrals: evaluations

AMM 6185.

by John Milcetich

Let

$$f(z,\theta) = (1 + e^{i\theta}z)^{\beta} (1-z)^{-\alpha},$$

where |z| < 1, $\theta \in R$, and $\alpha \ge \beta \ge 1$. Show that for p > 0

$$\int_{-\pi}^{\pi} \left| f'(re^{i\phi}, \theta) \right|^p d\phi \le \int_{-\pi}^{\pi} \left| f'(re^{i\phi}, 0) \right|^p d\phi.$$

AMM 6075.

by H. L. Montgomery

Prove that if $f(x) \in L^1(-\infty, \infty)$, $f(x) \ge 0$, $\bar{f}(t) \ge 0$ for all x, t where \hat{f} is the Fourier transform, then for any integer $k \geq 1$,

$$\int_{-k}^{k} f(x) \ dx \le (2k+1) \int_{-1}^{1} f(x) \ dx.$$

MM Q622.

I Q622. by M. S. Klamkin If G and F are integrable, $a>0,\ G(x)\geq F(x)\geq 0,$

$$\int_0^1 x F(x) \, dx = \int_0^a x G(x) \, dx,$$

show that

$$\int_0^1 F(x) \, dx \le \int_0^a G(x) \, dx.$$

SIAM 78-18.

by A. Meir

Let F(x) be nonnegative and integrable on [0, a] and such that

$$\left\{ \int_0^t F(x) \, dx \right\}^2 \ge \int_0^t F(x)^3 \, dx$$

for every t in [0, a]. Prove or disprove the conjecture:

$$\frac{a^3}{3} \ge \int_0^a \{F(x) - x\}^2 dx.$$

Integrals: area

by G. P. Henderson

Let P be a point on the graph of y = f(x), where f is a third-degree polynomial, let the tangent at P intersect the curve again at Q, and let A be the area of the region bounded by the curve and the segment PQ. Let B be the area of the region defined in the same way by starting with Q instead of P. What is the relationship between A and B?

Integrals: asymptotic expansions

NAvW 456.

by S. L. Paveri-Fontana and D. Katz

Find the first two terms of the asymptotic expansion of the integral

$$\omega(\lambda) = \frac{2}{\pi\lambda} \int_0^1 d\mu \cdot \mu^{-2} \left(1 - \mu^2\right)^{-\frac{1}{2}} \int_0^\infty dx \sin^2(x\lambda\mu) x^{-2} f(x)$$

for real $\lambda \to +\infty$, under the assumptions:

- (1) f is a real-valued continuous function on $[0, \infty)$;
- (2) f(x) = 1 + O(x) for $x \to 0$; (3) $\int_0^\infty |f(x)| dx < +\infty$.

Integrals: evaluations

NAvW 522.

by N. Ortner

Prove that

$$\int_0^\infty \frac{\sinh t - t}{t^3 \left(\cosh \frac{t}{2}\right)^2} dt = \frac{7}{2\pi^2} \zeta(3).$$

NAvW 408.

by H. K. Kuiken

Prove that

$$\int_{-\infty}^{\infty} \frac{dx}{\pi^2 + (ye^x + y - x)^2} = \frac{1}{y+1} \ , \qquad y \ge 0.$$

SIAM 77-3.

by P. J. Schweitzer

Evaluate

$$\int_0^\infty F(x) \left(F'(x) - \ln x \right) dx,$$

where

$$F(x) = \int_{-\infty}^{\infty} \frac{\cos xy \, dy}{(1+y^2)^{3/2}}.$$

AMM E2523.

by K. P. Kerney

Evaluate

$$\int_0^1 \log(1+x) \log(1-x) \, dx.$$

TYCMJ 83.

Evaluate

by Joe Allison

$$\int_0^1 \frac{\log(1-x)}{1+x} \, dx.$$

MATYC 125.

by Louise Grinstein

Evaluate

$$\int \sqrt{1 + \frac{\ln x}{x}} \ dx \ .$$

SIAM 75-12.

by H. J. Oser

Evaluate the 4-fold integral

$$F = \int_{0}^{1} \int_{-1}^{0} \int_{-1/2}^{1/2} \cdot \int_{-1/2}^{1/2} \left\{ (x_1 - x_2)^2 + (y_1 - y_2)^2 \right\}^{1/2} dx_1 dx_2 dy_1 dy_2$$

which gives the average distance between points in two adjacent unit squares.

CRUX 88.

by F. G. B. Maskell

Evaluate the indefinite integral

$$I = \int \frac{dx}{\sqrt[3]{1+x^3}}.$$

NAvW 449.

by J. Boersma

$$F(t) = \int_{-\infty}^{\infty} e^{ixt} (1 + x^6)^{-\frac{1}{2}} dx, \qquad t \ge 0.$$

Determine an expansion of F(t) of the form

$$F(t) = A(t) + B(t) \log t$$

where A(t) and B(t) are power series.

Integrals: evaluations Problems sorted by topic Integrals: functions

CRUX 455.

by Hippolyte Charles

Evaluate

$$I = \int_0^{\frac{\pi}{2}} \frac{x \cos x \sin x}{\cos^4 x + \sin^4 x} dx.$$

CRUX 477.

by Hippolyte Charles

For $n = 0, 1, 2, \ldots$, evaluate the integral

$$\tau_n = \int_0^\pi \frac{\cos nx}{5 - 4\cos x} \, dx.$$

SSM 3775.

by Fred A. Miller

Evaluate the following integral:

$$\int_0^\pi \frac{x \, dx}{1 + \cos^2 x} \; .$$

AMM E2803.

by L. R. Shenton, Frank Bowman, and H. K. Lam

Prove that

Prove that
(a)
$$\int_0^{\pi/4} g(\theta) d\theta = \pi^2/24$$
,

(b)
$$\int_0^{\pi/6} g(\theta) d\theta = \pi^2/32$$
,

where $g(\theta) = \arctan \left[\left(\cos 2\theta\right) / \left(2\cos^2 \theta\right) \right]^{1/2}$.

MM 1033.

by H. Kestelman

For given positive integers n_1, n_2, \ldots, n_k , when is

$$\int_0^{2\pi} \cos n_1 \theta \cos n_2 \theta \cdots \cos n_k \theta \, d\theta$$

different from zero and what is its value?

SIAM 78-19.

by M. L. Glasser

Show that

$$\int_0^\infty \frac{\cos\left(x^2/\pi\right) \, dx}{\cosh x \cosh(x+a) \cosh(x-a)}$$
$$= \frac{\pi}{2\sqrt{2}} \operatorname{sech}^2 a \operatorname{csch}^2 a \left(\cosh^2 a - \cos\frac{a^2}{\pi} - \sin\frac{a^2}{\pi}\right).$$

NAvW 537.

by J. A. van Casteren

Prove that

$$\int_0^{\pi/2} \theta \cot \theta \log \cot \theta \ d\theta = \frac{\pi^3}{48} \ .$$

CRUX 161.

by Viktors Linis

Evaluate

$$\int_0^{\pi/2} \frac{\sin^{25} t}{\cos^{25} t + \sin^{25} t} dt.$$

CRUX 432.

by Basil C. Rennie

Evaluate

$$\int_{-\infty}^{\infty} \frac{\cos x + x \sin x}{x^2 + \cos^2 x} \, dx.$$

MM 1064.

by Edward T. H. Wang

For each positive integer n, define

$$L(n) = \int_0^\infty \left(\frac{\sin x}{x}\right)^n dx.$$

It is well known that $L(1) = L(2) = \pi/2$.

- (a) Find L(3), L(4), and L(5).
- (b) Is there a formula for L(n) for general n?

by Gérard Letac

Prove that if n is a nonzero integer, then

$$\int_{-\pi/2}^{+\pi/2} \exp\left[2in(x+\tan x)\right] dx = 0.$$

Integrals: functions

AMM E2765.

by Naoki Kimura

Establish the two following equations:

$$\int_{-1/2}^{3/2} f(3x^2 - 2x^3) dx = 2 \int_0^1 f(3x^2 - 2x^3) dx,$$

$$\int_{-1/2}^{3/2} xf\left(3x^2 - 2x^3\right) dx = 2 \int_{0}^{1} xf\left(3x^2 - 2x^3\right) dx,$$

for all functions f continuous on -1/2 < x < 3/2. Is there a quadratic polynomial q(x) such that

$$\int_{-1/2}^{3/2} f(3x^2 - 2x^3) dx = \int_0^1 g(x) f(3x^2 - 2x^3) dx$$

for every continuous function f?

SIAM 77-7.

by L. A. Shepp

$$A(h) = A(h;T) = \int_0^T h(t) \left\{ \frac{d}{dt} \frac{1}{\sqrt{h'(t)}} \right\}^2 dt$$

where $0 < T \le \infty$ and h is twice differentiable, strictly increasing on [0,T] with h(0)=0. Show that $A(h;T)<\infty$ if and only if $A\left(h^{-1},h(T)\right)<\infty$ where h^{-1} is the inverse function of h on [0, h(T)].

AMM E2658.

by W. Weston Meyer

(a) For $0 < \alpha < \pi/2$ and integral $n \ge 0$, show that

$$\int_0^\alpha \left(\frac{\sin\theta}{\sin\alpha}\right)^{2n} d\theta = \sum_{k=0}^n c_{nk} \int_0^\alpha \left(\frac{\tan\theta}{\tan\alpha}\right)^{2k} d\theta,$$

where the constants c_{nk} are independent of α .

(b) Find all polynomials P such that the ratio

$$\int_0^\alpha P\left(\frac{\sin\theta}{\sin\alpha}\right) \ d\theta \bigg/ \int_0^\alpha P\left(\frac{\tan\theta}{\tan\alpha}\right) \ d\theta$$

is independent of $\alpha \in (0, \pi/2)$.

Integrals: gamma function

Problems sorted by topic

Integrals: limits

Integrals: gamma function

AMM 6245.

by C. L. Mallows

For 0 < a < 1, $t \ge 0$, b = 1 - a, prove that

$$\frac{1}{\pi} \int_0^\pi \frac{\left(\sin u\right)^t}{(\sin au)^{at} (\sin bu)^{bt}} \ du = \frac{\Gamma(t+1)}{\Gamma(at+1)\Gamma(bt+1)}.$$

SIAM 77-1.

by R. A. Waller and M. S. Waterman

If $0 < \xi_1 < \xi_2 < 1$ and 1 < b are fixed, consider solutions (λ, ϕ) of the system

$$f(\lambda,\phi) \equiv \int_0^{\lambda} \frac{e^{-y}y^{\phi-1}}{\Gamma(\phi)} dy = \xi_1,$$

$$g(\lambda,\phi) \equiv \int_0^{b\lambda} \frac{e^{-y}y^{\phi-1}}{\Gamma(\phi)} dy = \xi_2,$$

where $0 < \lambda$ and $0 < \phi$. Does this system always have a solution? If a solution exists, is it unique?

Integrals: improper double integrals

PUTNAM 1976/A.5.

In the (x, y)-plane, if R is the set of points inside and on a convex polygon, let D(x,y) be the distance from (x,y)to the nearest point of R.

(a) Show that there exist constants a, b, and c, independent of R, such that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-D(x,y)} dx dy = a + bL + cA,$$

where L is the perimeter of R and A is the area of R.

(b) Find the values of a, b, and c.

Integrals: improper integrals

NAvW 532.

by M. J. Ritter

For $(x, y, z) \in \mathbb{R}^3$, 0 < y, 1 < z, we define

$$f(x,y,z) = \frac{y^x \sin x}{zy^x + 1} .$$

For $y \neq 1$ and z > 1, the function F_y is defined by

$$F_y(z) = \int_{-\infty}^{\infty} f(x, y, z) \ dx.$$

Determine the values of y for which F_y is identically 0.

CRUX 58. by Jacques Marion

Let $f: \{z \mid \text{Re } z = 0\} \to \mathbb{R}$ be continuous and bounded. If $\mu: (z \mid \operatorname{Re} z > 0) \to \mathbb{R}$ is defined by

$$\mu(z) = \mu(x+iy) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{xf(it)}{x^2 + (y-t)^2} dt,$$

show that $f(ic) = \lim_{z \to ic} \mu(z)$.

PUTNAM 1978/A.3.

$$p(x) = 2 + 4x + 3x^2 + 5x^3 + 3x^4 + 4x^5 + 2x^6.$$

For k with 0 < k < 5, define

$$I_k = \int_0^\infty \frac{x^k}{p(x)} \, dx.$$

For which k is I_k smallest?

CRUX 273.

by M. S. Klamkin

$$\lim_{n \to \infty} \int_{c}^{\infty} \frac{(x+a)^{n-1}}{(x+b)^{n+1}} dx$$

$$= \int_{c}^{\infty} \frac{(x+a)^{-1}}{x+b} dx, \quad (a,b,c>0),$$

without interchanging the limit with the integral.

Integrals: limits

NAvW 412.

vW 412. by J. van de Lune Suppose that the function $f: \mathbb{R}^+ \to \mathbb{C}$ satisfies the following conditions:

- (1) the function f is (Lebesgue) integrable over (0,T)for every T > 0,
 - (2) there exists an $A \in \mathbb{R}$ such that

$$f(x) = O(e^{Ax}), \qquad (x \to \infty),$$

(3) $\lim_{x \to 1-} f(x) = L$, $\lim_{x \to 1+} f(x) = R$. Then prove that

$$\lim_{s \to \infty} \int_0^\infty \frac{e^{-x} x^s}{\Gamma(s+1)} f\left(\frac{x}{s}\right) dx = \frac{L+R}{2} .$$

by L. Kuipers

Let h(z) be a real-valued function, Riemann-integrable on [0,1] such that

$$\int_0^1 h(z) \, dz = 0.$$

Let (z_n) , $0 \le z_n < 1$, $n = 1, 2, \dots$, be a completely uniformly distributed sequence; that is, for any $k = 1, 2, \ldots$, and any set of k distinct positive integers q_1, q_2, \ldots, q_k , the sequence

$$(z_{n+q_1},z_{n+q_2},\ldots,z_{n+q_k}),$$

 $n = 0, 1, \ldots$, is uniformly distributed in the k-dimensional unit cube. Let g(t) be a function such that g(t) = 0 if t < 0and $g(t) = h(z_n)$ if $0 \le n \le t < n + 1$.

Let $\phi(t) = g(t)g(t+\alpha)g(t+\beta)$, where α and β are real

(a) Show that the function

$$\tilde{\phi}(t) = \lim_{N \to \infty} \frac{1}{N} \sum_{q=0}^{N-1} \phi(t+q)$$

vanishes if at least two of the integers |t|, $|t+\alpha|$, and $|t+\beta|$ are distinct.

(b) Evaluate

$$\gamma(\tau) = \lim_{N \to \infty} \frac{1}{N} \int_0^N \phi(t)\phi(t+\tau) dt$$

for
$$\tau = \frac{3}{4}$$
, $\alpha = \frac{1}{4}$, and $\beta = \frac{1}{2}$.

Integrals: multiple integrals

Problems sorted by topic

Laplace transforms

Integrals: multiple integrals

AMM 6008.

by P. B. Gilkey

For
$$\xi = (x_1, x_2, x_3) \in \mathbb{R}^3$$
, set

$$A = A(\xi) = x_1 A_1 + x_2 A_2 + x_3 A_3,$$

where

$$A_1 = \begin{pmatrix} 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix},$$

$$A_2 = \begin{pmatrix} 0 & 0 & i & 0 \\ 0 & 0 & 0 & i \\ -i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \end{pmatrix},$$

$$A_3 = \begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \end{pmatrix},$$

and let $\Gamma = \Gamma(\xi)$ be any positively oriented closed curve enclosing the eigenvalues of $A(\xi)$. Show that the integral

$$I(B) = \int_{\mathbb{R}^3} \oint_{\Gamma} \operatorname{tr} \left\{ (\lambda - A)^{-1} \left[B(\lambda - A)^{-1} \right]^3 \right\} \times \lambda \exp \left[-\lambda^2 \right] d\lambda d\xi$$

vanishes for every 4×4 matrix B.

AMM 6165. by A. G. O'Farrell

Suppose that f(x) is a real-valued function on $\mathbb{R}^n,$ and define

$$M(x,r) = \frac{\int_{|x-y| \le r} f(y) \, dy}{\int_{|x-y| < r} 1 \, dy} ,$$

for $x \in \mathbb{R}^n$, r > 0. Suppose

$$\frac{M(x,r) - f(x)}{r^2} \to 0$$

as $r \downarrow 0$ for each $x \in \mathbb{R}^n$. Must f(x) be harmonic?

AMM 6055.

by S. Zaidman

Let $u_{\alpha}(x,t)$ be the complex-valued function defined for $x \in \mathbb{R}^n, \ t \geq 0$, through the formula

$$u_{\alpha}(x,t) = (2\pi)^{-n/2}$$

$$\times \int_{s_1^2 + \dots + s_n^2 \le 1} \dots \int \exp\left(-i(x_1 s_1 + \dots + x_n s_n)\right)$$

$$\times g_{\alpha}(s_1, \dots, s_n, t) \ ds_1 \dots ds_n$$

where $g_{\alpha}(s_1, \ldots, s_n, t) = |s|^{-\alpha - 2} (1 - e^{-|s|^2 t}); |s| \le 1; t \ge 0;$ $|s| = (s_1^2 + \cdots + s_n^2)^{1/2};$ and α is a real number.

Find a number α such that

$$\lim_{t \to \infty} \int_{\mathbb{R}^n} |u_{\alpha}(x,t)|^2 dx_1 \cdots dx_n = +\infty.$$

AMM 6111.

Evaluate

by Barthel W. Huff

$$\lim_{n \to \infty} \left(-2^n \int_{-\infty}^{\infty} \left[(2\pi^3 \lambda)^{-1/2} \int_{0}^{|x|} \exp\left\{ -\frac{y^2}{2\lambda} \right\} dy \right]$$

$$\times \left[\int_{-\infty}^{\infty} \exp\left\{ -\frac{|u|^{\alpha}}{2^{n}} \right\} e^{-iux} \ du \right] \ dx \right),$$

where $0 < \alpha < 1$ and $\lambda > 0$.

Integrals: trigonometry

MENEMUI 1.1.1.*

by T. N. T. Goodman

For $n = 1, 2, 3, \ldots$, show that

$$\sum_{j=1}^{n} \int_{0}^{\pi} \left\{ \cos \left(\frac{1}{2} - \frac{2j-1}{2n} \right) (u-\pi) \right.$$

$$\cdot \sec \left(\frac{1}{2} - \frac{2j-1}{2n} \right) \pi - 1 \right\} \csc \frac{u}{2} du = 2n \log n.$$

Intervals

CMB P279. by F. S. Cater

Let F be a family of closed intervals in the real line, such that $m\left(\bigcup_{I\in F}I\right)<\infty$, where m denotes Lebesgue measure. For each number c>0, prove that there exist finitely many pairwise disjoint intervals $I_1,I_2,\ldots,I_n\in F$ such that

$$m(I_1 \cup I_2 \cup \ldots \cup I_n) > \frac{1}{2}m\left(\bigcup_{I \in F} I\right) - c.$$

AMM E2733. by Jim Fickett

Let S_i , $i=1,2,\ldots,m$, be subsets of [0,1]; each S_i is a finite union of disjoint intervals. Let $l(S_i)$ be the sum of the lengths of these intervals. Assume that $l(S_i) = \varepsilon$, $l(S_i \cap S_j) \le \varepsilon^2$, $i \ne j$, where $\varepsilon > 0$ is fixed. How large can m be?

Jacobians

AMM 6040. by Jan Mycielski

Let f be a continuously differentiable map of the unit cube I^n into the Euclidean space \mathbb{R}^n that maps the boundary of I^n into one point. Let J(f,x) be the Jacobian determinant of f at x. Prove that

$$\int_{I^n} J(f, x) \, dx = 0.$$

Laplace transforms

SIAM 76-3.*

by S. A. Rice

Determine the inverse Laplace transforms, or at least asymptotic formulas for large time t, of the following three functions:

$$\frac{I_v(x)}{I_v(y)}, \quad \frac{I_v(x)I_v(z)K_v(y)}{I_v(y)}, \quad I_v(z)K_v(x).$$

Here $I_v(x)$ and $K_v(x)$ are modified Bessel functions of the first and second kind, respectively, and $v = \sqrt{as}$, where s is the Laplace transform parameter, a is a constant, and $x \neq y \neq z$.

Problems sorted by topic Limits: factorials Laurent series

Laurent series

MM 1087.

by Barbara Turner

Let

$$\sum_{k=-\infty}^{k=+\infty} a_k z^k$$

be the Laurent series of $e^{z+1/z}$ for $0 < |z| < \infty$.

- (a) Show that each a_k is an irrational number.
- (b) Show that the set $\{a_k \mid k \geq 0\}$ is linearly dependent over the rationals.

Legendre polynomials

SIAM 79-14. by A. K. Raina and V. Singh

Let the successive maxima of $|P_{\nu}(\cos \theta)|$, considered as a function of ν ($\nu \geq 0$) for a fixed θ ($\pi/2 \geq \theta > 0$), be denoted by $m_0 = 1, m_2, m_3, \dots$ Prove or disprove that $m_0 > m_1 > m_2 > \dots$.

MM 941. by Stanley Rabinowitz

Show that each of the following expressions is equal to the nth Legendre polynomial.

(a)
$$\frac{1}{n!} \begin{vmatrix} x & 1 & 0 & 0 & \cdots & 0 \\ 1 & 3x & 2 & 0 & \cdots & 0 \\ 0 & 2 & 5x & 3 & \cdots & 0 \\ 0 & 0 & 3 & \ddots & & \vdots \\ \vdots & \vdots & \vdots & \ddots & n-1 \\ 0 & 0 & 0 & \cdots & n-1 & (2n-1)x \end{vmatrix} ;$$

$$(b) \qquad \frac{1}{n!} \begin{vmatrix} x & 1 & 0 & 0 & \cdots & 0 \\ 1 & 3x & 1 & 0 & \cdots & 0 \\ 0 & 4 & 5x & 1 & \cdots & 0 \\ 0 & 0 & 9 & \ddots & & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & 0 & 0 & \cdots & (n-1)^2 & (2n-1)x \end{vmatrix}.$$

SIAM 79-15.

by J. D. Love

Prove that for real x > 0 and nonnegative integers n,

$$\operatorname{csch} x = P_n(\operatorname{cosh} x)Q_n(\operatorname{cosh} x)$$

$$+Q_n(\cosh x)\sum_{m=0}^{n-1}P_m(\cosh x)e^{(n-m)x}$$

$$+P_n(\cosh x)\sum_{m=n+1}^{\infty}Q_m(\cosh x)e^{(n-m)x}$$

where $P_n(\cosh x)$ and $Q_n(\cosh x)$ are modified Legendre functions of the first and second kinds, respectively.

AMM 6227.

by D. M. Milošević

Prove the following inequality in which $P_n(x)$ is a Legendre polynomial:

$$\int_{-1}^{+1} \frac{1 - P_n(x)}{(1 - x)^{5/4}} \, dx < 2^{5/4} \left(\sum_{k=1}^n \frac{n}{k} \right)^{1/2}.$$

Limits: arithmetic means

by Norman Schaumberger

Assume that K_n , a set of n distinct real numbers, has a product equal to unity and a sum equal to S_n , (n = 1, 2, ...). Is it possible that $\lim_{n\to\infty} S_n/n = 1$?

Limits: binomial coefficients

MM 1055.

by Andreas N. Philippou

For 0 , find

$$\lim_{n \to \infty} \sum_{k=0}^{n} {2n+1 \choose k} p^{k} (1-p)^{2n+1-k}.$$

AMM 6252.

by Ioan Tomescu

Let

$$f(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} \binom{n}{i} \binom{n}{j} i^{n-j} j^{n-i}.$$

Show that

$$\lim_{n \to \infty} \frac{[f(n)]^{1/2n} \ln n}{n} = \frac{1}{e}.$$

Limits: elementary symmetric functions

NAvW 404.

by David W. Boyd

Given a sequence $(a_n)_{n\in\mathbb{N}}$, define

$$M_{n,k} = \left\{ \binom{n}{k}^{-1} \sigma_k \left(a_1, \dots, a_n \right) \right\}^{1/k},$$

where σ_k denotes the kth elementary symmetric function. If $(a_n)_{n\in\mathbb{N}}$ is the sequence that alternates between the two nonnegative numbers a and b, determine $\lim_{n\to\infty} M_{2n,n}$.

Limits: exponentials

CRUX 124.

by Bernard Vanbrugghe

Evaluate:

$$\lim_{x \to \infty} x \int_0^x e^{t^2 - x^2} dt.$$

Limits: factorials

M 645. by Richard S. Field, Jr. Evaluate $\lim_{n\to\infty} (n!)^{1/n} - ((n-1)!)^{1/(n-1)}$.

SSM 3791.

by John Oman

Find

$$\lim_{n \to +\infty} \frac{(n^2 + n - 1)!}{n^{2n}(n^2 - 1)!} .$$

FQ B-401.

by Gary L. Mullen

Show that

$$\lim_{n \to \infty} \left[\frac{(n!)^{2n}}{(n^2)!} \right] = 0.$$

Analysis

Limits: finite products Problems sorted by topic Limits: infinite series

Limits: finite products

MM 933. by Norman Schaumberger

Show that

$$\lim_{n \to \infty} \frac{n^2}{(1 \cdot 2^2 \cdot 3^3 \cdots n^n)^{4/n^2}} = e.$$

TYCMJ 76. by Peter A. Lindstrom

Prove that

$$\lim_{n \to \infty} \prod_{i=1}^{n} \sqrt[n]{(a_i + 1)^{a_i + 1}} = 4e^{-3/4},$$

where

$$\frac{i-1}{n} < a_i < \frac{i}{n}$$
, $(i = 1, 2, \dots, n)$.

Limits: finite sums

FUNCT 1.1.8.

The expressions

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 and $\ln n$

are not equal. But for large natural numbers n, the difference between them is quite small. Use a calculator or computer to investigate how the difference between them varies as n increases.

In fact,

AMM E2723.

$$\lim_{n\to\infty} \left(H_n - \ln n \right)$$

by Allen Moy

exists. Roughly, what is the limiting value?

For a fixed t > 0, find

$$\lim_{n \to \infty} \left(e^{-nt} \sum_{k=0}^{n-1} \frac{(nt)^k}{k!} \right).$$

FQ H-303. by Paul Bruckman

If 0 < s < 1, and n is any positive integer, let

$$H_n(s) = \sum_{k=1}^n k^{-s}, \quad \text{and} \quad$$

$$\theta_n(s) = \frac{n^{1-s}}{1-s} - H_n(s).$$

Prove that $\lim_{n\to\infty} \theta_n(s)$ exists, and find this limit.

CRUX 258. by Peter A. Lindstrom

For any rational k other than 0 and -1, find the value of the following limit:

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i^{1/k} (n^{k-1/k} + i^{k-1/k})}{n^{k+1}}.$$

AMM 6056.

by Simeon Reich

Let (a_n) be an increasing sequence of real numbers tending to infinity, and set

$$p_n(t) = \sum_{k=0}^{n} a_{n-k} \frac{t^k}{k!} .$$

Is it true that

$$\lim_{n \to \infty} e^{-a_n} \frac{p_n(a_n)}{a_n} = 0?$$

MM 928.

by Norman Schaumberger

If k is a positive integer, prove that

$$\lim_{n\to\infty}\frac{1}{n^{k+1}}\sum_{i=1}^n\cot^k(\frac{1}{j})=\frac{1}{k+1}.$$

Limits: floor function

PUTNAM 1976/B.1.

Evaluate

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(\left\lfloor \frac{2n}{k} \right\rfloor - 2 \left\lfloor \frac{n}{k} \right\rfloor \right)$$

and express your answer in the form $\log a - b$, with a and b positive integers.

Limits: functional inequalities

NAvW 426.

by J. J. A. M. Brands and M. L. J. Hautus

Prove that if $f:(0,\infty)\to\mathbb{R}$ satisfies

$$f(xy) \le y^{-1}f(x) + f(y), \quad x > 0, \quad y > 0,$$

then $\lim_{x\to\infty} f(x)$ exists.

Limits: functions

AMM 6167.

by Charles R. Williams and Joseph C. Warndof

Suppose $f: \mathbb{R}^n \to \mathbb{R}^{n-1}$, and for each point $a \in \mathbb{R}^n$, the limit

$$\lim_{x \to a} \frac{|f(x) - f(a)|}{|x - a|}$$

exists. Is f necessarily a constant function?

Limits: infinite series

NAvW 423.

by J. van de Lune

Let

$$Q_x(n) = n \sum_{k=1}^{\infty} x^k (1 - x^k)^{n-1}, \quad 0 < x < 1, \quad n \in \mathbb{N}.$$

Prove that

(a)
$$\limsup_{n\to\infty} Q_x(n) \le x^{-1} \sum_{k=-\infty}^{\infty} x^k e^{-x^k}$$
,

and

(b)
$$\liminf_{n\to\infty} Q_x(n) \ge x \sum_{k=-\infty}^{\infty} x^k e^{-x^k}$$
.

Also show that the sequence $(Q_x(n))_{n\in\mathbb{N}}$ does not converge for any $x\in(0,1)$.

Limits: integrals Problems sorted by topic Limits: sequences

Limits: integrals

PUTNAM 1979/B.2.

Let 0 < a < b. Evaluate

$$\lim_{t \to 0} \left\{ \int_0^1 [bx + a(1-x)]^t \, dx \right\}^{1/t}.$$

SIAM 78-1.*

by J. S. Lew

Let (x, y) be an arbitrary point of the Euclidean unit disc D, let a(p; x, y) denote the average l^p distance to a random disc point (u, v), and let b(p; r) denote the rotational average of this function a(p; x, y):

$$D = \{(x,y) : x^{2} + y^{2} \le 1\},$$

$$a(p; x, y) = \int \int_{D} \{|x - u|^{p} + |y - v|^{p}\}^{1/p} du dv/\pi,$$

$$b(p; r) = \int_{0}^{2\pi} a(p; r \cos \theta, r \sin \theta) d\theta/(2\pi).$$

To measure the deviation from this average, we introduce the ratio of these quantities and we consider its extrema on the disc:

$$\begin{split} c(p;x,y) &= a(p;x,y)/\left[b\left(p;\sqrt{x^2+y^2}\right)\right],\\ \lambda(p) &= \inf\left\{c(p;x,y):(x,y)\in D\right\},\\ \mu(p) &= \sup\left\{c(p;x,y):(x,y)\in D\right\}. \end{split}$$

Conjecture. $\lambda(p)\uparrow 1$ and $\mu(p)\downarrow 1$ as either $p\uparrow 2$ or $p\downarrow 2.$

Limits: logarithms

TYCMJ 51

by Joseph Rothschild

Let (a_n) and (b_n) be sequences of positive, real numbers for which

$$a = \lim_{n \to \infty} \frac{1}{n} \log a_n \ge \lim_{n \to \infty} \frac{1}{n} \log b_n > 0.$$

Prove or disprove that

$$\lim_{n \to \infty} \frac{1}{n} \log(a_n + b_n) = a.$$

Limits: sequences

AMM 6265.

by John H. Cook and David Sanders

Prove or disprove the following assertion: If $x=s_n$ is the solution to the equation

$$e^{-x}\left(1+x+\frac{1}{2}x^2+\cdots+\frac{1}{n!}x^n\right)=\frac{1}{2},$$

then $s_n - n \to 2/3$ as $n \to \infty$.

AMM E2692.

by Donald R. Woods

Show that the sequence of increasingly complex fractions

$$\frac{1}{2}, \left(\frac{1}{2}\right) / \left(\frac{3}{4}\right),$$

$$\frac{\left(\frac{1}{2}\right) / \left(\frac{3}{4}\right)}{\left(\frac{5}{6}\right) / \left(\frac{7}{8}\right)}, \frac{\left(\frac{1}{2}\right) / \left(\frac{3}{4}\right)}{\left(\frac{5}{6}\right) / \left(\frac{7}{8}\right)} / \frac{\left(\frac{9}{10}\right) / \left(\frac{11}{12}\right)}{\left(\frac{13}{14}\right) / \left(\frac{15}{16}\right)}, \dots$$

approaches a limit, and find that limit.

What can be said about the more general sequence

$$\frac{x}{x+1}, \left(\frac{x}{x+1}\right) / \left(\frac{x+2}{x+3}\right), \frac{\left(\frac{x}{x+1}\right) / \left(\frac{x+2}{x+3}\right)}{\left(\frac{x+4}{x+5}\right) / \left(\frac{x+6}{x+7}\right)}, \dots ?$$

CRUX 48.

by Léo Sauvé

Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = 2 + \sin x \cos \frac{1}{x}, \quad \text{if } x \neq 0,$$

$$f(0) = 2.$$

For each $n \geq 1$, consider the integral

$$I_n = \int_{-\frac{2}{n}}^{\frac{2}{n}} \left(n + (\frac{1}{n} - n) X_n(x) \right) f(x) dx,$$

where X_n is the characteristic function of the interval $\left[-\frac{1}{n}, \frac{1}{n}\right]$. Express I_n as a function of n and find $\lim_{n\to\infty} I_n$.

MM 958.

by Murray S. Klamkin

Give direct proofs of the following two results:

(a) If $\operatorname{Re}(z_0) > 0$ and the sequence (z_n) is defined for $n \ge 1$ by

$$z_n = \frac{1}{2} \left(z_{n-1} + \frac{A}{z_{n-1}} \right),\,$$

where A is real and positive, then $\lim_{n\to\infty} z_n = \sqrt{A}$.

(b) Suppose (x_n) is a real sequence defined for $n \ge 1$ by

$$x_n = \frac{1}{2} \left(x_{n-1} + \frac{A}{x_{n-1}} \right),$$

where A is positive. Show that if p is a given integer greater than 1, then the initial term x_0 can be chosen so that (x_n) is periodic with period p.

SSM 3698.

by Michael Brozinsky

Let a, b, c, and d, with c < d, be positive real numbers. It is known that $x = \frac{ad+bc}{a+b}$ divides the interval [c,d] in the ratio a/b (that is, (x-c)/(d-x) = a/b). Consider the sequence $\{x_n\}$ defined by the following: $x_1 = c, x_2 = d$, and $x_n = \frac{ax_{n-1}+bx_{n-2}}{a+b}$ for $n=3,4,5,\ldots$. Find $\lim_{n\to+\infty} x_n$.

SSM 3760.

by N. J. Kuenzi

It is known that if a_i is an arbitrary positive number and $a_n = \sqrt{a_{n-1}}$, n = 2, 3, ... then $\lim_{n \to +\infty} a_n = 1$. Suppose a_1 and m are arbitrary, positive numbers. Define $a_n = m\sqrt{a_{n-1}}$, n = 2, 3, ... Find $\lim_{n \to +\infty} a_n$.

Limits: trigonometry Problems sorted by topic Maclaurin series

Limits: trigonometry

AMM E2699.

by Emile Haddad and Peter Johnson

Suppose that $1 = \theta_0 > \theta_1 > \dots > \theta_k > 0$ and that

$$\sum_{i=0}^{k} a_i \cos n\theta_i \pi \to 0$$

as $n \to \infty$ through the integers.

Does it follow that $a_i = 0$ for all i?

PME 376. by Solomon W. Golomb

Let the sequence $\{a_n\}$ be defined inductively by $a_1=1$ and $a_{n+1}=\sin(\arctan a_n)$ for $n\geq 1$. Let the sequence $\{b_n\}$ be defined inductively by $b_1=1$ and $b_{n+1}=\cos(\arctan b_n)$ for $n\geq 1$. Give explicit expressions for a_n and b_n , and find $\lim_{n\to\infty} a_n$ and $\lim_{n\to\infty} b_n$.

Location of zeros: complex polynomials

AMM 6191. by Harry D. Ruderman

Let P(z) be a monic polynomial with complex coefficients, in the complex variable z. Let $P(z_1)$ and $P(z_2)$ be in opposite quadrants I and III or II and IV. Let $z_3 = (z_1 + z_2)/2$. What is an upper bound (least, if possible) on r that will guarantee that a zero of P(z) will be within a distance r from z_3 ?

AMM 6237. by Emeric Deutsch

Show that every zero z of the complex polynomial

$$f(z) = z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_{n-1} z + a_n$$

satisfies $-\beta \le \text{Re}(z) \le \alpha$, where α and β are the unique positive roots of the equations

$$x^{n} + \operatorname{Re}(a_{1})x^{n-1} - |a_{2}|x^{n-2}$$

- $|a_{3}|x^{n-3} - \dots - |a_{n-1}|x - |a_{n}| = 0$

and

$$x^{n} - \operatorname{Re}(a_{1})x^{n-1} - |a_{2}|x^{n-2}$$

- $|a_{3}|x^{n-3} - \dots - |a_{n-1}|x - |a_{n}| = 0$,

respectively.

AMM E2761. by Ron Adin

Let P(z) be a polynomial of degree at least 2 with complex coefficients, not all of them real. Prove that the equation

$$P(z)P(-z) = P(z)$$

has roots in both the upper and lower open half-planes, ${\rm Im}(z)>0$ and ${\rm Im}(z)<0$.

AMM E2801. by Louis Nirenberg, D. Kinderlehrer, and J. Spruck

Let $P_1(z)$ and $P_2(z)$ be monic polynomials with complex coefficients of degree m+k, $0 \le k < m$, such that z_1, \ldots, z_m in the upper half-plane are zeros of P_1 while $\overline{z}_1, \ldots, \overline{z}_m$ are zeros of P_2 . Show that $P_1 - P_2$ has degree greater than m-k-2.

CRUX 138.

by Jacques Marion

Let

$$p(z) = z^n + a_1 z^{n-1} + \dots + a_n$$

be a nonconstant polynomial such that |p(z)| < 1 on the circle |z| = 1. Show that p(z) has a zero on |z| = 1.

CRUX 237. by Basil C. Rennie

Suppose a closed set E in the complex plane has the property that if a polynomial has all its zeros in E then the derivative also has all its zeros in E. Must E be convex?

SPECT 8.9.

The polynomial f has complex coefficients, and all its roots have positive real parts. Show that all the roots of the derivative of f have positive real parts.

Location of zeros: complex variables

CRUX 60. by Jacques Marion

Let f be an analytic function on the closed disc B(0,R) such that |f(z)| < M, and |f(0)| = a > 0. Show that the number of zeros of f in $B(0,\frac{R}{3})$ does not exceed $\frac{1}{\log 2}\log \frac{M}{a}$.

CRUX 196. by Hippolyte Charles

Show that if $|a_i| < 2$ for $1 \le i \le n$, then the equation

$$1 + a_1 z + \dots + a_n z^n = 0$$

has no roots in the disc $|z| \leq \frac{1}{3}$. Is the converse true?

CRUX 152. by Jacques Marion

If a > e, show that the equation $e^z = az^m$ has m solutions inside the circle |z| = 1.

Location of zeros: entire functions

NAvW 498. by J. van de Lune

For any positive integer m, we define

$$f_m(z) = \sum_{n=m+1}^{\infty} \frac{z^{n-m-1}}{n!}$$
 $z \in \mathbb{C}$.

From the theory of entire functions, it follows that $f_m(z)$ has infinitely many zeros.

Prove that none of these zeros are real and that all of them have positive real parts.

Location of zeros: limits

AMM E2787. by James V. Whittaker

Show that if $k \geq 3$, then the equation $(\log x)^k = x$ for $x \geq 1$ has just two solutions r_k and s_k , where $r_k \to e$ and $s_k \to \infty$ as $k \to \infty$.

Maclaurin series

FQ H-249. by F. D. Parker

Find an explicit formula for the coefficients of the Maclaurin series for

$$\frac{b_0 + b_1 x + \dots + b_k x^k}{1 + \alpha x + \beta x^2}.$$

Maclaurin series Problems sorted by topic Maxima and minima: limits

AMM E2688.*

by David Jackson

Let $\{f_i\}$ and $\{g_i\}$, $i=0,1,2,\ldots$, be the solutions of the recurrence equation

$$u_{m+1} = -u_m - m(m+1)xu_{m-1}$$

satisfying the initial conditions $f_0 = 0$, $f_1 = 1$, $g_0 = 1$, and $g_1 = -1$, respectively. Show that the coefficient of x^{n-1} in the Maclaurin expansion of $-f_n/g_n$ is t_{2n-1} , where

$$\tan x = \sum_{n \ge 1} t_{2n-1} \frac{x^{2n-1}}{(2n-1)!} .$$

Maxima and minima: bounds

AMM E2519.

by H. L. Montgomery

Let P be a complex polynomial of degree n with P(1)=0 and P(0)=1. Show that

$$\max\{|P(z)|: |z| \le 1\} \ge 1 + \frac{1}{3n}.$$

Maxima and minima: complex numbers

AMM E2600.

by Ron Evans

Fix $r \geq 2$ and suppose that z_1 , z_2 , z_3 , and z_4 are complex numbers of modulus $\geq r$. Find the point at which

$$2 - (z_1 + z_2)(z_3 + z_4) + z_1 z_2 z_3 z_4$$

attains its minimum modulus.

Maxima and minima: constraints

MM 942.

by M. S. Klamkin

Determine the maximum value of

$$S = \sum_{1 \le i < j \le n} \left(\frac{x_i x_j}{1 - x_i} + \frac{x_i x_j}{1 - x_j} \right)$$

where $x_i \ge 0$ and $x_1 + x_2 + \cdots + x_n = 1$.

AMM 6076

by Robert L. Anderson

Given n real numbers p_1, p_2, \ldots, p_n , find a continuous function x(t) with piecewise continuous derivative x'(t) on [0, n] such that x(t) minimizes

$$L(x) = \int_{0}^{n} \sqrt{1 + [x'(t)]^2} \, dt$$

subject to the n constraints

$$\int_{i-1}^{i} x(t) dt = p_i, \qquad i = 1, 2, \dots, n.$$

Is the solution unique?

PUTNAM 1975/A.3.

Let a, b and c be constants with 0 < a < b < c. At what points of the set

$$\{x^b + y^b + z^b = 1, x \ge 0, y \ge 0, z \ge 0\}$$

in three-dimensional space \mathbb{R}^3 does the function $f(x,y,z)=x^a+y^b+z^c$ assume its maximum and minimum values?

Maxima and minima: derivatives

AMM 6173.

by Otomar Hájek

For C^2 functions $f \neq 0$ vanishing at 0 and π , consider the functional $\inf_{(0,\pi)} f''/f$ (ignore undefined values). Show that its maximum -1 is attained only by $\sin x$ and its multiples.

Maxima and minima: integrals

AMM E2707.

by Leonard Shapiro

Find $\sup \sigma(f)$ where

$$\sigma(f) = \inf_{x>0} \left\{ \frac{f(x)}{x} \int_0^x (1 - f(t)) dt \right\}$$

and f ranges over continuous functions on $[0, \infty)$. For which f (if any) is this supremum achieved?

AMM 6140.

by F. S. Cater

Let f be a continuous real-valued function on [0,1], and let E_f denote the (possibly void) set

$$\{x \in [0,1] : f'(x) \text{ exists and is finite}\}.$$

Let a(f) be the Lebesgue outer measure of $f([0,1]\backslash E_f)$,

$$m(t) = \begin{cases} f'(t), & \text{for } t \in E_f, \\ 0, & \text{otherwise.} \end{cases}$$

Let

$$b(f) = a(f) + \int_0^1 m(t) dt$$

and

$$c(f) = a(f) + \int_0^1 \left[1 + m(t)^2\right]^{1/2} dt.$$

Find max c(f) and min c(f) over all f such that b(f) = 1. Describe functions for which c(f) takes one of these values.

Maxima and minima: limits

SIAM 77-13.

by Ilia Kaufman

For $x \ge 1$, $c \ge 0$ let

$$f_c(x) = (x+c) [B(x+c|x-1) - B(x+c|x)],$$

where

$$B(y|x) = \frac{e^{-y}y^x}{\int_y^\infty e^{-t}t^x dt} .$$

The function B, or its restriction to integral values of x,

$$B(y | n) = \frac{y^{n}/n!}{\sum_{k=0}^{n} y^{k}/k!},$$

is called the first Erlang function. It is easy to prove that for any fixed value of c, $\lim_{x\to\infty} f_c(x)=2/\pi$. Determine or numerically estimate

$$\Delta = \inf_{c \ge 0} \sup_{x \ge 1} \left| f_c(x) - \frac{2}{\pi} \right|.$$

Maxima and minima: polynomials

Problems sorted by topic

Measure theory: probability measures

Maxima and minima: polynomials

PUTNAM 1975/B.3.

Let $s_k(a_1, \ldots, a_n)$ denote the kth elementary symmetric function of a_1, \ldots, a_n . With k held fixed, find the supremum (or least upper bound) M_k of

$$s_k(a_1,\ldots,a_n)/[s_1(a_1,\ldots,a_n)]^k$$

for arbitrary $n \geq k$ and arbitrary n-tuples a_1, \ldots, a_n of positive real numbers.

Maxima and minima: radicals

MM Q610.

by C. F. Pinzka

Maximize $(7+x)(11-3x)^{1/3}$.

CRUX 358. by Murray S. Klamkin

Determine the maximum of x^2y , subject to the con-

$$x + y + \sqrt{2x^2 + 2xy + 3y^2} = k$$
 (constant), $x, y \ge 0$.

CRUX 347.

by M. S. Klamkin

Determine the maximum value of

$$\sqrt[3]{4 - 3x + \sqrt{16 - 24x + 9x^2 - x^3}} \\
+ \sqrt[3]{4 - 3x - \sqrt{16 - 24x + 9x^2 - x^3}}$$

in the interval $-1 \le x \le 1$.

Maxima and minima: unit circle

MM Q662.

by M. S. Klamkin

Determine the maximum of

$$R = \frac{{{{{\left| {{z_1}{z_2} + {z_2}{z_3} + {z_3}{z_4} + {z_4}{z_5} + {z_5}{z_1}} \right|}^3}}{{{{\left| {{z_1}{z_2}{z_3} + {z_2}{z_3}{z_4} + {z_3}{z_4}{z_5} + {z_4}{z_5}{z_1} + {z_5}{z_1}{z_2}} \right|^2}}$$

where z_1 , z_2 , z_3 , z_4 , and z_5 are complex numbers of unit

Measure theory: arcs

AMM 6007. by Rollin Sandberg

Let f be a nondecreasing, continuous function from [0,a] onto [0,b] such that f' vanishes almost everywhere. Determine the length of this arc.

AMM 6074. by H. L. Montgomery

Let f be a weakly increasing continuous function defined on [0,1], with f(0)=0, f(1)=1, and let l denote the arc length of the curve (x, f(x)), $0 \le x \le 1$. Prove that $l \le 2$, with equality if and only if f'(x) = 0 almost everywhere.

Measure theory: Borel sets

AMM 6242. by Jan Mycielski

Let I be the interval [0,1], λ the Lebesgue measure in I, and μ a Borel measure in I. Suppose that $\lambda(A) = \frac{1}{2}$ implies $\mu(A) = \frac{1}{2}$ for every Borel set $A \subseteq I$. Prove that $\mu(B) = \lambda(B)$ for every Borel set $B \subseteq I$.

Measure theory: function spaces

by Lee A. Rubel

Suppose $\phi \geq 0$ is in $L^1(-\infty, \infty)$, ϕ vanishes outside of [a,b], and ϕ is strictly decreasing on [a,b]. Prove that the span of the translates of ϕ is dense in $L^1(-\infty,\infty)$.

Measure theory: geometry

AMM 6231.

by Terry R. McConnell

Let A be a subset of \mathbb{R}^2 with nonzero Lebesgue measure. Prove that A contains the vertices of a square.

Measure theory: integrals

CMB P256.

by T. Zaidman

Let (S, \mathcal{B}, m) be a measure space, $m(S) < \infty$, and let f be a bounded, measurable, real-valued function of S. For any real number t let $E_t = \{s \in S : 0 \le$ f(s) + t < 1. Prove, without using Fubini's theorem, that $\int_{-\infty}^{\infty} m(E_t) dt = m(S).$

NAvW 443.

by J. van de Lune

Let X be a set equipped with a (nonnegative) measure μ . Let $\phi: X \to [0, \infty]$ be μ -measurable. Find a necessary and sufficient condition on ϕ that guarantees the existence of a μ -measurable function $\psi: X \to [0, \infty]$ satisfying

(1)
$$\int_X \psi \, d\mu < \infty$$

and

(2)
$$\int_X \frac{\varphi}{\psi} d\mu < \infty$$

(2) $\int_X \frac{\phi}{\psi} d\mu < \infty$. (For convenience let $\frac{0}{0} = 0$ and $\frac{\infty}{\infty} = \infty$.)

Measure theory: Lebesgue outer measure

AMM E2710.

by J. A. Andrews

Call two real numbers equivalent if their difference is rational. Call $S \subset \mathbb{R}$ a choice set if S is a set of representatives of the equivalence classes in \mathbb{R} . Let \mathcal{F} be the family of all choice sets contained in [0, 1]. Show that the numbers $m^*(S)$ $(S \in \mathcal{F})$ are dense in [0,1]. (m^*) is the usual outer measure.)

Measure theory: monotone functions

AMM 6218.

by M. J. Pelling

Let S be a subset of the real line \mathbb{R} having cardinality of the continuum. Is there always a monotonic $f: \mathbb{R} \to \mathbb{R}$ such that $m^*f(S) > 0$ where m^* is outer Lebesgue measure?

AMM 6073. by George Crofts

Let f be an increasing real-valued function from [a, b]onto [c,d] and let m denote Lebesgue measure. If there is a set $E \subset [a,b]$, with m(E) = 0, for which m(f(E)) = d - c, must f be singular (i.e., f' = 0 almost everywhere)?

Measure theory: probability measures

AMM 6143.

by A. L. Macdonald

Let $\pi_1, \pi_2, \ldots, \pi_n$ be nonatomic probability measures on a set X. Prove that there are pairwise disjoint sets $B_1, B_2, \ldots, B_n \text{ with } \pi_i(B_i) \ge 1/n.$

Measure theory: uniform integrability

Problems sorted by topic

Power series

Measure theory: uniform integrability

AMM 6085

by William J. Sánchez

Call a family F of functions uniformly integrable if there exists $k(\varepsilon)$ such that

$$\int \{|f| \, d\mu : |f| > k\} < \varepsilon$$

for all $f \in F$. If there exists integrable h such that $|f| \le h$ (almost everywhere) for all $f \in F$, then F is uniformly integrable. Is the converse true?

Numerical analysis

SIAM 78-2.

by J. C. Cavendish and W. W. Meyer

For p a positive integer, let $\Phi_k(x)$ denote a (2p+1)-degree basis polynomial for (2p+1)-Hermite interpolation on $0 \le x \le 1$. That is, for $n, k = 0, 1, \ldots, p$,

$$\frac{d^n \Phi_k}{dx^n} \bigg\}_{x=0} = \begin{cases} 0, & \text{if } n \neq k, \\ 1, & \text{if } n = k, \end{cases}$$

$$\frac{d^n \Phi_k}{dx^n} \bigg\}_{x=1} = 0.$$

Establish the following two recurrence relations for any $t \in [0, 1]$:

$$t\Phi_{k-1}(t) - k\Phi_k(t) = \frac{(2p - k + 1)!}{p!(k-1)!(p - k + 1)!} t^{p+1} (1 - t)^{p+1}, \quad (0 < k \le p),$$

$$\begin{split} & \Phi_{k-1}(t) - \Phi_k'(t) = \\ & \frac{(2p-k+1)!}{p!k!(p-k+1)!} \, t^p (1-t)^p (p+1-kt), \quad (0 < k \le p). \end{split}$$

Numerical approximations

SPECT 7.8.

Use the identity

$$\frac{4}{1+t^2} = 4 - 4t^2 + 5t^4 - 4t^5 + t^6 - \frac{t^4(1-t)^4}{1+t^2}$$

to show that

$$\frac{22}{7} - \frac{1}{1260} > \pi > \frac{22}{7} - \frac{1}{630}$$
.

Partial derivatives

AMM 6018.

by Antonio Marquina

Does there exist a real-valued function f(x, y) defined at every point of \mathbb{R}^2 , satisfying the following properties?

- (i) For every point (x, y), f(x, y) is continuous.
- (ii) For every point (x,y), the two partial derivatives $D_x f$ and $D_y f$ exist.
- (iii) The function f(x,y) is not differentiable in (x,y) for every point of \mathbb{R}^2 .

Point sets

AMM E2598

by Erwin Just

Does there exist a set of rational points that is dense in the plane such that the distance between each pair of points in the set is irrational?

Power series

MM 978.

by L. Carlitz

For $\lambda > 0$, let

$$(1 - x - y + axy)^{-\lambda} = \sum_{m,n=0}^{\infty} c_{m,n}^{(\lambda)} x^m y^n.$$

Show that $c_{m,n}^{(\lambda)} \geq 0$ for all m and n if and only if $a \leq 1$.

AMM 6080.

by R. N. Hevener, Jr.

A theorem of Abel states that if

$$\sum_{n=0}^{\infty} a_n z^n$$

converges on the closed interval A, then

- (i) convergence is uniform on A, whence
- (ii) it determines a continuous function on A.

Is either part of this theorem true if A denotes a closed disc instead of an interval? If we impose the additional hypothesis, trivially satisfied in Abel's theorem, that the function be continuous on the boundary of A, is either part true?

CRUX 259.

by Jacques Sauvé

The function

$$f(x) = \sum_{n=0}^{\infty} \left(\frac{x^n}{n!}\right)^2$$

is defined for all real x. Can one express f(x) in closed form in terms of known (not necessarily elementary) functions?

AMM 6038.

by Oto Strauch

Let

$$f(x) = \sum a_i x^i$$

and

$$s_n(x) = \sum_{i \le n} a_i x^i.$$

Let $r \neq 0$ be an interior point of the interval of convergence of the power series $\sum a_i x^i$. Prove that if $s_n(r) < f(r)$ for every $n = 0, 1, 2, \ldots$, then the derivative $f'(r) \neq 0$.

NAvW 519.

by J. van de Lune

Let

$$z\frac{e^z + 1}{e^z - 1} = \sum_{n=0}^{\infty} \beta_n \frac{z^{2n}}{(2n)!}.$$

Prove that $\beta_n^2 \leq \beta_{n-1}\beta_{n+1}$ for $n \geq 2$.

FQ H-293.

by Leonard Carlitz

Show that if a set of polynomials $(f_n(x))_{n=0}^{\infty}$ satisfies

$$\sum_{n=0}^{\infty} f_{n+k}(x) \frac{z^n}{n!} = \sum_{n=0}^{\infty} f_n(x) \frac{z^n}{n!} f_k(x-z)$$

for
$$k \ge 0$$
, $f_0(x) = 1$, and $f_1(x) = 2x$, then

$$f_n(x) = H_n(x), \ n = 0, 1, 2, \dots$$

Power series Problems sorted by topic Riemann zeta function

FQ B-399.

by V. E. Hoggatt, Jr.

Let

$$f(x) = u_1 + u_2 x + u_3 x^2 + \cdots$$

and

$$g(x) = v_1 + v_2 x + v_3 x^2 + \cdots,$$

where $u_1 = u_2 = 1$, $u_3 = 2$, $u_{n+3} = u_{n+2} + u_{n+1} + u_n$, and $v_{n+3} = v_{n+2} + v_{n+1} + v_n$. Find initial values v_1 , v_2 , and v_3 so that $e^{g(x)} = f(x)$.

Pursuit problems

JRM 534. by David L. Silverman

A farmer carrying two chicks on a narrow North-South road inadvertently drops them. The slower chick runs North, the other South. The farmer, who is faster than either, wants to catch both in minimum time.

- (a) Solve the farmer's problem.
- (b) Using any tools you wish, determine which chick the farmer should chase first if his objective is to deliver them in minimum time to a town located on the road. Consider all four relative locations of the town.
- (c) Generalize (b) to the case in which the town is not situated on the road. Consider it confined to the plane of the road first, then generalize to 3-space.

JRM C5. by Travis Fletcher

Let A, B, and C denote three point-like entities, capable of motion in the plane with respective velocities in the ratio 1:2:3. At the start of a game of tag in which C is "it" A and B are together, and C is displaced from them at a distance d, which happens to be the common distance required for each of the three players to accelerate from zero to his maximum velocity. The game ends only after C has tagged both of his opponents, so it behooves A and B to separate.

Determine the evasion and pursuit history in which A and B maximize and C minimizes the time necessary to make the two tags.

PME 357. by David L. Silverman

Able, Baker, and Charlie, with respective speeds a>b>c, start at point P with Able designated "it" in a game of Tag, which terminates when Able has tagged both Baker and Charlie. At time -T, Baker heads north and Charlie south. After a count taking time T, Able starts chasing one of the two quarries. Assuming that Baker and Charlie will maintain their speeds and directions, whom should Able chase first in order to minimize the time required to make the second and final tag?

CANADA 1979/4.

A dog standing at the center of a circular arena sees a rabbit at the wall. The rabbit runs around the wall and the dog pursues it along a unique path which is determined by running at the same speed and staying on the radial line joining the center of the arena to the rabbit. Show that the dog overtakes the rabbit just as it reaches a point one-quarter of the way around the arena.

PME 401. by Zelda Katz

From a point 250 yards due north of Tom, a pig runs due east. Starting at the same time, Tom pursues the pig at a speed 4/3 that of the pig, and changes his direction so as to run toward the pig at each instant. With each running at uniform speed, how far does the pig run before being caught?

Rate problems

IMO 1979/3.

Two circles in a plane intersect. Let A be one of the points of intersection. Starting simultaneously from A two points move with constant speeds, each point traveling along its own circle in the same sense. The two points return to A simultaneously after one revolution. Prove that there is a fixed point P in the plane such that, at any time. the distances from P to the moving points are equal.

OSSMB 78-6. by J. Levitt

A man always drives his automobile at a constant speed. The points A, B, C, D are such that BC = CD = 10 km, and $\angle BCD = \pi/2$. Point A is inside angle BCD. If he travels from A to C directly in 30 min, A to C via B in 35 min, and A to C via D in 40 min, at what constant speed does he drive?

FUNCT 3.5.2.

A camera at O tracks a horse running along PQ with $OP \perp PQ$. Let s be the distance from P to Q. Let θ be the measure of $\angle POQ$. Find the value of s for which $\dot{\theta}$ is maximized, given that its velocity at P is u, and that its uniform acceleration is a.

MM 926. by Melvin F. Gardner

A swimmer can swim with speed v in still water. He is required to swim for a given length of time T in a stream whose speed is r with r < v. If he is also required to start and finish at the same point, what is the longest path (total arc length) that he can complete? Assume the path is continuous with piecewise continuous first derivatives.

JRM 796. by Peter MacDonald

A. J. Gunnet is poised at one end of Lookout Avenue, anxious to try out his super-charged racer. Three traffic lights divide the distance from A.J. to the end of the Lookout Avenue into four equal parts. Each traffic light is red for one minute and green for two minutes (no yellow light). No two lights are ever red at the same time. A.J. notices that the light farthest from him has just turned green, and the light nearest him has just turned red. He decides to wait until such time as the round trip can be made in the fastest possible time. He must maintain a constant speed throughout, and each light must be green as he goes through it. How long should he wait before embarking on his journey, and how fast can he make the round trip? Assume instantaneous acceleration at the start and instantaneous reversal at the end of the street without any loss of speed.

Riemann zeta function

AMM 6127.

by M. J. Pelling

Sum the series

$$\sum_{n=2}^{\infty} \zeta(n) \left(\frac{a}{b}\right)^n,$$

where 0 < a/b < 1 is rational.

Riemann zeta function

Problems sorted by topic

NAvW 524.

by Mihály Bencze

Let ζ be the Riemann zeta-function, and let d(n) denote the number of divisors of n.

Show that

$$\sum_{k=1}^{\infty} \left(k^{-1} d(k) \right)^s > \left(\frac{2}{\zeta \left(1 + \frac{1}{s-1} \right)} \right)^{s-1}, \quad (s > 1).$$

CRUX 440.

by Kenneth S. Williams

Find a simple elementary proof of

$$\zeta(2) = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}.$$

NAvW 444.

by J. van de Lune

Let $\zeta(s)$ denote Riemann's zeta-function. For t > 0, let I(t) be the imaginary part of $\zeta(1+it)$. Prove that I(t) has infinitely many real zeros.

Sequences: cluster points

NAvW 542. by A. A. Jagers and H. Th. Jongen

Let s be a sequence of elements of ℓ^2 of the form

$$s = (\alpha_n e_n)_{n=1}^{\infty} \,,$$

where e_1, e_2, e_3, \ldots is an orthonormal basis of ℓ^2 and $\alpha_n > 0$ for all n. Prove that 0 is a weak cluster point of s if and only if $(\alpha_n^{-1})_{n=1} \notin \ell^2$. Compare:

(1) 0 is the weak limit of a subsequence of s if and only if

$$\left(\alpha_n^{-1}\right)_{n=1}^{\infty} \notin c_0.$$

(2) 0 is a strong cluster point of s if and only if

$$\left(\alpha_n^{-1}\right)_{n=1} \notin \ell^{\infty}.$$

Sequences: complex numbers

SPECT 9.6.

- (a) Let (b_n) be a sequence of complex numbers such that $b_{n+1}-b_n\to l$ as $n\to\infty$. Show that $b_n/n\to l$ and that $|b_{n+1}|-|b_n|\to |l|$ as $n\to\infty$.
- (b) Let (a_n) be a sequence of nonzero real numbers, and put $b_n = a_{n+1}/a_n$ for $n = 1, 2, 3, \ldots$ Put

$$c_n = b_{n+1} - b_n,$$

$$c_n' = |b_{n+1}| - |b_n|.$$

Show that it is possible for c'_n to tend to zero as $n \to \infty$ but for the sequence (c_n) to diverge.

Sequences: convergence

AMM 6090.

by T. Šalát and O. Strauch

Define ϕ -convergence of a sequence $\{\gamma_n\}$ of real numbers in this way: ϕ -lim $\gamma_n = \lambda$ if and only if $\lim s_n = \lambda$, where $s_n = n^{-1} \sum_{d/n} \phi(d) \gamma_d$. (ϕ denotes Euler's totient function.) Find a sequence that is ϕ -convergent but is not convergent.

SIAM 75-14.*

by M. W. Green,

A. J. Korsak, and M. C. Pease

Sequences: monotone sequences

It has been found in practice that the following very simple (but very effective) procedure always converges for any n starting trial roots:

$$x'_{i} = \frac{x_{i} - P(x_{i})}{\prod_{j \neq i} (x_{i} - x_{j})}, \quad i = 1, 2, \dots, n,$$

where P(x) is an arbitrary (complex coefficient) monic polynomial in x of degree n. In fact, even when P(x) has multiple roots, the above procedure still converges, but only linearly (as opposed to quadratically in the distinct root case). Show that this procedure is globally convergent outside of a set of measure zero in the starting space and describe this set for n=2. Show the same result, if possible, for arbitrary

Sequences: inequalities

NAvW 492.

by J. J. A. M. Brands

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of positive real numbers with the property that

$$\frac{a_{n+1} - a_{n+2}}{a_n} \ge \frac{1}{4}$$
, $n = 1, 2, \dots$

Prove that there is a number C, such that

$$\sum_{k=1}^{n} \frac{a_{k+1} - a_{k+2}}{a_k} = \frac{1}{4}n + C + O\left(n^{-1}\right), \qquad (n \to \infty).$$

SPECT 7.3.

by B. G. Eke

The real numbers a_1, a_2, a_3, \ldots are positive, less than 1, and such that

$$a_n < \frac{1}{2} \left(a_{n-1} + a_{n+1} \right)$$

for $n=2,3,\ldots$. Show that a_n tends to a limit as n tends to infinity.

Sequences: monotone sequences

NAvW 510.

by J. van de Lune

Determine all constants c > -1 for which the sequence

$$(H_n - \log(n+c))_{n \in \mathbb{N}}$$

is strictly monotonic, where $H_n = \sum_{k=1}^n k^{-1}$.

TYCMJ 112. by Richard Johnsonbaugh

Find the least positive integer N for which

$$\frac{(n+1)^{1/(n+1)}}{n^{1/n}} \ ,$$

(n = N, N + 1, N + 2, ...), is monotonic increasing.

SPECT 9.9.

Let

$$u_n = \left(1 + \frac{1}{n}\right)^n, \quad v_n = \left(1 + \frac{1}{n}\right)^{n+1}.$$

Show that the sequence (u_n) is strictly increasing, whereas (v_n) is strictly decreasing.

Sequences: monotone sequences

Problems sorted by topic

by P. Erdős and R. E. Bixby

Let $a_1 < a_2 < a_3 \cdots$ be an increasing sequence such that $a_n = o(n^{1+\varepsilon})$ and $0 < c < d_n = a_{n+1} - a_n = o(n^{\varepsilon})$ for every $\varepsilon > 0$. Show that there exist sequences of integers n_i , m_i such that $a_{n_i}/a_{m_i} \to \infty$ and $d_{n_i}/d_{m_i} \to 1$. Show also that, if $a_n/n^k \to \infty$ for every k, then there exist integers n_i , m_i such that $a_{n_i}/a_{m_i} \to 1$ and $d_{n_i}/d_{m_i} \to \infty$.

NAvW 446. by R. J. Stroeker

For each $n = 2, 3, \ldots$, let x_n be the unique solution of the equation

$$n = \frac{x^n + x^{-n}}{x + x^{-1}}$$

in the interval (0,1). Show that the sequence $(x_n)_{n\geq 2}$ is increasing and determine

$$\lim_{n\to\infty} x_n.$$

NAvW 399.

by J. van de Lune

For $n \in \mathbb{N}$ and $s \in \mathbb{R}$, let

$$\sigma_n(s) = \sum_{k=1}^n k^s,$$

$$U_n(s) = n^{-s-1}\sigma_n(s),$$

$$L_n(s) = n^{-s-1}\sigma_{n-1}(s),$$

where $\sigma_0(s) = 0$.

Prove that if s is positive, $U_n(s)$ is decreasing in n and $L_n(s)$ is increasing in n.

NAvW 400.

by J. van de Lune

For $n \in \mathbb{N}$ and $s \in \mathbb{R}$, let

$$\sigma_n(s) = \sum_{k=1}^n k^s,$$

$$U_n(s) = n^{-s-1}\sigma_n(s),$$

$$L_n(s) = n^{-s-1}\sigma_{n-1}(s),$$

where $\sigma_0(s) = 0$.

We define

$$T_n(s) = \frac{1}{2} \{U_n(s) + L_n(s)\}.$$

Prove that $T_n(s)$ is increasing in n if 0 < s < 1 and decreasing in n if s > 1.

Sequences: pairs of sequences

TYCMJ 60. by Richard Johnsonbaugh

Assume that (x_n) and (y_n) are sequences satisfying $y_n = x_n + x_{n+1}$ and that (y_n) converges. For which values of $\varepsilon \in (0,1]$ must (x_n/n^{ε}) converge?

TYCMJ 133. by Barbara Turner

Let a, m, n > 0 and $m^2 = an^2$. Define M_k and N_k inductively as follows: $M_1 = an - m$, $M_{k+1} = aN_k - M_k$, $N_1 = m - n$, and $N_{k+1} = M_k - N_k$. Prove that the sequences (M_i) and (N_i) diverge if and only if a > 4.

Sequences: rearrangements

MM 1021.*

by Peter Ørno

Sequences: recurrences

Prove or disprove that a countably infinite set of positive real numbers with a finite nonzero cluster point can be arranged in a sequence, (a_n) , so that $((a_n)^{1/n})$ is conver-

MM 972. by Marius Solomon

Prove or disprove that the set of all positive rational numbers can be arranged in an infinite sequence, (a_n) , such that $((a_n)^{1/n})$ is convergent.

Sequences: recurrences

NAvW 407.

by M. L. J. Hautus

Let $\alpha > 0$. Consider the sequence $(x_n)_{n=0}^{N+1}$ defined by

$$x_0 = 1$$
,

$$x_{n+1} = x_n - \frac{\sqrt{x_n}}{n+\alpha}$$
, $(n = 0, 1, ..., N)$,

where N is determined by the condition

$$x_{N+1} < 0 \le x_N.$$

Show that such N exists and that

$$N \sim (e^2 - 1) \alpha, \qquad (\alpha \to \infty).$$

TYCMJ 62.

by N. J. Kuenzi

Let (x_n) be a sequence defined by the recurrence relation $x_{n+1} = x_n/(1+\frac{1}{2}x_n)$ for $n \geq 0$. For which initial values x_0 will the sequence converge to zero?

MM 1085.

by Bert Waits

Consider the polynomial

$$P(x) = x^4 - 14x^2 + x + 38.$$

Find a function $g = g(x; \varepsilon_1, \varepsilon_2)$, where ε_1 , and ε_2 are ± 1 , such that the recursive sequence $x_{n+1} = q(x_n)$ converges to a different zero of P(x) for each of the four distinct values of $(\varepsilon_1, \varepsilon_2)$.

CRUX 194.

by Steven R. Conrad

A sequence $\{a_n\}$ is defined by

$$a_1 = X$$
, $a_n = X^{a_{n-1}}$, $n = 2, 3, \dots$

where $X = \left(\frac{4}{3}\right)^{3/4}$. Discuss the convergence of the sequence and find the value of the limit, if any.

AMM E2721.

by Allen Emerson

Let $a_0, a_1 > 0$ and define $a_n, n \geq 2$, recursively by

$$a_n = \sqrt{a_{n-1}} + \sqrt{a_{n-2}}.$$

Show that (a_n) is convergent, and compute its limit.

by D. Furth

For $\alpha \in \mathbb{R}$, $x_0 \in \mathbb{R}$, let $S(\alpha, x_0)$ denote the sequence $(x_n)_{n=0}^{\infty}$, defined by

$$x_{n+1} = (\alpha - x_n)^{-1}, \qquad (n \ge 0).$$

Show that, for every $k \geq 2$, there exists an $\alpha \in \mathbb{R}$ such that $S(\alpha, x_0)$ has period \overline{k} for every x_0 (except for a finite number of values of x_0).

Sequences: tetration Problems sorted by topic Series: divergent series

Sequences: tetration

TYCMJ 41.

by Harry Schor

Let b > 0, $b_1 = b$, and $b_{k+1} = b^{b^{b_k}}$ for k = 1, 2, ...Prove that there exists a number B, such that (b_n) converges if and only if $b \leq B$.

Sequences: trigonometry

AMM E2788.

by Kwang-Nan Chow and David Protas

Let (u_n) be any sequence of real numbers such that $u_n \to \infty$ and $(\cos u_n)$ converges. Does there always exist a real number c such that $(\cos cu_n)$ diverges?

CRUX 80. by Jacques Marion

Does there exist a sequence of integers (a_n) such that $\lim_{n\to\infty} a_n = \infty$ and the sequence $\{\sin a_n x\}$ converges for all $x \in [0, 2\pi]$?

Series: arrays

FUNCT 1.5.2.

Let

$$S = X_{1,1} + X_{1,2} + \cdots + X_{1,n} + \cdots$$

be a convergent series with sum S. Construct an array where the entry $X_{i,j}$, for $i \geq 2$, and $j = 1, 2, \ldots$, in row i and column j is given by the formula $X_{i,j} = (X_{i,j-1} + X_{i-1,j})/2$. Also, $X_{i,0} = 0$ and $X_{0,j} = 0$, for $i, j = 1, 2, \ldots$ Show that each row in this array has sum S.

Series: binomial coefficients

AMM 6083.

by Emil Grosswald

Prove that for real p > 0, the following identity holds:

$$\sum_{r=1}^{\infty} \frac{p}{r(p+r)} = \sum_{r=1}^{\infty} (-1)^{r-1} \binom{p}{r} \frac{1}{r} \ .$$

What is the function represented by both sides of this identity?

Series: closed form expressions

PUTNAM 1977/A.4.

For 0 < x < 1, express

$$\sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^{n+1}}}$$

as a rational function of x.

FQ B-361.

by L. Carlitz

Show that

$$\sum_{r,s=0}^{\infty} x^r y^s u^{\min(r,s)} v^{\max(r,s)}$$

is a rational function of x, y, u, and v when these four variables are less than one in absolute value.

Series: complex numbers

CRUX 40.

by Jacques Marion

Let (a_n) be a sequence of nonzero complex numbers such that for some r > 0,

$$m \neq n \Longrightarrow |a_m - a_n| \ge r$$
.

If $u_n = \frac{1}{|a_n|^{\alpha}}$, where $\alpha > 2$, show that the series $\sum_{n=1}^{\infty} u_n$ converges. What if $\alpha = 2$?

Series: continuous functions

AMM E2626.

by Richard Johnsonbaugh

Is there a positive continuous function f on $[1, \infty)$ such

$$\sum_{n=1}^{\infty} f(n) = \infty$$

but

$$\sum_{n=1}^{\infty} a^n f(a^n) < \infty$$

for all a > 1?

Series: cubes

AMM E2791. by John W. Vogel If the series of real numbers $\sum_{n=1}^{\infty} a_n$ converges, does $\sum_{n=1}^{\infty} a_n^3$ converge?

Series: differentiable functions

MM 1060.

by Peter Ørno

Prove or disprove: There exists a function f defined on [-1,1] with f'' continuous such that $\sum_{n=1}^{\infty} f(1/n)$ converges but $\sum_{n=1}^{\infty} |f(1/n)|$ diverges.

AMM 6112. by Jan Mycielski

Let f(x) be a differentiable function such that f(0) = $0, 0 < f(x) < x \text{ for } x > 0, \text{ and } f'(0) = 1. \text{ Set } f^0(x) = x$ and $f^{n+1}(x) = f(f^n(x))$ for n = 0, 1, ... Find conditions under which the series $\sum_{n=0}^{\infty} f^n(1)$ converges (diverges).

Series: divergent series

MM 938.

by S. C. Geller and W. C. Waterhouse

Let $\sum a_n$ be an infinite series, and set $s_n = a_1 + a_2 + a_3 + a_4 + a_4$ $\cdots + a_n$. A familiar theorem of Abel says that if the a_n are positive and $\sum a_n$ diverges, then $\sum (a_n/s_n)$ also diverges. If we allow arbitrary signs, can we make $\sum a_n$ diverge to $+\infty$ while $\sum (a_n/s_n)$ converges?

AMM E2558. by A. Torchinsky

Suppose that $\sum a_n$ is a divergent series of positive terms, and let $s_n = a_1 + \cdots + a_n$ for $n = 1, 2, \dots$. For which values of p does the series $\sum a_n/s_n^p$ converge?

MATYC 112.

by Gino Fala

Prove: For all uncountable subsets $X \subset (0, +\infty)$, there exists a denumerable subset $A \subset X$, $A = \{a_1, a_2, a_3, \ldots\}$ such that $\sum_{i=1}^{\infty} a_i$ diverges.

Analysis

Series: evaluations Problems sorted by topic Series: iterated logarithms

Series: evaluations

by Emil Grosswald

Find in closed form the sum S of the conditionally convergent series

$$\sum_{n=2}^{\infty} (-1)^n n^{-1} \log n.$$

CRUX 47.

by Jacques Sauvé

For a > 1, evaluate

$$\sum_{k=1}^{\infty} \frac{k^2}{a^k}.$$

Series: exponential function

FQ H-267.

by V. E. Hoggatt, Jr.

Show that

$$S(x) = \sum_{n=0}^{\infty} \frac{(kn+1)^{n-1} x^n}{n!}$$

satisfies $S(x) = e^{xS^k(x)}$.

Series: hyperbolic functions

SIAM 76-2.

by Murray Geller

Show that

$$\sum_{n=1}^{\infty} \left(\cosh^6 n\pi\sqrt{2}\right)^{-1} = \frac{2\sqrt{2}}{15\pi} + \frac{\sqrt{2}}{15}A + \frac{\left(\sqrt{2}-1\right)}{12}A^2 + \frac{\left(5-3\sqrt{2}\right)}{120}A^3 - \frac{1}{2},$$

where

$$A = \frac{\sqrt{2}\Gamma^4(1/8)}{16\pi^2\Gamma^2(1/4)}$$

SIAM 79-8.

by Chih-Bing Ling

Show that, for a > 0,

$$\sum_{n=0}^{\infty} \frac{1}{\cosh(2n+1)a} = \sum_{n=0}^{\infty} \frac{(-1)^n}{\sinh(2n+1)a} .$$

CRUX 448.

by G. Ramanaiah

A function f is said to be an inverse point function if f(k) = f(1/k) for all k > 0. Show that the functions g and h defined below are inverse point functions:

$$g(k) = \frac{1}{k} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(1 - \operatorname{sech} \lambda_n k)}{\lambda_n^3},$$

$$h(k) = \frac{1}{k^2} \sum_{n=1}^{\infty} \frac{\lambda_n k - \tanh \lambda_n k}{\lambda_n^5},$$

where $\lambda_n = (2n-1)\pi/2$.

Series: inequalities

MM 922.

by Alan Schwartz

Let (x_n) be a sequence of nonnegative numbers satis-

$$\sum_{n=0}^{\infty} x_n x_{n+k} \le C x_k$$

for some constant C and $k=0,1,2,\ldots$. Prove that $\sum x_n$ converges. Is the result still true if $k=0,1,2,\ldots$ is replaced with k = 1, 2, ...?

Series: integrals

NAvW 406.

by P. J. de Doelder

If

$$\mathrm{Ci}(x) = -\int_{-\infty}^{\infty} t^{-1} \cos t \, dt,$$

then show that

$$\sum_{n=0}^{\infty} \operatorname{Ci}\left(\left(n + \frac{1}{2}\right)a\right) = \begin{cases} \frac{1}{2}\log 2 + \frac{1}{2}\sum_{s=1}^{k}(-1)^{s}s^{-1}, \\ 2k\pi < a < 2(k+1)\pi, & k \ge 0, \end{cases}$$

$$\frac{1}{2}\log 2 + \frac{1}{2}\sum_{s=1}^{k-1}(-1)^{s}s^{-1} + (-1)^{k}(4k)^{-1},$$

$$a = 2k\pi, \quad k = 1, 2, \dots, s$$

Series: iterated functions

TTA 6.2-2. by Jan Mycielski Considering $f^{(0)}(x) = x$ and $f^{(n+1)}(x) = f(f^{(n)}(x))$ for $n = 0, 1, \ldots$, prove the following:

(a) If
$$f(x) = \ln(1+x)$$
, then $\sum_{0}^{\infty} f^{(n)}(1) = \infty$

(b) If
$$f(x) = \frac{x}{1+x}$$
, then $\sum_{n=0}^{\infty} f^{(n)}(1) = \infty$

(a) If
$$f(x) = \ln(1+x)$$
, then $\sum_{0}^{\infty} f^{(n)}(1) = \infty$.
(b) If $f(x) = \frac{x}{1+x}$, then $\sum_{0}^{\infty} f^{(n)}(1) = \infty$.
(c) If $f(x) = \frac{x}{1+\sqrt{x}}$, then $\sum_{0}^{\infty} f^{(n)}(1) < \infty$.

Series: iterated logarithms

MM 1032.

by R. P. Boas

Let $l_1(x) = \log x$, $l_2(x) = \log \log x$, and $l_k(x) =$ $\log l_{k-1}(x)$. Let N(k) be the first integer n such that $l_k(n) > 1$. When k is fixed, the integral test shows that the series

$$\sum_{n=N(k)}^{\infty} \frac{1}{n l_1(n) l_2(n) \cdots (l_k(n))^p}$$

diverges for p = 1 and converges for p > 1. It is known that this equation is very slowly divergent if p = 1 and k (the number of logarithmic factors in the equation) is no longer fixed but depends on n, being taken as large as possible so that all the logarithms exceed 1, i.e., so that $l_k(n) > 1$ but $l_{k+1}(n) < 1$. With this choice of k = k(n), how large can p = p(k) be before the series becomes convergent? Will p = 2 or p = k suffice?

Series: monotone sequences Problems sorted by topic Weierstrass zeta function

Series: monotone sequences

CMB P265.

by P. Erdős

Let $0 < a_1 < a_2 < \cdots, \sum \frac{1}{a_n} < \infty$. Show that

$$\sum \left| \frac{n}{a_n} - \frac{n+1}{a_{n+1}} \right| < \infty.$$

Series: pairs of sequences

CRUX 209.

by L. F. Meyers

Suppose that the sequence $(a_n)_{n=1}^{\infty}$ of nonnegative real numbers converges to 0. Show that there exists a sequence $(e_n)_{n=1}^{\infty}$ each of whose terms is 1 or -1 such that

$$\sum_{n=1}^{\infty} e_n a_n$$

converges.

AMM E2591.

by Jan Mycielski

Prove that for every sequence a_1, a_2, \ldots with $\lim a_n = 0$, there exists a sequence b_1, b_2, \ldots with $b_1 \geq b_2 \geq \cdots \geq 0$ such that $\sum b_n$ diverges and $\sum a_n b_n$ converges absolutely.

Series: pairs of series

SPECT 8.3.

The real series $\sum a_n$, $\sum b_n$ are such that $\sum a_n$ is convergent, no a_n is zero, and $b_n/a_n \to 1$ as $n \to \infty$. Does the series $\sum b_n$ have to be convergent?

Series: tail series

JRM 602.

by Travis Fletcher

The sequence a_1, a_2, \ldots satisfies the equation

$$a_n = \sum_{k=n+1}^{\infty} a_k$$

for each n. Find a_9 .

Sets

NAvW 558.

by I. J. Schoenberg

Let S be the set of all $(x_1, x_2) \in \mathbb{R}^2$ such that x_1, x_2 , and 1 are arithmetically independent. Let \tilde{S} be the set of all $X = (x_1, x_2)$ such that $|X - A| \neq |X - B|$ if $A, B \in \mathbb{Z}^2$ and $A \neq B$. Prove:

- (a) The set $\mathbb{R}^2 \backslash \tilde{S}$ has measure zero.
- (b) $S \subset \tilde{S}$.
- (c) The set \tilde{S} contains no continuous arc.

Weierstrass zeta function

SIAM 78-5.

Show that

by Chih-Bing Ling

$$\begin{split} \zeta\left(\frac{1}{2}\,|\,1,i\right) &= \frac{\pi}{2}\,,\\ \zeta\left(\frac{1}{2}\,|\,1,e^{\pi i/3}\right) &= \frac{\pi}{\sqrt{3}}\,,\\ \zeta\left(\frac{1}{2}\,|\,1,\frac{e^{\pi i/6}}{\sqrt{3}}\right) &= \pi\sqrt{3}, \end{split}$$

where ζ ($z \mid 2\omega_1, 2\omega_2$) is a Weierstrass zeta function of z with double pseudo-periods $2\omega_1$ and $2\omega_2$.

Applied Mathematics

Acoustics Problems sorted by topic Navigation

Acoustics

FUNCT 1.3.6. by Andrew Fortune

If a record is played at $33^{1}/_{3}$ rpm, and three musical notes are heard, namely middle C, E, and G, what will the three notes be if

- (a) the same record is played at 45 rpm?
- (b) it is played at 78 rpm?

Astronomy

NYSMTJ 50.

An astronaut is in circular orbit around a spherical planet. If the radius of the planet is r miles, and the altitude of the orbit is a miles, express in terms of r and a the fraction of the total surface area of the planet that the astronaut can see during one complete orbit.

Demographics

MSJ 436. by Steven R. Conrad

What was the population of the United States when a man, by going from New York City to San Francisco, a distance of 3100 miles, would shift the center of population of the United States $1^{1}/4$ inches?

Electrical networks

JRM 529. by D. C. Morley

Current is made to flow between two opposite vertices of a tesseract, each of whose 32 edges is a 1-ohm resistor. What is the resistance across the tesseract?

SIAM 79-16.* by D. Singmaster

Determine the resistances R(n,i) between two nodes a distance i apart in an n-cubical network if all of the edges are of unit resistance.

AMM E2620.

by Albert Mullin and Derek Zave

Let Γ be the graph consisting of the vertices and edges of one of the five regular polyhedra. Suppose all edges of Γ are one-ohm resistors. Compute the resistance between any two of the most remote vertices of Γ .

Answer the same question when Γ is the graph of the n-dimensional cube.

FUNCT 3.4.2.

Many hallways have light switches at either end, allowing the light to be operated from each. How can the wiring be arranged to achieve this?

Engineering

ISMJ 11.1.

Suppose that a brick will support the weight of 999 bricks but will be crushed by the weight of 1000 bricks. We will build a tower whose top is a column one brick wide and $K_1(=999)$ bricks high. Supporting it is a column two bricks wide. Supposing that the weight of the 1-brick column is evenly distributed, the top bricks of the 2-brick column will not be crushed. The 2-brick column has K_2 courses, the largest possible, so the bottom bricks will not be crushed. Then we start a 3-brick column and make it as long as possible, etc. Show that for any j, K_j is within one whole number of 1000/j.

Geography

FUNCT 2.3.2.

What point on the earth's surface is farthest from the earth's center?

Meteorology

MM 1056.

by Daniel A. Moran

"Oh, drat!" exclaimed the meteorologist stormily. "I've just anchored my new rain gauge onto a cement post, and it seems to be crooked."

"What does your rain gauge look like?" asked his friend, the math student.

"It's in the shape of a circular cylinder 8 centimeters in diameter with height-markings all around its sides. Its axis is only 3 degrees off-vertical, but this will affect the amount of rain entering the top, and besides, which height-marking should I use? The water level will look tilted. I'm very discouraged about this whole business."

"Do you have any interest in measuring extremely light rains?" asked his friend.

"Not really. Anything less than a half-centimeter is too hard to measure accurately anyway, so I just record it as being a 'trace of precipitation'."

"I think I can help you," said the math student.

Tell the meteorologist how to correct the readings on his crooked rain gauge.

Navigation

JRM 375.

by R. Robinson Rowe

In World War II a destroyer miraculously survived a straddling salvo of three near misses — two fore and aft to port and the third amidship to starboard, twisting its keel and hull so that it veered to starboard, even with full left rudder. Its identity being still classified, it became known as the USS Sidewinder.

When its skipper determined that with full left rudder it circled to starboard on a long radius R, or that with full right rudder it circled to starboard on a short radius r, he computed the quickest way to reach a repair base due north. With full left rudder he sailed until he was headed NE, then switched to full right rudder, turning through a 270° loop until he was headed NW, then switched back to full left rudder. Repeating such cycles, he cruised the Sidewinder along a trochoid-like sidewinding path to safety.

Now, if r was 1 mile, what was R? And, relatively, how much longer was this path than the beeline distance to the repair base?

JRM 478.

by Ray Lipman

A swimmer is suddenly blanketed by fog in a river with straight banks. Devise a program that will teach itself a swimming procedure that assures the swimmer of attaining a bank within some fixed time specified as an input parameter

Operations research Problems sorted by topic Physics: falling bodies

Operations research

SIAM 76-7.*

by R. D. Spinetto

Suppose a company wants to locate k service centers that will service n communities and suppose that the company wants to locate these k centers in k of the communities so that the total population distance traveled by the people in the n-k communities without service centers to those communities with service centers is minimized. This problem can be set up as a 0-1 integer programming problem as follows. Let

$$x_{jj} = \begin{cases} 1, & \text{if community } j \text{ gets a service center,} \\ 0, & \text{otherwise,} \end{cases}$$

and let

$$x_{ij} = \begin{cases} 1, & \text{if community } i \text{ is to be serviced by a center} \\ & \text{in community } j, \\ 0, & \text{otherwise.} \end{cases}$$

Let p_i be the population of community i and let d_{ij} be the distance from community i to community j. The problem then is to minimize

$$\sum_{i=1}^{n} \sum_{j=1}^{n} p_i d_{ij} x_{ij},$$

subject to constraints

$$\sum_{j=1}^{n} x_{ij} = 1 \quad \text{for } i = 1, 2, 3, \dots, n;$$

$$x_{ij} - x_{jj} \le 0 \quad \text{for } i = 1, 2, 3, \dots, n, \text{ and}$$

$$\text{for } j = 1, 2, 3, \dots, n;$$

$$\sum_{i=1}^{n} x_{jj} = k,$$

and with the added condition that each of the variables x_{ii} and x_{ij} takes on only the values of 0 or 1.

- (a) What are the smallest n and k for which there exists a linear programming problem of the above form which will have only non-0-1 optimal extreme point solutions?
- (b) Can the non-0-1 extreme points of polyhedrons determined by the constraints shown above be characterized in any set theoretic way that would be useful in developing more efficient algorithms for solving this facility location problem?

Optics

CRUX 291.

by Gilbert W. Kessler

Using soap, on a mirror, please trace The apparent outline of your face; Now explain (if you're wise) Why it turns out "half size", Using geometry as your base.

MENEMUI 1.3.2.

by S. L. Lee

A certain diagram shows a cross section of a symmetrical trough with side mirrors whose base is of a fixed length a. If all the light hitting the mirror is concentrated on the base of the trough, we shall say that the system has a concentration factor of x/a. Find the minimum value of l so that the system has a concentration factor of 4. Find also the angle of inclination of the mirror for this value of l.

PARAB 304.

Prove that a ray of light, having been reflected from three mutually perpendicular mirrors in turn, becomes parallel to its original direction but in the opposite sense.

CRUX 289.

by L. F. Meyers

Let L be a straight line, and let A and B be points not on L. Let the speed of light on the side of L on which A lies be c_1 , and let the speed of light on the other side of L be c_2 . Characterize the points C on L for which the time taken for the route ACB is smallest, if

- (a) A and B are on the same side of L, (reflection);
- (b) A and B are on opposite sides of L (refraction).

Physics: cars

FUNCT 1.3.2.

A road sign shows a car with skid marks behind. The skid marks are "S" shaped but cross each other. How could a car make the skid marks as indicated on the sign?

Physics: center of gravity

NYSMTJ 53. by Walter van B. Roberts ISMJ 10.15.

Assume the center of gravity of a can full of beer is at the center of the can. As the beer is consumed, the center of gravity of the can and remaining contents begin to drop; but by the time the can is empty, the center of gravity has returned to its original position. When does the center of gravity reach its lowest point?

Physics: equilibrium

CRUX 424.

by J. Walter Lynch

Is it possible to make a convex object out of homogeneous material that will be at rest in exactly one position?

JRM 541. by Horace W. Hinkle

After the King had spitefully cut off his daughter Rapunzel's hair, her lover braided it into a rope, spliced one end to form an eyeloop, drew the other end through to form a lariat, and lassoed the conical spire of Rapunzel's tower, which offered no friction to the lariat and was just steep enough to prevent the rope from rolling or slipping. The lariat found an equilibrium and supported his weight while he climbed to Rapunzel's window. How steep was the roof?

Physics: falling bodies

FUNCT 2.4.4.

From the roof of a 300-meter building in New York, two marbles are dropped, one being released when the other has already fallen 1 mm. How far apart will they be when the first hits the ground?

Applied Mathematics

Physics: fluids Problems sorted by topic Physics: projectiles

Physics: fluids

MM 971. by Sidney Kravitz

In designing pipes and other conduits it is usually desirable to enclose the maximum cross-sectional area for a given weight of pipe. Mathematically, this may be simplified by enclosing the maximum area for a given perimeter.

Dual ducts are often used to convey fluids in two directions. They have a portion of their perimeter in common. For example, two equal squares, each of side s are placed to share a common side. The total perimeter is 7s and the total cross-sectional area is $2s^2$. Thus, the ratio of the area to the square of the perimeter is 2/49. Assume equal cross-sectional area of the two ducts.

- (a) Which regular polygon is the most efficient for use as a dual duct?
- (b) Which contour is the most efficient for use as a dual duct?

Physics: force fields

NAvW 393.

by O. Bottema

In a 4-dimensional Euclidian space with orthogonal coordinate system $OX_1X_2X_3X_4$ a force field is given such that the force \overline{F} per unit mass depends on the velocity \overline{v} as follows:

$$\overline{F} = A\overline{v},$$

where \overline{F} is the row matrix of the force components and A is the matrix

$$\begin{pmatrix} 0 & p & q & r \\ -p & 0 & -r & q \\ -q & r & 0 & -p \\ -r & -q & p & 0 \end{pmatrix}$$

for some constants p, q and r.

Determine the motion of a mass point released at a given initial point with a given initial velocity.

NAvW 403. by O. Bottema

In a plane with an orthogonal coordinate system OXY, a force field is given. The X- and Y-components of the field strength at point (x,y) are

$$F_x = p^2 y, \qquad F_y = q^2 x,$$

where p and q are positive constants. A mass point P is to be released with initial velocity zero; for which release points A will the the curve of P have an inflection point at A?

Physics: gravity

SIAM 78-17. by J. S. Lew

It is well known that if a uniform thin flexible cord is suspended freely from its endpoints in a uniform gravitational field, then the shape of the cord will be an arc of a catenary. Determine the shape of the cord if we use a very long one which requires the replacement of the uniform gravitational field approximation by the inverse square field.

Physics: particles

JRM 564.

by Sherry Nolan

Three perfectly elastic balls A, B, and C, considered as equal point-masses, are moving at constant velocities along the x-axis. At t=0, A is at x=0, C is at x=1, and B is somewhere between them. At t=1, A and B collide. At t=2, a second collision occurs and at t=3 a third. Where was B at t=0?

NAvW 461.

by O. Bottema

A particle P of mass m moves on the surface of a sphere (center O, radius R) under influence of a force $F=mk\overline{AP}$; A is a given point in space $(OA=d\neq 0)$ and k is a constant unequal to zero. Determine the motion of P.

NAvW 437. by O. Bottema

The force on a unit of mass at the point A of a plane field is directed towards the center O and equal to cr^n , where OA = r and c and n are constants. Two mass points P_1 and P_2 move, in the same direction, on different circles with center O. Has the motion of P_2 , as seen from P_1 , a permanent direction?

Physics: projectiles

AMM E2535.

by M. S. Klamkin

A body is projected in a uniform gravitational field and is subject to a resistance that is a function of its speed |v|. If the acceleration a of the body always has a constant direction, no matter what the initial velocity v_0 , show that

$$a = a_0 e^{-kt}$$

for some constant k.

CRUX 348.

by Gilbert W. Kessler

I launched a missile, airward bound; Velocity — the speed of sound; Its angle-30. Can you tell How far from here that missile fell?

PARAB 295.

by J. Scott

A man is able to throw a cricket ball 30 meters vertically upwards. What is the furthest distance he can throw it horizontally? (Ignore any air resistance.)

SPECT 7.1.

Two projectiles are fired from a point O at the same time. Describe how the direction and length of the straight line joining the projectiles vary with time during the subsequent flight. (Air resistance can be neglected.)

SPECT 7.5.

Two men stand on the edges of two cliffs, the heights of the cliffs above sea level being the same. The cliffs are separated by a deep chasm. The men point loaded pistols directly at each other (the pistols may not be of the same make), and each fires at the same moment. Show that the bullets collide.

Applied Mathematics

Physics: projectiles Problems sorted by topic Physics: tunnels

SPECT 8.2.

A projectile is fired upwards from a cliff 45 meters high at an angle of 45° to the horizontal, and lands in the sea at a distance 360 meters from the foot of the cliff. The operation is then repeated, but this time a wind of speed 2 meters/sec is blowing on shore. How does this affect the range of the projectile? With the wind blowing, could the range of the projectile be increased by altering the angle of inclination? (You may take the acceleration due to gravity to be 10 meters/sec².)

Physics: rods

NAvW 450. by O. Bottema

A train travels from A to B along a horizontal straight track OX. On the floor of one of the cars, a rod PQ is pivoted so that it may move about the fixed point P on the floor in the vertical plane OXY. The rod is under the influence of gravity. The motion of the train is arbitrary but known beforehand. It is known that there exists at least one initial position of the rod $(\angle QPX = \alpha)$ such that the rod will not fall to the floor during the entire journey. Suppose that the train is initially at rest at A; it gets an impact such that it leaves A with velocity V; it moves uniformly to B. Determine α such that the rod does not fall to the floor for any position of B.

The mass center of the rod is G, $PG = \ell$, its mass is m, its moment of inertia with respect to P is $m\rho^2$, the acceleration of gravity is g.

Physics: rolling objects

FUNCT 1.5.1. by Elijah Glenn Merlo

If you are given a hoop, a disc, and a sphere, each of uniform density and each of radius r units, and you roll them simultaneously down the slope of steepest descent of an inclined plane, which ones arrive first and last at the inclined plane's foot?

FUNCT 1.4.1. by Alisdair McAndrew

Imagine a circle rolling, without slipping, on a flat surface. At the same time, a plank rolls (without slipping) along the top of the circle. What is the ratio of the speed of the plank to the speed of the center of the circle?

Physics: solid geometry

NAvW 468. by O. Bottema

On a Cartesian frame OXYZ, with OZ vertical and upward, the paraboloid S has the equation

$$x^2 + y^2 = 2pz, \qquad p > 0.$$

A particle P moves under gravity (with acceleration g) on the smooth inner surface of S.

(a) Show that P moves between two parallel circles C_i on S, given by $z=z_1$ and $z=z_2$.

If P is on C_i , let its angular velocity about OZ be ω_i (i=1,2).

(b) Show that $\omega_1 z_1 = \omega_2 z_2$ and $\omega_1 \omega_2 = g/p$.

Physics: systems of differential equations

SIAM 79-7. by O. Hájek

The controlled harmonic oscillator $\dot{\mathbf{x}} = A\mathbf{x} + \mathbf{b}u$, $\ddot{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, has the curious property that it is controllable

for every real vector $\mathbf{b} \neq \mathbf{0}$. Determine which real square matrices A have this "super-controllability" property.

Physics: temperature

AMM S11. by R. C. Buck and E. F. Buck

A solid tetrahedron carries a continuous temperature distribution. What is the maximum number of points having the same temperature one can be sure of finding on the edges of the tetrahedron?

Physics: tunnels

PME 343. by R. Robinson Rowe

There is some interest in a fall-through tunnel under the Bering Strait. From Cape Prince of Wales on Alaska's Seward Peninsula to Mys Dezhneva (East Cape) on Siberia's Chukchi Peninsula is 51 miles. A straight tunnel 58 miles long could be driven in earth below the bed of the Strait, which is 20 fathoms deep near each shore and 24 fathoms near mid-Strait. A frictionless vehicle could "fall" through such a tunnel without motive power. How long would it take? (At latitude 66° North, the earth's radius is 3954 miles and the acceleration of gravity, $q=32.23~{\rm ft/sec^2}$.)

Algorithms Problems sorted by topic Arrays: maxima and minima

Algorithms

JRM 513.

by P. J. Flores

As their boat sinks, N crewmen are arranged in a circle and counted off by k's until only one remains, who is given the sole lifejacket. As each man is eliminated, the circle is closed up and the count is resumed. Devise an algorithm that produces the position S(k, N) of the survivor.

The diagonal sequence S(N, N) begins 1, 1, 2, 2, 2, 4, 5. Devise an algorithm to determine the smallest N such that S(N, N) = r, for any given r.

SIAM 79-17.* by W. R. Utz

Determine an algorithm, better than complete enumeration, for the following problem: Given a nonnegative integer matrix, permute the entries in each column independently so as to minimize the largest row sum.

JRM C8. by Marshall Willheit

What is the least number of BASIC commands that will print out every possible way of changing a dollar?

Arrays: 0-1 matrices

AMM E2794.*

by Robert A. Leslie

Let m, n, r, and c be positive integers with rm = cn. How many $m \times n$ matrices are there with each entry either 0 or 1 and where every row sum is r and every column sum

Arrays: binary arrays

FUNCT 2.3.1.

Two students keep a calendar of the weather as follows: Days with good weather are marked +, while days with bad weather are marked -. Each student makes three observations daily, at the same times. The first student writes - if it rains at the time of any of these observations, but otherwise he writes +. The second student writes + if the weather is fair at any of these times and — otherwise. Thus it would seem that the weather on any given day might be described as ++, +-, -+, or -- (the first symbol made by the first student, the second symbol by the second student). Are these four cases all actually possible?

SSM 3676. by Charles W. Trigg

In the following square array, select 10 elements (two from each row and each column) so as to include a nonadjacent a and b in each column and row.

How many distinct solutions are there?

Arrays: circular arrays

OSSMB 76-14.

Let any number of 0's and 1's be arranged around a circle in any order. Let a concentric copy of this arrangement be spun around on top of it through any number of positions to pair off the numbers one above the other. In some pairs a 0 faces a 0, or a 1 faces a 1. No matter what the situation, however, prove that the number of pairs in which a 0 faces a 1 is even.

FUNCT 2.2.3.

Fifty knights of King Arthur sit at a round table. Each has a goblet of red or white wine in front of him. At midnight, each passes his goblet to his right-hand neighbor if he has red wine, to his left-hand neighbor if he has white wine. Assuming that both red and white wine were at the table, prove that someone at the table will be left without wine after midnight. Is the conclusion still true if the King was also at the table?

Arrays: distinct rows

KURSCHAK 1979/3.

Letters are arranged in an $n \times n$ array so that no two rows of the array are identical. Prove that it is possible to delete one of the columns of the array so that the remaining rows will remain distinct.

Arrays: inequalities

OSSMB 77-6.

Let A denote an $m \times n$ matrix of distinct real numbers. Prove that there exists a real number x such that either each row of A contains a pair of elements that straddle x or each column contains a pair of elements that straddle x.

Arrays: Latin rectangles

AMM E2577.

by F. W. Light, Jr.

Given the $2 \times n$ Latin rectangle

find the number of ways f(k) in which a $3 \times n$ Latin rectangle can be built up from it by adding a third row starting with k, where k is one of the numbers $3, 4, \ldots, n$.

Arrays: maxima and minima

CRUX 2.

by Léo Sauvé

A rectangular array of m rows and n columns contains mn distinct real numbers. For i = 1, 2, ..., m, let s_i denote the smallest number of the *i*th row; and for j = 1, 2, ..., n, let l_i denote the largest number of the jth column. Let $A = \max(s_i)$ and $B = \min(l_i)$. Compare A and B.

I 1061. by Edward T. H. Wang In how many ways can n^2 distinct real numbers be arranged into an $n \times n$ array (a_{ij}) such that

$$\max_{j} \min_{i} a_{ij} = \min_{i} \max_{j} a_{ij}?$$

OMG 18.1.3.

The positive integers $1, 2, 3, \ldots, 25$ have been arranged very carefully into the table below:

In 120 different ways a set of 5 numbers from this table can be chosen so that a number is taken from each row and from each column. In each set of 5 there occurs a minimum number. Find the largest number which occurs as one of these minima.

Arrays: maxima and minima

Problems sorted by topic

PARAB 263.

Three hundred soldiers are positioned in 15 rows, each containing 20 soldiers. From each of the 20 columns thus formed, the shortest soldier falls out and the tallest of these 20 men proves to be Private Jones. They then resume their places on the parade ground. Next the tallest soldier in each row falls out, and the shortest of these 15 soldiers is Private Smith. Who is taller, Jones or Smith?

SIAM 75-2. by G. J. Simmons

Is it possible to form a marching column of two's with n-1 members from each of n regiments in such a way that every regiment is paired with every other regiment and no two members of the same regiment have fewer than the obvious maximum-minimum of $\lfloor (n-3)/2 \rfloor$ ranks separating them?

Arrays: symmetric arrays

AMM E2717.*

by E. Ehrhart

Find the number of symmetric 4×4 matrices whose entries are all the integers from 1 to 10 and whose row sums are all equal.

Arrays: transformations

PARAB 311.

In a classroom, there are 25 seats in a square array, each occupied by a pupil. Each pupil moves to an adjacent seat to his right, left, front or rear, or stays in his seat. Prove that at least one pupil must in fact have stayed in his

PARAB 326.

Suppose that mn boys are standing in a rectangular formation of m rows and n columns. Suppose that the boys in each row get shorter going from left to right. Suppose someone rearranges each column, independently of one another, so that going from front to back the boys get shorter. Show that the boys in each row still get shorter going left to right.

Arrays: triangular arrays

AMM E2541.

by E. T. H. Wang A Steinhaus triangle is formed as follows: Start with a row of n plus and minus signs. Under each pair of like signs, a plus sign is written and under each pair of unlike signs,

a minus sign is written. Continuing, one finally obtains a triangle of n(n+1)/2 plus and minus signs.

Prove that if the first row pattern of a Steinhaus triangle is $--+-+\cdots$ (i.e., two minuses followed by a plus), then the same pattern repeats itself when one traverses all the entries in a clockwise spiral fashion.

Card shuffles

CRUX PS5-1.

A pack of 13 distinct cards is shuffled in some particular manner and then repeatedly in exactly the same manner. What is the maximum number of shuffles required for the cards to return to their original position?

OSSMB 77-14.

A perfect shuffle of a deck of 2n cards, ordered as 1, 2, $1, 2n, \text{ yields the order } 1, n+1, 2, n+2, 3, \ldots, 2n-2,$ 2n. How many perfect shuffles will restore the deck to its original order?

PARAB 327.

If a pack of playing cards is shuffled systematically and the operation of shuffling repeated exactly, then after a certain number of repetitions of the operation, the original order of the pack will be restored. Suppose the pack is shuffled as follows: Hold the pack face down in the left hand; in the right hand, take the top half of the pack and insert it into the lower half so that each right-hand card is above the corresponding left-hand card.

Cards

- (a) After how many shuffles is a 52-card pack returned to order?
- (b) After how many shuffles is a 26-card pack returned to order?

PARAB 343.

We define a "shuffle" of a deck of N cards numbered $1, 2, \ldots, N$ to be a specific procedure for arranging them in a different order. If one systematically repeats the same shuffle of the deck enough times, it returns to its original order. What shuffle of a deck of 28 cards requires the largest number of repetitions before returning to the original order?

SPECT 11.6. by A. K. Austin

A number of cards are dealt into m not necessarily equal piles. They are then collected together and redealt into m + k piles, where k > 0. Show that there are at least k+1 cards that are in smaller piles in the second dealing than in the first.

FUNCT 2.1.1.

We have a pack of cards, an even number c of them. By a "shuffle" we shall mean that we divide the pack into a top half and a bottom half, then put the pack back together again by alternately taking one card from each half, starting with the bottom half. How many shuffles does it take for the cards to return to their original position?

Cards

TYCMJ 89. by Warren Page

Let n be a positive integer. Mark any one card in a deck of 3n playing cards. Deal the cards to the positions in an $n \times 3$ array proceeding across the first row from left to right, then similarly across the second row, and so on until the nth row of cards has been dealt. Assemble the n cards in each column into a vertical stack such that the top to bottom order in the stack corresponds to the top to bottom order in the column. Combine the stacks by sandwiching the stack containing the marked card between the other two stacks. Repeat this dealing and stacking procedure twice more. For which values of n is the final position of the marked card independent of its initial position?

PARAB 427.

The four aces, kings, queens, and jacks are taken from a pack of cards and dealt to four players. Thereupon, the bank pays \$1 for every jack held, \$3 for every queen, \$5 for every king, and \$7 for every ace. In how many ways can it happen that all four players receive equal payments (namely \$16)?

Combinatorics

Coloring problems: arcs Problems sorted by topic Compositions

Coloring problems: arcs

FQ B-415. by V. E. Hoggatt, Jr.

The circumference of a circle is partitioned into n arcs of equal length. In how many ways can one color these arcs if each arc must be red, white, or blue? Colorings that can be rotated into one another should be considered to be the same.

Coloring problems: concyclic points

CANADA 1976/8.

Each of the 36 line segments joining 9 distinct points on a circle is colored either red or blue. Suppose that each triangle determined by 3 of the 9 points contains at least one red side. Prove that there are four points such that the 6 segments connecting them are all red.

Coloring problems: graphs

AMM 6157.* by C. C. Chen and D. E. Daykin

- (a) Find integers Δ and p with the following property: Whenever the lines of the complete graph K_p are colored so that every vertex is on not more than Δ lines of each color, there is a triangle whose lines have different colors.
- (b) Find integers δ , p, and n with the following property: Whenever the lines of a complete graph K_p are colored with n colors so that every vertex is on at least δ lines of each color, there is a triangle whose lines have different colors.

Coloring problems: hexagons

TYCMJ 42. by Bernard Eisenberg

Each pair of vertices of a convex hexagon is connected with a straight line segment that is either blue or red. Among the 20 triangles, each of which is determined by three vertices, prove that at least two of the triangles consist entirely of blue segments, two consist entirely of red segments, or one triangle consists of blue segments and one consists of red segments.

Coloring problems: pennies

AMM E2527. by F. D. Hammer

- (a) A finite number of pennies are placed flat in the plane. Prove that these (nonoverlapping) pennies can be painted with at most four colors so that touching pennies bear different colors.
- (b) Prove the same result for an infinite collection of pennies in the plane.
- (c) What is the minimum number of pennies that requires four colors?

AMM E2651. by P. Erdős PARAB 387.

A finite number of pennies are placed flat on the plane so that no two overlap and no three touch each other. Prove that these pennies can be painted with at most three colors so that touching pennies bear different colors.

AMM E2745. by David Hammer

Can every collection of nonoverlapping pennies in the plane be colored with three colors so that no penny touches more than one penny with the same color?

Coloring problems: pentagons

ISMJ 11.13.

Let *ABCDE* be a convex pentagon. In how many ways is it possible to color the edges and diagonals red or blue so that no triangle determined by three vertices has all its sides the same color?

Coloring problems: points in plane

PUTNAM 1979/A.4.

Let A be a set of 2n points in the plane, no three of which are collinear. Suppose that n of them are colored red and the remaining n blue. Prove or disprove: there are n closed straight line segments, no two with a point in common, such that the endpoints of each segment are points of A having different colors.

Coloring problems: sets

TYCMJ 113. by Sidney Penner

Let S be a set of n(n+1)/2 elements and let $k = \lfloor n(n+1)/6 \rfloor$. Assume that k of the elements of S are colored red, k are colored white and k are colored blue, with one remaining element (if there is one) colored red. Show that, for n > 3, it is possible to partition S into n subsets T_m (m = 1, 2, ..., n) such that for each m,

- (a) T_m has m elements, and
- (b) the elements of T_m are all the same color.

Coloring problems: tournaments

SIAM 78-11. by N. Megiddo

We define an edge k-coloring of a tournament (i.e., a directed graph with a unique edge between every pair of vertices) to be that of coloring the edges in k colors such that every directed cycle of length n contains at least $\min(k,n)$ edges of distinct colors. Does every tournament have a three-coloring?

Coloring problems: triangles

PARAB 362.

- (a) In the morning, a working man leaves his cat in the house. The house has one door which has been left open. When the man returns in the evening, the cat is outside. Prove that the cat crossed the threshold an odd number of times.
- (b) A triangle ABC is the union of a finite family, F, of triangles. If two different triangles in F intersect, they intersect in a vertex of both or an edge of both. Color each of the vertices of the triangles in F red, blue, or yellow. Color A red, B blue, and C yellow. If a vertex V lies on AB, color it red or blue; if V lies on BC, color it blue or yellow; and if V lies on CA, color it red or yellow. Prove that the number of triangles in F which have one red, one blue, and one yellow vertex is odd.

Compositions

PARAB 408.

The number 3 can be expressed as the sum of one or more positive integers in 4 ways: 3, 2+1, 1+2, and 1+1+1. Note that the ordering of the summands is significant; 1+2 is counted as well as 2+1. Find a formula for the number of ways in which an arbitrary positive integer n can be so expressed as a sum of positive integers.

Compositions Problems sorted by topic Configurations: committees

AMM S20.

by A. P. Hillman

Let n be a nonnegative integer, and let S consist of all ordered quintuples $Q=(x_1,x_2,x_3,x_4,x_5)$ of nonnegative integers x_i with $x_1+x_2+x_3+x_4+x_5=n$. Prove or disprove that there are exactly the same number of Q in S with $x_2 \leq x_3 \leq x_4 \leq x_5$ as there are satisfying the simultaneous conditions

$$x_1 \le x_2 \le x_4,$$

 $x_1 \le x_3 \le x_4,$
 $x_3 \le x_5.$

MM 1026.

by Michael Capobianco

A decomposition of a positive integer n is an ordered tuple (n_1, n_2, \ldots, n_k) of positive integers such that $\sum_{i=1}^k n_i = n$. Find the total number of decompositions of n that are palindromes.

Configurations: chains

PARAB 267.

A chain has 2047 links in it. It is to be separated into a number of pieces by cutting and disengaging appropriate links, in such a way that any number of links (from 1 to 2047) may be gathered together from the parts of chain thus produced. What is the smallest number of links which must be cut to achieve this?

Configurations: circular arrays

JRM 729. by Frank Rubin

A blind man keeps his keys on a circular key ring. There are s distinct handle shapes that he can tell apart by feel, and he can purchase any key with any desired handle shape. Assume that all keys are symmetrical so that a rotation of the key ring about an axis in its plane is undetectable from examination of a single key. How many keys can he keep on the ring and still be able to select the proper key by feel?

PARAB 266.

At the mad hatter's afternoon tea party, there are twenty seats numbered consecutively clockwise around a circular table with 4 neighboring ones with red cushions (1, 2, 3, and 4) being initially occupied by Alice, the mad hatter, the march hare, and the dormouse respectively. Instead of all moving round one seat at a time (as in the classical story), the members of the party move quite independently as the fancy takes them, but always to an unoccupied seat 7 places away in either direction. Even the dormouse proves to be wakeful enough to carry out this complicated maneuver several times.

At a later time, it turns out that they are again sitting next to one another on the same red-upholstered chairs (1, 2, 3, and 4), though none is in the same place as initially. How many possible seating arrangements are there at the finish and what are they?

PARAB 406.

Given n beads numbered $1, 2, 3, \ldots, n$, show how you can make a single-strand closed necklace from them with the property that the numbers on adjacent beads always differ by either 1 or 2.

CANADA 1975/6. OSSMB 77-7.

- (a) Fifteen chairs are equally placed around a circular table on which are name cards for 15 guests. The guests fail to notice these cards until after they have sat down and it turns out that no one is sitting in front of his own card. Prove that the table can be rotated so that at least two of the guests are simultaneously correctly seated.
- (b) Give an example of an arrangement in which just one of the 15 guests is correctly seated and for which no rotation correctly places more than one person.

Configurations: committees

USA 1979/5.

A certain organization has n members, and it has n+1 three-member committees, no two of which have identical membership. Prove that there are two committees which share exactly one member.

JRM C4. by David L. Silverman

A certain corporation issues shares only in integer amounts, and every shareholder is a director. On every "yea-nay" question that comes before the Board, each director's vote is weighted according to the number of shares he holds. Among the corporate bylaws are two that govern the various numbers of shares held by the directors.

- (1) No tie vote must be possible (unless all directors abstain).
- (2) No group of directors must be capable of being outvoted by a smaller group.

Given N directors, let S(N) represent the minimum total number of shares consistent with bylaws (1) and (2). Listed below are the values for S for N=1 through 5, together with the share allocations that result in these values of S:

N	S(N)	Share Allocation
1	1	1
2	3	1, 2
3	9	2, 3, 4
4	21	3, 5, 6, 7
5	51	6, 9, 11, 12, 13

The allocations are unique, though they may not be so for larger values of N. By the time one gets to the case N=6, however, one is likely to find pencil and paper analysis formidable. Write a program that will list S(N) for N up to 10 as well as all share allocations that total S(N) without violating either of the two bylaws.

SIAM 78-9.* by W. Aiello and T. V. Narayana

Suppose we assign positive integer weights x_1, \ldots, x_n to the vote of each member of a board of directors that consists of n members so that the following conditions apply:

- (1) Different subsets of the board always have different total weights so that there are no ties in voting (tie-avoiding).
- (2) Any subset of size k will always have more weight than any subset of size k-1 ($k=1,\ldots,n$) so that any majority carries the vote, abstentions allowed (nondistorting).

Find a solution (x_1, \ldots, x_n) such that no other solution (y_1, \ldots, y_n) exists with $x_i \geq y_i$ for $i = 1, \ldots, n$.

Combinatorics

Configurations: concyclic points Problems sorted by topic Counting problems: geometric figures

Configurations: concyclic points

CRUX 354. by Sidney Penner NYSMTJ 81. by Sidney Penner

Along a circular road there are n identical parked automobiles. The total amount of gas in all of the vehicles is enough for only one of them to travel the whole circular road. Prove that at least one of these cars could travel the entire road, taking on gas along the way from the other n-1 vehicles

Configurations: couples

OMG 18.2.1.

At a dance there are 50 men and 38 women. How many different couples could appear on the dance floor? How many couples could appear if there are three men such that two certain women refuse to dance with any in that set of three men?

Configurations: digital displays

PENT 302. by Randall J. Covill

Consider the following digital display problem. A character is a set of parallel and/or perpendicular non-intersecting line segments of constant length. If a character has height, the height is equal to a constant whole number of line segments. If a character has width, the width is equal to a different constant whole number of line segments. If any segment or subset of segments can be either displayed or not displayed, what is the minimum number of segments necessary to represent all ten digits 0 to 9?

Configurations: maxima and minima

ISMJ 13.22.

A box is locked with several padlocks, all of which must be opened to open the box and all of which have different keys. Five people each have keys to some of the locks. No two of the five can open the box but any three of them can. What is the smallest number of locks with which this can be done?

PARAB 372.

After the first day of classes, each of 5 different students knows a different bit of gossip about the teachers in their school. When they get to their separate homes, the telephoning begins. Assume that whenever anyone calls anyone else, each tells the other all the gossip he knows. What is the smallest number of calls after which it is possible for every student to know all 5 bits of gossip?

Configurations: money problems

OMG 15.3.2

In how many ways is it possible to make up 28 cents using coins worth 1 cent, 5 cents, 10 cents, and 15 cents?

Configurations: people

SSM 3579. by Stanley E. Payne

Fifty-six graduate assistants are to be split into eight seminars, with seven assistants in each seminar and with each grouping to be maintained for one month. Although the school year consists of nine months, a little time lost here and there during the year renders eight distinct groupings sufficient. The problem is, then, to group the assistants in eight distinct ways so as never to have two assistants in a seminar together more than once. Show that this is possible.

CRUX 263.

by Sahib Ram Mandan

Ten friends, identified by the digits $0, 1, \ldots, 9$, form a lunch club. Each day four of them meet and have lunch together. Describe minimal sets of lunches ijkl such that

- (i) every two of the friends lunch together an equal number of times;
 - (ii) every three of them lunch together just once;
 - (iii) every four of them lunch together just once.

USA 1978/5.

Nine mathematicians meet at an international conference and discover that among any three of them, at least two speak a common language. If each of the mathematicians can speak at most three languages, prove that there are at least three of the mathematicians who can speak the same language.

PARAB 313.

The King's men have captured a band of outlaws with an odd number of men. The rangers demand to know which ones shot the King's deer. The outlaws in panic each point to the nearest man. Prove that at least one man will not be accused. (Assume that no two pairs of outlaws are the same distance apart.)

Counting problems: geometric figures

AMM 6179.

by E. Ehrhart

Find all cubes in a cubic lattice whose vertices are lattice points.

MM 939.

by Richard A. Gibbs

Consider an $n \times n \times n$ cube consisting of n^3 unit cubes. Using only the unit cubes, determine, in terms of n:

- (a) the number of possible sizes of rectangular parallelepipeds "imbedded" in the cube,
- (b) the number of cubes of all sizes "imbedded" in the cube, and
- (c) the number of rectangular parallelepipeds of all sizes "imbedded" in the cube.

PARAB 296.

A parallelepiped is a solid figure with six faces, each of which is a parallelogram. You are given four points, A, B, C, D, in space not all lying in the same plane. How many parallelepipeds exist with A, B, C, D included amongst the eight vertices?

CRUX 286. by Richard A. Gibbs

Find, for positive integers $W \leq L \leq H$:

- (a) the number of rectangular parallelepipeds,
- (b) the number of cubes,
- (c) the number of different sizes of rectangular parallelepipeds imbedded in a $W \times L \times H$ rectangular parallelepiped made up of WLH unit cubes.

CRUX 204. by R. Robinson Rowe

A sheet of coordinate paper is 80 spaces wide by 100 spaces long with 8,000 small squares.

- (a) Including larger ones, how many squares are there?
- (b) How many oblongs (nonsquare rectangles) are there?

Counting problems: geometric figures

Problems sorted by topic

Counting problems: paths

SSM 3655.

by Herta T. Freitag

The total sum of the areas of all squares of an $n \times n$ checkerboard is 1 for n=1, 8 for n=2, and 34 for n=3. Obtain a formula for the total area of all possible squares on an $n \times n$ checkerboard.

CRUX 19. by H. G. Dworschak

How many different triangles can be formed from n straight rods of lengths $1, 2, 3, \ldots, n$ units?

ISMJ J11.20.

How many triangles are there whose vertices are vertices of a given cube?

MM 1001. by Edward T. Wang

Find a formula for the number of parallelograms contained in an equilateral triangular lattice of side n.

SSM 3704. by Herta T. Freitag

Find a formula for the number of rhombuses contained in an equilateral triangular lattice of side n.

MM 975.

SSM 3746.

by Charles L. Hamberg and Thomas M. Green by Michael Brozinsky

Find a formula for the number of regular hexagons contained in an equilateral triangular lattice of side n.

Counting problems: jukeboxes

CRUX 280.

by L. F. Meyers

A jukebox has N buttons.

- (a) If the set of N buttons is subdivided into disjoint subsets, and a customer is required to press exactly one button from each subset in order to make a selection, what is the distribution of buttons which gives the maximum possible number of different selections?
- (b) What choice of n will allow the greatest number of selections if a customer, in making a selection, may press any n distinct buttons out of the N? How many selections are possible then?

Counting problems: ordered pairs

FQ B-332.

by Philip Mana

Let a(n) be the number of ordered pairs of integers (r,s) with both $0 \le r \le s$ and 2r+s=n. Find the generating function

$$A(x) = a(0) + xa(1) + x^{2}a(2) + \cdots$$

Counting problems: paths

CANADA 1977/7. OMG 16.2.7.

A rectangular city is exactly m blocks long and n blocks wide. A woman lives in the southwest corner of the city and works in the northeast corner. She walks to work each day but, on any given trip, she makes sure that her path does not include any intersection twice. Show that the number f(m,n) of different paths she can take to work satisfies $f(m,n) \leq 2^{mn}$.

CANADA 1979/5.

A walk consists of a sequence of steps of length 1 taken in directions north, south, east or west. A walk is self-avoiding if it never passes through the same point twice. Let f(n) denote the number of n-step self-avoiding walks which begin at the origin. Compute f(1), f(2), f(3), f(4) and show that

$$2^n < f(n) \le 4 \cdot 3^{n-1}.$$

AUSTRALIA 1979/3. IMO 1979/6.

Let A and E be opposite vertices of a regular octagon. A frog starts jumping at vertex A. From any vertex of the octagon except E, it may jump to either of the two adjacent vertices. When it reaches vertex E, the frog stops and stays there. Let a_n be the number of distinct paths of exactly n jumps ending at E. Prove that $a_{2n-1}=0$, $a_{2n}=\frac{1}{\sqrt{2}}(x^{n-1}-y^{n-1}), n=1,2,3,\ldots$, where $x=2+\sqrt{2}$ and $y=2-\sqrt{2}$.

OMG 16.1.1.

If movement is allowed only in the direction of the arrows in a certain diagram, find the number of paths from A to B.

SIAM 75-1. by R. W. Allen

An optical fiber carries power in two modes represented by 0 and 1. The path of one photon is represented by an N-bit binary number. The sequence 0 1 or 1 0 is counted as one transition. Thus the path 1 0 0 0 1 1 1 contains two transitions and three zeros. Determine the number of paths S(N,T,M) that contain T transitions and M zeros. Prove whether or not the following formula is valid for all N:

$$S(N,T,M) = 2H(N,T)\binom{M-1}{U}\binom{N-M-1}{U},$$

where

$$H(2N,T) = \frac{\binom{N-1}{V}}{\binom{N-1}{U}},$$

$$H(2N+1,T) = \frac{\binom{2N}{2V}}{\binom{2N}{T-1}},$$

and

$$U = \left\lfloor \frac{T-1}{2} \right\rfloor, \qquad V = \left\lfloor \frac{T}{2} \right\rfloor.$$

AMM E2608.

by Judith Q. Longyear

A child is riding in a train n cars long and wishes to go exploring. An exploration may be described by listing in order the cars traversed; each exploration must end in the same car in which it began. How many explorations of length k can it make?

Suppose we regard the exploration

$$(e_1, e_2, \ldots, e_k)$$

to be equivalent with all explorations

$$(e_r, e_{r+1}, \dots, e_k, e_1, \dots, e_{r-1})$$

 $(r=2,\ldots,k)$. How many nonequivalent explorations can it make?

Counting problems: sequences

Problems sorted by topic

Geometry: points in plane

Counting problems: sequences

MM 989. by L. Carlitz and Richard Scoville

Let $r \geq 0$, $s \geq 0$, and $r + s \leq n$. Find the number of sequences of positive integers (a_1, a_2, \ldots, a_n) such that for $1 \leq k \leq n$, $a_k \leq k$ where $a_k = 1$ for r values of k, and $a_k = k$ for s values of k.

OSSMB 76-3.

The numbers $1, 2, \ldots, n$ are placed in a row so that, except for an arbitrary choice of first number, the number k can be placed in the row only if it is preceded either by k-1 or k+1 (not necessarily immediately). How many such arrangements are there for the numbers $1, 2, \ldots, n$?

Counting problems: subsets

OSSMB 75-9.

Counting the empty set, how many subsets of the set $\{1, 2, ..., n\}$ do not contain a pair of consecutive numbers?

AMM E2521.* by John A. Cross

An instructor has a file of p questions of equal diagnostic value in testing students on a certain topic. He gives q-question tests repeatedly (q < p). How many test forms can he compose if any n-size subset, $1 \le n < q$, of the p questions may appear on at most two tests, and no subset of size m > n may appear on more than one test? Determine an algorithm for composing the set of possible tests, for any allowable p, q, and n.

OSSMB 78-5.

The Fibonacci sequence $\{F_n\}$ satisfies

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

for all n. A sequence $\{b_n\}$ is defined by requiring that b_n is the number of subsets of $\{1, 2, ..., n\}$ having the property that any two different elements of the subset differ by more than 1. Find a similar formula for the sequence $\{b_n\}$.

AMM E2764.

by Ioan Tomescu

Let X be a finite set. Prove that

$$\sum |A_1 \cup A_2 \cup \dots \cup A_k|$$

$$= (2^k - 1) \sum |A_1 \cap A_2 \cap \dots \cap A_k|,$$

where the sums are over all choices of $A_1, \ldots, A_k \subseteq X$.

Counting problems: tournaments

PARAB 264.

In the 1974 cricket XI, there were 7 boys who had been in the 1973 XI; and in the 1973 XI, there were 8 boys who had been in the 1972 XI. What is the least number who have been in all three XI's?

Answer the same question with x instead of 7 and y instead of 8. For what values of x and y is it possible that there were no boys in all three XI's?

Counting problems: words

CRUX 433. by Dan Sokolowsky

An exam question asked: How many distinct 5-letter words can be formed using the letters A, A, A, B, B, B?

A student misread the question and determined instead the number of distinct 6-letter words using these same letters, yet obtained the correct answer. Was this accidental or is it a special case of a more general pattern?

PARAB 341.

A certain tribe of early men had an alphabet consisting of two letters A and B. They also had the rule that, in any word, ABA was equivalent to B (that is, each could replace the other in the word and the word was considered to be the same); and the rule that BAB was equivalent to A.

- (a) How many different words could be represented?
- (b) Find two other ways of writing down the name of the Swedish pop group ABBA.

Distribution problems

PARAB 322.

Suppose there were 250,000 people in Sydney in 1968 who made between \$8,000 and \$9,000. Show that there were at least 3 people who made the same salary down to the last cent.

Geometry: coloring problems

IMO 1979/2.

AUSTRALIA 1979/1.

Consider a given prism with pentagons $A_1A_2A_3A_4A_5$ and $B_1B_2B_3B_4B_5$ as top and bottom faces. Each side of the two pentagons and each of the line segments A_iB_j , for all $i,j=1,\ldots,5$, is colored either red or green. Every triangle whose vertices are vertices of the prism and whose sides have all been colored has two sides of a different color. Show that all 10 sides of the top and bottom faces are the same color.

Geometry: concyclic points

TYCMJ 33. by Norman Schaumberger

Let P be any point on a circle. Prove that the four distances from P to the vertices of a square inscribed in the circle cannot all be rational.

TYCMJ 105. by Norman Schaumberger

Let n > 1 be odd and $\{A_1, A_2, \ldots, A_n\}$ be a set of n points on a circle such that the lengths of the chords $A_i A_{i+1}$ $(i = 1, 2, \ldots, n; A_{n+1} = A_1)$ are all equal. Is it possible that three of these points are rational?

ISMJ 13.27.

Show that if 5 points are located on a circle so that every 3 of them lie on a semicircle, then all 5 of them are on a semicircle.

Geometry: dissection problems

OSSMB 79-14.

A convex n-gon is a plane figure with n sides such that a straight line joining any two points on different sides lies inside the figure. For what values of n can the figure be divided into black and white triangles so that all of the sides are edges of black triangles and no two triangles of the same color share an edge? (Note that points are added in the interior.)

Geometry: points in plane

ISMJ 10.14.

Suppose that n points are located in the plane so that the maximum distance apart of any two of them is 1. Prove that there are not more than n pairs of points whose distance apart is 1 and that the n points can be located so that there are n pairs whose distance apart is 1.

Geometry: points in plane

Problems sorted by topic

AMM 6034. by Fred Galvin

Suppose the edges of the complete graph on n vertices are colored so that no color is used more than k times.

(a) If $n \ge k + 2$, show that there is a triangle no two of whose edges are the same color.

(b) Show that this is not necessarily so if n = k + 1.

Graph theory: directed graphs

Geometry: points in space

PARAB 402.

AMM E2593.

subsets.

AMM 6130.

Consider 5 points in space such that each pair is not more than 1 cm apart. What is the greatest number of pairs which can be exactly 1 cm apart?

Prove that there exists a partition of the rational points

of the plane into an infinite number of everywhere dense

subsets such that each straight line containing two rational

points will have a nonempty intersection with each of the

by Jeanne W. Kerr and John E. Wetzel

by Erwin Just and Eugene Levine

Three points are given on each of three parallel lines, the three lines not all lying in the same plane. These points by threes, one on each line, determine 27 triangular plates, and these triangular plates could, on the face of it, meet to determine as many as $\binom{27}{3} = 2925$ points, though it is clear that not that many can actually occur. At most how many points can the 27 plates determine?

Graph theory: bipartite graphs

AMM E2565. by T. Nemetz

Given a bipartite graph on n and 2n vertices that is regular on either set (of degree 2k and k, respectively), can one necessarily find n vertices of the second kind such that upon their removal along with all arcs containing them the remaining graph is regular of degree k?

CMB P268.* by P. Erdős and E. C. Milner

A graph G=(V,E) is said to be realized if there is a family of sets $\{A_x \mid x \in V\}$ associated with the vertices of G such that $A_x \subset \{0,1,2\ldots\}$ and such that $\{x,y\}$ is an edge of G if and only if $A_x \cap A_y = \varnothing$. It is easy to see that any realizable graph has chromatic number that is not larger than \aleph_0 . Is it true that any bipartite graph on 2^{\aleph_0} vertices is realizable?

AMM 6079. by D. J. Kleitman

Given a bipartite graph connecting n vertices with n others. If the symmetry group of the graph is transitive on both parts of the graph, must it be transitive on the whole graph?

Graph theory: complete graphs

AMM E2562. by N. C. K. Phillips

Each of the $\binom{m}{2}$ edges of the complete graph on m vertices is assigned a direction and one of n colors in such a way that there is no monochromatic directed path \overrightarrow{AB} , \overrightarrow{BC} of length 2. How large can m be in terms of n?

AMM E2672. by Marianne Gardner

Each of the $\binom{m}{2}$ edges of the complete graph K_m is assigned a direction, and each vertex is assigned one of n colors in such a way that there is no directed path of length k, k < m, whose vertices are all of the same color. How large can m be in terms of n and k?

Graph theory: counting problems

JRM 421. by Mary Youngquist

Find all connected, topologically distinct, spatial arrangements of three C's and six O's, in which exactly four bonds (kinks, paths) emanate from each C and two from each O.

Graph theory: covering problems

AMM E2549. by David Singmaster

Let G be a connected graph with 2k vertices of odd degree. It is well known that G can be covered by a k-part Euler path, i.e., a union of k edge-disjoint paths having no repeated edges. When can G be covered by a single path with at most k-1 repeated edges?

AMM E2564. by R. L. Graham

Can one cover the vertices of any regular graph of degree four (every vertex in it has degree four) by disjoint arcs and stars?

Graph theory: directed graphs

ISMJ 13 18

We are given a finite set S of points. From each point of S an arrow is drawn connecting it to some other point of S. Show that the points of S can be colored with three colors so that no two points of the same color are joined by an arrow.

PARAB 308.

Seven towns T_1, T_2, \ldots, T_7 are connected by a network of 21 one-way roads such that exactly one road runs directly between any 2 towns. Given any pair of towns T_i, T_j $(1 \le i < j \le 7)$, there is a third town, T_k , such that T_k can be reached by a direct route from both T_i and T_j .

(a) Prove that, of the 6 roads with an end at any town T_i , the number in which traffic is directed away from T_i is at least 3. Hence prove that it is exactly 3.

(b) Let the towns that can be reached directly from T_1 be numbered T_2 , T_3 , T_4 . Show that the roads between T_2 , T_3 , T_4 form a circuit.

(c) Display on a sketch a possible orientation of traffic on the 21 roads.

NAvW 453. by J. H. van Lint

Let us call a directed graph "of type k" if, for any two (not necessarily distinct) vertices P and Q of the graph, there is exactly one path of length at most k from P to Q. Prove that if k > 2, a graph of type k is a circuit with k points.

ISMJ 13.23.

Let P_1, P_2, P_3, \ldots be an infinite set of distinct points. From some of these points P_n , two arrows go out and join P_n to P_m and P_ℓ where $n < m < \ell$. From others of the P_n , no arrows go out. (For example, we could have arrows from P_n to P_{2n} and P_{3n} when n is odd and no arrows otherwise.) A point P_n is called reachable if there is a path starting from P_1 that consists of arrows and gets to P_n .

(a) How many points with subscripts not exceeding 100 are reachable in this example?

(b) Assume that there are infinitely many reachable points. Show that there exists an infinitely long path that starts from P_1 and that consists entirely of arrows.

Graph theory: family trees

Problems sorted by topic

Josephus problem

Graph theory: family trees

SSM 3630.

by Charles W. Trigg

A man announced that he was one-third Cherokee. How do you arrange the branches on his family tree?

Graph theory: friends and strangers

PARAB 439.

Given any two people, we may classify them as friends, enemies, or strangers. Prove that at a gathering of seventeen people, there must be either (a) three mutual friends, (b) three mutual enemies, or (c) three mutual strangers.

PARAB 391.

Each of three classes has n students. Each student knows altogether (n+1) students in the other two classes. Prove that it is possible to select one student from each class so that all three know one another. (Acquaintances are always mutual.)

PENT 315. by H. Laurence Ridge

Four married couples meet for dinner. There is some shaking of hands. No one shakes hands more than once with the same person. Spouses do not shake hands.

When the hand shaking is finished, one husband asks all of the other people how many times they shook hands. Everyone gives a different answer. How many times did the questioner's wife shake hands?

Prove that, of all the teenagers in the world, at least two have the same number of teenage friends.

PARAB 278.

At a party, the guests are lined up so that each person (with the exception of the two at the ends) is acquainted with exactly as many people to his right as to his left. Show that the first and last person have the same number of acquaintances.

Graph theory: isomorphic graphs

by A. M. Cohen and A. A. Jagers

Let G and H be graphs. Choose two vertices i and jof G, and for each vertex k adjacent to j ($k \neq i$), delete the edge between k and i (resp. place an edge between kand i) whenever k and i are adjacent (resp. nonadjacent) in G. The result is a new graph denoted by $\pi_{ij}(G)$. If a graph isomorphic to H can be obtained from G by repeated application of operations of the form π_{ij} , then H is called a conjugate of G; notation $H \sim G$. Clearly \sim is an equivalence relation. Now for any graph K, let n(K) be the number of vertices of K and let m(K) be the number of edges in a maximal matching of K. Denote by r(K) the rank of the adjacency matrix of K over \mathbb{Z}_2 . Then prove that

(a) $(H \sim G) \iff (n(H) = N(G) \text{ and } r(H) = r(G)),$

(b) $\dot{r}(T) = 2m(T)$ if \dot{r} is a tree.

AMM 6037. by Jim Lawrence

Show that any graph H is isomorphic to an induced subgraph of some finite graph H' which has a group of automorphisms that acts transitively on its vertices.

by M. R. Best

Determine all graphs (without loops or multiple edges) whose complement and line graph are isomorphic.

NAvW 495. by J. I. Hall

Determine all finite graphs (loops and multiple edges allowed) that are isomorphic to their line graphs.

Graph theory: map problems

AMM 6182.

by A. K. Austin

Prove or disprove that any finite planar graph can be represented by a map in which all the regions are L-shaped with sides horizontal and vertical.

Graph theory: maxima and minima

NAvW 487.

by H. C. A. van Tilborg

Let Γ be a De Bruijn graph on 2^n points, i.e., a directed graph with vertices labeled by elements of $\{0,1\}^n$ with a directed edge from (a_1, a_2, \ldots, a_n) to (b_1, b_2, \ldots, b_n) if and only if $(a_2, a_3, ..., a_n) = (b_1, b_2, ..., b_{n-1})$. Determine the maximal k such that every path of length k in Γ starting in $(0,0,\ldots,0)$ is the initial part of an Euler path in Γ .

AMM 6159. by Thomas E. Elsner

It is well known that for a graph on k vertices with no triangles, the maximum number of edges is L(k) = mn, where $m = \lfloor k/2 \rfloor$ and $n = \lfloor (k+1)/2 \rfloor$ and that this value occurs for the complete bigraph $K_{m,n}$. Express the maximum number of edges in case we add the restriction that the graph be

- (a) Hamiltonian;
- (b) Eulerian.

PME 441.

by Richard A. Gibbs

Prove that a self-complementary graph with an even number of vertices has no more than 2i vertices of degree i, and that the number of them is even.

Graph theory: trees

AMM 6262.

by A. Blass,

by I. Cahit

F. Harary, and W. T. Trotter, Jr.

What is the probability that a tree selected at random has a fixed point? More specifically, let t_n be the number of (nonisomorphic) trees with n points, and let f_n be the number of such trees T with at least one point fixed under all automorphisms of T. Calculate $\lim_{n\to\infty} f_n/t_n$.

AMM E2671. by Ibrahim Cahit SIAM 77-15.

Let T = (V, E) be a k-level complete binary tree with vertex set V and edge set E. Thus $|V| = 2^k - 1$, and we set $N = \{1, 2, 3, \dots, 2^k - 1\}$. For every bijection $f: V \to N$ define

$$W(f) = \sum_{\{i,j\} \in E} |f(i) - f(j)|.$$

Prove or disprove that $\min_f W(f) = (k-1)2^{k-1}$ $(k \ge 2)$.

Josephus problem

MM 1031.

by Richard A. Gibbs

There are n people, numbered consecutively, standing in a circle. First 2 sits down, then 4, 6, etc., continuing around the circle with every other standing person sitting down until just one person is left standing. What is his number?

Latin squares Problems sorted by topic Permutations

Latin squares

NAvW 439.

by R. H. F. Denniston

By taking two rows of a Latin square as "equivalent" when one is an even permutation of the other, we can define an equivalence relation on the set of rows. Let us say that a Latin square of even order is "row-odd" when there are two equivalence classes with odd cardinalities. Let L_1 be any Latin square of order 2m; let L_2 be the transpose of L_1 , and L_3 the square obtained from L_1 by interchanging the parts played by the rows and the symbols used as entries. Prove that the number of row-odd squares among these three L_i has the same parity as m.

Lattice points

AMM 6192. by Harry D. Ruderman

Let R be a rectangular array of lattice points having at least two rows and two columns. Let each lattice point of R be labeled by one of the numbers 1, 2, 3, or 4. Suppose that the boundary points of R contain at least one of each of the four numbers and the boundary is oriented, say counterclockwise, with repetitions permitted, and with possibly more than one cycle (1 is allowed to follow 4). Call two lattice points adjacent if they are vertices of a common small square. Call two lattice points opposite if they are labeled either 1 and 3 or 2 and 4. Prove that for every such R, there is a square containing two lattice points that are both opposite and adjacent.

Paths

MENEMUI 1.1.2. MENEMUI 1.2.2.

by S. L. Lee by S. L. Lee

A certain figure shows a network consisting of 49 points. What is the minimum number of turnings one has to make to travel from S to T, passing through all 49 points at least once?

Permutations

SIAM 76-17.

by David Berman and M. S. Klamkin

A deck of n cards is numbered 1 to n in random order. Perform the following operations on the deck. Whatever the number of the top card is, count down that many in the deck and turn the whole block over on top of the remaining cards. Then, whatever the number of the (new) top card, count down that many cards in the deck and turn this whole block over on top of the remaining cards. Repeat the process. Show that the number 1 will eventually reach the top.

Consider the following set of related and more difficult problems:

(a) Determine the number N(k) of initial card permutations, so that the 1 first appears on top after k steps of the process. In particular, show that N(0) = N(1) = N(2) = (n-1)! and that

$$N(3) = \begin{cases} (n-1)! - \frac{1}{2}(n-1)(n-3)(n-4)!, & n \text{ odd,} \\ (n-1)! - \frac{1}{2}(n-2)^2(n-4)!, & n \text{ even.} \end{cases}$$

- (b) Estimate the maximum number of steps it takes to get the 1 to the top.
- (c) For what n is there a unique permutation giving the maximum number of steps?
- (d) Does the last step of a maximum step permutation leave the cards in order (i.e., 1, 2, ..., n)?

AMM 6214.*

by Leonard Carlitz

Let k and t be fixed integers, $k \geq 2, \ t \geq 0$, and let $A_k(kn+t)$ denote the number of permutations of

$$Z_{kn+t} = \{1, 2, 3, \dots, kn + t\}$$

such that

$$a_{kj+1} < a_{kj+2} < \dots < a_{kj+k},$$

 $a_{kj+k} > a_{kj+k+1} \quad j = 0, 1, \dots, n-1,$
 $a_{kn+1} < a_{kn+2} < \dots < a_{kn+t}.$

It has recently been proved as a corollary of a general result that $A_4(2n+1) = 2^{-n}A_2(2n+1)$. Prove this identity by a direct combinatorial argument.

AMM E2702.*

by David Jackson

Let $a=(a_1,a_2,\ldots,a_{2m})$ be a nondecreasing sequence of positive integers. Let S denote the set of sequences obtained from a by permuting its terms. Let A, B, C be the subsets of S consisting of those sequences $s=(s_1,s_2,\ldots,s_{2m})$ that satisfy

$$s_1 < s_2 \ge s_3 < s_4 \ge \dots \ge s_{2m-1} < s_{2m}$$

$$\prod_{i=1}^{2m} (s_i - a_i) > 0, \qquad \prod_{i=1}^{2m} (s_i - a_i) < 0,$$

respectively. Show that |A| is equal to the absolute value of |B|-|C|.

NAvW 543.

by H. W. Lenstra, Jr.

Let n and m be integers $(n>1,\ m>1)$, and let σ be the permutation of $\{1,2,3,\ldots,nm\}$ suggested by the following picture:

Clearly $\sigma(1)=1$ and $\sigma(nm)=nm$, so the cycle decomposition of σ contains two cycles of length one. Suppose that there is only one other cycle, of length nm-2, in this decomposition; i.e., that the numbers $2,3,4,\ldots,nm-1$ are cyclically permuted by σ , in a suitable order.

Prove that each n, m is 2 or 3 (mod 4), and they are not both 3 (mod 4).

MM Q639. ISMJ 13.11.

by Frank Gillespie

Let k_1, k_2, \ldots, k_n be any given set of n integers and let m_1, m_2, \ldots, m_n be any permutation of this set. Prove that

$$|k_1 - m_1| + |k_2 - m_2| + \cdots + |k_n - m_n|$$

is even.

Permutations Problems sorted by topic Sets: differences

AMM S14.

by C. L. Mallows

Let n(m,f,r) represent the total number of arrangements (a_1,a_2,\ldots,a_m) of $(1,2,\ldots,m)$ that have f fixed points $(a_i=i)$ and r rises $(a_i< a_{i+1})$. Prove that n(m,0,r)=n(m,1,r) for $1\leq r\leq m-1$, and that

$$n(m, f, r) = \sum_{j=2}^{m-r} (-1)^{m-r-j} (j-1)^j j^{m-f-j} \times \binom{f+j-1}{j-1} \binom{m+1}{m-r-j} + (-1)^{m-f} \frac{\delta_{r+1-f}}{m-f+1} \binom{m}{f}$$

for $0 \le f \le r + 1 \le m$, $0 \le r$, where

$$\delta_k = \begin{cases} 1, & \text{if } k = 0, \\ 0, & \text{if } k \neq 0. \end{cases}$$

NAvW 430.

by H.S.M. Kruijer

Given is an engine with n cylinders $(n \ge 1)$ numbered 1 to n going from left to right in a line.

The ignition sequence can be characterized using the cylinder numbers as a permutation of the numbers 1 to n, assuming that cylinder 1 is ignited first. Determine the number of ignition sequences for which this characterization does not change when the cylinders are renumbered from right to left.

Selection problems

PARAB 376.

Given are n sacks each holding the same number of apples. On the first day, an apple is removed from one sack. On the second day, an apple is removed from each of 2 sacks and so on, until the nth day when one apple is removed from each of the n sacks.

The sacks are now all empty. For which n is this possible, and how is it to be done?

Sequences

JRM 757. by Michio Matsuda

Deal out nine cards face-up in a row from a well-shuffled deck. You will find that there are always at least three cards of the same color at equal spacing.

- (a) Now deal out thirteen cards face-down. What is the minimum number of cards which you must turn faceup in order to determine the locations of three cards of the same color at equal spacing?
 - (b) Same question, but with n cards, where $n \geq 9$.

AMM E2795. by Doug Wiedemann

Let S be a nonempty subset of

$$\{0,1\}^n = \{0,1\} \times \cdots \times \{0,1\}$$

such that each member of S is adjacent to exactly k other members of S, where "adjacent" means differing in one coordinate position. Show that the size of S is even and at least 2^k . Furthermore, if the graph of the adjacency relation of S is connected, show that it will still be connected after removal of any point.

NAvW 511.

by I. H. Smit

For an integer $n \geq 3$, let S_n be the set of finite sequences $(x_i)_{i=1}^n$ of length n with

$$x_i \in \{-1, +1\},\$$

i.e., $S_n = \{-1, +1\}^n$. If $x \in S_n$, then $\beta(x)$ denotes the number of alternating subsequences $(x_{j_k})_{k=1}^3$ of length 3 $(j_1 < j_2 < j_3)$, i.e., subsequences such that $x_{j_k} + x_{j_{k+1}} = 0$ (k = 1, 2).

(a) Determine

$$f(n) = \max \{ \beta(x) \mid x \in S_n \}.$$

(b) Determine the cardinality of the set

$$\{x \in S_n \mid \beta(x) = f(n)\}.$$

OSSMB 78-7.

Consider sequences of length n with elements drawn from the set $\{1, 2, ..., 9\}$. Let E_n be the number of such sequences whose entries sum to an even number and O_n the number of sequences whose entries sum to an odd number.

- (a) Show that $E_n O_n = (-1)^n$.
- (b) Find E_n and O_n in terms of n.

Sets: cardinality

AMM 6060.* by Daniel Sokolowsky

For fixed $k \ge 2$, A_i , B_i (i = 1, 2, ..., k) are 2k subsets of a finite set S. What is the largest possible value of n = |S| such that the following three conditions can hold simultaneously for i = 1, 2, ..., k?

- (i) $A_i \cap B_i = \emptyset$,
- (ii) $|A_i \cup B_i| = n 1$,
- (iii) For each $x \in S$, $\{x\}$ is the intersection of an appropriate subcollection of the 2k sets A_i, B_i (i = 1, 2, ..., k).

SSM 3738. by Philip Smith

Consider a collection of n nonempty sets of positive integers such that

- (1) no two distinct sets in the collection have the same cardinal number, and
- (2) no set in the collection is a subset of any other set in the collection. What is the minimum possible cardinal number of the union of the n sets?

Sets: determinants

AMM E2690. by Anthony J. Quinzi

Let S_1, S_2, \ldots, S_k be a list of all non-empty subsets of $\{1, 2, \ldots, n\}$. Thus $k = 2^n - 1$. Let $a_{ij} = 0$ if $S_i \cap S_j = \emptyset$ and $a_{ij} = 1$ otherwise. Show that the matrix $A = (a_{ij})$ is nonsingular.

Sets: differences

MM 1041.

by Richard A. Gibbs

For 0 < m < n, find N(m,n), the minimum positive integer such that any subset of $\{1,2,\ldots,n\}$ of N(m,n) elements contains numbers differing by m.

MSJ 476.

Prove that any subset of 55 numbers chosen from the set $\{1, 2, 3, 4, \ldots, 100\}$ must contain numbers differing by 9, 10, 12, and 13, but need not contain a pair differing by 11.

Sets: differences Problems sorted by topic Tournaments: chess tournaments

AMM S5.

by R. L. Graham

For a finite set X of integers, let |X| denote the cardinality of X, and let X-X denote $\{x-x'\,|\,x,x'\in X\}$. Show that if $A,B\subseteq\{1,2,\ldots,n\}$ with $|A||B|\geq 2n-1$, then

$$(A-A)\cap (B-B)$$

contains a positive element. Here n > 1.

PARAB 419.

Write on a large blackboard the numbers

$$1, 2, 3, \ldots, 1979.$$

Erase any two of the numbers and replace them by their difference. Repeat this process until only a single number is left on the board. Prove that this number is even.

Sets: family of subsets

AMM E2654.

by D. E. Daykin

Let $A = \{0, 1, 2, \dots, n-1\}$. For $m \in A$, let f(m, n) be the least integer k with the following property: If F is a family of subsets of A such that every $i \in A$ belongs to more than k members of F, then A can be covered by n-m members of F. Evaluate f(m, n) for $2m \le n$.

Sets: partitions

AMM E2582.

by Ioan Tomescu

Let $\{A_i; 1 \leq i \leq n\}$, $\{B_i; 1 \leq i \leq n\}$, and $\{C_i; 1 \leq i \leq n\}$ be three partitions of a finite set M. If for every i, j, and k we have

$$|A_i \cap B_j| + |A_i \cap C_k| + |B_j \cap C_k| \ge n,$$

prove that $|M| \ge n^3/3$ and that this inequality cannot be improved when n is divisible by 3.

Sets: sums

IMO 1978/6.

An international society has its members from six different countries. The list of members contains 1978 names, numbered $1,2,\ldots,1978$. Prove that there is at least one member whose number is the sum of the numbers of two members from his own country, or twice as large as the number of one member from his own country.

CRUX 404. by A. Liu

Let A be a set of n distinct positive numbers. Prove that

- (a) the number of distinct sums of subsets of A is at least $\frac{1}{2}n(n+1)+1$;
- (b) the number of distinct subsets of A with sum equal to half the sum of A is at most $2^n/(n+1)$.

CRUX 344. by Viktors Linis

Given is a set S of n positive real numbers. With each nonempty subset P of S, we associate the number

$$\sigma(P) = \text{Sum of all its elements.}$$

Show that the set $\{\sigma(P)|P\subseteq S\}$ can be partitioned into n subsets such that in each subset the ratio of the largest element to the smallest is at most 2.

Sorting

AMM E2569.* by Harry Dweighter

The chef in our place is sloppy, and when he prepares a stack of pancakes, they come out all different sizes. Therefore, when I deliver them to a customer, on the way to the table I rearrange them (so that the smallest winds up on top, and so on, down to the largest on the bottom) by grabbing several from the top and flipping them over, repeating this (varying the number I flip) as many times as necessary. If there are n pancakes, what is the maximum number of flips (as a function of n) that I will ever have to use to rearrange them?

JRM 736. by Frank Rubin

An automated warehouse contains a large collection of numbered cartons stored in unnumbered bins, and no two of the cartons have the same number. In order to improve the efficiency of the warehouse, it is decided to sort the cartons into numerical order. What is the least number of moves required when:

- (a) Two automated selectors perform pairwise interchanges of cartons, and all of the bins are filled.
- (b) A single selector can move one carton at a time, and there is only one empty bin.

Tournaments: chess tournaments

CANADA 1976/3.

Two grade seven students were allowed to enter a chess tournament otherwise composed of grade eight students. Each contestant played once with each other contestant and received one point for a win, one half point for a tie and zero for a loss. The two grade seven students together gained a total of eight points and each grade eight student scored the same number of points as his classmates. How many students from grade eight participated in the chess tournament? Is the solution unique?

OMG 17.2.5.

Twenty-four players competed in a recent chess tournament. The committee divided them into two sections. In each section, each player played one game against every other competitor. There were 69 more games in section B than in section A. Mr. Gambit, unbeaten in Section A, scored $5\frac{1}{2}$ points (win = 1 point; draw = $\frac{1}{2}$ point). Determine how many of Mr. Gambit's games were drawn.

PARAB 323.

Twenty-six entrants with names A, B, C, \ldots, Z play in a chess tournament, each against all others. Score 2 points for a win, 1 for a draw, and 0 for a loss. No one's total was odd, there were no ties, and they ended in the order A, B, C, \ldots, Z . What was the result of the match between M and N?

PARAB 357.

Chess players from two schools competed. Each player played one game with every other player. There were 66 games among players from one school, and in all there were 136 games. How many players from each school entered the tournament?

Tournaments: elimination tournaments

OMG 14.2.1.

How many games are needed to produce a winner in a knock-out tournament with (a) 8, (b) 27, (c) 47, and (d) n teams?

OMG 17.1.4.

If 94 players enter a knockout tennis tournament for a singles championship, how many matches must be played to determine the winner? For a 95-player tournament, how many matches must be played?

Tournaments: incomplete information

JRM 715. by Peter J. Green

Partway through a round-robin soccer tournament involving five teams, all official match records were accidentally destroyed. The only parts of the standings that could be established definitely from memory are shown. The scoring is two points for a win, one point for a draw, and zero points for a loss. Each team was supposed to play each of the others once.

Has C played D yet, and if so what were their respective scores?

						Goals	S	
Team	Played	Won	Lost	Drawn	For	Against	Points	
A						1	4	
В	1							
С					5	0	6	
D						4		
E	4			2		2	2	

Tournaments: maxima and minima

PARAB 420.

King Arthur's knights arrange a tournament. After it is all over, the King notices that to every two knights, there is a third one who has vanquished both. How many knights (at least) must have taken part in the tournament?

Tournaments: soccer

OMG 18.2.6.

Four high school soccer teams each played one game against each of the others. The scoring was:
MACDONALD: Goals For - 13, Against - 17, Points - 4.
LAURIER: Goals For - 17, Against - 13, Points - 3.
CLARK: Goals For - 17, Against - 13, Points - 3.

WESTVIEW: Goals For - 13 , Against - 17, Points - 2.

Two points were scored for a win and one for a tie.
Each game produced the same number of goals but no two matches produced the same score. Of their 13 goals, Westview scored two against Clark. What was the result of the match between Westview and Laurier?

Tournaments: tennis

FUNCT 3.1.5.

There are 2n participants in a tennis tournament. In the first round of the tournament each participant plays just once, so there are n games each occupying a pair of players. Show that the pairings for the first round can be arranged in exactly $1 \times 3 \times 5 \times \cdots \times (2n-1)$ different ways.

Tournaments: triangular matches

SSM 3617. by James F. Ulrich

There are n athletic teams that should meet each other exactly once in a given season. How can the teams be matched in a league that allows only dual and triangular meets but requires that a maximum number of triangular meets be held? Assume that n is a positive integer between 3 and 20.

Tower of Hanoi

AMM E2713.*

by Saul Singer

A stack of x rings is given, decreasing in size from the bottom up. In addition, y empty stacks are provided $(y \ge 2)$. Let N(x,y) be the minimum number of moves necessary to transfer the rings to one of the empty stacks subject to the following two rules:

- (i) Move just one ring at a time.
- (ii) At no time can a larger ring be placed atop a smaller.

It is conjectured that

$$N(x,y) = \sum_{k=1}^{m} 2^{k-1} \binom{k+y-3}{y-2} + 2^{m} \left[x - \binom{m+y-2}{y-1} \right],$$

where m is the largest integer such that the expression in the brackets is ≥ 0 .

Urns

MSJ 426. by Ira Ewen

Fifteen balls, numbered 1 through 15, are placed in a hat. They are then withdrawn, one at a time, until all the balls have been removed from the hat. In how many ways is it possible to empty the hat under the following restriction: at any time after two or more balls have been removed, it should be possible to arrange these removed balls so that the numbers on them form a set of consecutive integers.

OMG 18.2.7.

I have two little bags, of which the contents are identical. Each has in it four blue marbles, four red ones, and four yellow ones. I close my eyes and remove from Bag No. 1 enough marbles (but just enough) to ensure that my selection includes two marbles at least of any one color, and one marble at least of either of the other colors. These marbles I transfer to Bag No. 2. Now (again closing my eyes), I transfer from Bag No. 2 to Bag No. 1 enough marbles to ensure that in Bag No. 1, there will at least be three marbles of each of the three colors. How many marbles will be left in Bag No. 2?

Betting games Problems sorted by topic Card games

Betting games

PME 350. by R. Robinson Rowe

In the game of ELDOS, an acronym for $Each\ Loser\ Doubles\ Opponents'\ Stacks$, each of n players starts with his "bank" (B) and at any point in the play holds his "stack" (S), which he bets on the next round. For each round, there is just one loser; in paying the n-1 winners, he doubles their stacks. Consider here a unique game when, after n rounds, each player has lost once and all players end with equal stacks.

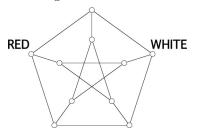
- (a) For n = 5, what was the minimum bank, B, for each player?
- (b) How many players were there if the least initial B was 11 cents?
- (c) Find a general formula for B_m , the initial B of the mth player to lose, as a function of m and n.
- (c) What was the initial bank B of the 9th of 13 players to lose?

Board games

SIAM 76-1. by D. N. Berman

The board used here consists of a single row of positions $(1,2,\ldots,n)$, ordered from left to right, in which a given number of pieces are placed in some fashion among the positions. Only one piece may ever occupy a given position. Alternating play between two players is made by moving any one of the pieces as far to the left as desired but still remaining to the right of the piece immediately on its left. The winner is the player who leaves his opponent no possible move.

Another variation of the game allows the players to move as far to the left as desired to an unoccupied position. Determine a winning strategy for the game.


MM 1084. by William A. McWorter, Jr.

In the game of Kriegspiel Hex, two players sit back to back, each with his own Hex board. An umpire with a master board directs the game as each player attempts to make a legal move without seeing his opponent's move. The umpire's duties are: (1) Advise each player of his turn, following a legal move by his opponent. (2) Declare an illegal move so that the offending player can try a different move. (3) State when a player has won.

- (a) Show that there is a winning strategy for the first player in Kriegspiel Hex played on a 3×3 board.
- (b) Prove that there is no winning strategy for the first player in Kriegspiel Hex played on an $n \times n$ board, $n \ge 4$.

JRM 501. by Makoto Arisawa

In the new game of Yashima played on a Petersen graph, two players move alternately, starting at the marked positions, until one (the loser) no longer has a move. A move consists of transferring one's counter to an adjacent, unoccupied vertex and, as in Hackenbush, erasing the edge just traversed, which cannot then be used as a thoroughfare. Who has the advantage?

PARAB 281.

Two people play the following game on an 8×8 chessboard:

A pawn is placed on the lower-left corner square and moved alternately by the players to a neighboring square either up, to the right, or diagonally up and right. The game stops when the pawn reaches the upper-right corner square, the player making the final move being the winner.

Which player has a winning strategy, and what is it?

JRM 475. by Ray Lipman

Two opponents play on an infinite 3-dimensional chessboard. One has a king, the other a nondescript-looking piece that can move to any unoccupied cell. The king may not move to any cell that has once been occupied by the other. It is conjectured that the king can be trapped in a finite number of moves regardless of how he moves. Prove or disprove.

Bridge

JRM 597. by Les Marvin

Against South's 3 No Trump contract, West leads the five of spades and East follows with the nine. South's task is obviously to set up clubs without letting in the dangerous opponent to lead spades through South's tenace. He must hope that clubs are not split 3 and 0. When he leads the seven of clubs, how should he respond to the next player's play of the jack? The king? The queen?

MM 944. by Richard Johnsonbaugh and R. Rangarajan

Compute the total number of distinct auctions in contract bridge. $\,$

JRM 560. by Sherry Nolan

How many calls (pass, double, redouble, or one to seven of a suit or no trump) can be made during a single contract bridge auction? How many nonpassing calls can be made by one player? By one partnership?

JRM 442. by John Selfridge

In the last hand of a rubber of bridge, each of the four players had (A, B, C, D) distribution (without, of course, specifying the order of the suits). Does it follow that each of the four suits was distributed (A; B; C, D) among the players (again not specifying the order of the players)?

JRM 536. by Sherry Nolan

Between two tricks in a hand of contract bridge, the Kibitzer came on the scene and quickly looked at all four hands, each of which contained n cards. With no other information, he made a correct deduction and ostentatiously announced it: "One of you clowns has revoked!" What is the maximum possible value of n? The minimum?

Card games

JRM 462. by Fred Foldvary

In a game of Mental Heck with four suits, thirteen tricks and a bid of six (no jokers) prove that the first player should always win.

Card games Problems sorted by topic Chess problems

JRM 601.

by David L. Silverman

In the card game Concentration, the 52 playing cards are laid face down on a table top. Cyclically the players, in turn, turn over two cards simultaneously. If the cards do not match in rank, they are returned to their positions face down and the turn is complete. If they match, they are removed, a point is added to the player's total, and he is permitted to attempt another match. After the final match the player with the most points wins.

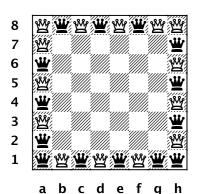
- (a) Consider Mini-Concentration involving two players and only six cards: two kings, two queens, and two jacks. In order to assure that the game terminates, a rule is added that a player is not permitted to turn up the same pair of cards as the previous player. Who has the advantage, the first or the second player?
- (b) Whom does the game favor if the mini-deck has two aces, two kings, two queens and two jacks?

JRM 647. by David L. Silverman

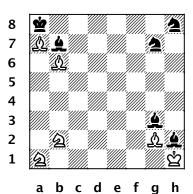
In Chili Poker, as played in northern Italy, each player has received ten cards by the time the betting is over, and from them he is required to make up two five-card hands. When the time comes to compare hands, only the poorer of the two hands is permitted to compete. It thus behoves each player to make the poorer hand as good as possible. The best possible second-best hand is called the "chili hand."

- (a) Among all 10-card deals which has the worst chili hand?
- (b) In the 15- and 20-card variants, what are the worst possible chili deals? In these variants, the chili hands are respectively third- and fourth-best hands.

Chess problems


JRM 540. by David L. Silverman

A rook and a knight play a private game on an $n \times n$ chessboard, their object being to capture the other. They start at opposite corners and rook has first move.


- (a) Demonstrate rook wins in no more than 3 moves on the 3×3 and 4×4 board, in no more than 4 moves on the 5×5 board, and in no more than 5 on the 6×6 board.
 - (b) How about boards of larger dimension?

JRM 468. by Frank Rubin

Depicted is an arrangement of fourteen black and fourteen white queens, with a total number of 412 available moves. Is there another arrangement with the number of black and white pieces arbitrary in which the number of available moves is larger?

JRM 587. by Les Marvin and Sherry Nolan White to play in the adjoining diagram. If both players play optimally, will White win, lose, or draw?

JRM 561. by Emil Prochaska

Is it possible to create a legal chess position with fewer than eight pieces such that the game is stalemated and such that it is impossible to deduce whose move it is?

JRM 758. by Karl Scherer

Does there exist a legal chess position with more than 30 pieces, in which the game is stalemated and in which it is impossible to deduce whose move it is?

JRM 424. by Paul Morphy IV

White and Black start with an empty chessboard and two pawns and a king apiece. In turn, beginning with White, they place their three men, in any order, but subject to these restrictions: A king cannot be placed next to opponent's king or in such a way to be attacked by opponent's previously placed pawn, and a pawn cannot be placed on the first or the eighth rank. After the six men have been placed, White has the first move in the endgame thus generated.

White's advantage in playing first seems to be more than offset by the disadvantage of having to begin the placement sequence. If both players play optimally, what is the result?

JRM 446. by Michael Keith

In a game of chess, what is the minimum number of moves required, after which White will be legally entitled to a draw by virtue of a perpetual check, the first move of the first cycle of which would take place following White's claim for the draw, if:

- (a) No captures are made and the Black King does not move prior to the perpetual checking cycle?
- (b) No captures are made but the restriction against moving the Black King prior to the perpetual checking cycle is removed?
- (c) No restrictions on movement of the Black King or against captures are made?

JRM 680. by Sidney J. Rubin

While doubled pawns (two pawns of the same color on the same file) occur frequently in chess games, tripled or quadruples pawns are rare. It is possible, however, to have sextupled pawns on any file in a legal game. It is even possible to have *momentarily* septupled pawns on the king, queen, or either bishop file.

The minimum number of moves necessary in a legal game to achieve n-tupledness on the various files, known to the proposer, is presented in the table shown. Fill in the gaps, reduce the known minimum numbers, and/or offer proofs that no smaller numbers are possible.

Chess problems Problems sorted by topic Nim variants: opponent decrees

JRM 493.

by Emil Prochaska

Call a sequence of consecutive chess moves a "strait-jacket sequence" if there is no "choice" of moves available; that is, if one and only one legal move can be made by both White and Black at each stage in the sequence. What is the maximum possible length of a straitjacket sequence?

Cribbage

JRM 510. by Marshall Willheit

Two cribbage players are tied at 120 points. Since one point will win the game, and at least one point in the pegging is inevitable, the pegging will determine the winner. Cribber, who plays second, clearly has the advantage. Taking into account the expectation of various 6-card deals, possible 4-card selection policies for each deal, and possible pegging strategies, devise a program that will estimate this advantage.

Dots and Pairs

ISMJ 12.3.

Work out the solution of the 3×3 Dots and Pairs game.

Mastermind

JRM 772. by Ronald J. Lancaster

Code Pegs: WWGR + WWOO + YYBB + WOBB = OWBB

Key Pegs: B + WB + BB + BBWW + BBBB

In a recent game of Mastermind between two cunning opponents, the codebreaker broke the code in five logical moves. Interestingly enough, the code pegs form an alphametic which has a unique solution! Can you find it?

Nim variants: 1 pile

FUNCT 2.3.3.

Two players in turn take matches from a pile of 21 matches. At each turn, a player must take at most 5 matches and at least 1 match. The player who takes the last match wins. Devise a winning strategy for playing this game. Generalize.

JRM 682. by David L. Silverman

Sulucrus is a one-pile countdown game for two players. Alternately they remove chips from an n-chip pile, the winner being the player who takes the last chip or chips. One player has the option at each turn of removing 1, 3, or 6 chips; the other player may remove 2, 4, or 5 chips. (Note that the latter player loses if his opponent leaves him with no chips or a single chip.)

On an ocean cruise a well-dressed stranger invites you to play a game of Sulucrus for high stakes. He offers to let you pick any 3-digit number for the initial pile number, and he also gives you either the choice of position (first or second play) or of role (1,3,6- or 2,4,5-player), reserving to himself whichever of those two choices you pass up. Which initial conditions should you select?

MATYC 116. by Richard Gibbs

In a game with two players, A and B, A goes first and chooses an integer between 1 and 10 inclusive. Player B then selects an integer from the same range and adds his choice to A's. Then A selects and adds his to the sum, etc. The winner is the player whose selection makes the total equal to 100. What is the winning strategy? Generalize.

PARAB 371.

A game is played by two players with matchsticks, as follows. To start, 36 matches are equally spaced in a row. Each player picks up, in turn, either one, two, or three matches. The player who picks up the last match wins the game.

- (a) Prove that the second player can always win.
- (b) The rules are changed to require that the one, two, or three matches must be neighboring matches from one group. Can the second player still always win?

PME 379. by David L. Silverman

You play in a nonsymmetric, two-man subtractive game in which the players alternately remove counters from a single pile, the winner being the player who removes the last counter(s). At a stage when the pile contains k counters, if it is your opponent's move, he may remove $1, 2, \ldots$, up to $\lfloor \sqrt{k} \rfloor$ counters. If it is your move, you may remove $1, 2, \ldots$, up to $\phi(k)$ counters, where ϕ is the Euler totient function. If you play first on a pile of 1776 counters, can you assure yourself of a win against best play by your opponent?

Nim variants: 3 piles

JRM 648. by David L. Silverman

Two persons play alternately on several piles of chips. On each play a number of chips equal to the current number of piles must be subtracted from a single pile having at least that many chips. The winner is the player who is last able to make a legal move.

If the game starts with two piles of six and one pile of seven, who has the advantage and what is his winning strategy?

OSSMB 79-15.

Consider the following two player game. Three piles are given containing x, y, and z pennies. Players alternately select a pile, then choose 1, 2, or 3 pennies from that pile. The player who is forced to take the last penny loses. Determine a winning strategy for one of the players.

Nim variants: opponent decrees

JRM 372. by Jesse Croach, Jr.

In this Nim variant two players, as in Nim, are confronted with several piles of varying number of counters and alternately remove one or more (up to all) counters from one pile, the winner being the player who removes the last counter(s). Unlike Nim, however, one's opponent has an important say in one's decision at each play. Specifically, on your play you announce the number of counters you intend to play — a positive integer that does not exceed the current size of the largest pile. Your opponent can then require you to remove that number of counters from any pile that contains at least that number. Naturally you have the same privilege on your opponent's plays.

Determine the optimal strategy in this game, which is equivalent to finding a practical technique for recognizing which pile arrays constitute "safe leaves".

JRM 373. by David L. Silverman

Same as JRM 372 (above) except at his turn, each player announces the pile he intends to reduce, and his opponent decrees the number of counters removed, from one to the entire pile. Determine the optimal pile choice if you are confronted with the array (1.2.3.4.5). What criterion distinguishes safe from unsafe leaves?

Nim variants: stars Problems sorted by topic Selection games: players select integers

Nim variants: stars

ISMJ 12.1.

Two players play Star Nim on a 10 point star. Can you describe the winning strategy?

ISMJ 12.2.

Which of two players has the winning strategy on a nine point star in a game of Star Nim?

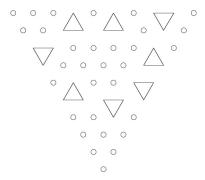
Nim variants: Target Nim

JRM 539. by Jesse Croach, Jr.

Roughly speaking, Target Nim is played like standard Nim, but in reverse fashion. Several positive integers are written down and, from a common supply of counters equal in number to the total of the integers, two players alternately build up piles of counters, the winner being the player attaining pile numbers equal to the target, i.e., to the initial set of integers. A play is never allowed that would make it impossible for either player to attain the target, e.g., if the target is (2,3,7) and the current pile sizes (1,2,4) neither of the two smaller piles may be made larger than 3, nor can a fourth pile be started.

If the piles and the target were associated by some ordering, then this game would be equivalent to standard Nim. But there is no such ordering, and in the above example, *either* of the two smaller piles may be raised to 3. By what criterion can safe leaves be identified?

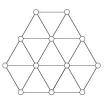
Selection games: arrays


OSSMB 75-2.

A penny is placed at each vertex of a regular n-gon. The pennies are removed alternately by two players, each move consisting of the withdrawal of a single penny or of two pennies that occupy adjacent vertices. The player to take the last penny wins the game. Determine a winning strategy for the second player.

JRM 709. by Ronald E. Ruemmler

An equilateral triangle of 55 dots is first drawn as shown. Players alternate drawing equilateral triangles by connecting three adjacent unused dots. The winner is the player who is last able to draw a triangle.


- (a) A partially completed game is shown. Which player has the advantage?
 - (b) Develop a general strategy for the complete game.

JRM 533.

by Karl Scherer

The popular German game of Nimbi is played on a truncated hexagonal field with twelve stones arranged in twelve rows. A play consists of removing one or more stones from the same horizontal, 45° , or 135° row. Determine who has the advantage and the winning strategies in the two versions: Last stone wins and last stone loses.

Selection games: dates

PME 342.

by David L. Silverman

In *The Game of the Century*, two players alternately select dates of the Twentieth Century (1 January 1901 – 31 December 2000) subject to the following restrictions:

- (1) The first date chosen must be in 1901.
- (2) Following the first play, each player, on his turn, must advance his opponent's last date by changing exactly one of the three "components" (day, month, year).
- (3) Impossible dates such as 31 April or 29 February of a non-leap year are prohibited.

The player able to announce 31 December 2000 is the winner.

- (a) What are the optimal responses by the second player to first player openings of 4 July 1901 and 25 December 1901?
- (b) Who has the advantage and what is the optimal strategy?
- (c) What is the maximum number of moves that can occur if both players play optimally?

Selection games: players select digits

DELTA 6.1-4. by Philip Miles

Two players take turns choosing digits for an infinite decimal expansion beginning from the decimal point. Player A wins if the result of this infinite game is an irrational number; player B wins if the result is rational. Which player can win and what is his winning strategy?

Selection games: players select integers

PME 388.

by David L. Silverman

In the game of "Larger, But Not That Large", two players each write down a positive integer. The numbers are then disclosed and the winner (who is paid a dollar by the loser) is the player who wrote the larger number, unless the ratio of larger number to smaller is three or more, in which case the player with the smaller number wins. If the same number is picked by both players, no payment is made.

- (a) What is the optimal strategy?
- (b) Suppose, instead, that the players are not restricted to integers but to the set $[1,\infty)$ and that the larger number wins provided the larger-to-smaller ratio is less than r (for some r>1); otherwise the larger number loses. Find an optimal strategy.

Selection games: players select integers

Problems sorted by topic

Tic-tac-toe variants

NAvW 405.

by N. G. de Bruijn

Players P and Q play a game, of which the rules are determined by positive integers k, ℓ , and m. There is a countable set of markers labeled $1, 2, 3, \ldots$. Players P and Q move alternately; P moves first. Each move of P consists of taking k markers, and each move of Q consists of taking ℓ markers. Player P has a win as soon as his set of markers contains a sequence of m consecutive integers. Determine all cases (k, ℓ, m) where P has a winning strategy.

CRUX 418. by James Gary Propp

Given a sequence S consisting of n consecutive natural numbers with $n \geq 3$, two players take turns striking terms from S until only two terms a,b remain. If a and b are relatively prime, then the player with the first move wins; otherwise, his opponent does. For what values of n does the first player have a winning strategy, regardless of S?

JRM 658. by Harry Nelson

You are allowed to choose any integer y in the range $2 \le y < b$, and then a random integer x is chosen in the same range. If $\gcd(x,y) = 1$, you lose; if $\gcd(x,y) > 1$, you win. Assuming you apply your best strategy:

- (a) For what value of $b, 3 < b \le 200$, do you have the lowest probability of winning?
- (b) For what value of b do you have the highest probability of winning?
 - (c) Same questions for $3 < b \le 2000000$.

JRM 558. by Les Marvin

Two players alternate in selecting integers from the set $1,2,\ldots,n$ until all have been taken. (First player gets the last integer if n is odd.) First player wins if either player's total is prime. Otherwise the second player wins. For what n does the first player have the advantage? Same question for the $mis\`ere$ version in which first player wins if both totals are composite.

Selection games: polynomials

CRUX 396.

Given is the following polynomial with some undetermined coefficients denoted by stars:

$$x^{10} + x^9 + x^8 + \dots + x^2 + x + 1$$
.

Two players, in turn, replace one star by a real number until all stars are replaced. The first player wins if all zeros of the polynomial are imaginary, the second if at least one zero is real. Is there a winning strategy for the second player?

Tic-tac-toe variants

JRM 599.

by Les Marvin

by Viktors Linis

At this point in the incomplete game shown, two Tic-Tac-Toe players agreed to a draw. Only later did they discover that both were experts. (A Tic-Tac-Toe expert always exploits but never affords an opportunity to win.) Reconstruct the first and last moves.

CANADA 1978/5.

Eve and Odette play a game on a 3×3 checkerboard, with black checkers and white checkers. The rules are as follows:

- 1. They play alternately.
- 2. A turn consists of placing one checker on an unoccupied square of the board.
- 3. In her turn, a player may select either a white checker or a black checker and need not always use the same color.
- 4. When the board is full, Eve obtains one point for every row, column or diagonal that has an even number of black checkers, and Odette obtains one point for every row, column or diagonal that has an odd number of black checkers.
- 5. The player obtaining at least five of the eight points wins.
 - (a) Is a 4-4 tie possible?
- (b) Describe a winning strategy for the girl who is first to play.

JRM 508. by David L. Silverman

Felix and Rover play a variant of Tic-Tac-Toe on a 4×4 board. Rover wins if either player gets four of his marks on any of the four rows, four columns, or two main diagonals. Felix wins if neither player appropriates any of the ten lines. Does the player who moves first have the winning advantage?

AMM S10.

by Richard K. Guy and J. L. Selfridge

When n-in-a-row (the generalization of tic-tac-toe) is played on a large enough board, it is easy to see that the first player has a winning strategy if n=1,2,3, or 4. There is a folk theorem that Go Moku (n=5) is also a first-player win, but nothing has been proved for $5 \le n \le 8$. Show that the second player can force a draw if $n \ge 9$, no matter how large the board is.

JRM 572. by David L. Silverman

In the game of Go Moku, two players alternate in placing their marks on an infinite grid, the winner being the first player to get five of his marks adjacent in a vertical, horizontal, or diagonal row. Demonstrate a first-player win against any defense.

JRM 465. by David L. Silverman

In Kriegspiel Tic-Tac-Toe, the two players sit back to back, each with his own board. An umpire announces "No move" when a player attempts to occupy a cell already taken by his opponent and advises each player when his turn comes up. To offset opener's great advantage, he is penalized with a loss of turn when he receives a "no move" call. Second player is allowed to play at each turn until he makes a valid move. In one game the second player, O, received 3 straight "no move" calls, pinpointing X's position as shown:

Rating win, tie, and loss 1, 0, and -1 respectively and speaking game-theoretically, how should 0 continue?

Game Theory

Tic-tac-toe variants Problems sorted by topic Yes or no questions

JRM 389.

by Azriel Rosenfeld

Tic-tac-toe can be regarded as played with integers, for example 1's and 0's rather than X's and O's; the player using 1's tries to fill some row, column, or diagonal so that it sums to 3, while the player using 0's tries to achieve sum 0. Consider the alternative versions of the game in which:

- (a) The 1 and 0 players try to achieve sums 2 and 1, respectively.
 - (b) They try to achieve sums 2 and 0, respectively. Prove that in version (a) the first player should always

win, and in version (b), whichever player goes first, the 1 player should always win.

Yes or no questions

PENT 300.

by Kenneth M. Wilke

Let A and B play a game according to the following rules:

Player A selects a positive integer. Player B then must determine the number chosen by A by asking not more than thirty questions, each of which can be answered by only no or ves.

What is the largest number that A can choose which can be determined by B in thirty questions? Generalize to n questions.

Affine transformations

Problems sorted by topic

Analytic geometry: conics

Affine transformations

AMM 6158.*

by M. J. Pelling

Prove that if R is a bounded convex region of the plane of area 1, then there is a d>0 independent of R such that R is equivalent under an area preserving affine transformation to a region of diameter $\leq d$. What is the best possible value of d?

Analytic geometry: circles

CRUX 315.

by Orlando Ramos

Prove that, if two points are conjugate with respect to a circle, then the sum of their powers is equal to the square of the distance between them.

OSSMB G76.2-1.

Find the equations of two circles each of which passes through (3,1) and (3,-1) and touches the line x=y.

OSSMB G76.3-1.

A circle is tangent to line l_1 , 4x - 3y + 10 = 0, at B(-12) and also tangent to line l_2 , 3x + 4y - 30 = 0. Use vector methods to find the equation of the circle.

OSSMB G79.1-3.

Two circles touch the y-axis and intersect in the points (1,0) and (2,-1). Find their radii and find the second common tangent.

OSSMB G79.2-8.

Two equal rectangles, both inscribed in the circle

$$x^2 + y^2 = 1$$

with their axes of symmetry along the x-axis and y-axis, respectively, cross each other forming a square ABCD which is common to both rectangles.

- (a) If θ is the acute angle between the diagonal and its major axis of symmetry, find, in terms of θ , the total area of the four rectilinear figures exterior to square ABCD.
- (b) Find the value of $\tan\theta$ when this area is a maximum.

OSSMB G76.3-2.

Find the equation of the circle that cuts orthogonally each of the three circles

$$x^{2} + y^{2} + 2x + 17y + 4 = 0,$$

 $x^{2} + y^{2} + 7x + 6y + 11 = 0,$ and
 $x^{2} + y^{2} - x + 22y + 3 = 0.$

PENT 305.

by John A. Winterink

If $(x-h)^2+(y-g)^2=r^2$ represents a circle tangent to three given circles, then (h,g,r) is called an Apollonian triple. Given the three circles

$$(x+3)^{2} + (y-3)^{2} = 6^{2}$$
$$(x-1)^{2} + (y+5)^{2} = 2^{2}$$
$$(x-2)^{2} + (y+2)^{2} = 1^{2}$$

find all Apollonian triples (h, g, r) for the given circles such that h, g, and r are rational and such that r > 0.

AMM E2669.

by I. J. Schoenberg

Let a > b > 0. For a given r, 0 < r < b, there is a unique R > 0 such that the circle

$$(x - a + r)^2 + y^2 = r^2$$

lies inside and touches the circle

$$x^{2} + (y - b + R)^{2} = R^{2}$$
.

For which r is R/r minimal?

OSSMB G75.2-4.

The circle $x^2 + y^2 - ax - ay = 0$ passes through the origin and also intersects the x and y axes at A and B respectively. From any point P on the circle, perpendiculars are drawn to meet the x-axis at L, the y-axis at M and AB at N. Prove that L, M, and N are collinear.

CRUX 109. by Léo Sauvé

- (a) Prove that rational points (i.e. both coordinates rational) are dense on any circle with rational center and rational radius.
- (b) Prove that if the radius is irrational the circle may have infinitely many rational points.
- (c) Prove that if even one coordinate of the center is irrational, the circle has at most two rational points.

NYSMTJ 45.

by Sidney Penner and H. Ian Whitlock

A point of a plane is rational if both of its coordinates are rational numbers.

- (a) Show that there are three concentric circles on which there are exactly zero, one, and two rational points.
- (b) Is there a circle on which there are exactly three rational points?

Analytic geometry: concyclic points

AMM E2697.

by William Anderson and William Simons

Is there a dense subset S of the unit circle such that each point in S has rational coordinates and the (Euclidean) distance between any pair of points in S is also rational?

IMO 1975/5.

Determine, with proof, whether or not one can find 1975 points on the circumference of a circle with unit radius such that the distance between any two of them is a rational number.

Analytic geometry: conics

CRUX 442.

by Sahib Ram Mandan

Prove that the equation of any quartic may, in an infinity of ways, be thrown into the form

$$aU^{2} + bV^{2} + cW^{2} + 2fVW + 2qWU + 2hUV = 0,$$

where U = 0, V = 0, and W = 0 represent three conics.

CRUX 469. by Gali Salvatore

Of the conics represented by the equations

$$\pm x^2 \pm 2xy \pm y^2 \pm 2x \pm 2y \pm 1 = 0,$$

how many are proper (nondegenerate)?

Analytic geometry: conics

Problems sorted by topic

Analytic geometry: locus

OSSMB G75.2-2.

A straight line inclined at an angle θ touches both curves $y^2 = 8x$ and $x^2 + y^2 = 9$. Find, by analytic geometry, the values of θ and the x-intercept of the required lines.

MATYC 114.

by Dean Jordan

Show that unless both of the equations

$$a_1x^2 - 2b_1xy - a_1y^2 + a_2x - b_2y + a_3 = 0$$
$$b_1x^2 + 2a_1xy - b_1y^2 + b_2x + a_2y + b_3 = 0$$

represent degenerate conics, the curves they describe intersect perpendicularly.

Analytic geometry: curves

MATYC 137.

by Aaron Seligman and Larry Cohen

Let y = f(x) be differentiable everywhere with A = (a,b) and $f(a) \neq b$. Prove or disprove the following theorem and its converse: If |AM| is the minimum distance from A to f(x), then $AM \perp TM$ where TM is the line tangent to f(x) at M.

Analytic geometry: ellipses

MM 1062.

by G. A. Edgar

(a) Let (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) be three points in the Cartesian plane. Assume the points and their negatives are all distinct. Show that there is an ellipse, centered at the origin, passing through the three points if and only if

$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \cdot \begin{vmatrix} x_1 & y_1 & -1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \cdot \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & -1 \\ x_3 & y_3 & 1 \end{vmatrix} \cdot \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} > 0.$$

Interpret this condition geometrically.

(b) Find a necessary and sufficient condition for the existence of an ellipsoid, centered at the origin, passing through four given points in 3-space.

Analytic geometry: Euclidean geometry

OMG 17.1.8.

Prove, by the methods of analytic geometry, that if two medians of a triangle are equal, then the triangle is isosceles.

OMG 18.2.8.

Prove, using the methods of analytic geometry, that the diagonals of a rhombus are perpendicular.

OMG 18.3.8.

Prove, using the methods of analytic geometry, that a triangle is right-angled if the square on the hypotenuse equals the sum of the squares on the other two sides.

Analytic geometry: exponentials

CRUX 293.

by David R. Stone

For which b is the exponential function $y = b^x$ tangent to the line y = mx? Conversely, given $y = b^x$, for which m is y = mx tangent to $y = b^x$?

Analytic geometry: family of lines

PUTNAM 1977/A.1.

Consider all lines which meet the graph of

$$y = 2x^4 + 7x^3 + 3x - 5$$

in four distinct points, say (x_i, y_i) , i = 1, 2, 3, 4. Show that

$$\frac{x_1 + x_2 + x_3 + x_4}{4}$$

is independent of the line and find its value.

Analytic geometry: floor function

CANADA 1975/3.

Indicate on the (x, y)-plane the set of all points (x, y) for which $|x|^2 + |y|^2 = 4$.

Analytic geometry: folium of Descartes

CRUX 417.

by John A. Tierney

It is easy to guess from the graph of the Folium of Descartes,

$$x^3 + y^3 - 3axy = 0, \quad a > 0$$

that the point of maximum curvature is (3a/2, 3a/2). Prove it.

Analytic geometry: lines

CRUX 480.

by Kenneth S. Williams

In a Cartesian plane let l_1 and l_2 be two nonparallel lines intersecting in a point P and $Q(x_1, y_1)$ a point distinct from P. Let l be a line which does not pass through either P or Q, is not parallel to PQ, and intersects PQ at the point $R(x_2, y_2)$.

If ax + by = c, $a_1x + b_1y = c_1$, and $a_2x + b_2y = c_2$ are equations for l, l_1 , and l_2 , respectively, find, as simply as possible, the coordinates of R in terms of

$$a, b, c; a_1, b_1, c_1; a_2, b_2, c_2; \text{ and } x_1, y_1.$$

Analytic geometry: locus

OSSMB 78-11.

The "taxicab" distance between 2 points $A = (a_1, a_2)$ and $B = (b_1, b_2)$ in the cartesian plane is defined by

$$d(A, B) = |a_1 - b_1| + |a_2 - b_2|.$$

If A=(-2,-2) and B=(2,2) find all points X on the "taxicab ellipses"

(a)
$$d(A, X) + d(B, X) = 8$$
,

(b)
$$d(A, X) + d(B, X) = 10$$
.

OSSMB 78-12.

Let $d(A,B) = |a_1 - b_1| + |a_2 - b_2|$. Then if A = (-2,-2), B = (2,2), C = (0,3), and D = (3,7), find all points on the "taxicab bisectors"

(a)
$$d(C, X) = d(D, X)$$
,

(b)
$$d(A, X) = d(B, X)$$
.

Analytic geometry: polar curves

Problems sorted by topic

Analytic geometry: polar curves

MATYC 104. by Hung C. Li

Let $\theta > 0$. Let the reciprocal spiral $r = 1/\theta$ intersect the lines PQ (passing through the pole P and perpendicular to the polar axis PT) and PT at $C_1, C_2, C_3, C_4, \ldots$ consecutively. Construct triangles PC_1C_2 , PC_2C_3 , PC_3C_4 , ... Find the sum of the areas of these infinitely many triangles.

TYCMJ 108. by Arnold Lapidus

Let Γ be the circle with center at the origin and radius $\sqrt{3}/2$. Let T and P be the points with polar coordinates $(\sqrt{3}/2, \theta)$ and $(\sqrt{3}/2, \pi/6)$, respectively, where $0 < \theta < \pi/6$. Let A be the point on the line tangent to Γ at T such that $\angle TAP = \pi/3$. Define $S(\theta) = \frac{1}{2} - TA, 0 \le \theta < \pi/6$. Prove or disprove that $S(\theta) = \sin \theta$.

Analytic geometry: tangents

SSM 3756. by Gregory Wulczyn

Show that if a third-degree polynomial function is symmetric with respect to the origin, then there are infinitely many intervals [a, b] such that the line joining (a, f(a)) to (b, f(b)) is a tangent line to the graph of the polynomial.

FUNCT 1.2.1.

(a) A curve has equation $y = 3x^4 - 4x^3 - 6ax^2 + 12ax$, where a is a positive constant. For what values of x does the curve have a horizontal tangent? Determine the nature of all stationary points if 0 < a < 1, and if a = 1.

Sketch the curve when a = 1. State the coordinates of all stationary points but make no attempt to determine exactly the x-coordinates of any points (other than the origin) at which the curve crosses the x-axis.

(b) Extend the discussion to cover a < 0, a = 0, and a > 1.

Analytic geometry: triangles

CRUX 119. by John A. Tierney

A line through the first quadrant point (a, b) forms a right triangle with the positive coordinate axes. Find analytically the minimum perimeter of the triangle.

MATYC 106. by Gino Fala

Let T be the triangle in the plane whose vertices are (-1,-1), (1,-1), and (2,5). Find an equation E(x,y)=0for T.

Angle measures

OSSMB G75.1-5.

A river flows due north, and a vertical tower, CD, stands on its left bank. From a point A upstream and on the same bank as the tower, the elevation of the tower is 60° ; and from a point B just opposite A on the other bank, the angle of elevation of the tower is 45°. If the tower is 150 feet high, find the width of the river.

Billiards

CRUX 137. by Viktors Linis

Billiards

On a rectangular billiard table ABCD, where AB = aand BC = b, one ball is at a distance p from AB and at a distance q from BC, and another ball is at the center of the table. Under what angle α (from AB) must the first ball be hit so that after the rebounds from $AD,\,DC,\,$ and CB it will hit the other ball?

NAvW 475. by I. J. Schoenberg

Let E be an ellipse and n be an integer greater than or equal to 3. We think of E as the rim of a billiard table, the objective being to determine all closed billiard ball paths Π_n that are closed convex n-gons. This requires that, at each vertex of Π_n , the angle of incidence with E be equal to the angle of reflection. Prove the following:

- (a) There is a 1-parameter family F_n of n-gons Π_n inscribed in E with the reflection property, the initial vertex of Π_n being chosen arbitrarily on E.
- (b) All these Π_n are circumscribed to a fixed ellipse E_n confocal to E.
- (c) All n-gons of the family F_n have the same (maximal) perimeter.

NAvW 476. by I. J. Schoenberg

Let E be an ellipse that we think of as the rim of a billiard table, the objective being to determine all convex quadrilaterals $Q = A_1 A_2 A_3 A_4$ that are closed billiard ball paths. Equivalently, Q should have equal incidence and reflection angles at each A_i , and we call this "the reflection property."

Prove the following statements:

(a) Circumscribe to E an arbitrary rectangle

$$B_1B_2B_3B_4$$
,

and let B_iB_{i+1} be tangent to E at A_i ($B_5=B_1$). Then

$$Q = A_1 A_2 A_3 A_4$$

is a parallelogram having the reflection property, and the perimeter of Q is constant and equals $4(a^2 + b^2)^{1/2}$.

(b) The Q are circumscribed to an ellipse E_4 , confocal to E, and having the semi-axes

$$a_4 = \frac{a^2}{(a^2 + b^2)^{1/2}} ,$$

$$b_4 = \frac{b^2}{(a^2 + b^2)^{1/2}} ,$$

$$b_4 = \frac{b^2}{\left(a^2 + b^2\right)^{1/2}} \ ,$$

where a and b are the semi-axes of E.

(c) The parallelograms Q give all convex quadrilateral billiard ball paths.

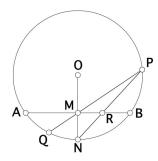
MM 1003.

by Richard Crandall and Peter Ørno

Let P and Q be two distinct points in the interior of a circular disc with neither point at the center. With the boundary of the disc acting as a mirror, a ray of light from point P determines, by the successive reflections from the boundary, a polygonal path in the disc. This path is dependent on the initial direction of the ray of light. Given a positive integer k, show that there is such a path with the kth reflection of the ray intersecting Q.

With k, P, and Q given, can the number of such distinct paths be determined?

Billiards Problems sorted by topic Circles: 3 circles


OSSMB 77-4.

Let P and Q be points inside $\triangle ABC$. Determine how to aim a ray from P so that, upon reflection by each of the sides of $\triangle ABC$, the ray goes through Q.

Butterfly problem

OSSMB 75-5. by P. Erdős CRUX 75. by R. Duff Butterill MM 949. by P. Erdős and M. S. Klamkin

Let AB be a chord of a circle, center O. Let ON be the radius perpendicular to AB, meeting AB at M. Let P be any point in the major arc AB, not diametrically opposite N. Let PM and PN determine Q and R, respectively, on the circle and AB. Prove that RN > MQ.

Cake cutting

PARAB 381.

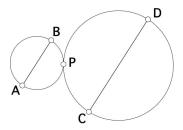
A square cake has frosting on its top and on all four sides. Show how to cut it in order to serve nine people so that each one gets exactly the same amount of cake and exactly the same amount of frosting.

Circles: 2 circles

CRUX PS1-2.

If two circles pass through the vertex and a point on the bisector of an angle, prove that they intercept equal segments on the sides of the angle.

PME 338. by Hung C. Li


Let (O) be a circle centered at O with radius a. Let P, any point on the circumference of (O), be the center of circle (P). What is the radius of (P) such that it divides the area of (O) into two regions whose areas are in the ratio s:t?

SSM 3730. by Fred A. Miller

Let C_1 and C_2 be two concentric circles with radii r_1 and r_2 respectively, $r_1 > r_2$. Under what conditions is it possible to draw a line cutting both C_1 and C_2 so that the length of the chord intercepted by C_1 is twice the length of the chord intercepted by C_2 ? If this is possible, describe how it can be done.

ISMJ 11.3. PARAB 401.

Show that if AB and CD are parallel diameters of two circles that are tangent at P then AD and BC intersect at P.

CRUX 62.

by F. G. B. Maskell

Prove that if two circles touch externally, their common tangent is a mean proportional between their diameters.

NYSMTJ OBG5.

Two unit circles are drawn with centers O and O_1 . One of the points of intersection is D. Let B and C be the points of tangency on the common tangent nearer to D. Segment OO_1 meets the two circles at points A and E. Find the length of OO_1 if mixtilinear triangles BCD and AED have the same area.

AUSTRALIA 1979/2.

Two circles in a plane intersect. Let A and B be the two points of intersection. Starting simultaneously from A two points P and Q move with constant speeds around different circles, each point traveling along its own circle in the same sense as the other point. The two points return to A simultaneously after one revolution. Prove

- (a) P, B and Q are always collinear;
- (b) that there is a fixed point S in the plane such that, at any time, the distances from S to the moving points are equal.

CRUX 63. by H. G. Dworschak

Given are two nonintersecting circles C_1 and C_2 . From the center of C_1 both tangents are drawn to C_2 . These tangents intersect C_1 at points P and Q. Points R and S on C_2 are obtained similarly. Prove that the chords PQ and RS are equal in length.

Circles: 3 circles

OMG 17.1.7.

Three circles are on the same side of a straight line and are tangent to the line. One of the circles has radius 4 and each of the three circles is tangent to the other two. Draw a diagram and then determine the radius of the two equal circles.

FUNCT 3.1.3.

Prove that the points of intersection of all common tangents to three circles are collinear.

PME 344. by J. A. H. Hunter

Three circles whose radii are a, b, and c are tangent externally in pairs and are enclosed by a triangle, each side of which is an extended tangent of two of the circles. Find the sides of the triangle.

Circles: 4 circles Problems sorted by topic Circles: interior point

Circles: 4 circles

SSM 3684. by Donald L. Chambers

Without using calculus, find the area of the region which is the intersection of the four circular regions which have, as their centers, the vertices of a square and the side of the square as radius.

CRUX 248. by Dan Sokolowsky

Circles (M) and (N) are externally tangent at point P and mutually circumscribed by circle (O). Point Q is the center of the circle inscribed in the mixtilinear triangle bounded by (M), (N), and (O). The diameter of (Q) parallel to the line containing points M, N, O, and P is given by FG. Point W is the radical center of circles (M), (N), and (O). Prove that WQ is equal to the circumradius of $\triangle PFG$.

Circles: arcs

SSM 3695. by Steven R. Conrad

An equilateral Gothic arch ABC is made by drawing line segment AC, circular arc AB with center C, and circular arc BC with center A. A circle is inscribed in this Gothic arch, tangent to arcs AB and BC and also to line segment AC. If AC=24, find the area of this inscribed circle.

SSM 3724. by Alan Wayne

A plane figure ABCD consists of two parallel, circular arcs AD and BC, together with two line segments AB and DC, each of length a. If the arcs AD and BC have lengths s and t respectively, find a formula for the area t in terms of t, and t.

OMG 17.2.2.

A section of railway track 5000 meters long was laid in the desert. Because of the heat during the day, the workmen put the track down during the cool of the night and securely fastened each end. In the heat of the following day the section of track expanded by 1 meter in length. If the track bowed upwards, how high would the center of the track be above the ground level?

Circles: area

MATYC 93. by Elliott Hartman

Three circles A, B, and C have radii equal to 6, 4, and 2, respectively. Circles B and C are externally tangent to one another and both are tangent to A internally. Find the area of the largest possible circle that is interior to A and exterior to B and to C.

Circles: chords

CANADA 1975/5.

Let A, B, C and D be four "consecutive" points on the circumference of a circle and P, Q, R and S be points on the circumference which are respectively the midpoints of the arcs AB, BC, CD and DA. Prove that PR is perpendicular to QS.

CRUX 466. by Roger Fischler

Let AB and BC be arcs on a circle such that arc AB > arc BC and let D be the midpoint of arc AC. If $DE \perp AB$, show that AE = EB + BC.

CRUX 225.

by Dan Sokolowsky

Let C be a point on the diameter AB of a circle. A chord through C, perpendicular to AB, meets the circle at D. Two chords through B meet CD at T_1 , T_2 and arc AD at U_1 , U_2 respectively. It is known that there are circles C_1 and C_2 tangent to CD at T_1 and T_2 and arc AD at U_1 and U_2 respectively. Prove that the radical axis of C_1 and C_2 passes through B.

CRUX 110. by H. G. Dworschak

- (a) Let AB and PR be two chords of a circle intersecting at Q. If A, B, and P are kept fixed, characterize geometrically the position of R for which the length of QR is maximal.
- (b) Give a Euclidean construction for the point R which maximizes the length of QR, or show that no such construction is possible.

PARAB 289.

In a circle of radius 5, we have two parallel chords CB and ED of lengths 8 and 6, respectively. Let CD and EB be extended to meet at A. Let AF be an altitude of the triangle ABC. Calculate the length of AF.

CRUX 220. by Dan Sokolowsky

Let C be a point on the diameter AB of a circle. A chord through C, perpendicular to AB, meets the circle at D. A chord through B meets CD at T and arc AD at U. Prove that there is a circle tangent to CD at T and to arc AD at U.

SSM 3688. by Fred A. Miller

Prove that if two chords of a circle intersect at right angles, then the sum of the squares of the lengths of the four segments formed is equal to the square of the length of the diameter.

Circles: circumference and diameter

OMG 16.1.2.

A string is stretched tightly around the equator of a perfect sphere the size of the earth, i.e., 6400 km radius. Six meters more string is added, and the whole circle of string is raised equally above the surface. What approximately will the height of the string above the surface be?

Circles: inscribed rectangles

MSJ 447. by Michael Massimilla

Tom, Dick, and Harry faced the problem of creating a baseball-like diamond within a circular field. Tom decided that it would be a good idea to inscribe a rectangle in the field. Dick decided to place one base at the midpoint of each side of the rectangle. Finally, Harry decided to locate the pitcher's mound at the very center of the field. In this makeshift diamond, the distance from the pitcher's mound to first base was 15 meters and the distance from first base to the edge of the field was 12 meters. What was the 'distance around the bases' in this diamond?

Circles: interior point

CANADA 1977/2. OMG 16.2.2.

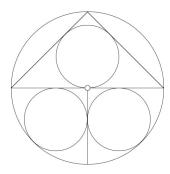
Let O be the center of a circle and A a fixed interior point of the circle different from O. Determine all points Pon the circumference of the circle such that the angle OPAis a maximum. Circles: interior point Problems sorted by topic Combinatorial geometry: counting problems

JRM 535.

by Sherry Nolan

Points A, B, and C are selected on a circle and point P inside the circle so that the perimeter of the quadrilateral ABCP is equal to the circumference of the circle.

- (a) Prove that P cannot be the center of the circle.
- (b) If B is fixed, determine the positions of A, P, and C that maximize the area of ABCP.


Circles: isosceles right triangles

JRM 370. OSSMB 78-13.

by Leon Bankoff

An isosceles right triangle is inscribed in a semicircle, and the radius bisecting the other semicircle is drawn. Circles are inscribed in the triangle and in the two quadrants

as shown. Prove that these three smaller circles are equal.

Circles: line segments

OMG 18.1.4.

Given is a circle with center O and radius OD. Points A, B, and C are selected such that B is on the circumference of the circle, C is on OD, OA and BC are perpendicular to OD, and AB is parallel to OD. If OC=5 and CD=1, find the length of AC.

Circles: mixtilinear triangles

PME 362. by Zelda Katz

A diameter AB of a circle (O) passes through C, the midpoint of a chord DE. Let M be the midpoint of arc AB, and let MC meet the circle again at P. The radius OP cuts the chord DE at Q. Point O_1 is the center of the circle on AC as diameter. Point O_2 is the center of the circle on BC as diameter. Point W_1 is the center of the circle inscribed in the mixtilinear triangle bounded by (O), (O_1) , and CE. Point W_2 is the center of the circle inscribed in the mixtilinear triangle bounded by (O), (O_2) , and CE.

Show that $DQ = W_1W_2$.

Circles: orthogonal circles

MM 1020.

by Leon Gerber

For i = 1, 2, and 3, let the circle C_i have center (h_i, k_i) and radius r_i . Find a determinant equation for the circle orthogonal to these three given circles which generalizes the well-known result for the circle through three points.

Circles: surrounding chains

SPECT 9.7.

by J. G. Brennan

A chain of six unit circles are each externally tangent to a central unit circle, and tangent to the preceding and following one of the chain. A chain of six circles each of radius r are such that each is externally tangent to two of the unit circles and each member of the chain is tangent to the preceding and following one of the chain. Find a quadratic equation, one of whose roots is r. What is the geometrical significance of the other root of the quadratic equation?

PME 428.

by Solomon W. Golomb

One circle of radius a may be "exactly surrounded" by 6 circles of radius a. It may also be exactly surrounded by n circles of radius t, for any $n \ge 3$, where

$$t = a(\csc\frac{\pi}{n} - 1)^{-1}.$$

Suppose instead that we surround it with n+1 circles, one of radius a and n of radius b (again $n \ge 3$). Find an expression for b/a as a function of n.

Circles: tangents

AMM E2625.

by Hüseyin Demir

Let A_i , $i=0,1,2,3 \pmod 4$ be four points on a circle Γ . Let t_i be the tangent to Γ at A_i , and let p_i and q_i be the lines parallel to t_i passing through the points A_{i-1} and A_{i+1} , respectively. If

$$B_i = t_i \cap t_{i+1},$$

$$C_i = p_i \cap q_{i+1},$$

show that the four lines B_iC_i have a common point.

SSM 3710.

by Steven R. Conrad

Tangents TA and TB are drawn to points A and B of a circle, and an arbitrary point P is selected on arc AB. Prove that the perpendicular from P to AB is the mean proportional between the perpendiculars drawn from P to TA and TB.

Combinatorial geometry: concyclic points

AMM E2789.

by Doug Hensley

Suppose gcd(n, 30) = 1 and $n \ge 13$. Let S_n be a set of n points equally spaced around a circle. Show that there are $\binom{n^2-1}{12}$ incongruent triangles with vertices in S_n . Show further that their areas are distinct when n is a prime.

Combinatorial geometry: counting problems

ISMJ 14.21.

In the plane, n circles are drawn so that every two distinct circles meet in exactly two points and no three of the circles have a common point. Give a formula for the number of regions into which the circles partition the plane.

OMG 14.3.3.

Into how many regions do n planes divide space if no two planes are parallel and no four intersect at a point?

Combinatorial geometry: counting problems

Problems sorted by topic

PARAB 412.

Consider a convex polygon with n vertices, and suppose that no three of its diagonals meet at the same point inside the polygon. Determine

- (a) the total number of line segments into which the diagonals are divided by their points of intersection, and
- (b) the total number of regions into which the figure is divided by all its diagonals.

ISMJ J11.15.

Every room of a house has an even number of doors. Show that the number of doors leading directly to the outside must be even.

Combinatorial geometry: equilateral triangles

FQ B-413. by Herta T. Freitag

For every positive integer n, let U_n consist of the points $j+ke^{2\pi i/3}$ in the Argand plane with $j \in \{0,1,2,\ldots,n\}$ and $k \in \{0,1,\ldots,j\}$. Let T(n) be the number of equilateral triangles whose vertices are subsets of U_n .

- (a) Obtain a formula for T(n);
- (b) Find all n for which T(n) is an integral multiple of 2n+1.

Combinatorial geometry: intervals

PARAB 284.

You are given 50 intervals on a line. Prove that at least one of the following statements about those intervals is true:

- (a) There are 8 intervals, all of which have at least one point in common.
- (b) There are 8 intervals so that no two of them have a common point.

Combinatorial geometry: lines in plane

AMM E2754. by Jim Fickett

Given n arbitrary lines k_1, \ldots, k_n in the plane, need there exist another n lines h_1, \ldots, h_n having the same intersection pattern but with all intersection points rational? The first condition means that for every subset S of $\{1, \ldots, n\}$, we have

$$\bigcap_{i \in S} k_i \neq \emptyset \iff \bigcap_{i \in S} h_i \neq \emptyset.$$

Combinatorial geometry: packing problems

AMM E2612. by Sidney Penner

How many diamonds can be packed in a Chinese checkerboard? This board consists of two order 13 triangular arrays of holes, overlapping in an order 5 hexagon, 121 holes in all. A diamond consists of four marbles that fill four adjacent holes.

Combinatorial geometry: planes

OMG 15.3.1.

What is the number of intersection points of 4 planes if no two are parallel and no three intersect in a straight line?

OMG 15.3.10.

What is the number of intersection points of 5 planes if no two are parallel and no three intersect in a straight line?

Combinatorial geometry: points in space

PARAB 437.

Two hundred points are distributed in space so that no three are collinear and no four are coplanar. Prove that it is possible to draw 10,000 line segments joining them without completing a single triangle.

Conics

Combinatorial geometry: polygons

NYSMTJ 38. by Richard Bury

Find the maximum number of points of intersection of the diagonals of an n-gon.

Combinatorial geometry: triangles

AMM E2736. by E. Ehrhart

Let Δ be a closed triangle and $P_0, A_0, P_1, A_1, \ldots$ an infinite sequence of points in a plane. Assume that $P_i \neq P_{i+1}, A_i \neq A_{i+1}$, each A_i is a vertex of Δ and the midpoint of the segment $[P_i, P_{i+1}]$, and $[P_i, P_{i+1}] \cap \Delta = \{A_i\}$.

Prove that $P_n = P_0$ for some positive n.

Combinatorial geometry: triangulations

PARAB 395.

A polygon is said to be triangulated when diagonals, no two of which cross, are drawn cutting the polygon into triangles. A polygon other than a triangle can be triangulated in more than one way.

- (a) Show that a triangulated n-gon is always cut into n-2 triangles by n-3 diagonals.
- (b) Show that there are at least two vertices of a triangulated polygon, each of which lies in a single triangle.

Concyclic points

CRUX 173. by Dan Eustice

For each choice of n points on the unit circle $(n \geq 2)$, there exists a point on the unit circle such that the product of the distances to the chosen points is greater than or equal to 2. Moreover, the product is less than or equal to 2 for all points on the unit circle if and only if the n points are the vertices of a regular polygon.

Conics

CRUX 279. by F. G. B. Maskell

Three collinear points A, O, and B are given such that O is between A and B, and $AO \neq OB$. Show that the three conics having two focii and one vertex at the three given points intersect in two points.

NAvW 484. by J. T. Groenman

Let A_i (i=1,2,3,4) be four points on a given conic K. Let B_{ij} be the midpoints of A_iA_j and ℓ_{ij} the line through B_{ij} conjugated with respect to K, to the line A_kA_ℓ opposite A_iA_j .

Prove that the six lines ℓ_{ij} have one common point S and specify the position of this point S.

Conics Problems sorted by topic Constructions: circles

NAvW 490.

by O. Bottema

The rectangular coordinates (x,y) of the vertices of the triangle $A_1A_2A_3$ are given: $A_1=(-a,0), A_2=(a,0), A_3=(p,h), a>0, 0\leq p< a$. The circumscribed Steiner ellipse K of a triangle is defined as the conic passing through the vertices, the tangents at these points being parallel to the opposite sides. The fourth intersection S of K and the circumcircle C is called Steiner's point. Determine the limiting position of S if a and b are constants and $b \to 0$.

AMM E2751. by Paul Monsky

Let X be a conic section. Through what points in space do there pass three mutually perpendicular lines, all meeting X?

Constructions: angle bisectors

NAvW 553. by J. T. Groenman

Construct a scalene triangle ABC such that the external bisectors of angles A and B are of equal length, given the measurements: $\angle C = \gamma$ and AB = c. Show that this construction is only possible if $\gamma < 60^{\circ}$.

Constructions: angles

CRUX 96. by Viktors Linis

By Euclidean methods divide a 13° angle into thirteen equal parts.

CRUX 420. by J. A. Spencer

Given an angle AOB, find an economical Euclidean construction that will quadrisect the angle. "Economical" means here using the smallest possible number of Euclidean operations: setting a compass, striking an arc, drawing a line.

ISMJ 14.22.

A piece of cardboard is cut in a certain shape, where PQ = TS = 1, QR = 2, and the curve is a circular arc centered at Q. The angles at T, R, and S are right angles. To use this device to trisect an angle AOB, place it so that Q lies on TU, R lies on OB, and OA is tangent to the circle. Prove that TU trisects $\angle AOB$.

PME 412. by Solomon W. Golomb

Are there examples of angles which are trisectible but not constructible? That is, can you find an angle α which is not constructible with straightedge and compass, but such that, when α is given, $\alpha/3$ can be constructed from it with straightedge and compass?

TYCMJ 119. by Thomas E. Elsner

The following construction is well known as a false trisection of an angle. For a given angle $Z \leq \pi$, construct a circle with center on the vertex of Z and label as A and B the intersections of the circle with the rays of the angle. Label as M and N, respectively, the diametric points opposite to A and B. Construct diameter EF as bisector of angle Z with $F \in AB$, and bisect each of these half angles with radii ending at G and G and

PME 341.

by Jack Garfunkel

Prove that the following construction trisects an angle of 60° . Triangle ABC is a $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle inscribed in a circle. Median CM is drawn to side AB and extended to M' on the circle. Using a marked straightedge, point N on AB is located such that CN extended to N' on the circle makes NN' = MM'. Then CN trisects the 60° angle ACM.

TYCMJ 75. by Norman Schaumberger

Find an integer-sided right triangle such that each of its angles can be trisected with straightedge and compasses.

Constructions: chords

NYSMTJ 73.

by John J. Sullivan

In a given circle, construct a chord of given length which is part of a line passing through a point exterior to the given circle.

USA 1979/4.

Show how to construct a chord BPC of a given angle A through a given point P such that 1/BP+1/PC is a maximum.

PENT 321. by Fred A. Miller

In a circle whose center is at O, radii OA and OB are drawn. Construct a chord that will be trisected by radii OA and OB.

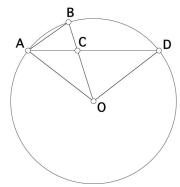
Constructions: circles

ISMJ 11.11.

ISMJ 12.5.

Given two circles, show how to construct with straightedge and compass a circle whose area is the sum of the areas of the two given circles.

USA 1975/4.


Two given circles intersect in two points P and Q. Show how to construct a segment AB passing through P and terminating on the two circles such that $AP \cdot PB$ is a maximum.

MSJ 466.

Let C be a given circle and A a point outside of C. Construct a line through A intersecting C at points P and Q so that PQ = 2(AP).

CRUX 284. by W. A. McWorter, Jr.

Given a sector AOD of a circle with B on arc AD, can a straightedge and compass construct the line OB so that AB = AC?

Constructions: circles Problems sorted by topic Constructions: right triangles

ISMJ J10.12.

A circle is to be inscribed in a quadrant of a circle of radius R so that it touches all three sides of the quadrant. Find its radius and show how to construct the circle using straightedge and compass.

OSSMB 76-6.

Establish the following method, known as Swale's method, to determine the radius of a circle given just the circumference:

With any point O on the circumference C construct a circle D to cut C at P and Q. With center Q and the same radius, cut off the point R on D inside C. Let PR meet C at L. Then QL (and also LR) is the radius of C.

PARAB 423.

Given two intersecting straight lines a and b and a point P on b, show how to construct a circle whose center is on b and which passes through P and touches a.

Constructions: compass only

CRUX 125. by Bernard Vanbrugghe

Using compass only, determine the center of a given circle.

Constructions: conics

CRUX 325. by Basil C. Rennie

It is well known that if you put two thumbtacks in a drawing board and a loop of string around them you can draw an ellipse by pulling the string tight with a pencil. Now suppose that instead of the two thumbtacks, you use an ellipse cut out from plywood. Will the pencil in the loop of string trace out another ellipse?

CRUX 242. by Bruce McColl

Give a geometrical construction for determining the focus of a parabola when two tangents and their points of contact are given.

Constructions: equilateral triangles

CRUX 463. by Jack Garfunkel

Construct an equilateral triangle so that one vertex is at a given point, a second vertex is on a given line, and the third vertex is on a given circle.

NYSMTJ 54.

NYSMTJ OBG6. by Aaron L. Buchman

- (a) Given three coplanar parallel lines, construct an equilateral triangle having one vertex on each line.
- (b) Suppose the parallel lines are not coplanar; is the construction still possible?

Constructions: line segments

MATYC 85. by Robert Forster

Given is a linear distance ℓ . Find an equation or algorithm that will divide ℓ into a given number of segments p such that the segments are in geometric proportion.

MM Q637. by Bertram Ross

Bisect a line segment with a straightedge given only a line parallel to it.

Constructions: lines

CRUX 488. by Kesiraju Satyanarayana

Given a point P within a given angle, construct a line through P such that the segment intercepted by the sides of the angle has minimum length.

Constructions: parallel lines

ISMJ 12.10.

Let $A,\ B,$ and C be three given points in the plane. Determine whether it is possible to draw equidistant parallel lines through these points and show how such lines might be found.

Constructions: pentagons

CRUX 428.

Let AOB be a right-angled triangle with legs OA = 2OB. Use it to find an economical Euclidean construction of a regular pentagon whose side is not equal to any side of $\triangle AOB$. "Economical" means here using the smallest possible number of Euclidean operations: setting a compass, striking an arc, drawing a line.

by J. A. Spencer

Constructions: points

ISMJ 11.14.

Suppose you are given that somewhere on the side AB of the pentagon ABCDE there is a point M such that DM divides the pentagon into two quadrilaterals of equal area. Show how to construct DM.

JRM 538. by Harold Wyatt

A quadrilateral ABCD is drawn on a sheet of paper. Let E be the intersection of the diagonals, P the intersection of AB and CD, R the intersection of PE and AD, and Q the intersection of AD and BC.

- (a) How can R be obtained by Euclidean construction when P does not lie on the sheet of paper?
- (b) Assume that both P and Q lie off the sheet, but PQ intersects the sheet in the segment MN. Show how to obtain MN by Euclidean construction.

Constructions: quadrilaterals

ISMJ J10.5.

Show how to construct a quadrilateral if you are given the four angles and a pair of opposite sides.

Constructions: rectangles

ISMJ 13.24.

The point P is on one side of a parallelogram ABCD. Show how to construct (with compass and straightedge) a rectangle with P as one vertex and the other vertices on the other three sides of the parallelogram.

ISMJ 11.10.

Show how to construct a rectangle whose area is equal to that of a given pentagon (not necessarily regular).

Constructions: right triangles

MSJ 480.

Construct a right triangle with hypotenuse of length 12, if it is given that two of its medians are perpendicular.

Geometry

Constructions: rulers Problems sorted by topic Constructions: triangles

Constructions: rulers

PARAB 265.

If you are required to make an exact copy of an irregular hexagon given a ruler and a protractor, what is the least number of measurements you would have to make?

If you had no protractor could you still do it? If so, would a greater number of measurements be needed?

What would be the least number of measurements required to copy an irregular polygon with n sides?

NAvW 402. by O. Bottema

Show that any construction in the plane with ruler and compass can also be performed by means of the ruler only, if a triangle, its circumcircle, and one of the following points are given:

- (1) its centroid,
- (2) its orthocenter,
- (3) its incenter.

Prove that the statement does not hold if a triangle, its circumcircle, and its symmedian point are given.

FUNCT 2.5.1. by Gordon C. Smith

Let $\angle BAC$ be any angle. Construct BB' parallel to AC, and BP perpendicular to BB'. Mark a length equal to twice BA on a ruler. Place your ruler on the point A, turn it and slide it until the marked length has its ends on BP and BB', with G on BP and D on BB'.

Prove that $\angle DAC$ is 1/3 of $\angle BAC$.

Constructions: rusty compass

CRUX 492. by Dan Pedoe

- (a) A segment AB and a rusty compass of span $r \geq \frac{1}{2}AB$ are given. Show how to find the vertex C of an equilateral triangle ABC using, as few times as possible, the rusty compass only.
 - (b) Is the construction possible when $r < \frac{1}{2}AB$?

JRM 505. by Sherry Nolan

Given a point P on a line L, construct a perpendicular through P using straightedge and rusty compass. In how few applications of the rusty compass can the task be done?

Constructions: squares

CRUX 127. by Viktors Linis

Let A, B, C, and D be four distinct points on a line. Construct a square by drawing two pairs of parallel lines through the four points.

CRUX 32. by Viktors Linis

Construct a square given a vertex and a midpoint of one side.

CRUX 44. by Viktors Linis

Construct a square ABCD given its center and any two points M and N on its two sides BC and CD, respectively.

PME 453. by Jack Garfunkel

Given two intersecting lines and a circle tangent to each of them, construct a square having two of its vertices on the circumference of the circle and the other two on the intersecting lines.

JRM 466.

by Vincent J. Seally

Given is a triangle ABC. Construct a square with two sides meeting at A and with the other two sides containing B and C, respectively.

Constructions: straightedge only

CRUX 257.

by W. A. McWorter, Jr.

Can one draw a line joining two distant points with a BankAmericard?

CRUX 338.

by W. A. McWorter, Jr.

Can one locate the center of a circle with a VISA card?

ISMJ 13.20.

ISMJ 13.14.

Given a line ℓ and a point P not on ℓ on a piece of lined paper, show how to construct the line parallel to ℓ through P using a straightedge alone. Do not assume P is on one of the printed lines.

Constructions: trapezoids

NYSMTJ 59.

Construct a trapezoid, given both bases and both diagonals.

Constructions: triangles

CRUX 415.

by A. Liu

Is there a Euclidean construction of a triangle given two sides and the radius of the incircle?

ISMJ J10.4.

Show how to locate the vertices B and C of a triangle ABC if you are given the point A, the circumcenter of $\triangle ABC$, and the centroid of $\triangle ABC$.

MM 1054.

by Jerome C. Cherry

- (a) Show how to construct triangle ABC by straightedge and compass, given side a, the median m_a to side a, and the angle bisector t_a to side a.
- (b) Show how to construct triangle ABC by straightedge and compass, given angle A, m_a , and t_a .

SSM 3642. by Ed Silver and Philip Smith

Construct triangle ABC given angle A, side a, and a segment b+c equal in length to the sum of the triangle's other two sides.

JRM 562. by Michael J. Messner

Watson was busily engaged in constructing the three altitudes of a triangle. He had just swung three intersecting semicircular arcs from the three vertices, using the same radius, when he got an emergency call. "I say, Holmes, can you finish the job for me?" he asked. "Certainly, my dear fellow, and using the compass only twice more." How did the great detective plan to do it?

CRUX 379. by Peter Arends

Construct a triangle ABC, given angle A and the lengths of side a and t_a (the internal bisector of angle A).

Constructions: triangles Problems sorted by topic Cyclic polygons

CRUX 454.

by Ram Rekha Tiwari

(a) Is there a Euclidean construction for a triangle ABC given the lengths of its internal angle bisectors t_a , t_b , and t_c ?

(b) Find formulas for the sides a, b, and c in terms of t_a , t_b , and t_c .

CRUX 288. by W. J. Blundon

Show how to construct (with compass and straightedge) a triangle given the circumcenter, the incenter and one vertex.

CRUX 472. by Jordi Dou

Construct a triangle given side b and circumradius R such that the line joining circumcenter and incenter is parallel to side a.

CRUX 476. by Jack Garfunkel

Construct an isosceles right triangle such that the three vertices lie each on one of three concurrent lines, the vertex of the right angle being on the inside line.

CRUX 120. by John A. Tierney

Given a point P inside an arbitrary angle, give a Euclidean construction of the line through P that determines with the sides of the angle a triangle

- (a) of minimum area;
- (b) of minimum perimeter.

ISMJ 12.6.

Construct a triangle given the lengths of its three medians. Can any three numbers be the lengths of the medians of a triangle?

MATYC 99. by Aleksandras Zujus

Using only straightedge and compass, construct triangle ABC, given the measure of $\angle A$ and the medians m_b and m_c .

Convexity

MATYC 126. by Gino Fala

Let G represent a convex polygon in the plane with perimeter |G| and enclosed area ||G||. Encircle G with a smooth curve C in the plane of G such that C is at a constant distance r from G. Denote the perimeter of C and the area enclosed by C by |C| and ||C||, respectively. Prove that:

$$|C| = |G| + 2\pi r$$

and

$$||C|| = ||G|| + r|G| + \pi r^2.$$

AMM E2714.

by M. J. Pelling

Let G_1 and G_2 be two bounded convex regions in \mathbb{R}^2 , and suppose G_1 is translated to $G_1(t)$ by the transformation

$$x\rightarrow x+ta,$$

where a is a fixed unit vector. Consider the area A(t) of

$$G_1(t) \cap G_2$$

as a function of t. Is it always true that there is a constant c such that A(t) is monotonic increasing for $t \leq c$ and monotonic decreasing for $t \geq c$?

What happens in \mathbb{R}^n ?

PUTNAM 1979/B.5.

In the plane, let C be a closed convex set that contains (0,0) but no other point with integer coordinates. Suppose that A(C), the area of C, is equally distributed among the four quadrants. Prove that $A(C) \leq 4$.

PARAB 416.

Let S be a convex area which is symmetric about the point O. Show that the area of any triangle drawn in S is less than or equal to half the area of S.

OSSMB 75-10.

Consider a plane convex set K that has a center of symmetry. Prove that a circumscribing parallelogram P of minimum area contacts K at the midpoints of its four sides.

AMM 6089.* by E. Ehrhart

Let K be a convex body in \mathbb{R}^n of Jordan content

$$V(K) > \frac{(n+1)^n}{n!}$$

and with centroid at the origin. Does $K \cup (-K)$ contain a convex body C, symmetric about the origin, for which $V(C) > 2^n$?

Covering problems

PARAB 279.

MSJ 502.

On each side of a convex quadrilateral, a circle is drawn having that side as diameter. Prove that every point inside the quadrilateral lies inside at least one of the 4 circles.

ISMJ J10.6.

A square one unit on each side is to be covered by two circular discs of the same size (overlapping is permitted). How small can the discs be?

AMM E2790. by Mark D. Meyerson

Suppose we have a collection of squares, one each of area 1/n for $n=1,2,3,\ldots$, and any open set, G, in the plane. Show that we can cover all of G except a set of area 0 by placing some of the squares inside G without overlap. (The edges of the squares are allowed to touch.)

NAvW 411. by J. van de Lune

Let $(S_n)_{n\in\mathbb{N}}$ be a sequence of (closed) squares with corresponding areas $(a_n)_{n\in\mathbb{N}}$ such that $\sum_{n=1}^{\infty} a_n$ diverges.

Prove that it is possible to cover the plane by means of the given "pile of tiles" (overlap permitted).

Cyclic polygons

MSJ 416. by Albert Wilansky

A polygon inscribed in a circle has congruent angles. Must it also have congruent sides?

ISMJ 12.29.

If a polygon inscribed in a circle has equal angles, must its sides all be equal?

Cyclic quadrilaterals

Problems sorted by topic

Dissection problems: rectangles

Cyclic quadrilaterals

OSSMB G75.2-3.

Given is a cyclic quadrilateral with sides a, b, c, d and perimeter 2s. Show that the total area of this quadrilateral is $\sqrt{(s-a)(s-b)(s-c)(s-d)}$.

CRUX PS7-2. by Jan van de Craats

Let $A_1A_2A_3A_4$ be a kite (i.e., $A_1A_2 = A_1A_4$ and $A_3A_2 = A_3A_4$) inscribed in a circle. Show that the incenters I_1 , I_2 , I_3 , and I_4 of the respective triangles $A_2A_3A_4$, $A_3A_4A_1$, $A_4A_1A_2$, and $A_1A_2A_3$ are the vertices of a square.

AMM E2553. by V. B. Sarma

Suppose that $A,\ B,\ C,$ and D are cyclic points and that the Simson line of A with respect to triangle BCD is perpendicular to the Euler line of triangle BCD. Show that the Simson line of B will be perpendicular to the Euler line of triangle CDA. Is this true if we replace "perpendicular" by "parallel"?

CRUX 483. by Stanley Collings

Let ABCD be a convex quadrilateral; let $AB \cap DC = F$ and $AD \cap BC = G$; and let I_A , I_B , I_C , and I_D , be the incenters of triangles BCD, CDA, DAB, and ABC, respectively. Prove that:

- (a) ABCD is a cyclic quadrilateral if and only if the internal bisectors of the angles at F and G are perpendicular
- (b) If ABCD is cyclic, then $I_AI_BI_Cl_D$ is a rectangle. (*) Is the converse true?

Cycloids

NAvW 438. by O. Bottema

The circles C=(M;R) and c=(m;r) are given in the coinciding planes U and u respectively. The plane u moves with respect to U in the following way: c remains tangent to C at a point that moves along C with velocity V and along c with velocity v, such that $V=\lambda v$, λ being a constant. Show that, except for some special values of λ , the motion is cycloidal.

Discs

PARAB 328.

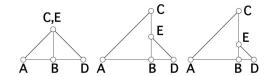
Six circular discs are lying in the plane so that no one of them covers the center of another. Show that there is no point in common to all six discs.

Dissection problems: angles

PENT 299. by Kenneth M. Wilke

Devise a method for dividing a 17° angle into seventeen equal parts.

Dissection problems: equilateral triangles


CRUX 256. by Harry L. Nelson

Prove that an equilateral triangle can be dissected into five isosceles triangles, n of which are equilateral, if and only if $0 \le n \le 2$.

Dissection problems: isosceles right triangles

PME 416. by Scott Kim

Each of the three figures shown is composed of two isosceles right triangles, $\triangle ABC$ and $\triangle DBE$, where $\angle ABC$ and $\angle DBE$ are right angles, and B is between points A and D. Points C and E coincide so that CB/EB=1 in the first figure. In the second figure, we are given that CB/EB=2, and in the third figure that CB/EB=3. Consider each pair of triangles as a single shape, and suppose that the areas of the three shapes are equal. For each pair of figures, find the minimum number of pieces into which the first figure must be cut so that the pieces may be reassembled to form the second figure. Pieces may not overlap, and all pieces must be used in each assembly.

Dissection problems: line segments

CRUX 158. by André Bourbeau

Devise a Euclidean construction to divide a given line segment into two parts such that the sum of the squares on the whole segment and on one of its parts is equal to twice the square on the other part.

Dissection problems: partitions of the plane

CRUX 170. by Leroy F. Meyers

Is it possible to partition the plane into three sets A, B, and C (so that each point of the plane belongs to exactly one of the sets) in such a way that

- (i) a counterclockwise rotation of 120° about some point P takes A onto B, and
- (ii) a counterclockwise rotation of 120° about some point Q takes B onto C?

Dissection problems: polygons

PARAB 330.

Certain convex polygons can be dissected into squares and equilateral triangles all having the same length of sides. If a convex polygon can be dissected in this way, how many sides did it have originally?

Dissection problems: rectangles

AMM 6178. by Robert Kowalski

Define the shape of a rectangle to be the ratio of the longer side to the shorter side. Suppose one has an unlimited number of congruent squares at one's disposal. Given shape α and an error ε , what is the least number of squares one needs to construct a rectangle whose shape differs from α by less than ε ?

ISMJ J10.8.

Show that any triangle can be cut into three pieces that can be rearranged to form a rectangle whose area is the same as that of the triangle.

Dissection problems: regular pentagons

Problems sorted by topic

Dissection problems: regular pentagons

MM 1057.

by D. M. Collison

Dissect a regular pentagon into six pieces and reassemble the pieces to form three regular pentagons whose sides are in the ratio 2:2:1.

Dissection problems: regular polygons

CRUX 308.

by W. A. McWorter, Jr.

Some restaurants give only one pat of butter with two rolls. To get equal shares of butter on each roll, one can cut the butter square along a diagonal with a knife.

- (a) What regular n-gons can be cut in half with only a straightedge?
- (b) What convex *n*-gons can be cut in half with a straightedge and compass?

Dissection problems: right triangles

MSJ 460. MSJ 461.

by Zalman Usiskin by Zalman Usiskin

Any right triangle can be partitioned into three triangles similar to it. Prove that no other triangles can be partitioned into three triangles similar to it.

MSJ 428. by Robert Lam

Suppose that ABC is a right triangle, with right angle at C. Construct a line perpendicular to AB that divides triangle ABC into two regions of equal area.

Dissection problems: squares

PARAB 286.

Show how to cut up and reassemble five squares of side length 1 into a single square.

PARAB 310.

A man had a square window with sides of length 1 meter. However, the window let in too much light and so he blocked up one-half of it. How did he do this in such a way as to still have a square window which was 1 meter high and 1 meter wide?

PARAB 339.

Given is a square made up of 100 squares arranged in 10 rows and 10 columns. The first, second, third, and fourth squares in the first, second, third, and fourth rows, respectively, are colored black. Show how to dissect the square into 4 congruent pieces, each containing one of the black squares.

PME 380. by V. F. Ivanoff

Form a square from a quadrangle by bisecting segments and the angles.

PARAB 320.

A large square is divided into one small square (with sides of length s) and four rectangles A, B, C, and D which are not squares. No side of any rectangle is the same length as a side of another nor the side of the big square. The sides of A are 4s and 2s. Rectangle B has the largest area of any of the rectangles. Rectangle C has sides in the ratio 3:1 and its area is 300. Find the area of D.

ISMJ 11.15.

Given five squares each of side length 1. Show how to cut them up and reassemble them to form a single square.

Dissection problems: triangles

MSJ 499.

Prove that if n is a positive integer greater than 5, then it is possible to subdivide a square into n smaller squares whose sides are parallel to the sides of the original square.

PARAB 334.

Find all positive integers n such that it is impossible to dissect a square into n squares.

PARAB 356.

A suitor asking for the hand of the king's daughter is given the following task:

Divide the square wall of the princess's room into ten smaller squares, a different way for each day of the week. No square should have the same 4 vertices as any square used on previous days. Is it possible for the suitor to marry the princess, or will he end up on the chopping block?

CRUX 29. by Viktors Linis

Cut a square into a minimal number of triangles with all angles acute.

Dissection problems: triangles

PARAB 435.

Show how to cut a square piece of paper into acute triangles.

OSSMB 79-4. by M. Poirier

Let ABC be a triangle with an obtuse angle at A. Show that it is possible to partition ABC into smaller triangles all having only acute angles. What is the least number of line segments required to obtain such a partition?

CRUX 24. by Viktors Linis

A paper triangle has base 6 cm and height 2 cm. Show that by three or fewer cuts the sides can cover a cube of edge 1 cm.

JRM 593. by Nobuyuki Yoshigahara

Nine matches are arranged to form a $2\times3\times4$ triangle. Place two additional matches in such a way as to divide the triangle into two equal areas.

CRUX 200. by Léo Sauvé

- (a) Prove that there exist triangles that cannot be dissected into two or three isosceles triangles.
- (b) Prove or disprove that, for $n \geq 4$, every triangle can be dissected into n isosceles triangles.

ISMJ 10.2

What triangles can be partitioned into 3 congruent triangles?

PME 448. by R. Robinson Rowe

Analogous to the median, call a line from a vertex of a triangle to a point of trisection of the opposite side a "tredian". Then, if both tredians are drawn from each vertex, the 6 lines will intersect at 12 interior points and divide the area into 19 subareas, each a rational part of the area of the triangle. Find two triangles for which each subarea is an integer, one being a Pythagorean right triangle and the other with consecutive integers for its three sides.

Ellipses Problems sorted by topic Equilateral triangles: sides

Ellipses

CRUX 419. by G. Ramanaiah

A variable point P describes the ellipse $x^2/a^2+y^2/b^2=1$. Does it make sense to speak of "the mean distance of P from a focus S"? If so, what is this mean distance?

CRUX 180. by Kenneth S. Williams

Through O, the midpoint of a chord AB of an ellipse, is drawn any chord POQ. The tangents to the ellipse at P and Q meet AB at S and T, respectively. Prove that AS = BT.

OSSMB G79.3-4.

Let P be any point on the ellipse $b^2a^2 + a^2y^2 = a^2b^2$ having foci F_1 , F_2 . Show that the circles drawn with diameters PF_1 and PF_2 are tangent to the circle having center at the origin, and diameter the major axis.

PUTNAM 1976/B.4.

For a point P on an ellipse, let d be the distance from the center of the ellipse to the line tangent to the ellipse at P. Prove that $(PF_1)(PF_2)d^2$ is constant as P varies on the ellipse, where PF_1 and PF_2 are the distances from P to the foci F_1 and F_2 of the ellipse.

OSSMB G77.2-5.

An ellipse and a hyperbola have the same foci. Show that the two curves intersect at right angles.

MM Q660. by Alan Wayne

Find the ratio of the area of an ellipse to the area of the largest inscribed rectangle.

CRUX 132. by Léo Sauvé

If $\cos \theta \neq 0$ and $\sin \theta \neq 0$ for $\theta = \alpha$, β , γ , prove that the normals to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

at the points of eccentric angles $\alpha,\ \beta,\ \gamma$ are concurrent if and only if

$$\sin(\beta + \gamma) + \sin(\gamma + \alpha) + \sin(\alpha + \beta) = 0.$$

OSSMB G78.3-3.

Let any tangent to an ellipse meet the tangents at the ends of the major axis at P_1 and P_2 . Show that the circle having P_1P_2 as diameter passes through the foci.

OSSMB G76.2-2.

Show that the portion of any tangent to the ellipse $2x^2 + y^2 = 1$ intercepted between the lines x = 1 and x = -1 is divided (by the point of tangency) into two parts that subtend equal angles at the origin.

Envelopes

MM 1068.* by James Propp

Given a simple closed curve S, let the "navel" of \widetilde{S} denote the envelope of the family of lines that bisect the area within S.

- (a) If S is a triangle, find sharp upper and lower bounds for the ratio of the area within the navel of S to the area within S.
- (b) If S bounds a convex set, find a sharp upper bound for this ratio.
- (c) If S is arbitrary, find a sharp upper bound for this ratio.

Equilateral triangles: exterior point

SSM 3714. by Charles W. Trigg

From a point in the exterior of an equilateral triangle, the distances to the vertices of the triangle are 5, 4, and 3 respectively. Determine the length of a side of the triangle.

Equilateral triangles: interior point

OSSMB 75-7. CRUX 39. SSM 3682. by Maurice Poirier by Maurice Poirier by Alan Wayne

Let P be a point inside an equilateral triangle \overrightarrow{ABC} such that PA=3, PB=4, and PC=5. Determine the length of the side of the triangle.

Equilateral triangles: isosceles triangles

OMC 1729

Triangle ABC is drawn inside an equilateral $\triangle ADE$ so that $AB=AC=\sqrt{7},\ BC=1,$ and DB=CE=2. Find the length of one side of $\triangle ADE.$

Equilateral triangles: midpoints

SPECT 11.5.

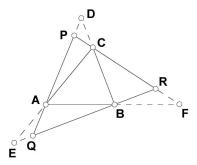
A sum and product are defined on the points of the plane as follows: A+B is the unique point such that A, B, and A+B form an equilateral triangle, described in a counterclockwise direction, and $A\times B$ is the midpoint of the straight line joining A and B. Show that

$$A \times (B+C) = (B+A) \times (A+C).$$

Equilateral triangles: orthogonal projection

MM 988. by Murray S. Klamkin

A given equilateral triangle ABC is projected orthogonally from a given plane P to another plane P'. Show that the sum of the squares of the sides of triangle A'B'C' is independent of the orientation of triangle ABC in plane P.


Equilateral triangles: sides

MM 1014.

by K. R. S. Sastry

Given a triangle, $\triangle ABC$, points D, E, and F are on the lines determined by BC, CA, and AB, respectively. The lines AD, BE, and CF intersect to form triangle $\triangle PQR$, and satisfy AD = BE = CF.

- (a) Show that $\triangle PQR$ is equilateral iff $\triangle ABC$ is.
- (b) Express the area of $\triangle PQR$ in terms of that of $\triangle ABC$.

CRUX 412. by Kesiraju Satyanarayana

The sides BC, CA, and AB of $\triangle ABC$ are produced to D, E, and F, respectively so that CD = AE = BF. Show that $\triangle ABC$ is equilateral if $\triangle DEF$ is equilateral.

Equilateral triangles: similar triangles

Problems sorted by topic

Hexagons

Equilateral triangles: similar triangles

PME 387. by Jack Garfunkel

On the sides AB and AC of an equilateral triangle ABC, mark the points D and E respectively, such that AD = AE. Erect directly similar equilateral triangles CDP, AEQ, BAR on CD, AE, and AB respectively. Show that triangle PQR is equilateral. Also show that the midpoints of PE, AQ, and RD are vertices of an equilateral triangle.

Fallacies

CRUX 141. by Leon Bankoff

What is wrong with the following "proof" of the Steiner-Lehmus Theorem?

If in a triangle two angle bisectors are equal, then the triangle is isosceles.

At the midpoints of the angle bisectors, I erect two perpendiculars which meet in O; with O as center and AO as radius, I describe a circle which will evidently pass through the points A, M, N, C.

Now the angles MAN, MCN are equal since the measure of each is arc $\frac{MN}{2}$; hence BAC = ACB, and triangle ABC is isosceles.

Family of lines

MSJ 419. by Sidney Penner

A point in the plane is called a rational point if its coordinates are rational. Let L be the set of lines determined by lattice points of the plane. Let Q be the set of lines determined by the rational points of the plane.

- (a) Show that L is a proper subset of Q and characterize all equations in the xy plane that define lines that are elements of Q but which are not elements of L.
- (b) Does there exist a point in the plane that is not on a line of L but is on a line of Q?

Grazing goat

JRM 395. by R. S. Johnson

A farmer has a circular fenced field, of radius 200 feet, in which two goats are grazing. The goats are not friendly; consequently they are tethered by long ropes, each rope being secured to diametrically opposite fence posts. One tether permits a grazing area of one-half of the field; the other permits grazing of one-third of the field.

One day the farmer discovered that the goats were fighting furiously, and hastily shortened the tethers.

What was the area of the inadvertent "battle arena"?

JRM 710. by Bruce E. Bushman

A farmer ties his cow to a pole in a grassy field with a ten-foot rope. After the cow has grazed all of the grass within reach, the farmer moves the pole to the edge of the grazed area. He then lengthens the rope just enough to allow the cow an ungrazed area equal to what it had originally. How long is the rope?

PENT 282. by Kenneth M. Wilke

A farmer has a circular plot of radius 50 feet. At a point on the circumference of the plot, he places a stake to which a goat is connected by a rope. How long is the rope if the goat can graze on exactly one-half of the area of the plot?

PME 382. by R. Robinson Rowe

Two cows, Lulu and Mumu, are tethered at opposite ends of a 120-foot rope threaded through a knothole in a post of a straight fence separating two uniform pastures. How much area can they graze, presuming they eat, nap, and ruminate on identical schedules, and the rope length is also the extreme reach from muzzle to muzzle of Lulu and Mumu? If Mumu is replaced by the heifer Nunu with half the appetite, what is the area accessible to Lulu and Nunu?

CRUX 89. by Vince Bradley and Christine Robertson

A goat is tethered to a point on the circumference of a circular field of radius r by a rope of length l. For what value of l will it be able to graze over exactly half of the field?

Heptagons

PARAB 422.

The heptagon ABCDEFG is inscribed in a circle and three of its angles are 120° . Prove that the heptagon has two equal sides.

Hexagons

PARAB 340.

Let O be the center of a circle C of radius r. Let A be the vertex of a regular hexagon inscribed in C. Using A and the other vertices of the hexagon as centers, arcs of radius r are drawn. The result is a six-petaled "flower". Next are drawn the largest circles that will fit between petals, for example C_1 . Then the next largest, C_2 , is drawn, and so on. What are the radii of the circles C_1 , C_2 , C_3 , and so on?

PME 438. by Ernst Straus

Prove that the sum of the lengths of alternate sides of a hexagon with concurrent major diagonals inscribed in the unit circle is less than 4.

MATYC 107. by Roger Debelak

Hexagon ABCDEF is inscribed in a circle. Triangle ACE is equilateral. Show that the sum of the lengths of the three diagonals AD, BE, and CF is equal to its perimeter.

MATYC 121. by F. David Hammer

A hexagon with three sides of length a and three sides of length b is inscribed in a circle. What is the radius?

ISMJ 12.28.

A hexagon is inscribed in a convex decagon so that the area A is a maximum. Show that there is a hexagon of area A in that decagon whose vertices are vertices of the decagon.

MM 992. by Kenneth Fogarty, Erwin Just, and Norman Schaumberger

Call a vertex of a convex hexagon ordinary if it is the intersection of at least three diagonals or sides of different lengths. Otherwise, let the vertex be called exceptional.

- (a) Prove that at least one vertex of a convex hexagon is ordinary.
- (b) What is the maximum number of exceptional vertices that a convex hexagon can have?

Hyperbolas Problems sorted by topic Inequalities: triangles

Hyperbolas

OSSMB G78.3-4.

A circle is described with a focus of the hyperbola $9x^2 - 16y^2 = 144$ as center, and with radius 1/4 of the length of the latus rectum. Show that the lines joining the points of intersection of the circle and the hyperbola to the focus are parallel to the asymptotes.

CRUX 15. by H. G. Dworschak

Let A, B, and C be three distinct points on a rectangular hyperbola. Prove that the orthocenter of $\triangle ABC$ lies on the hyperbola.

OSSMB G79.3-3.

The tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, at any point P, meets the asymptotes at Q and R. Show that the area of the triangle OQR, where O is the origin, is constant for all positions of the point P.

Inequalities: area

SPECT 10.7.

Let S be any finite system of similarly-oriented squares of equal size in the plane. Denote by A(S) the total area covered by S. Show that it is always possible to find a discrete subsystem T of S such that $A(T) \geq \frac{1}{6}A(S)$.

Inequalities: cyclic quadrilaterals

DELTA 5.1-2.

by R. S. Luthar

Let ABCD be a cyclic quadrilateral with AC and BD as its diagonals. Prove that

$$(AD - BC)^{2} + (AB - DC)^{2} > (AC - BD)^{2}$$
.

Inequalities: points in plane

PARAB 302.

Let A, B, C, and D be four points, in that order, on a straight line.

- (1) If AB' = CD', show that for any point P in the plane, $PA' + PD' \ge PB' + PC'$.
- (2) Conversely, if $PA' + PD' \ge PB' + PC'$ for every position of P, show that AB' = CD'.

Inequalities: polygons

ISMJ 10.9.

For a polygon P_n of n sides let p be its perimeter and let d be the maximum distance between two points of the polygon. Let $\pi(P_n) = p/d$.

- (a) Show that $\pi(P_n) > 2$ for any polygon with n sides.
- (b) Show that for any triangle P_3 , $\pi(P_3) \leq 3$.
- (c) Find a triangle P_3 such that $\pi(P_3) = 3$.
- (d) Find the rectangle R with largest possible $\pi(R)$.

Inequalities: quadrilaterals

CRUX 106. by Viktors Linis

Prove that, for any quadrilateral with sides a, b, c, d,

$$a^2 + b^2 + c^2 > \frac{1}{3}d^2$$
.

NAvW 488. by W. J. Blundon and R. H. Eddy

Let ABCD be a quadrilateral inscribed in a circle of radius R and circumscribed about a circle of radius r. If s is the semiperimeter of the quadrilateral, prove the inequalities

$$s \le \sqrt{4R^2 + r^2} + r$$

and

$$s^2 \ge 8r \left(\sqrt{4R^2 + r^2} - r \right),$$

and find when equality holds in each case. Hence, derive the inequalities

$$s \le 2R + \left(4 - 2\sqrt{2}\right)r$$

and

$$s^2 \ge \frac{32\sqrt{2}}{3}Rr - \frac{16}{3}r^2,$$

again stating when equality holds.

SPECT 10.1. by B. G. Eke

Show that the sum of the lengths of the diagonals of a plane quadrilateral exceeds the sum of the lengths of two opposite sides.

Inequalities: rectangles

ISMJ 13.16.

Let ABCD be a rectangle with point P in its interior. Let the distances from P to $A,\,B,\,C$, and D be $a,\,b,\,c$, and d respectively, and let α be the area of the rectangle.

- (a) Show that $a^2 + b^2 + c^2 + d^2 \ge 2\alpha$.
- (b) Can equality ever occur? If so, when?

Inequalities: right triangles

PME 431. by Jack Garfunkel

In a right triangle ABC, with sides a, b, and hypotenuse c, show that $4(ac + b^2) \le 5c^2$.

Inequalities: squares

PARAB 350.

Let ABCD be a square of side 1. Suppose P lies on BC, Q lies on DC, and that AP = AQ. Show that the perimeter of the triangle APQ is not more than $2 + \sqrt{2}$.

Inequalities: triangles

AMM E2634. by Jack Garfunkel

Let A_i , $i = 0, 1, 2 \pmod{3}$ be the vertices of a triangle, and let Γ be its inscribed circle with center O. Let B_i be the intersection of the segment A_iO with Γ and let C_i be the intersection of the line A_iO with the side $A_{i-1}A_{i+1}$.

Prove that

$$\sum A_i C_i \le 3 \sum A_i B_i.$$

CRUX 397. by Jack Garfunkel

Given is $\triangle ABC$ with incenter I. Lines AI, BI, and CI are drawn to meet the incircle (I) for the first time in D, E, and F, respectively. Prove that

$$(AB + DE + CF)\sqrt{3}$$

is not less than the perimeter of the triangle of maximum perimeter that can be inscribed in the incircle.

Inequalities: triangles Problems sorted by topic Ladders

PME 368.

by Jack Garfunkel

Given is a triangle ABC with its inscribed circle (I). Lines AI, BI, CI cut the circle in points D, E, F respectively. Prove that

$$AD + BE + CF \ge \frac{\partial DEF}{\sqrt{3}}$$
.

AMM E2716.

by Jack Garfunkel

Let ABC be a triangle with P an interior point. Let A', B', and C' be the points where the perpendiculars drawn from P meet the sides of ABC. Let A'', B'', and C'' be the points where the lines joining P to A, B, and C meet the corresponding sides of ABC. Prove or disprove that

$$A'B' + B'C' + C'A' \le A''B'' + B''C'' + C''A''.$$

OSSMB 76-8.

Suppose BC is the longest side of $\triangle ABC$. Let a point O be chosen anywhere inside the triangle and let AO, BO, CO cut the opposite sides in A', B', C' respectively. Prove that

$$OA' + OB' + OC' < BC.$$

AMM E2517.

by Alex G. Ferrer

Let P be a point interior to the triangle ABC, and let r_1 , r_2 , and r_3 be the distances of P from the sides of the triangle. If p denotes the perimeter of the pedal triangle, show that

$$\sum (r_1 + r_2) \cos \frac{1}{2} C \le p.$$

When does equality occur?

MM Q651.

by Geoffrey Kandall

Given any triangle ABC. Divide BC (respectively, AC, AB) into n equal segments by means of points A_i (respectively, B_i , C_i), i = 1, 2, ..., n-1. Prove that

$$\sum_{i=1}^{n-1} \left\{ (AA_i)^2 + (BB_i)^2 + (CC_i)^2 \right\}$$

$$= \frac{(n-1)(5n-1)}{6n} (a^2 + b^2 + c^2).$$

SPECT 9.5.

by B. G. Eke

The triangle T_1 lies inside the triangle T_2 . Show that the perimeter of T_1 is shorter than that of T_2 .

ISMJ J11.6.

Prove that the sum of the lengths of the legs of a right triangle does not exceed the length of the diagonal of the square on the hypotenuse.

PME 450.

by Clayton W. Dodge

In $\triangle ABC$, let $\angle A \leq \angle B \leq \angle C$. Prove that

$$s \begin{cases} > \\ = \\ < \end{cases} (R+r)\sqrt{3}$$
 if and only if $\angle B \begin{cases} > \\ = \\ < \end{cases} \pi/3$,

where s is the semiperimeter, r the inradius, and R the circumradius of $\triangle ABC$.

PARAB 274.

A triangle has area 1 and sides of length $a,\,b,\,c,$ where $a\geq b\geq c.$ Prove that $b\geq \sqrt{2}.$

FUNCT 2.3.5.

If a side of a triangle is of length less than the average length of the other two sides, show that its opposite angle is less, in magnitude, than the average of the other two angle magnitudes.

TYCMJ 94.

by Martin Berman

Given a, b+c and angle A ($0 < A < \pi$), prove that there exists a triangle ABC if and only if $a < b+c \le a/\sin(A/2)$.

PME 435. by David R. Simonds

Two noncongruent triangles are "almost congruent" if two sides and three angles of one triangle are congruent to two sides and three angles of the other triangle. Clearly two such triangles are similar. Show that the ratio of similarity k is such that $\phi^{-1} < k < \phi$, where $\phi = (1 + \sqrt{5})/2$, the golden ratio.

Isosceles right triangles

CRUX 33.

by Viktors Linis

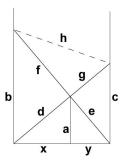
On the sides CA and CB of an isosceles right-angled triangle ABC, points D and E are chosen such that CD=CE. The perpendiculars from D and C on AE intersect the hypotenuse AB in K and L respectively. Prove that KL=LB.

OMG 17.3.7.

The isosceles right triangle EFG in a certain diagram has a vertex at the center of the square ABCD. Determine the area of the common quadrilateral given BC = 7, FG = 8, HD = 2.

Ladders

CRUX 122.


by Jeremy Wheeler

I had leant my ladder up against the side of the house to paint my bedroom window and found that it just reached the bottom of the window. My son was pushing a box around and was just able to get it under the ladder. The box was a 1-meter cube and the ladder was 4 meters long. How high was the bedroom window off the ground?

JRM 793. by Harry L. Nelson

There is an alley between two buildings with ladders extending across the alley from the base of each building to the side of the other. The two ladders are not the same length.

- (a) Find all solutions such that all of the labeled lengths except h are integers and the lengths of the ladders are each less than 200 units.
- (b) Find the solution with the smallest length for the longer ladder such that all lengths, including h, are integers.

Ladders Problems sorted by topic Lattice points: triangles

PME 413.

by R. Robinson Rowe

The new tall building on one side of the alley was vertical, but on the other side the old low building, having settled, leaned toward the alley. Projected, its face would have met the top of the tall building and would have been one foot longer than the height of the tall building. The ladders, unequal in length, rested against the buildings 21 feet above the ground and crossed 12 feet above the ground. How high was the tall building and how wide was the alley?

OSSMB G76.3-3.

The angular elevation of a tower CD at a place A due south of it is 30° and at a place B 100 feet due west of A is 18° . Without the use of tables, find the heights of the tower to the nearest 1/10 foot.

Lattice points: circles

TYCMJ 53. by Sidney Penner

Let h, k, and n be integers and assume that the circle defined by $(x-h)^2 + (y-k)^2 = n$ contains a point with rational coordinates. Prove or disprove that the circle must also contain a lattice point.

Lattice points: collinear points

CRUX 408. by Michael W. Ecker

A zigzag is an infinite connected path in a Cartesian plane formed by starting at the origin and moving successively one unit right or up. Prove or disprove that for every zigzag and for every positive integer k, there exist (at least) k collinear lattice points on the zigzag.

PARAB 342.

Let S be the set of all points in the Cartesian plane whose coordinates (x,y) are both integers such that $0 \le x \le 100$, $0 \le y \le 100$. Show that however one chooses 5 points P_1 , P_2 , P_3 , P_4 , P_5 from S, at least one pair of these points has the property that the straight line through them contains a third point of S (possibly, but not necessarily, another of the chosen points). Does the statement remain true if 5 is replaced by 4?

PARAB 375.

A cornfield has 1000 cornstalks. When the farmer stands at a cornstalk at the corner of the field, he notices that some of the cornstalks line up with the one he is standing at. On closer examination, it turns out that the number of these lines which contain an odd number of other cornstalks is odd. Is this true no matter which cornstalk he stands at?

Lattice points: convexity

CRUX 495. by J. L. Brenner

Let S be the set of lattice points (points having integral coordinates) contained in a bounded convex set in the plane. Denote by N the minimum of two measurements of S: the greatest number of points of S on any line of slope 1, -1. Two lattice points are adjoining if they are exactly one unit apart. Let the n points of S be numbered by the integers from 1 to n in such a way that the largest difference of the assigned integers of adjoining points is minimal. This minimal largest difference we call the discrepancy of S.

- (a) Show that the discrepancy of S is no greater than N+1.
 - (b) Give such a set S whose discrepancy is N + 1.
 - (c)* Show that the discrepancy of S is no less than N.

Lattice points: counting problems

CRUX 275.

by Gilbert W. Kessler

Given are the points P(a,b) and Q(c,d), where a,b,c, and d are all rational. Find a formula for the number of lattice points on segment PQ.

Lattice points: ellipses

AMM E2682.

by Douglas Hensley

Let E be an ellipse in the plane whose interior area $A \geq 1$. Prove that the number n of integer points on E satisfies $n < 6A^{1/3}$.

Lattice points: equilateral triangles

PARAB 398.

Show that there is no equilateral triangle whose vertices are lattice points in the plane.

Lattice points: mappings

AMM E2633.

by Benjamin G. Klein

Two points x and y in \mathbb{Z}^n are said to be neighbors if

$$y - x = \pm e_i$$

for some $i=1,\ldots,n$ (e_1,\ldots,e_n) is the canonical basis of \mathbb{Z}^n). A subset $S\subset\mathbb{Z}^n$ is said to be permutable if there is a bijection $T\colon S\to S$ such that for each $x\in S$, Tx and x are neighbors. Show that if a finite subset $S\subset\mathbb{Z}^n$ is permutable, then $\operatorname{card}(S)$ is even.

Find necessary and sufficient conditions for a subset $S \subset \mathbb{Z}^2$ to be permutable.

Lattice points: maxima and minima

OMG 15.1.2.

What is the greatest number of noncollinear points you can select such that the midpoint of any line joining any pair of selected points is not a lattice point?

Lattice points: *n*-dimensional geometry

TYCMJ 129.

by Warren Page

For any $n^m + 1$ $(n \ge 2)$ lattice points in m-space, prove there is at least one pair of points $\{P,Q\}$ such that (P-Q)/n is a lattice point.

Lattice points: squares

PARAB 397.

The smallest square on a pegboard has unit area.

- (a) Show how to construct squares of areas 8 and 10.
- (b) Prove that it is not possible to construct a square of area 4n + 3, where n is an integer.

Lattice points: triangles

PARAB 392.

Prove that, out of any 9 lattice points, it is always possible to choose 3 with the property that the center of gravity of the triangle formed by them is also a lattice point.

Problems sorted by topic Limiting figures Locus: equal distances

Limiting figures

CRUX 422. by Dan Pedoe

The lines l and m are the parallel edges of a strip of paper and P_1, Q_1 , are points on l and m, respectively. Fold P_1Q_1 along l and crease, obtaining P_1Q_2 as the crease. Fold P_1Q_2 along m and crease, obtaining P_2Q_2 . Fold P_2Q_2 along l and crease, obtaining P_2Q_3 . If the process is continued indefinitely, show that the triangle $P_n P_{n+1} Q_{n+1}$ tends towards an equilateral triangle.

AMM 6062. by B. H. Voorhees

Consider an infinite sequence of regular n-gons such that each (n+1)-gon is contained within the preceding ngon and is of maximal area consistent with this constraint. Take the first element of this sequence as an equilateral triangle having unit area. Is the limit of this sequence a point or a circle? If it is a circle, determine its area.

CRUX 416. by W. A. McWorter Jr.

Let A_0BC be a triangle and a a positive number less than 1. Construct P_1 on A_0B so that $A_0P_1/A_0B = a$. Construct A_1 on P_1C so that $P_1A_1/P_1C=a$. Inductively construct P_{n+1} on $A_n B$ so that $A_n P_{n+1} / A_n B = a$ and construct A_{n+1} on $P_{n+1}C$ so that $P_{n+1}A_{n+1}/P_{n+1}C = a$. Show that all the P_i are on a line and all the A_i are on a line, the two lines being parallel.

Locus: angles

OSSMB G76.3-4.

Two straight lines meet at a fixed point A so that the angle formed is a fixed angle, θ . The lines at A are intersected by a third line at K and L such that KL is of fixed length. Describe the locus of the center of the circumcircle to $\triangle AKL$.

SSM 3781. by Michael Brozinsky

An immortal ant starts at A, crawls along a perpendicular to radius OB, then along a perpendicular to radius OA, then along a perpendicular to OB again, and so on ad infinitum. Find the distance covered by the ant if $\angle AOB = 30^{\circ}$ and OA has length 1 inch.

Locus: circles

CANADA 1976/4.

Let AB be a diameter of a circle, C be any fixed point between A and B on this diameter, and Q be a variable point on the circumference of the circle. Let ${\cal P}$ be the point on the line determined by Q and C for which $\frac{AC}{CB} = \frac{QC}{CP}$. Describe, with proof, the locus of the point P.

OSSMB G75.3-3.

The circle $x^2 + y^2 = r^2$ and points B(m, 0), C(n, 0),with $m + n \neq 0$, are given. Let Q and R be the ends of an arbitrary diameter of the circle and let QB and RC intersect at P. Determine the locus of P.

CRUX 177. by Kenneth S. Williams

Let P be a point on the diameter AB of a circle whose center is C. On AP and BP as diameters, circles are drawn. The point Q is the center of a circle that touches these three circles. What is the locus of Q as P varies?

USA 1976/2.

If A and B are fixed points on a given circle and XY is a variable diameter of the same circle, determine the locus of the point of intersection of lines AX and BY. You may assume that AB is not a diameter.

PME 447. by Zelda Katz

A variable circle touches the circumferences of two internally tangent circles.

- (a) Show that the center of the variable circle lies on an ellipse whose foci are the centers of the fixed circles.
- (b) Show that the radius of the variable circle bears a constant ratio to the distance from its center to the common tangent of the fixed circles.
- (c) Show that this constant ratio is equal to the eccentricity of the ellipse.

OSSMB G78.1-4.

A wheel of radius R with its center at the origin rotates in the xy-plane. A rod of length 2R has one end pivoted at the rim of the wheel and the other end is free to move along the positive x-axis. Find the equation of the locus traced by the midpoint of the rod.

SPECT 7.7.

Distinct points L and M are given in the plane, and k is a real number such that $0 < \bar{k} < 1$. Then the locus of all points X in the plane, such that LX/MX = k, is a circle (Apollonius' Circle). A tangent is drawn through Mto touch the circle at T. Show that $\angle TLM = 90^{\circ}$.

Locus: conics

CRUX 370. by O. Bottema

If K is an inscribed or escribed conic of the given triangle $A_1A_2A_3$, and if the points of contact on A_2A_1 , A_3A_1 , and A_1, A_2 are T_1, T_2 , and T_3 , respectively, then it is well-known that A_1T_1 , A_2T_2 , and A_3T_3 are concurrent in a point S. Determine the locus of S if K is a parabola.

Locus: ellipses

SSM 3777. by Irwin K. Feinstein Consider the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ with foci F_1 and F_2 . Let P be a point on the ellipse, ℓ be the tangent to the ellipse at P, and Q be the foot of the perpendicular from F_2 to ℓ . As P moves around the ellipse, describe the motion of Q.

NYSMTJ 60.

When a carpenter's square is rotated around a circle in such a way that the two sides remain tangent to the circle, a pen held at the vertex of the right angle would trace a circle concentric with the original circle. When the same process is completed, starting with an ellipse, what is traced out?

Locus: equal distances

OSSMB G76.1-2.

Find the equation of the locus of a point that moves so that it is always equidistant from the line x + 3 = 0, and the circle $x^2 + y^2 = 25$.

Locus: equilateral triangles Problems sorted by topic Maxima and minima: angles

Locus: equilateral triangles

OSSMB G77.2-6.

The sum of the squares of the distances of a moving point from the sides of a fixed equilateral triangle is a constant. Identify the locus of the point and find its equation.

Locus: lines

SSM 3788. by Michael Brozinsky

Describe the locus of points in the plane the sum of the squares of whose distances from n distinct straight lines is a constant k (where k is such that the locus is real).

Locus: linkages

CRUX 479. by G. P. Henderson

A car, of wheelbase L makes a left turn in such a way that the locus of A, the point of contact of the left front wheel, is a circle of radius R > L. B is the point of contact of the left rear wheel. Before the turn, the car was traveling in a straight line with A moving toward the circle along a tangent. Find the locus of B.

JRM 472. by Friend H. Kierstead, Jr.

A garage door is divided into two sections: A is hinged to the garage at one end and to section B at the other. The other end of B slides in tracks at top and bottom of the garage opening. Describe mathematically the curve traced by the bottom of the garage door when opened after a snowstorm.

Locus: midpoint

OSSMB G75.1-4.

Let P and Q be any 2 points on the lines represented by 2x-3y=0 and 2x+3y=0 respectively. Let O be the origin. Find the locus of the midpoint of PQ, given that the area of $\triangle POQ$ is 5.

Locus: rotating lines

PME 436.

by Carl Spangler and Richard A. Gibbs

Let P_1 and P_2 be distinct points on lines L_1 and L_2 , respectively. Let L_1 and L_2 rotate about P_1 and P_2 , respectively, with equal angular velocities. Describe the locus of their intersection.

Locus: triangles

OSSMB G76.1-1.

Triangle ABC has a base AB of length k and C is such that $\angle CAB = 2\angle CBA < 120^\circ$. Find the equation of the locus of C.

NAvW 415. by O. Bottema

A focal curve is defined as a plane cubic curve c passing through the isotropic points J_1 , J_2 and such that the intersection of the tangents at J_1 and J_2 (the principal focus of c) is on c.

Let P_1 and P_2 be two points, isogonally conjugate with respect to a given triangle such that their midpoint M is on a given line ℓ . Prove that the locus of P_1 and P_2 is a focal curve.

NAvW 504.

by O. Bottema

In the plane U, a triangle $A_1A_2A_3$ and a point M are given, such that M does not lie on the line through A_i parallel to the opposite side $(i=1,2,3); k_1, k_2$, and k_3 are three given real numbers $(k_i \neq 0, k_i \neq 1, i=1,2,3)$.

Each point P in U is associated with three points P_1 , P_2 , and P_3 in the following way: If the line ℓ_i through P parallel to A_iU intersects the opposite side of A_i at S_i , then P_i lies on ℓ_i such that $P_iS_i = k_iPS_i$ (i = 1, 2, 3).

- (a) Determine the locus of P if P_1 , P_2 , and P_3 are collinear.
- (b) Determine the locus of P if the six points A_i , P_i are on a conic.

NAvW 436.

by O. Bottema and M. C. van Hoorn

Let P be a point in the plane of a given triangle ABC, P' the isogonal conjugate of P with respect to ABC, L_1 the line PP', L_2 the trilinear polar (or harmonical) of P with respect to ABC. Show that the locus of the points P such that L_1 and L_2 are perpendicular is a quintic curve, with nodes at the vertices of ABC, passing through the isotropic points, through the incenter and the three excenters, through the centroid, through the orthocenter, and through the vertices of the pedal triangle of the orthocenter

NAvW 535. by O. Bottema

In a Euclidean plane, a triangle ABC and a line ℓ are given. The points P and P' are isogonal conjugates with respect to the triangle. Determine the locus of the point P such that the line PP' is parallel to ℓ .

CRUX 450. by A. Liu

Triangle ABC has a fixed base BC and a fixed inradius. Describe the locus of A as the incircle rolls along BC. When is AB of minimal length?

PARAB 424.

A triangle ABC is given in the xy-plane. Now, O is the origin, the point P moves along the line x=1, and the point Q is determined so that the triangles ABC and OPQ are similar (that is, $\angle QOP = \angle CAB$ and $\angle QPO = \angle CBA$). Describe the motion of Q as P moves.

Map problems

USA 1978/2.

Given are ABCD and A'B'C'D', square maps of the same region, drawn to different scales and superimposed. Prove that there is only one point O on the small map which lies directly over point O' of the large map such that O and O' each represent the same place of the country. Also, give a Euclidean construction for O.

Maxima and minima: angles

PUTNAM 1976/A.1.

Given an interior point P of the angle whose sides are the rays OA and OB. Locate X on OA and Y on OB so that the line segment \overline{XY} contains P and so that the product of distances (PX)(PY) is a minimum.

Maxima and minima: angles Problems sorted by topic Maxima and minima: rectangles

JRM 504.

by Robert Walsh

A spherical planet of radius r has a satellite ring in the plane of its equator extending from altitude h_1 to h_2 . To an observer on the planet, at what latitude will the ring appear widest?

Maxima and minima: circular arcs

ISMJ J10.14.

An equilateral triangle and a square are inscribed in the same circle in such a way that no vertices of the triangle and the square coincide. Show that among the seven circular arcs thus obtained, there will always be at least one that is not longer than 1/24 of the circumference of the circle. How many such arcs can there be?

MM 976.

by Miller Puckette and Steven Tschantz

A road is to be built connecting two towns separated by a river whose banks are concentric circular arcs. If the road must bridge the river banks orthogonally, describe the minimum length road (assuming coplanarity).

Maxima and minima: collinear points

OSSMB 76-10.

Given n points x_1, x_2, \ldots, x_n on a line, find the point x on the line at which the sum S of the distances from the n given points is a minimum.

Maxima and minima: convex hull

JRM 427. by Susan Laird

How should five circles with radii 1, 2, 3, 4, and 5 be arranged with respect to each other so as to minimize the area of their convex hull?

Maxima and minima: equilateral triangles

DELTA 5.2-2. by Walter Rudin DELTA 6.1-2. by Walter Rudin

Let $A,\ B,$ and C be the vertices of an equilateral triangle. Denote the triangle together with its interior by \triangle . Define

$$f(P) = AP \cdot BP \cdot CP, \quad P \in \triangle.$$

The compactness of \triangle shows that f attains its maximum at some point $P_0 \in \triangle$. "By symmetry", P_0 is the center of \triangle . Is it true or false? Find the largest value of f on \triangle .

Maxima and minima: isosceles triangles

PENT 284. by Kenneth M. Wilke

Given two sides of an isosceles triangle, what is the length of the third side which produces the maximum area?

NYSMTJ 85. by Alan Wayne

Let ABC be an isosceles triangle ($\angle B = \angle C$) with an inscribed square having one of its sides on segment BC. Find the measure of $\angle A$ for which the ratio of the area of the inscribed square to that of $\triangle ABC$ is a maximum.

Maxima and minima: line segments

JRM 464. by C. F. White and N. R. White

Find the maximum area definable by the outer extremities of four line segments of lengths 1, 2, 3, and 4 units radiating from a common point.

Maxima and minima: paths

PENT 276. by Kenneth M. Wilke

A class of school children were to run an unusual race. In the school yard there were two flagpoles, one located 60 feet due south of the wall of the building and the other located 90 feet due southeast from the first pole. Each child starts at the first pole, runs to any point in the wall, makes a chalk mark on the wall, and then runs to the other pole. One child's time was much better than any other's. Assuming that all the children ran equally fast, what path did the winner take?

Maxima and minima: quadrilaterals

PENT 291.

by Leigh James

Prove that the quadrilateral having sides $a,\,b,\,c,$ and d has maximum area when the quadrilateral is cyclic.

Maxima and minima: rectangles

CRUX 427.

by G. P. Henderson

A corridor of width a intersects a corridor of width b to form an "L". A rectangular plate is to be taken along one corridor, around the corner and along the other corridor with the plate being kept in a horizontal plane. Among all the plates for which this is possible, find those of maximum area.

ISMJ 13.6.

A man has 100 feet of fence with which he wants to enclose a rectangular garden plot of as great an area as possible. What is the greatest area?

JRM 500. by Sherry Nolan

- (a) A man died at age 80, leaving his land to his four sons. His will stated the following: "My sons are to receive nonoverlapping rectangular plots of land with the following characteristic: Each plot will contain the same odd number of square units of area, and its units in length shall exceed its units in width by the age of the son who receives it." If it is known that each son is of a different age, and if all ages and edges are to be measured in whole numbers, what is the smallest rectangular area in which the plots can be contained?
- (b) Can the four plots be contained in a square 48.5 units on a side?

JRM 731. by Frank Rubin

The high priests of Heterodoxy have ordered the building of a new temple. It will be rectangular on a single level, and will have several (two or more) rectangular interior rooms. To maximize heterogeneity, no room may have any dimension in common with any other room; i.e., if there are k rooms, the dimensions of the rooms must be 2k distinct integers.

You have been hired to build the temple for a fixed fee. To maximize your profit, you wish to minimize the total floor area of the temple. What floor plan should you adopt?

OSSMB 79-11.

A chord of length $\sqrt{3}$ divides a circle of unit radius into two regions. Find the rectangle of maximum area that can be inscribed in the smaller region.

Maxima and minima: regular polygons Problems sorted by topic Maxima and minima: triangles

Maxima and minima: regular polygons

AMM E2632. by Azriel Rosenfeld

Define the discrepancy d(A, B) between two plane geometric figures to be the area of their symmetric difference. Let A be a circle of radius r. Determine the inradius of the regular n-gon B for which d(A, B) is minimal.

Maxima and minima: right triangles

MM 947. by Steve Moore and Mike Chamberlain

A line through the point (a, b) which is in the first quadrant forms a right triangle with the positive coordinate axes. Find the equation of the line that forms the triangle with minimum perimeter.

Maxima and minima: semicircles

OSSMB 76-4.

A semicircle is drawn outwardly on chord AB of the unit circle with center O. Prove that the point C on this semicircle that sticks out of the given circle the farthest is on the radius OD that is perpendicular to AB.

The farther AB is moved from the center O, the smaller it gets, accordingly yielding a smaller semicircle. Determine the chord AB that makes OC a maximum.

Maxima and minima: shortest paths

JRM 603. by Fred Walbrook

While driving in the first Quadrant, A. Point allowed his engine to overheat and found himself at (5,2) without water in his radiator or oil in his crankcase. The nearest water was in the x-axis river and the nearest oil in the y-axis pipeline. Toting a couple of containers he took the shortest hike necessary to replenish his crankcase and radiator. What was his route?

PARAB 407.

Let ℓ be a given line and let A and B be two points on the same side of ℓ . Find the point P on ℓ with the property that the sum of the distances AP and PB is as small as possible.

MM 1083. by M. S. Klamkin and A. Liu

Given an equilateral point lattice with n points on a side, it is easy to draw a polygonal path of n segments passing through all the n(n+1)/2 lattice points. Show that it cannot be done with less than n segments.

MSJ 501.

Mr. Geo. Metric walks diagonally from one corner of a rectangular parking lot to the opposite corner. Due to the angular parking of cars in two strips of width 3 m, he can walk in these strips only in the SW direction. The lot is 48 m wide and 60 m long. Find the minimal distance he must walk.

Maxima and minima: solid geometry

IMO 1979/4.

Given a plane π , a point P in this plane and a point Q not in π , find all points R in π such that the ratio (QP + PR)/QR is a maximum.

SSM 3683. by Herta T. Freitag

A familiar elementary calculus problem requires determination of the open-top, square prism of largest volume which can be obtained by cutting congruent squares from each corner of a square cardboard and bending up the remaining flaps. Generalize this problem by letting the cardboard be any regular n-sided polygon, $n \geq 3$.

Maxima and minima: thumbtacks

MM 996. by Richard A. Gibbs

Suppose thumbtacks are used to tack congruent square sheets of paper to a large bulletin board subject to the following conditions:

- (i) the sides of the sheet are parallel to the sides of the bulletin board:
- (ii) each sheet has exactly four thumbtacks, one in each corner; and
- (iii) the sheets may overlap slightly so that one thumbtack could secure a corner of from one to four sheets.
- (a) Find, in terms of n, the minimum number of thumbtacks required to tack n such sheets.
- (b) For a given n, find the number of distinct minimal arrangements.
- (c) Can the problem be generalized to hypercubes and hyperthumbtacks in three or more dimensions?

Maxima and minima: triangles

MM 955. by Charles F. White

For three line segments of unequal lengths a, b, and c drawn on a plane from a common point, characterize the proper angular positions such that the outer endpoints of the line segments define the maximum-area triangle. Show how to approximate the exact values of the angles for a=3, b=4, and c=5.

FUNCT 3.2.8.

Prove that amongst all the triangles of a given perimeter, the equilateral triangle has the largest area.

PME 405. by Norman Schaumberger

Locate a point P in the interior of a triangle such that the product of the three distances from P to the sides of the triangle is a maximum.

TYCMJ 140. by Norman Schaumberger

Locate a point P in the interior of a triangle such that the sum of the squares of the distances from P to the sides of the triangle is a minimum.

JRM 565. by Archimedes O'Toole

- (a) Given a triangle with sides 3, 4, and 5, what is the smallest perimeter a triangle can have and not fit within it?
 - (b) What if the sides are 4, 4, and 4?
- (c) Given a triangle with sides a, b, and c, what is the smallest perimeter a triangle can have and not fit within it?

NYSMTJ OBG8. by Alan Wayne

In what type of triangle is the ratio of the area of the inscribed square to that of the triangle a maximum?

n-dimensional geometry: 4-space

Problems sorted by topic

n-dimensional geometry: volume

n-dimensional geometry: 4-space

ISMJ 12.19.

Show that a plane in 4-space does not have two sides by constructing a square whose edges surround the plane.

ISMJ 12.20.

Describe or make a picture of the three dimensional map of a 4-cube.

ISMJ 12.22.

The four dimensional "volume" or content of a 4-cube is the fourth power of its side. Can you find the content of a regular 4-simplex?

n-dimensional geometry: convexity

AMM 6098. by Peter L. Renz

Let A be the group of affine bijections from \mathbb{R}^n to \mathbb{R}^n . For any subset S of \mathbb{R}^n , define A(S) to be the subgroup of A that takes S onto itself. A convex body is a compact convex set with nonempty interior. We say a convex body K in \mathbb{R}^n is maximally symmetric if A(K) is not properly contained in A(L) for any convex body L in \mathbb{R}^n . Characterize the maximally symmetric convex bodies in \mathbb{R}^n .

n-dimensional geometry: curves

SIAM 75-21.

by I. J. Schoenberg

In \mathbb{R}^n , we consider the curve

$$\Gamma: x_i = \cos\left(\lambda_i t + a_i\right),\,$$

 $i=1,\ldots,n,\ -\infty < t < \infty,$ which represents an n-dimensional simple harmonic motion entirely contained within the cube $U:-1\leq x_i\leq 1,\ i=1,\ldots,n.$ We want Γ to be truly n-dimensional and will therefore assume without loss of generality that $\lambda_i>0$ for all i. We consider the open sphere

$$S: \sum_{i=1}^{n} x_i^2 < r^2$$

and want the motion of the first equation to take place entirely outside of S, hence contained in the closed set U-S. What is the largest sphere S such that there exist motions Γ entirely contained in U-S? Show that the largest such sphere S_0 has the radius $r_0 = \sqrt{n/2}$, and that the only motions Γ within $U-S_0$ lie entirely on the boundary $\sum x_i^2 = r_0^2$ of S_0 .

n-dimensional geometry: inequalities

CMB P244. by P. Erdős and M. S. Klamkin

Let P denote any point within or on a given n-dimensional simplex $A_1, A_2, \ldots, A_{n+1}$. The point P is "reflected" across each face of the simplex along rays parallel to the respective medians to each face producing an associated simplex $A'_1, A'_2, \ldots, A'_{n+1}$ (PA'_i is parallel to the median from A_i and is bisected by the face opposite A_i). Show that

$$n^n \text{Volume}(A'_1, A'_2 \dots, A'_{n+1})$$

 $\leq 2^n \text{Volume}(A_1, A_2, \dots A_{n+1})$

with equality if and only if P is the centroid of the given simplex.

SIAM 78-20.

by M. S. Klamkin

The lines joining the vertices $\{V_i\}$, $i=0,1,\ldots,n$ of a simplex S to its centroid G meets the circumsphere of S again in points $\{V_i'\}$, $i=0,1,\ldots,n$. Prove that the volume of simplex S' with vertices V_i' is \geq the volume of S.

n-dimensional geometry: simplexes

AMM E2548.

by Murray S. Klamkin

Let A_0, A_1, \ldots, A_n be distinct points of n-space that lie within a hyperplane. Suppose that these points are parallel projected into another hyperplane and that their images are B_0, B_1, \ldots, B_n , respectively. Prove that for any $r = 0, 1, \ldots, n$, the volumes of the simplexes spanned by $A_0, A_1, \ldots, A_r, B_{r+1}, B_{r+2}, \ldots, B_n$ and by $B_0, B_1, \ldots, B_r, A_{r+1}, A_{r+2}, \ldots, A_n$ are equal.

CRUX 224. by M. S. Klamkin

Let P be an interior point of a given n-dimensional simplex with vertices $A_1, A_2, \ldots A_{n+1}$. Let $P_i (i=1,2,\ldots,n+1)$ denote points on $A_i P$ such that $A_i P_i / A_i P = 1/n_i$. Finally, let V_i denote the volume of the simplex cut off from the given simplex by a hyperplane through P_i parallel to the face of the given simplex opposite A_i . Determine the minimum value of $\sum V_i$ and the location of the corresponding point P.

AMM E2674.

by G. Tsintsifas

Let

$$S = \{A_0, A_1, \dots, A_n\}$$

and

$$S' = \{A'_0, A'_1, \dots, A'_n\}$$

be regular *n*-simplices such that A'_i lies on the face

$$\{A_0,\ldots,A_{i-1},A_{i+1},\ldots,A_n\}$$

of $S, 0 \le i \le n$. Is it true that the centroids of S and S' coincide?

AMM E2657.

by G. Tsintsifas

Let $\mathcal{A} = A_0 A_1 \dots A_n$ and $\mathcal{B} = B_0 B_1 \dots B_n$ be regular simplices in \mathbb{R}^n . Assume that the *i*th vertex of \mathcal{B} lies on the *i*th face of \mathcal{A} , $0 \le i \le n$. What is the minimal value of their similarity ratio λ ($\lambda \mathcal{A}$ congruent to \mathcal{B} , $\lambda > 0$)?

n-dimensional geometry: volume

NAvW 531.

by W. A. J. Luxemburg

Determine the volume of the body S in \mathbb{R}^n $(n \geq 2)$ determined by the set of points $y = (y_1, y_2, \dots, y_n)$, satisfying

$$y_k = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

$$(0 \le x_1 < x_2 < \dots < x_n \le 1 \text{ and } k = 1, 2, \dots, n).$$

AMM E2701.

by Richard Stanley

Find the volume of the convex polytope determined by

$$x_i \ge 0, \qquad 1 \le i \le n,$$

and

$$x_i + x_{i+1} \le 1, \qquad 1 \le i \le n-1.$$

Non-Euclidean geometry

Problems sorted by topic

Paper folding: rectangles

Non-Euclidean geometry

AMM S2.

by H. S. M. Coxeter

In the hyperbolic plane, the locus of a point at constant distance δ from a fixed line (on one side of the line) is one branch of an "equidistant curve" (or "hypercycle"). In Poincaré's half-plane model, this curve can be represented by a ray making a certain angle with the bounding line of the half-plane. Show that this angle is equal to $\prod(\delta)$, the angle of parallelism for the distance δ .

AMM E2680. by Jerrold W. Grossman

Let ABCD be a convex quadrilateral in the hyperbolic plane. Assume that AD=BC and that

$$\angle A + \angle B = \angle C + \angle D.$$

Does AB = CD follow from these hypotheses?

Octagons

PUTNAM 1978/B.1.

Find the area of a convex octagon that is inscribed in a circle and has four consecutive sides of length 3 units and the remaining four sides of length 2 units. Give the answer in the form $r+s\sqrt{t}$ with r,s and t positive integers.

MSJ 448. by Steven R. Conrad

Find the area of an equiangular octagon, the lengths of whose sides are alternately 1 and $\sqrt{2}$.

MM 925.

by Julius G. Baron and Thomas E. Elsner

- (a) Prove that any non-self-intersecting cyclic octagon is such that the sum of any four nonadjacent interior angles is 3π .
- (b) An octagon is inscribed in a circle with vertices on any four diameters. Show that each alternate pair of exterior angles is complementary.

Packing problems

AMM E2524.

by T. H. Foregger

Show that 41 $1 \times 2 \times 4$ bricks can be packed into a $7 \times 7 \times 7$ box. Is there a packing of 42 such bricks into this box?

AMM E2774.* by James Propp

Prove or disprove that given a convex two-dimensional figure S, six translates of S can fit inside a homothetic figure three times as large as S in linear dimensions.

CMB P276. by H. S. M. Coxeter

Find the radius of the smallest circle inside which discs of radius 1/n (n = 1, 2, 3, ...) can all be packed.

OSSMB 75-15.

Circles of unit radius are packed, without overlapping of interior points, in a strip S of the plane whose parallel edges are a distance w apart. We say the circles form a k-cloud if every straight line that cuts across S makes contact with at least k circles. Prove that for a 2-cloud $w \ge 2 + \sqrt{3}$.

CRUX 135. by Steven R. Conrad

How many 3×5 rectangular pieces of cardboard can be cut from a 17×22 rectangular piece of cardboard so that the amount of waste is a minimum?

Paper folding: algorithms

AMM S4.

by Richard K. Guy

In order to store a given length L of paper tape in an accessible way, I choose a length, λ , and an even integer, 2n, so that $2n\lambda = L$. I then screenfold the tape with n "odd" folds in one sense at distances $f_1, f_3, \ldots, f_{2n-1}$ along the tape, and n-1 "even" folds, in the other sense, at distances $f_2, f_4, \ldots, f_{2n-2}$. The ends of the tape are $f_0 = 0$ and $f_{2n} = L = 2n\lambda$. I try to arrange that the quantities $f_{i+1} - f_i = \lambda_i$, $0 \le i \le 2n-1$, are each equal to λ , but in practice this rarely happens, so I then endeavor to improve the situation by lining up the ends and the even folds, f_0, f_2, \ldots, f_{2n} and recreasing the odd folds at $f_1', f_3', \ldots, f_{2n-1}'$, so that hopefully better approximations, λ_i' to λ_i are produced, namely, $\lambda_i' = \lambda_{i+1}' [= (\lambda_i + \lambda_{i+1})/2]$ for $i = 0, 2, \ldots, 2n-2$. I then line up the odd folds and recrease the even ones, giving $\lambda_{i-1}'' = \lambda_i'' \left[= \left(\lambda_{i-1}' + \lambda_i'\right)/2\right]$ for $i = 2, 4, \ldots, 2n-2$. I then repeat the process. Does it terminate or even converge?

Paper folding: cubes

JRM 628.

by Henry Larson

A 9×12 sheet of paper is to be cut down into a pattern (consisting of a single piece) that can be folded into a cube. Find the largest cube that can be obtained, given that the pattern:

- (a) consists of six squares;
- (b) has arbitrary shape.

Paper folding: equilateral triangles

PARAB 399.

Show how to construct an equilateral triangle by folding a single (rectangular) sheet of paper. No rulers, compasses, or separate sheets for measuring are to be used.

SSM 3768. by Charles W. Trigg

The paper triangle ABC is equilateral with sides of length a. Vertex A is brought into contact with point D and BC, and the paper is flattened to form a crease EF, with E on AB and F on AC. If DF is perpendicular to BC, find

- (a) the length of EF in terms of a; and
- (b) the areas of triangles BED, DEF, and DFC in terms of a.

OSSMB 78-2.

A piece of paper in the shape of an equilateral triangle ABC is creased along a line XY, X on AB and Y on AC, so that A falls on some point D on BC. Show that the triangles XBD and DCY are similar. If AB = 15 and BD = 3, what is the length of the crease XY?

Paper folding: rectangles

SSM 3637.

by Charles W. Trigg

A rectangular sheet of paper, ABCD, has the dimension AB = CD = x and BC = DA = y. The point E is located on CD so that angle BEC is 60° . The sheet is folded along BE so that C assumes a new position C'. The sheet is folded again so that a crease runs along EC' and meets DA in F. When a third fold along BF is made, AF falls along FE.

- (a) Express y in terms of x.
- (b) What are the lengths of the creases?
- (c) What are the areas of the parts into which the creases divide the rectangle?
- (d) Check your results by determining the sines of three angles using the computed dimensions.

Paper folding: regular pentagons

Problems sorted by topic

Pentagons

Paper folding: regular pentagons

SSM 3661. by Alan Wayne

A piece of paper has the shape of a regular pentagon. The paper is folded over once and creased flat so that a vertex of the pentagon coincides with the midpoint of that side which is farthest from the vertex. Show that the length of the crease is one and a half times the length of a side of the pentagon.

Paper folding: regular polygons

CRUX 350

by W. A. McWorter, Jr.

What regular n-gons can be constructed by paper folding?

Paper folding: squares

CRUX 292.

by Charles W. Trigg

Fold a square piece of paper to form four creases that determine angles with tangents of 1, 2, and 3.

Paper folding: strips

MSJ 464.

A strip of adding machine tape is folded making an angle A_0 of 80° with the bottom edge of the tape. Angles A_1, A_2, A_3, \ldots are formed by successive folds of the edges of the tape to the creases previously obtained (and thereby halving the respective angles). Find the measure of A_{100} .

Parabolas

OSSMB G78.1-3.

Let P, Q, R be three points on a parabola such that their distances from the axis of the parabola are in geometric progression. Show that the tangents to the parabola at P and R meet on the line through Q perpendicular to the axis.

OSSMB G79.1-2.

A chord y=mx+b intersects a parabola $y^2=4px$ at $P_1(x_1,y_1)$ and $P_2(x_2,y_2)$. Find the coordinates of P, a point on the parabola, such that $\triangle PP_1P_2$ has maximum area.

NYSMTJ 94. by H. O. Eberhart

A nonaxial line passing through the focus of a parabola intersects it in two points, P and Q. Show that

- (a) the tangent at P is perpendicular to the tangent at Q;
 - (b) these tangents intersect on the directrix.

CRUX 445. by Jordi Dou

Consider a family of parabolas escribed to a given triangle. To each parabola corresponds a focus F and a point S of intersection of the lines joining the vertices of the triangle to the points of contact with the opposite sides. Prove that all lines FS are concurrent.

Parallelograms

TYCMJ 153. by K. R. S. Sastry

Let $c \in (0,1)$ be given and $A_1A_2A_3A_4$ be a parallelogram of one unit area with $E_i \in A_iA_{i+1}$ such that $A_iE_i/E_iA_{i+1} = c$, $(i = 1, 2, 3, 4; A_5 = A_1)$. Set $A_iE_{i+1} \cap A_{i+1}E_{i+2} = P_i$, $(i = 1, 2, 3, 4; A_5 = A_1, E_5 = E_1, E_6 = E_2)$. Determine the area of quadrilateral $P_1P_2P_3P_4$.

NYSMTJ 74. NYSMTJ OBG3.

by Norman Gore by Norman Gore

In parallelogram ABCD, L and M are interior points of sides AD and BC respectively. Let $P = \overline{BL} \cap \overline{AM}$ and $Q = \overline{MD} \cap \overline{CL}$. If the line determined by P and Q is parallel to line AD, show that it bisects ABCD.

CRUX 139. by Dan Pedoe

Let ABCD be a parallelogram, and suppose a circle γ touches AB and BC and intersects AC in the points E and F. Show that there exists a circle δ which passes through E and F and touches AD and DC.

NYSMTJ OBG1. by Norman Schaumberger

Let ABCD be a parallelogram. If a circle passes through A and cuts segments AB, AC, and AD at points P, Q, and R respectively, then prove that

$$AP \times AB + AR \times AD = AQ \times AC.$$

TYCMJ 117. by Norman Schaumberger

Let E be the intersection of the diagonals of a parallelogram ABCD, and let P and Q be points on a circle with center E. Prove that

$$PA^{2} + PB^{2} + PC^{2} + PD^{2} = QA^{2} + QB^{2} + QC^{2} + QD^{2}.$$

CRUX 322. by Harry Sitomer

In parallelogram ABCD, $\angle A$ is acute and AB=5. Point E is on AD with AE=4 and BE=3. A line through B, perpendicular to CD, intersects CD at F. If BF=5, find EF.

NYSMTJ 43.

Given perpendicular rays \overrightarrow{AB} and \overrightarrow{AC} , let \overrightarrow{PQ} be any segment with an endpoint on each ray (other than A). Let X be the point of intersection of the bisectors of the exterior angles at P and Q of $\triangle APQ$. Introduce segments \overrightarrow{XM} and \overrightarrow{XN} perpendicular to rays \overrightarrow{AB} and \overrightarrow{AC} , respectively. Prove that parallelogram ANXM is a square.

SSM 3754. by Fred A. Miller

If θ is the angle between the diagonals of a parallelogram whose sides a and b are inclined at an angle α to each other, show that

$$\tan \theta = \frac{2ab \sin \alpha}{a^2 - b^2} \ .$$

Pentagons

CRUX 232. by Viktors Linis

Given are five points A, B, C, D, and E in the plane, together with the segments joining all pairs of distinct points. The areas of the five triangles BCD, EAB, ABC, CDE, and DEA being known, find the area of the pentagon ABCDE.

PME 383. by Norman Schaumberger

Find a pentagon such that the sum of the squares of its sides is equal to four times its area.

Geometry

Perspective drawings Problems sorted by topic Points in plane: partitions

Perspective drawings

CRUX 406. by W. A. McWorter Jr.

The figure shows an unfinished perspective drawing of a railroad track with two ties drawn parallel to the line at infinity. Can the remaining ties be drawn, assuming that the actual track has equally spaced ties?

MM 980. by Peter Ungar

Show that in a perspective drawing of a straight railroad track which is at right angles to the image plane, the reciprocals of the images of the ties form an arithmetic progression.

Point spacing

CRUX 405. by Viktors Linis

A circle of radius 16 contains 650 points. Prove that there exists an annulus of inner radius 2 and outer radius 3 that contains at least 10 of the given points.

ISMJ J11.11.

Given a circle of radius 1, show that of any seven points on its perimeter at least two must be at a distance from each other of less than 1.

PUTNAM 1978/A.6.

Let n distinct points in the plane be given. Prove that fewer than $2n^{3/2}$ pairs of them are unit distance apart.

DELTA 6.1-3. by Anthony Biagioli PARAB 324.

Given five points in a square with side a, show that two of them are within $a/\sqrt{2}$ of each other.

SIAM 78-13.* by T. D. Rogers

Given n points distributed uniformly in the unit circle, associate with each such point the region in the circle whose points are closer to it than the remaining n-1 a priori given points. If $A_1 \leq A_2 \leq \cdots \leq A_n$ is the ordered enumeration of the areas of these regions, what are the expected values of the A_i 's?

JRM 554. by Sidney Kravitz

The town council of Erewhon proposes to relocate its 24 fire companies according to the following scheme: The square map of Erewhon is to be octasected by the two diagonals and the two segments connecting midpoints of opposite sides, and each of the eight interior half-segments divided into four equal segments by three points. Each fire company is then to be located at one of these 24 points, with the closest company responsible for handling a fire. Under this scheme, the areas of responsibility are to be as in a certain diagram. The firemen of Erewhon oppose this scheme and favor any plan that would ensure that the largest relative discrepancy in area between two regions be as small as possible. If, along each of the eight interior half-segments, the three fire companies may be spaced arbitrarily, what scheme comes closest to satisfying the firemen?

Points in plane: broken lines

MSJ 472.

Nine points, no two of which are the same distance apart, are given in a plane. Prove that if each point is connected to its nearest neighbor, then the line segments do not intersect one another except possibly at the endpoints.

PARAB 383.

Let n points be given in the plane. Show that the shortest broken line connecting the points does not cross itself.

Points in plane: circles

AMM E2746.

by George F. Shumm

Let A_1, \ldots, A_n be distinct noncollinear points in the plane. A circle with center P and radius r is called minimal if $A_k P \leq r$ for all k and equality holds for at least three values of k.

If A_1, \ldots, A_n vary (*n* being fixed), what is the maximum number of minimal circles?

CRUX 165. by Dan Eustice

Prove that, for each choice of *n* points in the plane (at least two distinct), there exists a point on the unit circle such that the product of the distances from the point to the chosen points is greater than one.

Points in plane: distances

CRUX 233. by Viktors Linis

The three points (1), (2), (3) lie in this order on an axis, and the distances [1,2]=a and [2,3]=b are given. Points (4) and (5) lie on one side of the axis, and the distance [4,5]=2c>0 and the angles $(415)=v_1$, $(425)=v_2$, $(435)=v_3$ are also known. Determine the position of the points (1), (2), (3) relative to (4) and (5).

MSJ 482.

Find all possible arrangements of four points in the plane such that there are at most two different values for the set of distances between all possible pairs of points.

PME 406. by P. Erdős

Let there be given five distinct points in the plane. Suppose they determine only two distances. Is it true that they are the vertices of a regular pentagon?

Points in plane: parallel lines

ISMJ 14.19.

Given three points in the plane, in how many ways can one draw three equidistant parallel lines through them?

Points in plane: partitions

MM 957. by Erwin Just

Show that it is possible to partition the rational points of the plane into four sets, each of which is dense in the plane, and such that no straight line will contain a point from each of the four sets.

Can the partitioning also be into three sets?

JRM 557. by David L. Silverman

A set of points is called Scottian if, regardless of the way it is partitioned into two sets A and B, either A or B (or both) contains three points that are the vertices of a right triangle.

- (a) Prove that the vertices of a square and the midpoints of the four sides constitute a Scottian set.
- (b) Prove that the circumference of a circle is not Scottian, but the addition of the center of the circle makes it so.
- (c) Prove that a triangle is Scottian if and only if it is not obtuse.
- (d) Among all finite Scottian sets on a square lattice, what is the least number n of points possible and what shape must such an n-point set have? Is there an n-point Scottian set that cannot be embedded in a square lattice?

Points in plane: partitions Problems sorted by topic Polygons: visibility

JRM 701.

by David L. Silverman

A set of points is called Scottian if, regardless of how it is partitioned into two sets, at least one of the sets contains the vertices of a right triangle. Given a circle C and a point P in the plane of C, P is said to be Scottian with respect to C if the union of P and C is Scottian. What is the locus of points that are Scottian with respect to C?

Points in plane: perpendicular bisectors

NAvW 544. by W. H. J. H. van Meeuwen, C. P. van Nieuwkasteele, and K. A. Post

Prove the following statement: Let n be an integer, $n \geq 4$. Then n points can be chosen in the plane, such that their $\binom{n}{2}$ perpendicular bisectors dissect the plane into convex pieces among which an (n-1)-gon occurs.

Points in plane: rational distances

JRM 765. by William C. Reil

Given a set of noncollinear points in a plane, define a rational point as a point in the plane, but not in the set, that is a rational distance from each point in the set.

- (a) Does any such set have an infinity of rational points?
- (b) Does every such set have a rational point?

Points in plane: triangles

MSJ 494.

Prove that it is impossible to pick four points A, B, C, and D in the plane so that each of the interior angles of $\triangle ABC$, $\triangle ABD$, $\triangle ACD$, and $\triangle BCD$ is acute.

AMM E2531. by V. F. Ivanoff

Given points $A,\ B,\ C,\ D,\ E,$ and F in the plane, let [ABC] denote the directed area of triangle ABC, etc. Prove that

$$[AEF] \cdot [DBC] + [BEF] \cdot [DCA] + [CEF] \cdot [DAB]$$

$$= [DEF] \cdot [ABC].$$

Polygons: 13-gons

CRUX 70. by Viktors Linis

Show that for any 13-gon there exists a straight line containing only one of its sides. Show also that for every n>13 there exists an n-gon for which the above statement does not hold.

PARAB 347.

Is it possible to select four vertices of a regular 13-gon so that the four sides and two diagonals of the quadrilateral formed by the four chosen vertices have different lengths?

Polygons: 17-gons

CRUX PS3-1.

Does there exist a polygon of 17 sides such that some straight line intersects each of its sides in some point other than a vertex of the polygon? Note that the polygon need not be convex nor simple.

Polygons: convex polygons

AMM E2514.

by G. A. Tsintsifas

Let P be a convex polygon, and let K be the polygon whose vertices are the midpoints of the sides of P. A polygon M is formed by dividing the sides of P (cyclically directed) in a fixed ratio p:q where p+q=1. Show that

$$[M] = (p-q)^2 [P] + 4pq[K],$$

where [X] denotes the area of polygon X.

CRUX 67.

by Viktors Linis

Show that in any convex 2n-gon there is a diagonal that is not parallel to any of its sides.

AMM E2641. by Philip Straffin

Given a convex polygon and a point p inside it, define D(p) to be the sum of the perpendicular distances from p to the sides of the polygon (extended if necessary). Characterize those convex polygons for which D(p) is independent of p.

MM 1018. by H. Kestelman

Let P_1, P_2, \ldots, P_n be the vertices in order of a convex n-gon with θ_r , $0 < \theta_r < \pi$, as the angle at P_r . Rotations R_1, R_2, \ldots, R_n are defined as follows: R_1 rotates $2\theta_1$ about P_1, R_2 rotates $2\theta_2$ about $R_1(P_2), R_3$ rotates $2\theta_3$ about $R_2R_1(P_3)$, etc. Prove that $R_nR_{n-1} \cdots R_2R_1$ is the identity.

Polygons: equilateral polygons

NAvW 398. by Hosia W. Labbers, Jr.

Given an equilateral polygon $A_1A_2\ldots A_n,\ n\geq 3$, in the plane such that each of the n-2 angles $\angle A_{j-1}A_jA_{j+1}$, 1< j< n, is a rational multiple of π , prove that the angles $\angle A_{n-1}A_nA_1$ and $\angle A_nA_1A_2$ must also be rational multiples of π .

Polygons: interior point

MSJ 489.

Any interior point P of a given convex polygon having vertices V_1, V_2, \ldots, V_n is called equitable if all the triangles $V_1PV_2, V_2PV_3, \ldots, V_nPV_1$ are of equal area. Prove that no such polygon can have more than one equitable point.

Polygons: visibility

PARAB 440.

Let Π be a polygon and let P be any point inside Π . If every line segment joining P to any other point inside or on Π lies completely in Π , we say that Π is visible from P. Prove that the set of all points from which Π is visible is a convex set.

AMM E2513. by Neal Felsinger

Let P be a simple (non-self-intersecting) planar polygon. If A is a point in the plane, and if E is an edge of P, then E is viewable from A if for every point x of E, the line segment joining A to x contains no point of P other than x.

- (a) Let A and P be arbitrary. Must some edge of P be viewable from A? Examine the cases of A exterior to P and interior to P separately.
- (b) Find sufficient conditions on A in order that some edge of P be viewable from A.

Projective geometry

Problems sorted by topic

Quadrilaterals: erected figures

Projective geometry

AMM 6267.

by A. E. Fekete

We say that two collineations of the real projective space PR^n are of the same type if their invariant configurations are projectively equivalent (i.e., there is a real projective collineation mapping one configuration into the other). Find an explicit formula determining the number of all different nonidentity collineation types. For example, for n=1 there are three types: hyperbolic (two fixed points), parabolic (one fixed point), and elliptic (no fixed point). Also, define collineation types for the complex projective space PC^n and find their number.

NAvW 547. by O. Bottema

Two coinciding three-dimensional projective spaces Σ and S have the homogeneous point coordinates X_i and x_i (i=1,2,3,4), respectively. A motion of S with respect to Σ is given by

$$X = (A + Bt)x,$$

where X and x are column vectors with the elements X_i and x_i , A and B are nonsingular 4×4 matrices, the eigenvalues of B are real and distinct, and the scalar t represents the time

Obviously, the path of any moving point of S is a straight line. Determine the locus of the paths.

NAvW 512. by O. Bottema

In the projective plane, a quartic curve k with three cusps is given. The cusps D_i (i=1,2,3) are taken as the vertices of the coordinate triangle, and the intersection of the three cuspidal tangents as the unit point.

Let P_1 be an arbitrary point on k. The fourth intersection of P_1D_1 and k is Q_1 , that of Q_1D_2 and k is R_1 , that of R_1D_3 and k is P_2 . The construction is then repeated starting at P_2 , etc., and the series P_1, P_2, P_3, \ldots , is obtained.

Determine $\lim_{n\to\infty} P_n$.

Quadrilaterals: angle bisectors

PME 346. by R. S. Luthar

The internal angle bisectors of a convex quadrilateral ABCD enclose another quadrilateral EFGH. Let FE and GH meet in M and let GF and HE meet in N. If the internal bisectors of angles EMH and ENF meet in L, show that angle NLM is a right angle.

Quadrilaterals: area

CRUX 42. by Viktors Linis

Find the area of a quadrilateral as a function of its four sides, given that the sums of opposite angles are equal.

SSM 3789. by Alan Wayne

In the plane quadrilateral ABCD, angles A and B are complementary. Also $AB=60,\ BC=33,\ CD=25,\ {\rm and}\ DA=16.$ Find

- (a) the area of ABCD and
- (b) the lengths of the diagonals AC and BD.

MSJ 442.

In convex quadrilateral ABCD, the diagonals intersect at E. If the areas of regions BEC, CED, DEA, and AEB are a, b, c, and d, respectively, prove that ac = bd.

MSJ 443.

In convex quadrilateral ABCD, the diagonals intersect at point E. If the areas of regions BEC, CED, and DEA are 6, 8, and 12, respectively, find the area of region AEB.

Quadrilaterals: circumscribed quadrilateral

CRUX 189. by Kenneth S. Williams

If a quadrilateral circumscribes an ellipse, prove that the line through the midpoints of its diagonals passes through the center of the ellipse.

CRUX 199. by H. G. Dworschak

If a quadrilateral is circumscribed about a circle, prove that its diagonals and the two chords joining the points of contact of opposite sides are all concurrent.

Quadrilaterals: determinants

MM 963. by Hüseyin Demir

Characterize convex quadrilaterals with sides $a,\ b,\ c,$ and d such that

$$\begin{vmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{vmatrix} = 0.$$

SSM 3747.

by Alan Wayne

The points $P_1(x_1, y_1)$, $P_2(x_2, y_2)$, $P_3(x_3, y_3)$, and $P_4(x_4, y_4)$ are the vertices of a convex quadrilateral in the plane. What is the geometric significance of the following determinant?

$$\begin{vmatrix} x_1 & y_1 & 1 & 0 \\ x_2 & y_2 & 1 & 1 \\ x_3 & y_3 & 1 & 0 \\ x_4 & y_4 & 1 & 1 \end{vmatrix}$$

Quadrilaterals: diagonals

IMO 1976/1.

In a plane convex quadrilateral of area 32, the sum of the lengths of two opposite sides and one diagonal is 16. Determine all possible lengths of the other diagonal.

Quadrilaterals: erected figures

PENT 308. CRUX 37.

by John A. Winterink by Maurice Poirier

On the sides of quadrilateral ABCD, isosceles right triangles ABP, BCQ, CDR, and DAS are constructed. Show that PR = QS and $PR \perp QS$.

SPECT 11.9. by A. J. Douglas

Let $Z_1Z_2Z_3Z_4$ be a convex quadrilateral in the plane. Denote by W_1 , W_2 , W_3 , W_4 the midpoints of the squares, drawn externally to the quadrilateral, with sides Z_1Z_2 , Z_2Z_3 , Z_3Z_4 , Z_4Z_1 respectively. Let U_1 , U_2 , U_3 , U_4 be the midpoints of the squares with sides W_1W_2 , W_2W_3 , W_3W_4 , W_4W_1 respectively. Show that

- (a) $W_1W_3 = W_2W_4$ and $W_1W_3 \perp W_2W_4$,
- (b) U_1Z_2 and U_3Z_4 are perpendicular to Z_1Z_3 , and

$$U_1 Z_2 = U_3 Z_4 = \frac{1}{2} Z_1 Z_3.$$

Quadrilaterals: inscribed circles Problems sorted by topic Regular heptagons

Quadrilaterals: inscribed circles

PME 417. by Clayton W. Dodge

(a) Prove that the line joining the midpoints of the diagonals of a quadrilateral circumscribed about a circle passes through the center of the circle.

(b) Let the incircle of triangle ABC touch side BC at X. Prove that the line joining the midpoints of AX and BC passes through the incenter I of the triangle.

Quadrilaterals: maxima and minima

MSJ 485.

JRM 497.

by Sidney Kravitz

by Sidney Penner

Prove that among all quadrilaterals of given sides the one of maximum area is inscribable in a circle.

Quadrilaterals: sides

MM Q613.

Given quadrilateral ABCD with sides a, b, c, and d, prove or disprove:

If
$$a + b = c + d$$
, then $a = c$ or $a = d$.

Quadrilaterals: supplementary angles

NYSMTJ 52.

- (a) Prove that if both pairs of opposite angles of a quadrilateral are supplementary, then the quadrilateral can be inscribed in a circle.
- (b) Prove that if the sum of the lengths of one pair of opposite sides of a (convex) quadrilateral is equal to the sum of the lengths of the other pair of sides, then a circle can be inscribed in the quadrilateral.

Quadrilaterals: triangles

ISMJ 12.25.

Given any convex quadrilateral, consider all the triangles whose vertices lie on the quadrilateral. Show that the maximum area of such triangles can be achieved by a triangle with its vertices being vertices of the quadrilateral.

CANADA 1978/4.

The sides AD and BC of a convex quadrilateral ABCD are extended to meet at E. Let H and G be the midpoints of BD and AC, respectively. Find the ratio of the area of the triangle EHG to that of the quadrilateral ABCD.

PENT 312. by John A. Winterink

Let L_1 and L_2 be the axes of a plane coordinate system that cut off line segments a_ib_i (i=1,2,3,4) on the sides (extended if necessary) of a quadrilateral ABCD in such a manner that each point a_i lies on L_1 and each point b_i lies on L_2 . Let K denote the intersection of L_1 and L_2 .

If similar triangles $a_ib_ic_i$ are drawn on each line segment a_ib_i such that each angle with its vertex at c_i is equal to the angle formed by L_1 and L_2 , then show that the vertices c_i and the intersection K of the axes are collinear.

Rectangles

OMG 15.2.2.

If a rectangle is divided into four rectangular sections, prove that $A \cdot D = B \cdot C$ where A, B, C, and D are the areas of the sections, with area A and area D being diagonally adjacent.

SSM 3716.

by Alan Wayne

Show that there cannot be two noncongruent rectangles having the same perimeter and the same area.

CRUX 244. by Steven R. Conrad

A rectangular strip of carpet 3 ft. wide is laid diagonally across the floor of a room 9 ft. by 12 ft. so that each of the four corners of the strip touches a wall. How long is the strip?

MM 960. by Alan Wayne

In an $a \times b$ rectangle, lines parallel to the sides divide the interior into ab square unit areas. Through the interior of how many of these unit squares will a diagonal of the rectangle pass?

Can the result be generalized to higher dimensions?

DELTA 6.2-1. by R. C. Buck

A man is standing in a rectangular field and is exactly 5 miles from one corner, 8 from another and 14 from a third.

- (a) Can you tell how far he is from the remaining corner?
- (b) If you know that the field is square, can you tell what its area is?

MM 966. by Clayton W. Dodge

A point P lies in the interior of a rectangle of sides a and b.

- (a) Find a, b, and P so that all eight distances from P to the four vertices and the four sides are positive integers.
- (b) Find an example of a square where seven of the distances are integers.
 - (c) Can all eight distances be integers for a square?

NYSMTJ 95. by Samuel A. Greenspan

The distance from a point in the interior of a rectangle to a given corner is 10 yards; to the opposite corner 11 yards; and to a third corner 5 yards. What is the distance from the point to the fourth corner?

PME 439. by Richard I. Hess

A bug starts at Monday noon in the upper-left corner (X) of a $p \times q$ rectangle, and crawls within the rectangle to the diagonally opposite corner (Y), arriving at 6 PM. Exhausted, he sleeps till noon Tuesday. At that time, he embarks for X, crawling along another path in the rectangle and arriving at X at 6 PM Tuesday. Prove that, at some time Tuesday, the bug was at a point no farther than p from where he was at the same time Monday.

PME 430. by John M. Howell

Given any rectangle, form a new rectangle by adding a square to the long side. Repeat. What is the limit of the long side to the short side?

Regular heptagons

OSSMB 77-16.

If A_0, A_1, \ldots, A_6 are the vertices of a regular 7-gon inscribed in the unit circle, show that

$$A_0A_1 \cdot A_0A_2 \cdot A_0A_3 \dots A_0A_6 = 7.$$

Regular hexagons Problems sorted by topic Regular polygons: limits

Regular hexagons

SSM 3701.

by Fred A. Miller

If, from any point on a circle, line segments are drawn to the vertices of an inscribed regular hexagon, prove that the sum of the longest two of these line segments equals the sum of the remaining four line segments.

Regular octagons

SSM 3653.

by Charles W. Trigg

The diagonals of a regular octagon have three different lengths. Show that the area of a rectangle determined by a largest and a smallest diagonal is twice the area of a rectangle determined by an intermediate diagonal and a side of the octagon.

SSM 3656. by Fred A. Miller

Show that the diameter of a circle inscribed in a quadrant of a circle is equal to the side of a regular octagon circumscribed about the given circle.

Regular pentagons

ISMJ J11.7.

The diagonals AC and BD of the regular pentagon ABCDE intersect at P. Show that AP = PD = ED.

FUNCT 3.2.5.

Let ABCDE be a regular pentagon. The diagonals AD and EC meet at the point Q. Show that

$$\frac{AD}{AQ} = \frac{AQ}{QD} \ ,$$

and hence prove that the ratio AD/AQ is equal to the golden ratio $(1+\sqrt{5})/2$.

CRUX PS2-1.

Prove that only one ellipse can be inscribed in a given regular pentagon.

DELTA 6.2-3. by D. W. Crowe

A drawing shows an incomplete "ring" of regular pentagons formed by placing each pentagon next to the other so that they have one side in common. A second drawing shows a "ring" of regular heptagons formed in the same way, except that the ring is completed by a square of side the same length as the side of one of the heptagons. Explain how each is incorrect.

FQ B-348. by Sidney Kravitz

Let P_1, \ldots, P_5 be the vertices of a regular pentagon and let Q_i be the intersection of segments $P_{i+1}P_{i+3}$ and $P_{i+2}P_{i+4}$ (subscripts taken modulo 5). Find the ratio of lengths Q_1Q_2/P_1P_2 .

Regular polygons: cyclic polygons

OSSMB G75.3-1.

Two regular polygons are inscribed in a circle. The number of sides in one polygon is double the number in the other and an angle of one is to an angle of the other as 9:8. Prove that the areas are as $1:\cos 18^{\circ}$.

Regular polygons: diagonals

ISMJ 12.13.

Suppose that all diagonals are drawn from some one vertex of a regular polygon. For which regular polygons are at least two of these diagonals perpendicular to each other?

PME 390. by Robb Koether and David C. Kay

Let the diagonals of a regular n-gon of unit side be drawn. Prove that the n-2 consecutive triangles thus formed which have their bases along one diagonal, their legs along two others or a side, and one vertex in common with a vertex of the polygon each have the property that the product of two sides equals the third.

Regular polygons: exterior point

SPECT 7.2.

Let $A_1A_2...A_n$ be a regular plane polygon with center O, and let P be a point in the plane outside the circumcircle of the polygon. Compare the geometric mean of the lengths A_rP $(1 \le r \le n)$ with the length OP in the following two cases:

- (a) When OP passes through a vertex of the polygon.
- (b) When *OP* bisects a side of the polygon.

Regular polygons: inscribed polygons

MM 1076. by M. S. Klamkin

Let B be an n-gon inscribed in a regular n-gon A. Show that the vertices of B divide each side of A in the same ratio and sense if and only if B is regular.

TYCMJ 146. by M. S. Klamkin

Prove that the smallest regular n-gon that can be inscribed in a given regular n-gon will have its vertices at the midpoints of the sides of the given n-gon.

Regular polygons: limits

JRM 394. by Archimedes O'Toole

From a fixed point P on the circumference of a circle, regular n-gons $(n=3,4,5,6,\ldots)$ are inscribed, all having one vertex at P. Prove or disprove: The limiting area common to all the n-gons as $n\to\infty$ is zero.

NAvW 410. by J. van de Lune

Let P_1, P_2, \ldots, P_n be the vertices of a regular n-gon inscribed in the unit circle, and let a_n denote the average of the n^2 Euclidean distances $d\left(P_i, P_j\right)$, $i = 1, 2, \ldots, n$; $j = 1, 2, \ldots, n$. Prove that a_n is increasing and determine $\lim_{n \to \infty} a_n$.

SSM 3766. by Herta T. Freitag

- (a) Consider the sequence of circles contained "inside" an equilateral triangle having side length a generated in the following manner. Begin with the inscribed circle. In one "corner" of the triangle inscribe a circle tangent to the first circle and to two sides of the triangle. Inscribe another circle tangent to the second circle and to the same two sides. Continue this process indefinitely. Find the sum of the radii of these circles.
- (b) What is the corresponding result if a square having side length s is used instead of an equilateral triangle?

Regular polygons: limits Problems sorted by topic Semicircles

SSM 3772.

by Herta T. Freitag

- (a) Obtain a formula for the area of an equilateral triangle inscribed in a circle of radius R.
- (b) Starting with the above triangle, inscribe a similar one in the incircle of the first one, and continue in this manner indefinitely. Obtain the total area (if it exists) of this set of triangles.
- (c) Generalize the above for an arbitrary regular polygon with n sides.

Regular polygons: point on circumcircle

AMM E2646.

by William Wernick

Let A_1, \ldots, A_n be vertices of a regular n-gon inscribed in a circle with center O. Let B be a point on arc A_1A_n and $\theta = \angle A_nOB$. If a_k is the length of the chord BA_k , express

$$\sum_{k=1}^{n} (-1)^k a_k$$

as a function of θ .

Right triangles: angle measures

CRUX 18.

by Jacques Marion

Show that in a right triangle with sides 3, 4 and 5, neither of the acute angles is a rational multiple of π .

Right triangles: circles

MATYC 119.

by Norman Shimmel

A circle of radius R is inscribed in $\angle ABC$ of right triangle ABC (with right angle at C). The tangent to the circle parallel to AC and furthest from AC meets BC at D. If AC = H, CD = L, and $\angle ABC = \theta$, find θ in terms of L, H, and R.

Right triangles: erected figures

FUNCT 2.5.3.

A right triangle has area A and hypotenuse of length c. On each side of the triangle draw a square, exterior to the triangle. Imagine a tight rubber band placed around the figure. What area would it enclose?

Right triangles: incircle

PARAB 400.

ISMJ 10.17.

OMG 18.1.5.

Show that the diameter d of the incircle of a right triangle of legs a, b, and hypotenuse c satisfies

$$d = a + b - c.$$

OSSMB G75.3-2.

Find the radius of the greatest circle that can be inscribed in a right triangle whose perimeter is 100 inches. Find also each of the sides of the triangle when the radius is greatest.

Right triangles: mean proportionals

CRUX 218.

by Gilbert W. Kessler

The altitude to the hypotenuse of a right triangle is the mean proportional between the segments of the hypotenuse. The median to the hypotenuse also has this property. Does any other segment from vertex to hypotenuse have the property?

Right triangles: perspectivities

PME 422.

by Jack Garfunkel

Let perpendiculars be erected outwardly at A and B of a right triangle ABC ($C=90^{\circ}$), and at M, the midpoint of AB. Extend these perpendiculars to points $P,\,Q,\,R$ such that

$$AP = BQ = MR = \frac{AB}{2}$$
.

Show that triangle PQR is perspective with triangle ABC.

Right triangles: sequences

TYCMJ 61. by Peter A. Lindstrom

By the altitude of a right triangle, we mean the altitude which is not also a leg of that triangle. Construct the altitude of right triangle T_0 . Call one of the subtriangles T and the other T_1 . Construct the altitude of T_1 and call one of the subtriangles T_2 . Continue the process so that, in general, T_n is one of the two subtriangles formed by constructing the altitude of T_{n-1} . It is known that there exist sequences T_0, T_1, T_2, \ldots , for which $\sum_{i=0}^{\infty} (\text{area } T_i)$ equals twice the area of T_0 . Prove that the sum of the altitudes of the triangles in any one of these sequences equals the perimeter of T.

PME 461. by David C. Kay

- (a) A right triangle with unit hypotenuse and legs r and s is used to form a sequence of similar right triangles T_1, T_2, T_3, \ldots where the sides of T_1 are r times those of the given triangle, and for $n \geq 1$ the sides of T_{n+1} are s times those of T_n . Prove that the sequence T_n will tile the given triangle.
- (b) What happens if the multipliers r and s are reversed?
- (c) Given is a right triangle ABC with hypotenuse BC. A perpendicular is dropped from A onto BC, meeting BC at point P_1 . Next, a perpendicular is dropped from P_1 onto AB, meeting AB at point P_2 . This process is continued: perpendiculars are alternately dropped onto AB and BC to obtain a sequence of points P_1, P_2, \ldots . Show that the sum of the areas of $\triangle CAP_1, \ \triangle P_1P_2P_3, \ \triangle P_3P_4P_5, \ldots$ is equal to $(b^3c+bc^3)/(2b^2+4c^2)$.

Rolling

MENEMUI 1.2.1.

by R. J. E. Porkess

A disc of radius R rolls without slipping around the inside of the circumference of a fixed circle whose radius is 2R. Prove that the locus of a point at distance R/2 from the center of the disc is an ellipse of area $3\pi R^2/4$.

NYSMTJ 56.

Consider an object, such as a water glass in the shape of a frustum of a right circular cone, with base radii r and R, and slant height l. When such an object is placed on its side on a smooth, level surface, it can be rolled in a circle, returning to its starting point. Express the radius of this circle in terms of r, R, and l.

Semicircles

ISMJ 13.10.

Arc ARPB is a semicircle. Prove that if R is above P then AR + RB = AP + PB.

Semicircles Problems sorted by topic Squares: line segments

CRUX 386.

by Francine Bankoff

A square PQRS is inscribed in a semicircle (O) with PQ falling along diameter AB. A right triangle ABC, equivalent to the square, is inscribed in the same semicircle with C lying on the arc RB. Show that the incenter I of triangle ABC lies at the intersection of SB and RQ, and that

$$\frac{RI}{IQ} = \frac{SI}{IB} = \frac{1+\sqrt{5}}{2}.$$

Simple closed curves

AMM 6129.

by E. H. Kronheimer

Let S be a simple closed curve in the plane. Prove that unless S is a circle, it is always possible to find four points p, q, u, v on S and a point x inside S such that u and v belong to distinct components of $S \setminus \{p,q\}$, and x is nearer to both p and q than it is to either u or v.

PUTNAM 1977/B.4.

Let C be a continuous closed curve in the plane which does not cross itself and let Q be a point inside C. Show that there exist points P_1 and P_2 on C such that Q is the midpoint of the line segment P_1P_2 .

MM 1006. by G. A. Heuer

A simple closed curve in the plane encloses a region R of area A. There is a point P in the interior of R such that every line through P intersects R in a line segment of length d. Find the greatest lower and least upper bounds for A. Are there curves where these bounds are attained?

Squares: 2 squares

CRUX 464. by J. Chris Fisher and E. L. Koh

- (a) If the two squares ABCD and AB'C'D' have vertex A in common and are taken with the same orientation, then the centers of the squares together with the midpoints of BD' and B'D are the vertices of a square.
 - (b) What is the analogous theorem for regular n-gons?

Squares: angles

CRUX 147.

by Steven R. Conrad

In square ABCD, AC and BD meet at E. Point F is in CD and $\angle CAF = \angle FAD$. If AF meets ED at G and if EG = 24, find CF.

Squares: circles

OSSMB G77.1-3.

The square ABCD, with sides of length a, has circles of radius a drawn with centers A, B, C, D. Find the area of the central curvilinear quadrilateral.

Squares: circumscribed triangle

SSM 3652.

by Fred A. Miller squar

Prove: The side of a square inscribed in a triangle is half the harmonic mean between the base and the altitude.

Squares: erected figures

IMO 1977/1. PARAB 364.

Equilateral triangles ABK, BCL, CDM and DAN are constructed inside the square ABCD. Prove that the midpoints of the four segments KL, LM, MN, NK and the midpoints of the eight segments AK, BK, BL, CL, CM, DM, DN and AN are the twelve vertices of a regular dodecagon.

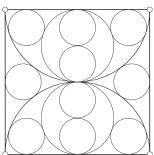
FUNCT 3.3.4. by Lindsay Pope

Given is a square with side s. Four quadrants of radius s are inscribed in the square, each having its center at one of the corners. Find the area of the intersection of the four quadrants.

MSJ 451. by Saleh Rahman

Let ABCD be a square with AB=10. Quadrants with centers at A and B, drawn interior to the square, intersect at E. Find the area of the region bounded by DC, arc DE, and arc EC.

Squares: inscribed circles


CRUX 444.

by Dan Sokolowsky

A circle is inscribed in a square ABCD. Point E is selected on BC so that the circle with diameter BE is tangent to the first circle. Show that AB = 4BE.

JRM 382. by Leon Bankoff

In the diagram shown, prove that the ten smaller circles are equal.

Squares: interior point

MATYC 130.

by Patrick J. Boyle

Let P be a point in the square ABCD. If PA = a, PB = a + b, PD = c, and $a^2 + b^2 = c^2$, prove $\angle APB = 90^\circ$.

Squares: limits

OMG 15.3.3.

A circle is inscribed in a square of side 2. A square is inscribed in that circle. A circle is inscribed in that square, and so on ad infinitum. What is the sum of all the areas of the squares?

Squares: line segments

OSSMB 75-14.

A collection of line segments contained in a closed square of side 1 is said to be "opaque" if every straight line that crosses the square makes contact with at least one of the segments. Find an opaque set whose length is less than $1+\sqrt{3}$.

Squares: lines Problems sorted by topic Triangle inequalities: altitudes

Squares: lines

PARAB 413.

Let O be the center of the square ABCD and let ℓ be a given line. The points O', A', B', C', and D' are the feet of the perpendiculars dropped from O, A, B, C, and D to the line ℓ . If $AA' \cdot CC' = BB' \cdot DD'$ and AB = 2, find OO'.

Squares: moats

OMG 15.1.1.

A student wishes to cross to a square island surrounded by a 4-meter wide moat. Can he do it with only two 3-meter long planks, and if so, how?

Stars

OMG 17.3.9.

Find the area of a star if

- (a) the circumscribed circle has radius 10;
- (b) the points of the star are the same distance apart;
- (c) the star is formed by joining each point to the two opposite ones.

Symmetry

PARAB 374.

- (a) A plane figure has one axis of symmetry and a point on that axis is a center of symmetry. Does the figure necessarily have a second axis of symmetry?
- (b) A 3-dimensional figure has one plane of symmetry and a point in that plane is a center of symmetry. Does the figure necessarily have a second plane of symmetry?

Tesselations

ISMJ 14.2.

You are given an infinite supply of cardboard copies of a pentagon that has all sides one inch long and has two 90° angles that are not at opposite ends of the same side. Show how to cover the plane with these pentagons so that there are no overlaps and no uncovered spots.

CRUX 155. by Steven R. Conrad and Ira Ewen

A plane is tessellated by regular hexagons when the plane is the union of congruent regular hexagonal closed regions which have disjoint interiors. A lattice point of this tessellation is any vertex of any of the hexagons.

Prove that no four lattice points of a regular hexagonal tessellation of a plane can be the vertices of a square.

SSM 3677. by Herta T. Freitag

- (a) Consider the following tessellation of equal-sized, regular hexagons of side a. After placing a tile, each following row is fitted so as to form a triangular array. Each time a row is completed, join the midpoints of the outer tiles of the tessellation to form a triangle. Obtain a formula for the area of these triangles in terms of the number of tiles used in the tessellation.
- (b) Obtain corresponding formulas using (1) triangular tiles, (2) two different placements of square tiles.

JRM 388. by Solomon W. Golomb

Let S_1, S_2, S_3, \ldots be a sequence of squares in the plane such that S_i has side length i. Can this sequence possibly tessellate the plane?

Tiling

PME 434. by Sidney Penner

Consider $(2n+1)^2$ hexagons arranged in a "diamond" pattern, the kth column from the left and also from the right consisting of k hexagons, $1 \le k \le 2n+1$. Show that if exactly one of the six hexagons adjacent to the center hexagon is deleted, then it is impossible to tile the remaining hexagons by pieces consisting of 3 mutually touching hexagons.

PARAB 315.

A large supply of small tiles is available for tiling the flat bottom of a large swimming pool. Each tile is in the shape of a regular polygon with edges all 1 cm long, and exactly 3 different shapes are used. The tiles are laid edge to edge in such a way that, although the vertices of 3 different tiles sometimes come together at the same point, no more than 3 vertices ever come together at the same point. Whenever 3 vertices do come together, the tiles at that point have different shapes. Prove that no tile used has an odd number of edges.

ISMJ 14.17.

Show that it is not possible to arrange ten equal squares in the plane so that no two overlap and so that one square touches each of the other nine squares.

PARAB 318.

Show how to place squares with sides of length (1/m), where $m=2,3,4,5,\ldots$ (an infinite number of them) inside a square with side of length 1. None of the squares you use are allowed to overlap any other one.

Trapezoids

MSJ 470.

Trapezoid APQB is inscribed in a semicircle and AB=4 and AP=BQ=1. Find the length of PQ.

SSM 3743. by Steven R. Conrad

Consider a trapezoid ABCD having bases b and B with b < B. If each diagonal is divided into n equal parts, find the length of the line segment formed by connecting the ith division point on one diagonal to the ith division point on the other diagonal.

PME 409. by Zazou Katz

A point E is chosen on side CD of a trapezoid ABCD, $(AD \parallel BC)$, and is joined to A and B. A line through D parallel to BE intersects AB in F. Show that FC is parallel to AE.

Triangle inequalities: altitudes

NYSMTJ 92. by Norman Schaumberger

If h_a , h_b , and h_c are the lengths of the altitudes of a triangle, show that

 $h_a h_b + h_b h_c > h_a h_c$.

Triangle inequalities: altitudes Problems sorted by topic Triangle inequalities: half angles

MM 936.

by Jack Garfunkel

It is known that

$$h_a + h_b + h_c \le \sqrt{3}s$$

where the h's represent altitudes to sides a, b, and c and s represents the semiperimeter of triangle ABC. Prove or disprove the stronger inequality

$$t_a + t_b + m_c \le \sqrt{3}s,$$

where the t's are the angle bisectors and m_c is the median to side c.

Triangle inequalities: angle bisectors and medians

PME 421. by Murray S. Klamkin

If F(x, y, z) is a symmetric, increasing function of x, y, z, prove that for any triangle in which w_a, w_b, w_c are the internal angle bisectors and m_a, m_b, m_c the medians, we have

$$F(w_a, w_b, w_c) \le F(m_a, m_b, m_c)$$

with equality if and only if the triangle is equilateral.

Triangle inequalities: angle bisectors extended

AMM S23.

by Jack Garfunkel and Leon Bankoff

Prove that the sum of the distances from the incenter of a triangle ABC to the vertices does not exceed half of the sum of the internal angle bisectors, each extended to its intersection with the circumcircle of triangle ABC.

PME 374. by Jack Garfunkel

In a triangle ABC inscribed in a circle (O), angle bisectors AT_1 , BT_2 , CT_3 are drawn and extended to the circle with T_i lying on the circle. Perpendiculars T_1H_1 , T_2H_2 , T_3H_3 are drawn to sides AC, BA, CB respectively. Prove that

$$T_1H_1 + T_2H_2 + T_3H_3 \le 3R,$$

where R is the radius of the circumcircle.

Triangle inequalities: angles

PME 394. by Erwin Just and Bertram Kabak

Prove that if A_1 , A_2 , and A_3 are the angles of a triangle, then

$$3\sum_{i=1}^{3}\sin^2 A_i - 2\sum_{i=1}^{3}\cos^3 A_i \le 6.$$

Triangle inequalities: angles and radii

TYCMJ 85. by Bertram Kabak

(a) Let R, r, and P be the radius of the circumscribed circle, the radius of the inscribed circle, and the perimeter of a triangle, respectively. Prove that

$$54Rr < P^2$$
.

(b) Let O be a point within triangle $A_1A_2A_3$ and let d_i be the distance from O to a_i , the side opposite angle A_i , (i = 1, 2, 3). Prove that

$$\sum_{i=1}^{3} d_i \sin A_i = \prod_{i=1}^{3} \frac{a_i}{4R^2} \ .$$

Triangle inequalities: angles and sides

AMM E2649.

by A. Oppenheim

Let a, b, c and α, β, γ be the sides and the corresponding opposite angles of a nonobtuse triangle. Show that

$$3(a+b+c) \le \pi \left(\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma}\right),$$

and

$$3(a^2 + b^2 + c^2) \ge \pi \left(\frac{a^2}{\alpha} + \frac{b^2}{\beta} + \frac{c^2}{\gamma}\right).$$

Triangle inequalities: centroids

AMM E2715.

by Jack Garfunkel

Let G be the centroid of the triangle $A_1A_2A_3$ and let

$$\theta_i = \angle \left(\overrightarrow{A_i A_{i+1}}, \overrightarrow{A_i G}\right), \qquad i = 1, 2, 3.$$

Prove or disprove that $\sum \sin \theta_i \leq 3/2$.

Triangle inequalities: circumcenter and incenter

PME 442.

by Jack Garfunkel

Show that the sum of the perpendiculars from the circumcenter of a triangle to its sides is not less than the sum of the perpendiculars drawn from the incenter to the sides of the triangle.

Triangle inequalities: circumradius

SIAM 77-9.

by I. J. Schoenberg

Let $P_i = (x_i, y_i)$, i = 1, 2, 3, $x_1 < x_2 < x_3$, be points in the Cartesian (x, y)-plane and let R denote the radius of the circumcircle Γ of the triangle $P_1P_2P_3$ $(R = \infty$ if the triangle is degenerate). Show that

$$\frac{1}{R} < 2 \left| \frac{y_1}{(x_1 - x_2)(x_1 - x_3)} + \frac{y_2}{(x_2 - x_3)(x_2 - x_1)} + \frac{y_3}{(x_3 - x_1)(x_3 - x_2)} \right|$$

unless both sides vanish and that 2 is the best constant in the equation.

Triangle inequalities: Gergonne point

NAvW 478. by W. J. Blundon and R. H. Eddy

Let g_a , g_b , and g_c denote the cevians of a triangle ABC concurrent at the Gergonne point. Prove (in the usual notation) that

$$8Rr + 11r^2 \le \sum g_a^2 \le 4R^2 + 11r^2,$$

with equality if and only if the triangle is equilateral.

Triangle inequalities: half angles

NYSMTJ OBG7. by Norman Schaumberger

If $A,\,B,$ and C are the angles of a triangle, then prove that

$$\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} \le \frac{1}{8} \ .$$

Triangle inequalities: interior point Triangles: 2 triangles Problems sorted by topic

Triangle inequalities: interior point

by Murray S. Klamkin

If x, y, z are the distances of an interior point of a triangle \overrightarrow{ABC} to the sides BC, CA, AB, show that

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{2}{r}$$
,

where r is the inradius of the triangle.

MM 959. by L. Carlitz

Let P be a point in the interior of the triangle ABC and let r_1 , r_2 , and r_3 denote the distances from P to the sides of the triangle. Let R denote the circumradius of ABC. Show

$$\sqrt{r_1} + \sqrt{r_2} + \sqrt{r_3} \le 3\sqrt{R/2},$$

with equality if and only if ABC is equilateral and P is the center of ABC.

Triangle inequalities: medians and sides

MM Q638. by Murray S. Klamkin

Let a, b, and c denote the sides of an arbitrary triangle with respective medians m_a , m_b , and m_c . Determine all integral p and q so that

$$\left(\frac{\sqrt{3}}{2}\right)^{p} (a^{p} m_{a}^{q} + b^{p} m_{b}^{q} + c^{p} m_{c}^{q}) \ge \left(\frac{\sqrt{3}}{2}\right)^{q} (a^{q} m_{a}^{p} + b^{q} m_{b}^{p} + c^{q} m_{c}^{p}).$$

SIAM 79-19. by M. S. Klamkin

If a_1, a_2, a_3 and m_1, m_2, m_3 denote the sides and corresponding medians of a triangle, respectively, prove that

$$(a_1^2 + a_2^2 + a_3^2) (a_1 m_1 + a_2 m_2 + a_3 m_3)$$

$$\geq 4m_1 m_2 m_3 (a_1 + a_2 + a_3).$$

Triangle inequalities: radii

NAvW 472. by J. T. Groenman

Let r, r_a, r_b , and r_c be the radii of the inscribed circles of a triangle ABC. Depending upon the fact of whether the triangle is acute, right, or obtuse, prove that one of the following statements holds:

$$\left(\frac{r_a r_b r_c}{r}\right)^{\frac{1}{2}} > \frac{1}{2} \left(r + r_a + r_b + r_c\right),\,$$

(respectively = and <).

by M. S. Klamkin

If (a_i, b_i, c_i) are the sides, R_i the circumradii, r_i the inradii, and s_i the semiperimeters of two triangles (i = 1, 2),

$$\sqrt{\frac{s_1}{r_1R_1}\frac{s_2}{r_2R_2}} \geq 3\left\{\frac{1}{\sqrt{a_1a_2}} + \frac{1}{\sqrt{b_1b_2}} + \frac{1}{\sqrt{c_1c_2}}\right\}$$

with equality if and only if the two triangles are equilateral. Also show that the analogous three triangle inequality

$$\sqrt{\frac{s_1}{r_1 R_1} \frac{s_2}{r_2 R_2} \frac{s_3}{r_3 R_3}}$$

$$\geq 9 \left\{ \frac{1}{\sqrt{a_1 a_2 a_3}} + \frac{1}{\sqrt{b_1 b_2 b_3}} + \frac{1}{\sqrt{c_1 c_2 c_3}} \right\}$$

is invalid.

Triangle inequalities: sides

SIAM 77-10. by M. S. Klamkin

Let P and P' denote two arbitrary points and let $A_1A_2A_3$ denote an arbitrary triangle of sides a_1 , a_2 , a_3 . If $R_i = PA_i$ and $R'_i = P'A_i$, prove that

$$a_1R_1R_1' + a_2R_2R_2' + a_3R_3R_3' \ge a_1a_2a_3$$

and determine the conditions for equality. It is to be noted that when P' coincides with P, we obtain a known polar moment of inertia inequality.

TYCMJ 98. by Norman Schaumberger

Let a, b, and c be the lengths of the sides of a triangle with area K and perimeter P. Prove or disprove that

$$a^3 + b^3 + c^3 \ge \frac{4\sqrt{3}}{3}KP$$

and

$$a^4 + b^4 + c^4 > 16K^2$$
.

TYCMJ 130. by Aron Pinker

Let a, b, and c be the sides of a triangle, P its perimeter, and K its area. Prove that:

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{9}{P}$$

$$a^2 + b^2 + c^2 \ge \frac{P^2}{3}$$

$$P^2 \ge 12\sqrt{3K}$$

$$a^2 + b^2 + c^2 \ge 4\sqrt{3}K$$

$$a^3 + b^3 + c^3 \ge \frac{P^3}{9}$$
.

Triangles: 2 triangles

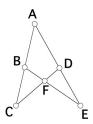
AMM E2512.

by E. A. Herman Let T_1 and T_2 be two triangles with circumcircles C_1 and C_2 , respectively. Show that if T_1 meets T_2 , then some vertex of T_1 lies in (or on) C_2 or vice versa. Generalize.

NAvW 508. by L. Kuipers

In a plane, two congruent triangles \overrightarrow{ABC} and $\overrightarrow{A'B'C}$ are in such a position that

$$AB \parallel \overrightarrow{B'A'}$$
, $BC \parallel \overrightarrow{C'B'}$, and $CA \parallel \overrightarrow{A'C'}$.


Now let A'' be the reflection of A' in the side BC, B'' that of B' in the side CA, and C'' that of C' in AB.

Prove that the triangles ABC and A''B''C'' are simi-

CRUX 171. by Dan Sokolowsky

Let P_1 and P_2 denote, respectively, the perimeters of triangles ABE and ACD. Without using circles, prove that

$$P_1 = P_2 \Longrightarrow AB + BF = AD + DF.$$

Triangles: 3 triangles Problems sorted by topic Triangles: angle bisectors

Triangles: 3 triangles

SSM 3660. by Steven R. Conrad

Triangles 1, 2, and 3 are coplanar. Every point of triangle 2 is interior to and 2 inches from triangle 1. Every point of triangle 3 is interior to and 2 inches from triangle 2. If the inch-lengths of the sides of triangle 2 are 13, 14, and 15, find the area of the region interior to triangle 1 but not also interior to triangle 3.

Triangles: 30 degree angle

OSSMB G78.3-6.

- (a) If, in $\triangle ABC$, $b=a(\sqrt{3}-1)$ and $\angle C=30^{\circ}$, find $\angle A$ and $\angle B$.
- (b) Given that a=2b in $\triangle ABC$, show that $\angle A>2\angle B$.

PME 351. by Jack Garfunkel

Angle A and angle B are acute angles of a triangle ABC. If $\angle A=30^\circ$ and h_a , the altitude issuing from A, is equal to m_b , the median issuing from B, find angles B and C

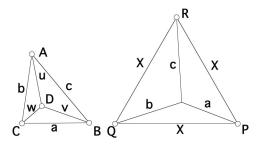
Triangles: 60 degree angle

CRUX 148. by Steven R. Conrad

In $\triangle ABC$, $\angle C = 60^{\circ}$ and $\angle A$ is greater than $\angle B$. The bisector of $\angle C$ meets AB in E. If CE is a mean proportional between AE and EB, find $\angle B$.

OSSMB 79-16.

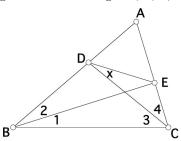
In triangle ABC, BE bisects angle ABC and angle AEB is 60° . Let F be a point on the side BC so that angle AFB is also 60° . Segment AF intersects BE at the point D. Prove that DE = EC.


AMM E2639. by G. Tsintsifas

Let ABC be a triangle with $\angle A=40^\circ$ and $\angle B=60^\circ$. Let D and E be points lying on the sides AC and AB, respectively, such that $\angle CBD=40^\circ$ and $\angle BCE=70^\circ$. Let F be the point where the lines BD and CE intersect. Show that the line AF is perpendicular to the line BC.

Triangles: 120 degree angle

CRUX 38. by Léo Sauvé


Consider the two triangles $\triangle ABC$ and $\triangle PQR$. In the triangle $\triangle ABC$, we have $\angle ADB = \angle BDC = \angle CDA = 120^{\circ}$. Prove that X = u + v + w.

Triangles: adventitious triangles

CRUX 255. by Barry Hornstein

In $\triangle ABC$, the measures of angles 1, 2, 3, 4 are given. Calculate angle x in terms of angles 1, 2, 3, 4.

ISMJ 12.32.

Let OPQ be an isosceles triangle with angles 20° , 80° , and 80° . The point B is chosen on side OQ so that $\angle OPD = 20^{\circ}$ and A is chosen on side OP so that $\angle OQA = 30^{\circ}$. Show that $\angle BAQ = 80^{\circ}$.

Triangles: altitudes

TYCMJ 74. by Harley Flanders

Let O be the intersection of the altitudes of acute triangle ABC. Choose B' on OB and C' on OC so that AB'C and AC'B are right angles. Prove that AB' = AC'.

CRUX 192. by Ross Honsberger

Let D, E, and F denote the feet of the altitudes of $\triangle ABC$, and let (X_1, X_2) , (Y_1, Y_2) , and (Z_1, Z_2) denote the feet of perpendiculars from D, E, and F, respectively, upon the other two sides of the triangle. Prove that the six points X_1 , X_2 , Y_1 , Y_2 , Z_1 , and Z_2 lie on a circle.

NAvW 525. by O. Bottema

The altitudes of the triangle $A_1A_2A_3$ are A_1H_1 , A_2H_2 , and A_3H_3 . The conic K is tangent to A_2A_3 at H_1 , to A_3A_1 at H_2 , and to A_1A_2 at H_3 .

Show that the center of K coincides with the Lemoine point of the triangle.

TYCMJ 110. by K. R. S. Sastry

Let ABC be a triangle; AP, BQ, CR its altitudes; and AD, BE, CF the internal bisectors of the angles. Let BE and CF intersect AP in X_1 and X_2 , respectively; CF and AD intersect BQ in Y_1 and Y_2 , respectively; and AD and BE intersect CR in Z_1 and Z_2 , respectively. Prove that $IX_1 \cdot IY_1 \cdot IZ_1 = IX_2 \cdot IY_2 \cdot IZ_2 = X_1X_2 \cdot Y_1Y_2 \cdot Z_1Z_2$, where I is the incenter of $\triangle ABC$.

CRUX 46. by F. G. B. Maskell

If p_1 , p_2 , and p_3 are the altitudes of a triangle and r is the radius of its inscribed circle, show that

$$\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = \frac{1}{r}.$$

Triangles: angle bisectors

CRUX 365. by Kesiraju Satyanarayana

A scalene triangle ABC is such that the external bisectors of angles B and C (i.e., the segments intercepted by B. C and the opposite sides) are of equal length. Given the lengths of the sides b and c (with b > c), find the length of the third side, a, and show that its value is unique.

Triangles: angle bisectors Problems sorted by topic Triangles: centroids

ISMJ 10.6.

In the triangle ABC, point P is on AB, the line CPbisects angle C, m = CP, a = BC, b = AC, x = AP, and y = PB. Show that $m^2 = ab - xy$.

ISMJ 14.18.

Let ABC be a triangle with $\angle A < \angle C < 90^{\circ} < \angle B$. Suppose the bisectors of the external angles at A and B, measured from the vertex to the opposite side (extended), are each equal to AB. Determine angle A.

ISMJ 11.2.

In triangle ABC, M is the midpoint of BC and the bisector of angle A cuts BC at X. The circle through A, X, and M cuts \overrightarrow{AB} at P and AC at Q. Prove that $\overrightarrow{BP} = \overrightarrow{CQ}$.

CRUX 168. by Jack Garfunkel MM Q646. by Jack Garfunkel

If a, b, c are the sides of a triangle ABC, t_a, t_b, t_c are the angle bisectors, and T_a , T_b , T_c are the angle bisectors extended until they are chords of the circle circumscribing the triangle ABC, prove that

$$abc = \sqrt{T_a T_b T_c t_a t_b t_c}.$$

CRUX 309. by Peter Shor

Let ABC be a triangle with $a \ge b \ge c$ or $a \le b \le c$. Let D and E be the midpoints of $A\overline{B}$ and BC, and let the bisectors of angles BAE and BCD meet at R. Prove that (a) $AR \perp CR$ if and only if $2b^2 = c^2 + a^2$;

- (b) If $2b^2 = c^2 + a^2$, then R lies on the median from B. Is the converse of (b) true?

OMG 18.3.4.

In $\triangle ABC$, show that the angle contained between the bisector of A and the perpendicular from A to BC is equal to the difference of angles B and C.

MM 998. by Hüseyin Demir

Characterize all triangles in which the triangle whose vertices are the feet of the internal angle bisectors is a right

Triangles: angle measures

AMM E2579.

by Benjamin Klein and Brian White

Let $0 < \theta < \frac{1}{2}\pi$, and let p, q be arbitrary distinct points in the Euclidean plane E. Define $f_{\theta}(p,q)$ to be the unique point r in E such that triangle pqr is in the counterclockwise sense and $\angle rpq = \angle rqp = \theta$ radians. Show that $f_{\pi/3}(p,q)$ can be written as an expression involving only $f_{\pi/6}$, p, q, and parentheses.

PARAB 411.

Let D be a point on side AC of $\triangle ABC$. The angles ABD, DBC, and BCD are 20° , 20° , and 40° , respectively. Prove that BC = BD + DA.

Triangles: angle trisectors

JRM 706. by Sidney Kravitz

- (a) Given an isosceles right triangle with unit legs, find the length of the sides of Morley's equilateral triangle.
 - (b) Solve the same problem for a general triangle.

OSSMB G78.2-5.

(a) If a, b, x, y are positive numbers such that

$$0^{\circ} < a + b < 180^{\circ},$$

$$x + y = a + b, \text{ and }$$

$$\frac{\sin x}{\sin y} = \frac{\sin a}{\sin b},$$

show that x = a and y = b.

- (b) Show that $\sin 3\theta = 4 \sin \theta \cdot \sin(60^{\circ} \theta) \cdot \sin(60^{\circ} + \theta)$.
- (c) Prove Morley's Theorem: The points of intersection of the adjacent trisectors of the angles of a triangle are the vertices of an equilateral triangle.

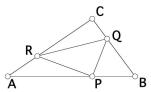
Triangles: area

USA 1977/2.

The triangles ABC and DEF have AD, BE and CFparallel. Show that

$$[AEF] + [DBF] + [DEC] + [DBC] + [AEC] + [ABF] =$$

 $3([ABC] + [DEF]),$


where [XYZ] denotes the signed area of triangle XYZ. (Thus [XYZ] is +area(XYZ) when the order X, Y, Z is counterclockwise and -area(XYZ) otherwise. For example, [XYZ] = [YZX] = -[YXZ].)

CRUX 56. by F. G. B. Maskell

Find the area of a triangle in terms of its medians m_1 , m_2 , and m_3 .

ISMJ 11.17. ISMJ 12.15.

A triangle ABC has area F. Let P, Q, and R divide the sides AB, BC, and CA in the ratios 1:2. Let the triangle PQR have area f. Determine the ratio F/f.

TYCMJ 79.

by Martin Berman

In triangle ABC, let D, E, and F be points on BC, CA, and AB, respectively, such that

$$AF/AB = BD/BC = CE/CA = r < 1/2.$$

Prove that the ratio of the area of the triangle determined by AD, BE, and CF to the area of triangle ABC is 4- $3/(r^2-r+1)$.

Triangles: centroids

by Frank Eccles and Esmond McNutt

Find necessary and sufficient conditions under which a line passing through the centroid of a triangle will divide the triangle into two regions of equal area.

TYCMJ 148. by Martin Berman

Form a triangle with line segments of uniform density and having lengths a, b, and c. Denote by g_1 the centroid of the three line segments and by g_2 the centroid of the triangular region bounded by the line segments. When do g_1 and g_2 coincide?

Triangles: centroids Problems sorted by topic Triangles: ellipses

MM 1028.

by Leon Gerber

Let ABC be a triangle and P_1, P_2 , and P_3 be arbitrary points in the plane of ABC. Let arbitrary lines perpendicular to AP_i , BP_i , and CP_i determine triangles $A_iB_iC_i$ for i=1,2,3. Now, let A_0,B_0 , and C_0 , be the centroids of triangles $A_1A_2A_3$, $B_1B_2B_3$, and $C_1C_2C_3$, respectively. Show that the perpendiculars from A, B, and C on the sides of triangle $A_0B_0C_0$ concur.

CRUX 334. by Philip D. Straffin

Let A, B, and C be three fixed noncollinear points in the plane, and let X_0 be the centroid of $\triangle ABC$. Call a point P in the plane accessible from X_0 if there is a sequence of points $X_0, X_1, \ldots, X_n = P$ such that X_{i+1} is closer than X_i to at least two of the points A, B, and C(i = 0, 1, ..., n - 1). Characterize the set of points in the plane which are accessible from X_0 .

Triangles: Ceva's theorem

CRUX 414. by Basil C. Rennie

A few years ago a distinguished mathematician wrote a book saying that the theorems of Ceva and Menelaus were dual to each other. Another distinguished mathematician reviewing the book wrote that they were not dual. Explain why they were both right.

Triangles: cevians

CRUX 485. by M. S. Klamkin

Given three concurrent cevians of a triangle ABC intersecting at a point P, we construct three new points A', B', C' such that AA' = kAP, BB' = kBP, CC' = kCP, where k > 0, $k \neq 1$, and the segments are directed. Show that A, B, C, A', B', and C' lie on a conic if and only if k=2.

CRUX 456. by Orlando Ramos

Let ABC be a triangle and P any point in the plane. Triangle MNO is determined by the feet of the perpendiculars from P to the sides, and triangle QRS is determined by the cevians through P and the circumcircle of triangle ABC. Prove that triangles MNO and QRS are similar.

Triangles: circles

OSSMB G78.2-3.

A triangle ABC is defined as follows: A has coordinates (0,0), C is on the positive x-axis, the slope of AB is 4/3, the length of AB is 10, and the length of BC is $2\sqrt{17}$. Show that there are two values for C, say C_1 and C_2 , and find the equation of the circle BC_1C_2 .

SSM 3678. by Fred A. Miller

Prove or disprove that the circle determined by two vertices of a triangle and its incenter has its center on the circumcircle of the triangle.

OSSMB 79-8. by Maurice Field

Let ABC be a triangle and let D, E, F be points on the lines BC, AC, AB respectively; none of the points D, E, F are vertices of the triangle. Show that the circles AFE, BFD and CDE are concurrent. What interesting fact is obtained if, in addition, the points D, E, F are collinear?

CRUX 206. by Dan Pedoe

A circle intersects the sides BC, CA, and AB of a triangle ABC in the pairs of points X, X', Y, Y' and Z, Z'respectively. If the perpendiculars at X, Y and Z to the respective sides BC, CA and AB are concurrent at a point P, prove that the respective perpendiculars at X', Y' and Z' to the sides BC, CA and AB are concurrent at a point Z' to the sides BC, CA and AB are concurrent at a point P'.

Triangles: circumcircles

MM 967.

by K. R. S. Sastry

Let ABC be a triangle inscribed in a circle with the internal bisectors of the angles B and C meeting the circle again in the points B_1 and C_1 , respectively.

- (a) If B = C, prove $BB_1 = CC_1$. (b) Characterize triangles ABC for which $BB_1 = CC_1$ CC_1 . Do these results hold if BB_1 and CC_1 are the external bisectors?

NAvW 425. by O. Bottema

Let a, b, and c be the sides and R the circumradius of an acute triangle. Show that

$$\rho = 0.344 \left(a^2 + b^2 + c^2\right)^{\frac{1}{2}}$$

is an approximate value of R with a relative error $\frac{|\rho-R|}{R}$ that is less than 0.04.

AMM E2538. by J. Garfunkel

Let ABC be a triangle. If X is a point on side BC, let AX meet the circumcircle of ABC again at X'. Prove or disprove that if XX' has maximum length, then AX lies between the median and the internal angle bisector issuing from A.

SPECT 10.9. by J. R. Alexander

The following algorithm describes a geometrical proce-

- (1) take any triangle ABC;
- (2) circumscribe a circle around ABC;
- (3) draw tangents l, m, n at A, B, C;
- (4) let $A = m \cap n$, $B = n \cap l$, $C = l \cap m$;
- (5) go to (2).

Describe the angles of $\triangle ABC$ after reaching (4) for the nth time, and determine under what circumstances the angle at A takes its initial value again.

Now begin with a cyclic quadrilateral ABCD instead of a triangle, and carry out the analogous construction. Show that if it is possible to pass beyond (2) for the second time, then

$$AB^2 + CD^2 = d^2,$$

where d is the diameter of the circle circumscribing ABCD.

Triangles: ellipses

CRUX 318. by C. A. Davis

Given any triangle ABC, thinking of it as in the complex plane, two points L and N may be defined as the stationary values of a cubic that vanishes at the vertices A, B, and C. Prove that L and N are the foci of the ellipse that touches the sides of the triangle at their midpoints, which is the inscribed ellipse of maximal area.

Triangles: equal angles Problems sorted by topic Triangles: inscribed circles

Triangles: equal angles

SSM 3668.

by Fred A. Miller

In a triangle ABC a line has been drawn from vertex A to a given point in the opposite side BC. Find a point P on this line from which the two parts of BC subtend equal angles.

Triangles: equal areas

PENT 307.

by Fred A. Miller

Let A, B, C denote the vertices of a triangle that lie on the sides DE, EF, and FD respectively of triangle DEF. Let A'B'C' be a second triangle whose vertices lie on the sides of triangle DEF in such a way that A and A' are equidistant from the midpoint of DF, B and B' are equidistant from the midpoint of DE, and C and C' are equidistant from the midpoint of EF. Prove that triangles ABC and A'B'C' have equal areas.

SSM 3707. by Fred A. Miller

Let RST be a triangle such that M, N, and L are the midpoints of its sides. If triangles ABC and DEF have vertices which lie on the sides of triangle RST at equal distances from M, N, and L, prove that these triangles have the same area.

MSJ 444.

For how many different positions of point P in the plane of triangle ABC will $\triangle PAB$, $\triangle PBC$, and $\triangle PAC$ all be the boundaries of regions that have equal areas?

Triangles: erected figures

ISMJ 10.4.

On the side AB of a given triangle ABC two equilateral triangles ABX and ABY are constructed. Prove that

$$(CX)^{2} + (CY)^{2} = (AB)^{2} + (BC)^{2} + (CA)^{2}.$$

PME 354.

by Arthur Bernhart and David C. Kay

In a triangle ABC with angles less than $2\pi/3$, the Fermat point, defined as that point which minimizes the function f(X) = AX + BX + CX, may be determined as the point P of concurrence of lines AD, BE, and CF, where BCD, ACE, and ABF are equilateral triangles constructed externally on the sides of triangle ABC. If R, S, and T are the points where PD, PE, and PF meet the sides of triangle ABC, prove that PD, PE, and PF are twice the arithmetic means, and that PR, PS, and PT are half the harmonic means, of the pairs of distances (PB, PC), (PC, PA), and (PA, PB) respectively.

CRUX 363. by Roland H. Eddy

The following generalization of the Fermat point is known: If similar isosceles triangles BCA', CAB', ABC' are constructed externally to triangle ABC, then AA', BB', CC' are congruent.

Determine a situation in which AA', BB', CC' are concurrent if the constructed triangles are isosceles but not similar.

AMM E2802.

by M. Slater

Given a triangle ABC (in the Euclidean plane), construct similar isosceles triangles ABC' and ACB' outwards on the respective bases AB and AC, and BCA'' inwards on the base BC (or ABC'' and ACB'' inwards and BCA' outwards). Show that AB'A''C' (respectively, AB''A'C'') is a parallelogram.

PME 408.

by Clayton W. Dodge

Squares are erected on the sides of a triangle, either all externally or all internally. A circle is centered at the center of each square with each radius a fixed multiple k>0 of the side of that square. Find k so that the radical center of the three circles falls on the Euler line of the triangle, and find where it falls on the Euler line.

IMO 1975/3. PARAB 379.

On the sides of an arbitrary triangle ABC, triangles ABR, BCP, CAQ are constructed externally with $\angle CBP = \angle CAQ = 45^{\circ}$, $\angle BCP = \angle ACQ = 30^{\circ}$, $\angle ABR = \angle BAR = 15^{\circ}$. Prove that $\angle QRP = 90^{\circ}$ and QR = RP.

Triangles: escribed circles

OSSMB G77.2-3.

Given $\triangle ABC$ with radius of incircle r and r_1 , r_2 , r_3 the radii of the escribed circles opposite angles A, B, C respectively, show that $ab = r_1r_2 + rr_3$.

PME 437. by Zelda Katz

Let N be the Nagel point of a triangle, which is the intersection of the lines from the vertices to the points of contact of the opposite escribed circles. In the triangle whose sides are AB=5, BC=3, and CA=4, show that the areas of triangles ABN, CAN, and BCN are 1, 2, and 3 respectively.

Triangles: Euler line

CRUX 260.

by W. J. Blundon

Given any triangle (other than equilateral), let P represent the projection of the incenter I on the Euler line OGNH where O, G, N, H represent respectively the circumcenter, the centroid, the center of the nine-point circle and the orthocenter of the given triangle. Prove that P lies between G and H. In particular, prove that P coincides with N if and only if one angle of the given triangle has measure 60° .

Triangles: inscribed circles

SSM 3706. by Irwin K. Feinstein

In the coordinate plane, a line forms a Pythagorean triangle with the positive axes. A circle with radius r, r a positive integer, is inscribed in the triangle. The point (u,v) is the point of tangency of the line to the circle, where u and v are positive integers. What is the smallest value u+v may assume?

Triangles: inscribed triangles Problems sorted by topic Triangles: isosceles triangles

Triangles: inscribed triangles

CRUX 372. by Steven R. Conrad and Gilbert W. Kessler

A triangle ABC has area 1. Point P is on side a, α units from B; point Q is on b, β units from C; and point R is on c, γ units from A. Prove that, if α/a , β/b , and γ/c are the zeros of a cubic polynomial f whose leading coefficient is unity, then the area of $\triangle PQR$ is given by f(1) - f(0).

CRUX 210. by Murray S. Klamkin

Let $P,\,O,\,$ and R denote points on the sides $BC,\,CA,\,$ and $AB,\,$ respectively, of a given triangle $ABC.\,$ Determine all triangles ABC such that if

$$\frac{BP}{BC}=\frac{CQ}{CA}=\frac{AR}{AB}=k \quad (k\neq 0,\ 1/2,\ 1),$$

then PQR (in some order) is similar to ABC.

NAvW 401. by O. Bottema

Given the triangle $A=A_1A_2A_3$, determine the (real) triangle(s) $X=X_1X_2X_3$ such that

- (1) X is inscribed in A with X_i on the side opposite A_i (i = 1, 2, 3),
 - (2) X and A are similar,
 - (3) X and A are perspective.

Triangles: interior point

CRUX 270. by Dan Sokolowsky

A chord of a triangle is a segment with endpoints on the sides. Show that for every acute-angled triangle there is a unique point P through which pass three equal chords each of which is bisected by P.

PME 454. by Marian Haste

The point within a triangle whose combined distances to the vertices is a minimum is known as the Fermat-Torricelli point T. In a triangle ABC, if AT, BT, CT form a geometric progression with a common ratio of 2, find the angles of the triangle.

ISMJ 11.19.

Let ABC be a triangle and P a point inside or on this triangle

- (a) One of the three distances PA, PB, PC is least. Find the position(s) of P that makes this number as large as possible.
- (b) One of the distances PA, PB, PC is largest. Find the position(s) of P that make this number least.

Triangles: isogonal conjugates

AMM E2793. by E. D. Camier

Let P and Q be two points isogonally conjugate with respect to a triangle ABC of which the circumcenter, orthocenter, and nine-point center are $O,\,H,\,$ and $N,\,$ respectively. If

$$\overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{OQ},$$

and U is the point symmetric to R with respect to N, show that the isogonal conjugate of U in the triangle ABC is the intersection V of the lines P_1Q and PQ_1 , where P_1 and Q_1 are the inverses of P and Q in the circle ABC. (Assume that neither P nor Q is on the circle ABC.)

Triangles: isosceles triangles

OSSMB 79-5.

by H. Haruki

An isosceles triangle ABC has an obtuse angle of 100° at A. The bisector of the base angle B meets AC at D. Show that BD + AD = BC.

CRUX 175. by Andrejs Dunkels

Given is an isosceles triangle ABC with AB = AC and $\angle BAC = 20^{\circ}$. On AC a point D is marked off so that AD = BC = b. Find the measure of $\angle ABD$.

MSJ 456. by Steven R. Conrad

In an isosceles triangle with a 30° vertex angle, the length of the base is 12. Using only plane geometry, find the length of the altitude to the base.

MSJ 434. by Gary Steiger

Points D and E are outside isosceles triangle ABC such that CD and AE are the angle bisectors of base angles A and C. Segments CD and AE meet at H and points D, B, and E are collinear. If DB = BE, prove that $\angle BDH = \angle BEH$.

CRUX 134. by Kenneth S. Williams

Let ABC be an isosceles triangle with $\angle ABC = \angle ACB = 80^{\circ}$. Let P be the point on AB such that $\angle PCB = 70^{\circ}$. Let Q be the point on AC such that $\angle QBC = 60^{\circ}$. Find $\angle PQA$.

PARAB 344. by G. Davis

In $\triangle ABC$, AB = AC, D is on side AB and E is on side AC. Also, $\angle DAE = 20^{\circ}$, $\angle DCB = 60^{\circ}$, $\angle EBC = 50^{\circ}$, and $\angle CDE = x^{\circ}$. Find x without using trigonometric tables.

IMO 1978/4.

In triangle ABC, AB = AC. A circle is tangent internally to the circumcircle of triangle ABC and also to sides AB and AC at P and Q, respectively. Prove that the midpoint of segment PQ is the center of the incircle of triangle ABC.

CRUX 271. by Shmuel Avital

Find all possible triangles ABC which have the property that one can draw a line AD, outside the triangular region, on the same side of AC as AB, which meets CB (extended) in D so that triangles ABD and ACD will be isosceles.

MSJ 422. by Ira Ewen

In triangle ABC, AB = BC. There is a point P interior to the triangle for which $\angle APB = \angle CPB$. Line BP intersects AC at D. Prove that D is the midpoint of AC.

SSM 3733. by Charles W. Trigg

Suppose the median to the base of an isosceles triangle is equal to the base. Show that a leg, an altitude to the other leg, and one of the segments of that leg form a 3:4:5 triangle.

NYSMTJ 48. by S. R. Conrad

Establish a one-to-one correspondence between all isosceles triangles and all nonisosceles right triangles. Consider congruent triangles as the same triangle.

Triangles: ratios Triangles: isosceles triangles Problems sorted by topic

CRUX 376.

by V. G. Hobbes

Isosceles triangles can be divided into two types: those with equal sides longer than the base and those with equal sides shorter than the base. Of all possible isosceles triangles what proportion are long-legged?

ISMJ J11.17.

Prove that in an isosceles triangle, the sum of the distances from any point on the base to the other two sides is a constant.

Triangles: line segments

NAvW 424. by O. Bottema

The endpoints B_1 and B_2 of a line segment with length 2ℓ move along the perimeters of the triangle $A_1A_2A_3$ with altitudes h_i ; $h_1 \ge h_2 \ge h_3 > 2\ell$. A point B between B_1 and B_2 describes a path b. Prove that the area of the region inside $A_1A_2A_3$ and outside b is independent of h_i .

Triangles: lines

NAvW 482.

by O. Bottema and J. T. Groenman

Let P and Q be two points in the plane of the triangle $A_1A_2A_3$. The line A_iP intersects the opposite side of the triangle at B_i . In the triangle $B_1B_2B_3$, the line B_iQ

- intersects the opposite side at C_i .

 (a) Prove that the lines A_iC_i pass through one point R.
- (b) Let Q be a fixed point and P a variable point; show that the relationship between P and R is a birational involutory correspondence.

Triangles: medians

CRUX 383.

by Daniel Sokolowsky

Let m_a , m_b , and m_c be respectively the medians AD, BE, and CF of a triangle ABC with centroid G. Prove that

- (a) if $m_a:m_b:m_c=a:b:c$; then $\triangle ABC$ is equilateral;
- (b) if $m_b/m_c = c/b$, then either (i) b = c or (ii) quadrilateral AEGF is cyclic;
- (c) if both (i) and (ii) hold in (b), then $\triangle ABC$ is equilateral.

CRUX 278. by W. A. McWorter, Jr.

If each of the medians of a triangle is extended beyond the sides of the triangle to 4/3 its length, show that the three new points formed and the vertices of the triangle all lie on an ellipse.

CRUX 144. by Viktors Linis

In a triangle ABC, the medians AM and BN intersect at G. If the radii of the inscribed circles in triangles ANGand BMG are equal, show that ABC is an isosceles triangle.

In a triangle, the lengths of the three medians are 9, 12, and 15. Find the length of the side to which the longest median is drawn.

ISMJ 12.14.

Let M be the midpoint of side BC of $\triangle ABC$. Show that, if AM/BC = 3/2, then the medians from B and C are perpendicular to each other.

Triangles: nine-point circle

CRUX 353.

by Orlando Ramos

Prove that, if a triangle is self-polar with respect to a parabola, then its nine-point circle passes through the focus.

Triangles: orthocenter

OSSMB G78.2-4.

Given any triangle ABC, with orthocenter H, circumcenter O, and D on BC such that $OD \perp BC$, find the ratio OD/AH.

NAvW 494.

by J. T. Groenman

The triangles $A_1B_1C_1$ and $A_2B_2C_2$ have the same circumcircle O(R). The orthocenter of triangle $A_iB_iC_i$ is H_i (i = 1, 2). Moreover:

 A_1A_2 is parallel to B_1C_1 ,

 B_1B_2 is parallel to C_1A_1 , and C_1C_2 is parallel to A_1B_1 . Prove that OL and H_1H_2 are parallel where L is the symmedian point of $\triangle A_1B_1C_1$.

Triangles: pedal triangles

NAvW 548.

by O. Bottema

Do there exist triangles that coincide with one of their own pedal triangles?

Triangles: perpendiculars

CRUX 364.

by Sahib Ram Mandan

In the Euclidean plane, if $x_1^i(x=a,b;\ i=0,1,2)$ are the 2 triads of perpendiculars to a line p from two triads of points $X_i'(X = A, B)$ on p and (X) a pair of triangles with vertices X_i on x_1^i and sides x^i opposite X_i such that the three perpendiculars to b^i from A'_i concur at a point G, then it is true for every member of the 3-parameter family f(B) of triangles like (B); and the 3 perpendiculars from B'_i to the sides a^i of any member of the 3-parameter family f(A) of triangles like A concur at a point G' if and only if

$$\frac{A_0'A_1'}{A_1'A_2'} = \frac{B_0'B_1'}{B_1'B_2'}.$$

Triangles: ratios

CRUX 136.

by Steven R. Conrad

In $\triangle ABC$, C' is on AB such that AC':C'B = 1:2and B' is on AC such that AB':B'C=4:3. Let P be the intersection of BB' and CC', and let A' be the intersection of BC and ray \overrightarrow{AP} . Find AP:PA'.

NYSMTJ 47. by David Rosen

We are given any triangle ABC and points P, between B and C, and Q, between A and C. Let AP meet BQ at X. Let CX intersect AB at R.

- (a) If AQ/QC = a/b and BP/PC = c/d, the following ratios are determined: AX/XP, BX/XQ, CX/XR, AR/RB. Find each.
- (b) Are there any concurrent segments, other than the medians, which divide the three sides into equal ratios?
- (c) If \overline{AC} and \overline{BC} are each divided into n congruent segments, and ${\cal P}$ and ${\cal Q}$ are the points of this division nearest C, prove that $AX/X\dot{P} = BX/XQ = n$.
- (d) With the same conditions as stated for part (c), prove that \overline{CR} is the median to \overline{AB} and that

$$\frac{CX}{XR} = \frac{2}{n-1} \ .$$

Triangles: ratios Problems sorted by topic Triangles: trisected sides

OMG 17.2.8.

In $\triangle ABC$, point D is on BC such that BD:DC=5:4, and point E is on AC such that AE:EC=1:2. If AD and BE intersect at point P, then BP:PE=k:4. Find k.

Triangles: relations among parts

OSSMB G78.1-5.

- (a) Prove that the distance d between the circumcenter and the incenter of a triangle is given by the relation $d = R^2 2Rr$ where R and r are the circumradius and the inradius respectively.
- (b) If the circumcenter of $\triangle ABC$ is on the inscribed circle, prove that

$$\cos A + \cos B + \cos C = \sqrt{2}$$
.

CRUX 74. by Viktors Linis

Prove that if the sides a, b, and c of a triangle satisfy $a^2 + b^2 = kc^2$, then $k > \frac{1}{2}$.

Triangles: sides

CRUX 14. by Viktors Linis

If $a,\ b,$ and c are the lengths of three segments that can form a triangle, show that the same holds true for

$$\frac{1}{a+c}, \ \frac{1}{b+c}, \ \frac{1}{a+b}.$$

Triangles: similar triangles

PENT 275. by Kenneth M. Wilke

One bright student observed that two similar triangles can be drawn which are not congruent even though two sides of one triangle are equal to two sides of the second triangle. How did he do it and what relationship is necessary for this to occur?

Triangles: special triangles

PARAB 409.

In a triangle ABC, BC = 2AC. Produce BA past A to D so that $AD = \frac{1}{3}AB$. Prove that CD = 2AD.

CRUX 102. by Léo Sauvé

Given a triangle ABC with $a=4,\ b=5,$ and c=6, show that C=2A.

CRUX 213. by W. J. Blundon

(a) Prove that the sides of a triangle are in arithmetic progression if and only if

$$s^2 = 18Rr - 9r^2.$$

(b) Find the corresponding result for geometric progression.

CRUX 388. by W. J. Blundon

Prove that the line containing the circumcenter and the incenter of a triangle is parallel to a side of the triangle if and only if

$$s^{2} = \frac{(2R-r)^{2}(R+r)}{R-r}.$$

JRM 626.

by Les Marvin

- (a) Prove that a triangle with side lengths of 4, 5, and 6 has a pair of angles one of which is twice the other.
- (b) For what other integer triples (a, b, c), does a triangle with side lengths of a, b, and c have a pair of angles one of which is twice the other?

CRUX 229. by Kenneth M. Wilke

On an examination, one question asked for the largest angle of the triangle with sides 21, 41, and 50. A student obtained the correct answer as follows:

Let C denote the desired angle; then $\sin C = 50/41 = 1 + 9/41$. But $\sin 90^{\circ} = 1$ and $9/41 = \sin 12^{\circ}40'49''$. Thus

$$C = 90^{\circ} + 12^{\circ}40'49'' = 102^{\circ}40'49'',$$

which is correct. Find the triangle of least area having integral sides and possessing this property.

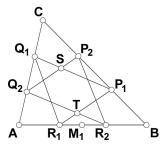
CRUX 313. by Leon Bankoff

In triangle ABC, we have $2b^2 = c^2 + a^2$. Prove that GK, the join of the centroid and the symmedian point, is parallel to the base b.

Triangles: squares

PME 361. by Carl A. Argila

Consider any triangle ABC such that the midpoint P of side BC is joined to the midpoint Q of side AC by the line segment PQ. Suppose R and S are the projections of Q and P respectively on AB, extended if necessary. What relationship must hold between the sides of the triangle if the figure PQRS is a square?


Triangles: trisected sides

CRUX 320.

by Dan Sokolowsky

The sides of $\triangle ABC$ are trisected by the points P_1 , P_2 , Q_1 , Q_2 , R_1 , R_2 . Show that:

- (a) $\triangle P_1 Q_1 R_1 \cong \triangle P_2 Q_2 R_2$;
- (b) $[P_1Q_1R_1] = \frac{1}{3}[ABC]$, where the brackets denote area;
- (c) the sides of $\triangle P_1Q_1R_1$ and $\triangle P_2Q_2R_2$ trisect one another;
- (d) If M_1 is the midpoint of AB, then C, S, T, and M_1 are collinear.

CRUX 317. by James Gary Propp

In triangle ABC, let D and E be the trisection points of side BC with D between B and E, let F be the midpoint of side AC, and let G be the midpoint of side AB. Let H be the intersection of segments EG and DF. Find the ratio EH:HG by means of mass points.

Algebras Problems sorted by topic Fields: complex numbers

Algebras

AMM 6228. by Ivan Vidav

Let A be a C^* -algebra with unit 1, and let e and f be two projections of A such that e+f is invertible in A. Show that $e\cap f=2e(e+f)^{-1}f$. $(e\cap f)$ is the supremum of the set of all projections $h\in A$ such that $h\leq e$ and $h\leq f$.)

AMM 6097.

by Glen E. Bredon

Consider the polynomial

$$P(t) = 2^{-n}(1+t^{a_1})(1+t^{a_2})\cdots(1+t^{a_n}).$$

The first k derivatives of P(t) evaluated at t = 1, that is,

$$q_1 = P'(1), \ q_2 = P''(1), \dots, \ q_k = P^{(k)}(1),$$

are symmetric functions of a_1, a_2, \ldots, a_n . Show that the polynomial algebra generated by these k symmetric functions coincides with that generated by S_1 and the S_{2j} for $2 \leq 2j \leq k$. Here S_i is the sum of ith powers, $S_i = a_1^i + a_2^i + \cdots + a_n^i$.

AMM 6068. by Seth Warner

Let A be an algebra over a commutative ring K, and let A_+ be the K-algebra $K \times A$ where addition and scalar multiplication are defined componentwise and multiplication by

$$(x,a)(y,b) = (xy, x \cdot b + y \cdot a + ab).$$

Let N and R be, respectively, the (Jacobson) radicals of K and A. It is standard that if N = (0), $N \times R$ is the radical of A_+ . What are the necessary and sufficient conditions for $N \times R$ to be the radical of A_+ ?

Binary operations

TYCMJ 43. by Bernard C. Anderson

Prove that there exists a noncommutative binary operation on the set of real numbers that is both right- and left-distributive over addition.

TYCMJ 81. by Gino T. Fala

Prove or disprove that any binary operation, *, on the rational numbers that is right- and left-distributive over addition is commutative.

AMM E2574. by F. David Hammer

Let $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$ and let p be a prime. There is a binary operation * on \mathbb{N}_0 satisfying $x * y \leq x + y$ for all $x, y \in \mathbb{N}_0$ such that $(\mathbb{N}_0, *)$ is an abelian group with every element (except 0) of order p: for example, write x and y to base p and add individual digits mod p. Prove or disprove that this gives the only such operation.

AMM 6238. by F. David Hammer

To see if a binary operation on a set with n elements is associative, one might think it necessary to verify directly n^3 instances of the associative law. Often, however, for instance if the operation is commutative and has an identity, considerably fewer need be verified. Is there a set of n elements and an operation on them for which all n^3 verifications are necessary?

PUTNAM 1978/A.4.

A bypass operation on a set S is a mapping from $S\times S$ to S with the property

$$B(B(w,x),B(y,z)) = B(w,z)$$
 for all w,x,y,z in S .

- (a) Prove that B(a,b)=c implies B(c,c)=c when B is a bypass.
- (b) Prove that B(a, b) = c implies B(a, x) = B(c, x) for all x in S when B is a bypass.
- (c) Construct a table for a bypass operation B on a finite set S with the following three properties:
 - (1) B(x,x) = x for all x in S.
 - (2) There exist d and e in S with $B(d, e) = d \neq e$.
 - (3) There exist f and q in S with $B(f,q) \neq f$.

NAvW 477. by M. N. van Ulvenhout

Define an operation \cup_* (called "uglification") on the nonnegative integers by the inductive rule:

- (1) \cup_* is distributive over Nim-addition \oplus (Nim-addition of integers written in binary is vector addition over GF(2) i.e., 'add without carry' or 'exclusive or').
- (2) $2^m \cup_* 2^n$ is the smallest number different from all numbers

$$x \cup_* 2^n \qquad (x < 2^m),$$

$$2^m \cup_* y \qquad (y < 2^n).$$

Determine the numbers x such that $x \cup_* y = 0$ implies y = 0.

ISMJ 13.17.

Given two real numbers x and y, they can be combined by the new operation \diamond so as to give the real number $x \diamond y$. Assume the following properties of \diamond :

- (1) $(x+y)(x\diamond y) = x^2 \diamond y^2$ for all x and y.
- (2) $(x \diamond y) = (x+z) \diamond (y+z)$ for all x, y, and z.
- (3) $1 \diamond 0 = 1$.

Use these properties to show that $x \diamond y = x - y$ for all x and y.

PARAB 351.

A product $x \circ y$ is defined for all pairs of real numbers x, y so that the following hold for any x, y, z:

- $(1) x \circ y = y \circ x.$
- $(2) (x \circ y)z = xz \circ yz.$
- (3) $(x \circ y) + z = (x + z) \circ (y + z)$.

What is the value of $99 \circ 100$?

Category theory

AMM 6169.

by Joseph Rotman

Prove that the category of all Lie algebras over a field K has no injective objects other than 0.

Fields: complex numbers

CMB P252. by D. Ž. Djoković

Let F be a subfield of $\mathbb C$ such that $\mathbb C$ is a quadratic extension of F, i.e., $(\mathbb C:F)=2$. It is well known that this implies that F is a real closed field and hence $i\not\in F$ (i= the imaginary unit). Is it true or not that F must be isomorphic to $\mathbb R$?

Fields: extension fields Problems sorted by topic Fields: subfield chains

Fields: extension fields

AMM 6043. by Brian Peterson

Let P be a nonempty proper subset of the primes. Consider algebraic extensions F of the rationals $\mathbb Q$ with the property:

(*) Every x in F has degree over $\mathbb Q$ divisible only by primes in P.

A Zorn's lemma argument shows that there exist maximal extensions satisfying (*). Is such a maximal extension unique up to isomorphism?

Fields: finite fields

AMM E2540. by Richard Stanley

Let F be a finite field of order q, let n be a divisor of q-1, and let α be a nonzero element of F. Evaluate

$$S(n,q;\alpha) = \sum (t^n - \alpha)^{-1},$$

the sum being over all $t \in F$ with $t^n \neq \alpha$.

NAvW 435. by M. van Rijk

Let F_p be the prime field with p elements, and let ξ and η be algebraically independent over F_p .

Let

$$P = F_p(\xi, \eta),$$

and let E be the subfield

$$F_p\left(\xi^p - \xi, \eta^p - \xi\right)$$

of P. Determine the field of all elements of P that are purely inseparable over E and determine $\operatorname{Aut}(P|E)$, the group of all automorphisms of P that fix E.

AMM 6201. by Daniel D. Anderson

Let $GF(p^n)$ be the finite field of order p^n . For which positive integers k is every element of $GF(p^n)$ a sum of kth powers?

Fields: number fields

NAvW 486. by G. J. Rieger

Let K be a quadratic number field. Let N_K denote the norm of K and $\{\rho, \sigma\}$ be a complete basis of K. Given

$$\alpha = a\rho + b\sigma, \qquad \beta = c\rho + d\sigma$$

where a, b, c, and d are real numbers, show that

$$gcd(\alpha, \beta) = 1 \iff gcd(N_K(\alpha), ad - bc, N_K(\beta)) = 1,$$

where |ad - bc| is basis-independent.

Fields: perfect fields

AMM 6177. by Adrian R. Wadsworth

Let K be a perfect field of prime characteristic. Prove that if R is a Noetherian integral domain with quotient field K, then R = K.

Fields: polynomials

AMM 6066. by C. W. Anderson

For n = 3 and $x \in (0,1)$ rational, show that

$$f_n(x) = (1 - x^n)^{1/n}$$

is algebraic of degree n.

AMM 6101. by Michael Slater

Suppose F is an ordered field in which Rolle's theorem holds for polynomials. Show that any sum of squares in F is a square in F.

CMB P253. by D. Ž. Djoković

Let F be a field of characteristic zero and let

$$f(X) = \prod_{i=1}^{r} f_i(X)^{m_i}, \quad g(X) = \prod_{i=1}^{s} g_j(X)^{n_j}$$

be prime factorizations of two polynomials f(X) and g(X) in one variable X over F. Further, suppose $E_i = F(\alpha_i)$ and $K_j = F(\beta_j)$ $(1 \le i \le r, \ 1 \le j \le s)$ are simple extensions of F considered as F-algebras, where α_i is a root of $f_i(X)$ and β_j is a root of $g_j(X)$. Show that the following are equivalent:

- (1) There exists a polynomial h(X) such that f(h(X)) is divisible by q(X).
- (2) For each j there exists an i such that E_i is isomorphic to an F-subalgebra of K_j .

How should (2) be modified if F has prime characteristic?

PUTNAM 1979/B.3.

Let F be a finite field having an odd number m of elements. Let p(x) be an irreducible polynomial over F of the form

$$x^2 + bx + c$$
, $b, c \in F$.

For how many elements k in F is p(x) + k irreducible over F?

AMM 6046. by Stephen McAdam

Let f and g be two nonconstant monic irreducible polynomials over the field K. Let u and v be roots of f and g, respectively, in some extension field of K. Suppose that over K[v], the irreducible decomposition of f is $f = f_1^{e_1}, \ldots, f_n^{e_n}$ while over K[u], g decomposes into $g = g_1^{d_1}, \ldots, g_m^{d_m}$. Then n = m and, when appropriately ordered, $e_i = d_i$ and

$$\frac{\deg g_i}{\deg f_i} = \frac{\deg g}{\deg f} \ .$$

AMM E2578. by Carl Pomerance

Prove that $x^4 + 1$ is reducible over every field of prime characteristic. Do the same for $x^4 - x^2 + 1$.

Fields: rational functions

AMM 6082. by Thomas C. Craven

Let K(t) be the rational function field in one variable over a field K of arbitrary characteristic. Does the equation

$$x^n - y^2 = 1$$

have a nonconstant solution in K(t) when n > 2?

Fields: subfield chains

AMM 6268. by Gene Smith and Hugh M. Edgar

Assume that the algebraic number field K possesses at least one proper intermediate field E, i.e, $Q \subset E \subset K$. Prove or disprove the following: K must have a strictly increasing chain

$$Q = K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_{n-1} \subset K_n = K,$$

 $n \geq 2$, of subfields such that K_i has a relative integral basis over K_{i-1} for $1 \leq i \leq n$.

Higher Algebra

Fields: subfields Problems sorted by topic Groups: finite groups

Fields: subfields

AMM 6119.* AMM 6216.*

by M. J. Pelling by M. J. Pelling

Are there any algebraic number fields A with the property that $A = A_1 + A_2$ (qua abelian groups), where A_1 , A_2 are proper subfields of A?

Fields: vector spaces

NAvW 497.

by J. H. van Lint

Let p be a prime, $F = GF(p^{2t})$, and K be the subfield $GF(p^t)$. The field F can be interpreted as a 2t-dimensional vector space over GF(p). Let V be a (2t-1)-dimensional linear subspace of this space. Show that exactly one coset of K^* in F^* is completely contained in V.

Galois theory

AMM E2650.

by M. J. Pelling

Find the Galois group of the equation $x^9 + x^3 + 1 = 0$ over the rationals.

Groupoids

AMM 6150. by Albert A. Mullin

Let G be any groupoid. Call $e \in G$ a near identity of G if e is idempotent and ex = xe = x fails for at most one $x \in G$. It is well known that G can have at most one identity.

- (a) Show that if G is a semigroup, then it can have at most two near-identity elements. Every group has precisely one near-identity element.
- (b) Give an example of an uncountably infinite semigroup with precisely two near identities that contains a countably infinite semigroup with precisely two near identities.

Groups: abelian groups

MM Q612. by Kenneth Taylor

Let (G,\cdot) be a group with the following special cancellation property:

$$x \cdot a \cdot y = b \cdot a \cdot c$$
 implies $x \cdot y = b \cdot c$

for all x, y, b, c, and a in G. Prove that G is abelian.

AMM 6011. by M. Slater

The group \mathbb{Z} of integers has the following property X: For any n, suppose that A is a list of (2n+1) terms in \mathbb{Z} , such that on removal of any one term, the remainder can be divided into two batches of n terms having equal sums. Then all the terms of A are equal.

Determine exactly what abelian groups G have property X.

Groups: alternating groups

CMB P266. by D. Ž. Djoković and J. Malzan

Is there a subgroup G of A_n such that its normalizer in S_n actually lies in A_n ?

Groups: associativity

AMM E2659.

by Arthur L. Holshouser

The sequence a, b, c, d can be parenthesized in five ways. Equating these two at a time, we obtain the following "identities":

(1)
$$(ab)(cd) = a(b(cd))$$
,

$$(2) (ab)(cd) = a ((bc)d),$$

(3)
$$(ab)(cd) = ((ab)c) d$$
,

$$(4) (ab)(cd) = (a(bc)) d,$$

$$(5) \ a \left(b(cd) \right) = a \left((bc)d \right),$$

(6)
$$a(b(cd)) = ((ab)c) d$$
,

(7)
$$a((bc)d) = (a(bc)) d$$
,

(8)
$$((ab)c) d = (a(bc)) d$$
,

(9)
$$a(b(cd)) = (a(bc)) d$$
,

(10)
$$a((bc)d) = ((ab)c) d$$
.

Which of these identities implies that a quasigroup satisfying it is necessarily a group?

Groups: finite groups

NAvW 540. by N. Hekster and R. Schoof

Let $n \in \mathbb{N}$. Prove that there is exactly one group of order n if and only if $\gcd(\phi(n),n)=1$.

JRM 479. by Garland Hopkins

Write a program capable, for a given value of n, of generating and listing all groups of order n, weeding out isomorphic repeats. For what composite values of n ($1 \le n \le 100$) is there only one group, viz., the cyclic group?

AMM 6202. by A. A. Jagers

Let S be a set of generators of a finite group G. For $g \in G$, let m(g) be the least number of terms in a representation of g as a product of elements of S. Let n_1, n_2, \ldots, n_k be the degrees of the irreducible characters of G. Prove that

$$m(g) \le n_1 + n_2 + \dots + n_k - 1.$$

AMM E2592.

by Melvin Hausner

Let G be a finite group of even order n = 2m. Let H be the set of all x in G with $x^m = 1$. Prove

- (a) H is a subgroup of G, and
- (b) either H = G or the index [G : H] is 2.

CRUX 57. by Jacques Marion

Let G be a group of order pn where p is prime and $p \geq n$. Show that if H is a subgroup of order p then H is normal in G.

NAvW 555.

by H. W. Lenstra, Jr. and R. W. van der Waall

Which finite groups G have the property that for all $a, b \in G$, with gcd(order(a), order(b)) = 1, we have $order(ab) = order(a) \cdot order(b)$?

AMM 6176.

by Morris Newman and Daniel Shanks

Prove that for the most common type of simple group, which is designated $\operatorname{PSL}_2(p^n)$, its order N is never a perfect square. Find at least one simple group that does have square order.

Groups: finite groups Problems sorted by topic Groups: subgroups

NAvW 501.

by J. C. Bioch

by J. C. Bioch

Let G be a finite group. It is well known that the intersection of the commutator subgroup G' and the center Z(G) of G is contained in the Frattini subgroup $\Phi(G)$ of G. Prove the following extension of this result:

$$G' \cap Z_{\infty}(G) \leq \Phi(G),$$

where $Z_{\infty}(G)$ is the hypercenter of G.

NAvW 448.

by J. C. Bioch and R. W. van der Waall

Let G be a finite group. Let M be a subgroup of G such that $\gcd(|M|, t-1) = 1$, where t is the index of M in G. If t is prime, then prove that M is a normal subgroup of G.

AMM 6026. by Fred Commoner

Prove the following theorem: Let p be an odd prime. If G is a finite nonabelian group such that p is less than or equal to the least prime dividing |G|, then no automorphism of G can send more than |G|/p elements of G to their inverses. There is a nonabelian group G of order p^3 and an automorphism of G sending exactly |G|/p elements of G to their inverses.

AMM 6059. by S. Baskaran

A group G is called metacyclic if the derived group G' and the factor group G/G' are both cyclic. Prove that if G is a finite metacyclic group and p is the smallest prime dividing the order of G, then a Sylow p-subgroup of G is cyclic.

Groups: group presentations

PUTNAM 1976/B.2.

Suppose that G is a group generated by elements A and B. Also, suppose that $A^4 = B^7 = ABA^{-1}B = 1$, $A^2 \neq 1$, $B \neq 1$.

- (a) How many elements of G are of the form C^2 with C in G?
 - (b) Write each such square as a word in A and B.

CMB P259. by Jerome B. Minkus

Let G_n denote the group generated by a_1, a_2, \ldots, a_n subject to the relations

$$a_1 a_2^4 a_3 = a_2 a_3^4 a_4 = \cdots$$

= $a_{n-2} a_{n-1}^4 a_n = a_{n-1} a_n^4 a_1 = a_n a_1^4 a_2 = 1$.

Show that G_n is infinite for all $n \geq 6$.

AMM 6099. by Jerome Minkus

For $n \geq 3$, let G_n denote the group generated by the elements a_1, a_2, \ldots, a_n subject to the relations

$$a_1 a_2^{-1} a_3 = a_2 a_3^{-1} a_4 = \dots = a_{n-2} a_{n-1}^{-1} a_n$$

= $a_{n-1} a_n^{-1} a_1 = a_n a_1^{-1} a_2 = 1$.

Show that

(a) G_5 is isomorphic to the binary dodecahedral group

$${a, u \mid a^5 = u^3 = (au)^2},$$

(b) G_n is nonabelian for all $n \geq 3$.

Let G be a finite supersoluble non-nilpotent group. If every proper factor group of G is nilpotent, then prove that G is metacyclic with presentation:

$$G = \langle a, b \mid a^p = 1, bab^{-1} = a^j, b_n = 1;$$

$$p$$
 prime, $1 < j < p \rangle$,

where n | (p-1) and $j^n \equiv 1 \pmod{p}$.

Groups: matrices

AMM E2545.

NAvW 502.

by Ron Evans

Let V be an invertible $n \times n$ matrix with rational entries, and let G denote the group of all $n \times n$ matrices with integral entries and determinant 1. Prove that if H and VHV^{-1} are subgroups of G of finite index p and q, respectively, then p = q.

Groups: permutation groups

AMM 6049.

by D. E. Knuth

What group is generated by the two cyclic permutations (1, 2, ..., m) and (1, 2, ..., n) when 1 < m < n?

AMM E2708. by Edward T. H. Wang

Find all n for which the symmetric group S_n has the following property: If $\alpha, \beta \in S_n$ are n-cycles, then either $\langle \alpha \rangle = \langle \beta \rangle$ or $\langle \alpha \rangle \cap \langle \beta \rangle = \{1\}$.

CRUX 66. by John Thomas

What is the largest non-trivial subgroup of the group of permutations on n elements?

Groups: subgroups

AMM 6204.*

by F. David Hammer

- (a) If all proper subgroups of an infinite abelian group are free (as abelian groups), then show that the group is free.
 - (b) Find a weaker hypothesis for (a).
 - (c) Delete abelian in (a).

AMM 6205.

by Alan McConnell and Louis Shapiro

Let G be a group with no nontrivial elements of finite order, and let H be a cyclic subgroup of finite index in G. Show that G is itself cyclic.

AMM 6221. by F. David Hammer

Recently, Shelah found a group of cardinality \aleph_1 with no proper subgroups of that cardinality. Prove that this cannot happen with abelian groups. In fact, every uncountable abelian group has a proper subgroup of the same cardinality.

MM 935. by Qazi Zameeruddin

It is known that the additive group Q of the rational numbers has no maximal subgroup. Is this statement true for the multiplicative group Q^* of nonzero rational numbers? If the answer is no, then characterize all maximal subgroups of Q^* .

Groups: subgroups Problems sorted by topic Rings: Boolean rings

NAvW 506.

by R. Jeurissen

Prove or disprove the following statement. If G is a group with subgroups H and K, and if there are elements h and k in G such that $h^{-1}Hh\subseteq K$ and $k^{-1}Kk\subseteq H$, then H and K are conjugate in G.

PUTNAM 1975/B.1.

In the additive group of ordered pairs of integers (m,n) [with addition defined componentwise: (m,n)+(m',n')=(m+m',n+n')] consider the subgroup H generated by the three elements

$$(3,8), (4,-1), (5,4).$$

Then H has another set of generators of the form

for some integers a and b with a > 0. Find a.

PUTNAM 1977/B.6.

Let H be a subgroup with h elements in a group G. Suppose that G has an element a such that for all x in H, $(xa)^3 = 1$, the identity. In G, let P be the subset of all products $x_1ax_2a\cdots x_na$, with n a positive integer and the x_i in H.

- (a) Show that P is a finite set.
- (b) Show that, in fact, P has no more than $3h^2$ elements.

Groups: torsion groups

AMM 6052.

by J. R. Gard

If G is a torsion group such that there exists an element $x \in G$ with the property that x and y generate G whenever $y \in G$ is not a power of x, is G finite? What other properties does G have?

Groups: transformations

AMM E2542.

by Ron Evans

Let G be the group generated by the transformations T and S on the extended complex plane, where zT=-1/z and zS=z+2i. Suppose that z_0 is fixed by some non-identity transformation in G. Prove that z_0 must lie on the extended imaginary axis.

AMM 6102. by Barbara Osofsky

Let A and B be nontrivial rotations of \mathbb{R}^3 about l_1 and l_2 , respectively, which are axes through (0,0,0) such that

$$A^2 = B^3 = I$$

where I is the identity transformation. Hausdorff has shown that if $\cos 2\theta$ is transcendental, where θ is the angle between l_1 and l_2 , then all relations between A and B are generated by $A^2 = I$ and $B^3 = I$. Show that the same is true for $\theta = \pi/4$.

AMM 6276. by R. K. Oliver

Let g and h be two screw motions of Euclidean three-space with positive angles less than $\pi/3$ and nonparallel axes. Show that the group generated by g and h is not discrete.

MM 1086.

by Barbara Turner

Consider the following transformations on 4×4 matrices. Let R move the top row to the bottom and the other rows cyclically up; let D be the reflection across the main diagonal; let S be the interchange of the 1st and 2nd rows followed by the interchange of the 1st and 2nd columns. What is the order of the group generated by R, D, and S?

Lattices

AMM 6032.

by D. J. Johnson

Suppose L and M are distributive lattices. Let $[\mathcal{G}, \leq]$ be the partially ordered set of lattice morphisms from L to M, ordered according to the following rule: $f \leq g$ if and only if for all x in L, $f(x) \leq g(x)$ in M. Is $[\mathcal{G}, \leq]$ necessarily a lattice?

AMM E2700. by Richard Stanley

Let L be a finite lattice with minimum element 0 and maximum element 1. Suppose that for all $x \neq 0$ in L, the interval [0,x] contains an even number of elements. Show that L is complemented, i.e., for all x in L there is a y in L such that $x \wedge y = 0$ and $x \vee y = 1$.

NAvW 541.

by C. B. Huijsmans and B. de Pagter

Prove that, in an Archimedean Riesz space L, the following are equivalent:

- (1) L is of finite dimension.
- (2) Every ideal in L is principal.
- (3) Every prime ideal in L is principal.

Loops

MATYC 109.

by Dean Jordan

- (a) What is the fewest number of elements a set may contain and be a loop without also being a group?
- (b) What is the fewest number of elements a set may contain and be a commutative loop without also being a group?

Quaternions

NAvW 431.

by L. Kuipers

Let p be an odd prime. Let J be the set of (Hurwitz) integral quaternions, and let Λ be a complete system of residues of $J \pmod p$. Let N(a) be the norm of $a \ (a \in J)$. Let $s \in \Lambda$, $s \not\equiv 0 \pmod p$, and let

$$t \in \{1, 2, \dots, p-1\}.$$

Determine the number of solutions of the system of quaternion congruences (in x and f):

$$N(f) \equiv t \pmod{p}, \qquad xf \equiv s \pmod{p}.$$

Rings: Boolean rings

AMM E2536.

by Jacob Brandler

If $x^6 = x$ for every element x in the ring R, prove that R is a Boolean ring. Generalize.

MM 1052.

by F. David Hammer

Show that Boolean rings (idempotent commutative rings with identity) are isomorphic if their multiplicative semigroups are isomorphic.

Rings: characteristic Problems sorted by topic Rings: nonassociative rings

Rings: characteristic

MM 1019. by Daniel Mark Rosenblum

Let R be a ring for which there is an integer n, n > 1, such that $x^n = x$ for each element x of R. Prove that the characteristic of R is a (square-free) product of distinct primes p such that $(p-1) \mid (n-1)$.

Rings: commutative rings

TYCMJ 40. by Steven R. Conrad

Assume that R is a ring in which, for each $x \in R$, $x^2 - x$ is contained in the center of R. Prove that R is commutative.

Rings: finite rings

AMM 6284. by William P. Wardlaw

Let R be a finite ring with more than one element and with no nonzero nilpotent element. Show that R is a direct sum of fields.

MM 991. by F. S. Cater

Let a and b be elements of a finite ring such that $ab^2 = b$. Prove that bab = b.

TYCMJ 65. by Kenneth V. Turner, Jr.

Let x and y be respectively left and right divisors of zero in a finite ring with $xy \neq 0$. Prove that xy is both a left and a right divisor of zero.

Rings: ideals

AMM 6152. by R. Raphael

In some rings one has unique factorization for ideals. Show that the following limited form of factorization holds in all rings: If I_j , $j=1,\ldots,n$, are distinct nonzero ideals in a ring R, and if a_j and b_j are positive integers with $a_j < b_j$ for each j, then

$$\prod_{j=1}^n I_j^{a_j} = \prod_{j=1}^n I_j^{b_j} \qquad \text{implies} \qquad \prod_{j=1}^n I_j^{a_j} = \prod_{j=1}^n I_j^{c_j},$$

where c_j , j = 1, ..., n, are any integers satisfying

$$a_j \le c_j \le b_j$$
.

In particular, $\prod I_j^{a_j} = \prod I_j^{a_j+1}$. Show by an example that this is best possible, that is, show that one can have the products equal when the exponents are not.

DELTA 5.1-3. by Robert C. Davis, Jr.

Let A be the ring of all polynomials f(x) with rational coefficients such that f(1) is an integer. Let

$$I = \{ f(x) \in A \mid f(1) = 0 \}.$$

Show that I is an ideal of A that is not finitely generated.

AMM 6180. by L. C. Larson

Let A and B be ideals of a commutative ring R with unity. Show that $\{x \in R \mid xB \subseteq xA\}$ is an ideal if R is either an integral domain or a principal ideal ring, but that in general it need not be.

Rings: integral domains

AMM 6170. by Paul W. Haggard

Let D be an integral domain with prime characteristic p, and let x and y be indeterminates. In D[x, y], consider expansions of $(x + y)^n$ for nonnegative integers n.

(a) If p_1 is an odd prime, prove that the expansion of

$$(x+y)^{p_1}$$

has an even number, N, of terms.

(b) When and how can n be obtained such that the expansion of $(x+y)^n$ will have a given number, N, of terms?

AMM 6069. by A. R. Charnow

Let R be an integral domain, G a torsion-free group, and R[G] the group ring of G over R. Let $x=r_1g_1+r_2g_2$, $r_i\in R,\ r_i\neq 0,\ g_i\in G,\ g_1\neq g_2$. Prove that x is neither a zero divisor nor a unit in R[G].

AMM 6116. by S. H. Cox, Jr.

Let A be an integral domain satisfying the following condition: For every nonzero ideal I of A, there is an epimorphism $A \to A'$ of rings such that I and A' are isomorphic A-modules. For example, a principal ideal domain satisfies the condition with $A \to A'$ the identity A = A'. Show that each domain satisfying the condition is a principal ideal domain.

AMM 6264. by William C. Waterhouse

A mathematician once assumed that when he had two elements with no common factor, he could write 1 as a linear combination of them. Show that for a Noetherian integral domain, this assumption implies unique factorization.

Rings: matrices

AMM E2742.

by P. M. Gibson

In a ring with identity, find two matrices such that only the scalar matrices commute with both.

AMM E2528. by L. W. Shapiro

Let R denote the ring of $n \times n$ real matrices with the property that every element not in the first row or on the main diagonal is 0. How many two-sided ideals does R have?

AMM E2676. by Robert Gilmer

Let R be a ring (not necessarily with identity). We denote by R_n the ring of $n \times n$ matrices over R. Show that the following are equivalent:

- (1) Every ideal of R_n is of the form I_n , where I is an ideal of R.
 - (2) I = IR = RI holds for every ideal I of R.

Rings: nonassociative rings

AMM 6263. by David Pokrass

In a simple nonassociative ring R, let

$$(a, b, c) = (ab)c - a(bc),$$
$$[a, b] = ab - ba,$$
$$a \circ b = ab + ba.$$

If R satisfies the identity $w \circ (x,y,z) = 0$ and has no elements of additive order 2, show that R is either associative or anticommutative, i.e., R satisfies either (x,y,z) = 0 or $x \circ y = 0$ identically.

Higher Algebra

Rings: number of idempotents Problems sorted by topic Rings: subrings

Rings: number of idempotents

AMM 6183. by Albert A. Mullin

Let R be a ring with a finite number n of multiplicative idempotents.

- (a) If R is commutative, show that n is a power of 2.
- (b) If R has a unit, show that n is even but need not be a power of 2.
 - (c) Is there an R for which n is an odd prime?

Rings: polynomials

AMM 6259.

by William D. Blair and James E. Kettner

Let R be a commutative ring with unity and $R\left[x,x^{-1}\right]$ be the ring of Laurent polynomials

$$f(x) = \sum_{i=-m}^{n} a_i x^i$$

over R. Find necessary and sufficient conditions on the coefficients a_i of f(x) for f(x) to be invertible.

Rings: power series

AMM 6039. by Robert Gilmer

Let R be an associative ring, and let $\{X_i\}_1^n$ be a finite set of commuting indeterminates over R. Prove that each central idempotent of the power series ring $R[[X_1, \ldots, X_n]]$ is in R.

Rings: regular rings

CMB P258. by R. Raphael

A ring is regular if for each x there is a y such that x = xyx. Prove that for regular rings the following are equivalent: (1) The ideals are totally ordered by inclusion. (2) The prime ideals are totally ordered by inclusion. (3) All the ideals are prime.

Rings: subrings

AMM 6134. by Barbara Osofsky

Let R be a ring, not necessarily with identity, and let R^n be the subring generated by n-fold products of elements of R. Prove that if R has the descending chain condition on right ideals, then so does R^n . Does this result hold if "descending chain condition" is replaced by "ascending chain condition"?

Problems sorted by topic Affine spaces Determinants: symmetric matrices

Affine spaces

AMM E2779.* by H. Schwerdtfeger

- (a) Let $A = (a^{(1)} \ a^{(2)} \cdots a^{(n)})$ be a nonsingular matrix over a field F, whose columns $a^{(j)}$ represent points in the n-dimensional affine space S_n . Let π be the hyperplane passing through the points $a^{(1)}, \ldots, a^{(n)}$. Let $b \in S_n, b \neq 0$, and B be the matrix $(b \ b \cdots b)$. Show that the determinant |A - B| = 0 if and only if $b \in \pi$.
- (b) Generalize (a) to a more general matrix of rank 1, namely $B = (\gamma_1 b \ \gamma_2 b \ \cdots \ \gamma_n b), \ \gamma_1 \gamma_2 \cdots \gamma_n \neq 0, \ \gamma_i \in F.$
- (c) If A is singular and Σ is the subspace of S_n generated by the columns of A, show that there is no b in Σ such that $|A - B| \neq 0$, with $B = (b \ b \cdots b)$.

Determinants: block matrices

AMM E2556. by Leon Gerber

Let $A = (\mathbf{a_1}|\cdots|\mathbf{a_n})$ and $B = (\mathbf{b_1}|\cdots|\mathbf{b_n})$ be two $2n \times n$ real matrices, partitioned into columns. Assume that $n \geq 3$ and that the rank of A does not exceed n-3. Let $r_1, \ldots, r_n, s_1, \ldots, s_n$ be arbitrary positive numbers. For i, j = 1, 2, ..., n, define

$$t_{ij} = \frac{|\mathbf{a_i} - \mathbf{b_j}|^2 - r_i^2 - s_j^2}{2r_i s_j} \ .$$

Show that $det(t_{ij}) = 0$.

AMM 6057.

by Anon

Let A, B, C, and D be $n \times n$ matrices such that $CD^{\mathrm{T}} = DC^{\mathrm{T}}$. Prove that

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD^{T} - BC^{T}|.$$

Determinants: complex numbers

AMM E2525. by D. Ž. Djoković

Let A be a complex $n \times n$ matrix, let \overline{A} be its complex conjugate, and let I be the $n \times n$ identity matrix. Prove that $det(I + A\overline{A})$ is real and nonnegative.

AMM 6258.* by John S. Lew

Let $X = (x_{jk})$ be an $m \times n$ matrix, where 1 < m < nand the x_{jk} are algebraically independent indeterminates over the field C of complex numbers. Let X' be the transpose of X. Prove that det(XX') is an irreducible polynomial over C.

Determinants: evaluations

AMM E2559. by Hugh L. Montgomery

Determine whether the following matrix is singular or nonsingular:

AMM E2552. by Philip Castevens

Let A be an $n \times n$ real matrix with zeros on the main diagonal and ± 1 off the diagonal. Show that A is nonsingular if n is even, but that A may be singular if n is odd.

AMM E2586.

by Walter Egerland

Evaluate det A, where $A = (a_{ij})$ is the $(n+1) \times (n+1)$ matrix defined by

$$a_{ij} = 0 \qquad \text{if } i - j \neq 0, 2, -2,$$

$$a_{ii} = \lambda_i + \lambda_{i-1} \quad \text{where } \lambda_0 = \lambda_{n+1} = 0,$$

$$a_{i+2,i} = 1, \qquad \text{and}$$

$$a_{i,i+2} = \lambda_i \lambda_{i+1}.$$

The scalars λ_i may belong to any commutative ring.

Determinants: identities

AMM E2703.

by David Jackson

Let J be the $n \times n$ matrix whose entries are all 1's and write J = L + U, where L (resp. U) is a lower (resp. upper) triangular matrix and the diagonal entries of L are zeros. Let $X = \operatorname{diag}(x_1, \ldots, x_n)$, where x_1, \ldots, x_n are variables.

$$\det\left(I - (XU)^{k-1}XL\right) = \sum_{s>0} (-1)^s a_{sk}, \quad k = 1, 2, 3, \dots,$$

where the a_i are defined by

$$\prod_{i=1}^{n} \frac{1 - (tx_i)^k}{1 - tx_i} = \sum_{j \ge 0} a_j t^j,$$

where t is a new variable.

Determinants: recurrences

by Bart Rice

A tridiagonal $n \times n$ matrix $A_n = (a_{ij})$ is of the form

$$a_{ij} = \begin{cases} 2a, & (a \text{ real}) \text{ for } j = i, \\ 1, & \text{for } j = i \pm 1, \\ 0, & \text{otherwise.} \end{cases}$$

Let $d_n = \det A_n$.

- (a) Show that (d_n) satisfies a second-order homogeneous linear recursion.
- (b) Find closed-form and asymptotic expressions for d_n .
 - (c) Derive the combinatorial identity

$$\sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \binom{n}{2k+1} (-x)^k = (x+1)^{(n-1)/2} \frac{\sin rn}{\sin r}$$

for x > 0, $r = \tan^{-1} \sqrt{x}$.

Determinants: symmetric matrices

SIAM 79-3.

by A. E. Barkauskas and D. W. Bange

Find either a closed form solution or a simple recurrence to evaluate the $n \times n$ determinant $|a_{ij}|$ where $a_{ij} = a_{ji}, a_{ii} = c+1$ (c an integer > 1), $a_{12} = 1, a_{i,ci+k} = 1$ for k = 1 to c and $ci + k \le n$; all other $a_{ij} = 0$.

Eigenvalues Problems sorted by topic Matrices: 0-1 matrices

Eigenvalues

SIAM 76-20. by L. B. Bushard

Find estimates, as functions of n, on the largest and smallest eigenvalues of the $n \times n$ matrix

$$A_n = (a_{ij}) : a_{ij} = \frac{1}{1 + |i - j|}$$

 $i, j = 1, \ldots, n.$

SIAM 75-15.

by E. Wasserstrom

Let

$$D = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix},$$

$$T = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix},$$

where d_1 , d_2 , and d_3 are positive and $d_3 \leq d_1$. Show that if $d_3 < d_1/3$, then there are two other positive diagonal matrices D_1 and D_2 such that D, D_1 , and D_2 are distinct but DT, D_1T , and D_2T have the same eigenvalues. Show also that if $d_3 > d_1/3$ and D_1 is a positive diagonal matrix distinct from D, then DT and D_1T must have different sets of eigenvalues.

CMB P251. by D. Ž. Djoković

Find the eigenvalues and the eigenvectors of the twodiagonal matrix $A=(a_{ij})$, where $a_{ij}=0$ if $|i-j|\neq 1$ and $a_{i,i+1}=a_{n+2-i,n+1-i}=i$ $(1\leq i\leq n)$.

SIAM 79-2.

by G. Efroymson, A. Steger, and S. Steinberg

Let M_n denote the $n \times n$ matrix whose (j, k) entry $M_n(j, k)$ is given by

 $\frac{\omega^{(j-1)(k-1)}}{\sqrt{n}} \ , \qquad 1 \leq j,k \leq n$

where $\omega = e^{2\pi i/n}$. Determine all of the eigenvalues of M_n .

AMM 6168. by Edmond Dale Dixon

Let A be a diagonalizable matrix with eigenvalues $\lambda_1,\lambda_2,\ldots$ such that $|\lambda_1|>|\lambda_2|\geq\cdots$, and let X be any vector not in the subspace spanned by the eigenvectors associated with $\lambda_2,\lambda_3,\ldots$. Let E_i be the vector with 1 in the ith position and zeros elsewhere. Then show that it is not necessarily true that $E_i\cdot A^{n+1}X/E_i\cdot A^nX\to \lambda_i$, for each i, where the denominators are nonzero.

MM Q624. by I. J. Good

Think of a square matrix as placed on a checkerboard, so that the leading diagonal consists entirely of white squares. Then if the signs of all the entries on black squares are changed, prove that the eigenvalues are unchanged.

Lattices

AMM 6172.* by Doug Hensley

Give an example, if possible, of two planar lattices of unit determinant that do not possess a common bounded measurable fundamental domain. Do any two distinct lattices possess a common fundamental domain?

Linear transformations

AMM 6236.

by Antal E. Fekete

We say that two endomorphisms of the complex vector space \mathbb{C}^n are of the same type if there is a bijection between their respective sets of eigenvalues that maps the Jordan normal form of one endomorphism into that of the other. Find a formula determining the number of different endomorphism types of \mathbb{C}^n . Define what is meant by an endomorphism type of the real vector space \mathbb{R}^n and determine their number.

AMM 6051.* by Jochem Zowe

Let X be a real vector space, Y an ordered vector space, and p a sublinear map of X into Y, i.e., $p(\lambda x) = \lambda p(x)$ and $p(x+x') \leq p(x) + p(x')$ for all $x, x' \in X$ and all real nonnegative λ . Does there always exist a linear map T of X into Y such that $Tx \leq p(x)$ for all $x \in X$?

AMM S22.

by Edward T. H. Wang and Roy Westwick

Let V and W be two vector spaces over the same field. Suppose f and g are two linear transformations $V \to W$ such that for every $x \in V$, g(x) is a scalar multiple (depending on x) of f(x). Prove that g is a scalar multiple of f.

AMM E2712. by A. Wilansky

Let A be a linear map from real bounded sequences to the real numbers, such that for each sequence x some subsequence of x converges to A(x). Must A(xy) = A(x)A(y)?

Matrices: 0-1 matrices

AMM E2662.

by Edward T. H. Wang

For an $n \times n$ (0,1)-matrix A, let A' denote the complementary matrix, i.e., A' = J - A, where J is the matrix with all entries equal to 1. Define $\sigma_n = \max \Sigma(AA')$, where $\Sigma(X)$ denotes the sum of all entries of a matrix X and the maximum is taken over all $n \times n$ (0,1)-matrices A.

Show that

$$\sigma_n \ge \frac{n^3 - n}{3}.$$

Does the equality hold for all n?

AMM E2678. by Edward T. H. Wang

Find the maximum number of 1's in an $n \times n$ (0, 1)-matrix whose square is again a (0, 1)-matrix.

MM 1065. by H. Kestelman

Let A be an $(n+1)\times(n+1)$ matrix; its (1,1)-th element is 0 and all others are 1. Find a formula for the elements of A^k when $k\geq 2$.

FQ H-281.

by V. E. Hoggatt, Jr.

(a) Consider the matrix equation

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}^n = \begin{pmatrix} A_n & B_n & C_n \\ D_n & E_n & G_n \\ H_n & I_n & J_n \end{pmatrix}, n \ge 1.$$

Identify $A_n, B_n, C_n, ..., J_n$.

(b) Consider the matrix equation

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}^n = \begin{pmatrix} A'_n & B'_n & C'_n \\ D'_n & E'_n & G'_n \\ H'_n & I'_n & J'_n \end{pmatrix}, n \ge 1.$$

Identify A'_n , B'_n , C'_n , ..., J'_n .

Matrices: adjoints Problems sorted by topic Matrices: maxima and minima

Matrices: adjoints

AMM 6222. by Emilie V. Haynsworth

Let A be an $n \times n$ matrix over the complex field. Let AdjA denote the standard adjoint matrix for A, that is, $AdjA = (C_{ji})$, where C_{ij} is the cofactor of a_{ij} in A. Prove that if A + AdjA = kI, then

- (i) A has at most two distinct eigenvalues, λ_1 and λ_2 ;
- (ii) the Jordan form, J, for A has blocks no larger than 2×2 , and if $\lambda_1 \neq \lambda_2$, A is diagonalizable;
 - (iii) if $\lambda_1 \lambda_2 \neq 0$, and λ_1 has multiplicity m, then

$$\lambda_1^{m-1}\lambda_2^{n-m-1} = 1;$$

- (iv) if $\lambda_1=0,\ A\neq 0,\ n>2,$ then λ_1 is a simple root and $\lambda_2^{n-2}=1;$
- (v) if S = A + J kI, then S^2 commutes with both A and J and if S is nonsingular, $S^{-1}AS = J$;
- (vi) if A is nonnegative and λ_1 and λ_2 are both positive, then A^{-1} is an M-matrix.

Conversely, if properties (i), (ii) and (iii) hold, then $A+\operatorname{Adj} A=kI$.

Matrices: block matrices

AMM E2762. by Peter Hoffman

Let A_1,\ldots,A_n be $k\times k$ matrices over a field F, such that $A=A_1+\cdots+A_n$ is invertible. Show that the block matrix B=

$$\begin{pmatrix} A_1 & A_2 & \dots & A_{n-1} & A_n & 0 & \dots & 0 \\ 0 & A_1 & A_2 & \dots & A_{n-1} & A_n & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & & \ddots & \ddots & 0 \\ 0 & \dots & 0 & A_1 & A_2 & \dots & A_{n-1} & A_n \end{pmatrix}$$

has full rank, i.e., rank (B) = mk, where m is the number of block rows.

Matrices: characteristic polynomial

AMM E2635. by Kirby C. Smith

Let F be a field of characteristic $p \neq 0$. Let A = CD, where C is a cyclic $p \times p$ matrix over F and D is the diagonal matrix with diagonal entries $0, 1, 2, \ldots, p-1$. Compute the characteristic polynomial of A. Generalize.

AMM E2711. by Frank Uhlig

Let A and B be $m \times m$ matrices over a field. If the characteristic polynomial of A is irreducible, show that rank $(AB - BA) \neq 1$.

MATYC 91. by Richard Gibbs

Let A be a nonsingular matrix with characteristic polynomial

$$|xI - A| = x^n + d_1 x^{n-1} + \dots + d_{n-1} x + d_n.$$

What is the trace of A^{-1} ?

Matrices: Hermitian matrices

SIAM 76-8. by W. Anderson, Jr. and G. Trapp

Let A and B be Hermitian positive definite matrices. Write $A \geq B$ if A - B is Hermitian positive definite. Show that

$$A^{-1} + B^{-1} \ge 4(A+B)^{-1}$$
.

AMM 6072.

by Wayne Lawton

Let a_1, \ldots, a_n be n distinct complex numbers such that $0 < |a_k| < 1$ for $1 \le k \le n$. Let $B = (b_{ij})$ be the $n \times n$ Hermitian matrix defined by

$$b_{ij} = \frac{a_i \overline{a}_j}{(1 - a_i \overline{a}_j)}$$

for $1 \le i, j \le n$. Prove that B is positive definite and that the following equality is valid:

$$\max_{x_{l} \in \mathbb{C}} \left\{ |x_{1} + \dots + x_{n}|^{2} : \sum_{1 \leq i, j \leq n} b_{ij} x_{i} \overline{x}_{j} = 1 \right\}$$

$$= \prod_{k=1}^{n} |a_{k}|^{-2} - 1.$$

AMM 6061. by Hung C. Li

For any $n \times n$ positive semidefinite Hermitian matrix H, the set

$$S = \{ A \mid \operatorname{tr}(AA^*)H \le \lambda \}$$

is convex in A, where A is $n \times m$, X^* is the complex conjugate and transpose of X, and tr X is the trace of X.

MM Q644. by John Z. Hearon

Let A be a nonzero matrix of rank one so that $A = ab^*$ where a and b denote column vectors and b denote conjugate transpose. Show that b is Hermitian if and only if b is a scalar multiple of b. Given that b is Hermitian, show that b is positive semidefinite if and only if the inner product b is positive.

Matrices: identity matrix

MM 951. by G. A. Heuer

Let A be a square matrix, some scalar multiple of which differs from the identity matrix by a matrix of rank one. Give a simple necessary and sufficient condition that A be nonsingular, and find A^{-1} in this case.

TYCMJ 139. by Gregory P. Wene

Find all positive integers n such that if M is an $n \times n$ matrix and I is the $n \times n$ identity matrix over the real numbers, then one of the following is true:

- (1) M is invertible,
- (2) M-I is invertible,
- (3) M is idempotent.

Matrices: maxima and minima

AMM E2555.

by T. W. Cusick

Let $A=(\mathbf{a_1}|\mathbf{a_2})$ be a nonsingular 2×2 matrix partitioned into columns. Show that

$$\min_{A} \max_{\mathbf{x}} \frac{(\mathbf{a_1} \cdot \mathbf{x})(\mathbf{a_2} \cdot \mathbf{x})}{\det A} = \frac{1}{2} ,$$

where the max is over all \mathbf{x} in the box $|x_i| \leq 1$, and the min is over all such matrices A.

Establish a corresponding result for higher dimensions.

Matrices: Moore-Penrose inverse Problems sorted by topic Matrices: products

Matrices: Moore-Penrose inverse

SIAM 76-15. by A. Berman and M. Neumann

A square matrix is monotone if it is nonsingular and if its inverse is nonnegative. A rectangular matrix is semi-monotone if its Moore-Penrose inverse is nonnegative. Let A be a semimonotone matrix of rank r. Prove, or give a counterexample, that A possesses an $r \times r$ monotone submatrix.

Matrices: norms

AMM 6125. by Simeon Reich

For a given $n \times n$ matrix A of rank r and an integer $k, 1 \le k \le r$, a best rank k approximation of A is a matrix $A_{(k)}$ satisfying

$$\begin{aligned} \|A - A_{(k)}\| \\ &= \inf \left\{ \|A - X\| : X \text{ is an } n \times n \text{ matrix of rank } k \right\}, \end{aligned}$$

where $||A|| = (\operatorname{tr} A^*A)^{1/2}$.

Show that if A is normal, then $A^{j}_{(k)}$ is a best rank k approximation of A^{j} for all $j \geq 1$, but that this is no longer true for arbitrary A.

AMM 6249. by H. Kestelman

The norm $\|A\|$ of a real 2×2 matrix A is by definition the maximum of $\|A\hat{x}\|$ when $\|\hat{x}\|=1$. If $\|x\|$ is the Euclidean norm $\left(x^Tx\right)^{1/2}$, then $\|A\|\leq \||A|\|$, where |A| is the matrix whose elements are the absolute magnitudes of those of A. Find necessary and sufficient conditions on an invertible 2×2 matrix N in order that $\|A\|\leq \||A|\|$ for all A when $\|x\|$ is defined as the Euclidean norm of Nx.

Matrices: orthogonal matrices

MM 1035. by H. Kestelman

Let A be a real $n \times n$ matrix. Do there exist orthogonal matrices B such that A + B is real orthogonal?

Matrices: permutations

AMM 6171. by R. W. K. Odoni and J. B. Wilker

Let F be a field, and let n and d be positive integers, each ≥ 2 . Let σ be any permutation of $\{1,2,\ldots,n\}$, and let σ_0 be the n-cycle $j \to j+1 \pmod n$. Prove that σ is a power of σ_0 if and only if for every sequence of $n \ d \times d$ matrices over F, $\operatorname{tr}\left(\prod_{j=1}^n M_j\right) = \operatorname{tr}\left(\prod_{j=1}^n M_{\sigma(j)}\right)$.

AMM E2516. by Morris Newman and Charles Johnson

Two matrices A and B are permutation-equivalent if B can be obtained from A by first permuting the rows of A and then permuting the columns of the resulting matrix.

Call an $n \times n$ matrix of 0's and 1's a k-k matrix if there are precisely k 1's in each row and each column. Show that if $n \leq 5$, then every k-k matrix is permutation-equivalent to its transpose, but that this is no longer true if $n \geq 6$.

Matrices: polynomials

AMM E2597.

by R. W. Farebrother

Let j and n be integers such that $0 \le j \le n$, and let

$$(1-x)^{j}(1+x)^{n-j} = \sum_{i=0}^{n} c_{ij}(n)x^{i}.$$

If C(n) is the matrix $(c_{ij}(n))$, where $i, j = 0, 1, \ldots, n$, show that

$$C(n)^{2} = 2^{n}I,$$

$$\det C(n) = (-2)^{n(n+1)/2},$$

$$\operatorname{tr} C(n) = \begin{cases} 0, & \text{if } n \text{ is odd,} \\ 2^{n/2}, & \text{if } n \text{ is even.} \end{cases}$$

AMM 6006. by Frank Uhlig

Let A_i be a finite family of complex square matrices that have no eigenvalues in common. Let p_i be a family of real polynomials and define $B_i = p_i(A_i)$ for each i. If each A_i is similar to a real matrix, prove that there is a real polynomial p such that $p(A_i) = B_i$ for every i.

Matrices: positive definite matrices

AMM 6095. by Anon

Let P, Q, and B be $m \times m$, $n \times n$, and $n \times m$ complex matrices with P and Q positive definite. Show that $P - B^*Q^{-1}B$ is positive definite if and only if $Q - BP^{-1}B^*$ is positive definite.

Matrices: power series

AMM E2734.

by Melvin Hausner

Let $A = (a_{ij})$ be a real square matrix such that $a_{ij} > 0$ for $i \neq j$. Show that all entries of e^A are positive.

NAvW 517. by M. L. J. Hautus

Let A and B be $n \times n$ matrices. If e^{tA} is bounded for $t \ge 0$, show that e^{tA+B} is also bounded for $t \ge 0$.

Matrices: powers

MM 1017.

by Stanley Friedlander

(a) Given an $n \times n$ matrix A over the rationals, show that $A^p = I$ for a prime p > n + 1 implies A = I.

(b) For each k, $1 < k \le n+1$, show that there exists an $n \times n$ non-identity matrix over the rationals such that $A^k = I$.

NYSMTJ 61. by Samuel A. Greenspan and Sidney Penner

Let A be a 2×2 matrix over the reals, and let n be a positive integer. Is there an n > 1 such that $A^n = I$ implies A = I?

Matrices: products

AMM 6251. by William P. Wardlaw

Let m and n be positive integers. What pairs of matrices C and D, over any field K, have the property that if A is an $m \times n$ matrix over K and B is an $n \times m$ matrix over K such that AB = C, then BA = D?

Matrices: similar matrices Problems sorted by topic Matrices: unitary matrices

Matrices: similar matrices

MM 1058. by H. Kestelman

Is it true that a square matrix that is not a scalar multiple of the identity is always similar to a matrix with all nonzero elements?

Matrices: spectral radius

SIAM 76-9.

by S. Venit

Let

$$P = \begin{bmatrix} B & C \\ I & 0 \end{bmatrix},$$

be a real, square matrix of order 2n, partitioned into four $n \times n$ blocks. Assume that I and 0 are the identity and null matrices (of order n), respectively, and that the only nonzero elements of B and C are given by

$$b_{ij} = \frac{2r_j}{1 + 2r_j}$$

when |i - j| = 1, and

$$c_{ij} = \frac{1 - 2r_j}{1 + 2r_j}$$

when i = j (i, j = 1, 2, ..., n), where the r_j are arbitrary positive numbers.

Show either that the spectral radius of P is less than 1 for all positive integers n, or find a counterexample.

AMM 6209. by Marcel F. Neuts

Let A be a primitive nonnegative matrix of order m, and let B be a finite real matrix of order m. Denote the spectral radius of A by ρ . Show that

$$\lim_{n \to \infty} \frac{1}{n} \rho^{-(n-1)} \sum_{\nu=0}^{n-1} A^{\nu} B A^{n-1-\nu}$$

exists and identify the limit.

AMM S13. by H. Kestelman

A nonnegative real matrix A with spectral radius 1 has the property that for some pair (p,q), the p,q element of A^j tends to 0 as $j \to \infty$. Show that for some pair (r,s), the r,s element of A^j is 0 for all positive integers j.

SIAM 75-7. by D. A. Voss

The $n \times n$ matrix $D_n = \begin{bmatrix} d_{ij} \end{bmatrix}$ satisfies

$$d_{ij} = \begin{cases} \frac{j(i-n)}{n^3}, & j < i, \\ \frac{(6i^2 - 6in + n)}{6n^3}, & j = i < n, \\ \frac{i(j-n)}{n^3}, & j > i, \\ 0, & j = i = n. \end{cases}$$

Prove or disprove that the spectral radius $\rho(D_n)$ of D_n satisfies

$$\rho(D_n) < \frac{1}{\pi^2}$$

and

$$\lim_{n \to \infty} \rho(D_n) = \frac{1}{\pi^2} \ .$$

SIAM 78-12.

by P. J. Schweitzer

Investigate the spectral properties of the $N \times N$ matrix

$$Q_{ij} = P_i \delta_{ij} - P_i P_j, \qquad i, j = 1, 2, \dots, N,$$

where

$$P_i \ge 0, \qquad \sum_{i=1}^N P_i = 1.$$

SIAM 77-14.*

by G. K. Kristiansen

Let $P = \{p_{rs}\}$ be a symmetric matrix having

- (1) $p_{rs} = 0$ for |r s| > 1 and $p_{rs} > 0$ otherwise,
- (2) spectral radius 1, and
- (3) $p_{s-1,s} + p_{s+1,s} \le 1$ for all s.

Denote by e^T the $1 \times n$ matrix with all entries 1, and let

$$I = \{\delta_{rs}\}$$

be the $n \times n$ unit matrix. Let c be a nonnegative $n \times 1$ matrix with $e^T c = 1$. Prove or disprove that the matrix

$$F = \left(I - ce^T\right)P$$

has spectral radius at most equal to 1. If a counterexample is found, try to minimize the order n.

Matrices: stochastic matrices

AMM E2652.

by Jeffrey L. Rackusin

Let $A = (a_{ij})$ be a row-stochastic $n \times n$ matrix. Show that

$$\sum_{\sigma \in S_n} \prod_{i=1}^n \left(\frac{a_{i,\sigma(i)}}{\sum_{j=i}^n a_{i,\sigma(j)}} \right) = 1,$$

where S_n is the symmetric group.

SIAM 75-13.*

by M. Golberg

Let **P** denote an $n \times n$ primitive stochastic matrix and let **R** denote a diagonal matrix with diagonal (r_1, r_2, \ldots, r_n) , where $0 \le r_i \le 1$. Determine

$$\lim_{N \to \infty} \frac{1}{N} \left\{ \sum_{k=1}^{N} \frac{(\mathbf{P} + \mathbf{R})^k}{\left(1 + \sum_{i=1}^{n} \frac{r_i}{n}\right)^k} \right\}.$$

Matrices: symmetric matrices

MM 995. by Edward T. H. Wang

Call an $n \times n$ matrix $(n \ge 2)$ R-symmetric if the interchange of any two distinct rows yields a symmetric matrix. Find a characterization of all R-symmetric matrices.

Matrices: unitary matrices

AMM E2741. by H. S. Witsenhausen

Given a complex square matrix A, show that there exists a unitary matrix U such that U^*AU has all diagonal entries equal. If A is real, U can be taken real orthogonal.

Problems sorted by topic Matrix equations Vector spaces

Matrix equations

AMM 6162.

by Ray Latham

If $A = (a_{ij})$ is the $n \times n$ matrix defined by

$$a_{ij} = \frac{1}{1 - 4(i - j)^2}$$
,

and $\mathbf{x} = (x_i)$ is the unique vector such that $A\mathbf{x} = \mathbf{e}$ (the all 1's vector), show that

$$\sum_{i=1}^{n} x_i = \binom{n+1}{2}.$$

MM 1040.

by H. Kestelman

If A is an $m \times n$ matrix that is not invertible, show that there are infinitely many $n \times m$ matrices X satisfying AXA = A.

CRUX 208.

by Kenneth S. Williams

Let a and b be real numbers such that $a \geq b \geq 0$. Determine a matrix X such that

$$X^2 = \begin{bmatrix} a & b \\ b & a \end{bmatrix}.$$

FQ H-252.

by V. E. Hoggatt, Jr.

Let $A_{n\times n}$ be an $n\times n$ lower semi-matrix and $B_{n\times n}$, $C_{n\times n}$ be matrices such that $A_{n\times n}B_{n\times n}=C_{n\times n}$. Let $A_{k\times k}$, $B_{k\times k}$, $C_{k\times k}$ be the $k\times k$ upper left submatrices of $A_{n\times n}$, $B_{n\times n}$, and $C_{n\times n}$. Show that $A_{k\times k}B_{k\times k}=C_{k\times k}$ for k = 1, 2, ..., n.

Matrix sequences

MM 1038.

by Douglas Lewan

Define the following sequence of square matrices:

$$M(1) = [1], \quad M(2) = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix},$$

$$M(3) = \begin{bmatrix} 6 & 7 & 8 \\ 9 & 10 & 11 \\ 12 & 13 & 14 \end{bmatrix}, \dots$$

Find the sum of the elements on the main diagonal of M(n).

NAvW 418.

by M. L. J. Hautus For which $n \times n$ matrices B does there exist an $n \times n$ matrix A and a sequence of real numbers u_k , such that

$$u_k A^k \to B \qquad (k \to \infty)$$
?

Normed spaces

AMM 6017.

by Albert Wilansky

In a popular text it is proposed to find a strictly smaller norm for any normed space E by first constructing a strictly larger norm on E'. Show that this construction must fail. The new norm must be equivalent to the old. Give a correct construction.

Vector spaces

ISMJ 13.9.

Let B be a Hamel basis for \mathbb{R} considered as a vector space over \mathbb{Q} . Given any function $\lambda: B \to \mathbb{R}$, define the function $f_{\lambda}: \mathbb{R} \to \mathbb{R}$ by setting $f_{\lambda}(x) = r_1 \lambda(b_1) + \cdots +$ $r_n \lambda(b_n)$ where $x = r_1 b_1 + \cdots + r_n b_n$ $(r_i \in \mathbb{Q}, b_i \in B,$ $i = 1, \ldots, n$). Show that f_{λ} is additive.

MM 984.

Let (b_1, b_2, \ldots, b_n) be a nonzero element of \mathbb{R}^n . For which $n, 2 \le n \le 8$, is it true that one can choose an orthogonal basis for \mathbb{R}^n from the collection

$$\{(\pm b_{\pi(1)}, \pm b_{\pi(2)}, \dots, \pm b_{\pi(n)}) \mid \pi \in P_n\},\$$

where P_n is the set of all permutations of (1, 2, ..., n)?

AMM E2785. by Stephen M. Gagola, Jr.

A flat X in a vector space V over a field F is defined to be a coset of a maximal subspace of V. Assume that Fis finite with q elements. If V has dimension n and $V \setminus \{0\}$ is the union of m flats, prove that $m \ge n(q-1)$.

AMM 6215. by Ki Hang Kim and Fred Roush

Heawood's system for the four-color theorem for a map with n faces amounts to a linear system of rank n-2 in a (2n-4)-dimensional vector space over GF(3). Prove that for a random rank n system in a 2n-dimensional vector space over GF(3), the probability that there is at least one solution vector with no zero component tends to 1 as $n \to \infty$.

Abundant numbers Problems sorted by topic Arithmetic progressions: primes

Abundant numbers

AMM 6138. by Harry D. Ruderman

Let p_1, p_2, \ldots be consecutive primes with $p_1 = 2$. (a) Show that for every n, there is a k for which

$$\prod^{n+k} p$$

is an abundant number.

(b) Find an upper bound for k in terms of n.

Algorithms

PENT 286. by Kenneth M. Wilke

In Alcatraz Prison an eccentric jailer decided to effect a "selective release" of the prisoners. The cells are numbered consecutively beginning with the number 1. First he unlocked all the cells. Then after returning to the place of beginning, he turned the key in the lock of every second cell. Next he repeated the process by returning to the place of beginning and turning the key in the lock of every third cell. The jailer repeats this process and on the *i*th trip he turns the key in every *i*th cell after returning to the place of beginning at cell number 1. Assuming that Alcatraz has 200 cells and that no prisoner escapes during the process, how many prisoners are released and what cells do they occupy?

JRM 739. by Frank Rubin

Write an efficient algorithm to compute the geometric mean of a list of N positive real numbers. To be efficient, your algorithm must not use more than a fixed number, independent of N, of higher functions (roots, exponentials, logarithms, etc.). The total number of operations must be at most proportional to N.

If you have access to a computer, test your program by finding the geometric means of the following two lists:

(a) $1, 2, 3, \ldots, 5000$.

(b)
$$2^1, 3^{-2}, 2^3, 3^{-4}, 2^5, \dots, 2^{99}, 3^{-100}$$
.

OSSMB G78.1-2.

A given natural number N is a perfect square whose square root contains 2n+1 digits. Show that when the n+1 high-order digits have been obtained by the usual method, the remaining n digits may be found by simple division.

Approximations

CRUX 202. by Daniel Rokhsar

Prove that any real number can be approximated within any $\varepsilon>0$ as the difference of the square roots of two natural numbers.

PME 375. by Richard S. Field

Approximate the value of 2^{10000} without using pencil and paper.

MM Q617. by Norman Schaumberger and Erwin Just

If a and b are positive real numbers, show that for any positive integers m and n there is always a rational number of the form x^m/y^n between a and b with x and y integers.

Arithmetic operations

MATYC 113. by Mark Butler

What is the largest possible number that can be "carried" from one column to the next when adding n whole numbers?

SSM 3670. by Herta T. Freitag

Is there an infinitude of triples of nonzero real numbers for which addition distributes over multiplication and multiplication over addition?

ISMJ 11.8.

By inserting parentheses in

$$1 \div 2 \div 3 \div 4 \div 5 \div 6 \div 7 \div 8 \div 9$$

the value of the expression can be made 7/10. How? What are the largest and the smallest values that can be obtained by insertion of parentheses?

Arithmetic progressions: coprime integers

AMM E2684. by Charles A. Nicol

Let A_n be the set of positive integers that are less than n and relatively prime to n. For which n is A_n an arithmetic progression?

Arithmetic progressions: geometric progressions

ISMJ 12.18.

Suppose an arithmetic progression and a geometric progression have positive terms and the first two terms are the same in the two progressions. Show that any other term of the arithmetic progression does not exceed the corresponding term of the geometric progression.

Arithmetic progressions: maxima and minima

TYCMJ 141. by Thomas E. Elsner

Call (G_i) , $i=1,2,\ldots$, a "nonarithmetic sequence" if it is an increasing sequence of positive integers with no three terms in arithmetic progression. Let (H_i) , $i=1,2,\ldots$, be called a "minimal nonarithmetic sequence" if, for each i, H_i does not exceed the ith term of each "nonarithmetic sequence". Prove or disprove that a "minimal nonarithmetic sequence" exists.

Arithmetic progressions: primes

JRM 712. by Friend H. Kierstead, Jr.

The longest known arithmetic progression of primes has 16 terms. Without knowing the common difference of such a progression, is it possible to infer what some of its factors must be?

SSM 3697. by Charles W. Trigg

In the decimal system, find a four-term arithmetic progression of three-digit prime numbers in which the fourth term is the reverse of the first term.

SSM 3776. by Charles W. Trigg

Find three three-digit prime numbers in arithmetic progression which contain no duplicated digits.

Arithmetic progressions: primes

Problems sorted by topic

Arrays

AMM E2561.

by J. M. Simon

Let (p_1, p_2, p_3) be a prime triplet spaced by the common interval d. Show that if d is not a multiple of 6, then $p_1 = 3$ and necessarily the triplet is unique. Discuss the situation if d is a multiple of 6.

JRM 627. by Henry Larson

What is the longest arithmetic progression of primes (negative primes permitted) in which no member has more than two digits?

Arithmetic progressions: ratios

CRUX 114.

by Léo Sauvé

An arithmetic progression has the following property: for any even number of terms, the ratio of the sum of the first half of the terms to the sum of the second half is always equal to a constant k.

Show that k is uniquely determined by this property, and find all arithmetic progressions having this property.

Arithmetic progressions: roots

AMM E2628.

by Richard J. Hall

Let a, b, and c be distinct positive integers, at least two of which are prime. Show that $a^{1/n}$, $b^{1/n}$, and $c^{1/n}$ cannot be terms of an arithmetic progression.

Arithmetic progressions: subsequences

JRM 377.

by David L. Silverman

Let S be an increasing sequence of positive integers that contains arithmetic subsequences of arbitrary length; that is, for every positive integer n, there is an arithmetic subsequence of S of length n.

Prove or disprove: S must contain an infinite arithmetic subsequence.

AMM E2522.

by Joel Spencer

An infinite subset

$$S = \{s_1, s_2, \ldots\}$$

of \mathbb{N} $(s_1 < s_2 < \cdots)$ has bounded gaps if $(s_{n+1} - s_n)$ is bounded. Show that if S has bounded gaps, then it contains arbitrarily long arithmetic progressions.

Arithmetic progressions: sum of terms

OSSMB G75.2-1.

Two arithmetic progressions P and P' are such that the sum of n terms of P is $2n^2 - 5n$, and the sum of n terms of P' is $\frac{n}{2}(7n - 3)$ and there are a number of terms common to both. Find the first five ordered pairs (k, r) such that t_k of P is equal to t_r of P'.

Arrays

TYCMJ 147.

by Charles W. Trigg

In the square array

all but one of the twelve adjacent digit pairs, taken horizontally and vertically, have prime absolute differences. Show that there is no rearrangement of the digits in which all of the differences are (a) different, (b) the same, (c) composite, or (d) prime.

CRUX 345.

by Charles W. Trigg

by Peter Sjögren

It has been shown that when the nine nonzero digits are distributed in a square array so that no column, row or unbroken diagonal has its digits in order of magnitude, the central digit must always be odd.

- (a) Can such a distribution be made for every odd central digit?
- (b) Do any such distributions exist in which odd and even digits alternate around the perimeter of the array?

OSSMB 76-16.

The integers 1, 2, 3, 4, 5, 6, 7, 8, 9 are arranged in a 3×3 array in such a way that no three numbers in a line (row, column, or diagonal) occur in order of magnitude (increasing or decreasing). Prove that, in every such arrangement, the number in the center must be an odd number.

AMM E2732.

It is easy to see that one can label the squares of an $n \times n$ chessboard by integers from 1 to n^2 so that the difference between labels of neighboring squares does not exceed n. Is this best possible? (Two squares are neighbors if they share a common side.)

SIAM 79-4.* by K. L. McAvaney

For positive integer n, maximize the number of $n \times n$ matrices each containing all of $1, 2, \ldots, n^2$ such that any two entries appear simultaneously in at most one row of all the matrices.

PARAB 329.

Consider the array of natural numbers similar to Pascal's triangle. If we denote the nth row of the triangle by

$$a_{n,1}, a_{n,2}, a_{n,3}, \ldots, a_{n,n-1}, a_{n,n},$$

then the law of formation is given by

$$a_{n,1} = a_{n,n} = 1$$

and for $2 \le i \le n-1$,

$$a_{n,i} = (n-i+1)a_{n-1,i-1} + ia_{n-1,i}.$$

Find a simple formula involving n, for the sum S_n of the nth row, $S_n = a_{n,1} + a_{n,2} + a_{n,3} + \cdots + a_{n,n}$.

FQ H-254.*

by R. Whitney

Find a formula for the row-sums of the Fibonacci-Pascal type array below.

Arrays Problems sorted by topic Base systems: digit reversals

AMM E2534.

by C. H. Kimberling

Consider the array of numbers a(j,k) defined for

$$j, k = 0, 1, \dots$$

as follows: a(j,0) = 1 for $j = 0,1,\ldots$; a(0,k) = 2 for $k = 1,2,\ldots$; a(j,k) = a(j,k-1) + a(j-1,k) for $j,k \geq 1$. Prove the following:

- (a) If p is prime, then $p \mid a(j, p-j+1)$ for $j=2,3,\ldots,p-1$.
 - (b) If j + 2k is prime, then j + 2k divides a(j, k).
- (c) If a(j,k) is prime, then a(j,k) divides a(mj,mk) for $m=1,2,\ldots$

JRM 740. by Frank Rubin

A multiplex cipher uses a number of randomly-chosen shuffled alphabets, usually 25-30. Encipherment consists of picking, for each plaintext letter, a letter in the corresponding alphabet a fixed distance away. For instance, the figure shown shows four five-letter alphabets. Suppose we decide to use the second letter below each plaintext letter; then the word BEAD would be enciphered as DBBC.

Breaking the cipher depends upon the fact that in a randomly-chosen set of alphabets, the set of all letters at a given distance from a given letter does not contain all the other 25 letters. In our example the set one down from A does not contain C; the set two down does not contain D; and the set three down does not contain E.

Is it possible to make the cipher secure by providing a set of 25 alphabets in which, for each of the 26 letters at each distance from 1 to 25, all other letters occur? If not, what is the minimum number of alphabets required?

A B D E
B D C C
C A A B
D E E A
E C B D

Base systems: cubes

CRUX 157.

by Steven R. Conrad

In base fifty, the integer x is represented by CC and x^3 is represented by ABBA. If C>0, express all possible values of B in base ten.

Base systems: digit permutations

JRM C1. by David L. Silverman

Find the smallest positive integer N such that in base N there are digits A, B, and C (0 < A < B < C < N) with the property that all six base-N permutations, ABC, ACB, BAC, BCA, CAB, and CBA are primes. Generalize by investigating the 24 permutations of the digits A, B, C, and D for primality in base N.

SSM 3580. by Charles W. Trigg

In the four-digit integer abcd in base seven, $\sqrt{ab} = cd$. A permutation of the digits in this integer represents its equivalent in base ten. Find the integer.

MM 1045. by J. L. Murphy

Define N to be an absolute perfect square, relative to a given base, if every permutation of the digits of N is a perfect square in that base. In base ten, 1, 4, and 9 are obviously absolute perfect squares. Show that these are the only ones.

Base systems: digit reversals

JRM 657.

by John Michael Schram

Consider the equality $xy_b = yx_c$, y < x, where x and y denote digits in both bases b and c (e.g., $21_4 = 12_7$).

Characterize the values of c that never occur in such an equality.

JRM 760. by Klaus Lunstroth

Find all 2-digit numbers in all bases such that reversing the order of the digits multiplies the number by 2.

MSJ 417. by Charles W. Trigg

When the order of the digits of a 4-digit number in the decimal system is reversed, its equivalent in base 7 is formed. Furthermore, the square roots of the number in the two base systems contain the same digits. Identify the integer.

OSSMB G77.2-2.

- (a) Determine the three digit integer in base 7 whose digits are reversed when expressed in base 9.
- (b) Find all three digit integers (base 10) that are n times the sum of their digits when n=17. Prove that there is no such integer for n=9.

SSM 3595. by R. F. Wardrop

- (a) Find three different-digit numbers $\verb"xyz"$ such that for each $\verb"xyz"$, $\verb"xyz"_9 = \verb"zyx"_b$ for b < 9.
- (b) Are there any numbers in base eight such that $xyz_8 = zyx_b$, for b < 8?
 - (c) How about base seven, six, five, four, and three?

SSM 3600. by Alan Wayne

Find a three-digit numeral in the base sixteen system of numeration that has the same digits as a decimal numeral, but in reverse order, and that represents the same positive integer.

SSM 3631. by Charles W. Trigg

Find a three-digit integer in base five that has the order of its digits reversed when multiplied by 2. Generalize.

SSM 3679. by R. F. Wardrop

Find all three-digit numbers xyz (base ten) such that the following holds: xyz (base ten) = zyx (base b) where $2 \le b \le 9$ and x, y, and z are distinct.

SSM 3614. by Charles W. Trigg

In the equation, N-N'=M, N is an integer, its reverse is N'< N, and M is a permutation of the digits on N. For example, in the decimal system 954=459=495. In the scale of notation with base four, find a four-digit integer that is both an M and an N.

PME 348. by Bob Prielipp and N. J. Kuenzi

When the digits of the positive integer N are written in reverse order, the positive integer N' is obtained. Let N+N'=S. Then S is called the sum after one reversal addition.

Prove that there are infinitely many triangular numbers which have a palindromic sum after one reversal addition in the base b, where b is an arbitrary positive integer greater than or equal to 2.

Base systems: divisibility Problems sorted by topic Base systems: repeating fractions

Base systems: divisibility

SSM 3590. by Herta T. Freitag

In the base-ten system of numeration, divisibility of a number $N=a_na_{n-1}\dots a_2a_1a_0$ by 2 is tested by seeing if a_0 is divisible by 2; for divisibility by 4, one checks a_1a_0 ; and if $a_2a_1a_0$ is divisible by 8, so is N.

Generalize these criteria for base system b and divisibility by a number m' where m and t are positive integers and m is greater than 1.

Base systems: factorials

JRM 598. by Sherry Nolan

Given: $a_n a_{n-1} \dots a_2 a_1$ is the factorian representation of $a_n \cdot n! + a_{n-1} \cdot (n-1)! + \dots + a_2 \cdot 2! + a_1 \cdot 1!$. Uniqueness of representation is assured by requiring that only the digits $0, 1, 2, \dots, n$ are allowed in the nth position (from the right).

- (a) 1(factorian)=1(decimal). For what other positive integer value does such an equality hold?
- (b) Four is the first integer more efficiently represented in factorian (20) than in binary (100). For bases 3 through 12 determine at what integer value the factorian system becomes more efficient than each of these systems.

Base systems: limits

NAvW 507. by L. Kuipers

Let g > 1 be a fixed positive integer. Let the positive integer x be represented with respect to base g:

$$x = a_1 g^{n_1} + a_2 g^{n_2} + \dots + a_t g^{n_t},$$

where

$$n_1 > n_2 > \dots > n_t \ge 0,$$

 $0 \le a_i \le g - 1$ $(i = 1, 2, \dots, t).$

Let

$$\beta(x) = \sum_{i=1}^{t} a_i^2$$

and let

$$B(x) = \sum_{y \le x} \beta(y).$$

Prove that

$$B(x) = \frac{(g-1)(2g-1)}{6} \frac{x \log x}{\log g} + O(x), \qquad x \to \infty.$$

Base systems: maxima and minima

CANADA 1977/3.

Let N be an integer whose representation in base b is 777. Find the smallest positive integer b for which N is the fourth power of an integer.

Base systems: modular arithmetic

SSM 3765. by Alan Wayne

Prove that in any system of numeration with base b (where b is an integer greater than or equal to 2), if each digit in turn is multiplied by b-1 and divided by b, then the resulting set of nonnegative integer remainders is the set of all digits.

Base systems: number of digits

NYSMTJ 76.

by Charles D. Smith

How many digits does 9⁹⁹ have when written

- (a) in base nine?
- (b) in the decimal system?

Base systems: palindromes

SSM 3712.

by Charles W. Trigg

Find two palindromic squares in base 8 each of which contains every one of the seven nonzero octal digits.

Base systems: pandigital numbers

SSM 3626.

by Alan Wayne

Find an integer N, in base 8, which is a multiple of the cube of three and whose square has the eight octal digits once each.

JRM 649. by Harry Nelson

List all primes in all bases which are composed of exactly one of each of the digits in that base.

Base systems: polygonal numbers

PME 415.

by Charles W. Trigg

A hexagonal number has the form $2n^2 - n$. In base 9, show that the hexagonal number corresponding to an n that ends in 7 terminates in 11.

Base systems: powers

TYCMJ 138.

by Warren Page

Given any natural number n, do there exist numbers B and N in base 10 such that N is a perfect nth power in every base greater than B?

Base systems: products

JRM 440.

by Edmund Charles

"That integer you came up with was three times what it should have been," said the Data Reduction Specialist.

"You knew it was written in octal, didn't you?" replied the Programmer.

"Oh, I thought it was in duodecimal," said the D.R.S. What was the integer?

Base systems: repeating fractions

MM 973.

by Robert Cranga

Let N be an odd integer. If the period of N^{-1} is P in base b, and if $N^2 \nmid (b^P - 1)$, then prove that the period of N^{-n} in base b is PN^{n-1} .

MM Q627. by Michael Golomb

It is a curious fact that 80/81 = .9876543210... is accurate to ten decimal places. Show that if $b \ge 4$ is an integer, then in the base b,

$$(\overline{b-2}\ 0)/(\overline{b-2}\ 1) = .b-1\ b-2...210...$$

is accurate to b b-places with error less than $(b^{-b})/2$.

Number Theory

Base systems: square roots Problems sorted by topic Binomial coefficients: finite sums

Base systems: square roots

SPECT 9.4. by C. J. Knight

What is the representation in base 7 of the square root of the number whose representation in base 7 is 14,641?

Base systems: squares

SSM 3594. by Charles W. Trigg

In the system of notation with base eleven, find six-digit numerals of the form *abcabc* that are squares.

CRUX 197. by Charles W. Trigg

In the octonary system, find a square number that has the form aaabaaa.

TYCMJ 90. by Charles W. Trigg

A plateau number has the form $\mathtt{abb...bba}$ with $\mathtt{a} < \mathtt{b}$. In base $8, (33)^2 = 1331$ is a plateau square. In this same system, find another plateau square.

OMG 15.3.5.

In base 8, what digits can odd squares end in?

SSM 3610. by Charles W. Trigg

In the decimal system, there are no six-digit numerals with the form abcabc which are squares. Find the system of numeration with the smallest base wherein such a square exists, with a, b, and c being distinct nonzero digits.

JRM 677. by David L. Silverman

Find all integers n in all bases such that the sum of the digits of n^2 is n.

Base systems: sum of digits

NYSMTJ 88. by Alan Wayne

Show that, in every numeration base b, there is a unique three-digit integer that is (b+1) times the sum of its digits.

SSM 3689. by R. F. Wardrop

Find all three-digit numbers abc such that

$$a + b + c = abc_B$$

where B is a positive integer, $2 \le B \le 12$.

Base systems: triangular numbers

OSSMB 76-12.

Prove that every odd square in base 8 ends in 1, and if this 1 be cut off, the remaining part is always a triangular number.

Binomial coefficients: arithmetic progressions

PARAB 414.

Find all positive integers n and k such that the three binomial coefficients $\binom{n}{k}$, $\binom{n}{k+1}$, and $\binom{n}{k+2}$ are in arithmetic progression.

SPECT 8.8.

Is it possible for three consecutive binomial coefficients to be

- (a) in arithmetic progression,
- (b) in geometric progression?

Binomial coefficients: congruences

MM Q650.

by Edward T. H. Wang

Prove that for any positive integer n, $\binom{n}{k} \equiv 0 \pmod{n}$ if $\gcd(n, k) = 1$ and $k = 1, 2, \dots, n - 1$.

PUTNAM 1977/A.5.

Prove that

$$\binom{pa}{pb} \equiv \binom{a}{b} \pmod{p}$$

for all integers $p,\ a$ and b with p a prime, p>0, and $a\geq b\geq 0.$

Binomial coefficients: divisibility

FQ B-310.

by Daniel Finkel

Find some positive integers n and r such that the binomial coefficient $\binom{n}{r}$ is divisible by n+1.

NAvW 396. by P. Erdős

Let n > 6. Show that for some i, with $1 < i \le \frac{n}{2}$, the binomial coefficient $\binom{n}{i}$ is divisible by n.

NAvW 397. by P. Erdős

Show that, for every positive integer k, there is an n_k such that for every $n > n_k$ there is an integer ℓ , with $k < \ell \le \frac{n}{2}$, for which $\binom{n}{\ell}$ is divisible by $\binom{n}{k}$.

PARAB 355.

If p is a prime, prove that $\binom{n}{p} - \lfloor \frac{n}{p} \rfloor$ is divisible by p.

Binomial coefficients: finite sums

FQ B-338.

by George Berzsenyi

Let k and n be positive integers. Let p=4k+1, and let h be the largest integer with $2h+1 \le n$. Show that

$$\sum_{j=0}^{h} p^{j} \binom{n}{2j+1}$$

is an integral multiple of 2^{n-1} .

FQ H-264.

by L. Carlitz

Show that

$$\begin{split} \sum_{i=0}^{m-r} \binom{s+i}{i} \binom{m+n-s-i+1}{n-s} &= \\ \sum_{i=0}^{n-s} \binom{r+i}{i} \binom{m+n-r-i+1}{m-r}. \end{split}$$

FQ H-276.

by V. E. Hoggatt, Jr.

Show that the sequence of Bell numbers, $\{B_i\}_{i=0}^{\infty}$, is invariant under repeated differencing.

$$B_0 = 1$$
, $B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$ $(n \ge 0)$.

Binomial coefficients: finite sums

Problems sorted by topic

Collatz problem

FQ H-269.

by George Berzsenyi

The sequences $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$, defined by

$$a_n = \sum_{k=0}^{\lfloor n/3 \rfloor} \binom{n-2k}{k}, \quad (n \ge 1),$$

and

$$b_{2n} = \sum_{k=0}^{\lfloor n/2 \rfloor} \begin{bmatrix} n-k \\ 2k \end{bmatrix},$$

$$b_{2n+1} = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} {n-k \brack 2k+1}, \quad (n \ge 0)$$

are obtained as diagonal sums from Pascal's triangle and from a similar triangular array of numbers formed by the coefficients of powers of x in the expansion of $(x^2+x+1)^n$, respectively. (More precisely, $\begin{bmatrix} n \\ k \end{bmatrix}$ is the coefficient of x^k in $(x^2+x+1)^n$.) Verify that $a_n=b_{n-1}+b_n$ for each $n=1,2,\ldots$

SIAM 75-10.

by G. E. Andrews

It is known that if

$$\begin{split} H(m,n) &= \sum_{i=0}^m \sum_{j=0}^n \binom{i+j}{i} \binom{m-i+j}{j} \\ &\cdot \binom{i+n-j}{i} \binom{m+n-i-j}{n-j}, \end{split}$$

then

$$H(m,n) - H(m-1,n) - H(m,n-1) = {m+n \choose n}^2.$$

Prove also that

$$(2m+1)H(m,n) =$$

$$(n+m+1)\left\{2H(m-1,n) + \binom{m+n}{n}^2\right\}.$$

Binomial coefficients: generating functions

FQ B-390.

by V. E. Hoggatt, Jr.

Find, as a rational function of x, the generating function

$$G_k(x) = \binom{k}{k} + \binom{k+1}{k} x + \binom{k+2}{k} x^2 + \cdots + \binom{k+n}{k} x^n + \cdots, \quad |x| < 1.$$

Binomial coefficients: maxima and minima

AMM E2640.

by James E. Desmond and William R. Hastings

Prove or disprove: The largest power of 2 that divides

$$\binom{2^{n+1}}{2^n} - \binom{2^n}{2^{n-1}}, \qquad n > 1$$

is 2^{3n} .

Binomial coefficients: number representations

FQ H-261.

by A. J. W. Hilton

Show that, if $k \geq 2$, n = r + s, where $r \geq 1$, $s \geq 1$, and if the k-binomial representations of n, r, and s are

$$n = \begin{pmatrix} a_k \\ k \end{pmatrix} + \begin{pmatrix} a_{k-1} \\ k-1 \end{pmatrix} + \dots + \begin{pmatrix} a_t \\ t \end{pmatrix}$$
$$r = \begin{pmatrix} b_k \\ k \end{pmatrix} + \begin{pmatrix} b_{k-1} \\ k-1 \end{pmatrix} + \dots + \begin{pmatrix} b_u \\ u \end{pmatrix}$$
$$s = \begin{pmatrix} c_k \\ k \end{pmatrix} + \begin{pmatrix} c_{k-1} \\ k-1 \end{pmatrix} + \dots + \begin{pmatrix} c_v \\ v \end{pmatrix}$$

then

$$\begin{pmatrix} a_k \\ k-1 \end{pmatrix} + \begin{pmatrix} a_{k-1} \\ k-2 \end{pmatrix} + \dots + \begin{pmatrix} a_t \\ t-1 \end{pmatrix}$$

$$\leq \begin{pmatrix} b_k \\ k-1 \end{pmatrix} + \begin{pmatrix} b_{k-1} \\ k-2 \end{pmatrix} + \dots + \begin{pmatrix} b_u \\ u-1 \end{pmatrix}$$

$$+ \begin{pmatrix} c_k \\ k-1 \end{pmatrix} + \begin{pmatrix} c_{k-1} \\ k-2 \end{pmatrix} + \dots + \begin{pmatrix} c_v \\ v-1 \end{pmatrix}.$$

Binomial coefficients: odd and even

CRUX 90.

by Léo Sauvé

- (a) Determine, as a function of the positive integer n, the number of odd binomial coefficients in the expansion of $(a+b)^n$.
- (b) Do the same for the number of odd multinomial coefficients in the expansion of $(a_1 + a_2 + \cdots + a_r)^n$.

Binomial coefficients: primes

PME 369.

by P. Erdős

Determine all solutions of

$$\binom{n}{k} = \prod_{n \le n} p.$$

Collatz problem

SSM 3608.

by R. F. Wardrop

For any number N_0 , if N_0 is even, divide by 2; if N_0 is odd, triple and add 1; thus obtaining N_1 . Continuing in this manner either dividing by 2 if even or tripling and adding 1 if odd, eventually the integer 1 is reached. In this manner every number N_i can be changed to 1 through a series of operations.

The successive numbers 12 and 13 each take nine operations to get to 1.

Some possible questions that can be asked are:

- (a) Is it ever true that three successive numbers require the same number of operations to get to 1?
- (b) Is it ever true that four successive numbers require the same number of operations to get to 1?
- (c) Find seventeen consecutive numbers less than 10,000 such that each one takes the same number of operations to get to 1.
- (d) Can you find x consecutive numbers such that each one takes the same number of operations to get to 1, where $x = 18, 19, \dots$?
- (e) What is the average number of operations for numbers $1-100,\ 100-260,\ {\rm etc?}$

Number Theory

Collatz problem Problems sorted by topic Continued fractions: identities

CRUX 133.* FUNCT 2.1.4.

by Kenneth S. Williams

Let f be the operation that takes a positive integer n to $\frac{1}{2}n$ (if n even) and to 3n+1 (if n odd). Prove or disprove that any positive integer can be reduced to 1 by successively applying f to it.

Composed operations

JRM 737. by Frank Rubin

Every positive integer can be generated by successive applications of the functions factorial, square root, and floor in some appropriate order to the starting integer N=3. For example, $\left\lfloor \sqrt{(3!)!} \right\rfloor = 26$. Let M be the largest intermediate value to which the factorial function is applied. In the example, M=6.

- (a) For N=3, what is the largest value of M which must occur to achieve the generation of all integers from 1 to 10?
- (b) Is there any starting value for N that permits a smaller maximum value of M in generating all integers from 1 to 10?

Composite numbers

AMM E2800.

by B. de la Rosa

Show that an odd positive integer c is composite if and only if there exists a positive integer $a \le (c-3)/3$ such that $(2a-1)^2 + 8c$ is a square.

NYSMTJ 93.

by Erwin Just and Sidney Penner

For each positive integer n, show that

$$1+9+9^2+\cdots+9^n$$

is composite.

OSSMB 75-11.

Find 40 consecutive values of x for which $x^2 + x + 41$ yields only composite numbers.

ISMJ 14.20.

Show that the sequence $an^2 + bn + c$, n = 1, 2, 3, ..., where a, b, and c are positive integers with no common factors, contains infinitely many composite numbers.

MSJ 481.

Prove that there are infinitely many values of n for which the expression $n^2-39n+421$ yields a composite number.

AMM E2679. by Solomon W. Golomb

If a positive integer m has a prime factor greater than 3, show that $4^m - 2^m + 1$ is composite.

Continued fractions: convergents

ISMJ 13.1.

Show that the convergents of a continued fraction with positive integral coefficients are all in lowest terms.

ISMJ 13.2.

Consider the continued fraction:

$$1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{\cdot}}}$$

Find formulas for the numerators and denominators of the convergents of continued fractions of this type.

FQ H-308.

by Paul Bruckman

Let

$$[a_1, a_2, \dots, a_n] = \frac{p_n}{q_n} = \frac{p_n(a_1, a_2, \dots, a_n)}{q_n(a_1, a_2, \dots, a_n)}$$

denote the *n*th convergent of the infinite simple continued fraction $[a_1, a_2, \ldots], n = 1, 2, \ldots$. Also, define $p_0 = 1$ and $q_0 = 0$. Further, define

$$W_{n,k} = p_n(a_1, a_2, \dots, a_n) q_k(a_1, a_2, \dots, a_k)$$
$$- p_k(a_1, a_2, \dots, a_k) q_n(a_1, a_2, \dots, a_n)$$
$$= p_n q_k - p_k q_n, \quad 0 \le k \le n.$$

Find a general formula for $W_{n,k}$.

Continued fractions: evaluations

CRUX 163.

by Charles Stimler

Evaluate:

$$\frac{2}{1 + \frac{3}{2 + \frac{4}{3 + \frac{5}{4 + \frac{6}{\cdots}}}}}.$$

Continued fractions: identities

SSM 3732.

by Herta T. Freitag

Show that

(a)

$$\frac{2}{3+}\frac{1}{4+}\frac{1}{4+}\frac{1}{4+}\cdots = \frac{1}{1+}\frac{1}{1+}\frac{1}{1+}\frac{1}{1+}\cdots$$

and

(b)

$$\left(1 + \frac{1}{2+} \frac{1}{2+} \frac{1}{2+} \cdots \right) \cdot \left(1 + \frac{1}{1+} \frac{1}{2+} \frac{1}{1+} \frac{1}{2+} \cdots \right)$$
$$= 2 + \frac{1}{2+} \frac{1}{4+} \frac{1}{2+} \frac{1}{4+} \cdots$$

Continued fractions: periodic continued fractions

Problems sorted by topic

Determinants: binomial coefficients

Continued fractions: periodic continued fractions

CRUX 349

by R. Robinson Rowe

Solve in positive integers a and b the continued fraction equation

$$\frac{2}{a + \frac{1}{a + \frac{1}{\cdots}}} - \frac{1}{b + \frac{1}{b + \frac{1}{\cdots}}} = 1.$$

PME 392.

by R. Robinson Rowe

Solve in distinct positive integers:

$$\frac{1}{a + \frac{1}{b + \frac{1}{a + \frac{1}{b + \frac{1}{c + \frac{1}{d + \frac{1}{c + \frac{1}{d + \frac{1}{c + \frac$$

Continued fractions: pi

ISMJ 13.3.

Prove or disprove:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2}}}$$

Continued fractions: radicals

CRUX 227.

by W. J. Blundon

It is known that

$$\sqrt{a^2 + 1} = \langle a, 2a \rangle = a + \frac{1}{2a + \frac{1}{2a + \frac{1}{\ddots}}}$$

for all positive integers a. Solve completely in positive integers each of the equations

$$\sqrt{a^2 + y} = \langle a, x, 2a \rangle$$
 and $\sqrt{a^2 + y} = \langle a, x, x, 2a \rangle$,

where in both cases $x \neq 2a$.

ISMJ 13.4.

Find the simple continued fraction expansion for $\sqrt{3}$.

Decimal representations

MSJ 498.

Characterize the block of digits that repeat endlessly in the decimal expansion for fractions of the form $n/(10^m+1)$, where n and m are positive integers.

PARAB 271.

Prove that if the sum of the fractions

$$\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2}$$

(where n is a positive integer) is put in decimal form, it forms a nonterminating decimal which is periodic after several terms.

MATYC 87.

by James M. Thelen

Let n be a positive integer, with $\gcd(n,10)=1$. Then 1/n has an infinite repeating decimal representation. Show that the repeating cycle begins immediately after the decimal point.

CANADA 1975/4.

Find a positive number which is such that its decimal part, its integral part, and the number itself are three terms in geometric progression.

Determinants: 0-1 matrices

AMM E2588.

by Stephen B. Maurer

Let A_n be the matrix of order $(2^n - 1) \times n$, where the kth row is the binary expression for k. Let $M_n = A_n A_n^t$ (mod 2). If M_n is regarded as a matrix over the integers, what is its determinant?

Determinants: binomial coefficients

AMM E2729.

by John Goth

Evaluate $\det(A)$ where $A=(a_{ij})$ is the $n\times n$ matrix given by

$$a_{ij} = {im + j - 1 \choose j}, \quad i, j = 1, \dots, n,$$

m being a fixed positive integer.

MENEMUI 1.3.1.

by S. L. Lee

Evaluate

$$\begin{vmatrix} 1 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & \binom{2}{1} & 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & \binom{3}{1} & \binom{3}{2} & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & \binom{n-1}{1} & \binom{n-1}{2} & \binom{n-1}{3} & \binom{n-1}{4} & \cdots & \binom{n-1}{n-2} & 1 \\ 1 & \binom{n}{1} & \binom{n}{2} & \binom{n}{3} & \binom{n}{4} & \cdots & \binom{n}{n-2} & \binom{n}{n-1} \end{vmatrix}$$

AMM E2709

by R. M. Norton

Let $A=(a_{ij}),\,0\leq i,\,j\leq n,$ be a Hankel matrix defined by

$$a_{ij} = \begin{cases} 0, & \text{if } i+j \text{ is odd,} \\ \binom{i+j}{\frac{i+j}{2}}, & \text{if } i+j \text{ is even.} \end{cases}$$

Compute $\det A$.

SIAM 78-15.

by R. Shantaram

Define $m[2n] = \binom{2n}{n}$, $n = 0, 1, 2, \ldots$. Let T(n) be the $n \times n$ matrix whose (i, j) element is m[2(i + j - 1)], $i, j = 1, 2, \ldots, n$ and S(n) be the $(n + 1) \times (n + 1)$ matrix whose (i, j) element is m[2(i + j)], $i, j = 0, 1, \ldots, n$. Prove that

$$\det T(n) = \det S(n) = 2^n.$$

Determinants: congruences

Problems sorted by topic

Difference equations

Determinants: congruences

CRUX 324.

by Gali Salvatore

In the determinant

$$\begin{vmatrix} 6 & a & 6 & b \\ c & 8 & d & 2 \\ 1 & e & 5 & f \\ q & 1 & h & 1 \end{vmatrix}$$

replace the letters a, b, \ldots, h by eight different digits so as to make the value of the determinant a multiple of the prime 757.

AMM E2683.

by Ira Gessel

Let A be the cyclic matrix with $(a_0, a_1, \ldots, a_{p-1})$ as first row, p a prime. If the a_i are integers, show that

$$\det A \equiv a_0 + a_1 + \dots + a_{p-1} \pmod{p}.$$

Determinants: counting problems

AMM 6086. by Raymond M. Redheffer

Let d_{ij} be the number of divisors common to i and j. Prove that the determinant $|d_{ij}|$ for $2 \le i, j \le n$ equals the number of square-free integers from 1 to n.

Determinants: factorials

AMM E2747.

by H. L. Krall and Emil Grosswald

- (a) Compute the determinant of the matrix $A = (a_{ij})$, where $0 \le i, j \le n-1$ and $a_{ij} = 1/(i+j+1)!$.
- (b) Compute the determinant of the matrix $B = (b_{ij})$, where

$$b_{ij} = (-1)^{i+j+1} 2^{i+j+1} / (i+j+1)!$$

for $i, j \in \{1, 2, \dots, n\}$.

Determinants: identities

SIAM 78-14.

by D. Slepian

Denote by R(n,N) the determinant of the $(n+1) \times (n+1)$ matrix that has

$$\sum_{l=0}^{N-1} l^{i+j}$$

for the element in its *i*th row and *j*th column, i, j = 0, 1, ..., n. Here $0^0 \equiv 1$. Show that

$$R(n, N) = \sum_{l_0 < l_1 < \dots < l_n}^{N-1} \prod_{i < j \atop i < j}^{n} (l_i - l_j)^2$$

$$= N^{n+1} \prod_{j=1}^{n} \frac{(j!)^4 (N^2 - j^2)^{n+1-j}}{(2j)!(2j+1)!} .$$

Determinants: solution of equations

TYCMJ 150.

by Aron Pinker

Let A_1 , A_2 , A_3 , and A_4 be nonzero integers and α a positive integer that is not a perfect square. Is it possible that

$$\begin{vmatrix} A_1 & \alpha A_4 & \alpha A_3 & \alpha A_2 \\ A_2 & A_1 & \alpha A_4 & \alpha A_3 \\ A_3 & A_2 & A_1 & \alpha A_4 \\ A_4 & A_3 & A_2 & A_1 \end{vmatrix} = 0?$$

NAvW 533.

by R. J. Stroeker

For $n \in \mathbb{N}$ $(n \geq 3)$ and $x \in \mathbb{R}$, $y \in \mathbb{R}$, we define

Find all $(x, y) \in \mathbb{N}^2$ such that $F_n(x, y) = 1$.

Difference equations

FQ B-389.

by Gregory Wulczyn

Find the complete solution, with two arbitrary constants, of the difference equation

$$(n^{2} + 3n + 3)U_{n+2} - 2(n^{2} + n + 1)U_{n+1} + (n^{2} - n + 1)U_{n} = 0.$$

FQ H-274.

by George Berzsenyi

It has been shown that if

$$Q = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix},$$

then

$$Q^{n} = \begin{pmatrix} F_{n-1}^{2} & F_{n-1}F_{n} & F_{n}^{2} \\ 2F_{n-1}F_{n} & F_{n+1} - F_{n-1}F_{n} & 2F_{n}F_{n+1} \\ F_{n}^{2} & F_{n}F_{n+1} & F_{n+1}^{2} \end{pmatrix}.$$

Generalize the matrix Q to solutions of the difference equation

$$U_n = rU_{n-1} + sU_{n-2},$$

where r and s are arbitrary real numbers, $U_0=0$ and $U_1=1$.

JRM 705.

by Friend H. Kierstead, Jr.

Let f(n) = pf(n-1) + 1, with f(0) = 1, where p is independent of n. Find an explicit expression for f(n) in terms of n and p.

FQ B-370. FQ B-383.

by Gregory Wulczyn by Gregory Wulczyn

Solve the difference equation

$$u_{n+2} - 5u_{n+1} + 6u_n = F_n.$$

Number Theory

Digit problems: arithmetic progressions

CRUX 378. by Allan Wm. Johnson Jr.

(a) Find four positive decimal integers in arithmetic progression, each having the property that if any digit is changed to any other digit, the resulting number is always composite.

(b)* Can the four integers be consecutive?

Digit problems: base systems

OSSMB 75-6.

by Michael Webster

Prove that

$$\frac{x_1 x_2 x_3 \dots x_n - \sum_{k=1}^n x_k}{\sum_{k=0}^{n-2} (x_1 + x_2 + x_3 + \dots + x_{n-k-1}) R^k} = R - 1$$

where $x_1x_2x_3...x_n$ is an *n*-digit numeral, base $R, n \geq 2$.

Digit problems: cancellation

ISMJ 14.11.

A mathematics student complained that he was not given credit for a correct answer when he cancelled the 6's in the fraction 16/64. Find all the fractions less than 1 in value with 2-digit numerators and denominators for which this kind of cancellation works. How about 3-digit numerators and denominators?

PME 365. by Clayton W. Dodge

Find all fractions $\mathtt{abc}/\mathtt{cde}$ such that cancelling the digit \mathtt{c} yields an equivalent fraction.

Digit problems: consecutive digits

FQ B-364. by George Berzsenyi

Find and prove a formula for the number of positive integers less than 2^n whose base 2 representations contain no consecutive 0's.

CRUX 267. by John Veness

Some products, like $56 = 7 \cdot 8$ and $17820 = 36 \cdot 495$, exhibit consecutive digits without repetition. Find all such products $c = a \cdot b$ which exhibit without repetition four, five,..., ten consecutive digits.

Digit problems: counting problems

FUNCT 2.4.2.

There are 700 hymns in a church hymnal. It is required to print a set of cards, each with one digit on it, so that the numbers of any four hymns can be displayed on a notice board. How many cards are required? (Give two answers, one assuming that an inverted 6 can be used as a 9, the other without that option.)

SSM 3665. by Alan Wayne

In the sets of decimal integers $S_1 = \{1, 2, ..., 10\}$, $S_2 = \{1, 2, ..., 100\}$, and $S_3 = \{1, 2, ..., 1000\}$, the number of zero digits in S_2 is the same as the number of digits in S_1 ; and the number of zero digits in S_3 , is the same as the number of digits in S_2 . Show that this equality relation holds in general.

Digit problems: cubes

CRUX 385.

by Charles W. Trigg

In the decimal system, there is a 12-digit cube with a digit sum of 37. Each of the four successive triads into which it can be sectioned is a power of 3. Find the cube and show it to be unique.

Digit problems: cyclic shift

FUNCT 1.1.4.

The left-hand digit of a natural number is removed and replaced at the right-hand end, and this results in increasing the original number by fifty percent. Find such a natural number.

FUNCT 1.2.5.

- (a) The right-hand digit of a natural number is to be removed and replaced at the left-hand end, so increasing the original number by 50%. Find such natural numbers.
 - (b) Repeat (a) with 50% replaced by 75%.

ISMJ J11.5.

The last two digits of a six digit number are 4 and 2 respectively. When these two digits are shifted to be the first two digits the new six digit number is exactly half of the original. Find the original number.

NYSMTJ 63. by Haralyn Kuckes

Find the smallest positive integer such that, when the first digit is transposed to the end, the resultant number is 3/2 times the original.

OSSMB 79-2.

Find the smallest positive integer whose value is tripled if the left-hand digit is transferred to the right-hand end.

Digit problems: digit reversals

ISMJ 13.21.

- (a) If $10 \le n \le 99$, show that the number obtained from n by reversing its digits is given by the formula $10n 99 \lfloor n/10 \rfloor$.
- (b) For $1 \le n \le 9999$, write a formula for the sum of the digits of n. This formula may involve the usual arithmetic operations and also the floor function.

PARAB 369.

Find a 5-digit number which, when divided by 4, yields another 5-digit number using the same five digits but in the opposite order.

SSM 3575. by Bob Prielipp and N. J. Kuenzi SSM 3591. by Bob Prielipp and N. J. Kuenzi

When the digits of the positive integer N are written in reverse order, the positive integer N' is obtained. Let N+N'=S. Then S is called the sum after one reversal addition. The kth pentagonal number is given by

$$P_k = k(3k-1)/2, \quad k = 1, 2, 3, \dots$$

Prove that there are infinitely many pentagonal numbers that have a palindromic sum after one reversal addition.

Number Theory

Digit problems: digit reversals Problems sorted by topic Digit problems: fractions

MSJ 435.

by Peter A. Lindstrom

Let abcd be a four-digit numeral, written in base 10, whose digits a, b, c, and d are such that a > b > c > d. Reverse the order of the digits to form another four-digit base ten number, dcba. Show that the sum of the digits of the differences of these two numbers is 18.

Digit problems: digital roots

CRUX 203. by Charles W. Trigg

Prove or disprove: The digital root of every even perfect number greater than 6 is 1.

SSM 3674. by Richard L. Francis

Let S denote the set of positive integers divisible by 7 and having a digital root of 7. Show that S contains infinitely many squares not ending in zero.

SSM 3779. by Richard L. Francis

Is it true that the digital root of a prime of the form $x^3 - y^3$ is 1 or 7?

Digit problems: distinct digits

CRUX 486.

by Gilbert W. Kessler

(a) Find all natural numbers N whose decimal representation

$$N={\tt abcdefghi}$$

consists of nine distinct nonzero digits such that

$$2|(a-b)$$
, $3|(a-b+c)$, $4|(a-b+c-d)$, ...,
 $9|(a-b+c-d+e-f+q-h+i)$.

(b) Do the same for natural numbers $N=\mathtt{abcdefghij}$ consisting of ten distinct digits (leading zeros excluded) such that

$$2|(a-b), 3|(a-b+c), \dots,$$

 $10|(a-b+c-d+e-f+q-h+i-j).$

OSSMB 79-13.

The digits in the set $\{0,1,2,\ldots,9\}$ can be uniquely arranged so that, starting from the left, the number formed by the first k digits is divisible by k for $k=1,2,\ldots,10$. Find this arrangement.

JRM 671. by Frank Rubin

A used car has a standard 6-digit odometer and a 4-digit trip odometer. Assuming that the new purchaser will never reset the trip odometer, how can one determine from the present settings at what mileage (if ever) the ten digits will first be all distinct?

OSSMB 77-11.

The digits $0, 1, \ldots, 7$ can be arranged to form integers whose sum is 100. Is it possible to form such an arrangement using the digits $0, 1, 2, \ldots, 9$? Note that each digit must be used once and only once.

OSSMB G77.1-1.

Find the sum of all 3-digit numbers that can be formed from the digits 2, 3, 4, 7, 8, 9 where each number consists of 3 distinct digits.

Digit problems: divisibility

ISMJ J11.8.

Any three digit number abc is divisible by 7 if and only if 2a + 3b + c is divisible by 7. Why is this so? Can you generalize this to a rule for four or more digits?

JRM 596. by Dan Wm. Burns

Let n be any nonnegative integer. Prove that the number formed by placing 2^n and 2^{n+1} side by side in either order is a multiple of 3.

Digit problems: division

OMG 14.1.1.

An eight-digit number is divided by a three-digit number. The quotient is a five-digit number beginning with the digit 8, and the remainder is 0. Reconstruct the division.

Digit problems: factorials

MM 1075.

by Philip M. Dunson

Counting from the right end, what is the 2500th digit of 10000!?

SSM 3717.

by Merrill Barnebey

For what values of n, n > 1, does the expanded form of n! have exactly n digits?

PARAB 432.

Find all three-digit numbers that are equal to the sum of the factorials of their digits.

Digit problems: fractions

AMM E2511.

by Morris Olitsky

We observe that

$$1/3 = 0.333333 \cdots = 3 [(0.1) + (0.1)^2 + (0.1)^3 + \cdots]$$

and that

$$1/7 = 0.142857 \cdots = 7 \left[(0.02) + (0.02)^2 + (0.02)^3 + \cdots \right].$$

Are there any other positive integers x for which

$$\frac{1}{x} = x \left[\sum_{j=1}^{\infty} \left(m10^{-n} \right)^j \right]$$

for suitable integers m and n?

CRUX 131.

by André Bourbeau

Let $p \ge 7$ be a prime number. If $p^{-1} = 0.\dot{a}_1 a_2 \dots \dot{a}_k$, show that the integer

$$N = \overline{a_1 a_2 \dots a_k}$$

is divisible by 9.

PME 366.

by Richard Field

Let $Q = \lfloor 10^n/p \rfloor$, where p is a prime greater than 5, and n is the cycle length of the repeating decimal 1/p. Can Q be a prime?

Digit problems: juxtapositions Problems sorted by topic Digit problems: multiples

Digit problems: juxtapositions

JRM 380. by J. A. H. Hunter

Find a seven-digit number ABCDEFG with the property that half the square of ABCD plus twice the square of EFG is equal to ABCDEFG. The digits A through $\tt G$ are not necessarily distinct.

SSM 3751. by Herta T. Freitag

Consider an n-digit base ten number, n>1. Write the same number next to it so as to obtain a 2n-digit number. Such a number will be called a "2n-number."

- (a) For what values of n, if any, will the set of 2n-numbers be such that no pair of them is relatively prime?
- (b) For what values of n, if any, will the set of 2n-numbers contain prime numbers?
- (c) What about the same questions if numbers are considered in a numeration system with a different base?

MATYC 101. by Lawrence Sher

Take a 3-digit number, base 10. Repeat the digits to form a 6-digit number. Which primes, smaller than 15, divide evenly into the 6-digit number? Generalize to division by any prime of a 2N-digit number constructed as above.

CRUX 457. by Allan Wm. Johnson Jr.

Here are examples of two n-digit squares whose juxtaposition forms a 2n-digit square:

4 and 9 form
$$49 = 7^2$$
,
16 and 81 form $1681 = 41^2$,
225 and 625 form $225625 = 475^2$

Is there at least one such juxtaposition for each $n=4,5,6,\ldots$?

Digit problems: leading digits

JRM 786. by Daniel P. Shine

A multiplication table showing the products of all two-digit numbers contains 8,100 entries. The distribution of the first digit of these numbers is as follows:

- 1 1954
- 2 1481
- 3 1181
- 4 952
- 5 767
- 6 618
- 7 494
- 8 372
- 9 281

These results may be approximated analytically by considering real numbers distributed uniformly in the interval [10, 100]. How good is the approximation?

NAvW 455. by J. van de Lune FUNCT 3.3.5.

For any natural number n, written in the scale of ten, let f(n) be the first digit of n. For $1 \le k \le 9$, determine the frequency of the digit k in the sequence $(f(2^n))_{n \in \mathbb{N}}$.

CRUX 266.*

by Daniel Rokhsar

Let d_n be the first digit in the decimal representation of n!, so that

$$d_0 = 1$$
, $d_1 = 1$, $d_2 = 2$, $d_3 = 6$, $d_4 = 2$,...

Find expressions for d_n and $\sum_{i=0}^n d_i$.

Digit problems: matrices

JRM 768. by Peter MacDonald

Using each of the digits 0 through 9 at least once, fill in a 4×4 matrix such that (a) in each row the digit in the first column times the digit in the fourth column equals the two-digit number formed from the digits in columns two and three; and (b) in each column the digit in the first row times the digit in the fourth row equals the two-digit number formed from the digits in rows two and three.

Arrange your solutions so that the smallest corner digit is at the upper left and the next smallest is at the upper right.

Digit problems: maxima and minima

SPECT 11.8. PARAB 346.

Arrange the digits 0 to 9 to form five 2-digit numbers in such a way that the product of these five numbers is maximal.

ISMJ 14.14.

Form one- and two-digit numbers from the digits from 0 to 9. Use each digit once in doing so. Add the numbers. What is the largest and the smallest sum that can be obtained this way?

Digit problems: missing digits

OMG 18.3.9.

An old invoice showed that 72 turkeys had been purchased for \$*67.9*. The first and last digits were illegible. What were they?

PARAB 431.

Adjoin to the digits 632 three more digits so that the resulting six-digit number is divisible by each of 7, 8, and 9.

PENT 292. by Léo Sauvé

The number 9,x29,50y,zt7 is known to be divisible by 73 and 137. Determine the digits $x,\ y,\ z,\ t$ and thereby identify the number.

SSM 3741. by Charles W. Trigg

The product of three consecutive odd integers is given as 39x, xxx, xx7 (where each x represents a digit, and not necessarily always the same digit). Find the integers and supply the missing digits in the product.

Digit problems: multiples

ISMJ 13.25.

Show that for any integer n, there is an integer q such that the digits of nq (in the decimal notation) are all either 0 or 1.

PARAB 428.

Let n be an integer whose last digit is 7. Show that some multiple of n has no digit equal to zero.

Number Theory

Digit problems: number of digits Problems sorted by topic Digit problems: primes

Digit problems: number of digits

FUNCT 1.3.4.

A large textbook has every page numbered. The printer used 1,890 digits to number the pages. How many pages were there?

JRM 604.

An n-digit number in base n is called an "inventory number" if it tallies its digits accurately in increasing order of digit. For example 3, 211, 000 is a tally number in base 7, listing 3 zeros, 2 ones, 1 two, 1 three, 0 fours, 0 fives, and 0 sixes.

Prove that base n has an inventory number if and only if n is not a factor of 6. What bases have more than one inventory number?

PARAB 396.

Find a 10-digit number whose first digit tells the number of zeros that appear in it, whose second digit tells the number of ones, and so on (thus the tenth digit tells the number of nines in the number). Is there another such number?

Digit problems: operations

CRUX 21. by H. G. Dworschak

What single standard mathematical symbol can be used with the digits 2 and 3 to make a number greater than 2 but less than 3?

CRUX 285. by Robert S. Johnson

Using only the four digits 1, 7, 8, 9 (each exactly once) and four standard mathematical symbols (each at least once), construct an expression whose value is 109.

Digit problems: pandigital numbers

SSM 3681. by Joe Dan Austin

Find natural numbers $n(2), n(3), \ldots, n(11)$ such that each n(i):

- (a) uses each of the digits $0, 1, 2, \dots, 9$ exactly once;
- (b) is divisible by i; and
- (c) is the largest number satisfying (a) and (b).

CRUX PS5-2.

It has been stated that the number

526315789473684210

is a persistent number, that is, if multiplied by any positive integer the resulting number always contains the ten digits $0, 1, 2, \ldots, 9$ in some order with possible repetitions.

- (a) Prove or disprove the above statement.
- (b) Are there any persistent numbers smaller than the above number?

Digit problems: permutations

MSJ 455. by Mike Conwill

For how many of the 720 permutations of the digits 1, 2, 5, 6, 7, and 9 is the result a number divisible by 6?

MSJ 465.

Let N and n be positive integers, and suppose that the base 10 representation of N consists of the following digits: n 3's, one 4 and one 6. Prove that there exists a permutation of the digits of N so that the resulting number is divisible by 7.

PARAB 404.

ISMJ 10.8.

ISMJ 10.13.

The number 1234567 is not divisible by 11, but 3746512 is. How many different multiples of 11 can be obtained by appropriately ordering these digits?

MM 1016. by Michael W. Ecker

For n a positive integer, describe all n-digit numbers x with the property that there exists a permutation y of the digits of x such that $x + y = 10^n$.

Digit problems: powers

CRUX 164. by Steven R. Conrad

In the 5-digit decimal number ABCDE (with $A \neq 0$), different letters do not necessarily represent different digits. If this number is the fourth power of an integer, and if A+C+E=B+D, find the digit C.

Digit problems: primes

PENT 296. by Charles W. Trigg

Using three consecutive digits repeated, form an arithmetic progression of three-digit primes in the decimal system.

JRM 531. by David L. Silverman

Can the numbers 0 through 9 be arranged in a bracelet in such a way that every pair of adjacent links forms a two-digit prime or the reversal of one? (The pair Op will be considered a two-digit prime if p is a prime digit.)

JRM 570. by Alvin Owen

The smallest positive integer that is not a factor of any number that has no repeated digits is 100. What is the smallest prime that is not a factor of any number that has no repeated digits?

MM 1029. by Murray S. Klamkin

Does there exist any prime number such that if any digit (in base 10) is changed to any other digit, the resulting number is always composite?

OSSMB 79-6.

In the multiplication of a three-digit number by a twodigit number which yields a five digit number, all the digits are prime, including those that appear in the standard multiplication algorithm. Find the digits.

MM 953. by Allan W. Johnson, Jr.

An absolute prime is a prime number all of whose decimal digit permutations are also prime numbers. Show that no absolute prime number exists that contains three of the four digits 1, 3, 7, and 9.

Are there any absolute primes of more than three digits that contain two of the digits 1, 3, 7, and 9?

SSM 3753. by Bob Prielipp

If q is a prime number and

$$1/q = .a_1 a_2 \dots a_t a_{t+1} a_{t+2} \dots a_{2t}$$

prove that

$$a_{t+1}a_{t+2}\dots a_{2t} = (q-1)(a_1a_2\dots a_t) + (q-2).$$

Digit problems: primes Problems sorted by topic Digit problems: sum of cubes

JRM 555. by Henry Larson

- (a) There are two different ways of expressing the prime 809 as the sum of smaller primes with no digit used more than once, on either side of the equation. One of them is: 809 = 761 + 43 + 5. Find the other.
- (b) Can a similar all-prime equation be written using all ten digits only once?
- (c) If primes are formed using each of the digits 1 through 9, the smallest obtainable sum comes from 89+61+43+7+5+2. What is the smallest possible sum of primes using all ten digits?
- (d) What is the smallest possible product obtainable using primes made up of the digits 1 through 9? 0 through 9?

MSJ 420. by John Murphy

An "upside down" prime is a positive prime number that remains a positive prime number when the paper on which it is written is turned upside down. Find all upside down primes smaller than 1,000.

Digit problems: products

ISMJ 10.16.

Prove that if an integer n exceeds 10, the product of its digits is less than n.

PME 444. by Peter A. Lindstrom

In terms of n, which is the first nonzero digit of

$$\prod_{i=1}^{n/2} (i)(n-i+1)$$

for even $n \ge 6$?

Digit problems: squares

CRUX 470. by Allan Wm. Johnson Jr.

Construct an integral square of eleven decimal digits such that, if each digit is increased by unity, the resulting integer is a square.

CRUX 95. by Walter Bluger

Said a math teacher, full of sweet wine:

"Your house number's the exact square of mine."

— "You are tight and see double

Each digit. That's your trouble,"

These 2-digit numbers you must divine.

MM Q642. by Steven R. Conrad OSSMB 75-13.

Prove that the numbers 49, 4489, 444889,..., obtained by inserting 48 into the middle of the preceding numbers, are all perfect squares.

PARAB 352.

How many square numbers are there whose digits, when written in base 10 notation, contain three hundred 1's and some number of 0's?

AMM E2786. by Walter Stromquist

The consecutive integers 31 and 32 have these properties: The larger one is twice a square, and the sum of the digits in both numbers is a square.

- (a) How many pairs of consecutive integers have the same properties?
- (b) Would there exist such a pair if we used base 3 instead of decimal notation?
- (c) Does such a pair exist in any odd base other than 3?

SSM 3685. by Douglas E. Scott

The number 81 has the following interesting property: "Bisect" the number, obtaining 8 and 1. Add 8 and 1 and square the result. The answer is the original number 81. Find two 4-digit and two 6-digit numbers with this property. Can you generalize the results?

CRUX 443.* by Allan Wm. Johnson Jr.

(a) Here are seven consecutive squares for each of which its decimal digits sum to a square:

Find another set of seven consecutive squares with the same property.

(b)* Does there exist a set of more than seven consecutive squares with the same property?

ISMJ J11.16.

Find all fractions a/b such that

- (i) a/b = 2/7,
- (ii) a + b is a two digit number, and
- (iii) a + b is a perfect square.

SSM 3705. by Alan Wayne

Show that for each positive integer n there is an n-digit positive integer N such that N^2 starts with precisely n ones.

CRUX 65. by Viktors Linis

Find all natural numbers whose square (in base 10) is represented by odd digits only.

NYSMTJ OBG9. by Alan Wayne

In the decimal system, find a six-digit, positive integer whose square ends at the right in eleven times the integer.

PME 457. by R. Robinson Rowe

Defining the last n digits of a square as its n-tail, what is the longest n-tail consisting of some part of the cardinal sequence $0, 1, 2, 3, \ldots, 9$? What is the smallest square with that n-tail?

Digit problems: sum of cubes

CRUX 407. by Allan Wm. Johnson Jr.

There are decimal integers whose representation in some number base $B=2,3,4,\ldots$ consists of three nonzero digits whose cubes sum to the integer. For example,

$$43_{10} = 223_4 = 2^3 + 2^3 + 3^3,$$

$$134_{10} = 251_7 = 2^3 + 5^3 + 1^3,$$

$$433_{10} = 661_8 = 6^3 + 6^3 + 1^3.$$

Prove that infinitely many such integers exist.

Digit problems: terminal digits Digit problems: sum of digits Problems sorted by topic

Digit problems: sum of digits

CRUX 426.

by Charles W. Trigg

There are two positive integers less than 10^{10} for each of which

- (i) its digits are all alike;
- (ii) its square has a digit sum of 37.

Find them and show that there are no others.

OSSMB 76-1.

What is the sum of all the digits occurring in the numbers from one to a billion?

OSSMB 77-1.

The positive integers x and y add up to z. The sum of the digits in x is 43 (in the usual base 10 representation) and the sum of the digits in y is 68. If in performing the addition of x and y there are exactly five "carries", what is the sum of the digits in z?

IMO 1975/4.

OSSMB 76-2.

PARAB 380.

When 4444⁴⁴⁴⁴ is written in decimal notation, the sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B. (A and B are written in decimal notation.)

AMM 6077. by H. L. Montgomery

Let s(n) denote the sum of the base 10 digits of $(1974)^n$. Show that $s(n) \to \infty$ as $n \to \infty$.

CRUX 430.

- UX 430. by Allan Wm. Johnson, Jr. (a) For $n = 1, 8^{-n}$ equals a decimal fraction whose digits sum to 8. Prove that 8^{-n} for $n=2,3,4,\ldots$ never again equals a decimal fraction whose digits sum to 8.
- (b) The cube of 8 has decimal digits that sum to 8. For $n = 4, 5, 6, \ldots$, is there another 8^n whose decimal digits sum to 8?

CRUX 228. by Charles W. Trigg

- (a) Find four consecutive primes having digit sums that, in some order, are consecutive primes.
- (b) Find five consecutive primes having digit sums that are distinct primes.

SSM 3573.

If 3573. by Charles W. Trigg Where $\sum d_i$ is the sum of the digits of N_i , the reiterated operation $N_i + \sum d_i = N_{i+1}$ produces an infinite sequence. Find such a sequence in the decimal system wherein three consecutive terms are palindromes.

SSM 3686. by Charles W. Trigg

Find a prime number such that

- (a) the sum of the digits of its square is a square, and
- (b) the square of the prime number is also a sum of five consecutive prime numbers.

by H. G. Dworschak CRUX 34.

Once a bright young lady called Lillian

Summed the numbers from one to a billion.

But it gave her the fidgets

To add up the digits:

If you can help her, she'll thank you a million.

Digit problems: sum of powers

NYSMTJ 58.

by Gary Wernsing

An Armstrong number is an n-digit number equal to the sum of the nth powers of its digits.

Prove that there are a finite number of Armstrong

Digit problems: sum of squares

PENT 304.

by Charles W. Trigg

Does any three-digit number, N, equal 11 times the sum of the squares of its digits?

Digit problems: terminal digits

by John Brinn and Romae Cormier JRM 764.

- (a) Characterize the 2-digit numbers that do not occur as the last two digits of a cube.
- (b) Characterize the *n*-digit numbers that do not occur as the last n digits of a cube.

PENT 289. by Charles Trigg

Each of the three consecutive integers 4, 5, and 6 terminates its own cube. Find four pairs of larger, consecutive integers in which each integer terminates its own cube.

FUNCT 2.4.3.

Find the number of 0's at the end of the number 1000!.

by Herta T. Freitag

Given that a and b are positive integers such that bdivides a, let U_b be the units digit of b.

- (a) If $U_b = 0$, no prediction can be made about U_q , the units digit of the quotient q; however if $U_b = 5$, U_q and U_b must be of the same parity. Prove this.
- (b) State and prove a relationship that predicts U_q for all other cases.

SSM 3612. by Bob Prielipp

Verify the following rule for multiplying two natural numbers, each of which has 5 as its units digit:

$$a5 \times b5 = \left\{ (a \times b) + \left| \frac{a+b}{2} \right| \right\} c$$

where c = 25 if a + b is even and c = 75 if a + b is odd.

by Alan Wayne AMM E2776.

- (a) In the decimal system, find all twelve-digit positive integers n such that n^{102} ends at the right in the digits of
- (b) Is there a corresponding solution to the problem in numeration systems other than base ten?

by Kenneth S. Williams CRUX 149.

Find the last two digits of 3^{1000} .

CRUX 253. by David Fischer

Let $x \uparrow y$ denote x^y . What are the last two digits of

$$2 \uparrow (3 \uparrow (4 \uparrow 5))$$
?

JRM 741.

by Frank Rubin

- (a) Find the eight least significant digits of 7^{9999}
- (b) Find the ten least significant digits of 3⁹⁹⁹⁹⁹⁹.

Digit problems: terminal digits

Problems sorted by topic

Diophantine equations: degree 3

IMO 1978/1.

Given natural numbers m and n with $1 \le m < n$. In their decimal representations, the last three digits of 1978^m are equal, respectively, to the last three digits of 1978^n . Find m and n such that m+n has its least value.

OMG 17.2.3. If 8888^{8888} is multiplied out, what is the units digit in the final product?

ISMJ 14.1.

Consider the last (units) digits of the numbers $1^1 = 1$, $2^2 = 4$, $3^3 = 27$, $4^4 = 256$, $5^5 = 3125$,.... Show that the sequence of last digits is periodic with period 20.

PARAB 268.

Prove that $11^{10} - 1$ is divisible by 100.

PARAB 358.

ISMJ 10.5.

ISMJ 14.12.

What are the last two digits of $2^{2^{73}}$?

MSJ 496.

Let $a_1 = 1$ and for n > 1 define $a_n = n^{a_{n-1}}$. What are the last two digits of a_9 ?

MSJ 490.

Consider the sequence (a_n) :

$$6, 76, 376, 9376, 09376, 109376, \dots$$

and note that for each n = 1, 2, ..., the product of two numbers terminating in a_n is again a number terminating in a_n . Find a_7 .

CANADA 1978/1.

Let n be an integer. If the tens digit of n^2 is 7, what is the units digit of n^2 ?

ISMJ 14.15.

What integer has a square ending in the longest string of nonzero digits (in base 10)?

CRUX 55. by Viktors Linis

What is the last digit of $1+2+\cdots+n$ if the last digit of $1^3+2^3+\cdots+n^3$ is 1?

Digit problems: triangular numbers

CRUX 274. by Charles W. Trigg

Find triangular numbers of the form abcdef such that

$$abc = 2def.$$

Diophantine equations: degree 2

by Robert M. Hashway AMM E2624.

Solve the Diophantine equation

$$a + b \cdot 10^k = (a+b)^2,$$

where $0 < a, b < 10^k \text{ and } k \le 5.$

CANADA 1977/1.

OMG 16.2.1.

If $f(x) = x^2 + x$, prove that the equation 4f(a) = f(b)has no solutions in positive integers a and b.

FQ B-387.

by George Berzsenyi

Prove that there are infinitely many ordered triples of positive integers (x, y, z) such that

$$3x^2 - y^2 - z^2 = 1.$$

IMO 1977/5.

PARAB 367.

Let a and b be positive integers. When $a^2 + b^2$ is divided by a + b, the quotient is q and the remainder is r. Find all pairs (a, b) such that $q^2 + r = 1977$.

JRM 81a.

by D. Silverman

The Diophantine equation $\sum_{k=1}^{N} x_k^2 = \prod_{k=1}^{N} x_k \ (x_k \neq 0$, for all k), has known solutions for n=1,3,4,5,7, and most larger values of n. No solutions are possible for n=2, since $x_1^2 + x_2^2 > x_1 \cdot x_2$ for all such x_1 and x_2 .

Find a solution for n = 6 or show that no such solutions are possible.

MSJ 446.

Solve the following Diophantine equation in positive integers x and y:

$$x^2 + x + 29 = y^2$$
.

NYSMTJ 83.

by Steven R. Conrad

Find all ordered pairs of integers (x, y) such that

$$4x + 3y - 8 = xy.$$

CRUX 153.

by Bernard Vanbrugghe

Show that the only positive integers that satisfy the equation $a \cdot b = a + b$ are a = b = 2.

MSJ 449.

by Steven R. Conrad

Solve the Diophantine equation

$$x^2 + 4x + y^2 = 9.$$

FQ B-391.

by M. Wachtel

Some of the solutions of $5x^2 + 1 = y^2$ in positive integers x and y are (x,y) = (4,9), (72,161), (1292,2889),(23184, 51841), and (416020, 930249). Find a recurrence formula for the x_n and y_n of a sequence of solutions (x_n, y_n) and find

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n}$$

in terms of $\alpha = (1 + \sqrt{5})/2$.

FQ B-410.

by M. Wachtel

Some of the solutions of $5(x^2 + x) + 2 = y^2 + y$ in positive integers x and y are:

$$(x,y) = (0,1), (1,3), (10,23), (27,61).$$

Find a recurrence formula for the x_n and y_n of a sequence of solutions (x_n, y_n) . Also find $\lim (x_{n+1}/x_n)$ and $\lim (x_{n+2}/x_n)$ as $n \to \infty$ in terms of $\alpha = (1+\sqrt{5})/2$.

Diophantine equations: degree 3

CANADA 1978/2.

Find all pairs a, b of positive integers satisfying the equation $2a^2 = 3b^3$.

Diophantine equations: degree 3 Problems sorted by topic Diophantine equations: degree 6

CRUX 101.

by Léo Sauvé

Show that the cube of any rational number is equal to the difference of the squares of two rational numbers.

CRUX PS6-1.

Solve the Diophantine equation

$$x^{3} + y^{3} + z^{3} = (x + y + z)^{3}$$
.

MM Q611. by Erwin Just

Prove that the only solutions to the Diophantine equation, $x^3 - 2 = 6y^2$, are x = 2, $y = \pm 1$.

PUTNAM 1978/B.4.

Prove that for every real number N, the equation

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4$$

has a solution for which x_1 , x_2 , x_3 and x_4 are all integers larger than N.

MSJ 453.

by Daniel Flegler

Solve the Diophantine equation

$$x^3 + y^3 - 3x^2 + 6y^2 + 3x + 12y + 6 = 0.$$

MSJ 471.

Prove that there are no integers a and b for which the roots of

$$x^3 + ax^2 + 7x + b = 0$$

form an arithmetic progression.

SSM 3599. by Robert Fink and Bob Prielipp

Find ten, positive integer solutions of the equation

$$x^3 + y^3 + z^3 = u^3$$

where (x, y, z, u) = 1 and $x \le y \le z \le u \le 250$.

TYCMJ 80.

by Steve Kahn

Prove that if $\sum_{i=1}^{6} x_i^3 = x_7^3$ has a solution in integers, then

$$\prod_{i=1}^{7} x_i \equiv 0 \pmod{3}.$$

MATYC 71.

by Steve Kahn

Find all primes p for which the equation $x^3 + y^3 = p$ has a solution in positive integers.

SSM 3680. by Charles W. Trigg

Are there any prime values of p < 2200 for which the equation $x^3 - y^3 = p$ has a solution in positive integers x and y?

TYCMJ 58.

by J. Orten Gadd

Prove or disprove that the only values of the prime, p, and the integer, k, for which the zeros of $x^3 + kx + (p-k-1)$ are integers are p = 5 and k = -12.

Diophantine equations: degree 4

CMB P255.

by M. D. Nutt

Show that for integral A, the diophantine equation $A^2x^3(x+2)+1=y^2$ can have only a finite number of solutions.

CRUX 217.

by David R. Stone

Solve the Diophantine equation

$$n^2(n-1)^2 = 4(m^2 - 1).$$

CRUX 496.

by E. J. Barbeau

Solve the Diophantine equation

$$(x+1)^k - x^k - (x-1)^k = (y+1)^k - y^k - (y-1)^k$$

for k = 2, 3, 4 and $x \neq y$.

FQ B-360.

by T. O'Callahan

Show that for all integers a, b, c, d, e, f, g, and h, there exist integers w, x, y, and z such that

$$(a^{2} + 2b^{2} + 3c^{2} + 6d^{2})(e^{2} + 2f^{2} + 3g^{2} + 6h^{2})$$
$$= (w^{2} + 2x^{2} + 3y^{2} + 6z^{2}).$$

FUNCT 1.4.2.

Show that the only integral values of n making

$$n^4 + n^3 + n^2 + n + 1$$

a perfect square are n = 3, n = 0, and n = -1.

USA 1976/3.

MSJ 441.

Solve the Diophantine equation

$$a^2 + b^2 + c^2 = a^2b^2$$

USA 1979/1.

Find all nonnegative solutions (apart from permutations) of the Diophantine equation:

$$n_1^4 + n_2^4 + \dots + n_{14}^4 = 1,599.$$

Diophantine equations: degree 5

PME 440.

by Charles W. Trigg

Are there any prime values of $p < 10^5$ for which the equation $x^5 - y^5 = p$ has a solution in positive integers? How about $x^5 + y^5 = p$?

Diophantine equations: degree 6

MM Q647.

by Robert Scherrer

Find all integer solutions, (a, c), of

$$a^4 + 6a^3 + 11a^2 + ba + 1 = q\frac{(a^2 - 1)(c^2 - 1)}{a^2 + c^2},$$

where q is the product of arbitrary, nonnegative powers of alternate primes, i.e.,

$$q = 2^{b_1} \cdot 5^{b_2} \cdot 11^{b_3} \cdots p^{b_n}, \ b_i \ge 0.$$

Diophantine equations: degree n

Problems sorted by topic

Diophantine equations: exponentials

Diophantine equations: degree n

AMM E2532. by Erwin Just

Solve the following Diophantine equations:

(a)
$$x^m(x^2 + y) = y^{m+1}$$

(a)
$$x^m(x^2 + y) = y^{m+1}$$
,
(b) $x^m(x^2 + y^2) = y^{m+1}$

AMM E2621. by Barry Powell

Prove that $x^n + 1 = y^{n+1}$ has no solutions in positive integers x, y, and n, $n \ge 2$, with gcd(x, n + 1) = 1.

AMM E2642. by Antonio Rocha

Let x, y, and z be integers such that

$$x^2 + y^2 = z^{2m}$$
, $gcd(x, y) = 1$,

where m is a positive integer. If 4m - 1 = p is a prime, show that $p \mid xy$.

CRUX 99. by H. G. Dworschak

If a, b, and n are positive integers, prove that there exist positive integers x and y such that

$$(a^2 + b^2)^n = x^2 + y^2.$$

If a = 3, b = 4, and n = 7, find at least one pair (x, y) of positive integers that satisfies this equation.

Diophantine equations: exponentials

AMM E2749. by Leo J. Alex

(a) Show that neither of the equations

$$3^a + 1 = 5^b + 7^c$$

$$5^a + 1 = 3^b + 7^c$$

has a solution in integers a, b, and c other than a = b = c =

(b) Show that the only solutions to the equation

$$7^a + 1 = 3^b + 5^c$$

in integers a, b, and c are (a, b, c) = (0, 0, 0) or (1, 1, 1).

AMM E2750. by A. P. Hillman

Find all solutions in integers a, b, and c of the equation

$$9 + 5^a = 3^b + 7^c.$$

CRUX 188. by Daniel Rokhsar ISMJ 12.30.

Show that the only positive integer solution of the equation $a^b = b^a$, a < b, is a = 2, b = 4.

Show that neither $2^n - 1$ nor $2^n + 1$ is a cube if n is a positive integer larger than 1.

JRM 496.

M 496. by Steven Kahan Solve for integer m: $(m^2 - 7)^{m+1} = (m+1)^{m^2 - 7}$.

MATYC 136. by John Annulis

Prove: If n is a positive integer and $n^{1/(n-1)}$ is an integer, then n=2.

MATYC 75.

by James Chilaka

Find all positive integers n for which there exist positive integers x and y $(x \neq 1, y \neq 1)$ with $2^x - 2 = n^y - n$.

MM 1012.

by Gerald E. Gannon and Harris S. Shultz

Find all solutions (x, y) of $x^y = y^{x-y}$, where x and y are positive integers.

NAvW 467. by R. J. Stroeker

Show that the only solution in positive integers of the equation

$$x^y - y^x = x + y$$

is x = 2 and y = 5.

NAvW 500. by R. J. Stroeker and R. Tijdeman

Solve the following Diophantine equation in nonnegative integers x, y, z, and w:

$$3^x + 3^y = 5^z + 5^w.$$

NYSMTJ 66.

by Steven R. Conrad

(a) Find the sum of the series

$$\frac{1}{2} + \left(\frac{1}{3} + \frac{2}{3}\right) + \left(\frac{1}{4} + \frac{2}{4} + \frac{3}{4}\right) + \left(\frac{1}{5} + \frac{2}{5} + \frac{3}{5} + \frac{4}{5}\right) + \cdots + \left(\frac{1}{100} + \frac{2}{100} + \frac{3}{100} + \cdots + \frac{99}{100}\right).$$

(b) Find all ordered pairs of integers (x, y) such that $x^{x+y} = y^4$ and $y^{x+y} = x$.

PME 432.

by Erwin Just

Does there exist an integer m for which the equation

$$\sum_{i=0}^{m} 3^{ix} = 7^y$$

has solutions in positive integers?

TYCMJ 127.

by Sidney Penner

Find all rational solutions of $y^x = xy$.

CRUX 219. by R. Robinson Rowe

Find the least integer N which satisfies

$$N = a^{a+2b} = b^{b+2a}, \quad a \neq b.$$

CRUX 230.

by R. Robinson Rowe

Find the least integer N that satisfies

$$N = a^{ma+nb} = b^{mb+na}$$

with m and n positive and 1 < a < b.

PARAB 436.

Find all solutions in nonnegative integers x, y of the equation $3 \cdot 2^x + 1 = y^2$.

by R. S. Luthar

Solve the equation $2^x + 1 = y^2$ in positive integers.

NAvW 421. by O. P. Lossers

Let p be a prime. Consider the Diophantine equation

$$2^n - 3p = x^2$$
.

If this equation has two solutions, then determine p.

Diophantine equations: exponentials

Problems sorted by topic

Diophantine equations: systems of equations

PME 423.

by Richard S. Field

Find all solutions in positive integers of the equation $a^d - b^d = c^c$, where d is a prime number.

PUTNAM 1976/A.3.

Find all integral solutions of the equation

$$|p^r - q^s| = 1,$$

where p and q are prime numbers and r and s are positive integers larger than unity. Prove that there are no other solutions.

Diophantine equations: factorials

CRUX 434.*

by Harold N. Shapiro

(a) It is not hard to show by Bertrand's Postulate that all the solutions in positive integers x, y, m, n of the equation

$$(m!)^x = (n!)^y$$

are given by m = n = 1; and m = n, x = y. Find such a proof.

(b)* Prove the same result without using Bertrand's Postulate or equivalent results from number theory.

MM Q657.

by Edward T. H. Wang

Find all solutions to the Diophantine equation

$$1! + 2! + \cdots + n! = m^2$$

CRUX 159.

by Viktors Linis

Show that

$$x! + y! = z!$$

has only one solution in positive integers, and that

$$x!y! = z!$$

has infinitely many for x > 1, y > 1, and z > 1.

Diophantine equations: linear

CRUX 179.

by Steven R. Conrad

The equation 5x + 7y = c has exactly three solutions (x, y) in positive integers. Find the largest possible value of c

Diophantine equations: mediants

MSJ 439.

by Joseph O'Sullivan and Sidney Penner

Joe Poorstudent believes that

$$\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}.$$

Are there any positive integers a, b, c, and d for which his method yields the correct result?

Diophantine equations: radicals

MATYC 108.

by Gene Zirkel

If

$$\frac{1 - \sqrt{2} + \sqrt{3}}{1 + \sqrt{2} - \sqrt{3}} = \frac{\sqrt{a} + \sqrt{b}}{2} ,$$

where a and b are both integers, find a+b. Prove that this is the only solution.

Diophantine equations: solution in rationals

FQ B-337.

by Wray G. Brady

Show that there are infinitely many points with both x and y rational on the ellipse $25x^2 + 16y^2 = 82$.

MM 968.

by Sidney Penner and H. Ian Whitlock

A point in the plane is called rational if both of its coordinates are rational numbers. Show that $x^2 + y^2 = 2$ has an infinite number of rational solutions.

MSJ 450.

by Sidney Penner

Let n be a positive integer and let a/b and c/d represent rational numbers in lowest terms. If (a/b, c/d) is a solution of $x^2 + y^2 = n$, prove that $d = \pm b$.

CRUX PS2-2.

Determine all pairs of rational numbers (x, y) such that

$$x^3 + y^3 = x^2 + y^2$$
.

FQ H-256.

by E. Karst

Find all solutions of
(a)
$$x + y + z = 2^{2n+1} - 1$$
,

simultaneously for n < 5, given that: x, y, and z are positive rationals; $2^{2n+1} - 1$ and $2^{6n+1} - 1$ are integers; and $n = \log_2 \sqrt{t}$, where t is a positive integer.

NAvW 545.

by R. J. Stroeker

Determine all solutions in nonzero rationals \boldsymbol{x} and \boldsymbol{y} of the equation

$$(x^2 + y) (x + y^2) = (x - y)^3.$$

PARAB 316.

The rational numbers 169/30 and 13/15 are such that their sum is the same as their quotient:

$$\frac{169}{30} + \frac{13}{15} = \frac{13}{2} = \frac{\frac{169}{30}}{\frac{13}{15}} \ .$$

Find all pairs of rational numbers which have this property.

Diophantine equations: systems of equations

AMM E2615.

by D. Rameswar Rao

Show that the system of Diophantine equations

$$x^2 + y^2 = u^2 + v^2,$$

$$x^3 + y^3 = u^3 + v^3$$

has no solutions in positive integers with $(x,y) \neq (u,v)$. Prove the same for the system

$$x^2 + y^2 = u^2 + v^2,$$

$$x^5 + y^5 = y^5 + v^5$$
.

Diophantine equations: systems of equations

Problems sorted by topic

Divisibility: floor function

AMM E2664.

by Robert L. Bishop

(a) For a fixed $n \geq 3$, describe how one can construct all solutions of the system of Diophantine equations

$$\left(\sum_{i=1}^{n} x_i\right) - x_j = y_j^2, \qquad 1 \le j \le n.$$

(b) For n = 10, find a solution such that the x_i are distinct positive integers and $x_1 + \cdots + x_{10}$ is minimal.

ISMJ 11.9.

How many quadruples (a, b, c, d) of nonnegative integers are there such that a + b = cd and c + d = ab?

NYSMTJ 71. by Steven R. Conrad

Find all integral solutions of the system:

$$x + yz = 6$$
$$y + xz = 6$$

$$z + xy = 6.$$

IMO 1976/5.

Consider the system of p equations in q=2p unknowns x_1,x_2,\ldots,x_q :

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1q}x_q = 0$$

 $a_{12}x_1 + a_{22}x_2 + \dots + a_{2q}x_q = 0$
 \dots

$$a_{p1}x_1 + a_{p2}x_2 + \dots + a_{pq}x_q = 0$$

with every coefficient a_{ij} a member of the set $\{-1,0,1\}$. Prove that the system has a solution (x_1,x_2,\ldots,x_q) such that

- (1) all x_i (j = 1, 2, ..., q) are integers,
- (2) there is at least one value of j for which $x_j \neq 0$, and

(3)
$$|x_j| \le q \ (j = 1, 2, \dots, q).$$

OMG 18.2.2.

If the sum of two numbers is 8 and the product of these two numbers is 10, find the sum of the squares of these numbers.

CMB P245.

by D. Rameswar Rao

Show that the system of equations

$$x^{2} + y^{2} = X^{2} + Y^{2}$$

 $x^{3} + y^{3} = X^{3} + Y^{3}$

has no integer solutions.

Divisibility: consecutive integers

ISMJ J11-13.

Show that in any set of ten consecutive integers there is at least one integer that is not divisible by 2, 3, 5, or 7.

CRUX 212. by Bruce McColl

Find four consecutive integers that are divisible by 5, 7, 9, and 11 respectively.

Divisibility: cube roots

SSM 3581.

by Alan Wayne

Find the set of natural numbers each of which is exactly divisible by the greatest integer in its cube root.

Divisibility: difference of squares

CRUX 337.

by V. G. Hobbes

If p and q are primes greater than 3, prove that $p^2 - q^2$ is a multiple of 24.

Divisibility: exponentials

AMM E2772.

by Robert B. McNeill

Let m be a positive integer. Find all ordered pairs of positive integers (a, b) for which $(a + b) | (a^{2m} + b^{2m})$.

CMB P241. by A. Meir and S. K. Sehgal

Characterize those pairs of positive integers (n, α) for which

$$p \mid n^{\alpha} - 1 \Rightarrow p \mid n - 1.$$

CMB P275.

by J. P. Jones

Prove that

$$10^{5^{10^{5^{10}}}} + 5^{10^{5^{10^{5}}}}$$

is divisible by 11.

JRM 422.

by David L. Silverman

Let $A_n = n^{100} + 100^n$ (n = 1, 2, 3, 4, ...).

- (a) Prove that 3, 7, 11, and 13 are not factors of A_n for any value of n.
- (b) Are there infinitely many primes that never divide A_n ? Are there any greater than 13?

SSM 3635. by Herta T. Freitag

Prove that for all natural numbers n, dividing the expression $5^{n+2} \left[5^{n+2} + 6(2 \cdot 3^n - 5) \right] + 36 \cdot 3^n (3^n - 5)$ by 64 leaves a remainder of 31.

SSM 3603. by Herta T. Freitag

Let a and b be odd numbers, and let n be any natural number. Then 2^n divides $a^n - b^n$ if and only if 2^n divides a - b. True or false?

AMM E2643.

by Harry D. Ruderman

Show that for no integer n > 1, $2^n - 1$ divides $3^n - 1$.

MM Q635. by Erwin Just

Prove that for any prime, p, there exists an infinite number of values of m for which p is a divisor of $2^{m+1} + 3^m - 17$.

Divisibility: factorials

TYCMJ 84.

by R. S. Luthar

Let p > 3 be a prime. Prove or disprove that $\lfloor (p-2)!/p \rfloor$ divides (p-2)!-1.

Divisibility: floor function

SSM 3628.

by Herta T. Freitag

Prove or disprove that

$$|n/2| - 3n + (-1)^n - 1$$

is always divisible by 5.

Divisibility: geometry Problems sorted by topic Divisibility: polynomials

Divisibility: geometry

AMM E2653. by Albert A. Mullin

A lattice point $(x,y) \in \mathbb{Z}^2$ is visible if $\gcd(x,y) = 1$. Prove or disprove: Given a positive integer n, there exists a lattice point (a,b) whose distance from every visible point is at least n.

Divisibility: polynomials

TYCMJ 36. by Aleksandras Zujus

For each integer n > 1, prove that $n^n - n^2 + n - 1$ is divisible by $(n-1)^2$.

CRUX 87. by H. G. Dworschak

- (a) If $u_n = x^{2n} + x^n + 1$, for which positive integer n is u_n divisible by u_1 ?
- (b) For which positive integer n does $x + \frac{1}{x} = 1$ imply $x^n + \frac{1}{x^n} = 1$?

JRM 632. by Diophantus McLeod

Solve these two simultaneous "divisibilities" in positive integers:

$$x | (y+5); \quad y | (x+3).$$

How many solutions are there if the word "positive" is deleted?

MSJ 463.

Prove that (21n - 3)/4 and (15n + 2)/6 cannot both be integers for the same positive integer n.

MM 1009. by Sidney Kravitz

Let x, y, and n be positive integers and define $f(x) = x^2 - x + 41$ and $g(y) = y^2 - y + 68501$. Prove or disprove that n divides g(y) for some y if and only if n divides f(x) for some x.

JRM 591. by Kenneth M. Wilke

A problem is stated as follows: "Prove that there exist infinitely many pairs of positive integers x,y such that $x(x+1) \mid y(y+1), x \nmid y, (x+1) \nmid y, x \nmid (y+1), (x+1) \nmid (y+1)$ and find the least such pair." The solution gives the family: $x=36k+14, \ y=(12k+5)(18k+7), \ k=0,1,2\ldots$, with x=14, y=35 as the least pair. The solution further states "... it is easy to show that there are no smaller numbers with the desired property."

- (a) Find all solution pairs x, y with $y \leq 35$. In the process you will discover that 14,35 is not, in fact, the smallest pair with the desired property.
- (b) Find a family of solutions (x, y) in which xy < (36k + 14)(12k + 5)(18k + 7).

OSSMB 75-1.

For what integer a does $x^2 - x + a$ divide $x^{13} + x + 90$?

CRUX 107. by Viktors Linis

For which integers m and n is the ratio

$$\frac{4m}{2m+2n-mn}$$

an integer?

MSJ 474.

Prove that $n^2 + n + 1$ is a multiple of 19 for infinitely many integral values of n.

SPECT 8.7.

by B. G. Eke

If m and n are odd integers, show that $8 \mid m^2 - n^2$.

SSM 3757.

by Charles W. Trigg

Are there any integer values of n for which $n^2 - 17$ is exactly divisible by 5n + 33?

JRM 467. by Les Marvin

What is the largest integer that can divide two successive numbers of the form $n^2 + 3$?

CRUX 81. by H. G. Dworschak

Which of the following are divisible by 6 for all positive integers n?

- (a) n(n+1)(n+2)
- (b) n(n+1)(2n+1)
- (c) $n(n^2 + 5)$
- (d) $(n+1)^{2k} (n^{2k} + 2n + 1)$, k a positive integer.

ISMJ 12.9.

Show that, for any two integers a and b, the number (a+b)(a-b)ab is a multiple of six.

CRUX 35. by John Thomas

Let m denote a positive integer and p a prime. Show that if $p \mid (m^4 - m^2 + 1)$, then $p \equiv 1 \pmod{12}$.

ISMJ J11.1.

Prove that if n is an odd number greater than 3, then $n^4 - 18n^2 + 17$ is divisible by 64.

FUNCT 1.3.3. by Rob Saunders

Show that, for all integers a and b.

$$30 \mid ab(a^2 - b^2)(a^2 + b^2).$$

CRUX 392. by Stephen R. Conrad

Find all natural numbers n for which $n^8 - n^2$ is not divisible by 504.

PARAB 359.

An infinitely long list is made of all the pairs of integers m, n for which 23m-10n is exactly divisible by 17. Another list is made of all the pairs for which 7x+11y is exactly divisible by 17. Prove that the two lists are exactly alike.

PARAB 417.

Let a and b be integers. Show that 10a+b is a multiple of 7 if and only if a-2b is also.

PME 404. by Bob Prielipp

Let x be a positive integer of the form 24n - 1. Prove that if a and b are positive integers such that x = ab, then a + b is a multiple of 24.

USA 1977/1.

Determine all pairs of positive integers (m, n) such that

$$1 + x^n + x^{2n} + \dots + x^{mn}$$

is divisible by

$$1 + x + x^2 + \dots + x^m.$$

Divisibility: powers of 2 Problems sorted by topic Euler totient: fractions

Divisibility: powers of 2

SSM 3790.

by Anton Glaser and Karl W. Schlecker

Let $K(n) = (3n+1)/(2^x)$ where x is the greatest integer that will still leave K(n) an integer. Prove that if $n \equiv 3 \pmod{10}$, then K(n) is an odd multiple of 5.

Divisibility: products

SSM 3748.

by Charles W. Trigg

Show that the product P of the ten differences of any five integers is divisible by 288.

Divisibility: triangular numbers

TYCMJ 68.

by Sidney Penner

Let f(n) be defined as the least positive integer k such that $n \mid \sum_{i=1}^{k} i$. Prove that f(n) = 2n - 1 if and only if there exists a nonnegative integer m such that $n = 2^m$.

Divisibility: word problems

CRUX 12. by Viktors Linis

There are about 100 apples in a basket. It is possible to divide the apples equally among 2, 3 and 5 children but not among 4 children. How many apples are there in the basket?

Divisors

AMM 6144.* by Carl Pomerance

If n is a natural number, denote by A(n) the arithmetic mean of the divisors of n.

- (a) Prove that the asymptotic density of the set of n, for which A(n) is an integer, is 1.
- (b) Show that for any N there is an integer m such that A(n)=m has at least N solutions.
- (c) If it exists, find the asymptotic density of the set of integers m for which A(n) = m has a solution.

AMM 6190.*

by D. E. Daykin and D. J. Kleitman

Let n be a square-free integer that is not prime. Let F be a set of divisors of n such that neither the product of two elements of F nor n^2 divided by such a product is in F. What is the maximal proportion of the divisors of n that may lie in F?

SSM 3578. by Robert A. Carman

Show that any number of the form 6n-1 has factors a and b such that a+b is a multiple of 6.

SSM 3623. by Bob Prielipp

It is known that the sum of the reciprocals of the positive integer divisors of a perfect number is 2.

- (a) Find four positive integers such that the sum of the reciprocals of the positive integer divisors of each of these numbers is 3.
- (b) Find four positive integers such that the sum of the reciprocals of the positive integer divisors of each of these numbers is 4.

CRUX 467.

by Harold N. Shapiro

Let n_1, \ldots, n_k be given positive integers and form the vectors (d_1, \ldots, d_k) where, for each $i = 1, \ldots, k, d_i$ is a divisor of n_i . Letting $\tau(d)$ = the number of divisors of d, the number of these vectors is $\tau(n_1)\tau(n_2)\ldots\tau(n_k)$. How many of these have the property that their components are relatively prime in pairs?

SPECT 9.2. ISMJ 11.18.

by B. G. Eke

A changing room has n lockers numbered 1 to n and all are locked. An attendant performs the sequence of operations T_1, T_2, \ldots, T_n , where T_k is the operation whereby the condition of being locked or unlocked is altered in the case of those lockers (and only those) whose numbers are divisible by k. Which lockers are unlocked at the end?

Equations

CRUX 307.

by Steven R. Conrad

Find the least and greatest values of x such that

$$xy = nx + ny,$$

if n, x, and y are all positive integers.

AMM 6197.*

by Manuel Scarowsky

Let p be a prime; let a and b be positive integers; and let (x_0, y_0) be a solution of ax + by = p in positive integers with x_0 minimal, if such exists (otherwise take $x_0 = 0$). Find an estimate for $\sum_{a,b} x_0$.

Euler totient: divisors

AMM 6193.

by Robert E. Shafer

Given that n is such that $2\phi(n)=n-1$ (ϕ is the Euler totient function), prove

- (a) $3 \nmid n$;
- (b) If p and q are distinct prime divisors of n, then $p \not\equiv 1 \pmod{2q}$;
 - (c) n has at least 11 distinct prime divisors.

AMM 6160.

by Robert E. Shafer

(a) If m is the largest odd divisor of n, then with the exception of (b), prove that

$$2^{v(n)}m^{v(m)/2} | \phi(a^n + b^n)$$

for $a>b\geq 1,$ where v(n) is the number of divisors of n and ϕ is the Euler totient function.

(b) If $a=2, b=1, n=3^d c, c$ odd, $d\geq 1$, then prove that

 $2^{v(n)-1}m^{v(m)/2}3^{d-1} \mid \phi(a^n+b^n).$

Euler totient: fractions

AMM 6070. by P. Erdős and C. W. Anderson Where $\phi(n)$ is Euler's totient function, let

$$\Phi(n) = \frac{\phi(n)}{n}.$$

 $\Phi: \mathbb{N} \to (0,1]$ densely. For given a, demonstrate that there are only a finite number of b (coprime with a) such that $\Phi(n) = a/b$ has solutions.

MM Q645. by

by R. B. Eggleton

Prove that there are infinitely many positive integers n for which $\phi(n) = n/3$, but none for which $\phi(n) = n/4$, where ϕ is Euler's phi-function.

Euler totient: inequalities Problems sorted by topic Factorizations

Euler totient: inequalities

AMM E2599. by Bernardo Recamán

Are there arbitrarily large positive integers N such that for all $n \geq N$, we have $\phi(n) \geq \phi(N)$ while $\phi(n) \leq \phi(N)$ when $n \leq N$?

CRUX 458. by Harold N. Shapiro

It is known that, for each fixed integer c > 1, the equation $\phi(n) = n - c$ has at most a finite number of solutions for the integer n. Improve this by showing that any such solution, n, must satisfy the inequalities $c < n \le c^2$.

AMM E2590. by C. A. Nicol

A natural number $n \geq 2$ is said to be ϕ -subadditive if

$$\phi(n) \le \phi(k) + \phi(n-k)$$

for $1 \le k \le n-1$ and ϕ -superadditive if

$$\phi(n) \ge \phi(k) + \phi(n-k)$$

for $1 \le k \le n-1$ (ϕ denotes Euler's totient function). Show that there exist infinitely many ϕ -subadditive numbers and infinitely many ϕ -superadditive numbers.

Euler totient: primes

AMM E2611. by C. A. Nicol

Based upon the long-standing conjecture that if $n \ge 2$ is a natural number and $\phi(n) | (n-1)$ then n is prime, show that a natural number $n \ge 2$ is prime if and only if $\phi(n) | (n-1)$ and $(n+1) | \sigma(n)$.

Euler totient: quotients

JRM 474. by Les Marvin

What is the necessary and sufficient condition on two integers that the totient of their quotient equal the quotient of their totients?

Euler totient: solution of equations

JRM 622. by Les Marvin

Let f(k) be the number of solutions of the equation $\phi(n) = k$.

- (a) Is 4 the only solution to the equation f(k) = k?
- (b) Has the sequence $\{f(k)/k\}$ a limit point other than zero?

Factorials

PARAB 270.

Find all positive integers between 1 and 100 having the property that (n-1)! is not divisible by n^2 .

CMB P250. by P. Erdős

Write $n!=u_1u_2\cdots u_k,\ n< u_1<\cdots< u_k$. Prove that $u_k\leq 2n$ has only a finite number of solutions. Determine them.

AMM E2623. by Ivan Niven

For which positive integers k is it true that there are infinitely many pairs of positive integers m and n such that

$$\frac{(m+n-k)!}{m!n!}$$

is an integer?

AMM 6121.

by Harry D. Ruderman is a_1, a_2, \ldots, a_n , the following is

For all positive integers a_1, a_2, \ldots, a_n , the following is always an integer:

$$\prod_{i=1}^{n} (na_i)! / \left[n \prod_{i=1}^{n} (a_i!) \right]^{n-1} \left(\sum_{i=1}^{n} a_i \right)!.$$

Prove the conjecture for n = 3. Is it true in general?

AMM E2799.

by Marlow Sholander

For n a positive integer, let n!! denote the superfactorial $\prod_{i=1}^{n} i!$, and let 0!! = 1. Set

$$A_n = \frac{(2n-1)!!}{[(n-1)!!]^4} .$$

Prove that A_n is an integral multiple of (2n-1)!.

TYCMJ 137. by Martin Berman

Let r < n be positive integers and define $n_1 = n!$, $n_{k+1} = (n_k)!$ (k = 1, 2, ...), and $\binom{n}{r}_k = n_k/r_k(n-r)_k$. Must $\binom{n}{r}_k$ always be an integer?

TYCMJ 70. by Norman Schaumberger

Determine the least possible integer N such that for all integers n>N,

$$\left(\frac{n^{n+1}}{(n+1)^n}\right)^n < n! < \left(\frac{n^{n+1}}{(n+1)^n}\right)^{n+1}.$$

CRUX 146. by Jacques Marion

Show that there exists no rational function R(z) such that R(n) = n! for each natural number n.

ISMJ J11.19.

How many perfect squares appear among the numbers

$$1!, 1! + 2!, 1! + 2! + 3!, \dots, 1! + 2! + 3! + \dots + n!$$
?

Factorizations

OMG 18.3.7.

What two whole numbers, neither containing any zeros, will multiply together to equal exactly 1,000,000,000?

CRUX 64. by Léo Sauvé

Decompose 10,000,000,099 into a product of at least two factors.

FUNCT 1.5.3.

Find the prime factors of

5,679,431,432,056,743,205,685,679,432.

ISMJ J10.10.

In how many ways can 720 be written as a product of three positive integers different from one?

JRM 767. by Harry Nelson

Find all pairs of consecutive positive integers such that neither has any prime factors other than 2 or 3.

ISMJ J11-14.

Suppose n is a positive integer whose smallest prime factor is p and $p > \sqrt[3]{n}$. Show that n/p is also a prime.

Factorizations

Problems sorted by topic

Fibonacci and Lucas numbers: arrays

JRM 371.

by Sidney Kravitz

What is the maximum number of distinct factors that an integer between one and one million can have, and how many integers in this range have that many factors?

AMM 6015.

by C. W. Anderson

Let $n=q_1^{a_1}q_2^{a_2}\dots q_k^{a_k},\ k>1,$ be the prime decomposition of the integer n, and define

$$\operatorname{Ind}(n) = \max \left\{ a_i \mid 1 \le i \le k \right\}.$$

Show that

$$\lim_{m \to \infty} \frac{1}{m} \sum_{k=2}^{m} \operatorname{Ind}(k) = 1 + \sum_{n=2}^{\infty} \frac{\mu(n)}{n(n-1)} = 1.705211...$$

CRUX 390.

by Gali Salvatore

Show how to find the complete factorization of $2^{38} + 1$ using only pencil and paper (no computers), having given that it consists of four distinct prime factors, none repeated, one of which is 229.

Farey sequences

ISMJ 13.28.

Suppose all fractions a/b in lowest terms with $b \leq 100$ and 0 < a/b < 1 are listed in increasing order and a/band c/d are consecutive fractions in this list. Show that b + d > 100.

Fermat's Last Theorem

SSM 3728.

by Richard L. Francis

Let A be the set of positive integers not divisible by 5. Show that $x^4 + y^4 = z^4$ is not possible if $x, y, z \in A$.

AMM E2631.

by Barry Powell

It is known that if p is an odd prime and $3^p \not\equiv 3$ $\pmod{p^2}$, then the equation

$$x^p + y^p = z^p$$

has no solution in positive integers x, y, and z not divisible

Show that this condition is satisfied by all primes phaving the form

$$p = \frac{1}{2} \left(3^{2^k} + 1 \right)$$

or

$$p = \frac{1}{2} \left(3^q - 1 \right)$$

with q also an odd prime.

AMM E2771.

by Robert Breusch

Let p be a prime and $p \not\equiv 1 \pmod{8}$. Prove that the equation $x^{2p} + y^{2p} = z^{2p}$ has no solution in positive integers x, y, z with $xyz \not\equiv 0 \pmod{p}$.

Fermat's Little Theorem

CRUX 494.*

by Rufus Isaacs

Let r_j , j = 1, ..., k, be the roots of a polynomial with integral coefficients and leading coefficient 1.

(a) For p a prime, show that

$$p \mid \sum_{i} (r_j^p - r_j).$$

(b) Prove or disprove that for any positive integer n,

$$n \, | \, \sum_j \left(\sum_{d \, | \, n} r_j^d \mu(n/d) \right).$$

Fermat numbers

TYCMJ 121.

by Richard L. Francis

Prove that no Fermat prime (one of the form $2^{2^n} + 1$) can be the difference of two fifth powers of positive integers.

The numbers $\Phi_n = 2^{(2^n)} + 1$ for $n = 0, 1, 2, 3, \ldots$ are called Fermat numbers. Approximately how large is the 6th Fermat number in scientific notation?

You can imagine the tremendous size of $F_{73} = 2^{2^{73}} + 1$. Is there enough room in all the books in all the libraries in the whole world to record this giant number? In answering this question, assume the generous estimates that there are 1 million libraries, each with 1 million books, each of 1000 pages, each containing 100 lines which can hold 100 digits

Fibonacci and Lucas numbers: arrays

by V. E. Hoggatt, Jr.

Consider this array in which F_{2n+1} , n = 0, 1, 2, ..., is written in staggered columns:

> 1 2 1 5 34 13 5

Show that:

(a) The row sums are F_{2n+2} . (b) The rising diagonal sums are $F_{n+1}F_{n+2}$.

(c) If the columns are multiplied by $1, 2, 3, \ldots$ sequentially to the right, then the row sums are $F_{2n+3} - 1$.

Consider this array in which L_{2n+1} , n = 0, 1, 2, ..., is written in staggered columns:

29 11 4 1

Show that:

(a) The row sums are $L_{2n+2}-2$. (b) The rising diagonal sums are $F_{2n+3}-1$, where L_{2n+1} is the largest element in the sum.

(c) If the columns are multiplied by $1, 2, 3, \ldots$ sequentially to the right, then the row sums are $L_{2n+3}-(2n+3)$.

Fibonacci and Lucas numbers: congruences

Problems sorted by topic

Fibonacci and Lucas numbers: golden ratio

Fibonacci and Lucas numbers: congruences

FQ B-365. by Philip Mana

Show that there is a unique integer m > 1 for which integers a and r exist with $L_n \equiv ar^n \pmod{m}$ for all integers $n \geq 0$. Also show that no such m exists for the Fibonacci numbers.

FQ B-386. by Lawrence Somer

Let p be a prime and let the least positive integer m with $F_m \equiv 0 \pmod{p}$ be an even integer 2k. Prove that $F_{n+1}L_{n+k} \equiv F_nL_{n+k+1} \pmod{p}$. Generalize to other sequences.

FQ H-280.

by Paul S. Bruckman

Prove the congruences:

$$F_{3 \cdot 2^n} \equiv 2^{n+2} \pmod{2^{n+3}};$$

$$L_{3 \cdot 2^n} \equiv 2 + 2^{2n+2} \pmod{2^{2n+4}}, \ n = 1, 2, 3, \dots$$

Fibonacci and Lucas numbers: determinants

FQ H-299.

by Gregory Wulczyn

Evaluate:

$$(a) \ \Delta = \left| \begin{array}{ccccc} F_{2r} & F_{6r} & F_{10r} & F_{14r} & F_{18r} \\ F_{4r} & F_{12r} & F_{20r} & F_{28r} & F_{36r} \\ F_{6r} & F_{18r} & F_{30r} & F_{42r} & F_{54r} \\ F_{8r} & F_{28r} & F_{40r} & F_{56r} & F_{72r} \\ F_{10r} & F_{30r} & F_{50r} & F_{70r} & F_{90r} \end{array} \right|$$

(c)
$$D_1 = \begin{vmatrix} 1 & L_{2r} & L_{4r} & L_{6r} & L_{8r} \\ 1 & L_{6r} & L_{12r} & L_{18r} & L_{24r} \\ 1 & L_{10r} & L_{20r} & L_{30r} & L_{40r} \\ 1 & L_{14r} & L_{28r} & L_{42r} & L_{56r} \\ 1 & L_{18r} & L_{36r} & L_{54r} & L_{72r} \end{vmatrix}$$

Fibonacci and Lucas numbers: divisibility

FQ B-329. by Herta T. Freitag

Find r, s, and t as linear functions of n such that $2F_r^2 - F_s F_t$ is an integral divisor of $L_{n+2} + L_n$ for $n = 1, 2, \ldots$

Fibonacci and Lucas numbers: finite sums

FQ H-284.

by G. Wulczyn

Show that
(a)
$$\sum_{k=0}^{n} {n \choose k} F_{rk} L_{rn-rk} = 2^n F_{rn}$$
,

(b)
$$\sum_{k=0}^{n} \binom{n}{k} L_{rk} L_{rn-rk} = 2^{n} L_{rn} + 2L_{r}^{n}$$
,

(c)
$$\sum_{k=0}^{n} \binom{n}{k} F_{rk} F_{rn-rk} = \frac{(2^n L_{rn} - 2L6n_r)}{D}$$
.

FQ B-300. by Verner E. Hoggatt, Jr. Establish a simple, closed form for

$$L_{2n+2} - \sum_{k=1}^{n} (n+3-k)F_{2k}.$$

FQ B-335.

by Herta T. Freitag

Obtain a closed form for

$$\sum_{i=0}^{n-k} (F_{i+k}L_i + F_iL_{i+k}).$$

FQ B-368. by Herta T. Freitag

Obtain functions g(n) and h(n) such that

$$\sum_{i=1}^{n} iF_{i}L_{n-1} = g(n)F_{n} + h(n)L_{n}$$

and use the results to obtain congruences modulo 5 and 10.

FQ H-246.

by L. Carlitz

Let

$$F(m,n) = \sum_{i=0}^{m} \sum_{j=0}^{n} F_{i+j} F_{m-i+j} F_{i+n-j} F_{m-i+n-j}$$

and

$$L(m,n) = \sum_{i=0}^{m} \sum_{j=0}^{n} L_{i+j} L_{m-i+j} L_{i+n-j} L_{m-i+n-j}.$$

Show that

$$L(m,n) - 25F(m,n) = 8L_{m+n}F_{m+1}F_{n+1}.$$

FQ B-305.

by Frank Higgins

Prove that

$$F_{8n} = L_{2n} \sum_{k=1}^{n} L_{2n+4k-2}.$$

FQ B-306.

by Frank Higgins

Prove that

$$F_{8n+1} - 1 = L_{2n} \sum_{k=1}^{n} L_{2n+4k-1}.$$

Fibonacci and Lucas numbers: golden ratio

FQ H-310. by V. E. Hoggatt, Jr.

Let $\alpha = (1 + \sqrt{5})/2$, $\lfloor n\alpha \rfloor = a_n$, and $\lfloor n\alpha^2 \rfloor = b_n$. Clearly, $a_n + n = b_n$.

(a) Show that if $n = F_{2m+1}$, then $a_n = F_{2m+2}$ and $b_n = F_{2m+3}$.

(b) Show that if $n=F_{2m}$, then $a_n=F_{2m+1}-1$ and $b_n=F_{2m+2}-1$.

(c) Show that if $n = L_{2m}$, then $a_n = L_{2m+1}$ and $b_n = L_{2m+2}$.

(d) Show that if $n = L_{2m+1}$, then $a_n = L_{2m+2} - 1$ and $b_n = L_{2m+3} - 1$.

Fibonacci and Lucas numbers: identities

Problems sorted by topic

Fibonacci numbers: congruences

Fibonacci and Lucas numbers: identities

FQ B-298.

by Richard Blazei

Show that

$$5F_{2n+3} \cdot F_{2n-3} = L_{4n} + 18.$$

FQ B-339. by Gregory Wulczyn

Establish Cesàro's symbolic Fibonacci-Lucas identity: $(2u+1)^n = u^{3n}$. After the binomial expansion has been performed, the powers of u are used as either Fibonacci or Lucas subscripts.

FQ H-288.

by G. Wulczyn

Establish the identities:

$$F_k L_{k+6r+3}^2 - F_{k+8r+4} L_{k+2r+1}^2$$

$$= (-1)^{k+1} L_{2r+1}^3 F_{2r+1} L_{k+4r+2}$$

and

$$F_k L_{k+6r}^2 - F_{k+8r} L_{k+2r}^2 = (-1)^{k+1} L_{2r}^3 F_{2r} L_{k+4r}.$$

FQ H-295.

by Gregory Wulczyn

Establish the identities:

$$F_k F_{k+6r+3}^2 - F_{k+8r+4}^2 F_{k+2r+1}$$

$$= (-1)^{k+1} F_{2r+1}^3 L_{2r+1} L_{k+4r+2}$$

and

$$F_k F_{k+6r}^2 - F_{k+8r} F_{k+2r}^2 = (-1)^{k+1} F_{2r}^3 L_{2r} L_{k+4r}.$$

FQ B-354.

by Philip Mana

Show that

$$F_{n+k}^3 - L_k^3 F_n^3 + (-1)^k F_{n-k} [F_{n-k}^2 + 3F_{n+k} F_n L_k] = 0.$$

FQ B-355. Show that by Gregory Wulczyn

 $F_{n+k}^3 - L_{3k}F_n^3 + (-1)^k F_{n-k}^3 = 3(-1)^n F_n F_k F_{2k}.$

FQ B-313.

by Verner E. Hoggatt, Jr.

$$M(x) = L_1 x + (L_2/2)x^2 + (L_3/3)x^3 + \cdots$$

Show that the Maclaurin series expansion for $e^{M(x)}$ is

$$F_1 + F_2 x + F_3 x^2 + \cdots$$

FQ H-279.

by G. Wulczyn

Show that

$$F_{n+6r}^4 - (L_{4r} + 1)(F_{n+4r}^4 - F_{n+2r}^4) - F_n^4$$

= $F_{2r}F_{4r}F_{6r}F_{4n+12r}$,

$$F_{n+6r+3}^4 + (L_{4r+2} - 1)(F_{n+4r+2}^4 - F_{n+2r+1}^4) - F_n^4$$

= $F_{2r+1}F_{4r+2}F_{6r+3}F_{4n+12r+6}$.

Fibonacci and Lucas numbers: infinite series

FQ B-319.

by Wray G. Brady

Prove that

$$\frac{1}{L_2} + \frac{1}{L_6} + \frac{1}{L_{10}} + \dots = \frac{1}{\sqrt{5}} \left(\frac{1}{F_2} - \frac{1}{F_6} + \frac{1}{F_{10}} - \dots \right).$$

Fibonacci and Lucas numbers: primes

FQ H-260.*

by H. Edgar

Are there infinitely many subscripts, n, for which F_n or L_n are prime?

Fibonacci and Lucas numbers: recurrences

by Phil Mana

Let $Y_n = (2+3n)F_n + (4+5n)L_n$. Find constants h and k such that

$$Y_{n+2} - Y_{n+1} - Y_n = hF_n + kL_n$$
.

Fibonacci numbers: algorithms

JRM 728. by Frank Rubin

Let F_i denote the *i*th Fibonacci number. It can be shown by induction that $F_{p+q} = F_{p-1}F_q + F_pF_{q+1}$. Note that when p = 2, this reduces to the well-known recursion formula for the Fibonacci sequence. Suppose that the cost of adding or subtracting two numbers is A, and the cost of multiplying them is M. Determine the lowest-cost method for calculating F_{100} if A = 1 and M = 5, and only $F_0 = 0$ and $F_1 = 1$ are assumed known.

Fibonacci numbers: ancestors

FQ B-304. by Sidney Kravitz

The female bee has two parents but the male bee has a mother only. Prove that if we go back n generations for a female bee, she will have F_n male ancestors in that generation and F_{n+1} female ancestors, making a total of F_{n+2} ancestors.

Fibonacci numbers: composite numbers

by Verner E. Hoggatt, Jr.

Prove that $F_n - 1$ is a composite integer for $n \geq 7$ and that $F_n + 1$ is composite for $n \geq 4$.

Fibonacci numbers: congruences

NYSMTJ 98.

by Norman Gore

Let F_n be the *n*th Fibonacci number. Prove that, for any positive integer n,

$$F_{n+10} \equiv F_n + F_{n+5} \pmod{10}$$
.

FQ B-331.

by George Berzsenyi

Prove that

$$F_{6n+1}^2 \equiv 1 \pmod{24}.$$

FQ B-378.

by George Berzsenyi

Prove that

$$F_{3n+1} + 4^n F_{n+3} \equiv 0 \pmod{3}$$

for $n = 0, 1, 2, \dots$

by George Berzsenyi Prove that $F_4 = 3$ is the only Fibonacci number that

is a prime congruent to 3 modulo 4.

FQ B-324. by Herta T. Freitag

Determine a constant k such that, for all positive inte-

$$F_{3n+2} \equiv k^n F_{n-1} \pmod{5}.$$

Fibonacci numbers: congruences

Problems sorted by topic

Fibonacci numbers: finite sums

FQ B-379.

by Herta T. Freitag

Prove that $F_{2n} \equiv n(-1)^{n+1} \pmod{5}$ for all nonnegative integers n.

FQ B-408.* by Lawrence Somer

Let $d \in \{2, 3, ...\}$ and $G_n = F_{dn}/F_n$. Let p be an odd prime and z = z(p) be the least positive integer n with $F_n \equiv 0 \pmod{p}$. For d = 2 and z(p) an even integer 2k, it is known that

$$F_{n+1}G_{n+k} \equiv F_nG_{n+k+1} \pmod{p}$$
.

Establish a generalization for $d \geq 2$.

FQ H-265.

by V. E. Hoggatt, Jr.

Show that

$$F_{23,3k-1} \equiv 0 \pmod{3^k}$$
, where $k > 1$.

FQ H-286.

by P. Bruckman

Prove the following congruences:

(a) $F_{5^n} \equiv 5^n$.

(b)
$$F_{5^n} \equiv L_{5^{n+1}} \pmod{5^{2n+1}}, n = 0, 1, 2, \dots$$

FQ H-250.

by L. Carlitz

Show that if

$$A(n)F_{n+1} + B(n)F_n = C(n) \quad (n = 0, 1, 2, ...),$$

where the F_n are the Fibonacci numbers and A(n), B(n), C(n) are polynomials, then

$$A(n) \equiv B(n) \equiv C(n) \equiv 0.$$

Fibonacci numbers: continued fractions

FQ H-278.

by V. E. Hoggatt, Jr.

Show

$$\sqrt{\frac{5F_{n+2}}{F_n}} = \left[3, \underbrace{\overline{1, 1, \dots, 1}, 6}_{n-1}\right]$$

(Continued fraction notation, cyclic part under bar).

Fibonacci numbers: determinants

FQ H-294.

by Gregory Wulczyn

Evaluate:

$$\Delta = \begin{vmatrix} F_{2r+1} & F_{6r+3} & F_{10r+5} & F_{14r+7} & F_{18r+9} \\ F_{4r+2} & F_{12r+6} & F_{20r+10} & F_{28r+14} & F_{36r+18} \\ F_{6r+3} & F_{18r+9} & F_{36r+15} & F_{42r+21} & F_{54r+27} \\ F_{8r+4} & -F_{24r+12} & F_{40r+20} & F_{56r+28} & F_{72r+36} \\ F_{10r+5} & F_{20r+15} & F_{50r+25} & F_{70r+36} & F_{50r+45} \end{vmatrix}$$

Fibonacci numbers: digit problems

CRUX 264

by Gilbert W. Kessler

Find a formula that gives the number of digits in the nth Fibonacci number explicitly in terms of n.

Fibonacci numbers: divisibility

NAvW 523.

by P. J. van Albada

Let F_i denote the *i*th Fibonacci number. Prove the following:

(a) For every $k \in \mathbb{N}$, there is a k' such that $k \mid F_i$ if and only if $k' \mid i$.

(b) If k is a prime, $k \equiv \pm 1 \pmod{10}$, then $k' \mid (k-1)$.

(c) If k is a prime, $k \equiv \pm 3 \pmod{10}$, then $k' \mid (k+1)$.

AMM E2539.*

by A. Vince

Let F_n denote the *n*th Fibonacci number. Prove or disprove that if $m^2 \mid F_n$, then $m \mid n$.

Fibonacci numbers: Euler totient

AMM E2581.

by Clark Kimberling

Show that $\phi(F_n)$ is divisible by 4 if $n \geq 5$.

Fibonacci numbers: finite sums

FQ B-397.

by Gregory Wulczyn

Find a closed form for the sum

$$\sum_{k=0}^{2s} {2s \choose k} F_{n+kt}^2.$$

NAvW 445.

by P. C. G. de Vries

Let F_k be the kth Fibonacci number. Prove that

$$\sum_{k=0}^{n} \binom{n}{k} F_k = \frac{1}{2^n \sqrt{5}} \left\{ \left(3 + \sqrt{5} \right)^n + \left(3 - \sqrt{5} \right)^n \right\}$$

for $n = 0, 1, 2, \dots$

FQ B-299.

by Verner E. Hoggatt, Jr.

Establish a simple, closed form for

$$F_{2n+3} - \sum_{k=1}^{n} (n+2-k)F_{2k}.$$

FQ B-343.

by Verner E. Hoggatt, Jr.

Establish a simple expression for

$$\sum_{k=1}^{n} \left[F_{2k-1} F_{2(n-k)+1} - F_{2k} F_{2(n-k+1)} \right].$$

FQ B-356.

by Herta T. Freitag

Let

$$S_n = F_2 + 2F_4 + 3F_6 + \dots + nF_{2n}$$

Find m as a function of n so that F_{m+1} is an integral divisor of $F_m + S_n$.

FQ B-398.

by Herta T. Freitag

Is there an integer K such that

$$K - F_{n+6} + \sum_{j=1}^{n} j^2 F_j$$

is an integral multiple of n for all positive integers n?

FQ B-320.

by George Berzsenyi

Evaluate the sum:

$$\sum_{k=0}^{n} F_k F_{k+2m}.$$

FQ B-321.

by George Berzsenyi

Evaluate the sum:

$$\sum_{k=0}^{n} F_k F_{k+2m+1}.$$

Fibonacci numbers: finite sums

Problems sorted by topic

by L. Kuipers

Fibonacci numbers: Pell's equation

FQ H-298.

Prove that

$$F_{n+1}^6 - 3F_{n+1}^5 F + 5F_{n+1}^3 F_n^3 - 3F_{n+1}F_n^5 - F_n^6$$

$$F_{n+6}^{6} - 14F_{n+5}^{6} - 90F_{n+4}^{6} + 350F_{n+3}^{6} - 90F_{n+2}^{6} - 14F_{n+1}^{6}$$
$$+F_{n}^{6} = (-1)^{n}80:$$

and

$$F_{n+6}^6 - 13F_{n+5}^6 + 41F_{n+4}^6 - 41F_{n+3}^6 + 13F_{n+2}^6 - F_{n+1}^6$$

$$\equiv -40 + \frac{1}{2}(1 + (-1)^n)80 \pmod{144}.$$

Fibonacci numbers: forms

FQ B-341. by Peter A. Lindstrom

Prove that the product $F_{2n}F_{2n+2}F_{2n+4}$ of three consecutive Fibonacci numbers with even subscripts is the product of three consecutive integers.

FQ B-396. by Paul S. Bruckman

Let $G_n = F_n(F_n+1)(F_n+2)(F_n+3)/24$. Prove that 60 is the smallest positive integer m such that $10 \mid G_n$ implies $10 \mid G_{n+m}$.

FQ B-409. by Gregory Wulczyn

Let $P_n = F_n F_{n+a}$. Must $P_{n+6r} - P_n$ be an integral multiple of $P_{n+4r} - P_{n+2r}$ for all nonnegative integers a and r?

FQ B-318. by Herta T. Freitag

Prove that $F_{4n}^2 + 8F_{2n}(F_{2n} + F_{6n})$ is a perfect square for $n = 1, 2, \ldots$

Fibonacci numbers: generating functions

FQ B-381. by V. E. Hoggatt, Jr.

Let $a_{2n} = F_{n+1}^2$ and $a_{2n+1} = F_{n+1}F_{n+2}$. Find the rational function that has

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

as its Maclaurin series.

Fibonacci numbers: greatest common divisor

FQ B-330. by George Berzsenyi $_{\rm Let}$

 $G_n = F_n + 29F_{n+4} + F_{n+8}.$

Find the greatest common divisor of the infinite set of integers $\{G_0, G_1, G_2, \ldots\}$.

FQ H-259. by R. Finkelstein

Let p be an odd prime and m an odd integer such that $m \not\equiv 0 \pmod{p}$. Let $F_{mp} = F_p \cdot Q$. Can $\gcd(F_p, Q) > 1$?

Fibonacci numbers: identities

FQ H-290.

by Gregory Wulczyn

Show that

$$F_k F_{k+6r+3}^2 - F_{k+4r+2}^3$$

$$= (-1)^{k+1} F_{2r+1}^2 (F_{k+8r+4} - 2F_{k+4r+2})$$

and

$$F_k F_{k+6r}^2 - F_{k+4r}^3 = (-1)^{k+1} F_{2r}^2 (F_{k+8r} + 2F_{k+4r}).$$

FQ H-266.

by G. Berzsenyi

Find all identities of the form

$$\sum_{k=0}^{n} \binom{n}{k} F_{rk} = s^n F_{tn}$$

with positive integral r, s, and t.

FQ B-384.

by Gregory Wulczyn

Establish the identity

$$F_{n+10}^4 = 55\left(F_{n+8}^4 - F_{n+2}^4\right) - 385\left(F_{n+6}^4 - F_{n+4}^4\right) + F_n^4.$$

FQ B-367.

by Gerald E. Bergum

Let $\alpha = (1 + \sqrt{5})/2$ and suppose $n \ge 1$. Prove that

$$F_{2n} = \lfloor \alpha F_{2n-1} \rfloor$$

and

$$F_{2n+1} = \lfloor \alpha^2 F_{2n-1} \rfloor.$$

FQ B-323.

by J. A. H. Hunter

Prove that

$$F_{n+r}^2 - (-1)^r F_n^2 = F_r F_{2n+r}.$$

Fibonacci numbers: inequalities

FQ B-395.

by V. E. Hoggatt, Jr.

Let $\alpha = (\sqrt{5} - 1)/2$. For n = 1, 2, 3, ..., prove that

$$1/F_{n+2} < \alpha^n < 1/F_{n+1}$$
.

Fibonacci numbers: infinite series

JRM 674.

by Friend H. Kierstead, Jr.

Let $S = 1 + 1 + 1/2 + 1/3 + 1/5 + 1/8 + \cdots + 1/F_n + \cdots$, where F_n is the *n*th Fibonacci number.

Prove that the series converges and find the sum.

Fibonacci numbers: Pell's equation

FQ H-247.

by G. Wulczyn

Show that for each Fibonacci number F_r , there exist an infinite number of positive nonsquare integers, D, such that

$$F_{r+s}^2 - F_r^2 D = 1.$$

Fibonacci numbers: population problems

Problems sorted by topic

Floor function: finite sums

Fibonacci numbers: population problems

FUNCT 1.1.9.

A pair of rabbits is put into an enclosure. They produce one pair of offspring in the first month and they reproduce just once more, producing a second pair of offspring in the second month.

Similarly, each pair of offspring follows exactly the same pattern of reproduction, beginning to reproduce one month after birth. There is no other breeding between other pairs of rabbits.

Show that the number of pairs produced in a certain month is equal to the numbers produced during the preceding two months.

Fibonacci numbers: primes

JRM 738. by Frank Rubin

- (a) Characterize the Fibonacci numbers for which F_n is prime and n is composite.
- (b) The first composite Fibonacci number for which nis prime is $F_{19} = 4181 = 37 \cdot 113$. Find the next.

SSM 3625. by Bob Prielipp

Prove that every positive integer greater than 3 that is both a prime number and a Fibonacci number can be expressed as the sum of two squares of distinct Fibonacci numbers.

Fibonacci numbers: recurrences

JRM 594. by Henry Larson

Let a_1, a_2, a_3, \ldots be an infinite sequence with $a_1 =$ $1, a_5 = 5$, and $a_{12} = 144$, subject to the rule that for every $n, a_n + a_{n+3} = 2a_{n+2}.$

Prove that it is the Fibonacci sequence.

by Jeffrey Shallit FQ B-311.

Let k be a constant and let (a_n) be defined by

$$a_n = a_{n-1} + a_{n-2} + k$$
, $a_0 = 0$, $a_1 = 1$.

Find

$$\lim_{n\to\infty} (a_n/F_n).$$

B-352. by V. E. Hoggatt, Jr. Let S_n be defined by $S_0 = 1$, $S_1 = 2$, and FQ B-352.

$$S_{n+2} = 2S_{n+1} + cS_n.$$

For what value of c does $S_n = 2^n F_{n+1}$ for all nonnegative

Fibonacci numbers: systems of equations

by V. E. Hoggatt, Jr. (a) Prove that the system, S,

$$a+b=F_p,\ b+c=F_q,\ c+a=F_r,$$

cannot be solved in positive integers if F_p , F_q , and F_r are positive Fibonacci numbers.

(b) Likewise, show the same for this next system, T:

$$a + b = F_p, \ b + c = F_q, \ c + d = F_r,$$

$$d + e = F_s, \ e + a = F_t.$$

(c) Show that if F_p is replaced by any positive non-Fibonacci integer, then S and T have solutions. If possible, find necessary and sufficient conditions for the following system U to be solvable in positive integers:

$$a + b = F_p$$
, $b + c = F_q$, $c + d = F_r$, $d + a = F_s$.

Fibonacci numbers: triangular numbers

FQ B-346. by Verner E. Hoggatt, Jr.

Establish a closed form for

$$\sum_{k=1}^{n} F_{2k} T_{n-k} + T_n + 1,$$

where T_k is the triangular number (k+2)(k+1)/2.

Fibonacci numbers: trigonometric functions

FQ B-374.

by Frederick Stern

Show that

$$F_n = \frac{2^{n+2}}{5} \left[\left(\cos\frac{\pi}{5}\right)^n \cdot \sin\frac{\pi}{5} \cdot \sin\frac{3\pi}{5} + \left(\cos\frac{3\pi}{5}\right)^n \cdot \sin\frac{3\pi}{5} \cdot \sin\frac{9\pi}{5} \right]$$

$$F_n = \frac{(-2)^{n+2}}{5} \left[\left(\cos \frac{2\pi}{5}\right)^n \cdot \sin \frac{2\pi}{5} \cdot \sin \frac{6\pi}{5} + \left(\cos \frac{4\pi}{5}\right)^n \cdot \sin \frac{4\pi}{5} \cdot \sin \frac{12\pi}{5} \right].$$

FQ B-375.

by V. E. Hoggatt, Jr.

Express

$$\frac{2^{n+1}}{5} \sum_{k=1}^{4} \left[\left(\cos \frac{k\pi}{5} \right)^n \cdot \sin \frac{k\pi}{5} \cdot \sin \frac{3k\pi}{5} \right]$$

in terms of a Fibonacci number, F_n .

Finite products

SPECT 10.4. PARAB 312.

by B. G. Eke

by R. S. Luthar

Suppose the integers a_1, a_2, \ldots, a_7 are rearranged to give b_1, b_2, \ldots, b_7 . Show that

$$(a_1-b_1)(a_2-b_2)\cdots(a_7-b_7)$$

is even.

Floor function: exponentials

PENT 274.

Show that $|(2+\sqrt{2})^n|$ is odd, where n is any positive

Floor function: finite sums

by Steven Conrad

Prove that for all real x and positive integers k

$$\sum_{i=0}^{k-1} \left\lfloor x + \frac{i}{k} \right\rfloor = \lfloor kx \rfloor.$$

by Richard A. Gibbs

Evaluate $\sum_{k=1}^{m} \left(\left\lfloor \frac{kn}{m} \right\rfloor + \left\lceil \frac{kn}{m} \right\rceil \right)$, where m and n are positive integers.

Floor function: finite sums Problems sorted by topic Floor function: sequences

CRUX 216.

by L. F. Meyers

For which positive integers n is it true that

$$\sum_{k=1}^{(n-1)^2} \lfloor \sqrt[3]{kn} \rfloor = \frac{(n-1)(3n^2 - 7n + 6)}{4}?$$

TYCMJ 69.

by V. N. Murty

Let $N = 2 \cdot 10^k$ in which k is an arbitrary positive integer, and set

$$S = \left\lfloor \frac{N}{6} \right\rfloor + \left\lfloor \frac{N}{8} \right\rfloor - \left\lfloor \frac{N}{24} \right\rfloor.$$

Is S/N independent of k?

MM Q628.

by Alfred Brousseau

Derive a formula for

$$\sum_{k=1}^m \lfloor kn/m \rfloor$$

in terms of m, n, and $d = \gcd(m, n)$.

NAvW 530.

by J. van de Lune

For $n \in \mathbb{N}$ and $\alpha \in \mathbb{R}$, let

$$S_n(\alpha) = \sum_{k=1}^n (-1)^{\lfloor k\alpha \rfloor}.$$

Prove that if α is irrational, then $S_n(\alpha) = 0$ for infinitely many $n \in \mathbb{N}$.

Floor function: identities

AMM E2752.

by Clark Kimberling

Suppose a, b, c, and d are real numbers satisfying

$$|an| + |bn| = |cn| + |dn|$$

for n = 1, 2, ...

Prove or disprove that a - c = d - b is an integer.

FQ B-301.

by Phil Mana

$$A(n) = \frac{n^2 + 6n + 12}{12}$$
 and $B(n) = \frac{n^2 + 7n + 12}{6}$.

Does |A(n)| + |A(n+1)| = |B(n)| for all integers n?

Floor function: inequalities

OMG 14.1.3.

Prove that |5x| + |5y| > |3x+y| + |3y+x| for x, y > 0.

USA 1975/1.

(a) Prove that

$$|5x| + |5y| \ge |3x + y| + |3y + x|,$$

where $x, y \geq 0$.

(b) Using (a) or otherwise, prove that

$$\frac{(5m)!(5n)!}{m!n!(3m+n)!(3n+m)!}$$

is integral for all positive integral m and n.

CRUX 150.

by Kenneth S. Williams

Find a function f(k) such that

$$\left| \left(\frac{3}{2} \right)^k \right| \ge f(k)$$

with f(k) between $\frac{3^k-2^k}{2^k}$ and $\frac{3^k-2^k+2}{2^k-1}$.

Floor function: integrals

MM 994.

by Peter Ørno

For n and m positive integers, evaluate

$$\int_0^1 (-1)^{\lfloor nt \rfloor} (-1)^{\lfloor mt \rfloor} dt.$$

Floor function: iterated functions

AMM E2604.

by E. T. H. Wang

Let $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$, and let $A: \mathbb{N} \to \mathbb{N}$ be defined by $A(n) = \lfloor 2n/3 \rfloor$. For $n \in \mathbb{N}_0$, let $k \in \mathbb{N}_0$ be the smallest integer such that $A^k(n) = 0$, and define f(n) = k. Find a formula, as simple as possible, for the function f.

PME 396.

by David R. Simonds

Let $[m]_n$ denote |m/n|. Prove that

$$[m]_{n^k} = [m]_n^k$$

for all $m, n, k \in \mathbb{N}$, where $[m]_n^k$ means $[[\cdots [m]_n \cdots]_n]_n$ (k sets of brackets).

Floor function: maxima and minima

FQ H-296.*

by C. Kimberling

Suppose x and y are positive real numbers. Find the least positive integer n for which

$$\left| \frac{x}{n+y} \right| = \left\lfloor \frac{x}{n} \right\rfloor.$$

Floor function: primes

AMM 6212.*

by A. A. Mullin

Prove that $|\pi^n|$ is prime for only finitely many positive integers n.

AMM E2766. by I. Borosh and D. Hensley

Let r be a positive rational number but not an integer. Prove that there are infinitely many positive integers n such that |nr| is prime.

FQ B-358.

by Philip Mana

Prove that $\lfloor n^2/3 \rfloor$ is prime for only finitely many n.

Floor function: sequences

AMM E2777.

by I. Borosh, H. Diamond, M. Gbur, and D. Hensley

Let b/a be a reduced fraction greater than 1. Let

r = r(a, b) denote the number of integers relatively prime to b in the sequence

$$\left\lfloor \frac{b}{a} \right\rfloor, \left\lfloor \frac{2b}{a} \right\rfloor, \ldots, \left\lfloor \frac{(a-1)b}{a} \right\rfloor.$$

State and prove a rule for determining r as a function of aand b.

Floor function: sequences Problems sorted by topic Forms of numbers: squares

PUTNAM 1979/A.5.

Denote by S(x) the sequence $\lfloor x \rfloor, \lfloor 2x \rfloor, \lfloor 3x \rfloor, \ldots$. Prove that there are distinct real solutions α and β of the equation

$$x^3 - 10x^2 + 29x - 25 = 0$$

such that infinitely many positive integers appear both in $S(\alpha)$ and in $S(\beta)$.

AMM E2726. by Roy Streit

Define F(a, b) to be the sequence $(c_0, c_1, c_2, ...)$, where $c_n = \lfloor an + b \rfloor$. Which $(a, b) \in \mathbb{R}^2$ have the property that F(x, y) = F(a, b) implies (x, y) = (a, b)?

Floor function: solution of equations

MSJ 479.

Solve the equation

$$\frac{19x+16}{10} = \left\lfloor \frac{4x+7}{3} \right\rfloor.$$

SSM 3687.

by Herta T. Freitag

With n being a positive integer, solve the equation $\lfloor \sqrt{n} \rfloor = \lfloor n/2 \rfloor$.

SSM 3696. by Douglas E. Scott

Let k be a positive integer. For what positive integer values of n does $|\sqrt{n}| = |n/k|$?

Forms of numbers: decimal representations

PENT 310.

by Kenneth M. Wilke

Consider the sequence

 $10001,\ 100010001,\ 1000100010001,\ \dots$

Are there any primes in this sequence?

Forms of numbers: difference of consecutive cubes

FQ H-291. by George Berzsenyi

Prove that there are infinitely many squares that are differences of consecutive cubes.

Forms of numbers: difference of powers

AMM E2797. by Barry J. Powell

Determine whether or not there are infinitely many primes p such that for any pair of coprime odd positive integers x and y with no two of p, x, y, congruent modulo p, the multiplicity of p in the prime factorization of $x^{p-1} - y^{p-1}$ is odd.

Forms of numbers: difference of squares

TYCMJ 37. by Louis Alpert

Prove that the product of any four consecutive integer members of an arithmetic progression may be expressed as the difference of two integer squares.

SSM 3773.

by Fred A. Miller

- Prove:
 (a) The cube of any integer may be expressed as the
- (b) The cube of any odd integer different from 1 and -1 can be expressed in two ways as the difference of two squares of integers;
- (c) The difference of the cubes of any two consecutive integers can be expressed as the difference of two squares of integers.

Forms of numbers: perfect numbers

difference of two squares of integers;

SSM 3588.

by Bob Prielipp

Show that every perfect number can be expressed uniquely as the sum of two or more consecutive positive integers (in increasing order).

Forms of numbers: powers of 2

TYCMJ 97.

by Richard L. Francis

Does there exist a positive integer n for which $2^{n+1}-1$ and $2^{n-1}(2^n-1)$ are both cubes?

Forms of numbers: prime divisors

AMM E2725. by Solomon W. Golomb

Given positive integers a and b, show that there exists a positive integer c such that infinitely many numbers of the form an + b (n a positive integer) have all their prime factors less than or equal to c.

Forms of numbers: product of consecutive integers

MSJ 497.

Prove that for no integer n can 49n+5 be the product of consecutive integers.

SPECT 8.6. by B. G. Eke

Show that the product of four consecutive positive integers cannot be a perfect cube.

CRUX 83. by Léo Sauvé

Show that the product of two, three, or four consecutive positive integers is never a perfect square.

FUNCT 3.1.2.

The product of four consecutive integers is a square. Find the integers. Do the same for the case of four consecutive odd integers.

SSM 3611. by Robert A. Carman ISMJ 13.12.

Show that the product of four consecutive integers increased by 1 is a perfect square.

Forms of numbers: squares

AMM E2606. by R. S. Luthar SSM 3646. by Robert A. Carman

Show that there are infinitely many integers n such that 2n+1 and 3n+1 are both perfect squares, and that such n's must be multiples of 40.

Forms of numbers: squares Problems sorted by topic Forms of numbers: sum of squares

TYCMJ 50.

by Aron Pinker

Let k and r be nonnegative integers with $r \leq 5$. Prove that, for some value of $m \in \{25, 225, 625\}$,

$$500(k+1)(5k+2r) + m$$

is a square.

MM Q643. by Erwin Just

Let m < n be positive integers exactly one of which is even. Prove that the only integral value of x for which $(x^{2n}-1)/(x^{2m}-1)$ is a perfect square is zero.

Forms of numbers: sum of consecutive cubes

by Charles W. Trigg

Show that the sum of the cubes of any k consecutive, positive integers is equal to the difference of two integer squares. Describe the squares.

PARAB 298.

Find all sets of three consecutive natural numbers such that the sum of their cubes is divisible by 18.

Forms of numbers: sum of consecutive integers

SSM 3658. by E. D. Bender

The number 75 is the sum of consecutive, positive integers in five ways: 75 = 37 + 38 = 24 + 25 + 26 =13 + 14 + 15 + 16 + 17 = 10 + 11 + 12 + 13 + 14 + 15 =3+4+5+6+7+8+9+10+11+12. Prove that there are infinitely many positive integers each of which is a sum of consecutive, positive integers in at least three ways.

PARAB 276.

Find all sets of consecutive positive integers whose sum is 1000.

MATYC 102. by Raymond Maruca

Prove that if S_1 and S_2 are each sums of n consecutive positive integers, then S_1 and S_2 are not relatively prime, where n > 2.

CANADA 1976/5.

MATYC 90. by Dan Aulicino

Prove that a positive integer is a sum of at least two consecutive positive integers if and only if it is not a power of two.

SSM 3615. by Herta T. Freitag

If S(m,n) represents the sum of m successive positive integers starting with n, how many primes are there in this sequence?

ISMJ J10.7.

Find five consecutive numbers whose sum is a perfect square less than 100. Can you find four consecutive numbers whose sum is a perfect square?

Forms of numbers: sum of consecutive odd integers

CRUX 112. by H. G. Dworschak OSSMB G75.3-4. **PARAB 405.**

Let k > 1 and n be positive integers. Show that there exist n consecutive odd integers whose sum is n^k .

Forms of numbers: sum of consecutive squares

by Nathaniel Dean

Suppose that x is the largest integer in a set of n+1consecutive positive integers, the sum of the squares of which equals the sum of the squares of the next n consecutive positive integers. Express the value of x in terms of n.

Forms of numbers: sum of cubes

AMM 6232.* by Allan Wm. Johnson, Jr.

Prove or disprove: Given any integer G > 13, there exist distinct integers $x_i > 0$ such that

$$G^3 = \sum_{i=1}^{5} x_i^3.$$

MM Q649. by Norman Schaumberger

Show that every rational number r may be written as the sum of four or fewer rational cubes.

Forms of numbers: sum of divisors

by P. Erdős

Show that every positive integer k, k < n!, is a sum of fewer than n distinct divisors of n!.

Forms of numbers: sum of factorials

Prove that no positive integer can be expressed in two distinct ways as the sum of two factorials, n! + m!, where $n, m \geq 1$.

Forms of numbers: sum of squared reciprocals

JRM 586. by Friend H. Kierstead, Jr.

It is known that every rational number in $[0, \pi^2/6 - 1]$ can be represented as a finite sum of reciprocals of distinct squares. Find such a representation for $\frac{1}{2}$,

- (a) with the least number of terms;
- (b) with the smallest n, where n^2 is the largest denominator.

Forms of numbers: sum of squares

OSSMB G79.2-4.

Show that three times the sum of three squares can be expressed as the sum of four squares.

MM Q634. by M. S. Klamkin CRUX PS1-1.

If a, b, c, and d are positive integers where ab = cd, show that $a^2 + b^2 + c^2 + d^2$ is always composite.

by Erwin Just

If n and k are integers with n > 2 and $k \ge 1$, show that n^k can be expressed as the sum of the squares of exactly npositive integers.

B-328. by Walter Hansell Show that $6(1^2 + 2^2 + 3^2 + \cdots + n^2)$ is always a sum FQ B-328.

Show that
$$6(1^2 + 2^2 + 3^2 + \dots + n^2)$$
 is always a sum

$$m^2 + (m^2 + 1) + (m^2 + 2) + \cdots + (m^2 + r)$$

of consecutive integers, of which the first is a perfect square.

Forms of numbers: sum of two squares

Problems sorted by topic

Fractions

Forms of numbers: sum of two squares

ISMJ 13.15.

Let S be the set of numbers of the form $m^2 + n^2$ where m and n are integers. Let $s, t \in S$.

- (a) Show that $st \in S$.
- (b) If $t \neq 0$, show that s/t is of the form $x^2 + y^2$ where x and y are rational numbers.

JRM 590. by Frank Rubin

Some numbers can be expressed as the sum of the squares of two (not necessarily distinct) positive integers in several ways.

Let A(n) be the smallest number expressible as a sum of squares in greater than or equal to n ways. Thus A(1) = 2; A(2) = 50; A(3) = 325. Extend this list through at least A(10).

MSJ 491.

Let a and b be distinct positive integers. Prove that if $(a^2 + b^2)/2$ is also an integer, then it may be expressed as the sum of the squares of two integers.

MM 1042. by Henry Klostergaard

Prove that any integer that is the sum of the squares of two different, nonzero integers is divisible by a prime that is the sum of the squares of two different, nonzero integers.

Forms of numbers: unit fractions

ISMJ 11.20.

Show that the reciprocal of every integer greater than 1 is the sum of a finite number of terms of the sequence

$$\frac{1}{1\cdot 2}, \frac{1}{2\cdot 3}, \frac{1}{3\cdot 4}, \dots, \frac{1}{j\cdot (j+1)}, \dots$$

TYCMJ 73. by Allan Wm. Johnson, Jr.

Let N be an arbitrary positive integer. Is it always possible to express 1 as a finite sum of reciprocals of distinct positive integers, each of which is a multiple of N?

USA 1978/3.

An integer n will be called good if we can write

$$n = a_1 + a_2 + \dots + a_k,$$

where a_1, a_2, \ldots, a_k are positive integers (not necessarily distinct) satisfying

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_k} = 1.$$

Given the information that the integers 33 through 73 are good, prove that every integer ≥ 33 is good.

JRM 477. by E. J. Barbeau

It can be shown that any set of distinct odd positive integers whose reciprocals add up to one must contain at least nine members. If no restriction is made on the number of members of such a set, find the smallest value of n such that n is the largest denominator.

ISMJ J10.17.

The ancient Egyptians represented $\frac{23}{25}$ as $\frac{1}{2} + \frac{1}{3} + \frac{1}{15} + \frac{1}{50}$. Is this the shortest representation of 23/25 in the form

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$

where a_1, a_2, \ldots, a_n is a strictly increasing sequence of positive integers? Is it unique?

CRUX 346.

by Leroy F. Meyers

It has been conjectured that every rational number of the form 4/n where n is an integer greater than 1 can be expressed as the sum of three or fewer unit fractions not necessarily distinct. As a partial verification of the conjecture show that at least 23/24 of such numbers have the required expansions.

Fractional parts

AMM 6024.

by L. Kuipers

If α is rational and different from 0, and β is irrational, then show that the sequence $(\lfloor n\alpha \rfloor n\beta)$, $n=1,2,\ldots$, is uniformly distributed mod 1.

JRM 681. by Benjamin L. Schwartz

Let $\langle x \rangle$ denote the fractional part of x, that is, $\langle x \rangle = x - |x|.$

- (a) For $1 \le n \le 1000000$, find the minimum and maximum nonzero values of $\langle \sqrt{n} \rangle$.
- (b) For $1 \le n < m \le 1000000$, find the minimum nonzero value of $\langle \sqrt{m} \, \rangle \langle \sqrt{n} \, \rangle$.

JRM C2. by David L. Silverman

Find the smallest integer N>30,739, the fractional parts of whose square root and cube root differ by a positive number less than 0.0000151.

CRUX 360.

by Hippolyte Charles

Let $\langle x \rangle = x - |x|$. Show directly that the set

$$\{\langle \sqrt{n} \rangle \mid n = 1, 2, 3, \ldots \}$$

is dense in the unit interval (0,1).

CRUX 269.

by Kenneth M. Wilke

Let $\langle \sqrt{10} \rangle$ denote the fractional part of $\sqrt{10}$. Prove that for any positive integer n there exists an integer I_n such that

$$\langle \sqrt{10} \rangle^n = \sqrt{I_n + 1} - \sqrt{I_n}.$$

Fractions

PARAB 393.

ISMJ J10.16.

ISMJ J11.9.

Show that, if n is any integer greater than 2, of the fractions

$$\frac{1}{n}, \ \frac{2}{n}, \ \frac{3}{n}, \ldots, \frac{n-1}{n} \ ,$$

an even number are in lowest terms.

Functional equations

Problems sorted by topic

Geometry: rectangular parallelepipeds

Functional equations

AMM S3. FQ H-287.

by Albert A. Mullin by A. Mullin

Prove that any strictly positive real-valued arithmetical function f satisfying the functional equation

$$\frac{f(n+1)}{n+1} + n = \frac{(n+1)f(n)}{f(n+1)}$$

for every integer n exceeding some prescribed positive integer m is necessarily asymptotic to $\pi(n)$, the number of prime numbers not exceeding n.

Gaussian integers

NAvW 457.

by G. J. Rieger

Suppose that a+bi and c+di are Gaussian integers. Give a proof showing that gcd(a+bi,c+di)=1 if and only if $gcd(a^2+b^2,ad-bc,c^2+d^2)=1$.

AMM 6053.

by Raphael Finkelstein

Let a + bi be a Gaussian integer with gcd(a, b) = 1, and let $A + Bi = (a + bi)^p$, where p is an odd prime. Let $C = \max(A, B)$ and $D = \min(A, B)$. Can C/D approach $(1 + \sqrt{5})/2$ arbitrarily closely?

Generating functions

FQ B-407.

by Robert M. Giuli

Given that

$$\frac{1}{1-x-xy} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{n,k} x^n y^k$$

is a double ordinary generating function for $a_{n,k}$, determine $a_{n,k}$.

OSSMB G77.1-6.

In the series

$$-1 + x + 4x^2 + \dots + a_i x^i + \dots$$

every coefficient a_i is obtained from the three preceding coefficients as follows:

$$a_0 = -1, a_1 = 1, a_2 = 4,$$

$$a_{i+3} = 3a_{i+2} - 3a_{i+1} + a_i, i = 0, 1, 2, \dots$$

- (a) Prove that the series represents a rational function with denominator $(1-x)^3$.
- (b) By expanding the function, obtain an explicit function for a_i .

Geometry: cubes

JRM 528.

by David Y. Hsu

- (a) While it is possible to place the integers 0 through 7 at the vertices of a cube in such a way as to make those on each face total the same value, a similar task with 0 through 3 on a tetrahedron is impossible. Can such a labeling be made on the three other regular polyhedra?
- (b) While it is possible, as in part (a), to place the consecutive integers 0 through 7 at the vertices of a cube in such a way as to have those on each face total the same value, it is not possible to perform a similar task with 0 through 3 on a square. Can such an equal-facial-sum assignment be made on cubes in higher dimensional space?

PME 402.

by Charles W. Trigg

The first eight nonzero digits are distributed on the vertices of a cube. Addition of the digits at the extremities of each edge forms twelve edge-sums. Find distributions such that every edge-sum is the same as the sum on the opposite (non-cofacial) edge.

Geometry: cyclic quadrilaterals

AMM E2660.

by E. Ehrhart

Find the number of congruence classes of cyclic quadrilaterals having integral sides and given perimeter n.

AMM E2557.

by R. D. Nelson

Find all cyclic quadrilaterals with integral sides, each of which has its perimeter numerically equal to its area.

Geometry: lattice points

AMM E2570.

by J. G. Sunday

Let (m_1, n_1) , (m_2, n_2) ,..., (m_k, n_k) be distinct lattice points with $n_i \geq 2m_i > 0$ for each i, and suppose that no two of them lie on any line through the origin. Show that $lcm[n_1, n_2, ..., n_k] \geq 2k$. When can equality occur?

PME 456. by P. Erdős

Is there an infinite path on visible lattice points avoiding all (u, v) where u, v are primes?

Geometry: quadrilaterals

OMG 14.2.3.

One is given a quadrilateral with two consecutive right angles. What are the lengths of the sides and diagonals if all are integral length?

Geometry: rectangles

CRUX 435.

by J. A. H. Hunter

In rectangle ABDF, point C is on BD, point E is on DF, AC=125, CD=112, DE=52, and AB, AD, and AF are also integral. Find EF.

PME 455. by Kenneth M. Wilke

The perimeter of a 6×4 rectangle equals the area of a 2×10 rectangle while the area of the 6×4 rectangle equals the perimeter of the 2×10 rectangle also. Show that there are an infinite number of pairs of rectangles related in the same way and find all pairs of such rectangles whose sides are integers.

Geometry: rectangular parallelepipeds

SSM 3719.

by Robert A. Carman

Show that if, in a rectangular solid, the lengths of all face diagonals and the lengths of all edges are positive integers, then the length of at least one edge is divisible by 11. (Under the given hypothesis, several similar conclusions can be established. State and prove as many of these as you can find.)

TYCMJ 86. by Kay Dundas

The volume of an open-top box has been maximized by turning up the sides of an $m \times n$ rectangle after $x \times x$ squares have been cut from each corner. Assume that m and n are integers with $\gcd(m,n)=1$. Prove that there are an infinite number of values of m and n for which x is rational.

Geometry: right triangles Problems sorted by topic Harmonic series

Geometry: right triangles

PARAB 261.

In a right triangle, the shortest side has length a, the longest side has length c, and the other side has length b. If a, b, c are all integers, when does $a^2 = b + c$?

FUNCT 2.2.4.

Let n be an integer greater than 2. Prove that the nth power of the length of the hypotenuse of a right triangle is greater than the sum of the nth powers of the lengths of the other two sides.

Geometry: semicircles

PME 398. by Richard S. Field

A quadrilateral with consecutive sides A, B, C, 2R is inscribed in a semicircle of radius R with one side lying along the diameter. Find solutions in integers $A = B \neq C \neq R$ and $A \neq B \neq C = R$ for the sides of the quadrilateral. Also, find solutions in integers $A \neq B \neq C \neq R$, or prove that none exist.

Greatest common divisor

TYCMJ 34. by Bob Jewett

Let A, B, C, and D be integers for which

$$gcd(A, B, C, D) = 1.$$

Prove or disprove that, for each integer n,

$$\gcd(An + B, Cn + D) = 1$$

if and only if each prime divisor of AD - BC is a divisor of both A and C.

SPECT 7.6. by B. G. Eke

Show that, among any ten consecutive positive integers, at least one is relatively prime to all the others.

SPECT 10.6. by L. Mirsky

For any positive integers a, b, m, n with gcd(a, b) = 1, show that

$$\gcd(a^m - b^m, a^n - b^n) = a^{\gcd(m,n)} - b^{\gcd(m,n)}.$$

CRUX 243. by Hippolyte Charles

- (a) Find necessary and sufficient conditions for the greatest common divisor of two positive integers a and b, a > b, to equal their difference.
- (b) Find all pairs of positive integers whose greatest common divisor equals their difference and whose least common multiple is 180.

FQ B-412. by Phil Mana

Find the greatest common divisor of the integers in the infinite set

$${2^9 - 2, 3^9 - 3, 4^9 - 4, \dots, n^9 - n, \dots}.$$

AMM E2560.

by Richard Madsen Let n_1, \ldots, n_k be natural numbers. Define $d_1 = 1$ and

$$d_i = \frac{\gcd(n_1, \dots, n_{i-1})}{\gcd(n_1, \dots, n_i)}$$

for $i \geq 2$. Show that the $d_1 \cdots d_k$ possible sums

$$\sum_{i=1}^{k} a_i n_i, \qquad a_i \in \{1, 2, \dots, d_i\},\,$$

are all distinct modulo n_1 .

Harmonic series

OSSMB 75-12.

Let S denote the sum of the terms remaining in the harmonic series upon the deletion of the terms which contain an even digit:

$$S = 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{19} + \frac{1}{31} + \dots + \frac{1}{39} + \frac{1}{51} + \dots$$

Prove that S < 7.

JRM 503.

by Les Marvin

From the harmonic series

$$1 + \frac{1}{2} + \frac{1}{3} + \dots,$$

every term in which the denominator is divisible by a prime of two or more digits is deleted. Either sum the series that remains, or prove that it diverges.

PUTNAM 1975/B.6.

Show that if

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n},$$

(a)
$$n(n+1)^{1/n} < n + H_n$$
 for $n > 1$, and
(b) $(n-1)n^{-1/(n-1)} < n - H_n$ for $n > 2$.

(b)
$$(n-1)n^{-1/(n-1)} < n - H_n$$
 for $n > 2$

SPECT 8.5. by Ian D. Macdonald

Let r, s be positive integers with r > s. Prove that

$$\sum_{k=0}^{2s} \frac{1}{r-s+k} > \frac{2s+1}{r} ,$$

and deduce that, if n is an integer greater than 1 and $m = \frac{3^n-1}{2}$, then

$$1 + \frac{1}{2} + \dots + \frac{1}{m} > n.$$

IMO 1978/5.

Let $\{a_k\}$ $(k = 1, 2, 3, \ldots, n, \ldots)$ be a sequence of distinct positive integers. Prove that for all natural numbers

$$\sum_{k=1}^{n} \frac{a_k}{k^2} \ge \sum_{k=1}^{n} \frac{1}{k}.$$

PARAB 434.

Show that if N is taken sufficiently large, the sum

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{N}$$

is larger than 100.

Harmonic series Problems sorted by topic Inequalities: simultaneous inequalities

TYCMJ 44. by Benjamin Burrell Does $\sum_{k=1}^{\infty} \frac{1}{k(1+1/2+\cdots+1/k)}$ converge?

JRM 512.

by Robert Walsh

Let

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
.

For each $k=1,2,3,\ldots$, let $H_n(k)$ be the smallest partial sum that exceeds k and call $E(k)=H_n(k)-k$ the kth excess. The intuitive guess that E(k) is monotonically decreasing is quickly negated, since E(1)=0.5, E(2)=0.0833, E(3)=0.0199, but E(4)=0.0272.

- (a) Find the next counterexample [E(n) < E(n+1)].
- (b) Does the series of excesses converge?

Inequalities: binomial coefficients

AMM 6019.

by R. E. Shafer

Prove for all positive integers n that

$$\frac{2^{2n}}{\sqrt{\pi}(n^2+n/2+1/8)^{1/4}}<\binom{2n}{n}<\frac{2^{2n}}{\sqrt{(n+1/4)\pi}}.$$

Inequalities: congruences

AMM 6200. by Brian Conrey, David Leep, and Gerry Myerson

Define $\left(\frac{a}{b}\right)_r$ to be the least positive integer x such that $bx \equiv a \pmod{r}$. Let k, m, n be positive integers with $\gcd(m,n) = 1, k < n, m < n$. Show that

(a)
$$m < \left(\frac{k}{m}\right)_n + \left(\frac{k}{n}\right)_m \le n;$$

(b)
$$\left(\frac{1}{m}\right)_n + \left(\frac{1}{n}\right)_m = \frac{m+n}{2}$$
 if and only if $n-m=2$.

Thus, for m and n prime, (b) characterizes twin primes.

Inequalities: exponentials

PARAB 269.

(a) Show that for any positive integer n

$$2 < \left(1 + \frac{1}{n}\right)^n < 3.$$

(b) Which is larger, 1000^{1000} or 1001^{999} ?

AMM 6239. by F. David Hammer

Is the following conjecture true? Let p(x,y) be any polynomial in x and y; then $|x^y - y^x| \le |p(x,y)|$ has only finitely many solutions (x,y) in unequal integers not less than ?

Inequalities: fractional parts

AMM 6199. by Hugh L. Montgomery Suppose q > 1 and gcd(a, q) = 1. Set

$$\mathcal{L} = \{ n \mid 1 \le n \le q, \{an/q\} \le (n/q)^2 \},$$

where $\{\theta\} = \theta - \lfloor \theta \rfloor$ is the fractional part of θ . Show that

$$\sum_{n \in \mathcal{L}} n^{-2} \le 9/q.$$

Inequalities: logarithms

MM 986. by

Show that there exists a constant c such that $a+b < n+c\ln n$, for all positive integers $a,\ b,\ {\rm and}\ n$ for which n!/(a!b!) is an integer.

NAvW 463. by P. Erdős

Let $q_r(n)$ be the maximum number of integers less than or equal to n such that the product of at most r of them is never a square.

- (a) Determine $q_1(n)$ and $q_2(n)$;
- (b) Prove that there exists a constant c such that $q_3(n) > cn$ (Conjecture: $q_3(n) \sim c'n$ for some constant c');
- (c) Prove that there are constants c_1 and c_2 such that, for $r \geq 4$,

$$c_1 \frac{n}{\log n} < q_r(n) < c_2 \frac{n}{\log n} .$$

Inequalities: powers

PARAB 433.

Which is larger, 100^{300} or 300!?

Inequalities: powers of 2

CRUX 23. by Léo Sauvé

Determine if there exists a sequence (u_n) of natural numbers such that

$$2^{u_n} < 2n + 1 < 2^{1+u_n}$$

for all positive integers n.

Inequalities: products

PARAB 360.

Suppose a_1, a_2, \ldots, a_k and b_1, b_2, \ldots, b_k are integers such that $a_1 \geq b_1 \geq 1$, $a_2 \geq b_2 \geq 1$, and so on. Let

$$a = a_1 + a_2 + \dots + a_k,$$

and

$$b = b_1 + b_2 + \dots + b_k$$
.

(a) Prove that the product

$$[b_1(a_1 - b_1) + 1] [b_2(a_2 - b_2) + 1]$$

 $\times \cdots \times [b_k(a_k - b_k) + 1]$

is greater than or equal to a - b + 1.

(b) Can you determine exactly under what conditions equality occurs?

Inequalities: radicals

CRUX 84. by Viktors Linis

Prove that for any positive integer n

$$\sqrt[n]{n} < 1 + \sqrt{\frac{2}{n}}.$$

Inequalities: simultaneous inequalities

MSJ 421.

Find the smallest positive integers $x,\,y,\,z,$ and w that satisfy the following simultaneous inequalities:

$$2x < x + y < x + z < 2y < x + w$$

 $< y + z < 2z < y + w < z + w < 2w.$

Inequalities: sum and product

Problems sorted by topic

Least common multiple

Inequalities: sum and product

ISMJ J10.3.

For what integer values of x, y, and z is it true that $x \le x + y + z \le y \le xyz \le z$?

Inequalities: sum of squared differences

IMO 1975/1.

Let x_i and y_i $(i=1,2,\ldots,n)$ be real numbers such that

$$x_1 \ge x_2 \ge \dots \ge x_n$$
 and $y_1 \ge y_2 \ge \dots \ge y_n$.

Let (z_1, z_2, \ldots, z_n) be any permutation of (y_1, y_2, \ldots, y_n) . Prove that

$$\sum_{i=1}^{n} (x_i - y_i)^2 \le \sum_{i=1}^{n} (x_i - z_i)^2.$$

Infinite products

AMM 6012.

by Daniel Shanks

Prove the following infinite products over certain sets of primes p:

$$\prod_{p=14k+1} \left(1 + \frac{3p^2}{(p^2 - 1)^2} \right) = \frac{840}{817} ,$$

$$\prod_{p=18k+1} \left(1 + \frac{3p^2}{(p^2 - 1)^2} \right) = \frac{40}{39} .$$

AMM 6240.

by Mihai Eşanu

Let $a_n \neq 0$, $\lim_{n\to\infty} a_n = 0$. Prove that for every real number x, there exist sequences (λ_n) , (μ_n) of integers such that

$$x = \sum_{n=1}^{\infty} \lambda_n a_n = \prod_{n=1}^{\infty} \mu_n a_n.$$

Irrational numbers

SSM 3627.

by Charles E. Blanchard

Let x = 0.100100001000001000000001...

- (a) Express x as a sigma sum.
- (b) Does $x^n q = 0$ have a solution with q a rational number and n a positive integer?

FQ B-404. by Phil Mana

Let x be a positive irrational number. Let a, b, c, and d be positive integers with a/b < x < c/d. If a/b < r < x, with r rational, implies that the denominator of r exceeds b, we call a/b a good lower approximation for x. If x < r < c/d, with r rational, implies that the denominator of r exceeds d, c/d is a good upper approximation for x. Find all the good lower and upper approximations for $(1+\sqrt{5})/2$.

FQ B-405.

by Phil Mana

Prove that for every positive irrational x, the good lower approximations and good upper approximations for x can be put together to form one sequence $\{p_n/q_n\}$ with

$$p_{n+1}q_n - p_nq_{n+1} = \pm 1$$

for all n. (For definitions see FQ B-404 above.)

Least common multiple

AMM E2686.

by Peter L. Montgomery

Show that

$$(n+1) \lim_{0 \le k \le n} \left[\binom{n}{k} \right] = \operatorname{lcm}[1, 2, \dots, n+1].$$

NAvW 505.

by P. Erdő

Let M(n,k) be the least common multiple of the integers $n+1,n+2,\ldots,n+k$. Prove that, for fixed $k\geq 5$, the equation

$$M(n,k) = M(n+1,k)$$

has a solution n > k. Prove that there exists a number c_r such that, for fixed $k > c_r$, the equation

$$M(n,k) = M(n+r,k)$$

has a solution n>k. Show that both equations have a finite number of solutions. (Conjecture: $M(n,k)\neq M(m,k)$ for $m\geq n+k$.)

NAvW 417.

by P. Erdős

Let L_n be the least common multiple of the integers not exceeding n. Let f(n) be the smallest integer k for which

$$L_n = a_1 a_2 \cdots a_k$$

with

$$a_1 \le a_2 \le \dots \le a_k \le n.$$

Prove that

$$f(n) = \pi(n) - \left(\sqrt{2} - \frac{1}{2}\right)\pi\left(\sqrt{n}\right) + o\left(\pi\left(\sqrt{n}\right)\right),$$

$$n \to \infty.$$

AMM S21.*

by P. Erdős

Let

$$A(n,k) = (n+1)(n+2)\cdots(n+k),$$

$$B(n,k) = \text{lcm}[n+1, n+2, ..., n+k],$$

and

$$\alpha(n,k) = \frac{A(n,k)}{B(n,k)} .$$

- (a) How many distinct values can $\alpha(n, k)$ take for fixed k?
- (b) Do m, n, and k exist with m > n + k 1 and $\alpha(m,k) = \alpha(n,k)$?

CRUX 205.

by Steven R. Conrad

Find the least common multiple of the numbers

$$(29!)(37!)$$
 and $(23!)(41!)$.

ISMJ 11.4.

Prove that if the least common multiple of two numbers is equal to the square of their difference, then their highest common factor is the product of two consecutive integers.

CANADA 1979/3.

Let $a,b,c,d,\stackrel{'}{e}$ be integers such that $1 \leq a < b < c < d < e.$ Prove that

$$\frac{1}{\text{lcm}[a,b]} + \frac{1}{\text{lcm}[b,c]} + \frac{1}{\text{lcm}[c,d]} + \frac{1}{\text{lcm}[d,e]} \le \frac{15}{16}.$$

Legendre symbol Problems sorted by topic Lucas numbers: sets

Legendre symbol

CMB P271. by Kenneth S. Williams

Let p > 3 be an odd prime. Determine $N(\varepsilon_1, \varepsilon_2, \varepsilon_3)$, the number of integers x $(1 \le x \le p - 3)$ such that

$$\left(\frac{x}{p}\right) = \varepsilon_1, \quad \left(\frac{x+1}{p}\right) = \varepsilon_2, \quad \left(\frac{x+2}{p}\right) = \varepsilon_3$$

where (x/p) denotes Legendre's symbol and $\varepsilon_i = \pm 1$.

CRUX 449. by Kenneth S. Williams

Let p be a prime $\equiv 3 \pmod{8}$ and let each of the numbers α , β , and γ have one of the values ± 1 . Prove that the number $N_p(\alpha, \beta, \gamma)$ of consecutive triples x, x+1, x+2 $(x=1,2,\ldots,p-3)$ with

$$\left(\frac{x}{p}\right) = \alpha, \ \left(\frac{x+1}{p}\right) = \beta, \ \left(\frac{x+2}{p}\right) = \gamma$$

where $\left(\frac{x}{p}\right)$ is the Legendre symbol, is the same no matter what values are assigned to α , β , and γ .

AMM E2760. by Kenneth S. Williams

Let p be a prime. If $p \equiv 1 \pmod{4}$ let a be the unique integer such that

$$p=a^2+b^2, \qquad a\equiv -1 \; (\text{mod } 4), \quad b \; \text{even}.$$

Prove that

$$\sum_{i=0}^{p-1} \left(\frac{i^3 + 6i^2 + i}{p} \right) = \begin{cases} 2\left(\frac{2}{p}\right)a, & \text{if } p \equiv 1 \pmod{4}, \\ 0, & \text{if } p \equiv 3 \pmod{4}, \end{cases}$$

where $\left(\frac{n}{p}\right)$ is the Legendre symbol.

Limits

NAvW 493. by P. Erdős

Let f(y) denote the maximal value of $\sum_{a \in S} a^{-1}$, where S denotes a set of relatively prime integers in the interval (y, y^2) . Prove that

$$\lim_{y \to \infty} f(y) = \log 2.$$

AMM E2807. by Solomon W. Golomb

Let a and r be fixed positive constants with r > 1. For each positive integer k, there is a smallest positive integer n = n(k) that satisfies $(n+a)^k \le rn^k$. Show that $\lim n(k)/k$ as $k \to \infty$ exists and evaluate this limit.

CRUX 382. by Kenneth S. Williams

Let a, b, c, and d be positive integers. Evaluate

$$\lim_{n \to \infty} \frac{a(a+b)(a+2b)\cdots(a+(n-1)b)}{c(c+d)(c+2d)\cdots(c+(n-1)d)}$$

Lucas numbers: binomial coefficients

FQ B-327. by George Berzsenyi

Find all integral values of r and s for which the equality

$$\sum_{i=0}^{n} \binom{n}{i} (-1)^i L_{ri} = s^n L_n$$

holds for all positive integers n.

FQ B-414.

Let

n

by Herta T. Freitag

$$S_n = L_{n+5} + \binom{n}{2} L_{n+2} - \sum_{i=2}^n \binom{i}{2} L_i - 11.$$

Determine all $n \in \{2, 3, 4, ...\}$ for which S_n is (a) prime; (b) odd.

Lucas numbers: congruences

FQ B-403. by Gregory Wulczyn

Let $m = 5^n$. Show that $L_{2m} \equiv -2 \pmod{5m^2}$.

FQ H-262. by L. Carlitz

Show that

 $L_{p^2} \equiv 1 \pmod{p^2}$ if and only if $L_p \equiv 1 \pmod{p^2}$.

FQ H-263. by G. Berzsenyi

Prove that $L_{2mn}^2 \equiv 4 \pmod{L_m^2}$ for every $n, m = 1, 2, 3, \dots$

FQ B-314. by Herta T. Freitag

Show that $L_{2p^k} \equiv 3 \pmod{10}$ for all primes $p \geq 5$.

FQ B-366. by Wray G. Brady

Prove that $L_iL_j \equiv L_hL_k \pmod{5}$ when i+j=h+k.

Lucas numbers: cubes

FQ B-342.

by Gregory Wulczyn

Prove that

$$2L_{n-1}^3 + L_n^3 + 6L_{n+1}^2L_{n-1}$$

is a perfect cube for $n = 1, 2, \ldots$

Lucas numbers: digit problems

FQ B-382. by A. G. Shannon

Prove that L_n has the same last digit (i.e., units digit) for all n in the infinite geometric progression $4, 8, 16, 32, \ldots$

Lucas numbers: divisibility

FQ B-317. by Herta T. Freitag

Prove that L_{2n-1} is an exact divisor of $L_{4n-1}-1$ for $n=1,2,\ldots$

Lucas numbers: sequences

FQ B-406. by Wray G. Brady

Let $x_n = 4L_{3n} - L_n^3$. Find the greatest common divisor of the terms of the sequence x_1, x_2, x_3, \ldots .

Lucas numbers: sets

FQ H-304.* by V. E. Hoggatt, Jr.

(a) Show that there is a unique partition of the positive integers \mathbb{N} into two sets, A_1 and A_2 , such that

$$A_1 \cup A_2 = \mathbb{N}, \quad A_1 \cap A_2 = \emptyset,$$

and no two distinct elements from the same set add up to a Lucas number.

(b) Show that every positive integer, M, that is not a Lucas number is the sum of two distinct elements of the same set.

Lucas numbers: sets

Problems sorted by topic

Modular arithmetic: complete residue systems

FQ B-369.

by George Berzsenyi

For all integers $n \geq 0$, prove that the set

$$S_n = \{L_{2n+1}, L_{2n+3}, L_{2n+5}\}$$

has the property that if $x, y \in S_n$ and $x \neq y$, then xy + 5 is a perfect square. For n = 0, verify that there is no integer z that is not in S_n and for which $\{z, L_{2n+1}, L_{2n+3}, L_{2n+5}\}$ has this property.

Matrices

MM 1063.

by D. A. Moran

Let M be an $n \times n$ matrix of integers whose inverse is also a matrix of integers. Prove that the number of odd entries in M is at least n and at most $n^2 - n + 1$, and that these are the best possible bounds.

AMM 6210. by Olga Taussky

Let A be an integral square matrix that is congruent to the unit matrix I modulo an odd prime number. Then A either is equal to I or is of infinite order. Give a proof based on the eigenvalues of A.

Maxima and minima

NAvW 528.

by P. Erdős and J. H. van Lint

For fixed k and $1 \le i \le k$, let R(n, i, k) denote the number of integers $m \in (n, n+k]$ such that gcd(m, n+i) = 1. For $n \geq 0$, we define

$$f_k(n) = \min \left\{ R(n, i, k) \mid 1 \le i \le k \right\}.$$

(a) Determine

$$\liminf_{n\to\infty} f_k(n).$$

(b) Show that there are constants c_1 , c_2 such that, for all k,

$$\frac{c_1 k}{\log \log k} < \max \left\{ f_k(n) \ \middle| \ n \geq 0 \right\} < \frac{c_2 k}{\log \log k} \ .$$

CRUX 25.

UX 25. by Viktors Linis Find the smallest positive value of $36^k - 5^l$ where kand l are positive integers.

CRUX PS8-3.

Let n be a given natural number. Find nonnegative integers k and l so that their sum differs from n by a natural number and so that the following expression is as large as possible:

$$\frac{k}{k+l} + \frac{n-k}{n-(k+l)}.$$

IMO 1976/4.

Determine, with proof, the largest number which is the product of positive integers whose sum is 1976.

by Friend H. Kierstead, Jr.

- (a) How should the number 36 be partitioned into integer summands so that the product of the summands is as large as possible? What is the maximum product?
 - (b) How should 36 be so partitioned into reals?
 - (c) Generalize to other real numbers.

Let $1 \le a_1 < a_2 < \cdots < a_k < n$ and for $1 \le i < j \le k$ let $gcd(a_i, a_i) \neq 1$, $a_i \nmid a_i$. Determine the maximal value of k.

Means

CRUX 77.

by H. G. Dworschak

Let A_n , G_n , and H_n denote the arithmetic, geometric, and harmonic means of the n positive integers n + 1, n + 1 $2, \ldots, n+n$. Evaluate

$$\lim_{n\to\infty}\frac{A_n}{n},\ \lim_{n\to\infty}\frac{G_n}{n},\ \lim_{n\to\infty}\frac{H_n}{n}.$$

SSM 3759.

by Alan Wayne

Find conditions under which the harmonic mean of two distinct, positive integers is an integer.

SSM 3613. by Alan Wayne

Given two different positive integers, prove that the arithmetic mean of their harmonic mean and their geometric mean is less than their arithmetic mean.

Mersenne numbers

SSM 3770.

by Richard L. Francis

Show that between any two Mersenne primes, there is a prime number.

Möbius function

AMM 6108.

by Aleksander Ivić

Find all multiplicative functions f(n) such that

$$f(n^2) = \sum_{d \mid n} \mu^2(d) f\left(\frac{n}{d}\right)$$

and

$$f^2(n) = \sum_{d \mid n} f(d^2).$$

AMM 6235.

by Robert J. Anderson and M. Ram Murty

Let $M(x) = \sum_{n \le x} \mu(n)$, where μ is the Möbius function. It has been conjectured and supported with numerical evidence that $\sum_{n>x} M(n) = O(x \log x)$. Settle this conjec-

AMM 6035. by Arthur Marshall

For every natural number k, let N_k be the kth number in natural order of the sequence consisting solely of primes and the (square-free) products of (two or more) successive primes. Let μ be the Möbius function. Does the series

$$\sum_{k=1}^{\infty} \frac{\mu(N_k)}{N_k} \ln N_k$$

diverge (positively or negatively), converge, or oscillate?

Modular arithmetic: complete residue systems

AMM E2781. by James Propp

 $n \ge 3$, can S+S constitute a complete residue set modulo m? Let S be a set of n integers and m = n(n+1)/2. When Modular arithmetic: coprime integers

Problems sorted by topic

Multinomial coefficients

Modular arithmetic: coprime integers

MM Q653.

by L. Kuipers

Show that if gcd(a, b) = 1, then the set of integers

$$\{ai \mid 0 \le i \le r - 1\} \cup \{bj \mid 1 \le j \le s\},\$$

where r + s = a + b, forms a complete set of residues $\mod (a+b)$.

by M. S. Klamkin and A. Liu AMM S9.

(a) Determine all positive integers n such that

$$gcd(x, n) = 1$$

implies that $x^2 \equiv 1 \pmod{n}$.

(b) Determine all positive integers n such that

$$xy + 1 \equiv 0$$

(mod n) implies that $x + y \equiv 0 \pmod{n}$.

Modular arithmetic: fields

CMB P274.

by Kenneth S. Williams

Let p be a prime congruent to 7 modulo 8, so that there are odd positive integers u and v such that $p = u^2 - 2v^2$. Let $T + U\sqrt{p}$ be the fundamental unit of the real quadratic field $Q(\sqrt{p})$. Prove that

$$T \equiv 0 \pmod{16} \iff u \equiv \pm 1 \pmod{8}$$
.

Modular arithmetic: groups

AMM E2753.

by Haim Rose

Let p be a prime and $g = \{r_1, r_2, \dots, r_k\}$ be any group under multiplication modulo p, where the r_i are integers with $0 < r_i < p$. Let P be the product of all the r_i and Q be the product of those r_i satisfying $0 < r_i < p/2$. Prove:

- (a) $P \equiv -(-1)^k \pmod{p}$.
- (b) If k = 2h, with h an odd integer, then $Q \equiv \pm 1$ \pmod{p} .
- (c) If $1 \le r_i \le (p-1)/2$ for $1 \le i \le k$, then $P \equiv 1$ (mod p). Can this situation actually occur?
- (d) If k = 2h, h > 2, then p^2 is an integral divisor of the numerator of the sum

$$\frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_k}.$$

Modular arithmetic: permutations

by Bob Prielipp and N. J. Kuenzi MM 948.

Let Z_n be the ring of integers modulo n. For what values of n different from 2 do there exist permutations fand g on Z_n such that the pointwise product fg is also a permutation on Z_n ?

Modular arithmetic: powers

CRUX 76.

by H. G. Dworschak

What is the remainder when 23^{23} is divided by 53?

AMM E2673. by Haim Rose

Let p = 6n + 1 be a prime number, n a positive integer. An *n*-residue (mod *p*) is an integer *a* such that 0 < a < pand $a \equiv b^n \pmod{p}$ for some integer b. Prove that the product of all *n*-residues (mod p) that are less than p/2 is congruent to $-1 \pmod{p}$.

AMM E2798.

by Doug Hensley

Prove that there are infinitely many pairs (p,q) of primes such that (q-1)/p is an integer k and 2 is a kth power modulo q.

Modular arithmetic: quadratic congruences

MM 1044.

by J. Metzger

Let p be a prime and k a positive integer. The congruence relation $(x-a)(x-b) \equiv 0 \pmod{p^k}$ has the obvious solutions $x \equiv a \pmod{p^k}$ and $x \equiv b \pmod{p^k}$. When are these the only solutions?

AMM E2704.

by S. Collins,

S. M. Reddy, and N. J. A. Sloane

Find the number of solutions of $x^2 = x$ in the ring of integers modulo n.

Modular arithmetic: reciprocals

OMG 15.3.7.

What is the reciprocal of 3 modulo 5?

Modular arithmetic: solution of equations

AMM E2773.

by Michael W. Ecker

What is the number of solutions in \mathbb{Z}_n of $x^3 = x$?

Modular arithmetic: squares

CMB P254.

by D. Ž. Djoković

Let p be a prime, $p \equiv 1 \pmod{16}$. Let a be an integer such that $2a^2 \equiv 1 \pmod{p}$; it is well known that such integers exist. Prove that 1 + a is a square mod p.

Modular arithmetic: sum of squares

AMM 6148.

by Charles Small

Let s(n) denote the smallest r such that -1 is a sum of r squares (mod n). Show that s(n) equals:

- 1, if $4 \nmid n$ and $p \nmid n$ for all primes $p \equiv 3 \pmod{4}$,
- 2, if $4 \nmid n$ and $p \mid n$ for some prime $p \equiv 3 \pmod{4}$, 3, if $4 \mid n$ but $8 \nmid n$,
- 4, if $8 \mid n$.

Modular arithmetic: systems of congruences

If the remainder when 100 is divided by d is 4 and the remainder when 90 is divided by d is 18, what is d?

Multinomial coefficients

FQ B-307.

by Verner E. Hoggatt, Jr.

$$(1+x+x^2)^n = a_{n,0} + a_{n,1}x + a_{n,2}x^2 + \cdots,$$

(where, of course, $a_{n,k} = 0$ for k > 2n). Also let

$$A_n = \sum_{j=0}^{\infty} a_{n,4j}, \quad B_n = \sum_{j=0}^{\infty} a_{n,4j+1},$$

$$C_n = \sum_{j=0}^{\infty} a_{n,4j+2}, \quad D_n = \sum_{j=0}^{\infty} a_{n,4j+3}.$$

Find the relationship of A_n , B_n , C_n , and D_n to each other.

Multiplication tables

Problems sorted by topic

Number representations: polygonal numbers

Multiplication tables

OMG 15.3.9.

Given the following multiplication table, what is the value of 7/5?

	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

Normal numbers

AMM 6219.

by M. J. Pelling

Construct an uncountable class of real numbers not normal in the scales of 3 and 5.

Number of divisors

MM 983.

by Bernardo Recamán

Are there arbitrarily long sequences of consecutive integers no two of which have the same number of prime divisors?

CMB P264.

by P. Erdős

Determine the limit points of d((n+1)!)/d(n!), where d(m) is the number of divisors of m.

CMB P267.

by P. Erdős

If t_n is an integer and $t_n > n^{1/2}$ show that

$$\lim_{n \to \infty} \frac{d((n+t_n)!)}{d(n!)} = \infty$$

where d(m) denotes the number of divisors of m.

AMM E2780.

by Jim Totten N

Let d(n) be the number of (positive integral) divisors of the natural number n and define S(n) as $\sum d(k)$, with the sum taken over all divisors k of n. Determine the values of n for which n = S(n).

NAvW 499.

by J. van de Lune

For any positive integer n, let $\tau(n)$ denote the number of divisors of n. Since $\tau(n) \leq n$, we have that, for every $n \in \mathbb{N}$, the sequence of τ -iterates of n

$$n, \tau(n), \tau(\tau(n)), \ldots$$

becomes eventually constant. Let D(n) be the number of different integers in this sequence. Prove that

$$D(n) = O\left(\frac{\log n}{\log \log n}\right), \quad n \to \infty.$$

NAvW 483.

by P. Erdős and A. Sárkőzi

Let $1 \leq a_1 < a_2 < \cdots$ be an infinite sequence of integers. Denote by $d_A(n)$ the number of divisors of n among the elements of the sequence. It is easy to see that

$$\sum_{n \le x} d_A(n) = x \sum_{a_i \le x} \frac{1}{a_i} + O(x),$$

i.e., the average value of $d_A(n)$ for $n \leq x$ is

$$\sum_{a_i \le x} \frac{1}{a_i} + O(1).$$

Prove that if $gcd(a_i, a_j) = 1$ for all pairs $(i, j), i \neq j$, then

$$\lim_{x\to\infty} \max_{1\le n\le x} d_A(n) \Big/ \sum_{a_i\le x} \frac{1}{a_i} = \infty.$$

Number representations: Fibonacci numbers

FQ B-416.*

by Gene Jakubowski and V. E. Hoggatt, Jr.

Prove that every positive integer m has at least one representation of the form

$$m = \sum_{j=-N}^{N} \alpha_j F_j,$$

with each α_j in $\{0,1\}$ and $\alpha_j=0$ when j is an integral multiple of 3.

PARAB 438.

Prove that every positive integer can be written as the sum of distinct Fibonacci numbers.

Number representations: fractions

SSM 3636.

by Robert A. Carman

Express $\frac{883}{285444}$ as the sum of two fractions whose denominators are 881 and 324.

Number representations: Lucas numbers

NYSMTJ 90.

by H. O. Eberhart

Let $L_1 = 1$, $L_2 = 2$, and $L_n = L_{n-1} + L_{n-2}$ for n > 2. Show that every positive integer can be expressed as a sum of distinct L_i .

Number representations: perfect numbers

MM 954.

by Richard L. Francis

Show that any even perfect number greater than 28 can be represented as the sum of at least two perfect numbers.

Number representations: polygonal numbers

SSM 3784.

by William J. O'Donnell

Prove that every pentagonal number greater than one can be written as the sum of three triangular numbers, two of which are equal. Triangular numbers, T_n , are positive integers of the form n(n+1)/2 and pentagonal numbers, P_n , are positive integers of the form n(3n-1)/2.

Number representations: ratios Problems sorted by topic

Number representations: ratios

SSM 3574. by Charles W. Trigg

In a paperback book of Mathematical Puzzles and Their Solutions, the following problem appears: "The product 1/3 of 60 is represented in a certain number system by the symbol 15. How would 1/9 of 48 be represented in that number system?" The given solution in its entirety is: "Set up the proportion 60/3:15=48/9:x where x is the solution. We are dealing with a system that represents the quantity 20, which is 1/3 of 60, by the symbol 15, and therefore every other quantity by a number 3/4 as large as the number normally used. Note that only 15 and x are in the new system. The solution is 4." Do you agree?

Number representations: sets

SSM 3723. by Henry Lulli

Given is a set of five distinct digits. Using each digit exactly once and one or more of the three operators, addition, subtraction, and juxtaposition, represent as many of the numbers from 0 to 20 as you can. Find as many five digit sets as you can for which it is possible to represent each of the numbers from 0 to 20.

Number representations: standard symbols

MSJ 454. by Steven R. Conrad

Use four 4's and standard mathematical symbols to represent the numbers 73 and 89.

Number representations: unit fractions

PME 371. by I. P. Scalisi

Write 2/n as the sum of 4 (or 6 or 10 or 14) distinct unit fractions.

Palindromes

CRUX 389. by Kenneth M. Wilke

Prove that all the numbers in the sequence

 $100001, 10000100001, 1000010000100001, \dots$

are composite.

CRUX 31. by Léo Sauvé

A driver cruising on the highway observed that the odometer of his car showed 15,951 miles. He noticed that this number is palindromic: it reads the same backward and forward.

"Curious," the driver said to himself. "It will be a long time before that happens again." But exactly two hours later the odometer showed a new palindromic number. What was the average speed of the car in those two hours?

MATYC 79. by Marvin Johnson

Prove that a palindrome with an even number of digits is divisible by 11.

CRUX 490.* by Michael W. Ecker Are there infinitely many palindromic primes?

MSJ 425. by John Murphy

An "odd-odd number" is a positive integer all of whose digits are odd. Find all positive integers from 1 to 10,000 that are prime palindromes but are not odd-odd.

SSM 3662.

by R. W. Crittenden

Partitions

First-class postage is now 13 cents per ounce. Using postage stamps of various denominations from 1 cent to 9 cents, there are a variety of arrangements you may use to decorate your envelopes. Two of these arrangements are noteworthy: 3 cents + 1 cent + 5 cents + 1 cent + 3 cents and 3 cents + 7 cents + 3 cents since both arrangements depict palindromic prime numbers. List all other palindromic prime representations of 13 cents worth of postage stamps. Use any denominations from 1 cent to 9 cents in any combinations.

CRUX 439. by Ram Rekha Tiwari

The palindromic number 252 has the property that it becomes a perfect square when multiplied (or divided) by 7. Are there any other such even palindromic numbers?

MATYC 94. SSM 3651.

by R. W. Crittenden by R. W. Crittenden

The number 698,896 is the square of 836. Is this the only square palindrome containing an even number of digits?

Pandigital numbers

JRM 571. by Sidney Kravitz

The smallest pandigital number x such that 2x, 4x, and 8x are also pandigital is 0123456789 and the largest is 1234567890. What are the next-smallest and next-largest such numbers?

Partitions

PUTNAM 1979/A.1.

Find the positive integers n and a_1, a_2, \ldots, a_n such that

$$a_1 + a_2 + \dots + a_n = 1979$$

and the product $a_1 a_2 \cdots a_n$ is as large as possible.

CRUX 6. by Léo Sauvé

(a) If n is a given nonnegative integer, how many distinct nonnegative integer solutions are there for each of the following equations?

$$x + y = n$$
, $x + y + z = n$, $x + y + z + t = n$.

(b) Use (a) to conjecture and then prove a formula for the number of distinct nonnegative integer solutions of the equation

$$x_1 + x_2 + \dots + x_r = n.$$

AMM 6137. by I. J. Good

Let p(n) denote the number of partitions of $n, n = 1, 2, \ldots$, and let k denote an integer greater than 3. Prove that $\Delta^k p(n), n = 1, 2, \ldots$, is a sequence of alternating terms.

PENT 272. by Charles Trigg

Let $P_k(n)$ be the number of partitions of n into k unordered parts.

Show that $[P_2(2n)][P_2(2n+1)]$ is a perfect square.

CRUX 13. by Léo Sauvé

Prove the following: For every sum of p positive integers (not necessarily distinct) each less than or equal to q, there exist q positive integers (not necessarily distinct) each less than or equal to p, with the same sum.

Partitions Problems sorted by topic Permutations: fixed points

FQ B-376.

by Frank Kocher and Gary L. Mullen

Find all integers n > 3 such that n - p is an odd prime for all odd primes p less than n.

CRUX 52. by Viktors Linis

The sum of one hundred positive integers, each less than 100, is 200. Show that one can select a partial sum equal to 100.

Pascal's triangle

PME 451.

by Solomon W. Golomb

Find all instances of three consecutive terms in a row of Pascal's triangle in the ratio 1:2:3.

NAvW 432. by H. W. Labbers, Jr.

Let V be the set of odd natural numbers n such that a regular n-gon can be constructed with ruler and compass. The number 1 is to be included in V. Place the first 32 elements of V, each written in binary notation, into a column with the order increasing from top to bottom. Prove that this forms the first 32 rows of Pascal's triangle, reduced modulo 2.

AMM E2775. by Ko-Wei Lih

If we replace even integers by 0 and odd integers by 1 in the ordinary Pascal triangle, we get the following modulo 2 Pascal triangle:

Will 1101 or 1011 occur as a consecutive segment in any row of this modulo 2 Pascal triangle?

Pell numbers

by Verner E. Hoggatt, Jr.

Let P_n denote the Pell sequence defined by $P_1 = 1$, $P_2 = 2$, and

$$P_{n+2} = 2P_{n+1} + P_n \quad (n \ge 1).$$

Consider the array below.

Each row is obtained by taking differences in the row above. Let D_n denote the left diagonal sequence in this array; i.e., $D_1 = D_2 = 1$, $D_3 = D_4 = 2$, $D_5 = D_6 = 4$, $D_7 = D_8 = 2$

(a) Show that $D_{2n-1} = D_{2n} = 2^{n-1}$ $(n \ge 1)$. (b) Show that if F(x) represents the generating function for $\{P_n\}_{n=1}^{\infty}$ and D(x) represents the generating function for $\{D_n\}_{n=1}^{\infty}$, then

$$D(x) = \frac{1}{1+x} F\left(\frac{x}{1+x}\right).$$

Perfect numbers

SSM 3583.

by Richard L. Francis

If x and y are even perfect numbers, show that x + ycannot be perfect.

JRM 791.

by Friend H. Kierstead, Jr.

Prove that every even perfect number except one is the sum of the cubes of the first 2^n odd integers, for some positive integer n.

NYSMTJ 84.

by Norman Gore

Show that every even perfect number is a sum of consecutive integers beginning with unity.

Permutations: derangements

OSSMB 76-5.

The number of "derangements" of n objects is given by the formula

$$n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!} \right]$$

and is often denoted !n and called sub-factorial n. Prove that

$$!n \equiv n! \pmod{n-1}$$
.

NYSMTJ 49.

by Bruce King

A derangement is a permutation of the set

$$S = \{1, 2, 3, \dots, n\}$$

in which no number occupies its "natural" position. Let D_n represent the number of derangements of S. Evaluate

$$\sum_{k=0}^{n} \binom{n}{k} D_k.$$

Use $D_0 = 1$.

FUNCT 3.4.3.

by Andrew Mattingley

Let D_n denote the number of ways of putting n letters into n addressed envelopes so that every letter goes into a wrong envelope. Derive a formula from which D_n may be calculated.

AMM 6234. by Edward T. H. Wang

Let D_n and M_n denote the derangement number and the ménage number, respectively. Prove or disprove that the sequence $\{M_n/D_n\}, n=4,5,6,\ldots$, is monotonically increasing and

$$\lim_{n \to \infty} \left(M_n / D_n \right) = 1/e.$$

Permutations: fixed points

MM 979.

by Mike Chamberlain and John Hawkins

Define P(m,n) to be the number of permutations of the first n natural numbers for which m is the first number whose position is left unchanged. Clearly P(1, n) = (n - 1)!for all n. Show that for m = 1, 2, ..., n - 1,

$$P(m+1, n) = P(m, n) - P(m, n-1).$$

Problems sorted by topic Permutations: inequalities Polygonal numbers: pentagonal numbers

Permutations: inequalities

SSM 3749.

by F. David Hammer

Let a_1, a_2, \ldots, a_n be any nonnegative real numbers, and let b_1, b_2, \ldots, b_n be any permutation of these numbers. Show that for some integer i, $a_i(1-b_i) \leq 1/4$.

Permutations: modular arithmetic

FQ H-309.*

by David Singmaster

Let f be a permutation of $\{1, 2, ..., m-1\}$ such that the terms i + f(i) are all distinct (mod m). Characterize and/or enumerate such f.

MM 1002.

by Bernardo Recamán and John Hoyt

(a) For which values of n is it possible to find a permutation $[a_1, a_2, \ldots, a_n]$ of $[0, 1, \ldots, n-1]$ so that the partial

$$\sum_{i=1}^{k} a_i, \quad k = 1, 2, \dots, n,$$

when reduced modulo n, are also a permutation of the integers [0, 1, ..., n-1]?

(b) Find the number of permutations of $[0, 1, \dots, n-1]$ for $n \leq 12$ which solve part (a). Can a general formula for the number of solutions be found?

Permutations: order

JRM 734.

by Frank Rubin

Let L(n) be the largest possible order for a permutation of n objects.

- (a) Find L(100).
- (b) What is the smallest value of n for which L(n) is a multiple of 100?
- (c) What is the largest value of n for which L(n) is not a multiple of 100?

Permutations: powers

JRM 702.

by Harry L. Nelson

A power chain is a sequence that is a permutation of the first n natural numbers, with n > 1, such that the sum of each pair of adjacent elements is a power. Thus 6-2-7-1-3-5-4 and 8-1-7-2-6-3-5-4are power chains for n = 7 and 8, respectively.

- (a) Find two other power chains.
- (b) Do there exist only four power chains?

Polygonal numbers: consecutive integers

PME 359.

by Gregory Wulczyn

Show that there is an infinitude of pairs of consecutive integers, each pair consisting of a pentagonal number and a hexagonal number.

Polygonal numbers: formulas

SSM 3571.

by Herta Freitag

Note that triangular numbers T_n defined by

$$T_n = n(n+1)/2$$

are such that differences between successive T_i 's start with 2 and increase by 1 each successive pair. That is, $T_2 - T_1 =$ 2, $T_3 - T_2 = 3$, $T_4 - T_3 = 4$, etc. For square numbers S_n , $S_n = n^2$, these differences start with 3, and increase by 2 each time. In the case of the pentagonal numbers R_n defined by $R_n = n(3n-1)/2$, the first such difference is 4. This time the increase in these differences is always 3. Continue to define polygonal numbers in this manner and obtain a general formula applicable to all polygonal numbers, such that the relationships for triangular numbers, square numbers, etc., all become special cases. (Let the first polygonal number always equal 1.)

Polygonal numbers: heptagonal numbers

SSM 3764.

by W. J. O'Donnell and G. E. O'Donnell, Jr.

Heptagonal numbers (denoted HP_n) are positive integers of the form n(5n-3)/2 for $n=1,2,3,\ldots$ Prove that $HP_n \equiv n \pmod{5}$.

Polygonal numbers: hexagonal numbers

SSM 3609.

by William J. O'Donnell

Find the smallest hexagonal number $H_n = 2n^2 - n$, such that both n and H_n are palindromes.

Polygonal numbers: modular arithmetic

FQ B-363.

by Herta T. Freitag

Do the sequences of squares $S_n = n^2$ and of pentagonal numbers $P_n = n(3n-1)/2$ have the symmetry property of reading the same from right to left as they do from left to right for their residues modulo m?

FQ B-362. by Herta T. Freitag

Let n be an integer greater than one, and let R_n be the remainder when the triangular number $T_n = n(n+1)/2$ is divided by m. Show that the sequence R_0, R_1, R_2, \ldots repeats in a block R_0, R_1, \ldots, R_t which reads the same from right to left as it does from left to right.

Polygonal numbers: octagonal numbers

SSM 3586.

by Charles W. Trigg

In the decimal system, show that all octagonal numbers $E_n = n(3n-2)$, having 3 as their units' digit, terminate in 33.

SSM 3745.

by William J. O'Donnell

Prove that if an octagonal number terminates with the digit 8, it terminates in 08. Octagonal numbers are integers of the form n(3n-2).

Polygonal numbers: pentagonal numbers

SSM 3619. by Randall J. Covill Find two pentagonal numbers, P'' and P', such that P'' - P' = 605. A pentagonal number is a number of the form n(3n-1)/2, where n is a positive integer.

Polygonal numbers: pentagonal numbers

Problems sorted by topic

Polynomials: age problems

SSM 3621.

by Robert A. Carman

Find a number that is simultaneously triangular, pentagonal, and hexagonal. A triangular number is of the form n(n+1)/2. A pentagonal number is of the form n(3n-1)/2. A hexagonal number is of the form n(2n-1).

PENT 285.

by Randall J. Covill

If O=n(3n-2) is an octagonal number and P=m(3m-1)/2 is a pentagonal number and m=n, then P and O are said to be complements of each other. It can be easily shown by algebraic manipulation of the formulas for P and O that, to every difference between an octagonal number and its complementary pentagonal number, there corresponds a multiple of 3 that is a unique positive integer. Show that, for at least one multiple of 3 that is a positive integer, there is not any corresponding difference between an octagonal number and its complementary pentagonal number.

AMM E2618.

by Amy J. Phelps

Find all natural numbers that are simultaneously triangular, square, and pentagonal.

SSM 3589.

by Robert A. Carman

Find a pair of pentagonal numbers whose sum and difference are both pentagonal numbers. A pentagonal number is of the form n(3n-1)/2.

SSM 3657.

by William J. O'Donnell

Prove that no pentagonal number ends in 3, 4, 8, or 9. Pentagonal numbers are positive integers of the form $P_n=n(3n-1)/2$.

Polyhedral numbers

SSM 3644.

by William J. O'Donnell

Prove that there are an infinite number of tetrahedral numbers that are also dodecahedral numbers.

SSM 3616.

by Robert A. Carman

Show that every tetrahedral number,

$$(n/6)(n+1)(n+2),$$

is a square only for $n=2^k$, k > 0.

Polynomials: 2 variables

AMM 6028.*

by F. D. Hammer

Is there a polynomial in two variables with integral coefficients that is a bijection from $\mathbb{Z} \times \mathbb{Z}$ onto \mathbb{Z} ? If so, how many such polynomials are there?

Polynomials: 3 variables

FQ B-309

by Phil Mana

Let $z^2 = xz + y$, and let k, m, and n be nonnegative integers. Prove that:

- (a) $z^n = p_n(x, y)z + q_n(x, y)$, where p_n and q_n are polynomials in x and y with integer coefficients and p_n has degree n-1 in x for n>0.
- (b) There are polynomials r, s, and t not all identically zero and with integer coefficients, such that

$$z^{k}r(x,y) + z^{m}s(x,y) + z^{n}t(x,y) = 0.$$

OSSMB 78-10.

Professor Adams wrote on the blackboard a polynomial, f(x) with integer coefficients and said, "Today is my son's birthday and when we substitute x equal to his age, a, then f(a) = a. You will also notice that f(0) = p, a prime number greater than a." How old is Professor Adams' son?

Polynomials: congruences

AMM E2763.

by Lorraine L. Foster

Polynomials: evaluations

Let

$$f(n) = n^3 + 396n^2 - 111n + 38.$$

Prove that the congruence $f(n) \equiv 0 \pmod{3^a}$ has precisely nine solutions (mod 3^a) for all integers $a \geq 5$.

Polynomials: cyclotomic polynomials

NAvW 496.

by L. Kuipers

Let p and q be odd distinct primes. Let n be a positive integer, $n \geq 2$. Let $F_{p^nq}(x)$ be the cyclotomic polynomial of order p^nq . Show that, if

$$F_{p^n q}(x) = \sum_{j=0}^{\phi(p^n q)} c_j x^j,$$

then $c_j = (-1)^{\gamma}$ if $j = \alpha p^2 + \beta pq + \gamma p$ uniquely and $c_j = 0$ otherwise. Here α and β are nonnegative integers and $\gamma = 0$ or 1. Find also the coefficient of the central term.

Polynomials: degree 2

CRUX 72.

by Léo Sauvé

Determine the ordered pair (p,q) such that p and q

- (a) are the roots of the equation $x^2 + px + q = 0$;
- (b) each satisfy the equation $x^2 + px + q = 0$.

MM 923.

by Aron Pinker

If r and s are roots of $x^2 + px + q = 0$, where p and q are integers with $q \mid p^2$, then prove that $(r^n + s^n)/q$ is an integer for $n = 2, 3, \ldots$.

PARAB 426

Find all pairs (m, n) of integers so that $x^2 + mx + n$ and $x^2 + nx + m$ both have integer roots.

Polynomials: degree 5

CRUX 452.

by Kenneth M. Wilke

Precocious Percy wrote a polynomial on the black-board and told his mathematics professor: "This polynomial has my age as one of its zeros." The professor looked at the blackboard and thought to himself: "This polynomial is monic, quintic, has integral coefficients, and is truly an odd function. If I try 10, I get -29670."

Find Percy's age and the polynomial.

Polynomials: evaluations

CRUX 30.

by Léo Sauvé

Let a, b, and c denote three distinct integers and let P denote a polynomial having all integral coefficients. Show that it is impossible that P(a) = b, P(b) = c, and P(c) = a.

Polynomials: inequalities Problems sorted by topic Primes: arithmetic progressions

Polynomials: inequalities

FUNCT 2.5.4.

Let P be a nonconstant polynomial with integer coefficients. If n(P) is the number of distinct integers k such that $[P(k)]^2 = 1$, prove that $n(P) - \deg(P) < 2$.

Polynomials: injections

AMM E2554. by F. David Hammer

Can a polynomial function with integer coefficients be one-to-one when restricted to the rationals, but not one-toone on the reals?

Polynomials: products

AMM S7.

by George E. Andrews and Richard Askey

Let

$$p_n(x) = (x+1)(x+q)\cdots(x+q^{n-1}),$$

 $n = 1, 2, \dots, p_0(x) = 1$. Find the coefficients a(k, m, n)defined by

$$p_n(x) \cdot p_m(x) = \sum_{k=0}^{m+n} a(k, m, n) \cdot p_k(x).$$

CANADA 1977/4. OMG 16.2.4.

Let

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

and

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$$

be two polynomials with integer coefficients. Suppose that all the coefficients of the product $p(x) \cdot q(x)$ are even but not all of them are divisible by 4. Show that one of p(x)and q(x) has all even coefficients and the other has at least one odd coefficient.

Polynomials: roots

FQ B-347.

by Verner E. Hoggatt, Jr.

Let a, b, and c be the roots of $x^3 - x^2 - x - 1 = 0$. Show that

$$\frac{a^n-b^n}{a-b}+\frac{b^n-c^n}{b-c}+\frac{c^n-a^n}{c-a}$$

is an integer for $n = 0, 1, 2, \dots$

Powers: differences

SSM 3737.

by Alan Wayne

Prove each of the following two propositions:

- (a) If two integers differ in absolute value, then the sum or difference of their reciprocals cannot be an integer.
- (b) If r and s are unequal, positive integers, then there is no integer t, other than zero and one, such that $r^t - s^t = t$.

Powers: integers

JRM 378.

M 378. by Diophantus McLeod Prove that if x^{1776} and x^{1975} are both integers, then so also is x.

Powers: powers of 2

ISMJ 13.8.

Show that if n is a positive integer, there are no positive integers a and k with $k \ge 2$ such that $a^k = 2^n - 1$.

CRUX 410.*

by James Gary Propp

Are there only finitely many powers of 2 that have no zeros in their decimal expansions?

AMM E2805. by Wells Johnson

Let the integer $r \geq 0$ be given. Show that each of the numbers $\left(2^{2^r}\right)^n - 1$ has at least 2r + 1 distinct prime factors if $n > 2^r$, with the lone exception r = 1, n = 3, when $4^3 - 1 = 3^2 \cdot 7$.

SPECT 8.1.

Let n be a positive integer. Show that

- (a) if $2^n 1$ is prime, then n is prime,
- (b) if $2^n + 1$ is prime, then n must be a power of 2. Is the converse of (a) true?

Powers: powers of 2 and 3

CRUX 250.*

by Gilbert W. Kessler

(a) Find all pairs (m, n) of positive integers such that

$$|3^m - 2^n| = 1.$$

(b) If $|3^m - 2^n| \neq 1$, is there always a prime between 3^m and 2^n ?

Powers: radicals

TYCMJ 99.

by Alan Wayne

Prove that if a and n are integers, then

$$\left(\frac{1}{2}\right)^n \left[\left(a + \sqrt{a^2 - 4}\right)^n + \left(a - \sqrt{a^2 - 4}\right)^n \right]$$

is an integer.

FUNCT 1.1.10.

If $(1+\sqrt{2})^n = a+b\sqrt{2}$ where a, b, and n are positive integers, then prove that a is the integer closest to $b\sqrt{2}$.

Use a computer to print a, an approximation to $b\sqrt{2}$, and the difference between a and $b\sqrt{2}$ as n increases.

Can you generalize the above problem in any way?

Powers: tetration

JRM 732.

M 732. by Frank Rubin Let a^*n be defined by $a^*n = a^{a^*(n-1)}$, with $a^*1 = a$. Thus $5^*4 = 5^{(5^{(5^5)})}$.

- (a) What is the smallest value of n for which 10^*n exceeds $3^*(n+1)$?
- (b) For each integer k, what is the largest integer k'such that k'^*n never exceeds $k^*(n+1)$?

Primes: arithmetic progressions

ISMJ J10.15.

Prove that if a, b, and c are prime numbers greater than 3 and b-a=c-b, then the number b-a is divisible Primes: complete residue systems

Problems sorted by topic

Primes: greatest prime factor

Primes: complete residue systems

JRM 672. by Bernardo Recamán

The first two primes, 2 and 3, form a complete residue system modulo 2, and the first four primes, but not the first three, form a complete residue system modulo 3. Is there a prime p > 2 such that the first p primes form a complete residue system modulo p?

Primes: congruences

SSM 3634. by Bob Prielipp

If $p \neq 5$ and the numbers p, p+2, p+6, and p+8 are prime, then $p \equiv 11 \pmod{210}$ or $p \equiv 101 \pmod{210}$ or $p \equiv 191 \pmod{210}$.

Primes: digit permutations

AMM E2718. by Gordon D. Prichett

Find all prime numbers p that have the following two properties:

- (i) All numbers obtained from p by permuting its digits are also prime.
- (ii) The sum and the product of the digits of p are also prime.

Primes: digit reversals

JRM 700. by Les Card

The table shown lists some of the facts known about reversible primes. The final column, which represents the number of digits, times the number of reversible primes having that number of digits, divided by the total number of primes having that number of digits, has an apparent minimum of 0.769 at four digits. Is there a proof, or at least a reasonable argument, that this ratio will never be less than 0.769, regardless of the number of digits?

Primes: forms of numbers

SSM 3620. by Bob Prielipp

Euler established that every prime number of the form 6k+1 can be expressed as x^2+3y^2 for some positive integers x and y. Show that a prime number of the form 6k+1 can be expressed as x^2+3y^2 for some positive integers x and y if and only if it can be expressed as a^2+ab+b^2 for some positive integers a and b.

CRUX 302. by Leroy F. Meyers

Show that if p is a prime, then $p^2 + 5$ is not a prime.

PARAB 430

Let p be a prime greater than 3. Show that p^2 is one more than a multiple of 12.

Primes: gaps

JRM 708. by Richard L. Francis

If p is a prime and no other primes occur in the interval [p-2k,p+2k], where k is an integer, then p will be called isolated of order k. For example, 211 is of order 5, since all of the integers except 211 in the interval [201,221] are composite; 211 is not of order 6, however, since 199 is prime.

- (a) What is the maximum number of isolated primes of order 3 that can occur in an interval of 50 consecutive integers?
- (b) Such maximal sets of isolated primes actually occur. What are the elements of any such set?
 - (c) Same questions for an interval of 100.

JRM 654.

by Harry Nelson

What is the most probable difference between consecutive primes?

Primes: generators

CRUX 142.

by André Bourbeau

Find 40 consecutive positive integral values of x for which $f(x) = x^2 + x + 41$ will yield composite values only.

OSSMB 75-4.

Prove that, for all integers x, $x^2 + x + 41$ is never divisible by any natural number between 1 and 41.

DME 303

by Peter A. Lindstrom

Let
$$f(n) = n^2 - n + 41$$
. Find $gcd(f(n), f(n+1))$.

FUNCT 1.5.4.

Check that $x^2 - x + 41$ is a prime for $x = 1, 2, \dots, 40$.

JRM 714. by Harry L. Nelson

It is known that the formula $x^2 + x + 41$ produces primes for the forty integer values $0 \le x \le 39$ and perhaps less well known that $x^2 - 79x + 1601$ produces primes for the eighty values $0 \le x \le 79$. Find a polynomial which produces primes for more than eighty consecutive integer values of x.

MM Q623. by Erwin Just and Norman Schaumberger

It is known that the range of a nonconstant polynomial function with integral coefficients cannot consist wholly of primes. The range of the polynomial 2x - 1, however, contains all the odd primes. Is there a polynomial of degree greater than 1 whose range contains all the primes?

CRUX 154.* by Kenneth S. Williams

Let p_n denote the *n*th prime, so that $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$, etc. Prove or disprove that the following method finds p_{n+1} given p_1, p_2, \ldots, p_n .

In a row list the integers from 1 to p_n-1 . Corresponding to each r $(1 \le r \le p_n-1)$ in this list, say $r=p_1^{a_1}\dots p_{n-1}^{a_{n-1}}$, put $p_2^{a_1}\dots p_n^{a_{n-1}}$ in a second row. Let l be the smallest odd integer not appearing in the second row. The claim is that $l=p_{n+1}$.

FQ B-334. by Philip Mana

Define the sequence $11, 17, 29, 53, \ldots$ by $u_0 = 11$ and $u_{n+1} = 2u_n - 5$ for $n \ge 0$. Are all the terms prime?

Primes: greatest prime factor

AMM 6135.*

by P. Erdős

Denote by P(n) the greatest prime factor of n and set

$$A(x,y) = \prod_{1 \le i \le y - x} (x+i).$$

An integer n is called exceptional if for some $x \leq n \leq y$, $(P(A(x,y)))^2$ divides A(x,y), i.e., the greatest prime factor of A(x,y) occurs with an exponent greater than 1.

Prove that the density of exceptional numbers is 0, and estimate the number E(x) not exceeding x as well as you can.

Primes: pi function Problems sorted by topic Primes: sum of primes

Primes: pi function

OSSMB 76-15.

The positive integer 10 is "balanced" from the point of view that half the positive integers between 1 and it are prime numbers (2,3,5,7) and half are composite numbers (4,6,8,9). Find all such balanced numbers.

AMM 6153. by Bernardo Mz.-Recamán

Let $\pi(x)$ denote the number of primes that do not exceed x. Are there infinitely many integers, such as 2, 4, 6, 8, 30, 33, 100, with the property that $\pi(n)$ divides n?

Primes: polynomials

CRUX 327.

by F. G. B. Maskell

Let p_n be the *n*th prime number. For which n is $p_n^2 + 2$ also prime?

CRUX 97.

by Viktors Linis

Find all primes p such that

$$p^3 + p^2 + 11p + 2$$

is a prime.

PARAB 277.

Prove that 3 is the only prime value of p for which $p^3 + p^2 + 11p + 2$ is prime.

CRUX 296.

by F. G. B. Maskell

Let p be prime. Show that $p^4 - 20p^2 + 4$ is composite.

NYSMTJ 42.

Find all integral values of w for which $w^4 + 4$ is prime.

Primes: powers

AMM 6110.*

by David M. Battany

Let p and q be primes, not both even. Let m, n, and v be integers, $m, n \geq 2, v \geq 0$. Prove that for each value of v, there exists at most one pair of powers (p^m, q^n) such that $p^m - q^n = 2^v$.

Primes: prime chains

AMM 6189.*

by Edward T. H. Wang

Prove or disprove that for each natural number $n \geq 2$, one can arrange the numbers $1, 2, \ldots, n$ in a sequence such that the sum of any two adjacent terms is a prime.

JRM 566. by Henry Larson

- (a) The diagram shows for n=2,3,4, and 5, how the integers from 1 through n can be arranged sequentially in such a way that the sum of every pair of adjacent numbers is prime. Show that "prime chains" exist for n up to 50.
- (b) What is the smallest value of n for which there is no prime chain?

JRM 679.

by Randall J. Covill

A prime chain of order n is a sequence containing each of the integers from 1 to n exactly once, such that the sum of every pair of adjacent integers is a prime. A prime circle is a prime chain in which the sum of the first and last integers is a prime.

Show that any prime circle of order n can be transformed into a prime chain of order n+1.

Primes: products

CRUX 246.

by Kenneth M. Wilke

Let p_i denote the *i*th prime and let P_n denote the product of the first n primes. Prove that the number N defined by

$$N = \frac{P_n}{p_i p_j \cdots p_r} \pm p_i p_j \cdots p_r,$$

where $p_i p_j \cdots p_r$ are any of the first n primes, all different, or unity, is a prime whenever $N < p_{n+1}^2$.

MM 956. by Arthur Marshall

Let Q_m be the product of the first m primes: $Q_2 = 6$, $Q_3 = 30$, etc. Then, for $m \ge 2$, $Q_m/2$ is the product of the first m-1 odd primes. Now $Q_2/2 = 2^1 + 1 = 2^2 - 1$, while $Q_3/2 = 2^4 - 1$. For m > 3, can $Q_m/2 = 2^j \pm 1$ for some integer j?

NAvW 466.

by H. J. J. te Riele

Let P_k $(k \ge 1)$ be the product of the first k primes. Let

$$(a_i^{(k)})_{i=1}^{\phi(P_k)+1}$$

be the increasing sequence of positive integers less than or equal to $P_k + 1$ that are relatively prime to P_k . Let $N_k(d)$ be the number of terms $a_i^{(k)}$ for which

$$a_{i+1}^{(k)} - a_i^{(k)} = d.$$

Determine $N_k(d)$ for $d=2,\ 4,\ {\rm and}\ 6,$ in terms of the first k primes.

Primes: recurrences

AMM E2648.

by R. P. Nederpelt,

R. B. Eggleton, and John H. Loxton (a) Show that there is no infinite sequence of prime

numbers p_1, p_2, \ldots such that $p_{k+1} = 2p_k \pm 1$ for all k. (b) Find a longest finite sequence p_1, p_2, \ldots, p_n of primes such that $p_{k+1} = 2p_k + 1$ for $1 \le k \le n-1$.

Primes: sequences

NAvW 539.

by P. Erdős

Let $\{A_1, A_2, \ldots, A_n\}$ be a partition of the sequence of primes into n subsequences. Let A_{ν}^+ denote the set of integers that can be represented as a sum of distinct elements of A_{ν} . Show that, for at least one value of ν , the set A_{ν}^+ has upper density 1.

Primes: sum of primes

CRUX 249.

by Clayton W. Dodge

The positive integers 1, 4, and 6 are not primes and cannot be written as sums of distinct primes. Prove or disprove that all other positive integers are either prime or can be written as sums of distinct primes.

Primes: sum of primes Problems sorted by topic Pythagorean triples: divisibility

SSM 3624.

by Charles W. Trigg

Among the sums of three consecutive primes greater than 7 in the decimal system, locate

- (a) the smallest nonsquare composite sum;
- (b) the smallest multiple of 5;
- (c) the integer composed of consecutive digits;
- (d) a perfect cube.

Products

MM Q640.

by Peter A. Lindstrom

For positive integers n, find the values of

$$\prod_{i=0}^{n-1} [n(n+1) - i(i+1)]$$

and

$$(n+1)\prod_{i=0}^{n-1}[n(n+2)-i(i+2)].$$

AMM E2510.

by Saul Singer

If n is a natural number, let

$$Q(n) = \prod_{k=1}^{n-1} k^{2k-n-1}.$$

- (a) Show that Q(n) is an integer whenever n is prime.
- (b) For which composite n, if any, is Q(n) an integer?

NAvW 441.

by P. Erdős

Consider k integers a_i with

$$1 < a_1 < a_2 < \cdots < a_k < x$$

 $k > \pi(x)$. Prove that the products

$$\prod_{i=1}^{k} a_i^{\alpha_i}, \qquad 0 \le \alpha_i, \qquad i = 1, 2, \dots, k,$$

cannot all be different.

AMM E2637.

by Armond E. Spencer

If $a_0, a_1, \ldots, a_{n-1}$ are integers, show that

$$\prod_{0 \le i < j \le n-1} \frac{a_i - a_j}{i - j}$$

is also an integer.

CRUX 475.

by Hayo Ahlburg

Consider the products

$$(341 + \frac{2}{3})(205 - \frac{2}{5}) = 341 \cdot 205, \quad (43 + \frac{2}{5})(31 - \frac{2}{7}) = 43 \cdot 31,$$

$$(781 + \frac{1}{2})(521 - \frac{1}{3}) = 781 \cdot 521, \quad (57 + \frac{1}{3})(43 - \frac{1}{4}) = 57 \cdot 43.$$

Find an infinite set of products having the same property.

Pythagorean triples: area

CRUX 223.

by Steven R. Conrad

Find the smallest integer that can represent the area of two noncongruent primitive Pythagorean triangles.

SSM 3569. by Bob Prielipp

Prove that infinitely many primitive Pythagorean triangles have areas which are multiples of 30.

Pythagorean triples: area and perimeter

MM 1088.*

by Alan Wayne

- (a) For each integer $m \ge 1$, how many Pythagorean triangles are there that have an area equal to m times the perimeter? How many of these are primitive?
- (b) Can this result be generalized to all triangles with integer sides and area equal to m times the perimeter?

SSM 3587.

by Alan Wayne

- (a) Show that, for every natural number m, there is at least one primitive Pythagorean triangle in which the area is m times the perimeter.
- (b) Find the number of Pythagorean triangles in which the area is 360 times the perimeter.

Pythagorean triples: arithmetic progressions

SSM 3641. by Irwin K. Feinstein

Prove that the only right triangle with integral sides and with the sides and area in arithmetic progression is the 3:4:5 triangle.

Pythagorean triples: counting problems

MM 1007.*

by Thomas E. Elsner

It is known that given an integer $n, n \ge 0$, there is a positive integer k, such that k occurs in exactly n distinct Pythagorean triples $(x,y,z), \ x < y < z, \ x^2 + y^2 = z^2$. For example, 2^{n+1} occurs in exactly n Pythagorean triples. For each n, determine $m_n = \min\{k \mid k \text{ occurs in exactly } n \text{ Pythagorean triples}\}.$

PENT 298.

by H. Laurence Ridge

It is well known that all primitive Pythagorean triangles (PPT) are generated by the formulae

$$x = 2ab$$
$$y = a^{2} - b^{2}$$
$$z = a^{2} + b^{2}$$

where a and b are positive integers of opposite parity and gcd(a, b) = 1.

Let N be an arbitrary positive integer. What are the necessary and sufficient conditions for N to be a leg (or hypotenuse) of exactly one PPT?

SSM 3638.

by Bob Prielipp

Find infinitely many primitive Pythagorean triples (x,y,z) such that z=x+2.

Pythagorean triples: digit problems

SSM 3752.

by Robert A. Carman

The triple (5,12,13) is a primitive Pythagorean triple. So is the triple (15,112,113) formed by affixing the same digit (in this case, a 1) to each member of the first triple. Prove or disprove that there are no other pairs of primitive Pythagorean triples that are related in this way.

Pythagorean triples: divisibility

CRUX 437.

by Clayton W. Dodge

Find all Pythagorean triangles having the hypotenuse divisible by 7.

Pythagorean triples: divisibility Problems sorted by topic Quadratic fields

SSM 3633.

by Alan Wayne

Show that if a triangle is primitive Pythagorean, then

- (a) the length of one leg is divisible by four,
- (b) the length of one leg is divisible by 3,
- (c) the length of the hypotenuse is either an odd prime of the form 4k + 1 or else a product of such primes.

Pythagorean triples: Fibonacci and Lucas numbers

FQ B-402.

by Gregory Wulczyn

Show that

$$(L_nL_{n+3}, 2L_{n+1}L_{n+2}, 5F_{2n+3})$$

is a Pythagorean triple.

Pythagorean triples: generators

SSM 3771.

by Bob Prielipp

Show how to generate an infinite sequence of primitive Pythagorean triangles each having a hypotenuse of length eight more than the length of one of its legs.

SSM 3742.

by Robert A. Carman

Let P=(x,y,z) be a Pythagorean triple. Find a nontrivial 3×3 matrix T such that PT is always a Pythagorean triple.

Pythagorean triples: hypotenuse

SSM 3592.

by Bob Prielipp

Prove that the hypotenuse of a primitive Pythagorean triangle is of the form 12k + 1 or 12k + 5.

Pythagorean triples: inequalities

MM Q625.

by A. Wilansky

If (a, b, c) is a Pythagorean triple, prove that

$$(a+b)/2 < c/\sqrt{2}$$
.

Pythagorean triples: inradius

TYCMJ 107.

by Abe Simowitz

Prove or disprove that the radius of a circle inscribed in a Pythagorean triangle is an integral multiple of the greatest common divisor of the three sides.

Pythagorean triples: inscribed squares

MM 945.

by Alan Wayne

Find the smallest Pythagorean triangle in which a square with integer sides can be inscribed so that an angle of the square coincides with the right angle of the triangle.

TYCMJ 64.

by Aron Pinker

An integer-sided square is inscribed in an integer-sided right triangle so that a side of the square lies on the hypotenuse. What is the smallest possible length of the side of the square?

Pythagorean triples: odd and even

CRUX 460.

by Clayton W. Dodge

Can two consecutive even integers ever be the sides of a Pythagorean triangle? Show how to find all such Pythagorean triangles.

MATYC 124.

by Charles W. Trigg

Can two consecutive odd integers be the sides of a Pythagorean triangle?

Pythagorean triples: partitions

AMM E2530.*

by F. Loupekine

- (a) Show that it is possible to partition the natural numbers into three classes so that if (x, y, z) is a primitive Pythagorean triple, then x, y, and z are in different classes.
- (b) Can such a partition be made if the above is to hold for all Pythagorean triples, not just primitive ones?

Pythagorean triples: primes

PME 459.

by Bob Prielipp

Prove that every Pythagorean triple (x, y, z) where both x and z are prime numbers and $x \ge 11$ is such that 60 divides y.

SSM 3606.

by Bob Prielipp

Prove that any Pythagorean triple (x, y, z) must be of the form $(p, [p^2 - 1]/2, [p^2 + 1]/2)$, where p is an odd prime number, whenever both x and z are prime numbers.

Pythagorean triples: reciprocals

JRM 795.

by Arnon Boneh

Define the three positive integers a,b, and c as a reciprocal Pythagorean triple if $a^{-2} + b^{-2} = c^{-2}$. For example, 156, 65, 60 is a reciprocal Pythagorean triple.

What is the minimal sum of such a triple?

Pythagorean triples: squares

CRUX 5.

by F. G. B. Maskell

Prove that if (a, b, c) and (a', b', c') are each primitive Pythagorean triples, with a > b > c, and a' > b' > c', then either

$$aa' \pm (bc' - cb')$$
 or $aa' \pm (bb' - cc')$

are perfect squares.

Pythagorean triples: systems of equations

CRUX 86.

by Viktors Linis

Find all rational Pythagorean triples (a, b, c) such that

$$a^2 + b^2 = c^2$$
 and $a + b = c^2$.

Quadratic fields

AMM 6270.*

by Kenneth S. Williams

Let p be a prime congruent to 1 modulo 8. Let ε_{2p} denote the fundamental unit of the real quadratic field $Q\left(\sqrt{2p}\right)$, and let h(-2p) denote the class number of the imaginary quadratic field $Q\left(\sqrt{-2p}\right)$. Prove that if the norm of ε_{2p} is -1, then

$$h(-2p) \equiv 0 \pmod{8}$$
, if $p \equiv 1 \pmod{16}$,

and

$$h(-2p) \equiv 4 \pmod{8}$$
, if $p \equiv 9 \pmod{16}$.

Quadratic reciprocity

Problems sorted by topic

Rectangles

Quadratic reciprocity

CMB P249.

by Kenneth S. Williams

Let p be a prime congruent to 1 (mod 4), so that there are integers a and b such that

$$p = a^2 + b^2$$
, $a \equiv 1 \pmod{4}$, $b \equiv 0 \pmod{2}$.

It is easily proved using the law of quadratic reciprocity for Jacobi symbols that $(\frac{a}{b}) = +1$, so that there exists an integer c such that $a \equiv c^2 \pmod{p}$. Determine $(\frac{c}{p})$.

Quadratic residues

NAvW 413.

by R. Tijdeman

Let p be a prime and denote by f(p) the number of pairs of quadratic residue classes that differ by 1. Compute f(p) for all p.

AMM 6156. by Herbert Knothe

Prove that if a prime p has the form 8n+7, then the number of even quadratic residues greater than p/2 is equal to n+1. If a prime p has the form 8n+3, then the number of even quadratic residues less than p/2 is equal to n. Each residue r is restricted so that $0 \le r < p-1$.

AMM 6058.

by Larry Taylor

(a) If $p \equiv 31$ or 39 (mod 40) is prime, and if

$$a \equiv \frac{\sqrt{5} + 2}{3}$$
 and $b \equiv \frac{\sqrt{5} - 2}{3}$

are of even order (mod p), prove that either a-1, a, and a+1 or b-1, b, and b+1 are quadratic nonresidues of p.

(b) If $p \equiv 19 \pmod{24}$ is prime, and if

$$a \equiv \sqrt{-\frac{1}{3}}$$

is of even order (mod p), prove that a-1, a, and a+1 are quadratic nonresidues of p.

FQ H-277.

by L. Taylor

If $p \equiv +1 \pmod{10}$ is prime and $x \equiv \sqrt{5}$ is of even order \pmod{p} , prove that x-3, x-2, x-1, x, x+1, and x+2 are quadratic nonresidues of p if and only if $p \equiv 39 \pmod{40}$.

FQ H-307.

by Larry Taylor

(a) If $p \equiv \pm 1 \pmod{10}$ is prime, $x \equiv \sqrt{5}$, and $a \equiv \frac{2(x-5)}{x+7} \pmod{p}$, prove that a, a+1, a+2, a+3, and a+4 have the same quadratic character modulo p if and only if $11 or <math>11 \pmod{60}$ and (-2x/p) = 1.

(b) If $p \equiv 1 \pmod{60}$, 2x/p = 1, and $b \equiv \frac{-2(x+5)}{7-x} \pmod{p}$, then b, b+2, b+3, and b+4 have the same quadratic character modulo p. Prove that (11ab/p) = 1.

AMM E2627.

by Ron Evans

Let m and n be fixed integers greater than 1, n odd. Suppose n is a quadratic residue modulo p for all sufficiently large prime numbers $p \equiv -1 \pmod{2^m}$. Show that n is a square.

AMM 6094.

by Francis Cald

A pair of primes, P and Q, is said to be acquainted if the set of quadratic residues and the set of quadratic nonresidues of P are, respectively, a subset of the set of residues and the set of nonresidues of Q. Is there a positive constant C such that infinitely many pairs of acquainted primes exist for which $Q - P \le C$?

Rational expressions

CRUX 319.

by Leigh Janes

Find necessary and sufficient conditions for the positive integer triple (A,B,C) to satisfy

$$\frac{A^3 + B^3}{A^3 + C^3} = \frac{A + B}{A + C}.$$

CRUX 91.

by Léo Sauvé

If a, a', b, and b' are positive integers, show that a sufficient condition for the fraction $\frac{a+a'}{b+b'}$ to be irreducible is

$$|ab' - ba'| = 1.$$

Is this condition also necessary?

CRUX 92. PARAB 429. by Léo Sauvé

PENT 277.

by Kenneth M. Wilke

If a is a positive integer, show that the fraction

$$\frac{a^3 + 2a}{a^4 + 3a^2 + 1}$$

is irreducible.

Rational numbers

JRM 511.

by Steven Cook

$$E_1: 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, \dots$$

 $E_2: 1/2, 1/3, 1/4, 2/3, 1/5, 1/6, 2/5, 3/4, 1/7, 3/5, \dots$

Shown above are two different enumerations of the rationals in (0,1). Enumeration E_1 lists them by increasing denominator, and for equal denominators, by increasing numerator. Enumeration E_2 lists them by increasing sum of numerator and denominator and for equal sums of terms, by increasing numerator. The numbers 1/2, 1/3, and 2/5 have the same relative position in both numerations. A near miss occurs at 5/13. Find the next few occurrences of a match.

PARAB 272.

Let m and n be two relatively prime positive integers. Prove that if the m+n-2 fractions

$$\frac{m+n}{m}$$
, $\frac{2(m+n)}{m}$, $\frac{3(m+n)}{m}$, ..., $\frac{(m-1)(m+n)}{m}$, $\frac{m+n}{n}$, $\frac{2(m+n)}{n}$, $\frac{3(m+n)}{n}$, ..., $\frac{(n-1)(m+n)}{n}$,

are plotted as points on the real number line, exactly one of these fractions lies inside each of the unit intervals

$$(1,2), (2,3), (3,4), \ldots, (m+n-2, m+n-1).$$

Rectangles

MSJ 424.

by John Murphy

Find the dimensions of all integral-sided rectangles each of which has its perimeter numerically equal to its area.

Recurrences: arrays

Problems sorted by topic

Recurrences: generalized Fibonacci sequences

Recurrences: arrays

FO B-353.

by V. E. Hoggatt, Jr.

For k and n integers with $0 \le k \le n$, let A(k,n) be defined by A(0,n) = 1 = A(n,n), A(1,2) = c+2, and

$$A(k+1, n+2) = cA(k, n) + A(k, n+1) + A(k+1, n+1).$$

Also let $S_n = A(0,n) + A(1,n) + \cdots + A(n,n)$. Show that

$$S_{n+2} = 2S_{n+1} + cS_n.$$

SIAM 78-6.

by Peter Shor

A function S(m,n) is defined over the nonnegative integers by

$$S(0,0) = 1,$$

$$S(0, n) = S(m, 0) = 0$$
 for $m, n \ge 1$,

$$S(m+1, n) = mS(m, n) + (m+n)S(m, n-1).$$

Show that

$$\sum_{n=1}^{m} S(m,n) = m^{m}.$$

AMM E2609.

by Glen E. Bredon

Define integers a_{ij} , $i, j \ge 1$ by $a_{i1} = a_{1j} = 1$ and

$$a_{ij} = ia_{i,j-1} + ja_{i-1,j}, \quad i, j \ge 2.$$

Show that

$$\sum_{i=1}^{2n-1} (-1)^{i-1} a_{i,2n-i} \equiv 1 \pmod{3}.$$

AMM 6151.

by Clarence H. Best

A two-dimensional array is defined according to the following rule:

$$\begin{split} a_{1,1} &= 1, \\ a_{i,1} &= a_{1,i-1}, & i > 1, \\ a_{i,j} &= a_{i+1,j-1} + a_{i,j-1}, & j > 1. \end{split}$$

- (a) Prove that $a_{1,j}$ equals the number of distinct partitions of a j-element set.
- (b) Choose an *n*th-order determinant D_n from the upper left corner of the array and prove

$$D_n = \prod_{0 \le i \le n-1} i! .$$

Recurrences: finite sums

SSM 3721

by Herta T. Freitag

- (a) Let a sequence $\{a_i\}$ be defined by $a_0=0$ and $a_n=a_{n-1}+n$ for $n\geq 1$. Express $\sum_{i=0}^n a_i$ as a binomial coefficient.
- (b) Let a sequence $\{b_i\}$ be defined by $b_0 = 1$ and $b_{n+1} = b_n + T_{n+2}$ for $n \ge 1$, where $T_k = k(k+1)/2$ is the kth triangular number. Express $\sum_{i=0}^{n} b_i$ as a binomial coefficient.

Recurrences: floor function

JRM 625.

by David L. Silverman

Define the sequence $A = a_0, a_1, a_2, \ldots$ as follows:

- $(1) \ a_0 = 0, \ a_1 = 1.$
- (2) $a_{n+1} = a_n \left| \frac{1}{2}(a_n + 1) \right|, \ n > 0,$

unless that number has occurred earlier in A, in which case the minus sign is replaced by a plus sign. Thus the first few elements of A are 0, 1, 2, 3, 5, 8, 4, 6, 9, 14, 7, ...

Prove that:

- (a) All elements of A are distinct.
- (b) Every positive integer is an element of A.

FQ B-417.

by R. M. Grassl and P. L. Mana

Let f(n) be defined by f(0) = 1 = f(1), f(2) = 2, f(3) = 3, and

$$f(n) = f(n-4) + [1 + (n/2) + (n^2/12)]$$

for $n \in \{4, 5, 6, \ldots\}$. Do there exist rational numbers a, b, c, and d such that

$$f(n) = [a + bn + cn^2 + dn^3]$$
?

IMO 1976/6.

A sequence $\{u_n\}$ is defined by

$$u_0 = 2$$
, $u_1 = 5/2$, $u_{n+1} = u_n(u_{n-1}^2 - 2) - u_1$

for $n = 1, 2, \ldots$. Prove that for positive integers n,

$$\lfloor u_n \rfloor = 2^{[2^n - (-1)^n]/3}.$$

AMM E2619.

by Thomas C. Brown

Let $a_1 = 1$ and

$$a_{n+1} = a_n + |\sqrt{a_n}|$$

for n = 1, 2, ... Show that a_n is a square if and only if $n = 2^k + k - 2$ for some positive integer k.

Recurrences: fractions

PUTNAM 1979/A.3.

Let x_1, x_2, x_3, \ldots be a sequence of nonzero real numbers satisfying

$$x_n = \frac{x_{n-2}x_{n-1}}{2x_{n-2} - x_{n-1}}$$
 for $n = 3, 4, 5, \dots$.

Establish necessary and sufficient conditions on x_1 and x_2 for x_n to be an integer for infinitely many values of n.

Recurrences: generalized Fibonacci sequences

JRM 537.

by Les Marvin

In the diagram below, each row is a Fibonacci-type sequence in which the (n + 2)-nd term is the sum of the nth term and the (n + 1)-st. The kth row is the sequence that begins with the numbers 1, k. Consider the sequence of elements along the main diagonal, $1, 2, 4, 9, 17, 33, 61, \ldots$ What is the limiting ratio of successive terms?

Recurrences: generalized Fibonacci sequences

Problems sorted by topic

FQ H-302.

by George Berzsenyi

Let c be a constant and define the sequence (a_n) by $a_0 = 1$, $a_1 = 2$, and $a_n = 2a_{n-1} + ca_{n-2}$ for $n \ge 2$. Determine the sequence (b_n) for which

$$a_n = \sum_{k=0}^n \binom{n}{k} b_k.$$

FQ H-248.

by F. D. Parker

Prove that, if a sequence $\{y_0, y_1, \ldots\}$ satisfies the equa-

$$y_n = y_{n-1} + y_{n-2},$$

and if y_0 and y_1 are integers, then there exists an integer Nsuch that

$$y_n^2 - y_{n-1}y_{n+1} = N(-1)^n.$$

Furthermore show that N cannot be of the form 4k+2, and show that 4N terminates in 0, 4, or 6.

FQ H-285.

H-285. by V. E. Hoggatt, Jr. Consider two sequences $\{H_n\}_{n=1}^{\infty}$ and $\{G_n\}_{n=1}^{\infty}$ such that

- (i) $gcd(H_n, H_{n+1}) = 1$,
- (ii) $gcd(G_n, G_{n+1}) = 1$,
- (iii) $H_{n+2} = H_{n+1} + H_n$, $n \ge 1$, and (iv) $H_{n+1} + H_{n-1} = sG_n$, $n \ge 1$, where s is indepen-

Show that s = 1 or s = 5.

FUNCT 1.1.7.

by Christopher Stuart

Show that if U_n is the nth term of any Fibonacci sequence, then

$$U_n^2 - U_{n-2}^2 = U_{n-1}(2U_{n-1} + U_{n-4}).$$

FQ H-305.*

by Martin Schechter

For fixed positive integers, m and n, define a Fibonaccilike sequence as follows:

$$S_1 = 1, \ S_2 = m, \ S_k = \begin{cases} mS_{k-1} + S_{k-2}, & \text{if k is even,} \\ nS_{k-1} + S_{k-2}, & \text{if k is odd.} \end{cases}$$

- (a) Show that if $j \mid k$ then $S_j \mid S_k$ and in fact that $\gcd(S_q, S_r) = S_{\gcd(q,r)}.$
- (b) Show that the sequences such that (m, n) = (1, 4)and (m, n) = (1, 8) have only the element 1 in common.

JRM 766.

by Anthon K. Whitford

Define the generalized Fibonacci sequence by $G_{n+m} =$ $G_n + G_{n+m-1}, G_1 = G_2 = \dots = G_m = 1.$

- (a) Derive an expression for the sum of the first n
- (b) Find the limiting value of G_{n+1}/G_n as n approaches infinity.

by Warren Page

For any two real numbers, a and b, let $f_0 = 0$, $f_1 = a$, $f_2 = b$, and $f_{k+2} = f_{k+1} + f_k$ (k = 1, 2, ..., 8). Prove that

$$\sum_{i=0}^{10} (f_i - r)^2 \ge 1430ab$$

for every real number r.

PENT 311.

by Kenneth M. Wilke

Recurrences: modular arithmetic

A teacher of mathematics propounded the following addition problem: Two numbers are selected at random and each succeeding number equals the sum of the two preceding numbers until a list of ten numbers is reached; e.g., starting with 365 and 142, the list to be added by the class was

$$365+142+507+649+1156+1805+2961+4766+7727+12493.$$

Just as the teacher told the class to add these numbers, young Leslie Morely announced the sum to be 32571. Astounded, the teacher verified the correctness of Leslie's answer with a pocket calculator. Assuming that Leslie performed this feat mentally, how did he do it?

MM 1013.

by James Propp

Let the sequence (S_n) be defined by

$$S_1 = a, \ S_2 = a + b, \ \text{and} \ S_{n+1} = S_n + S_{n-1}, \ \text{for} \ n \ge 2,$$

where a and b are distinct positive integers.

Define a hole of (S_n) as an integer that is not expressible as a sum of distinct terms of (S_n) . Find a general formula for J(k), the number of holes of (S_n) between S_k and S_{k+1} .

FQ B-336.

by Herta T. Freitag

Let $Q_0 = 1 = Q_1$ and $Q_{n+2} = 2Q_{n+1} + Q_n$. Show that $2(Q_{2n}^2 - 1)$ is a perfect square for $n = 1, 2, 3, \ldots$

Recurrences: inequalities

PARAB 317.

Let a and b be positive integers and define $a_1 = \sqrt{ab}$, $b_1 = \frac{1}{2}(a+b), a_2 = \sqrt{a_1b_1}, b_2 = \frac{1}{2}(a_1+b_1), \dots$ Thus, in general, $a_{n+1} = \sqrt{a_nb_n}, b_{n+1} = \frac{1}{2}(a_n+b_n)$. Show that

$$|b_n - a_n| \le \frac{|b - a|}{2^n}$$

for each positive integer n.

Recurrences: limits

FQ B-345.

by Frank Higgins

Let r > s > 0. Find $\lim_{n \to \infty} P_n$, where P_n is defined by $P_1 = r + s$ and $P_{n+1} = r + s - (rs/P_n)$ for $n = 1, 2, 3, \dots$

by Frank Higgins

Let c and d be real numbers. Find $\lim_{n\to\infty} x_n$, where x_n is defined by $x_1 = c$, $x_2 = d$, and

$$x_{n+2} = (x_{n+1} + x_n)/2$$
 for $n = 1, 2, 3, \dots$

Recurrences: modular arithmetic

NAvW 420.

by Hosia W. Labbers, Jr.

For all $n \geq 0$, $m \geq 0$, the Ackermann function A(n, m)is recursively defined by the equations

$$A(0,m) = m+1,$$

$$A(n+1,0) = A(n,1),$$

$$A(n+1, m+1) = A(n, A(n+1, m)).$$

Prove that for each k there exists N(k) such that

$$A(n,n) \equiv A(n',n') \pmod{k}$$

for all $n, n' \geq N(k)$.

Recurrences: multiplicative Fibonacci sequences

Problems sorted by topic

Recurrences: square roots

Recurrences: multiplicative Fibonacci sequences

FQ H-300.*

by James L. Murphy

Given two positive integers A and B relatively prime, form a multiplicative Fibonacci sequence (A_i) with $A_1 = A$, $A_2 = B$, and $A_{i+2} = A_i A_{i+1}$. Now form the sequence of partial sums (S_n) where

$$S_n = \sum_{i=1}^n A_i.$$

 (S_n) is a subsequence of the arithmetic sequence (T_n) where $T_n = A + nB$, and by Dirichlet's theorem we know that infinitely many of the T_n are prime. Does such a sparse subsequence (S_n) of the arithmetic sequence A + nB also contain infinitely many primes?

Recurrences: order 1

AMM S18.

by V. E. Hoggatt, Jr. and P. L. Mana

Let $\{a_n\}$ be defined by $a_1 = 1$, $a_{n+1} = 2 + a_n$ if n is in $A_n = \{a_1, a_2, \dots, a_n\}$, and $a_{n+1} = 1 + a_n$ if n is not in A_n . Also let $a_0 = 0$. For integers k and n with $0 \le k \le n$, let $\begin{bmatrix} n \\ k \end{bmatrix} = a_n - a_k - a_{n-k}$. Prove that:

- (a) There are an infinite number of integers m such that $\begin{bmatrix} m \\ k \end{bmatrix} = 1$ for 0 < k < m.
- (b) There are an infinite number of integers r such that $\begin{bmatrix} r-s+t \\ t \end{bmatrix} = \begin{bmatrix} s \\ t \end{bmatrix}$ for $0 \le t \le s \le r$.

by James Propp

Define $a_0 = 1$ and $a_{n+1} = (a_n - 2)/a_n$ for $n \ge 0$.

- (a) Show that the set $\{a_n \mid n = 0, 1, 2, \ldots\}$ is unbounded.
- (b) There exists a real number α such that $\{n \mid a_n \geq 1\}$ 1} = { $|k\alpha| | k = 0, 1, 2, ...$ }. Find α .
 - (c) Find the closure of the set defined in part (a).

PARAB 388.

Let a list of integers a_1, a_2, \ldots, a_n be defined in succession by

$$a_{n+1} = a_n^2 - a_n + 1$$
 and $a_1 = 2$.

Show that the integers are pairwise relatively prime.

PARAB 389.

Let a list of integers a_1, a_2, \ldots, a_n be defined in succession by

$$a_{n+1} = a_n^2 - a_n + 1$$
 and $a_1 = 2$.

Show that for N sufficiently large,

$$\left| \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - 1 \right| < \frac{1}{10^{10}}$$

for all n > N.

Recurrences: order 2

TYCMJ 56. by Joseph Rothschild

Let the sequence of integers (a_i) , $i = 1, 2, \ldots$, be defined by $a_n = a_{n-1} + 2a_{n-2} + 4n$, with $a_0 = -4$ and $a_1 = -5$. Determine a_n as a function of n.

CANADA 1976/2.

Suppose

$$n(n+1)a_{n+1} = n(n-1)a_n - (n-2)a_{n-1}$$

for every positive integer $n \ge 1$. Given that $a_0 = 1$, $a_1 = 2$,

$$\frac{a_0}{a_1} + \frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{50}}{a_{51}}.$$

H-297. by V. E. Hoggatt, Jr. Let
$$P_0 = P_1 = 1, P_n(\lambda) = P_{n-1}(\lambda) - \lambda P_{n-2}(\lambda)$$
. Show

$$\lim_{n \to \infty} \frac{P_{n-1}(\lambda)}{P_n(\lambda)} = \frac{1 - \sqrt{1 - 4\lambda}}{2\lambda} = \sum_{n=0}^{\infty} C_{n+1} x^n,$$

where C_n is the nth Catalan number. Note that the coefficients of $P_n(\lambda)$ lie along the rising diagonals of Pascal's triangle with alternating signs.

Recurrences: order 3

by R. S. Field

Find the first three terms T_1 , T_2 , and T_3 of a Tribonacci sequence of positive integers for which

$$T_{n+3} = T_{n+2} + T_{n+1} + T_n$$
 and

$$\sum_{n=1}^{\infty} \left(\frac{T_n}{10^n} \right) = \frac{1}{T_4} \ .$$

PME 445. by Richard S. Field

A "Tribonacci-like" integer sequence $\{A_n\}$ is defined in which $m_1A_i + m_2A_{i+1} + m_3A_{i+2} = A_{i+3}$ $(A_0 = A_1 =$ $A_2 = 1$; m_1 , m_2 , m_3 are arbitrary integers).

A particular sequence of this kind is found $(m_1 = -1,$ $m_2 = 5$, $m_3 = 5$) which appears to yield only perfect squares, viz.: 1, 1, 1, 9, 49, 289, 1681,

(a) Prove that, for this particular sequence, the suc-

cessive terms continue to be perfect squares.

(b) Can other values of m_1 , m_2 , and m_3 be found which result in the same property; namely, a sequence of perfect squares?

Recurrences: rates of divergence

DELTA 5.2-1.

by R. C. Buck

Let $x_1 = 1$ and $x_{n+1} = x_n + \left(\frac{1}{x_n}\right)^3$ for $n \ge 1$. Prove $\lim_{n \to \infty} \frac{x_n}{x_n} = \frac{x_n}{x_n} = \frac{x_n}{x_n} \frac{1}{x_n}$ that $\lim_{n\to\infty} x_n = \infty$ and that, in fact, x_n approaches infinity more slowly than $\sqrt[3]{n}$.

Recurrences: square roots

AMM 6196.

by Daniel Shanks

(a) Let $-5 < x_0 < 0$ and let

$$x_n = \begin{cases} \sqrt{x_{n-1} + 5}, & \text{if} & n \not\equiv 0 \pmod{4}, \\ -\sqrt{x_{n-1} + 5}, & \text{if} & n \equiv 0 \pmod{4}. \end{cases}$$

Identify the numbers toward which x_{4m} , x_{4m+1} , x_{4m+2} , and x_{4m+3} converge as $m \to \infty$.

(b) Let p be a prime for which (5|p) = +1, so that $\sqrt{5}$ exists modulo p. Show that

$$(15 \pm 6\sqrt{5} | p) = +1, \text{ or } -1,$$

according as $p \equiv \pm 1 \pmod{15}$ or $p \equiv \pm 4 \pmod{15}$, respec-

(c) What is the relation between problems (a) and

Recurrences: sum of digits Problems sorted by topic Sequences: binary sequences

Recurrences: sum of digits

OSSMB 78-15.

OSSMB 79-17.

by Greg Bennett

From an arbitrary initial positive integer a_0 , a sequence $\{a_n\}$ is constructed by alternately performing the two operations:

- (1) adding the digits,
- (2) raising to the kth power, k an arbitrary but fixed integer $(k \geq 2)$, with either (1) or (2) used first.

Determine whether every such sequence $\{a_n\}$ eventually cycles.

Recurrences: systems of recurrences

JRM 784.

by Friend H. Kierstead, Jr.

Let $p_1 = q_1 = 1$; $p_{n+1} = p_n + q_n$; $q_{n+1} = 2p_n + q_n$. Find a relation between p_n and q_n .

Repdigits

CRUX 339.*

by Steven R. Conrad

Is $\binom{37}{2} = 666$ the only binomial coefficient $\binom{n}{r}$ whose decimal representation consists of a single digit repeated ktimes for k > 3?

by Daniel J. Aulicino MM 1046.

For an arbitrary positive integer k, consider the decimal integer h consisting of m copies of k followed by nzeros. Show that for each positive integer x, there exist an $m, m \neq 0$, and an n such that x divides h.

SSM 3582. by Bob Prielipp

Prove that, given any odd number q not divisible by 5, and any single digit d, $1 \le d \le 9$, there is a number of the form $ddd \dots d$ that is divisible by q.

TYCMJ 93. by Dan Aulicino

Let k be a nonzero decimal digit and n a positive integer. Prove that there exists an integer m such that $n \mid m$ and the decimal representation of m consists of a block of digits, each equal to k followed by a block of zeros.

PARAB 321.

The following factorizations of numbers are true:

$$12 = 3 \cdot 4;$$

$$1122 = 34 \cdot 33;$$

$$111222 = 334 \cdot 333;$$

$$11112222 = 3334 \cdot 3333.$$

Can this scheme be continued indefinitely?

JRM 756. by Daniel P. Shine

- (a) What is the smallest integer composed of 2n identical digits that is the product of two n-digit integers?
- (b) What is the smallest such integer that has an ndigit prime factor?
- (c) Is there any such integer that has two n-digit prime factors?

JRM 676.

by Joseph D. Thompson

Let D_n denote the digit D repeated n times. For example, $8_4 = 8888$. Let $S(n) = D_1 + D_2 + D_3 + \cdots + D_n$.

- (a) Show that there is at least one nonzero value of D such that for infinitely many values of n, S(n) contains at most two different digits.
- (b) Let ϕ represent the final four digits of S(n), and let D = 1. Find all S(n) such that $\phi = n$ and ϕ is divisible

Repunits

PENT 316.

by Randall J. Covill

A Fermat number has the form $2^{2^k} + 1$ for any integer k > 0. Are any Fermat numbers also repunits?

by Michael W. Ecker

Define a permuted repunit pair (PRP) to be a pair of positive integers x, y with x > y such that

- (1) the decimal digits of x and y are permutations of one another; and

(2) x + y = a repunit. If n is the number of ones in a given repunit, for which values of n do corresponding PRP's exist? For a given integer n for which PRP's exist, find the PRP (x,y) such that the product xy is a maximum.

FUNCT 1.4.4.

Prove that no number in the sequence

is the square of an integer.

ISMJ 12.8. ISMJ 14.13.

Let A be the 2n-digit number whose digits are all 1's and let B be the n-digit number whose digits are all 2's. Show that A - B is a perfect square.

Riemann zeta function

NAvW 429.

by H. Jager

Let f(x) denote the number of ordered pairs (m, n) of positive integers satisfying $1 < m < n \le x$, $\gcd(m, n) = 1$, $m^2 \equiv 1 \pmod{n}$. Prove that

$$f(x) = \frac{1}{\zeta(2)} x \log x$$

$$+ \frac{1}{\zeta(2)} \left\{ 2\gamma - 1 - \frac{2\zeta'(2)}{\zeta(2)} - \zeta(2) - \frac{1}{2} \log 2 \right\} x$$

$$+ O(x^{\frac{1}{2}} \log x), \qquad (x \to \infty),$$

where ζ is Riemann's zeta-function and γ is Euler's constant.

Sequences: binary sequences

AMM E2544.

by Harvey Cohn

Consider the sequence of words formed by "Fibonaccian juxtaposition": $w_1 = 0$, $w_2 = 1$, $w_{n+2} = w_n w_{n+1}$ for $n \geq 1$. Form the sequence S by

$$S = w_1 w_2 w_3 w_4 \dots = 010110101101\dots$$

Now let

$$\alpha = \frac{1}{2} \left(\sqrt{5} - 1 \right)$$

and define

$$t_n = |n\alpha| - |(n-1)\alpha|$$

for $n = 1, 2, \ldots$. Form the sequence $T = t_1 t_2 t_3 \ldots$. Show that the sequences S and T are identical. Generalize.

Sequences: binomial coefficients Problems sorted by topic Sequences: finite sequences

Sequences: binomial coefficients

AMM S1. by George Pólya

Consider the composite integer n and the three sequences

$$\binom{n}{1}$$
, $\binom{n}{2}$, ..., $\binom{n}{n-1}$, $\binom{n}{2}$, $\binom{n}{3}$, ..., $\binom{n}{n-1}$,

$${n \brace 2}, {n \brace 3}, \dots, {n \brack n-1},$$

(binomial coefficients, Stirling numbers of the first and second kind, respectively).

Prove that each sequence contains a term not divisible by n.

Sequences: consecutive integers

JRM 502. by Michael Lauder

Let n be any positive integer. Show that there exists a sequence of consecutive positive integers such that for each element k in the sequence, at least n other elements in the sequence share divisors with k that are greater than 1.

Sequences: counts

NAvW 515. by N. G. de Bruijn

Let n_1, n_2, \ldots and m_1, m_2, \ldots be sequences of elements of $\mathbb N.$ Show the existence of

$$a_1, a_2, \ldots \in \mathbb{N}$$

such that, for every $k \in \mathbb{N}$, there are exactly n_k values of $i \in \mathbb{N}$ with $a_i = k$ and exactly m_k values of $j \in \mathbb{N}$ with $\left|a_{j+1} - a_j\right| = k$.

Sequences: density

NAvW 473. by J. van de Lune

For $n \in \mathbb{N}$, let $\beta(n)$ denote the largest square-free divisor of n. Let $\alpha \in (0,1)$. Prove that the natural density of the integers m, having the property $\beta(m) \leq m^{\alpha}$, is zero.

Sequences: digits

PARAB 421.

In the sequence $19796\ldots$, each digit after 6 is the sum of the preceding four digits. Show that $\ldots 1979\ldots$ turns up again in the sequence, but that $\ldots 1980\ldots$ never occurs at all

MSJ 468.

Beginning with 2 and 7, the sequence of numbers 2, 7, 1, 4, 7, 4, 2, 8,... is constructed by multiplying successive pairs of its members and adjoining the result as the next one or two members of the sequence depending on whether the product is a 1- or a 2-digit number. Prove that the digit 6 appears an infinite number of times in the sequence.

Sequences: divisibility

SPECT 9.8.

by B. G. Eke

Let S_1 denote the sequence of positive integers, and define the sequence S_{n+1} in terms of S_n by adding 1 to those integers in S_n that are divisible by n. Determine those integers n with the property that the first n-1 integers in S_n are n.

Sequences: family of sequences

CRUX 355.*

by James Gary Propp

Given a finite sequence $A = (a_n)$ of positive integers, we define the family of sequences

$$A_0 = A;$$
 $A_i = (b_r),$ $i = 1, 2, 3, \dots,$

where b_r is the number of times that the rth lowest term of A_{i-1} occurs in A_{i-1} .

For example, if $A=A_0=(2,4,2,2,4,5)$, then $A_1=(8,2,1),\ A_2=(1,1,1),\ A_3=(3),$ and $A_4=(1)=A_5=A_6=\ldots$

The degree of a sequence A is the smallest i such that $A_i = (1)$.

- (a) Prove that every sequence considered has a degree.
- (b) Find an algorithm that will yield, for all integers $d \geq 2$, a shortest sequence of degree d.
- (c) Let A(d) be the length of the shortest sequence of degree d. Find a formula, recurrence relation, or asymptotic approximation for A(d).
- (d) Given sequences A and B, define C as the concatenation of A and B. Find sharp upper and lower bounds on the degree of C in terms of the degrees of A and B.

MM 1047. by James Propp

Given an infinite sequence $A=(a_n)$ of positive integers, we define a family of sequences A_i , where $A_0=A$ and $A_i=(b_r)$ for $i=1,2,3,\ldots$, where b_r is the number of times that the rth lowest term of A_{i-1} occurs in A_{i-1} . For example, if $A=A_0=\{1,2,2,3,3,3,4,4,4,4,\ldots\}$, then $A_1=\{1,2,3,4,\ldots\}$ and $A_2=\{1,1,1,1,\ldots\}$.

- (a) Find a nondecreasing sequence A such that the sequences A_i are all distinct.
- (b) Let $T=(t_n)$ be the unique nondecreasing sequence containing all the positive integers which has the property that $T_1=T_0$. Define $U=(u_n)$ and $V=(v_n)$ so that for all $n, u_n=t_{2n-1}$ and $v_n=t_{2n}$. Are the sequences U_i and V_i all distinct?

Sequences: finite sequences

OSSMB 75-16.

For certain natural numbers n, it is possible to construct a sequence in which each of the numbers $1, 2, 3, \ldots, n$ occurs twice, the second occurrence of the number r being r places beyond its first occurrence. Prove that such a sequence cannot exist unless n is congruent to 0 or 1 (mod 4).

OSSMB 77-18.

Let $S = \{a_1, a_2, \ldots, a_n\}$ be a sequence of length n where each a_i is chosen from $\{1, 2, 3, \ldots, k\}$, and denote by M_s the maximum term in the sequence.

Show that

$$\sum M_s = k^{n+1} - \{1^n + 2^n + 3^n + \dots + (k-1)^n\}$$

where the sum is taken over all such sequences.

Sequences: finite sequences Problems sorted by topic Sequences: law of formation

ISMJ 14.3.

Suppose $0 < n_1 < n_2 < \cdots < n_{15}$ are integers. Assume that $n_r n_s = n_{rs}$ whenever $r \neq s$ and $rs \leq 15$.

- (a) Show $n_3 < n_2^2$.
- (b) If $n_2 = 2$, show that $n_{15} = 15$.

JRM 619. by Alfred H. Tannenburg

Let points x_1, x_2, \ldots, x_n be selected in [0, 1) in such a way that x_1 and x_2 lie in different halves of the interval; $x_1, x_2,$ and x_3 lie in different thirds; and in general, for $k = 2, 3, \ldots, n$, the points x_1, x_2, \ldots, x_k lie in different kths of [0, 1). It is well known that such a selection is possible only if n < 17.

Selections (0, 1/2), (0, 2/3, 1/3), and (0, 3/4, 1/2, 1/4) satisfy the above conditions for n = 2, 3, 4, respectively, and in each case the sum of the n values is minimal among all such selections. Extend this list of minimal selections up to the case n = 17.

Sequences: floor function

CMB P243. by L Kuipers

Let k be an integer ≥ 1 and let $\beta_1, \beta_2, \ldots, \beta_k$ be k irrational numbers. Let the real numbers $\alpha_1, \alpha_2, \ldots, \alpha_k$ and 1 be linearly independent over the rationals. Prove that the sequence

$$([n\alpha_1]\beta_1 + [n\alpha_2]\beta_2 + \dots + [n\alpha_k]\beta_k), \quad n = 1, 2\dots$$

is uniformly distributed mod 1 if and only if the numbers

$$\alpha_1\beta_2 + \cdots + \alpha_k\beta_k, \alpha_1, \alpha_2, \ldots, \alpha_k, 1$$

are linearly independent over the rationals.

FQ B-349. by Richard M. Grassl

Let a_0, a_1, a_2, \ldots be the sequence $1, 1, 2, 2, 3, 3, \ldots$; i.e., let $a_n = \lfloor 1 + (n/2) \rfloor$. Give a recursion formula for the a_n and express the generating function

$$\sum_{n=0}^{\infty} a_n x^n$$

as a quotient of polynomials.

Sequences: inequalities

JRM 673. by David L. Silverman

Define a cool sequence as a sequence of positive integers for which the sum of the square roots of the first n+1 terms is less than the nth term for every n. An example of a cool sequence is $3^2, 4^2, 5^2, \ldots$. One such sequence a_1, a_2, \ldots will be considered cooler than another such sequence b_1, b_2, \ldots if $a_k < b_k$ for some k and $a_i \le b_i$ for all i.

- (a) Prove that there is a *coolest* sequence, that it begins 6, 10, 14..., and give the first ten terms.
- (b) Can the sequence be represented by a closed formula?

JRM 788. by David L. Silverman

Define a kool sequence as a sequence of positive integers for which the sum of the square roots of the first 2n terms is less than or equal to the nth term for every n. One such sequence a_1, a_2, \ldots will be considered kooler than another such sequence b_1, b_2, \ldots if $a_k < b_k$ for some k and $a_i \leq b_i$ for all i. What is the koolest sequence?

Sequences: law of formation

MATYC 74. by J. Kapoor

Find the *n*th term of $16, 20, 50, 105, 196, 336, \ldots$

OMG 14.1.2.

What is the rule of formation for the sequence: 0, 1, 10, 2, 100, 11, 1000, 3, 20, 101, 10000, 12, 100000, 1001, 110, 4, 1000000, 21, . . . ?

SSM 3787. by Charles W. Trigg

How are the following two sequences related: 1, 2, 9, 64,7776,... and 1, 8, 81, 1024,15625,279936,...?

JRM 790. by Joseph D. Thompson

Given the sequence: 1, 484, 36926037,...

- (a) Find the fourth member of the sequence.
- (b) Find the number of digits in the fifth through ninth members.

CRUX 16. by Léo Sauvé

For $n=1,2,3,\ldots$, the finite sequence S_n is a permutation of $1,2,3,\ldots,n$, formed according to a law to be determined. According to this law, we have

Discover a law of formation which is satisfied by the above sequences, and then give S_{10} .

IMO 1978/3.

It shall be assumed that the set of all positive integers is the union of two disjoint subsets $\{f(1), f(2), \ldots, f(n), \ldots\}$ and $\{g(1), g(2), \ldots, g(n), \ldots\}$, where

$$f(1) < f(2) < \dots < f(n) < \dots,$$

 $g(1) < g(2) < \dots < g(n) < \dots,$

and

$$g(n) = f(f(n)) + 1$$
 for $n = 1, 2, ...$

Determine f(240).

MM 961. by Erwin Schmid

The sequence $11^0, 11^1, 11^2, \ldots$ of integral powers of the number 11, reduced modulo 50 (i.e. $1, 11, 21, 31, 41, 1, \ldots$) is in both geometric and arithmetic progression. What is the law of formation for such sequences?

CRUX 326. by Harry D. Ruderman

If the members of the set

$$S = \{2^x 3^y | x, y \text{ are nonnegative integers}\}$$

are arranged in increasing order we get the sequence beginning

$$1,\ 2,\ 3,\ 4,\ 6,\ 8,\ 9,\ 12,\ 16,\ 18,\dots\ .$$

- (a) What is the position of $2^a 3^b$ in the sequence in terms of a and b?
- (b) What is the nth term of the sequence in terms of n?

Problems sorted by topic Sequences: law of formation Sequences: runs

FQ B-340.

by Philip Mana

Let A and B be the unique nondecreasing sequences of odd integers and even integers, respectively, such that for all $n \geq 1$, the number of integers i satisfying $A_i = 2n - 1$ is A_n and the number of integers i satisfying $B_i = 2n$ is B_n . That is, A = (1, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 9, 9, ...)and B = (2, 2, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, ...). Is the difference $|A_n - B_n|$ bounded?

1937, 1943, 1948, 1954, 1965, 1971, 1976. Sequences: limits

AMM 6271.

by Michael Barr

For positive integers n, define

$$a_n = \frac{n-1}{n} + \frac{(n-1)(n-2)}{n^2} + \dots + \frac{(n-1)!}{n^{n-1}},$$

$$b_n = \frac{n}{n+1} + \frac{n^2}{(n+1)(n+2)} + \dots + \frac{n^{n-1}}{(n+1)\cdots(2n-1)}.$$

Characterize a sequence whose first 28 terms are: 1779,

1784, 1790, 1802, 1813, 1819, 1824, 1830, 1841, 1847, 1852,

1858, 1869, 1875, 1880, 1886, 1897, 1909, 1915, 1920, 1926,

- (a) Prove that for all n > 1, $0 < b_n a_n < 1$.
- (b) Prove or disprove that

$$\lim_{n \to \infty} (b_n - a_n) = \frac{2}{3}$$

and that

$$b_n - a_n - \frac{2}{3} = O\left(\frac{1}{n}\right).$$

Sequences: monotone sequences

CRUX 474.

by James Propp

Suppose (s_n) is a monotone increasing sequence of natural numbers satisfying $s_{s_n} = 3n$ for all n. Determine all possible values of s_{1979} .

NAvW 422.

by J. van de Lune

For $n \in \mathbb{N}$ and $s \in \mathbb{C}$, we define

$$Q_n(s) = \sum_{k=0}^{n-1} (-1)^k (n-k)^s.$$

Prove that if $s \in \mathbb{N}$ and $s \geq 2$, then $n^{-s}Q_n(s)$ is decreasing (in n).

IMO 1975/2. **PARAB 378.**

Let a_1, a_2, a_3, \cdots be an infinite increasing sequence of positive integers. Prove that for every $p \geq 1$ there are infinitely many a_m which can be written in the form

$$a_m = xa_p + ya_q$$

with x and y positive integers and q > p.

MM 1008.

by P. Erdős and Melvyn B. Nathanson

- (a) Let (a_n) be an increasing sequence of positive integers and let $S_n = a_1 + a_2 + \cdots + a_n$. Show that if $\underline{\lim} \ a_n/n > 2 + \sqrt{2}$, then for all n sufficiently large there exists a perfect square between S_n and S_{n+1} .
- (b) If $\underline{\lim} \ a_n/n = 2 + \sqrt{2}$ and the above conclusion fails, then show that $\overline{\lim} a_n/n = \infty$.

MATYC 133. by Ely Stern and Leo Chosid Find the least positive integer N for which

$$F(n) = \frac{n+1}{n} \cdot \frac{1}{\sqrt[n]{n}}$$

is monotone increasing for n > N.

Sequences: partitions

OSSMB 75-18.

MM 1073.*

Divide \mathbb{N} into groups, as follows: (1), (2,3), (4,5,6), $(7, 8, 9, 10), (11, 12, 13, 14, 15), \dots$ Delete every second group. Prove that the sum of the elements in the first kgroups that remain is k^4 .

PENT 318. by Charles W. Trigg

Find the sum of the integers in the nth group, where the groups are given by: (1), (2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12), $(13, 14, 15, 16, 17, 18, 19, 20, 21, 22), \dots$

SSM 3763. by Fred A. Miller

The series of natural numbers is divided into groups 1, (2+3+4), (5+6+7+8+9), (10+11+12+13+14+15+16), \dots Find the sum of the numbers in the nth group.

Sequences: products

FQ H-271.*

by R. Whitney

by James Propp

Define the binary dual, D, as follows:

$$D = \left\{ t = \prod_{i=0}^{n} (a_i + 2i); \quad a_i \in \{0, 1\}; \quad n \ge 0 \right\}.$$

Let \overline{D} denote the complement of D, with respect to the set of positive integers. Form a sequence, $\{S_n\}_{n=1}^{\infty}$, by arranging \overline{D} in increasing order. Find a formula for S_n .

Sequences: rational numbers

OSSMB 78-9.

by David Ash

A sequence $\{c_n\}$ of rational numbers, $c_n = a_n/b_n$, a_n, b_n positive integers with $gcd(a_n, b_n) = 1$ is defined as

- (0) $a_1 = 5$, $a_2 = 7$, $b_1 = 7$, $b_2 = 10$, (1) for all n, $a_n b_{n+1} a_{n+1} b_n = 1$,
- (2) for all $n, a_{n+1} \geq b_n$,
- (3) for all n, a_{n+1} is the smallest positive integer satisfying (1) and (2). Find the limit of the sequence $\{c_n\}$.

Sequences: runs

AMM 6281.*

by Clark Kimberling

If $A = (1, a_1, a_2, ...)$ is a sequence of 1's and 2's, let $B = (1, b_1, b_2, \ldots)$, where b_n is the length of the nth maximal string of identical symbols in A. If B = A, then A must be (1, 2, 2, 1, 1, 2, 1, 2, 2, 1, ...). By a run is meant a finite subsequence of consecutive terms of A. Its complement is obtained by interchanging all 1's and 2's.

Prove or disprove:

- (a) The complement of every run is also a run.
- (b) Every run occurs infinitely many times.

Sequences: subsequences Problems sorted by topic Series: binomial coefficients

Sequences: subsequences

PARAB 331.

Suppose that $n^2 + 1$ boys are lined up shoulder-to-shoulder in a straight line. Show that it is always possible to select n+1 boys to take one pace forward so that, going from left to right, their heights are either increasing or decreasing.

Sequences: sum of consecutive terms

MSJ 483.

A student preparing for a mathematics contest to be held in eleven weeks solves at least one problem every day but no more than twelve a week. Prove that during this preparation there is at least one set of consecutive days in which the student solves exactly twenty problems.

OSSMB 77-10.

Let n_1, n_2, \ldots, n_{30} be a sequence of positive integers whose sum is at most 48. We say that an integer k is attainable if for some i and j $(i \le j)$ we have $n_i + n_{i+1} + \cdots + n_j = k$. Find all k that are attainable for every such sequence of n's.

OSSMB 77-9.

A doctor wishing to test a new medication, gives a testpatient a batch of 48 pills and instructs him to take pills over a 30-day period. The patient is at liberty to distribute the pills however he likes, subject to the condition that he take at least one pill each day. Show that there is some stretch of consecutive days for which the total number of pills taken over those days is 11.

CRUX PS3-2.

Prove that from any row of n integers one may always select a block of adjacent integers whose sum is divisible by n

IMO 1977/2. OSSMB 77-12.

PARAB 365.

In a finite sequence of real numbers the sum of any seven successive terms is negative, and the sum of any eleven successive terms is positive. Determine the maximum number of terms in the sequence.

Sequences: trees

ISMJ 10.12.

An increasing sequence of integers starting with 1 has the property that if n is a member of the sequence then both 3n and n+7 are also members of the sequence. Also, all the members are generated from just the first member 1. Determine all the positive integers that are not members of the sequence.

Series: alternating series

MATYC 84.

by Gary Baldwin

Evaluate

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n (2n+1)} \ .$$

OSSMB G76.3-5.

Find the sum of n terms of the series

$$\frac{5}{1 \cdot 2} - \frac{3}{2 \cdot 3} + \frac{9}{3 \cdot 4} - \frac{7}{4 \cdot 5} + \frac{13}{5 \cdot 6} - \frac{11}{6 \cdot 7} + \frac{17}{7 \cdot 8} - \cdots$$

Series: arithmetic progressions

MATYC 111.

by Gene Zirkel

Let a_i be the *i*th term of an arithmetic progression consisting of n terms, $n \geq 2$. Select an integer k, such that $0 \leq k \leq n-2$. Show that

$$\sum_{i=1}^{n} a_i^k (-1)^{i-1} \binom{n-1}{i-1} = 0.$$

Series: binomial coefficients

CRUX 183.

by Viktors Linis

If x + y = 1, show that

$$x^{m+1} \sum_{j=0}^{n} y^{j} C_{m+j}^{j} + y^{n+1} \sum_{i=0}^{m} x^{i} C_{n+1}^{i} = 1$$

holds for all $m, n = 0, 1, 2, \ldots$

MM 1049.

by Edward T. H. Wang

For nonnegative integers n, let $L_n = {2n \choose n}/(n+1)$. Prove that

$$\sum_{k=0}^{n} L_k L_{n-k} = L_{n+1}.$$

TYCMJ 116

by V. N. Murty

Assume r and n are nonnegative integers and $r \leq n$. Evaluate:

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)^{r}.$$

SSM 3758.

by Herta T. Freitag

Prove that for each positive integer n,

$$\sum_{i=1}^{n} (-1)^{i-1} \binom{n}{i} = \sum_{k=2}^{n} \sum_{i=k}^{n} (-1)^{i} \binom{n}{i}.$$

FQ H-253.

by L. Carlitz

Show that

$$\sum_{t=0}^{k} {\binom{(\beta-1)n+t+1}{t}} \sum_{j=0}^{n-k-1} {\binom{n-k-1}{j}}$$

$$\cdot \sum_{m=0}^{j} (-1)^{n+m+k+1} \binom{j}{m}$$

$$\sum_{r=0}^{m=0} {m=0 \choose n+m-t-j-1} {j \choose n+m-j-t-r-1} {2j+r-1 \choose r}$$

$$= 2^{n-k-1} {\beta n \choose k},$$

where β is an arbitrary complex number and n and k are positive integers, k < n.

AMM E2685.

by Ronald Evans

If p is an odd prime, show that

$$\sum_{i=0}^{p-1} (-1)^i \binom{p^2 - p}{pi} \equiv p^{p-1} \pmod{p^p}.$$

Series: binomial coefficients Problems sorted by topic Series: congruences

AMM E2770.

by Warren Page A

Let n and N be fixed positive integers, and let

$$S_k = \sum_{m=1}^n m^k$$

for $k = 1, 2, \ldots, N$. Prove

(a)
$$\sum_{k=1}^{N} \sum_{k=1}^{h} \binom{h+1}{k} S_k$$
$$= \frac{n+1}{n} \left[(n+1)^{N+1} - (N+1)n - 1 \right]$$

and

(b)
$$\sum_{h=1}^{N} \sum_{k=1}^{h} (-1)^h \binom{h+1}{k} S_k$$

$$= \begin{cases} \frac{n+1}{n+2} \left[(n+1)^{N+2} + 1 \right], & \text{for odd } N, \\ \frac{(n+1)^2}{n+2} \left[(n+1)^N - 1 \right], & \text{for even } N. \end{cases}$$

CRUX 368.

by Lai Lane Luey

Let a and n be integers with $a \ge n \ge 0$, c any constant, and

$$f(a) = \sum_{k=0}^{a} (-1)^k \binom{a}{k} (a-k+c)^n.$$

Prove that f(a) = 0 if a > n and f(n) = n!.

MATYC 76.

by Etta Mae Whitton

Prove that

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (x-k)^n = n!.$$

FQ H-255.

by L. Carlitz

$$\sum_{j=0}^{2m} \sum_{k=0}^{2n} (-1)^{j+k} {2m \choose j} {2n \choose k} {2m+2n \choose j+k} {2m+2n \choose 2m-j+k}$$

$$= (-1)^{m+n} \frac{(3m+3n)!(2m)!(2n)!}{m!n!(m+n)!(2m+n)!(m+2n)!}$$

FQ B-380.

by Dan Zwillinger

Let a, b, and c be nonnegative integers. Prove that

$$\sum_{k=1}^{n} \binom{k+a-1}{a} \binom{n-k+b-c}{b} = \binom{n+a+b-c}{a+b+1}.$$

SIAM 79-13.

by T. V. Narayana and M. Özsoyoglu

Prove that

$$\sum_{i=1}^{n} i \frac{m-n+2i+1}{m+n+1} \binom{m+n+1}{n-i}$$

$$= \sum_{i=1}^{n} i 2^{i-1} \frac{m-n+i}{m+n-i} \binom{m+n-i}{m}$$

where m, n are integral with m > n > 0.

AMM 6123.*

by E. G. Kundert

Let s be any integer ≥ 2 , and let ε_i be the following function defined on the integers:

$$\varepsilon_i = \begin{cases} 0, & \text{if } i \equiv 0, 6\\ 1, & \text{if } i \equiv 2, 4, 7, 11\\ -1, & \text{if } i \equiv 1, 5, 8, 10\\ 2, & \text{if } i \equiv 9\\ -2, & \text{if } i \equiv 3. \end{cases} \pmod{12}$$

Show that the following identity holds:

$$\sum_{1 \le i, j \le s} \varepsilon_i \varepsilon_j \binom{j+1}{s-i} \binom{s+1}{j+1} 3^{\lfloor i/2 \rfloor + \lfloor j/2 \rfloor - \lfloor (s-2)/2 \rfloor} = -3\varepsilon_s.$$

TYCMJ 124.

by Norman Schaumberger

Assume that a > 1 is an integer. Prove that

$$\sum_{n=a}^{\infty} \frac{1}{\binom{n}{a}} = \frac{a}{a-1}.$$

SIAM 75-4.

by P. Barrucand

Let

$$A(n) = \sum_{\substack{i+j+k=n \ i!^2 j!^2 k!^2}} \frac{n!^2}{i!^2 j!^2 k!^2} ,$$

where i, j, and k are nonnegative integers, and let

$$B(n) = \sum_{m=0}^{n} \binom{n}{m}^{3}.$$

Prove that

$$A(n) = \sum_{m=0}^{n} \binom{n}{m} B(m).$$

FQ H-283.

by D. Beverage

For $n \geq 0$, find a closed form for

$$\sum_{k=0}^{\infty} \binom{n+k}{n} \left(\frac{1}{2}\right)^{n+k}, \ n \ge 0.$$

FQ H-272.

by L. Carlitz

Show that

$$\sum_{i=0}^{m} \binom{r}{j} \binom{p}{m-j} \binom{q}{m-j} \binom{p+q-m+j}{j}$$

is symmetric in p, q, and r.

Series: congruences

MM Q656.

by Warren Page

For each positive integer n, show that either

$$\sum_{k=1}^{n} k \equiv 1 \pmod{5} \quad \text{or} \quad \sum_{k=1}^{n} k^2 \equiv 0 \pmod{5}.$$

Series: digit problems Problems sorted by topic Series: floor function

Series: digit problems

AMM E2533.

by E. S. Pondiczery

Calculate to an accuracy of 1% the sum of the reciprocals of the 8,877,690 positive integers whose decimal representations contain no repeated digits.

AMM E2675.

by R. P. Boas

If n is a positive integer, let f(n) be the number of zeros in the decimal representation of n. For which values of a > 0 is the following series convergent:

$$\sum_{n>1} \frac{a^{f(n)}}{n^2} ?$$

CRUX 377.

by Michael W. Ecker

For $n = 1, 2, 3, \ldots$, let f(n) be the number of zeros in the decimal representation of n, and let

$$F(p) = \sum_{n=1}^{\infty} \frac{f(n)}{n^p}.$$

Find the real values of p for which the series F(p) converges.

AMM E2529.

by S. W. Golomb

Let $N_k(n)$ denote the number of "digits" in the base k representation of the natural number n. Show that if

$$S_k = \sum_{n=1}^{\infty} \frac{1}{n \left(N_k(n) \right)^2},$$

then $S_k \sim A \log k$ for some constant A. Find A and estimate the error term.

Series: divisibility

TYCMJ 67.

by Richard Johnsonbaugh

Let x and a_i (i = 0, 1, 2, ..., k) be arbitrary integers. Prove or disprove that $\sum_{i=0}^{k} a_i(x^2 + 1)^{3i}$ is divisible by $x^2 \pm x + 1$ if and only if $\sum_{i=0}^{k} (-1)^i a_i$ is divisible by $x^2 \pm x + 1$.

Series: factorials

TYCMJ 66.

by B. Bernstein

Find a closed form expression for

$$\sum_{n=1}^{\infty} \frac{n^3}{(2n+1)!}.$$

SSM 3762.

by Fred A. Miller

Find the sum of the following infinite series:

$$\frac{2}{1!} + \frac{3}{2!} + \frac{6}{3!} + \frac{11}{4!} + \frac{18}{5!} + \cdots$$

SSM 3785.

by William T. Bailey

Find the sum of the following infinite series:

$$1 + \frac{1^2}{2!} + \frac{2^2}{3!} + \frac{3^2}{4!} + \frac{4^2}{5!} + \cdots$$

MM 985.

Let

by Jeffrey Shallit

$$Q_k = \frac{1}{(k+2)!} + \frac{2}{(k+3)!} + \frac{3}{(k+4)!} + \cdots$$

Show that Q_k is transcendental for all positive integers k, but rational for k = 0.

OSSMB G78.2-2.

Find the value of the series

$$2 + \frac{5}{2!3} + \frac{5 \cdot 7}{3!3^2} + \frac{5 \cdot 7 \cdot 9}{4!3^3} + \frac{5 \cdot 7 \cdot 9 \cdot 11}{5!3^4} + \cdots$$

by first getting an equivalent binomial form $(1-a)^b$.

FUNCT 2.5.2.

Observe that the value of

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!}$$

is $\frac{1}{2}$, $\frac{5}{6}$, $\frac{23}{24}$, for n=1,2,3, respectively. Guess the general law and prove your guess.

PARAB 293.

Determine all positive integers n such that

$$1! + 2! + 3! + \cdots + n!$$

is a perfect square.

FQ H-270.

by L. Carlitz

Sum the series

$$\sum_{a,b,c} \frac{x^a y^b z^c}{(b+c-a)!(c+a-b)!(a+b-c)!},$$

where the summation is over all nonnegative a, b, c such that

$$a \le b + c$$
, $b \le c + a$, $c \le a + b$.

MM 999.

by Joseph Silverman

Let (a_i) and (b_i) , $i=1,2,\ldots,k$, be natural numbers arranged in nondecreasing order. For which values of k is it true that

$$\sum_{i=1}^{k} (a_i!) = \sum_{i=1}^{k} (b_i!)$$

implies $a_i = b_i$ for all i?

What is the corresponding result if the two sequences are strictly increasing?

Series: floor function

FQ B-350

by Richard M. Grassl

Let $a_n = |1 + (n/2)|$. Find a closed form for

$$\sum_{k=0}^{n} a_{n-k} (a_k + k)$$

- (a) in which n is even, and
- (b) in which n is odd.

Series: floor function Problems sorted by topic Series: infinite series

CRUX 160.

by Viktors Linis

Evaluate

$$\left| \sum_{n=1}^{10^9} n^{-2/3} \right| .$$

MM Q661. by J. Phipps McGrath

A professor wishes to add up the integral parts of the numbers $\ln n$ for the first 10^9 positive integers n. Show the professor how to simply evaluate his sum.

AMM E2758.

by Bruce C. Berndt and Ronald J. Evans

Let c and d be relatively prime positive integers of opposite parity and define

$$F(d,c) = \sum_{j=1}^{c-1} (-1)^{j+1+\lfloor dj/c \rfloor}.$$

Prove that F(d,c) + F(c,d) = 1.

FQ B-377.

by Paul S. Bruckman

For all real numbers $a \ge 1$ and $b \ge 1$, prove that

$$\sum_{k=1}^{\lfloor a\rfloor} \left\lfloor b\sqrt{1-(k/a)2} \right\rfloor = \sum_{k=1}^{\lfloor b\rfloor} \left\lfloor a\sqrt{1-(k/b)2} \right\rfloor.$$

Series: geometric series

SSM 3720.

by N. J. Kuenzi

Prove that, for each real number q and for each positive integer n,

$$1 + q + q^{2} + \dots + q^{n-1} = \sum_{i=1}^{n} {n \choose i} q^{n-i} (1-q)^{i-1}.$$

MM Q615.

by Joseph A. Wehlen

Let q be any positive integer except an integral power of 10. Let 10^a be the integral power of 10 satisfying the inequality

$$10^a > q > 10^{a-1}$$
.

Expand 1/q as the sum of an infinite geometric series whose first term and ratio depend on only q and 10^a .

Series: identities

SSM 3778.

by Herta T. Freitag

Verify that for each positive integer n

$$\left(\sum_{i=1}^{n} (2i-1)\right)^{2} = \sum_{i=1}^{n} (4i^{3} - 6i^{2} + 4i - 1).$$

Series: inequalities

DME 990

by P. Erdős

Let $a_1 < a_2 < \cdots$ be a sequence of integers such that $\gcd(a_i, a_j) = 1$ and $a_{i+2} - a_{i+1} \ge a_{i+1} - a_i$. Prove that $\sum \frac{1}{a_i} < \infty$.

AMM 6247.

by Mihály Bencze

Let $\alpha > 1$, m > 1, and n > 1 with m and n integers. Prove that

$$\sum_{k=1}^{n^m-1} \alpha^k \lfloor \sqrt[m]{k} \rfloor \le (n-1) \frac{\alpha^{n^m} - \alpha^{(n/2)^m}}{\alpha - 1}.$$

CRUX 459.

by V. N. Murty

If n is a positive integer, prove that

$$\sum_{k=1}^{\infty} \frac{1}{k^{2n}} \le \frac{\pi^2}{8} \cdot \frac{1}{1 - 2^{-2n}}.$$

CMB P273.

by Mihály Bencze

If s > 1, show that

$$\sum_{p} \frac{1}{p^s} \le -s \frac{\zeta'(s)}{\zeta(s)} \le \sum_{p} \frac{1}{p^{s/2}}$$

where the sum extends over all positive prime numbers and ζ is the Riemann zeta function.

FQ H-258.

by L. Carlitz

Sum the series

$$S = \sum x^a y^b z^c t^d,$$

where the summation is over all nonnegative $a,\,b,\,c,\,d$ such that

$$2a \leq b + c + d$$

$$2b \le a + c + d$$
.

$$2c < a + b + d,$$

$$2d \le a + b + c.$$

CRUX 108.

by Viktors Linis

Prove that, for all integers $n \geq 2$,

$$\sum_{k=1}^{n} \frac{1}{k^2} > \frac{3n}{2n+1}.$$

Series: infinite series

FQ H-282. by H. W. Gould and W. E. Greig

Prove that

$$\sum_{n=1}^{\infty} \frac{\alpha^{2n}}{\alpha^{4n} - 1} = \sum_{k=1}^{\infty} \frac{1}{\alpha^{2k} - 1} ,$$

where k is odd and $\alpha = (1 + \sqrt{5})/2$, and determine which series converges the faster.

MM 1048.

by P. Erdős

Let (a_k) be an increasing sequence of positive integers with $a_{k+1}/a_k \to 1$ as $k \to \infty$. Prove that

$$\sum_{k=1}^{\infty} \frac{(a_k - 1)^2}{a_1 \cdots a_k}$$

is irrational. What happens if it is not assumed that $a_{k+1}/a_k \to 1$ but the series converges?

Problems sorted by topic Series: infinite series Series: power series

PME 360.

by P. Erdős and Ernst Straus

Denote by A_n the least common multiple of the integers from 1 to n, and denote by d(n) the number of divisors

- (a) Prove that $\sum_{n=1}^{\infty} \frac{1}{A_n}$ is irrational. (b) Prove that $\sum_{n=1}^{\infty} \frac{d(n)}{A_n}$ is irrational.
- (c) Prove that $\sum_{n=1}^{\infty} \frac{f(n)}{A_n}$ is irrational, where f(x) is a polynomial with integer coefficients.

Series: least common multiple

NAvW 551.

by P. Erdős

If $1 < a_1 < a_2 < \cdots$ is a sequence of integers such that, for some $c \in (0,1)$ and all x,

$$\operatorname{card}\left\{a_i \mid a_i \le x\right\} > cx,$$

then show that

$$\sum_{k=1}^{\infty} \frac{\operatorname{lcm}\left[a_1, a_2, \dots, a_k\right]}{a_1 a_2 \cdots a_k}$$

is irrational.

Series: limits

MM 974.

by John P. Hoyt

Let $n^{\underline{i}} = n(n-1)\cdots(n-i+1)$. For k a positive integer, evaluate

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{n^{\underline{i}}}{(2n+k)^{\underline{i}}}.$$

by F. S. Cater

For each positive integer n and each positive number x, let $F_n(x) = 0$ if $x < (n+1)^{-1}$, and let

$$F_n(x) = k^{-1} [(n+1)^{-1} + 2(n+2)^{-1} + \dots + k(n+k)^{-1}]$$

if $x \ge (n+1)^{-1}$, where k is the largest integer satisfying

$$(n+1)^{-1} + (n+2)^{-1} + (n+3)^{-1} + \dots + (n+k)^{-1} \le x.$$

$$F(x) = \lim_{n \to \infty} F_n(x)$$

for x > 0. Determine the function F(x). Is the convergence of $F_n(x)$ uniform in x? Find sup F(x) and sup [F(x)/x].

Series: logarithms

NAvW 538.

by P. Erdős

Let $(a_n)_{n\in\mathbb{N}}$ be an increasing sequence of natural num-

$$\sum_{n=1}^{\infty} n^{-2} \log \log a_n$$

is convergent. Let $\sigma(a_k)$ be the sum of the reciprocals of the divisors of a_k that do not divide any a_i with i < k.

Show that

$$\sum_{k=1}^{\infty} k^{-1} \sigma\left(a_k\right)$$

is convergent.

Series: multinomial coefficients

FQ H-289.

by L. Carlitz

Show that

$$\sum_{r+s+t=\lambda} (r, s, t)(m - 2r, n - 2s, p - 2t)$$

$$= \sum_{i+j+k+u=\lambda} (-2)^{i+j+k} (i, j, k, u)$$

$$\times (m-j-k, n-k-i, p-i-j)$$

whenever $m + n + p \ge 2\lambda$, where

$$(m_1, m_2, \dots, m_k) = \frac{(m_1 + m_2 + \dots + m_k)!}{m_1! m_2! \cdots m_k!}.$$

Series: multiples

CRUX 53.

by Léo Sauvé

Show that the sum of all positive integers less than 10nand relatively prime to 2 and 5 equals $20n^2$.

PARAB 285.

ISMJ J11.10.

Find the sum of all the numbers from 1 to 300 that are multiples of 3 or 5 or 7.

Series: permutations

by Léo Sauvé

Does there exist a permutation $n \mapsto a_n$ of the natural numbers such that the series

$$\sum_{n=1}^{\infty} \frac{a_n}{n^2}$$

converges?

Series: polynomials

AMM 6010.

Coefficients $c_{m,n}^{(k)}$ are defined by means of

$$(1+x)^m (1-x)^n = \sum_{k=0}^{m+n} c_{m,n}^{(k)} x^k \qquad (m \ge 0, n \ge 0).$$

Show that

$$\sum_{k=0}^{m+n} \left(c_{m,n}^{(k)} \right)^2 = \frac{(2m)!(2n)!}{m!n!(m+n)!} \ .$$

Series: power series

FQ H-301. by Verner E. Hoggatt, Jr. Let $A_0, A_1, A_2, \ldots, A_n, \ldots$ be a sequence such that the nth differences are zero (that is, the Diagonal Sequence terminates). Show that, if

$$A(x) = \sum_{i=0}^{\infty} A_i x^i,$$

then

$$A(x) = \frac{1}{1-x} \cdot D\left(\frac{x}{1-x}\right),\,$$

where

$$D(x) = \sum_{i=0}^{\infty} d_i x^i$$
 and $d_i = \Delta^i A_0$.

Series: powers Problems sorted by topic Series: unit fractions

Series: powers

FUNCT 3.5.3.

by Y.-T. Yu

Set

$$S_r(n) = \sum_{k=1}^n k^r.$$

When does n divide $S_1(n)$? $S_2(n)$? $S_3(n)$? Can the result be generalized?

Series: powers of 2

CRUX 447.

by Viktors Linis

The number

$$\sum_{k=1}^{n} \frac{2^k}{k}$$

is represented as an irreducible fraction p_n/q_n .

- (a) Show that p_n is even.
- (b) Show that if n > 3 then p_n is divisible by 8.
- (c) Show that for every natural number k there exists an n such that all the numbers p_n, p_{n+1}, \ldots are divisible by 2^k .

Series: primes

AMM 6016.*

by C. J. Moreno

Let D(n) be the function defined by $D(n) = \prod p$, where the product runs over those primes p such that p-1 divides 2n. Find an asymptotic formula for the function

$$\sum_{n \le x} D(n).$$

PME 384.

by R. S. Luthar

Discuss the convergence or divergence of the series

$$\sum_{1}^{\infty} \frac{n}{p_n^2}$$

where p_n is the *n*th prime.

Series: Stirling numbers

FQ H-268.

by L. Carlitz

Put

$$S_n(x) = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix} x^k,$$

where $\binom{n}{k}$ denotes the Stirling number of the second kind defined by

$$x^{n} = \sum_{k=0}^{n} {n \brace k} x(x-1) \cdots (x-k+1).$$

Show that

$$\begin{cases} xS_n(x) = \sum_{j=0}^{n} (-1)^{n-j} {n \choose j} S_{j+1}(x) \\ S_{n+1}(x) = x \sum_{j=0}^{n} {n \choose j} S_j(x). \end{cases}$$

More generally, evaluate the coefficients c(n,k,j) in the expansion

$$X^{k}S_{n}(x) = \sum_{j=0}^{n+k} c(n, k, j)S_{j}(x) \qquad (k, n \ge 0).$$

Series: subseries

MM 1025.

by W. C. Waterhouse

Let (a_n) be a sequence of positive real numbers with $\sum a_n = \infty$ and $\sum a_n^2 < \infty$. For a given C > 0, the sequence (m_i) of positive integers is such that $\sum a_n > C$, the sum being over those n such that $m_i < n \le m_{i+1}$.

- (a) Prove that there is a sequence (p_i) with $m_i < p_i \le m_{i+1}$, such that $\sum a_{p_i} < \infty$.
- (b) Show by an example that $\sum a_{p_i}$ need not converge for all such (p_i) .

Series: sum of squares

OSSMB G76.2-6.

Sum the series

$$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \dots + (-1)^{n-1}n^2$$

without recourse to the formula for the sum of the squares of the natural numbers.

Series: unit fractions

CRUX 49.

by H. G. Dworschak

Evaluate

$$1 - \frac{1}{5} + \frac{1}{7} - \frac{1}{11} + \dots + \frac{1}{6n-5} - \frac{1}{6n-1} + \dots$$

AMM 6194.

by Erwin Just and Norman Schaumberger

Let N be an arbitrary integer larger than 6, and let $\{a_i\}$, $i=1,2,\ldots,m$, denote the set of positive composite integers less than N that are not powers of primes. Prove that

$$\sum_{i=1}^{m} \frac{1}{a_i}$$

is not an integer.

NAvW 516.

by P. Erdős

Let $a_1, a_2,...$ be an increasing sequence of positive integers such that $\sum a_i^{-1}$ is convergent. Prove that for every i there are infinitely many sets of a_i consecutive integers that are not divisible by any a_j with j > i.

OSSMB 76-17.

In the evaluation of

$$\frac{1}{9} + \frac{1}{99} + \frac{1}{999} + \cdots$$

as a decimal, what is the digit in the 37th decimal place?

PUTNAM 1978/B.2.

Express

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{m^2 n + mn^2 + 2mn}$$

as a rational number.

SSM 3774.

by Fred A. Miller

Find the sum of the following infinite series:

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{3 \cdot 4 \cdot 5} + \frac{1}{5 \cdot 6 \cdot 7} + \cdots$$

Series: unit fractions Problems sorted by topic Sets: divisibility

JRM 762.

by R. Robinson Rowe

Evaluate

$$\left[\sum_{n=0}^{\infty} \frac{1}{(2n)!}\right]^2 - \left[\sum_{n=0}^{\infty} \frac{1}{(2n+1)!}\right]^2.$$

IMO 1979/1.

Let p and q be natural numbers such that

$$\frac{p}{q} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{1318} + \frac{1}{1319}.$$

Prove that p is divisible by 1979.

SIAM 76-5.

by D. J. Newman

To determine positive integers a_1, a_2, \ldots, a_n such that

$$S_n \equiv \sum_{i=1}^n \frac{1}{a_i} < 1$$

and S_n is a maximum, it is conjectured that at each choice one picks the smallest integer still satisfying the inequality constraint. Is this conjecture true?

AMM E2719. by John S. Lew

For a fixed positive integer m, let S_m be the sum of the series

$$\pm 1 \pm \frac{1}{3} \pm \frac{1}{5} \pm \frac{1}{7} \pm \frac{1}{9} \pm \cdots,$$

where the first m terms have sign +, the next m terms have sign -, then the succeeding m terms have sign +, etc.

Evaluate S_2 and S_3 .

AMM E2743.

by Peter Ungar

Evaluate

$$\lim_{m,n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{(-1)^{i+j}}{i+j}.$$

AMM 6105.

by Harry D. Ruderman

Prove that the following series converges:

$$\sum_{n=1}^{\infty} \frac{(-1)^{\lfloor n\sqrt{2}\rfloor}}{n}.$$

Estimate its value.

JRM 652.

by E. J. Barbeau

Call the product of two distinct primes a *semiprime*. Unity can be represented as the sum of distinct unit fractions with semiprime denominators. Find the shortest such representation.

MM 1015.*

by Allan W. Johnson, Jr.

Show that for $n \ge 5$ there are 2n+1 distinct, positive, odd, square-free integers whose reciprocals add to one.

SSM 3643.

by John Hudson Tiner

Does the infinite series

$$\frac{1}{1} + \frac{1}{1+3} + \frac{1}{1+3+5} + \frac{1}{1+3+5+7} + \cdots$$

converge or diverge?

Sets: arithmetic means

PARAB 354.

Prove that it is possible to select 2^k different numbers a_1, \ldots, a_{2^k} from the set $\{0, 1, 2, \ldots, 3^k - 1\}$ in such a way that none of the a's is the arithmetic mean of any other two.

Sets: arithmetic progressions

AMM E2730.

by R. L. Graham

Describe all finite sets A of real numbers with the property that any two elements of A belong to some three-term arithmetic progression in A.

PME 389.*

by P. Erdős

Find a sequence of positive integers $1 \le a_1 < a_2 < \cdots$ that omits infinitely many integers from every arithmetic progression (in fact it has density 0), but which contains all but a finite number of terms of every geometric progression. Prove also that there is a set S of real numbers that omits infinitely many terms of any arithmetic progression, but contains every geometric progression (disregarding a finite number of terms).

Sets: closed under product

NAvW 392.

by F. Beukers

Let S be a subset of \mathbb{N} . A number $p \in S$, $p \neq 1$, is called an S-prime when p cannot be written as the product of two smaller elements of S. Let A be the set of multiplicatively closed subsets S of \mathbb{N} such that every element of S has a unique factorization in S-primes (up to the order of the factors).

Prove or disprove:

$$\forall_{S_1 \in A} \forall_{S_2 \in A} [S_1 \cap S_2 \in A]$$
.

Sets: density

TYCMJ 111.

by Michael W. Ecker

Define the density of a subset A of the natural numbers by $d(A) = \lim_{n \to \infty} A_n/n$ (provided this limit exists), where A_n is the number of elements of A which do not exceed n. What is the range of d?

AMM 6217.*

by M. J. Pelling

Let B be a subset of the nonnegative integers having positive density. Is it always true that there is an infinite subset X of B and an infinite sequence $k_1 < k_2 < \cdots$ of integers such that all the translates $X + k_i \subseteq B$?

Sets: divisibility

IMO 1977/3. PARAB 366.

Let n be a given integer > 2, and let V_n be the set of integers 1+kn, where $k=1,2,\ldots$. A number $m\in V_n$ is called indecomposable in V_n if there do not exist numbers $p,q\in V_n$ such that pq=m. Prove that there exists a number $r\in V_n$ that can be expressed as the product of elements indecomposable in V_n in more than one way. (Products which differ only in the order of their factors will be considered the same.)

Sets: divisibility Problems sorted by topic Sets: partitions

MSJ 462. ISMJ 13.26.

by P. Erdős

Prove that in any selection of 51 of the first 100 positive integers, there exists at least one pair of integers for which one member of the pair divides the other. Prove that 51 cannot be replaced by any smaller number.

OSSMB 79-12.

- (a) Prove that, given any 52 integers, there exist two whose sum or whose difference is divisible by 100.
- (b) Prove that, given a set of 100 integers with none divisible by 100, there exists a subset, the sum of whose elements is divisible by 100.

MSJ 492.

Let S and T be subsets of $\{1, 2, 3, \ldots, n\}$ such that the number of elements of S plus the number of elements of T is greater than n. Prove that some member of S is relatively prime to some member of T.

CRUX 26. by Viktors Linis

Given n integers. Show that one can select a subset of these numbers and insert plus or minus signs so that the number obtained is divisible by n.

MSJ 495.

Let N be a nonempty set consisting of n positive integers. Prove that there exists a nonempty subset M of N such that the sum of the elements of M is divisible by n.

MSJ 500.

Let N be a set containing n positive integers. What is the smallest value of n which will ensure that one can always pick four elements of N whose sum is divisible by 4?

NYSMTJ OBG2. by Erwin Just

Let k be a positive integer, $n = 2^k$, and let S be a set consisting of 2n - 1 integers. Prove that there is a subset T of S, such that T has exactly n elements and the sum of the elements of T is divisible by n.

MM Q620. by Sidney Penner

Let S be the set of the first n positive integers, let r be an integer and let $T = S \cup \{r\}$. Prove that there exists an integer in T such that its removal results in a set in which the sum of its elements is divisible by n.

Sets: family of sets

MM 1037. by James Propp

Let $n \geq 3$ and let A_1, A_2, \ldots, A_n be nonempty sets of positive integers with the property that $a \in A_i$ and $b \in A_{i+1}$ implies $a + b \in A_{i+2}$, where we identify A_{n+1} as A_1 and A_{n+2} as A_2 .

- (a) If $1 \in A_1$ and $2 \in A_2$, find an integer that belongs to at least two of the sets.
- (b) Is it possible for A_1, A_2, \ldots, A_n to be pairwise disjoint?

Sets: irrational numbers

AMM 6161. by Clark Kimberling

For 0 < r < 1, let S(r) be the set of integers n such that one and only one integer lies in the open interval (nr, nr+r). Prove or disprove that r is irrational if and only if, for every positive integer M, the set S(r) contains a complete residue system modulo M.

Sets: maxima and minima

AMM E2638. by Robert McNaughton

Call a set of positive integers a clique if no two of its elements are relatively prime. Call a member of a clique a leader if it is not a proper multiple of another member of the clique. Construct a maximal clique with infinitely many leaders. (The set of all cliques is partially ordered by inclusion.)

Sets: n-tuples

AMM E2546. by Richard Stanley

Let n be a positive integer, and let S be a set of n-tuples of nonnegative integers with the property that if $(a_1, \ldots, a_n) \in S$ and if $0 \le b_i \le a_i$ for $i = 1, 2, \ldots, n$, then $(b_1, \ldots, b_n) \in S$. Let H(m) be the number of elements of S whose coordinates sum to m. Prove that H(m) is a polynomial in m for m sufficiently large.

Sets: partitions

JRM 651. by David L. Silverman

- (a) What is the largest value of n such that the integers $1, 2, \ldots, n$ can be partitioned into disjoint sets in such a way that if a, b, and c are in arithmetic progression, then a, b, and c are neither in the same set nor all in different sets?
- (b) What is the largest value of n if the condition that a, b, and c be in arithmetic progression is replaced by the condition that a + b = c?

SPECT 8.4.

Is it possible to partition the integers $1,2,\ldots,13$ into two subsets such that neither subset possesses three integers in arithmetic progression?

PARAB 294.

Given a positive integer n, find (in terms of n) the largest N such that the set of integers

$$S = \{n, n+1, n+2, \dots, N\}$$

can be split up into two subsets A and B such that $A \cup B = S$; and the difference x - y between any two elements x, y of one of the sets A, B is in the other set.

NYSMTJ 41. by Norman Schaumberger and Erwin Just

A set S consists of 14 integers, not necessarily distinct. Whenever any one of the integers is deleted from the set, the remaining 13 integers can be partitioned into three subsets in such a manner that the subsets have equal sums.

- (a) Prove that each member of S is divisible by 3.
- (b) Is it possible that some member of S is not equal to zero?

CRUX 226. by David L. Silverman

The positive integers are divided into two disjoint sets A and B. A positive integer is an A-number if and only if it is the sum of two different A-numbers or of two different B-numbers. Find A.

Sets: partitions Problems sorted by topic Sets: sum of elements

CRUX 342.*

by James Gary Propp

For fixed $n \geq 2$, the set of all positive integers is partitioned into the (disjoint) subsets S_1, S_2, \ldots, S_n as follows: for each positive integer m, we have $m \in S_k$ if and only if k is the largest integer such that m can be written as the sum of k distinct elements from one of the n subsets.

Prove that $m \in S_n$ for all sufficiently large m.

CRUX 473.*

by A. Liu

The set of all positive integers is partitioned into the (disjoint) subsets T_1, T_2, T_3, \ldots as follows: for each positive integer m, we have $m \in T_k$ if and only if k is the largest integer such that m can be written as the sum of k distinct elements from one of the subsets. Prove that each T_k is finite.

JRM 567. by David L. Silverman

- (a) Prove that the positive integers can be divided into two disjoint sets such that the sum of two members of the same set is never prime.
 - (b) Prove that the above division is unique.
- (c) Prove that the positive integers have a unique division into two disjoint sets with the property that a positive integer is a Fibonacci number if and only if it is not the sum of two distinct members of the same set.

Sets: polynomials

AMM E2804.*

by Harry D. Ruderman

Let k be a positive integer and S_k be the set of integers j expressible in the form

$$j = k|ab| + a + b,$$

where a and b run through the nonzero integers. Find the cardinality of the set of positive integers not in S_k .

CRUX 294. by Harry D. Ruderman

Prove that there are infinitely many integers that cannot be expressed in the form 3ab + a + b, where a and b are nonzero integers.

CRUX 403. by Kenneth S. Williams

Let $\mathbb{N}_0 = \{0,1,2,\ldots\}$ and set $A_1 = \{3m^2 + 6mn + 3n^2 + 2m + 3n + 1 : m, n \in \mathbb{N}_0\},\$ $A_2 = \{3m^2 + 6mn + 3n^2 + 4m + 5n + 2 : m, n \in \mathbb{N}_0\},\$ $A_3 = \{3m^2 + 6mn + 3n^2 + 5m + 6n + 3 : m, n \in \mathbb{N}_0\},\$ $A_4 = \{3m^2 + 6mn + 3n^2 + 6m + 7n + 4 : m, n \in \mathbb{N}_0\},\$ $A_5 = \{3m^2 + 6mn + 3n^2 + 7m + 8n + 5 : m, n \in \mathbb{N}_0\},\$ $A_6 = \{3m^2 + 6mn + 3n^2 + 9m + 10n + 8 : m, n \in \mathbb{N}_0\},\$ so that

 $A_1 = \{1, 6, 7, 17, 18, 19, 34, 35, 36, 37, 57, 58, 59, 60, 61, \ldots\},\$

 $A_2 = \{2, 9, 10, 22, 23, 24, 41, 42, 43, 44, \ldots\},\$

 $A_3 = \{3, 11, 12, 25, 26, 27, 45, 46, 47, 48, \ldots\},\$

 $A_4 = \{4, 13, 14, 28, 29, 30, 49, 50, 51, 52, \ldots\},\$

 $A_5 = \{5, 15, 16, 31, 32, 33, 53, 54, 55, 56, \ldots\},\$

 $A_6 = \{8, 20, 21, 38, 39, 40, 62, 63, 64, 65, \ldots\}.$

Prove or disprove that

- (a) the elements of A_i are all distinct for $1 \le i \le 6$;
- (b) $A_i \cap A_j = \emptyset$ for $1 \le i < j \le 6$;
- (c) $\{0\} \cup A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6 = \mathbb{N}_0$.

MSJ 487.

On a mathematics examination, each participant's score, S, will be calculated by the formula S = 4C - W + 30, where C is the number of correct and W is the number of wrong answers marked on the 30 multiple choice problems. (Answers left blank are not penalized). Find the six scores between 0 and 150 that are impossible to attain on the

Sets: prime divisors

AMM E2644.

by Solomon W. Golomb and Lloyd R. Welch

Let $A_n = ru^n + sv^n$, $n \ge 0$, where r, s, u, and v are integers, $psuv \neq 0$, $u \neq \pm v$, and let P_n be the set of prime divisors of A_n . Show that the union of all the P_n is infinite.

SPECT 11.1.

by H. J. Godwin

The prime factorizations of r+1 positive integers $(r \geq 1)$ together involve only r primes. Prove that there is a subset of these integers whose product is a perfect square.

Sets: subsets

ISMJ 12.24.

What is the largest subset of the 1,000 numbers between 1 and 1,000 that has no relatively prime pair?

OSSMB 78-4.

A sequence $\{b_n\}$ is defined by requiring that b_n is the number of subsets of $\{1, 2, ..., n\}$ having the property that any two different elements of the subset differ by more than 1. Show that for all n, $b_{n+2} = b_{n+1} + b_n$ and then determine

Sets: sum of elements

PUTNAM 1978/A.1. OSSMB 79-3.

Let A be any set of 20 distinct integers chosen from the arithmetic progression $1, 4, 7, \ldots, 100$. Prove that there must be two distinct integers in A whose sum is 104.

SSM 3602.

by William J. O'Donnell

- (a) Find two sets of three consecutive prime numbers such that the sum of the elements of the sets are the squares of two consecutive prime numbers.
- (b) Can you find three sets of three consecutive prime numbers such that the sums of the elements of the sets are the squares of three consecutive prime numbers?

AMM E2526.

by Paul Smith

Call a set $\{a_1,\ldots,a_n\}$ of positive integers sum-distinct if the 2^n possible sums $\sum \varepsilon_i a_i$ (with $\varepsilon_i=0$ or 1) are all distinct. Clearly, for any \overline{n} , the set $\{1, 2, 4, \dots, 2^{n-1}\}$ is an n-element sum-distinct sets. Do n-element sum-distinct sets exist with $a_i < 2^{n-1}$ for every i?

PARAB 403.

CRUX 3. OSSMB 78-14.

by H. G. Dworschak

Given any set of ten distinct, positive integers each less than 100, show that there are two subsets of this set having no elements in common such that the sums of the numbers in the subsets are equal.

Sets: sum of elements

Problems sorted by topic

Sum of consecutive odd integers

JRM 383.

by Victor G. Feser

What is the largest possible number of distinct integers (not necessarily positive) such that the sum of every pair is prime (also not necessarily positive)? How many such maximal sets are there?

CRUX 85.

by Viktors Linis

Find n natural numbers such that the sum of any number of them is never a square.

MM 934. by Erwin Just

From the first kn positive integers, choose a subset, K, consisting of (k-1)n+1 distinct integers. Prove that at least one member of K is the sum of k members (not necessarily distinct) of K.

PME 356. by Erwin Just

From the set of integers contained in [1, 2n], a subset K consisting of n+2 integers is chosen. Prove that at least one element of K is the sum of two other distinct elements of K.

TYCMJ 91. by Sidney Penner

Let A be an arbitrary subset of \mathbb{N} , and define $\overline{A} = A \cup \{a_i + a_j | a_i, a_j \in A\}$. Prove or disprove that for any $B \subset \mathbb{N}$, there exists a nonempty $A \subset \mathbb{N}$ such that $\overline{A} \subset B$ or $\overline{A} \subset \mathbb{N} \setminus B$.

Sets: triples

NAvW 428.

by P. Erdős

Let $\{A_k \mid k \in \mathbb{N}\}$ be a system of triples on the integers such that every pair occurs in at most one triple, i.e., $|A_k| = 3$ and $|A_i \cap A_j| \le 1$ if $i \ne j$. Denote by f(n) the number of triples contained in $\{1, 2, \ldots, n\}$. It is known that there is such a system for which

$$\limsup_{n \to \infty} n^{-2} f(n) = \frac{1}{6} .$$

Prove that there is a constant c such that for all systems

$$\liminf_{n \to \infty} n^{-2} f(n) \le \frac{1}{6} - c.$$

Sets: unit fractions

AMM E2689.

by L.-S. Hahn

Is there a nonempty finite set S of positive integers that satisfies the following properties?

- (i) $n \in S \Rightarrow n-1 \in S \text{ or } n+1 \in S$;
- (ii) $\sum_{n \in S} 1/n$ is an integer.

Square roots

PME 452.

by Tom M. Apostol

Given integers m > n > 0, let

$$a = \sqrt{m} + \sqrt{n}, \qquad b = \sqrt{m} - \sqrt{n}.$$

If m-n is twice an odd integer, prove that both a and b are irrational.

MSJ 473.

Prove that there are no positive integers x and y for which $\sqrt{1978} = \sqrt{x} + \sqrt{y}$.

PME 427.

by Jackie E. Fritts

If a, b, c, and d are integers, with $u = \sqrt{a^2 + b^2}$, $v = \sqrt{(a-c)^2 + (b-d)^2}$, and $w = \sqrt{c^2 + d^2}$, then prove that

$$\sqrt{(u+v+w)(u+v-w)(u-v+w)(-u+v+w)}$$

is an even integer.

Squares

OSSMB G78.1-1.

- (a) Find the sequence of square numbers which when divided by 7 leave a remainder 4.
- (b) Find a natural number that is greater than 3 times the integral part of its square root by 1. Show that only two such numbers exist.

OSSMB 77-3.

Find all perfect squares that differ by 1 from a power of 2.

OSSMB 77-5.

Prove that n = 13 is the greatest integer n that makes $4^8 + 4^{11} + 4^n$ a perfect square.

FUNCT 1.1.2.

Find a rational number for which the square, when increased or decreased by 5, remains a square.

CRUX 111.

by H. G. Dworschak

Prove that, for all distinct rational values of $a,\ b,$ and c, the expression

$$\frac{1}{(b-c)^2} + \frac{1}{(c-a)^2} + \frac{1}{(a-b)^2}$$

is a perfect square.

Sum and product

ISMJ 12.27.

The integers a and b are relatively prime. Prove that a+b and ab are also relatively prime. Is it true that if a+b and ab are relatively prime, then a and b also are?

CRUX 172. by Steven R. Conrad

Find all sets of five positive integers whose sum equals their product.

NYSMTJ 39.

by Alan Wayne

Show that, for every integer n > 1, there exist n positive integers whose sum equals their product.

Sum of consecutive odd integers

SSM 3699.

by Herta T. Freitag

Let n be a given positive integer. If S_1 denotes the sum of the odd, positive integers smaller than n, and S_2 represents the analogous sum comprised of even, positive integers, determine $|S_1 - S_2|$.

Sum of divisors: almost perfect numbers

Problems sorted by topic

Sum of powers

Sum of divisors: almost perfect numbers

AMM E2571.*

by Sidney Kravitz

A number n is perfect-plus-one (pp1) if $\sigma(n) = 2n - 1$. It is known that if $n = 2^k$, then n is pp1, but it is not known if there are any other pp1 numbers.

Discuss the situation for pp2 numbers, i.e., numbers nfor which $\sigma(n) = 2n - 2$.

PUTNAM 1976/B.6.

Let $\sigma(N)$ denote the sum of all the positive integral divisors of N, including 1 and N. A positive integer N is called quasiperfect if $\sigma(N) = 2N + 1$. Prove that every quasiperfect number is the square of an odd integer.

Sum of divisors: density

AMM 6020.*

by C. W. Anderson and Dean Hickerson

A pair of distinct numbers (k, m) is called a friendly pair $(k \text{ is a friend of } m) \text{ if } \Sigma(k) = \Sigma(m), \text{ where } \Sigma(n) =$ $\sigma(n)/n$, where $\sigma(n)$ is the sum of the divisors of n. Show that almost all numbers have friends, i.e., the natural (asymptotic) density of numbers with friends is unity. Show that the density of solitary numbers (numbers without friends) is zero.

AMM 6065. by C. W. Anderson

Where $\phi: \mathbb{N} \to \mathbb{N}$ is Euler's totient function, it is known that the natural density of $\phi(\mathbb{N}) \subset \mathbb{N}$ is zero — in symbols, $d[\phi(\mathbb{N})] = 0$. Where $\sigma: \mathbb{N} \to \mathbb{N}$ is the sum of the divisors function, demonstrate that $d[\sigma(\mathbb{N})] = 0$.

Sum of divisors: divisibility

MATYC 73. MATYC 77.

by James M. Thelen by James Thelen

Let n be the product of k distinct odd primes. Prove that the sum of the divisors of n is divisible by 2^k .

Sum of divisors: evaluations

MM Q614.

by Rod Cooper

Find the sum of all distinct positive divisors of the number 104,060,401.

Sum of divisors: iterated functions

AMM 6064.

by H. W. Lenstra, Jr.

For a nonnegative integer m, let s(m) denote the sum of those divisors d of m for which $1 \leq d < m$. Prove that for every integer $t \geq 1$ there exists an m such that

$$m < s(m) < s^2(m) < \dots < s^t(m).$$

Here $s^2(m) = s(s(m))$, and so on.

Sum of divisors: number of divisors

AMM E2543.

by C. W. Anderson

Show that there exists a constant k > 0 such that if $x = \sigma(n)/n$ is sufficiently large, then

$$\tau(n) > 2^{\exp kx}$$
.

Show also that there exist n for which $\tau(n)$ is arbitrarily large, but for which $\sigma(n)/n$ is arbitrarily close to unity.

CRUX 465.

by Peter A. Lindstrom

For positive integer n, let $\sigma(n)$ = the sum of the divisors of n and $\tau(n)$ = the number of divisors of n. Show that if $\sigma(n)$ is a prime then $\tau(n)$ is a prime.

AMM 6048.*

by H. M. Edgar

A positive integer n is said to be harmonic if the ratio

$$\frac{n\tau(n)}{\sigma(n)}$$

is again integral.

- (a) Are there any harmonic numbers other than the number 1 that are perfect squares?
 - (b) Do there exist infinitely many harmonic numbers?

Sum of divisors: perfect numbers

PME 349.

by R. Sivaramakrishnan

If 2^n $(n \ge 1)$ is the highest power of 2 dividing an even perfect number m, prove that $\sigma(m^2) + 1 \equiv 0 \pmod{2^{n+1}}$.

AMM 6036. by Carl Pomerance

If n is a natural number, let $\sigma(n)$ denote the sum of the divisors of n, S(n) the set of prime divisors of n, and $\omega(n)$ the cardinality of S(n). Clearly, if n is an even perfect number, then $S(n) = S(\sigma(n))$ and $\omega(n) = 2$. Prove the converse.

Sum of divisors: prime factorizations

by André Bourbeau

If $m = 2^n \cdot 3 \cdot p$, where n is a positive integer and p is an odd prime, find all values of m for which $\sigma(m) = 3m$.

Sum of divisors: products

FQ B-303.

by David Singmaster

What relation holds between $\sigma(mn)$ and $\sigma(m)\sigma(n)$?

FQ B-326.

by David Zeitlin

Prove that

$$\sigma(mn) > 2\sqrt{\sigma(m)\sigma(n)}$$
 for $m > 1$ and $n > 1$.

Sum of divisors: sets

MM 982. AMM 6107.

by Roy DeMeo Jr. by Roy E. DeMeo Jr.

Let $\sigma(n)$ be the sum of all the positive divisors of the positive integer n, including 1 and n. Let A denote the set of all rational numbers of the form $\sigma(n+1)/\sigma(n)$. Determine the closure of A in the set of real numbers.

Sum of powers

PARAB 373.

For which values of n is $1^n + 2^n + 3^n + 4^n$ divisible by

PENT 295. by Kenneth M. Wilke Let $S_k = 1^k + 2^k + \cdots + n^k$ where n is an arbitrary positive integer and k is an odd positive integer. Under what conditions is S_k divisible by

$$S_1 = \frac{n(n+1)}{2}$$

for all positive integers n?

Sum of powers Problems sorted by topic Triangles: perimeter

NAvW 485.

by L. Kuipers

Let p and 4p+1 be odd primes. If, for nonzero pairwise prime integers a, b, and c, we have $a^p+b^p+c^p=0$, then precisely one of the integers a, b, c is divisible by 4p+1. Prove this, and also that precisely one of the integers a, b, c is divisible by p.

Triangles: 60 degree angle

MM Q654. by George Berzsenyi

Find all acute triangles with integral sides and a 60° angle in which the sides adjacent to the 60° angle differ by unity.

Triangles: 120 degree angle

AMM E2566. by Edvard Kramer

A triplet (a,b,c) of natural numbers is an obtuse Pythagorean triplet if a, b, and c are the sides of a triangle ABC with $\angle C = 120^{\circ}$. Such a triplet is primitive if $\gcd(a,b,c)=1$.

- (a) Show that each positive integer except 1, 2, 4, and 8 can appear as the smallest member of an obtuse Pythagorean triplet.
- (b) What positive integers can appear in primitive obtuse Pythagorean triplets?

Triangles: area

CRUX 290. by R. Robinson Rowe

Find a 9-digit integer A representing the area of a triangle of which the three sides are consecutive integers.

JRM 495. by Michael R. W. Buckley

Define an artful number as an integer that can be the area of a rational triangle. Thus 1, 2, and 3 are artful, being the areas, respectively, of a (3/2,5/3,17/6), a (5/6,29/6,5), and a (5/2,5/2,3) triangle. What, if any, is the smallest artless number?

Triangles: area and perimeter

SSM 3669. by Alan Wayne

Find all of the acute triangles whose sides are positive integers and whose area is four times the perimeter.

Triangles: base and altitude

AMM E2687. by Ronald Evans

Does there exist a triangle with rational sides whose base is equal to its altitude?

Triangles: consecutive integers

MM 1023. by Steven R. Conrad

Call a triangle super-Heronian if it has integral sides and integral area, and the sides are consecutive integers. Are there infinitely many distinct super-Heronian triangles?

Triangles: counting problems

SSM 3649. by Alan Wayne

Find formulas for:

- (a) the number of triangles with integer sides and perimeter 12k-4, and
 - (b) the number of such triangles which are isosceles.

SSM 3700.

by Douglas E. Scott

Find an algorithm or formula that will give the total number of isosceles triangles (an equilateral triangle counts as isosceles) having integer sides and a given perimeter P.

PARAB 325.

The sides of a triangle have lengths a, b, c, where a, b, c are integers and $a \le b \le c$. If c is given, show that the number of different triangles is $(c+1)^2/4$ or c(c+2)/4 according to whether c is odd or even, respectively.

MM 1077. by Henry Klostergaard

Show that the number of integral-sided right triangles whose ratio of area to semiperimeter is p^m , where p is a prime and m is a positive integer, is m+1 if p=2 and 2m+1 if $p\neq 2$.

Triangles: geometric progressions

ISMJ 11.7.

For what values of the common ratio can three successive terms of a geometric progression of positive numbers be the lengths of the sides of a triangle?

Triangles: isosceles triangles

TYCMJ 131.

by Alan Wayne

The lengths of the sides of an isosceles triangle are integers, and its area is the product of the perimeter and a prime. What are the possible values of the prime?

Triangles: nonisosceles triangles

AMM E2668.

by Ron Evans and I. Martin Isaacs

Find all nonisosceles triangles with two or more rational sides and with all angles rational (measured in degrees).

Triangles: obtuse triangles

SSM 3727.

by Douglas E. Scott

Find two or more obtuse triangles such that

- (a) their sides have integral length;
- (b) their perimeters are the same;
- (c) their areas are the same; and
- (d) the perimeter in each instance is one-fourth the area.

Triangles: perimeter

SSM 3703.

by Douglas E. Scott

Find an algorithm or a formula that will give the sides of the

- (a) most acute
- (b) most obtuse, and
- (c) equilateral or most nearly equilateral isosceles triangles having integer sides and a given perimeter.

Triangles: primes Problems sorted by topic Triangular numbers: series

Triangles: primes

JRM 630. by Les Marvin

"Pay attention," said the Wizard to his three apprentices. "Each of you has noted that numbers have been inked on the foreheads of the other two. I have penned on each of your foreheads a prime number, and the three numbers form the sides of a triangle with prime perimeter. The first apprentice to deduce his number will succeed me as Wizard when I retire. In an hour I will return and ask if anyone can tell me his number. If no one can, you may use that information an hour later when I return a second time. I'll rematerialize every hour until my successor has proved himself."

But the Wizard was mistaken. After several returns his apprentices were still producing only frustrated, baffled looks. Impatiently he asked his Familiar how many additional returns would be needed.

"You can keep returning forever," purred the Familiar, "and you will still not know your successor. How did you happen to choose those primes?"

"All were chosen randomly among the primes less than 100,000. Why do you ask?" said the Wizard.

"Very curious. Since one of the numbers is 5, the other two happen to be the smallest that make it impossible for any of the apprentices to deduce his number."

What were the other two numbers?

Triangles: right triangles

JRM 494. by Michael R. W. Buckley

An APT number is an integer that can be the area of a Pythagorean rational triangle, i.e., a right triangle with rational sides. What is the smallest APT number?

Triangles: scalene triangles

SSM 3722. by Richard L. Francis

Can a scalene triangle have side measures, each of which is an even perfect number?

Triangles: similar triangles

JRM 595. by Archimedes O'Toole

Call two triangles "almost congruent" if two sides of one triangle are equal, respectively, to two sides of the other, and the triangles are similar, but not congruent. If a pair of almost congruent triangles has sides all of which are integers, what is the smallest possible value for the least of these integers?

Triangular numbers: counting problems

FQ B-385. by Herta T. Freitag

Let $T_n = n(n+1)/2$. For how many positive integers n does one have both $10^6 < T_n < 2 \cdot 10^6$ and $T_n \equiv 8 \pmod{10}$?

Triangular numbers: forms of numbers

ISMJ 10.11.

Show that any triangular number can be expressed as the difference between two triangular numbers.

PUTNAM 1975/A.1.

Supposing that an integer n is the sum of two triangular numbers.

$$n = \frac{a^2 + a}{2} + \frac{b^2 + b}{2},$$

write 4n + 1 as the sum of two squares, $4n + 1 = x^2 + y^2$, and show how x and y can be expressed in terms of a and b. Show that, conversely, if $4n + 1 = x^2 + y^2$, then n is the sum of two triangular numbers. [Of course, a, b, x, y are understood to be integers.]

Triangular numbers: identities

MATYC 82. by John M. Samoylo

If x is any positive integer and y is the sum of the integers from 1 to x, show that $x^3 = y^2 - (y - x)^2$.

FQ B-393. by V. E. Hoggatt, Jr.

Let $T_n = \binom{n+1}{2}$, $P_0 = 1$, $P_n = T_1 T_2 \cdots T_n$ for n > 0, and $\begin{bmatrix} n \\ k \end{bmatrix} = P_n / P_k P_{n-k}$ for integers k and n with $0 \le k \le n$. Show that

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{1}{n-k+1} \binom{n}{k} \binom{n+1}{k+1}.$$

Triangular numbers: palindromes

SSM 3572. by Robert A. Carman

Show that the triangular number $T_{111...}$ (2n ones) is always a palindrome.

Triangular numbers: polynomials

SSM 3640. by Herta T. Freitag

What, if anything, do the following have in common:

- (a) The number of terms in $(a+b+c)^m$, m a nonnegative integer.
- (b) The number of differently shaped rectangles (or squares) of integral sides that may be drawn on an n by n checkerboard.
 - (c) Triangular numbers.
- (d) The sum of the cubes of the first n consecutive positive integers.

Triangular numbers: series

FQ B-371.

by Herta T. Freitag

Let

$$S_n = \sum_{k=1}^{F_n} \sum_{j=1}^k T_j,$$

where T_j is the triangular number j(j+1)/2. Does each of $n \equiv 5 \pmod{15}$ and $n \equiv 10 \pmod{15}$ imply that $S_n \equiv 0 \pmod{10}$?

FQ B-372.

by Herta T. Freitag

Let

$$S_n = \sum_{k=1}^{F_n} \sum_{j=1}^k T_j.$$

Does $S_n \equiv 0 \pmod{10}$ imply that n is congruent to either 5 or 10 modulo 15?

Triangular numbers: series Problems sorted by topic Twin primes

SSM 3729. by Herta T. Freitag When f(i) = 0 and k = 1, $\sum_{i=1}^{n} (-1)^{f(i)} i^k = \sum_{i=1}^{n} i = n(n+1)/2$ which is the nth triangular number. Determine f(i) so that $\sum_{i=1}^{n} (-1)^{f(i)} i^2$ will be a triangular number.

SSM 3647.

4 3647. by Gregory Wulczyn Prove that $\sum_{r=1}^{n} (2r-1)^3$ is a triangular number for each positive integer n.

FQ B-388. by Herta T. Freitag

Let $T_n = n(n+1)/2$. Show that

$$T_1 + T_2 + T_3 + \dots + T_{2n-1}$$

= $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2$

and express these equal sums as a binomial coefficient.

Triangular numbers: squares

MM Q633.

by J. D. Baum

The sum of the first eight positive integers is 36, a perfect square. Are there any other values of k for which the sum of the first k positive integers is a perfect square? Are there infinitely many k?

Triangular numbers: sum of squares

by Herta T. Freitag

Let $T_n = n(n+1)/2$. For which positive integers n is $T_1^2 + T_2^2 + \cdots + T_n^2$ an integral multiple of T_n ?

Twin primes

JRM 797.

by Sidney Kravitz

Three consecutive positive integers are of the form $p, 2^a n, q$, with p, n, and q prime. (a) What is the value of n?

- (b) For what values of a less than 48 does this occur?

PME 340. by Charles W. Trigg

The arithmetic mean of the twin primes 17 and 19 is the heptagonal number 18. Heptagonal numbers have the form n(5n-3)/2. Are there any other twin primes with a heptagonal mean?

MATYC 96. by Charles W. Trigg

The arithmetic mean of the twin primes 3 and 5 is the tetrahedral number 4. Tetrahedral numbers have the form n(n+1)(n+2)/6. Are there any other twin primes that have a tetrahedral mean?

SSM 3735. by Richard L. Francis

A pair of twin primes is two prime numbers which differ by two, and an initial prime is a prime having 1 as its leftmost digit. Show that if one number of a set of twin primes is an initial prime, so is the other.

MM Q648. by J. D. Baum

Show that if p and q are twin primes (q = p + 2) and if pq-2 is also prime, then p is uniquely determined.

MATYC 78. by John M. Samovlo

For all pairs of twin primes other than 3 and 5, show that the sum of the number between any pair of twin primes and the primes themselves is divisible by 18.

Arrays Problems sorted by topic Cards

Arrays

CRUX 387. by Harry D. Ruderman

A group of N people lock arms to dance in a circle the traditional Israeli Hora. After a break they lock arms to dance a second round. Let P(N) be the probability that for the second round no dancer locks arms with a dancer previously locked to in the first round. Find $\lim_{N\to\infty} P(N)$.

Bingo

MATYC 70. by Gene Zirkel

During an evening, 23 games of bingo were played. Each game ended when exactly nine of the 75 numbers had been called. Of the 207 numbers called that evening, what is the probability that only 74 different numbers had been called; i.e., that exactly one number was never called.

PME 419. by Michael W. Ecker

Seventy-five balls are numbered 1 to 75, and are partitioned into sets of 15 elements each as follows:

$$B = \{1, \dots, 15\}, \quad I = \{16, \dots, 30\}, \quad N = \{31, \dots, 45\},$$

 $G = \{46, \dots, 60\}, \quad \text{and} \quad O = \{61, \dots, 75\},$

as in Bingo.

Balls are chosen at random, one at a time, until one of the following occurs: At least one from each of the sets B, I, G, O has been chosen, or four of the chosen numbers are from the set N, or five of the numbers are from one of the sets B, I, G, O.

Find the probability that, of these possible results, four N's are chosen first.

Biology

JRM 384. by Michael R. Buckley

The Anableps is a South American flatfish with a couple of curious characteristics. Its two eyes are really four — divided horizontally so that it has binocular vision above and below water level simultaneously. But its advantage in reconnaissance capability is offset by the frustration it experiences in locating a mate, for its two sexes are also really four. A left-handed male can mate only with a right-handed female and a right-handed male only with a left-handed female. But that is the Anableps' problem. Here are yours:

- (a) How many Anableps must one capture to ensure at least a 50% chance of having a mateable pair?
- (b) What is the probability of having at least m separate and disjoint mateable pairs in n randomly chosen Anableps?
- (c) What is the probability of having at least m mateable pairs in n randomly chosen Anableps if polygamy and polyandry are permitted?

AMM E2636. by D. E. Knuth

A pair of microbes was recently discovered that reproduce in a very peculiar way. The male microbe (a diphage) has two receptors on its surface, and the female (a triphage) has three receptors. When a culture of diphages and triphages is irradiated with a psi-particle, exactly one of the receptors absorbs the particle (each receptor being equally likely). If it was a diphage, it changes to a triphage; but if it was a triphage, it splits into two diphages.

Give a simple formula for the average number of diphages present if we begin with a single diphage and irradiate the culture n times with psi-particles.

Birthdays

CRUX 195. by John Karam

- (a) How many persons would have to be in a room for the odds to be better than 50% that three persons in the room have the same birthday?
- (b) In the Quebec-based lottery Loto-Perfecta, each entrant picks six distinct numbers from 1 to 36. If, at the draw, his six numbers come out in some order (dans le désordre) he wins a sum of money; if his numbers come out in order (dans l'ordre), he wins a larger sum of money. How many entries would there have to be for the odds to be better than 50% that two persons have picked the same numbers (i) dans le désordre, (ii) dans l'ordre?

Cards

JRM C3. by David L. Silverman

The 52 playing cards are shuffled and dealt out in a row. What is the probability that no three adjacent cards are of the same suit?

AMM E2645. by Jerrold W. Grossman

A deck of N cards is shuffled according to the following scheme. The cards, labeled 1 through N, are placed in order in a row. Independent random integers r_1, \ldots, r_N are chosen successively, $1 \leq r_i \leq N$, and after the choice of each r_i the card then in position i is interchanged with the card then in position r_i . What is the probability that card s ends up in position t after the shuffle is complete?

MM 1022. by Joe Dan Austin

We have n cards numbered 1 though n. Find the expected number of drawings needed to put the cards in order by each of the following strategies:

- (a) The shuffled cards are drawn without replacement until card 1 is drawn. The remaining n-1 cards are shuffled and drawn without replacement until card 2 is drawn. This process is continued until all the cards are drawn and put in linear order.
- (b) A card, say card k, is drawn from the shuffled deck. The remaining cards are shuffled and drawn without replacement until either card k-1 or card k+1 is drawn. We identify card 1-1 as card n and card n+1 as card 1. This process is continued until all the cards are drawn and put in circular order.

JRM 782. by R. S. Johnson

"Here is a deck of cards for you to examine," I said to Harry. After a moment he replied, "They're not all here, but all of the suits seem to be well represented. What comes next?" I instructed him to spread the cards face-down on the table. "Now," I said, "I'll bet two hundred dollars against one of yours that you can't pick at random, and turn over, four hearts in succession." When Harry's first two picks were hearts, I began to worry, especially since the odds for the third card by itself were only four to one against him. However, he flipped a spade and paid me a dollar. Checking the discards, Harry observed, "I see that you removed almost a quarter of the deck and that you were on pretty safe ground."

How many cards did I remove, how many were hearts, and what were the total odds against Harry for the entire exercise?

Cards Problems sorted by topic Density functions

USA 1975/5.

A deck of n playing cards, which contains three aces, is shuffled at random (it is assumed that all possible card distributions are equally likely). The cards are then turned up one by one from the top until the second ace appears. Prove that the expected (average) number of cards to be turned up is (n+1)/2.

Cauchy distribution

AMM 6164. by Ignacy I. Kotlarski

Let the random variable $Z_1 = X$ follow the Cauchy distribution with the probability density function

$$f(x) = \left[\pi(1+x^2)\right]^{-1}$$

 $x \in \mathbb{R}$. Show that for $n = 2, 3, \ldots$, the random variables

$$Z_{2} = \frac{2X}{1 - X^{2}},$$

$$Z_{3} = \frac{3X - X^{3}}{1 - 3X^{2}},$$

$$Z_{4} = \frac{4X - 4X^{3}}{1 - 6X^{2} + X^{4}},$$

$$\vdots$$

$$Z_{n} = \frac{\binom{n}{1}X - \binom{n}{3}X^{3} + \binom{n}{5}X^{5} - \cdots}{1 - \binom{n}{2}X^{2} + \binom{n}{4}X^{4} - \binom{n}{6}X^{6} + \cdots}, \dots$$

also follow the same Cauchy distribution.

Coin tossing

FUNCT 3.2.6.

I toss three coins. I argue that the probability of them all falling heads is $\left(\frac{1}{2}\right)^3=\frac{1}{8}$. The probability that they all fall tails is also $\frac{1}{8}$ so that the probability of them all falling alike is $\frac{1}{8}+\frac{1}{8}=\frac{1}{4}$. My friend argues differently. If three coins are thrown up, at least two must come down alike; the probability that the third coin comes down the same as the other two is $\frac{1}{2}$, as it has an equal chance of being like or unlike. Who is correct?

SIAM 77-11. by Danny Newman

If one tosses a fair coin until a head first appears, then the probability that this event occurs on an even numbered toss is exactly 1/3. For this procedure, the expected number of tosses equals 2. Can one design a procedure, using a fair coin, to give a success probability of 1/3 but have the expected number of tosses be less than 2?

TYCMJ 103. by Richard Johnsonbaugh

A fair coin is flipped n times. Let E be the event "a head is obtained on the first flip", and let F_k be the event "exactly k heads are obtained". For which pairs (n,k) are E and F_k independent?

CRUX 265. by David Wheeler

A game involves tossing a coin n times. What is the probability that two heads will turn up in succession somewhere in the sequence of throws?

PME 370.

by David L. Silverman

Able, Baker, and Charlie take turns cyclically, in that order, tossing a coin until three successive heads or three successive tails appear. With what probabilities will the game terminate on Able's turn? On Baker's?

Coloring problems

AMM 6229.*

by David W. Erbach

Suppose that the plane is tiled with regular hexagons in the customary manner. Color each black or white independently with probability 1/2. What is the expected size of a connected monochromatic component? What is the probability that there is an infinite component?

Conditional probability

PARAB 306.

I post a letter to a friend. There is a probability of 4/5 that the letter will reach its destination. If he received the letter, he would send me a reply. What is the probability that he received the letter if I receive no reply?

FUNCT 1.3.7.

Of three prisoners, Mark, Luke, and John, two are to be executed, but Mark does not know which two. He therefore asks the jailer, "Since either Luke or John are certainly going to be executed, you will give me no information about my own chances if you give me the name of one man, either Luke or John, who is going to be executed."

Accepting this argument, the jailer truthfully replied "Luke will be executed." Thereupon, Mark felt happier because, before the jailer replied, his own chances of execution were 2/3; but afterwards there are only two people, himself and John, who could be the one not to be executed, and so his chance of execution is only 1/2.

Is Mark right to feel happier?

JRM 530. by Les Marvin

"Will the weather be good tomorrow, or should I postpone my next labor?" asked Hercules of the Oracle of Apollo, after completing his twelfth labor. "Good," said the Oracle, who had established a 2/3 record of accuracy. "Good," agreed the Oracle of Hermes, who had a 5/8 accuracy record. "Bad," said the Oracle of Zeus with a 7/9 accuracy record. Confused, Hercules postponed his 13th labor, as it turned out, forever. Did he act properly in light of the predictions, which, you may assume, were entirely independent of each other, as were the records of the three oracles? What was the probability of good weather, given that good weather and bad weather were equally likely at that time of year?

Density functions

SIAM 79-6.*

by L. B. Klebanov

Let f(x), g(x) be two probability densities on R^1 with g(x) > 0. Suppose that the condition

$$\int_{-\infty}^{\infty} (u - c) \prod_{j=1}^{n} f(x_j - u) g(u) du = 0$$

holds for all x_1, x_2, \ldots, x_n such that $\sum_{j=1}^n x_j = 0$ where $n \ge 3$ and c is some constant. Prove that

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-a)^2}{2\sigma^2}\right\}.$$

Dice problems: independent trials Problems sorted by topic Digit problems

Dice problems: independent trials

FUNCT 1.3.5.

A die is thrown until a 6 is obtained. What is the probability that 5 was not thrown, meanwhile?

TYCMJ 136. by Michael W. Ecker

Assume that it is required to throw a pair of dice and obtain a total of 5, or a 5 on at least one of the dice. What is the expected number of throws required for this to occur?

Dice problems: loaded dice

MM 1011. CRUX 118. FUNCT 3.3.1.

by Richard A. Gibbs by Paul Khoury

Is it possible to load a pair of dice so that the probability of rolling each possible sum is 1/11?

JRM 588. by Ray Lipman

It is known that no tampering with a pair of dice (assuming that it affects them independently) can make the totals $2, 3, \ldots, 12$ occur with equal frequency. By assigning arbitrary probabilities to the twelve faces (the two dice need not be loaded in the same way), determine the loading that makes the frequencies of the various totals "most equal": For purposes of this problem an assignment A_1 of probabilities to the twelve faces is considered to make the frequencies of the totals "more equal" than another assignment A_2 if, among the eleven relative frequencies of the various totals, the largest discrepancy from 1/11 under A_1 is less than that under A_2 .

Dice problems: matching problems

PME 407. by Ben Gold, John M. Howell, and Vance Stine

Two sets of n dice are rolled (n = 1, 2, 3, 4, 5, 6). What is the probability of k matches (k = 0, 1, ..., n)?

Dice problems: *n*-sided dice

JRM 506. by Osias Bain

Let p(k, n) be the probability that in k tosses of a fair n-sided die, each face that has come up at all has come up at least twice.

- (a) Determine $P_1(n)$, the least K such that p(k,n) is strictly increasing in k for $k \geq K$.
- (b) Determine $P_2(n)$, the least K such that $p(k,n) \ge 1/2$ for all k > K.

USA 1979/3.

Given three identical n-faced dice whose corresponding faces are identically numbered with arbitrary integers. Prove that if they are tossed at random, the probability that the sum of the bottom three face numbers is divisible by three is greater than or equal to 1/4.

Dice problems: number of occurrences

CRUX PS4-1.

What is the probability of an odd number of sixes turning up in a random toss of n fair dice?

Dice problems: octahedral dice

SSM 3598. by Charles W. Trigg

Two octahedrons are converted into octahedral dice by distributing the digits from 1 to 8 on the faces of each one and in the same order. As with cubical dice, when they are rolled, the 'point' made is the sum of the digits on the two uppermost faces when the dice come to rest on a flat horizontal surface.

Construct a table showing the probabilities of occurrence of the various 'points' that can be made with two octahedral dice, assuming that both dice are symmetrical and have uniform density.

Digit problems

SIAM 76-16. by A. Feldstein and R. Goodman

Fix an integer $\beta \geq 2$, and let A be a positive normalized floating point number represented in base β . For an integer $n \geq 2$, consider the probability $p_n(a)$ that the nth digit of A is the integer a, where $0 \leq a \leq \beta - 1$. Let A be chosen at random from the logarithmic distribution, then

$$p_n(a) = \log_{\beta} \prod_{m=\beta^{n-2}}^{\beta^{n-1}-1} \frac{\beta m + a + 1}{\beta m + a} \quad \text{for } n \ge 2$$

and $\lim_{n\to\infty} p_n(a) = 1/\beta$.

It is of interest to analyze Δ_n , the deviation from uniform distribution, given for n > 2 by

$$\Delta_n \equiv \max_{0 \le a \le \beta - 1} \left| p_n(a) - \frac{1}{\beta} \right|$$
$$= \max \left(p_n(0) - \frac{1}{\beta}, \frac{1}{\beta} - p_n(\beta - 1) \right).$$

We conjecture that:

- (a) $\Delta_n = p_n(0) \frac{1}{\beta}$,
- (b) $\lim_{n\to\infty} \beta^n \Delta_n$ exists and equals $\frac{(\beta-1)^2}{2\beta \ln \beta}$.

SSM 3570. by Charles W. Trigg

- (a) If a 10-digit integer in the decimal system is chosen at random, what is the probability that it will contain ten distinct digits?
- (b) If an r-digit integer in the scale of notation with base r is chosen at random, what is the probability that it will contain r distinct digits?

CRUX 50. by John Thomas

- (a) Show that 2^n can begin with any sequence of digits.
- (b) Let N be an r-digit number. What is the probability that the first r digits of 2^n represent N?

Distribution functions Problems sorted by topic Game theory: coin tossing

Distribution functions

AMM 6115. by L. Franklin Kemp, Jr.

Let $F_1(x_1), F_2(x_2), \ldots, F_n(x_n)$ be n probability distribution functions (d.f.'s). If $H(x_1, x_2, \ldots, x_n)$ is any n-dimensional d.f. with marginals $F_i(x_i)$, then an earlier solution showed that $\min_i F_i(x_i)$ is an n-dimensional d.f. such that $H(x_1, x_2, \ldots, x_n) \leq \min_i F_i(x_i)$. What is the n-dimensional d.f. that bounds any $H(x_1, x_2, \ldots, x_n)$ from below?

SIAM 78-4.* by C. L. Mallows

Find the symmetric cumulative distribution function G(x) satisfying $dG(0)=\alpha,\ 0<\alpha<1$ that minimizes the integral

$$I_f = \int_{-\infty}^{\infty} \frac{\left(f'(x)\right)^2}{f(x)} dx,$$

where f(x) is the convolution

$$f(x) = \int_{-\infty}^{\infty} \phi(x - u) \, dG(u),$$

with $\phi(u)$ the standard Gaussian density

$$\phi(u) = (2\pi)^{-1/2} \exp\left[-\frac{1}{2}u^2\right].$$

It is believed that G is a step function, so that

$$f(x) = \sum p_j \phi \left(x - g_j \right),\,$$

with $g_{-j} = -g_j$, $p_{-j} = p_j > 0$, $p_0 = \alpha$.

Distribution problems

SSM 3601. by Joe Dan Austin

Ten people enter an elevator that is to make 13 stops. Assume that the 10 people select their exit independently and that each stop has the same probability of being selected. Find

- (a) the probability that at least two people exit at the same stop and
- (b) the probability that exactly two people exit at the same stop.

AMM E2515. by C. L. Mallows

A careless file clerk has documents D_1, D_2, \ldots, D_d that should go respectively into files F_1, F_2, \ldots, F_d ; instead he places them independently, at random, into a total of f files $(f \geq d \geq 1)$ so that each of the f^d possible arrangements is equally likely. Show that the event that some nonempty subset S of the files F_1, F_2, \ldots, F_d can be made to have the correct contents by redistributing within S the union of their contents, has probability d/f.

Examinations

OSSMB 79-10.

In answering general knowledge questions, all answerable with yes or no, the teacher's probability of being correct is α and a student's probability of being correct is β or γ according to whether the student is male or female. If the probability of a randomly chosen student's answer agreeing with the teacher's is 1/2, find the ratio of the number of males to females in the class.

Gambler's ruin

JRM 631. by Davi

by David L. Silverman

Three players compete in a game of chance in which on each play, each player's chance of winning is directly proportional to his current holding. The stake on each play is the holding of the player with the smallest current (positive) number of chips. The game continues until two players have been eliminated. If the players start with respective holdings of 1, 2, and 3 chips, what is each player's chance of emerging with all six chips?

JRM 423. by David L. Silverman

Gamblers B and C, holding a total of 7 chips between them, are engaged in a series of games that will terminate when one player has won all 7 chips. Each game offers each player a 50-50 chance of success, and the stakes for each game are determined by the poorer (in chips) player — from one chip apiece to a mutual wager of the poorer player's entire fortune. At any juncture, if B holds the majority of chips, C will make the mutual wager on the next game one chip. But if C holds the majority of chips, B will wager all his chips on the next game. At a stage when the bold player B holds n chips (n=1,2,3,4,5,6), what is the probability P_n that he will eventually ruin the cautious player C? Generalize.

Game theory: card games

MM 1066.

by Eric Mendelsohn and Stephen Tanny

Consider the following children's game ("clock"): k copies of well-shuffled cards numbered $1, 2, 3, \ldots, L$ are distributed in boxes labeled $1, 2, 3, \ldots, L$, with exactly k cards per box. At the start of the game, the top card in box 1 is drawn. If the value of this card is j ($j = 1, 2, 3, \ldots, L$) we proceed to box j, draw the top card and go to the box so numbered, draw the top card, and so on. The objective of the game (a 'win') is to draw all cards from every box before being directed to an empty box. Characterize all winning distributions of cards, and find the probability of a win.

SPECT 11.3.

The rules for the card game of Clock Patience are as follows:

Shuffle the pack of cards and deal them into thirteen piles of four labeled A,2,3,4,5,6,7,8,9,10,J,Q,K. To play, take away the top card of the K pile (say it is 5), then the top card of the 5 pile (say it is J), then the top card of the J pile, and so on. The game proceeds until the fourth K is taken, and the game is said to 'come out' if, when the fourth K is taken, all the original piles are empty.

- (a) What is the probability that a game comes out?
- (b) Assume that, after dealing, the bottom cards on the piles form a rearrangement of A,2,3,4,5,6,7,8,9,10,J,Q,K. Show that this game comes out if and only if this rearrangement is a cyclic rearrangement.

Game theory: coin tossing

SPECT 7.4. by T. J. Fletcher

Two players, A and B, begin with capital of p and q units respectively. They gamble by tossing a coin. At each toss, one unit of capital is transferred from the loser to the winner of that toss. The game continues until one or the other is bankrupt. Compare A's and B's chances of winning.

Game theory: coin tossing Problems sorted by topic Game theory: TV game shows

JRM 463.

by Fred Walbrook

Two players each have two coins, one of which is foreign and is considered in terms of its exchange value in cents. Each tosses both his coins, and the point total he receives is the value, if any, of his coins that come up heads. The player with the larger point total wins his opponent's coins. In the event of a tie, the players toss again. The game is fair in the sense that each player's chance of winning is proportional to his holdings. One player has a nickel, the other a penny. The two foreign coins have the same value. What is that value?

JRM 675. by J. Sennetti

The St. Petersburg game is played between a player and a banker. An admission fee is charged to the player, who then tosses a coin until heads comes up. If heads first appears on the nth toss, the banker pays the player 2^n dollars.

- (a) What admission fee should be charged to make the game fair?
- (b) Suppose the rules are modified so that the game cannot exceed k tosses; i.e. the banker pays 2^k after the kth toss, regardless of the outcome. What then is the fair admission price?

Game theory: dice games

MM 1071. by Joseph Browne

Player A rolls n+1 dice and keeps the highest n. Player B rolls n dice. The higher total wins, with ties awarded to Player B.

- (a) For n=2, show that Player A wins and find his probability of winning.
- (b) Find the smallest value of n for which Player B wins.

CRUX 333. by R. Robinson Rowe

The World War I COOTIE, lousy vector of trench fever, popularized a simple but hilarious game by that name in the early 1920's. Five or more players each with pad and pencil, cast a single die in turn. Rolling a 6, a player sketched a "body" on the pad and on later turns added a head with a 5, four legs with a 4, the tail with a 3. Having the head, he could add two eyes with a 2 and a proboscis or nose with a 1. Having all six he yelled "COOOOTIEEEEE!" and raked in the pot.

What was the probability of capturing a COOTIE in just six turns?

MATYC 92. by Michael Brozinsky

Find the expected number of throws in the game of craps.

CRUX 409. by L. F. Meyers

In a certain bingo game for children, each move consists in rolling two dice. One of the dice is marked with the symbols B, I, N, G, O, and *, and the other die is marked with 1, 2, 3, 4, 5, and 6. A disadvantage of this form of bingo, in comparison with the adult form of the game, is that a combination (such as B3) may appear repeatedly. What is the expected number of the move at which the first repetition occurs in each of these cases:

- (a) all 36 combinations (B1 through *6) are considered to be different (and equally likely)?
- (b) all 36 combinations (B1 through *6) are considered to be equally likely, but the six combinations containing * are considered to be the same?

Game theory: selection games

PME 403. by David L. Silverman

Two players play a game of "Take It or Leave It" on the unit interval (0,1). Each player privately generates a random number from the uniform distribution, and either keeps it as his score or rejects it and generates a second number which becomes his score. Neither player knows, prior to his own play, what his opponent's score is or whether it is the result of an acceptance or a rejection.

The scores are compared and the player with the higher score wins \$1 from the other.

- (a) What strategy will give a player the highest expected score?
- (b) What strategy will give a player the best chance of winning?
- (c) If one player knows that his opponent is playing so as to maximize his score, how much of an advantage will he have if he employs the best counterstrategy?

JRM 499. by David L. Silverman

There are two players, Giver and Taker. There are two unlocked strongboxes to which only Giver has the key. The boxes are such that their contents are visible, but whether they are locked or not can only be determined by trying to open them.

The game begins with both boxes empty. Unseen by Taker, Giver has selected one box which he has locked, leaving the other unlocked. Taker then tries to open one of the boxes. If he picks the unlocked box, he receives its contents, and the game is over. If he picks the locked box, Giver adds a dollar to the unlocked box. Taker leaves the room, and Giver again causes one of the boxes to be locked and one unlocked. Taker reenters the room and chooses again. The game continues until the unlocked box is chosen.

Assuming that Taker plays optimally to maximize, and Giver to minimize Taker's winnings, how much, on the average, will Taker win?

Game theory: TV game shows

JRM 769. by Harry Nelson

On the hypothetical TV game show Stump the Panel, three panelists try to match four husbands with their four wives. Those couples whom the first panelist identifies correctly are eliminated and receive nothing. Those remaining are then matched up by the second panelist. Those correctly matched receive \$50 and are eliminated. Finally the third panelist tries to match those left. If they are now correctly matched, they receive \$100, and if not, \$1,000.

Assuming pure guessing on the part of the panelist among those arrangements still possible, what is the probability that the \$1,000 prize will be won? What are a couple's expected winnings?

PME 355. by John M. Howell

On the TV game show called "Who's Who?", four panelists try to match the occupations of four contestants with signs marking their occupations. If the first panelist matches correctly, the contestants get nothing and the game is over. If the second panelist succeeds in matching correctly, the contestants get \$25. If the second panelist fails but the third succeeds, the contestants get \$50. If the fourth panelist matches after the third fails, the contestants get \$75. If there is no match, the contestants win \$100. What is the expected value of the contestants' winnings? Assume pure guessing and that no panelist repeats a previous arrangement.

Geometry: boxes Problems sorted by topic Geometry: polyhedra

Geometry: boxes

SSM 3783. by Stephen J. Ruberg

Suppose that the volume V of a box with a square base is chosen randomly from the chi-square distribution with two degrees of freedom. In addition, let the length S of a side of the base be chosen randomly and independent of V according to the following procedure: S = |T|, where T is chosen from the normal distribution with mean zero and standard deviation one. What is the probability that the height H of the box exceeds 400?

Geometry: circles

MATYC 98. by Philip Cheifetz

A large number of people are asked to draw a chord at random inside a circle of given radius R. After the chords are drawn, an equilateral triangle is inscribed in the circle. Deduce from probability considerations what percentage of the chords may be expected to be longer than the side of the triangle.

OSSMB G76.1-6. by T. C. Simmonds

- (a) Three tangents, no two parallel, are drawn at random to a given circle. Show that the odds are 3 to 1 against the circle being inscribed (as opposed to being escribed) in the triangle formed by the tangents.
- (b) If a triangle is formed by joining three points taken at random on the circumference of a circle, with the restriction that no pair of them be diametrically opposite one another, prove that the odds are 3:1 against it being acute angled.

Geometry: concyclic points

JRM 509. by Les Marvin

Points are selected at random on the circumference of the unit circle until the inscribed polygon that they determine encloses the center of the circle. It is known that the average (or statistically expected) number of points selected is five. Verify this with a Monte Carlo program, using the simplest program gimmick you can devise to enable the computer to tell when the center of the circle has been "netted".

Geometry: convex hull

AMM 6230. by Gérard Letac

Let X(t) be the perimeter length of the convex hull of $b(s)_{0 \le s \le t}$, where b is the standard brownian motion in the Euclidean plane. Compute E(X(t)).

Geometry: discs

OSSMB 77-2.

A disc of diameter 1 is tossed at random onto a coordinate plane. What is the probability that it covers a lattice point?

Geometry: point spacing

SIAM 76-4. by Iwao Sugai

Two points are chosen at random, uniformly with respect to area, one each from the two plane regions

$$0 \le x^2 + y^2 \le a^2$$

and

$$(a-b)^2 \le x^2 + y^2 \le a^2$$
,

respectively. Find the probability that the distance between the two points is at most b (0 < b < a).

AMM E2629.

by David P. Robbins

Two points are chosen at random (uniform distribution) in the box $|x| \le a$, $|y| \le b$, $|z| \le c$ of \mathbb{R}^3 . What is the expected distance between them?

SIAM 78-8.

by Timo Leipälä

Determine

- (a) the probability density,
- (b) the mean, and
- (c) the variance

for the Euclidean distance between two points which are independently and uniformly distributed in a unit cube.

NAvW 556.

by J. van de Lune

For any $n \in \mathbb{N}$, let $\rho(n)$ be the mathematical expectation of the distance between two independent random points in the n-dimensional unit cube. Determine

$$\lim_{n\to\infty} n^{-\frac{1}{2}}\rho(n).$$

MM 946.

by M. H. Hoehn

Two points are selected at random on the boundary of a unit square. What is the expected value of the length of the line segment joining the points?

Geometry: polygons

AMM E2594.*

by David P. Robbins

Suppose that $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ are vectors corresponding to the edges of an oriented regular polygon. Since their sum is 0, an object undergoing displacements by each of these vectors in some order traces out a closed polygon. If this order is chosen at random, what is the probability that the polygon does not intersect itself?

Geometry: polyhedra

CRUX 499.

by Jordi Dou

A certain polyhedron has all its edges of unit length. An ant travels along the edges and, at each vertex it reaches, chooses at random a new edge along which to travel (each edge at a vertex being equally likely to be chosen). The expected (mean) length of a return trip from one vertex back to it is 6 for some vertices and 7.5 for the other vertices.

Calculate the volume of the polyhedron.

AMM 6149. by Gérard Letac

A bug runs along the edges of a regular dodecahedron with constant speed: one edge per unit of time. At time 0 the bug is on some vertex A; at time n (n an integer) it chooses randomly one of the three possible edges. If p_n is the probability that the bug is on A at time n, then it is trivial to compute $p_0 = 1$, $p_1 = 0$, $p_2 = \frac{1}{3}$, $p_3 = 0$, $p_4 = \frac{5}{27}$, . . . Determine the generating function

$$\sum_{n=0}^{\infty} p_n s^n$$

of the sequence (p_n) .

Geometry: quadrilaterals Problems sorted by topic Jury decisions

Geometry: quadrilaterals

NAvW 452.

by O. Bottema

Let $P_1 < P_2 < P_3$ be three distinct points selected at random from the open interval (0,1). Find the probability that a convex, inscribable (in a circle) quadrilateral can be formed having side lengths P_1 , $P_2 - P_1$, $P_3 - P_2$, and $1 - P_3$. Also find the probability without the convexity restriction.

Geometry: rectangles

JRM 713. by William C. Reil

The lengths and widths of two rectangles are chosen randomly in the interval (0,1).

- (a) What is the probability that one will fit completely within the other?
- (b) What is the probability that the one with the smaller area has the larger perimeter?

Geometry: squares

JRM 620.

by Susan Laird

Four points are selected at random in a unit square. What is the probability that they are the vertices of a convex quadrilateral?

JRM 683. by Daniel P. Shine

A point is chosen at a random position in a unit square. On the average:

- (a) How far is it from the center of the square?
- (b) How far is it from the lower left corner of the square?
 - (c) How far is it from the *nearest* corner of the square?
- (d) Substitute a circle of unit area for the square. How far is it from the center of the circle?

Geometry: triangles

SSM 3767. by N. J. Kuenzi and Bob Prielipp

Suppose an isosceles triangle with two sides of length a is formed by randomly selecting the length of the third side from the set of all possible lengths. Find the probability that the triangle formed is obtuse.

Independent trials

PME 395. by Joe Dan Austin

Assume that n independent Bernoulli experiments are made with $p=P[\mathrm{success}], 1-p=P[\mathrm{failure}],$ and 0< p<1. Intuitively it seems that $P[\mathrm{success}$ on the first trial | exactly one success] is always less than $P[\mathrm{success}$ on the first trial | at least one success]. Verify directly that this is indeed the

MM 1070. by Thomas E. Elsner and Joseph C. Hudson

Let $p_1+p_2+\cdots+p_k=1$ be a sum of $k\geq 2$ probabilities and let M_n for $n=1,2,\ldots$, be the multinomial distribution based on these probabilities and n trials. Event A_n occurs if, during the n trials, no possible outcome of the experiment occurs in two consecutive trials. Find the sum

$$\sum_{n=1}^{\infty} P(A_n).$$

What are the convergence criteria for this sum to exist?

AMM E2705.

by Clark Kimberling

For an experiment having m equally probable outcomes, find the expected number of independent trials for k consecutive occurrences of at least one of these outcomes.

Inequalities

CRUX 484.

by Gali Salvatore

Let A and B be two independent events in a sample space, and let X_A , X_B be their characteristic functions. If $F = X_A + X_B$, show that at least one of the three numbers

$$a = P(F = 2), b = P(F = 1), c = P(F = 0)$$

is not less than 4/9.

TYCMJ 152. by Daniel Gallin

Let E_i (i = 1, 2, ..., n) be events in a probability space. Prove that $\max \{0, \sum_{i=1}^n P(E_i) - n + 1\}$ gives the best lower bound for $P(\bigcap_{i=1}^n E_i)$, given any n prescribed values $p_i = P(E_i)$, $0 \le p_i \le 1$, (i = 1, 2, ..., n).

PUTNAM 1976/B.3.

Suppose that we have n events A_1, \ldots, A_n , each of which has probability at least 1-a of occurring, where a < 1/4. Further suppose that A_i and A_j are mutually independent if |i-j| > 1, although A_i and A_{i+1} may be dependent. Assume as known that the recurrence $u_{k+1} = u_k - au_{k-1}, u_0 = 1, u_1 = 1-a$, defines positive real numbers u_k for $k = 0, 1, \ldots$. Show that the probability of all of A_1, \ldots, A_n occurring is at least u_n .

SIAM 78-16.

by L. A. Shepp and A. M. Odlyzko

Let X_1, X_2, \ldots, X_n be independent random variables and let $Y_i = f_i(X_i)$ where $f_i(x) \uparrow, i = 1, 2, \ldots, n$. Prove or disprove that if

$$A = \{X_1 + X_2 + \dots + X_i \ge 0, \quad i = 1, 2, \dots, n\}$$

and

$$B = \{Y_1 + Y_2 + \dots + Y_i \ge 0, \quad i = 1, 2, \dots, n\},\$$

then $P(A | B) \ge P(A)$.

AMM 6050. by D. E. Knuth

Suppose $X_1, X_2, Y_1, \ldots, Y_{m+n}$ are independent random variables, where X_1 and X_2 have common distribution F and the random variables Y_1, \ldots, Y_{m+n} have common distribution G. Prove that

$$P[X_1 + \max(Y_1, \dots, Y_m) \le X_2 + \max(Y_{m+1}, \dots, Y_{m+n})]$$

lies in the closed interval [1/2, n/(m+n)] when $m \leq n$ and G is differentiable.

Jury decisions

FUNCT 3.1.1.

Two people of a 3-person jury each independently arrive at a correct decision with probability p. The third person flips a coin. The decision of the majority is final. What is the probability of the jury's reaching a correct decision?

Number theory Problems sorted by topic Random variables

Number theory

TYCMJ 57. by Martin Berman

From a set of n counters numbered $0,1,2,\ldots,n-1,$ $(n\geq 2)$, a counter is removed at random, replaced, and then a counter is removed a second time at random.

- (a) What is the probability that the numbers on the two counters satisfy the congruence $x + y \equiv xy \pmod{n}$?
- (b) Show that the maximum probability occurs when n=2.

TYCMJ 135. by Gino T. Fala

Let k be a positive integer consisting of n-1 digits. For $m \geq n$ let S_m be the set of positive integers consisting of m digits. A number is chosen at random from S_m . Denote by $P_m(k)$ the probability that the selected number is divisible by k.

- (a) Determine $P_m(k)$.
- (b) Determine $\lim_{m\to\infty} P_m(k)$.

CRUX 43. by André Bourbeau

In a 3×3 matrix, the entries a_{ij} are randomly selected integers such that $0 \le a_{ij} \le 9$. Find the probability that

- (a) the three-digit numbers formed by each row will be divisible by 11;
- (b) the three-digit numbers formed by each row and each column will be divisible by 11;

JRM 559. by Diophantus McLeod

A positive integer n is selected at random. What is the probability that n is a factor of $1^3 + 2^3 + \cdots + n^3$ but not of $1^2 + 2^2 + \cdots + n^2$?

MM 970. by Martin Berman

A plus or minus sign is assigned randomly to each of the numbers $1, 2, 3, \ldots, n$. What are the probabilities that the sum of the signed numbers is positive, negative, and zero?

PENT 306. by Kenneth M. Wilke

If n is a positive integer selected at random, what is the probability that

$$\frac{(2n+1)(3n^2+3n-1)}{15}$$

is an integer?

Order statistics

ISMJ 10.10.

Using the methods described in an article about high jumping, find for any number y the probability that the runner-up (second highest jump) in n attempts is larger than y.

Permutations

TYCMJ 54. by John P. Hoyt

Let $(i_1, i_2, ..., i_n)$ be a random rearrangement of the first n natural numbers 1, 2, ..., n, where $n \geq 3$. What is the probability that, for each $k, i_k \geq k - 3$?

Random variables

AMM 6195.

by Andreas N. Philippou

For $j=1,2,\ldots$ and $n\geq j$, let X_{nj} and X_j be random variables defined on a probability space (Ω,A,P) . Assume that $\sup_j \mathcal{E}|X_j|^r < \infty \ (r>0)$, where \mathcal{E} denotes expectation under P. Show that

$$\max\left[\mathcal{E}|X_{nj}-X_{j}|^{r},\quad 1\leq j\leq n\right]\rightarrow 0,$$

if and only if

$$\max \left\{ P \left[|X_{nj} - X_j| > \varepsilon \right], \quad 1 \le j \le n \right\} \to 0$$

and

$$\max\left[\mathcal{E}|X_{nj}|^r-\mathcal{E}|X_j|^r,\quad 1\leq j\leq n\right]\to 0.$$

AMM 6031. by I. I. Kotlarski

Let ϕ be a periodic function on $\mathbb R$ with period $2\pi,$ given by

$$\phi(t) = 1 - \sqrt{\frac{|t|}{\pi} \left(2 - \frac{|t|}{\pi}\right)}, \qquad t \in [-\pi, \pi].$$

Prove that ϕ is a characteristic function of a real random variable X, and find its probability structure.

Let $X_1, X_2, \ldots, X_n, \ldots$ be a collection of independent identically distributed random variables, all distributed according to the characteristic function given above. Let

$$Y_n = \frac{(X_1 + X_2 + \dots + X_n)}{n}$$

and

$$Z_n = \frac{(X_1 + X_2 + \dots + X_n)}{n^2}.$$

Show that Y_n does not have a limiting distribution, while the limit distribution of Z_n is the stable distribution with exponent 1/2.

SIAM 76-18. by A. A. Jagers

Let ϕ be a nonnegative function defined on $[0, \infty)$ with $\phi(0) = 0$. Let $\mathcal F$ be the class of all nonnegative random variables X such that $0 < E(X^s) < \infty$ for all s > 0. For $X \in \mathcal F$, s > 0, put

$$q_x(s) = \left[\frac{E(\phi(X)^s)}{E(X^s)}\right]^{1/s}.$$

- (a) Prove that if ϕ is convex, then q_x is nondecreasing for each $X \in \mathcal{F}$.
- (b) Determine a necessary and sufficient condition on ϕ in order that q_x is nondecreasing for each $X \in \mathcal{F}$.

AMM 6103. by Gérard Letac

Let $(X_n)_{n=1}^{\infty}$ be a sequence of independent, identically distributed random variables, valued in a real vector space E of finite dimension d. Let Y be a random linear form on E such that $\lim_{n\to\infty} Y(X_n)$ exists almost surely. If d=1, it is easily proved that either Y=0 almost surely or $X_n=$ constant almost surely. What happens if d>1?

AMM 6114. by R. M. Norton

Let $Z_1 = XY$, where X and Y are independent standard normal random variables, and let Z_1 and Z_2 be independent and identically distributed. Derive the density function f(x) of $Z_1 + Z_2$.

Random variables

Problems sorted by topic

Selection problems: distribution problems

AMM 6104.

by Leonard W. Deaton

Let X and Y be independent normal random variables with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 , respectively. Let

$$f(z) = \frac{\sigma_1 \sigma_2}{\pi \left(\sigma_1^2 + \sigma_2^2 z^2\right)}, \quad -\infty < z < \infty.$$

Is f the probability density function of Z = X/Y?

AMM 6030.

by David Griffeath

Let X and Y be jointly distributed real random variables. Consider the following conjecture: If X, Y, X+Y, and X-Y are all identically distributed, then X=0 almost surely. Prove or disprove the conjecture in the following cases:

- (a) if X is square-integrable;
- (b) if X is integrable;
- (c) in general.

AMM 6174

by Barthel W. Huff

A family $\mathcal{F} = \{X_{\lambda} | \lambda \in \Lambda\}$ of random variables is said to be uniformly integrable if

$$\lim_{\alpha \to \infty} \sup_{\lambda} E|X_{\lambda}| \cdot I_{[|X_{\lambda}| \ge \alpha]} = 0,$$

where I_A is the indicator function of the event A. One sufficient condition for uniform integrability is that there exists a random variable Y such that $|X_{\lambda}| \leq Y$ a.s., for all λ , and $EY < \infty$. A weaker sufficient condition is that there exists a nonnegative random variable Y such that

$$P[|X_{\lambda}| \ge \alpha] \le P[Y \ge \alpha],$$

for all $\alpha > 0$, for all λ and $EY < \infty$. Is the converse to the weaker condition true?

Random vectors

AMM 6175.

by Ignacy I. Kotlarski

Let

$$(X_1, X_2, \ldots, X_n)$$

be an n-dimensional real random vector. Consider the random polynomial of order $n,\ n=2,3,\ldots$, on the complex plane

$$P_n(\lambda) = (\lambda - X_1)(\lambda - X_2) \cdots (\lambda - X_n), \quad \lambda \in \mathbb{Z}$$

and define

$$Z_n = \frac{1}{i} \frac{P_n(i) - (-1)^n P_n(-i)}{P_n(i) + (-1)^n P_n(-i)}, \qquad n = 2, 3, \dots$$

Show that if one of the X_k is independent from the others and follows the Cauchy distribution

$$P(X_k \leq x) = \frac{1}{2} + \frac{1}{\pi} \arctan x, \qquad x \in \mathbb{R},$$

then all the Z_n are real random variables having the same Cauchy distribution.

AMM 6207. by Ignacy I. Kotlarski

Let X and Y be two independent (2n+2)-dimensional normal random vectors with means 0 and positive definite variance covariance matrices C and C^{-1} , respectively $(n=0,1,\ldots)$. Find the distribution of their inner product $Z=X\cdot Y$.

Relative motion

SIAM 76-13.

by L. K. Arnold, L. Dodson, and L. Rosen

Two ships A and B are cruising along straight line paths in a planar ocean at constant speeds u and v, respectively. If B's direction is a random variable uniformly distributed over $(0,2\pi]$, then the expected speed of B relative to A is given by

$$z = \int_0^{2\pi} \left\{ u^2 + v^2 - 2uv \cos \theta \right\}^{1/2} \frac{d\theta}{2\pi} .$$

We have found that

$$\overline{z} = x + .27y^2/x,$$

where $x = \max(u, v)$, $y = \min(u, v)$, is a fair approximation to z. More precisely, $|z - \overline{z}| \le .25$ knots for u, v = 0(.25)40. Prove or disprove the latter error bound for all u, v between 0 and 40.

Selection problems: distribution problems

JRM 379. by Harry L. Nelson

Admiring the wit of his court jester, the King decided to exercise it by subjecting him to a test. Four bags would be brought up from the treasury, containing four gold, four silver, four copper, and four zinc coins, respectively.

The King would randomly pick four of the sixteen coins, unobserved by the Jester, put these four coins in his pocket, summon the Jester and hand him two of the coins, randomly pulled from his pocket. The Jester, after looking at the two sample coins, would then attempt to guess the nature of the two coins left in the King's pocket (that is, "Zinc, Zinc" or "Gold, Zinc," with the order of the two metals in the latter case irrelevant).

"What do I get, Sire, if I guess right?" asked the Jester. "All four of the coins from my original random selection."

"And what do I get if I miss completely or guess half right?"

"The chance to repeat the experiment a year from now."

"What random process will you use, Sire, to obtain the four coins?" $\,$

"A random selection is a random selection, Sirrah!"

"Yes, Sire, but two different selection schemes, both random, could result in quite different probability distributions. Two natural schemes that occur to me are to mix all 16 coins together and pull out four at random, or to choose randomly four times one of the four bags, with replacement of the chosen bag after each of the first three picks. The four coins would be determined by the number of times the various bags were picked. Thus if you picked the gold coin bag once and the zinc coin bag three times, your pocket sample would consist of one gold and three zinc coins. Another scheme that occurs to me ..."

"You try our patience, Jester. You may choose between your two schemes. Tell the Chancellor of the Exchequer to fetch the bags."

Which scheme should the Jester choose in order to maximize his probability of making a correct guess?

If the King had decreed instead that the Jester need only guess correctly the number of different metals represented in the pocket sample of four, which scheme would give the Jester the better chance of guessing correctly?

In both the above variants and under each of the two schemes, what are the Jester's optimal guesses if the relative values of gold, silver, copper, and zinc coins are 4:3:2:1?

Selection problems: distribution problems

Problems sorted by topic

Selection problems: urns

OMG 17.2.1.

A prisoner is given ten green balls, ten red balls, and two identical boxes. He is told that an executioner, while blindfolded, will randomly select one of the two boxes and will then randomly withdraw one ball from the box selected. If the ball drawn is green, the prisoner will be set free; but if the ball drawn is red, the prisoner will die. If the prisoner arranges the balls in the boxes so that he will have the best chance for survival, find the probability of his survival.

Selection problems: horse racing

AMM 6041. by S. W. Golomb

There are n horses in a "random" horse race, in which all n! orders of finish are equally probable a priori. A gambler is allowed to select k horses, to finish first, second,

- (a) What is the probability $Q_n(k,i)$ that exactly i of his k selections will finish among the first k?
- (b) What is the probability $P_n(k,i)$ that exactly i of his k selections will finish in the precise positions predicted

Selection problems: limits

NAvW 509.

by J. H. van Lint and N. J. A. Sloane

After serving French fries for many years, Heinz has become an expert. If you ask for, say, 27 French fries, he reaches in and scoops out almost exactly 27. He is so good now that he always gets within one of the number you want. It turns out that if one asks for a number of French fries, then Heinz picks uniformly from the admissible subsets. Assume that there are n French fries, and you ask for a number picked at random between 0 and n. Let P_n be the probability that Heinz scoops out exactly the number you ask for. Determine $\lim_{n\to\infty} P_n$.

Selection problems: points

NAvW 480. by O. Bottema

Two points are chosen at random and independently, on a line segment s. The distribution of each random point is uniform with respect to length. Determine the probability that an acute triangle can be constructed whose sides are equal to the three parts into which s is divided.

JRM 650. by Daniel P. Shine

Four birds land at random positions on a finite length of wire. Upon landing, each bird looks at its nearest neigh-

- (a) What is the probability that a bird picked at random is looking at another bird that is looking at it?
- (b) What is the probability if there are n birds, with n > 4?

TYCMJ 96. by Milton H. Hoehn

On a line segment of length l, n points are selected at random. What is the expected value of the sum of the distances between all pairs of these points?

Selection problems: sets

AMM 6155.

by Milton P. Eisner Let $\{x_1, x_2, \dots, x_k\}$ be a set of numbers. Define the

width of the set to be $\min_{i\neq j}\{|x_i-x_j|\}$. Suppose the k numbers are selected at random from the set $\{1, 2, ..., n\}$. Find the expected value of the width of the resulting set if the numbers are chosen without replacement.

Selection problems: socks

JRM 621. by Friend H. Kierstead, Jr.

Individual socks from N distinguishable pairs are removed one by one from a dryer. Every time the second member of a pair is removed, it is matched immediately with its mate and the two are rolled together and set aside. What is the expected maximum number of unmatched socks?

Selection problems: sum of squares

AMM 6187.

by Ronald Evans

Let X_1, X_2, \ldots be a sequence of random numbers, uniformly distributed in [0,1], and let N be minimal such that

$$\sum_{1 \le i \le N} X_i^2 > 1.$$

Show that the expected value of N is

$$e^{\pi/4}\left(1+\int_0^1 e^{-\pi t^2/4}\,dt\right).$$

Selection problems: sums

AMM E2696. by William P. Wardlaw

- (a) If numbers are drawn randomly (using uniform distribution with replacements) from the set $\{1, 2, ..., n\}$ until their sum first exceeds n, what is the expected number of
- (b) Solve the same problem for numbers selected from the set $\{0, 1, \ldots, n-1\}$, until their sum exceeds n-1.

by Gene Zirkel

A sequence of real numbers, $x_1, x_2, x_3, \ldots, x_n$, are picked at random from the interval [0,1]. This random selection is continued until their sum exceeds one and is then stopped. It is known that the expected value of the number N of reals chosen is given by EN = e.

What is EN if we instead continue until the sum exceeds two?

Selection problems: unit interval

PME 429. by Richard S. Field

Let P denote the product of n random numbers selected from the interval (0,1). Is the expected value of P greater or less than the expected value of the nth power of a single number randomly selected from the interval (0,1)?

Selection problems: urns

SSM 3648. by Wayne Wild

An urn contains r red balls and b blue ones. The numbers r and b are such that if two balls are chosen simultaneously at random, the probability that they will be of opposite color is 1/2. Characterize the numbers r and b.

Selection problems: urns Problems sorted by topic Sports

CRUX 117.

by Paul Khoury

The sultan said to Ali Baba: "Here are two urns, a white balls and b black balls. Distribute the balls in the urns, then I shall make the urns indistinguishable. To save your life, you must select one black ball." How can Ali Baba maximize his chances?

AMM E2722.* by Clark Kimberling

A ball is drawn from an urn containing one red ball and green ball. If it is red, it is returned to the urn with one additional red ball and one additional green ball, but if it is green, no balls are put into the urn. After the first drawing, subsequent drawings take place following the same rules. Find the probability that the urn always contains at least one green ball.

by Mark Wetzel JRM 623.

An urn starts with one red and one green marble, and successive random samples are taken from it consisting of one marble, the sampling process terminating when a red marble is drawn. Determine the expected number of samples and the most probable number of samples if, after a green marble is drawn, it is replaced, together with another:

- (a) green marble;
- (b) red marble.

AMM E2724. by Harry Lass

An urn contains k_1 white balls, k_2 red balls, and k_3 blue balls. The balls are withdrawn one at a time at random without replacements until all balls of one color (red, white, or blue) have been removed.

- (a) Determine the probability that all white balls are removed first.
- (b) Determine the expected number of trials until all balls of some one color have been removed.

FUNCT 3.2.4.

A bag contains three red balls and five white ones. Balls are drawn at random from the bag without replacement, until all have been withdrawn. Show that the probability of getting a red ball on any particular draw is 3/8.

ISMJ 12.4.

Two boxes each contain three beads, one has 2 white and 1 red, the other 1 white and 2 red. A player chooses a box at random and a bead is taken at random from it. Having observed the color of the bead, the player may choose a second bead at random from the same box (without replacing the first) or from the other box. Find the probability that the second bead is red for each of the four strategies described in the article in the issue containing this problem.

Sequences

by A. J. Bosch and D. A. Overdijk NAvW 489.

Given are n different symbols. Let β be a finite sequence of these symbols. A machine produces these symbols successively such that every symbol has probability 1/n to be produced. The machine operates such that it stops as soon as a tail piece of the produced sequence equals β . The expectation of the length of the produced sequence will be denoted by μ and the variance by σ^2 .

(a)
$$\mu = \sum_{\ell \in I} n^{\ell}$$
,

Prove:
(a)
$$\mu = \sum_{\ell \in L} n^{\ell}$$
,
(b) $\sigma^2 = \mu^2 - \sum_{\ell \in L} (2\ell - 1)n^{\ell}$,

where the set L is defined as follows: $L = \{\ell \in \mathbb{N} \mid \text{there} \}$ exists an initial piece of β with length ℓ that is also a tail piece of β }.

AMM 6146.

by Edward J. Wegman and Anton Glaser

Sir Francis Bacon assigned the 24 letters of the alphabet (j and u were absent) to the first 24 five-bit strings from 00000 to 10111. The word "Bacon" would appear as

> 00010 00001 00000 01101

and this in turn could be hidden in a covertext of at least 25 letters, such as

Here, "0" was replaced by one type style (in this case Roman) and "1" by another (in this case, italic). Thus, the 4,500,000 letters of the First Folio may be interpreted as a string of 4,500,000 binary digits.

What is the probability that the message "Bacon wrote this" appears in the First Folio "by accident" if

- (a) the probability of a letter's being Roman is 1/2?
- (b) the probability of a letter's being italic is 1/10?

Sets

AMM 6248.

by Milton P. Eisner

Let the set $S = \{1, 2, \dots, mn\}$, where m and n are positive integers, be partitioned randomly into n subsets each with m elements. For $0 \le k \le n$, what is the probability P(m, n, k) that exactly k of these subsets have the property of consisting of m consecutive integers?

Slide rules

JRM 592.

by Les Marvin

Two randomly selected numbers are to be multiplied together on a slide rule. What is the probability that, in lining up the index, the C scale must be moved to the left rather than to the right?

Sports

JRM 441. by Sidney Kravitz

Two baseball teams play in a World Series in which the first team to win four games wins the series. If the teams have an equal likelihood of winning any game, what is the probability that the series will run 4 games, 5 games, 6 games, and 7 games?

JRM 573. by Harry Nelson

Suppose two opposing pitchers both throw balls and unhittable strikes randomly but with ball or strike equally probable. Because of the low expectation of a run in any half inning, chances are high that the game will end with a score of 1-0 after extra innings. In any event, determine both the expected and the most probable number of innings. When a game ends with t outs in the home half of the nth inning (n > 8), the game is considered to have lasted $n - \frac{1}{2} + \frac{t}{6}$ innings.

PME 373. by Joe Dan Austin

Assume that the number of shots at the goal in a hockey game is a random variable Y that has a Poisson distribution with parameter λ . Each shot is either blocked or is a goal. Assume each shot is independent of the other shots and p = P[a shot is blocked] for each shot. Find the probability that there are exactly k goals in a game for $k = 0, 1, 2, \dots$

Sports Problems sorted by topic Tournaments

JRM 387.

by Travis Fletcher

MATYC 117. by Richard Gibbs Suppose the scores on an exam are ranked as follows:

serves in his arsenal — a hard one that is very effective if it score 100 95 9493 89 83 80 lands and a soft one that lands with greater reliability but is not as effective when it does. Assume that the hard serve 5.57 8.511.514 15.518.5rank lands fairly with probability 1/2 and when it does, Server

p that if the soft serve lands safely, Server will win the point.

With the usual tennis allowance of two serves, Server has four possible serving strategies, unambiguously denoted

has a 3/4 chance of winning the point. Assume that the soft

serve lands fairly 3/4 of the time, and let the probability be

Server, against his perennial tennis opponent, has two

HH, HS, SH, and SS.

For what ranges of p are each of the four serving strategies optimal?

Statistics

MATYC 115. by Ronald McCuiston

Prove that if the X-scores are all the same, then $r_s = 0.5$ where r_s is the Spearman Rank Correlation Coefficient.

MSJ 467.

Two teachers, working independently of one another, communicate to the publisher that their classes found 64 and 55 mistakes respectively in the same textbook. Comparison shows that exactly 40 of the mistakes were found by both classes. Estimate the number of mistakes that remained unnoticed by either of them.

JRM 376. by Richard S. Field Jr.

In 1900 the man-made, land-locked, freshwater Lake Stochastica was stocked with fish of several different species, no two species from the same "family" (in the sense of common usage, as opposed to the taxonomic sense). In other words, if any trout were stocked, they were all of the same species. Unfortunately, no records were kept as to the number of different species stocked, so the only upper bound we may assume in estimating the number of species presently in the lake is 750, which we will suppose is the number of distinct freshwater fish "families" on the planet. We know nothing about the relative proportions with which the original fish were stocked, nor do we know about the probable rate of growth of one species vis-a-vis another in the unusual environment of Lake Stochastica.

We do have reason to believe that the fish population has reached stability, both in absolute size and in relative proportion of species, because the Bureau of fisheries, using valid mark-sampling techniques in 1950, 1960, and 1970, found on each occasion that the estimated total fish population as well as the relative proportion of the various species was the same. Unfortunately, all records about the distinct species observed were lost, and all that remains is the Bureau's estimate that the total fish population of Lake Stochastica between 1950 and 1970 had peaked out at one million. Fortunately, the Lake has been protected from pollution, so the estimate of one million is still valid.

Recently, a research team from *Piscator Magazine* took a random sample of 1000 fish from the Lake, using methods that ensured that every one of the million fish, regardless of age, size, or habits peculiar to its species, had an equal chance of being netted. The sample consisted of 300 bass, 350 catfish, 200 gar, 150 perch, and 100 salmon. Had the sample been ten times as large, perhaps more than five species would have been netted, but *Piscator's* budget is limited. Using the data at hand, is there a statistically valid method for arriving at a "best" estimate of the total number of different fish species in Lake Stochastica?

SIAM 78-7. by John Haigh

How many scored 83? How many scored higher than 83?

Given a Poisson process P of rate λ whose successive points are P_1, P_2, \ldots , construct a process Q as follows. Let U_1, U_2, \ldots be a sequence of independent identically distributed random variables taking values in [0,1] and independent of P, and let the point Q_n of Q be placed in the interval $[P_n, P_{n+1}]$ so as to divide the interval in the ratio $U_n: 1-U_n$. Find necessary and sufficient conditions for Q to be a Poisson process.

JRM 480. by David L. Silverman

A point moves on an infinite rectangular lattice. At each stage, it moves with equal probability to one of the rookwise adjacent vertices that has not been previously occupied. With probability one it will eventually be stymied, although the potential number of moves prior to the stymie is obviously unbounded. Estimate the average duration of such a random walk.

Student's *t*-distribution

Stochastic processes

AMM 6092. by Ignacy Kotlarski

Let X_1 and X_2 be two independent Student distributed random variables with 1 and 3 degrees of freedom, respectively. Define

$$Y = \frac{1}{2}X_1\sqrt{3} + \frac{1}{2}X_2.$$

Show that the probability density functions of X_1 , X_2 , Y satisfy the relation

$$f_Y(y) = \frac{1}{2} f_{X_1\sqrt{3}}(y) + \frac{1}{2} f_{X_2}(y)$$

almost everywhere on \mathbb{R} .

Can this analogy be generalized to

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n,$$

where X_1, \ldots, X_n are independent, Student distributed with $1, 3, \ldots, 2n-1$ degrees of freedom, and a_1, a_2, \ldots, a_n are constants?

Tournaments

JRM 568. by Michael Lauder

Al, Bob, Carl, and Don were the four quarterfinalists in a Pong Tournament. They were paired off for the two semifinal matches. Then the two winners played in the finals for the championship, while the two semifinal losers played a consolation match for third place. I had a hunch that Al would meet Bob in the tournament and would beat him, but when I asked Al if my hunch had been right, he said no. Assuming he told me the truth, what is the probability that Bob won the tournament?

Probability

Transportation Problems sorted by topic Waiting times

Transportation

CRUX 68.

by H. G. Dworschak

It takes 5 minutes to cross a certain bridge and 1000 people cross it in a day of 12 hours, all times of day being equally likely. Find the probability that there will be nobody on the bridge at noon.

SIAM 75-8. by L. J. Dickson

The city has only one hospital and all ambulances are based there. Streets are so crowded that any ambulance on duty, whether going or returning, strikes and injures pedestrians at an average of one per mile. More precisely, an ambulance traveling over a stretch of Δx miles always has the probability $\exp(-\Delta x)$ of injuring nobody and the probability zero of hitting more than one person at once. Each downed pedestrian is picked up by a different ambulance.

A man at a distance d miles from City Hospital has a heart attack and calls for an ambulance.

- (a) Find the probability $P_k(d)$ that exactly k pedestrians will be injured by all of the ambulances.
 - (b) What is the expected value of k?

MM 1034.

by Marlow Sholander

We are familiar with the standard clover-leaf interchange [CLI] which has, inside the four ramps for making right-hand turns, the arrangement whereby left-hand turns are achieved by turning right into lanes which outline the four leaf clover. Your car approaches the CLI from the south. A mechanism has been installed so that at each point where there exists a choice of directions, the car turns to the right with fixed probability r.

(a) If r = 1/2, find P(emerge from CLI going west).

(b) Which r maximizes P in (a)?

Waiting times

PENT 313. by Michael W. Ecker

Joe and Moe plan to meet for lunch at the pizza parlor between noon and 1:00 PM but they can't decide what time to meet. Joe suggested that whoever arrives first should wait 10 minutes for the other before leaving.

Moe likes Joe's suggestion but he wonders if a 10-minute wait will guarantee that they will have at least an even chance of meeting for lunch. Assuming each of Joe's and Moe's times of arrival are random, what is the minimum time the first to arrive must wait to guarantee that their probability of having lunch together is at least 1/2?

Recreational Mathematics

Alphametics: animals Problems sorted by topic Alphametics: doubly true

Alphametics: animals

JRM 514. by Michael R. W. Buckley

Solve the alphametic:

$$CLEAR + LAKES + LURE + LARGE = DRAKES.$$

where DRAKES is as large as possible.

Alphametics: chess moves

JRM 639. by Michael Keith

Solve the chess alphametic

$$(B-B6) + (K-R6) + (B-B5) + (K-R7) + (B-Q5) + (K-R8) + (O-O) = MATE$$

where the numbers which already appear may be reused, the dash stands for a digit, (0-0) represents the castling move, and $Q \geq 3 \times B$. Can anyone come up with a chess alphametic having DRAW as its solution?

JRM 721. by Michael Keith

Solve the chess alphametic

$$(K-f4) + (P-c5) + (P-d5) + (P-f5) + (K-g5) + (P-f4) + (P-f3) = QZAP$$

where the numbers which already appear may be reused and the dash stands for a digit.

Alphametics: Christmas

JRM 413. by Sidney Kravitz

Solve the alphametic:

$$TOYS + NOEL + SANTA = CLAUS$$

where the prime interest of many children will be in their TOYS

Alphametics: congruences

JRM 456. by Randall J. Covill

Find the smallest positive integral values of S, P, O, T, and I such that the following is true (the * indicates multiplication):

$$\mathtt{S} * \mathtt{P} * \mathtt{O} * \mathtt{T} \equiv 0 \pmod{462}$$

$$I * S \equiv 0 \pmod{12}$$

$$T * O * P * S \equiv 3 \pmod{5}.$$

Alphametics: constructions

JRM 707. by Saburo Tamura

There are 2,401 unique-solution decimal cryptarithms of the form 3 digits + 3 digits = 4 digits. For example, EEL + OWL = ODDY.

- (a) How many decimal cryptarithms are there of the form 3 digits + 1 digit = 4 digits?
 - (b) How many of them have unique solutions?
- (c) How many of these are realizable with English words?

Alphametics: cubes

PME 381. by Clayton W. Dodge

Solve the following alphametics:

$$ICE^3 = ICYWHEEE$$

$$ICE^3 = ICYOHOH.$$

Alphametics: division

JRM 403. by R. S. Johnson

Solve the alphametic: NEST/EDEN = .UNSAIDUNSAID...

OSSMB 77-8.

Each letter below represents a different digit, where $\mathtt{THA} - \mathtt{TZE} = \mathtt{TB}$, $\mathtt{TBY} - \mathtt{TZE} = \mathtt{BK}$, $\mathtt{BKE} - \mathtt{TZE} = \mathtt{EKZ}$, and $\mathtt{EKZR} - \mathtt{EAZY} = \mathtt{EBB}$. Find the digits.

$$\frac{\text{THAYER}}{\text{IRA}} = \text{EEEY}$$

SSM 3645. by Alan Wayne

Solve the long division alphametic:

MY) JUG(IS

NO MUG

MUG.

SSM 3654. by Alan Wayne

Solve the long division alphametic:

ED)OIL(UP

AN EEL

EEL.

Alphametics: doubly true

JRM 436. by Sidney Kravitz

Solve the alphametic:

$$EEN + TVEIR + TRE + VIER = DIECI$$

where the sum of the digits of TRE is 10.

JRM 414. by Herman Nijon

Solve the alphametic:

$$TWINTIG + TWINTIG + DERTIG + DERTIG = HONDERD$$

where TWINTIG is not divisible by 3, but DERTIG is divisible by 3.

JRM 415. by Herman Nijon

Solve the alphametic:

TWENTY + TWENTY + THIRTY + THIRTY = HUNDRED.

CRUX 491. by Alan Wayne

Solve the alphametic:

$$UN + DEUX + DEUX + DEUX + DEUX + DEUX = ONZE.$$

JRM 749. by Masazumi Hanazawa

Solve the alphametic:

$$ONE + TWO + TWO + THREE + THREE = ELEVEN.$$

Alphametics: doubly true Problems sorted by topic Alphametics: doubly true

CRUX 481.

by Herman Nyon

Solve the alphametic

DEUX + DEUX + DEUX + TROIS + TROIS = DOUZE

where DEUX is divisible by 2 and DOUZE is divisible by 8.

NYSMTJ 91.

by Alan Wayne

Solve the alphametic:

12(UNIT) = TWELVE.

JRM 368.

by Michael R. Buckley

Solve the alphametic:

 $\mathtt{ONE} + \mathtt{ONE} = \mathtt{TWO}.$

What is the lowest base in which this alphametic has a unique solution?

SSM 3618.

by Charles W. Trigg

In each of two different bases, there is a solution of the doubly-true cryptarithm:

ONE + ONE = TWO

in which the digits uniquely represented by the letters, in some order, are consecutive. Find the two solutions and show that there are no others involving consecutive digits in any base.

JRM 584.

by Michael Keith

Solve the alphametic:

 $\mathtt{UNO} + \mathtt{UNO} = \mathtt{DOS}.$

This alphametic has a unique solution in one and only one positive base b. Find b and show that it is indeed unique.

CRUX 341.

by Herman Nyon

Solve the alphametic

 $\mathtt{TROIS} + \mathtt{TROIS} + \mathtt{SEPT} + \mathtt{SEPT} = \mathtt{VINGT}$

where SEPT is divisible by 7.

JRM 398.

by Steven Kahan

Solve the alphametic:

ELEVEN + THREE + TWO + TWO + TWO = TWENTY.

JRM 399.

by Steven Kahan

Solve the alphametic:

ELEVEN + THREE + TWO + TWO + ONE + ONE = TWENTY

where THREE is divisible by 3.

JRM 400.

by Steven Kahan

Solve the alphametic:

 $\mathtt{ELEVEN} + \mathtt{THREE} + \mathtt{ONE} + \mathtt{ONE} + \mathtt{ONE} + \mathtt{ONE} + \mathtt{ONE} + \mathtt{ONE} = \mathtt{TWENTY}$

where THREE is divisible by 3.

JRM 437.

by Sidney Kravitz

The following alphametic was published earlier:

NINE

EIGHT

THREE

TWENTY

Solve the alphametic where these numbers are vertical:

T.

ETW

NIHE

IGRN

NHET

ETEY

In both alphametics, the sum of the digits of TWENTY is 20 and only nine of the ten digits are used; the missing digit is the same in both cases.

JRM 486.

by Steven Kahan

Solve the alphametic:

SEVEN + FIVE + FIVE + ONE + ONE + ONE = TWENTY

where SEVEN is divisible by 7.

JRM 576.

by R. S. Johnson

Solve the alphametic:

 $\mathtt{EIGHT} + \mathtt{THREE} + \mathtt{THREE} + \mathtt{THREE} + \mathtt{THREE} = \mathtt{TWENTY}$

where EIGHT, THREE, and TWENTY are all divisible by 83.

JRM 612.

by Herman Nijon

Solve the alphametic:

CUATRO + CUATRO + CUATRO + CUATRO + CUATRO = VEINTE.

JRM 691.

by Masazumi Hanazawa

Solve the alphametic:

THREE + THREE + THREE + ELEVEN = TWENTY.

CRUX 281. JRM 725. by Alan Wayne by Gordon S. Lessells

Solve the alphametic

 $\mathtt{HUIT} + \mathtt{HUIT} + \mathtt{HUIT} = \mathtt{DOUZE} + \mathtt{DOUZE}.$

JRM 719.

Solve the alphametic:

 $\mathtt{TEN} + \mathtt{NINES} + \mathtt{LESS} + \mathtt{SIXTY} = \mathtt{THIRTY}$

where NINES is divisible by 9.

PME 391.

by Clayton W. Dodge

by Dave Millar

Solve the alphametic:

TWELVE + NINE + NINE = THIRTY

where NINE is divisible by 9.

JRM 693.

by Herman Nijon

Solve the alphametic:

ZEVEN + DRIE + TIEN + TIEN = DERTIG.

Problems sorted by topic Alphametics: doubly true Alphametics: doubly true

JRM 578. **TYCMJ 142.** by Michael R. W. Buckley by Alan Wayne

Solve the alphametic:

 $\mathtt{COUPLE} + \mathtt{COUPLE} = \mathtt{QUARTET}.$

NYSMTJ 37.

by Alan Wayne

Solve the simultaneous cryptarithms:

TWO + TWO = FOUR

 $TWO \times W = FOUR.$

JRM 418.

by Steven Kahan

Solve the alphametic:

FOURTEEN + SEVEN + TEN + TEN = FORTYONE.

JRM 458.

by Steven Kahan

Solve the alphametic:

FOURTEEN + FIVE + FIVE + FIVE + FIVE

+ FIVE + ONE + ONE = FORTYONE

where FOURTEEN is divisible by 7.

JRM 665-3.

by Jay Stevens

Solve the alphametic:

FOURTEEN + ELEVEN + 16(ONE) = FORTYONE.

JRM 543.

by Herman Nijon

Solve the alphametic:

7(SEVEN) = FORTY9

where SEVEN is divisible by 7.

JRM 665-2.

by Dave Millar

Solve the alphametic:

FORTY + NINE + IS + SEVEN = SEVENS.

JRM 727.

by Frank Rubin

Solve the alphametic

 $SEVEN \times SEVEN = FORTYNINE$

in the smallest possible base.

JRM 774.

by Hans Havermann

Solve the alphametic:

ONE + ONE + ONE + ONE = FOUR + ONE = FIVE.

JRM 409.

by Brian R. Barwell

Solve the alphametic:

25(TWO) = FIFTY.

JRM 459.

by Steven Kahan

Solve the alphametic:

 $\mathtt{SEVEN} + \mathtt{SEVEN} + \mathtt{THREE} + \mathtt{THREE} + \mathtt{TEN} + \mathtt{TEN} + \mathtt{TEN} = \mathtt{FIFTY}$

where SEVEN is divisible by 7.

JRM 636.

by Dave Millar

Solve the alphametic:

FIVE + TIMES + TEN + IS = FIFTY

where FIVE is divisible by 5 and TEN is divisible by 10.

JRM 641.

by Alf D. Seider

2(NINETEEN) + FIVE + FIVE + SIX + ONE + ONE = FIFTYSIX

where SIX is even.

JRM 432.

by Steven Kahan

Solve the alphametic:

Solve the alphametic:

6(EIGHT + TWO) = SIXTY

where EIGHT is divisible by 8.

JRM 746.

by Herman Nijon

Solve the alphametic:

DOZEN + DOZEN + DOZEN + DOZEN + DOZEN = SIXTY

where DOZEN is divisible by 12, and so is its digital sum.

JRM 583.

by Jay Stevens

Solve the alphametic:

2(FIFTEEN) + 3(SEVEN) + TEN = SIXTYONE.

JRM 544.

by Herman Nijon

Solve the alphametic:

8(EIGHT) = SIXTY4.

JRM 492.

by Anton Pavlis

Solve the alphametic:

WE + ADD + 3AND4 = SEVEN.

CRUX 451.

Solve the alphametic

TWENTY + TWENTY + THIRTY = SEVENTY,

where THIRTY is divisible by 30.

JRM 364.

by S. Kahan

Solve the alphametic:

SIXTEEN + THIRTY + SIX + SIX + SIX + SIX = SEVENTY

where SEVENTY is even.

JRM 525.

by Steven Kahan

Solve the alphametic:

TWENTY + 4(ELEVEN) + THREE + THREE = SEVENTY.

JRM 526.

by Steven Kahan

Solve the alphametic:

TWENTY + 4(ELEVEN) + SIX = SEVENTY.

JRM 608.

by Michael R. W. Buckley

5(ELEVEN) + SEVEN + SEVEN + HALF + HALF = SEVENTY.

Solve the alphametic:

JRM 726.

by Alf D. Seider

Solve the alphametic:

FIFTEEN + FIFTEEN + 10(THREE) + TEN = SEVENTY.

Alphametics: doubly true Problems sorted by topic Alphametics: money

JRM 750.

by Kenneth Vasa

Solve the alphametic:

 $\mathtt{SIXTEEN} + \mathtt{TWENTY} + \mathtt{3}(\mathtt{TEN}) + \mathtt{TWO} + \mathtt{TWO} = \mathtt{SEVENTY}$

where SEVENTY is even.

JRM 516. FQ B-312. by Frank Rubin

Solve the alphametic:

by J. A. H. Hunter

THREE + TWO + ONE + ONE + ONE = EIGHT.

JRM 517.

by Frank Rubin

Solve the alphametic:

 $\mathtt{THREE} + \mathtt{TWO} + \mathtt{TWO} + \mathtt{ONE} = \mathtt{EIGHT}.$

FQ B-316.

by J. A. H. Hunter

Solve the alphametic

TWO + THREE + THREE = EIGHT

where none of the digits is an 8.

JRM 369.

by A. G. Bradbury

Solve the alphametic:

 $\mathtt{THEN} + \mathtt{TEST} + \mathtt{EIGHT} + \mathtt{TIMES} + \mathtt{TEN} = \mathtt{EIGHTY}$

where EIGHTY is even.

JRM 611.

by Masazumi Hanazawa

Solve the alphametic:

 ${\tt TWENTY} + {\tt TWENTY} + {\tt TWENTY} + {\tt TEN} + {\tt TEN} = {\tt EIGHTY}.$

JRM 640.

by T. Rosler

Solve the alphametic:

16(FIVE) = EIGHTY.

JRM 665-1.

by Masazumi Hanazawa

Solve the alphametic:

 $\mathtt{TEN} + \mathtt{TEN} + \mathtt{TEN} + \mathtt{TEN} + \mathtt{TWENTY} + \mathtt{TWENTY} = \mathtt{EIGHTY}.$

JRM 775.

by Masazumi Hanazawa

Solve the alphametic:

 $\mathtt{THREE} + \mathtt{THREE} + \mathtt{FIVE} + \mathtt{NINE} + \mathtt{THIRTY} + \mathtt{THIRTY} = \mathtt{EIGHTY}.$

CRUX 261.

by Alan Wayne

Solve the alphametic

UN + DEUX + DEUX + DEUX + DEUX = NEUF.

JRM 613.

by Edwin Floyd

Solve the alphametic:

TPIA + TPIA + TPIA = ENNEA.

JRM 692.

by Edwin E. Floyd

Solve the alphametic:

TRIA + DVO + DVO + DVO = NOVEM.

JRM 433.

by Steven Kahan

Solve the alphametic:

 ${\tt ELEVEN} + {\tt SIXTY} + {\tt SEVEN} + {\tt SEVEN} + {\tt FIVE} = {\tt NINETY}.$

JRM 485.

by Steven Kahan

Solve the alphametic:

FIFTY + SEVEN + SEVEN + EIGHT + EIGHT + TEN = NINETY

where SEVEN is divisible by 7.

JRM 776.

by Jay Stevens

Solve the alphametic:

SIXTY + 3(EIGHT) + THREE + THREE = NINETY

where NINETY is even.

Alphametics: elements

JRM 520.

by Herman Nijon

Solve the alphametic:

OXYGEN + XENON + ARGON + NEON = NATURE.

Alphametics: equations

OSSMB 77-15.

by Stephen Maulsby

Each letter in the arithmetic operations below represents a different digit. Find these digits.

Alphametics: food

CRUX 351.

by Sidney Kravitz

Solve the alphametic

GRAPE + APPLE = CHERRY.

CRUX 381.

by Sidney Kravitz

Solve the alphametic

 $\mathtt{BETTE} + \mathtt{TOMATE} = \mathtt{OIGNON}.$

JRM 717.

by Sidney Kravitz

Solve the alphametic:

PEPPER + PARSNIP = SPINACH.

JRM 720.

by Ronald J. Lancaster

Solve the alphametic:

A + TREAT + CARTER + PEANUT = BUTTER.

Alphametics: letters

JRM 723.

by Herman Nijon

Solve the alphametic:

 $\mathtt{ALPHA} + \mathtt{BETA} + \mathtt{GAMMA} = \mathtt{OMEGA}$

where OMEGA is largest.

Alphametics: money

JRM 779.

by Gordon S. Lessells

Solve the alphametic:

5(POUND) = DOLLAR + DOLLAR.

Problems sorted by topic Alphametics: multiplication Alphametics: names

Alphametics: multiplication

CRUX 321. by Alan Wayne

Solve the alphametic

 $\mathtt{ONE} \times \mathtt{ONE} = \mathtt{BYGONE}.$

CRUX 471. by Alan Wayne

Solve the alphametic:

WF.

D0

TAM

HAT TRIM

ISMJ 14.8.

Solve the alphametic:

 $9 \times \text{HATBOX} = 4 \times \text{BOXHAT}.$

JRM 615. by Alan Wayne

Solve the alphametic:

WE)GOT(US

AN OUT

OUT

JRM 669. by Rosann Hyler

It might seem that over 8000 different solutions to the following alphametic should be possible. However, the alphametic is

$$(NOT)(8***) = VALUED$$

when zero is allowed only as an asterisk and 8 may be reused.

JRM 752. by Frank Rubin

Solve the alphametic:

 $\mathtt{NINE} \times \mathtt{FOR} \times \mathtt{EVER} = \mathtt{GOGOGOGOGO}.$

SSM 3673. by Alan Wayne

Solve the following two alphametics:

(a) $A \times DIVA = AVID$

(b) $I \times SPOT = TOPS$.

SSM 3739. by Alan Wayne

What might be said about De Moivre:

$$\mathtt{HE} \times \mathtt{IS} = \mathtt{BIG} + \mathtt{FOR} = \mathtt{TRIG}.$$

Regard the preceding pattern as an arithmetic multiplication of integers in the decimal system in which each digit has been replaced by one and only one letter, with different digits being replaced by different letters. Restore the digits.

SSM 3750. by Alan Wayne

Solve the alphametic:

 $DEED \times DEED = EDUCATOR$.

JRM 695. by T. Rosler

Solve the alphametic:

 $\mathtt{RUM} \times \mathtt{RUM} = \mathtt{DRINKS}.$

JRM 522. by T. Marlow

Solve the alphametic:

 $\mathtt{EAST} \times \mathtt{S} = \mathtt{WEST}.$

JRM 523.

by T. Marlow

Solve the alphametic:

 $WEST \times S = EAST.$

PENT 280. by Kenneth M. Wilke

Solve the cryptarithm:

THAT = (AH)(HA).

CRUX 241.

by John J. McNamee

Solve the alphametic

(HE)(EH) = WHEW.

Alphametics: names

JRM 718.

by A. G. Bradbury

Solve the alphametic:

THEN + THE + LION + ATE + LITTLE = ALBERT.

FQ B-322. by Sidney Kravitz

Solve the alphametic

ARKIN + ALDER + SALLE = ALLADI.

where 6 does not appear.

JRM 402. by Anton Pavlis

Solve the alphametic:

SEND + ONE + TO = ANTON.

CRUX 105. by Walter Bluger

INA BAIN declared once at a meeting

That she'd code her full name (without cheating),

Then divide, so she reckoned,

The first name by the second,

Thus obtaining five digits repeating.

JRM 374. by Walter Bluger

When asked for her phone number and date of birth, Ina Bain replied: "If each distinct letter stands for a particular but different digit, then my phone number is given by the seven letters of my name. If you divide INA by BAIN, a fraction in its lowest terms, you get a decimal with a 5-digit repeating cycle which shows the day, month, and the last two digits of the year of my birth, in that order."

What was Ina's birth date?

JRM 548. by Fred Pence

Solve the alphametic:

BAT-

MAN

AND

ROBIN

where ROBIN is prime, and the - represents a digit.

JRM 404. by R. S. Johnson

Solve the alphametic:

THE + MATH + BIBLE + BY + MR + ALBERT = BEILER.

JRM 747. by Ronald J. Lancaster

Solve the alphametic:

MEET + A + PEANUT + FARMER + MR = CARTER.

Alphametics: names Problems sorted by topic Alphametics: phrases

JRM 770b.

by Eva L. Milbouer

Solve the alphametic:

 $\mathtt{MANET} + \mathtt{MONET} = \mathtt{COROT}$

where COROT is as great as can be.

JRM 515.

by Leslie E. Card

Solve the alphametic:

FORD + AND + SADAT = CONFER.

CRUX 236.

by Viktors Linis

Solve the alphametic

GAUSS - DIED = 1855.

CRUX 238.

by Clayton W. Dodge

Solve the alphametic

 $\mathtt{CARL} + \mathtt{1777} = \mathtt{GAUSS}$

where both 1 and 7 are represented among the letters.

CRUX 239.

by Clayton W. Dodge

Solve the alphametic

 $\mathtt{CARL} + 1777 + 1855 = \mathtt{GAUSS}$

where each of the digits 1, 5, 7, and 8 is represented by a letter.

CRUX 240.

by Clayton W. Dodge

Solve the alphametic

 $\mathtt{CARL} \times \mathtt{F} = \mathtt{GAUSS}.$

JRM 610.

by A. G. Bradbury

Solve the alphametic:

SOON + HOLMES + WE + TEST = WATSON.

CRUX 301.

by Herman Nyon

Solve the alphametic

HUNTER - TRIGG = DIGITS.

where there are two solutions and the sum of the digits of HUNTER and TRIGG in one solution are equal, respectively, to the sum of the digits of TRIGG and HUNTER in the other solution.

JRM 686.

by A. G. Bradbury

Solve the alphametic:

AYE + AYE + CARRY + ON = JEEVES

where "CARRY ON" may sound a little odd to some ears, but these are not odd words. Any fan of Bertie Wooster in P. G. Wodehouse's many stories would readily confirm this!

CRUX 431.

by Alan Wayne

The following decimal alphametic is dedicated to Erwin Just, Problem Editor of the Two-Year College Mathematics Journal, who modestly refused to publish it in his own journal:

YES + YES + JUST = ERWIN.

ERWIN is, of course, unique.

JRM 429.

by Leslie E. Card

Solve the alphametic:

RECMATH + SALUTES = MADACHY

in base 12.

JRM 449.

by Steven Kahan

Solve the alphametic:

 $\mathtt{NELSON} + \mathtt{STARTS} + \mathtt{AS} + \mathtt{AN} = \mathtt{EDITOR}.$

JRM 663.

by A. G. Bradbury

Solve the alphametic:

OMARS + RUBY + HAT + A = BEAUTY.

where the use of base 11 is recommended, and the largest possible RUBY is sought.

JRM 455.

by Leslie E. Card

Solve the alphametic:

POLK + TAFT + FORD + FOOL = PROOF.

NYSMTJ 65.

by Janet Locke

Solve the following alphametic:

FOR + EITHER + FORD + OR + CARTER = ACHEER.

JRM 581.

by Alan Wayne

Solve the alphametic:

ALAN + WAYNE = SOLVER

where SOLVER is odd.

Alphametics: numbers

JRM 577.

by Herman Nijon

Solve the alphametic:

SQUARE + SQUARE + CUBE + CUBE + CUBE = NUMBERS.

JRM 609.

by Peter MacDonald

Solve the alphametic:

ONES + ZEROES = BINARY.

Alphametics: phrases

CRUX 251.

by Robert S. Johnson

Solve the alphametic

SPRING + RAINS + BRING + GREEN = PLAINS.

JRM 416.

Solve the alphametic:

ON

MOON

NO GREEN

CHEESE

JRM 417.

by Frank Rubin

by Anton Pavlis

Solve the alphametic:

HE

<u>IS</u>

OF

LAB

Alphametics: phrases Problems sorted by topic Alphametics: phrases

JRM 743.

by Ronald J. Lancaster

Solve the alphametic:

COME + ONE + COME + ALL + HAVE + A = BALL

where BALL is prime.

JRM 616.

by Les Marvin

Solve the alphametic:

ANOTHER + ROTTEN + ENCODED = ADDITION.

In what bases, if any, can this be solved?

PME 433.

by Clayton W. Dodge

Solve the alphametic:

PAY + MY = BILL

where BILL is divisible by 4.

JRM 405.

by Derrick Murdoch

Solve the alphametic:

BRIDE + RIDES + UNDER = BRIDGE.

JRM 428.

by A. G. Bradbury

Solve the alphametic:

 $\mathtt{CHOOSE} + \mathtt{CHESS} + \mathtt{OR} = \mathtt{BRIDGE}$

where neither game is ODD.

JRM 450.

by A. G. Bradbury

Solve the alphametic:

BITTER + SWEET + WISE = CHOICE

where ${\tt CHOICE}$ is odd.

JRM 662.

by Ronald J. Lancaster

Solve the alphametic:

SMOKE + MAKES + ME = CHOKE.

JRM 524.

by A. G. Bradbury

Solve the alphametic:

$$\mathtt{DO} + \mathtt{NOT} + \mathtt{SAY} = \mathtt{DIE}$$

where the three-letter words form a regular magic square.

JRM 745.

by A. G. Bradbury

Solve the alphametic:

LET + THREE + LITTLE + MAIDS = DISMISS.

MATYC 95.

by Sarah Brooks

Solve the alphametic

 $\mathtt{PEACE} + \mathtt{HERE} + \mathtt{ON} = \mathtt{EARTH}.$

JRM 753.

by Robert Gladman

Solve the alphametic:

$$\mathtt{ABLE} + \mathtt{WAS} + \mathtt{I} + \mathtt{ERE} + \mathtt{I} + \mathtt{SAW} = \mathtt{ELBA}$$

- (a) Find a solution in which \mathtt{ELBA} is prime both forward and backward.
- (b) Find a solution in which more than four of the seven words are prime.
- (c) Find a solution in which both WAS and SAW are prime.

JRM 435.

by Donna Kossy

Solve the alphametic:

LAZY - WEEK = END.

JRM 547.

by R. S. Johnson

Solve the alphametic:

 ${\tt SCIENTIFIC} + {\tt AMERICAN} + {\tt MASTER} + {\tt CREATES}$

+ FRENETIC + INTEREST + IN + IMF + METRIC

+ TENS + STATE = FANTASTICA.

JRM 687.

by Michael R. W. Buckley

Solve the alphametic:

SCIENCE + FACT + SCIENCE = FICTION.

JRM 614.

by Hank Venetas

Solve the alphametic:

 $\mathtt{THAT} + \mathtt{THAT} + \mathtt{THAT} + \mathtt{THATS} + \mathtt{ALL} = \mathtt{FOLKS}.$

where FOLKS is largest.

JRM 549.

by Michael R. W. Buckley

Solve the alphametic:

THESE + THREE + FLEAS = FREEZE.

where FLEAS is odd.

JRM 582.

by J. A. H. Hunter

Solve the alphametic:

ALORS + ALORS + NOUS + NOUS = LAVONS.

JRM 484.

by R. S. Johnson

by Eva L. Milbouer

Solve the alphametic:

 ${\tt PASSES} + {\tt AT} + {\tt AHHS} + {\tt LASSIES} + {\tt PLEASE}$

+ LASSIES + WITH = GLASSES.

JRM 488.

JRM 489.

JRM 490. Solve the independent alphametics:

- (1) ADAM + AND + EVE + ATE + THE = SNAKE,
- (2) THE + SNAKE + IS + IN + THE = GRASS,
- (3) ALAS + ALAS + ALAS + CRAB = GRASS.

Clue: the number A increases in value from (1) to (2) to (3).

JRM 688.

by Anton Pavlis

Solve the alphametic:

DOG + EATS + DOG + IS = GREED.

JRM 406.

by Derrick Murdoch

Solve the alphametic:

 ${\tt GROOM} + {\tt GOES} + {\tt UNDER} = {\tt GROUND}$

where \mathtt{BRIDE} is odd.

JRM 366.

by A. G. Bradbury

Solve the alphametic:

CATCH + THE + STOLEN = LAUNCH.

Alphametics: phrases Problems sorted by topic Alphametics: phrases

JRM 574.

by John W. Harris

Solve the alphametic:

 $\mathtt{MIX} + \mathtt{FUN} + \mathtt{AND} = \mathtt{MATH}$

where FUN is largest.

CRUX 441. by Sunder Lal and Léo Sauvé Solve the alphametic

ASHA + GOT + THE = MEDAL.

JRM 439.

by Anton Pavlis

Solve the alphametic:

THE + BEST + SYSTEM = METRIC.

JRM 551.

by Frank Rubin

Solve the alphametic:

DAD + SEND + MORE = MONEY.

JRM 552.

by Frank Rubin

Solve the alphametic:

I + SENT + HIM + MORE = MONEY.

JRM 553.

by Frank Rubin

Solve the alphametic:

SEND + YET + MORE = MONEY.

JRM 460.

by Sidney Kravitz

Solve the alphametic:

741776 + THE + BIRTH + OF + A + FREE = NATION.

JRM 689.

by J. A. H. Hunter

Solve the alphametic:

 $\mathtt{SO} + \mathtt{SEEMS} + \mathtt{NO} + \mathtt{END} + \mathtt{TO} + \mathtt{MANS} = \mathtt{NEEDS}$

where NEEDS is prime.

CRUX 401.

by Herman Nyon

Solve the alphametic

$$\mathtt{HAPPY} + \mathtt{NEW} + \mathtt{YEAR} = *1979$$

where the eight letters and the asterisk represent nine distinct nonzero digits and YEAR is divisible by 7.

JRM 606.

by Frank Rubin

Solve the alphametic:

A + STITCH + IN + TIME = SAVES9.

JRM 605.

by Ronald J. Lancaster

Solve the alphametic:

JRM + THE + FUN = ONE.

JRM 744.

by A. G. Bradbury

Solve the alphametic:

 $\mathtt{HEAR} + \mathtt{YE} + \mathtt{HEAR} + \mathtt{YE} + \mathtt{SAVOY} = \mathtt{OPERAS}.$

JRM 754.

by H. Everett Moore

Solve the alphametic:

CAMP + DAVID = PEACE

where PEACE is greatest.

JRM 518.

by Paul E. Boymel

v

 $\mathtt{CALM} + \mathtt{AREA} + \mathtt{LESS} + \mathtt{MASS} = \mathtt{MAGIC}$

where $E = MC^2$.

JRM 519.

by Herman Nijon

Solve the alphametic:

Solve the alphametic:

EARTH + AIR + FIRE + WATER = NATURE.

JRM 491.

by Anton Pavlis

Solve the alphametic:

POLICE + ARREST + ASSIST = PEOPLES.

JRM 575.

by Peter MacDonald

Solve the alphametic:

ALPHA + METIC = PLEASE

where PLEASE is odd.

JRM 408.

by Michael R. W. Buckley

Solve the alphametic:

EVEN + ODD = PRIME.

There are nine different digits, so find a solution in base 9 where ODD is odd, EVEN is even, and PRIME is prime.

JRM 482.

by Michael R. W. Buckley

Solve the alphametic:

$$VERY + EASY = PUZZLE$$

where the power of negative thinking will help to solve this PUZZLE in the greatest base possible. This provides an opportunity for comments on modern methods of mathematics instruction.

JRM 431.

by R. S. Johnson

Solve the alphametic:

$$TO + BE + OR + NOT + TO + BE + THAT + IS + THE = ????$$

Each? stands for the same digit which may already be represented by one of the other letters in the alphametic.

CRUX 391.

by Allan Wm. Johnson Jr.

Solve the alphametic

A + SUN + DRIED + GRAPE = RAISIN

where P > U.

JRM 633.

by A. G. Bradbury

Solve the alphametic:

MEN + SEE + MINI + SKIRTS = RETURN.

JRM 401.

by Anton Pavlis

Solve the alphametic:

 $\mathtt{SEND} + \mathtt{SIX} + \mathtt{RED} = \mathtt{ROSES}.$

JRM 742.

by Patrick Costello

Solve the alphametic:

STAR + WARS + WHAT + A = SIGHT.

Alphametics: phrases Problems sorted by topic Alphametics: places

JRM 367.

by Anton Pavlis

Solve the alphametic:

FULL + VALUE + FOR = SILVER.

JRM 461.

by Anton Pavlis

Solve the alphametic:

SOME + SAW + A + HOLY = SMOKE.

JRM 661.

by Ronald J. Lancaster

Solve the alphametic:

$$\mathtt{OK} + \mathtt{NO} + \mathtt{JOKE} + \mathtt{DO} + \mathtt{NOT} = \mathtt{SMOKE}$$

where ${\tt SMOKE}$ is our prime objective.

JRM 542.

by J. A. H. Hunter

Solve the alphametic:

 $\mathtt{NOT} + \mathtt{TOO} + \mathtt{EASY} + \mathtt{TO} = \mathtt{SOLVE}.$

JRM 690.

by Ronald J. Lancaster

Solve the alphametic:

$$\mathtt{HATE} + \mathtt{TO} + \mathtt{DO} + \mathtt{55} + \mathtt{NEED} + \mathtt{TO} = \mathtt{SPEED}$$

where the digit 5 may not be used again.

JRM 778.

by W. A. Robb

Solve the alphametic:

NOSY + PORTER + TOO + NOSY + WRITES + WRY = STORIES

where the PERSON is odd.

JRM 660.

by Bob Vinnicombe

Solve the alphametic:

FISN + N + CHIPS = SUPPER.

JRM 580.

Solve the alphametic:

 $\mathtt{MARS} + \mathtt{TRIP} + \mathtt{HIS} + \mathtt{PRIME} = \mathtt{TARGET}.$

CRUX 331.

by J. A. H. Hunter

Solve the alphametic

$$\mathtt{WELL} + \mathtt{WELL} + \mathtt{A} + \mathtt{NEW} = \mathtt{TITLE}$$

where TITLE is odd.

JRM 365.

by J. A. H. Hunter

Solve the alphametic:

PETER + PETTLE + PEDDLES + PEWTER = POODLES

where POODLES are odd.

JRM 453.

by Michael R. W. Buckley

Solve the alphametic:

$${\tt BLOKE} + {\tt SMOKES} + {\tt BLOKE} = {\tt CROAKS}$$

where the Surgeon General has determined that alphametic solving is addictive (but not as odd as these SMOKES must be).

JRM 550.

by Steven Kahan

Solve the alphametic:

PETER + PIPER + PICKS + PICKLED = PEPPERS

where PETER is odd.

JRM 773.

by A. G. Bradbury

Solve the alphametic:

NO + PIANO + TUNA + IS + NOT + A + FISH = SOPHIA.

SSM 3576.

by Alan Wayne

In the addition

$$\mathtt{THIS} + \mathtt{ADDS} + \mathtt{TO} = \mathtt{TOTAL}$$

each letter uniquely represents a decimal digit. What is the ${\tt TOTAL}$?

JRM 481.

by A. G. Bradbury

Solve the alphametic:

$$WE + END + THE + NEW + MATH = TREND$$

where TREND is prime.

JRM 487.

by Michael Keith

Solve the alphametic:

DOUBLE + DOUBLE + TOIL = TROUBLE.

JRM 771.

by John A. McCallum

Solve the alphametic:

 $\mathtt{JOHN} + \mathtt{DONNE} + \mathtt{AND} + \mathtt{ANNE} + \mathtt{DONNE} + \mathtt{ARE} = \mathtt{UNDONE}.$

JRM 635.

by Herman Nijon

Solve the alphametic:

 $\mathtt{THE} + \mathtt{STATE} + \mathtt{OF} + \mathtt{THE} = \mathtt{UNION}.$

JRM 748.

by Anton Pavlis

Solve the alphametic:

MORE + POWER + MORE = WORRY.

Alphametics: places

JRM 452.

by Michael R. W. Buckley

Solve the alphametic:

UNION + SOUTH = AFRICA

in base 11.

JRM 397.

by Alister W. Macintyre

Solve the alphametic:

FIFTY + STATES = AMERICA.

JRM 451.

by Michael R. W. Buckley

Solve the alphametic:

 $\mathtt{UNITED} + \mathtt{STATES} = \mathtt{AMERICA}$

in base 11.

JRM 634.

by Gordon S. Lessells

Solve the alphametic:

 ${\tt LAGOS+CAIRO} = {\tt ACCRA}.$

where CARGO is the largest that can be transported from LAGOS to CAIRO via ACCRA.

Alphametics: places Problems sorted by topic Alphametics: states

CRUX 421.

by Sidney Kravitz

Solve the independent alphametics

UNITED + STATES = CANADA,

UNITED + STATES + AND = CANADA.

THE + UNITED + STATES + AND = CANADA,

LES + ETATS + UNIS + ET = CANADA.

JRM 777.

by Sidney Kravitz

Solve the alphametic:

FINLAND + IRELAND = DENMARK.

JRM 668.

by Peter H. Mabey

Solve the alphametic:

 $(IRELAND + IRA) \div 2 = STRIFE.$

JRM 438.

by Anton Pavlis

Solve the alphametic:

 $\mathtt{CANOE} + \mathtt{RIDE} + \mathtt{TO} + \mathtt{SCENIC} = \mathtt{ONTARIO}.$

CRUX 461.

by R. Robinson Rowe

Solve the alphametic

C + DODGE + MAINE = ORONO,

where DODGE is largest.

JRM 638.

by Anton Pavlis

Solve the alphametic:

QUEBEC + ELECTED = TROUBLE.

CRUX 311.

by Sidney Kravitz

Solve the alphametic

 $\mathtt{OTTAWA} + \mathtt{CALGARY} = \mathtt{TORONTO}.$

Alphametics: planets

JRM 724.

by Peter J. Martin

Solve the alphametic:

PLUTO + SATURN + URANUS + NEPTUNE = PLANETS.

Alphametics: radicals

CRUX 277.

by R. Robinson Rowe

Solve the simultaneous alphametics

 $\sqrt{\mathtt{EUREKA}} = \mathtt{UEA}$

 $\sqrt[3]{\text{EUREKA}} = \text{RT}$

and find the value of

 $\sqrt[4]{\text{EUREKA}}$.

CRUX 411.

by Alan Wayne

Solve the alphametic

 $\sqrt{\mathtt{PASSION}} = \mathtt{KISS}.$

Alphametics: simultaneous alphametics

JRM 412.

by Michael Keith

Solve the alphametic:

READ + J + REC + MATH = NEAT!

where READ + T = an integral power of N.

MSJ 433.

by Alan Wayne

Solve the simultaneous alphametics:

 $\mathtt{ONE} + \mathtt{ONE} + \mathtt{W} = \mathtt{TWO}$

 $E \times ONE = TWO.$

SSM 3607.

by Alan Wayne

Solve the Arabic-Roman cryptarithmic system:

$$TWO + TWO + TWO = SIX$$

$$VI + VI = XII.$$

Each letter represents just one decimal digit, and different letters represent different digits.

JRM 666.

by Michael R. W. Buckley

JRM 667.

Solve the simultaneous alphametics:

PENNY + PENNY + PENNY + PENNY + PENNY = NICKEL.

 $PENNY \times V = NICKEL.$

Alphametics: squares

CRUX 201.

by Clayton W. Dodge

Solve the alphametic

 $\mathtt{LEO}^2 = \mathtt{SUAVE}.$

CRUX 211.

by Clayton W. Dodge

Solve the alphametic

 $FGB^2 = MASKEL$

where FGB is divisible by 9.

CRUX 221.

by Clayton W. Dodge

Solve this alphametic

 $\mathtt{CW}^2 = \mathtt{TRI.GG},$

where the solution does not contain the digit 1.

PENT 297.

by Charles W. Trigg

The number RETIRE is a perfect square in the decimal system with -RE + TI = RE. Each letter represents a different digit and the sum of three digits equals the fourth. What is this square number?

Alphametics: states

JRM 454.

by Leslie E. Card

Solve the alphametic:

 $\mathtt{OHIO} + \mathtt{IOWA} + \mathtt{UTAH} = \mathtt{GUAM}.$

JRM 483.

by Leslie E. Card

Solve the alphametic:

SAMOA + IDAHO = TEXAS.

Alphametics: states Problems sorted by topic Alphametics: words

MATYC 105.

by Pat Boyle

Solve the alphametic:

$$\mathtt{CAL} + \mathtt{ORE} + \mathtt{WASH} + \mathtt{WEST} = \mathtt{COAST}$$

where CAL and ORE are prime.

JRM 457.

by R. S. Johnson

Solve the alphametic:

$$\begin{aligned} \texttt{DEVIL} + \texttt{AS} + \texttt{NEW} + \texttt{EVE} + \texttt{IS} + \texttt{ALIVE} + \texttt{AND} \\ + \texttt{WELL} + \texttt{IN} + \texttt{VEGAS} &= \texttt{NEVADA}. \end{aligned}$$

Alphametics: story problems

JRM 643. by R. S. Johnson

My name is OTO TOTA and my good friend INA BAIN encouraged me to pose this problem. I live in LA, which happens to be a factor of both my names. My first name divided by my surname produces the repeating decimal fraction .TATLO. Coincidentally, this repeating group gives the day, month, and year of my young son Tatlo's birth. Can you discover the date?

Alphametics: words

ISMJ 14.6.

Solve the cryptarithm:

$$Y + Y + Y = MY$$
.

ISMJ 14.7.

Solve the alphametic:

$$ON + ON + ON + ON = GO.$$

JRM 411.

by R. S. Johnson

Solve the alphametic:

$$SAD + DAD + DAL + JIM + NUN + LAM + SIN = SHIN.$$

where both NUN and SIN are prime.

JRM 521.

by R. S. Johnson

Solve the alphametic:

 ${\tt H0000+ALIPHATIC+LITHAEMIA+PIECEMEAL+HEMATITIS}$

 $+ \mbox{ APATHETIC} + \mbox{MALACHITE} + \mbox{EPILEPTIC} + \mbox{TIMELIMIT} \\ + \mbox{IMPLICATE} + \mbox{CLIMACTIC} = \mbox{ALPHAMETIC}.$

JRM 637.

by Underwood Dudley

Solve the alphametic:

 $\mathtt{STABLE} + \mathtt{TABLE} + \mathtt{ABLE} = \mathtt{ATBEST}.$

JRM 642.

by Michael R. W. Buckley

Show that there is a unique solution in a unique base when

$$LILS + OILS = SPOIL.$$

JRM 644.

by Ronald J. Lancaster

Consider the alphametic:

$$HELL + HELL + \cdots + HELL = HEAVEN.$$

How many <code>HELL</code>'s must be endured before one arrives at ${\tt HEAVEN?}$

JRM 670.

by Frank Rubin

Solve the alphametic:

$$(HER)^{(OLD)} = (SHY)^{(DOG)}$$

JRM 694.

by Peter MacDonald

Solve the alphametic:

$$18(ADD) = TOTAL.$$

JRM 697. by Hank Venetas

A beau, hoping to kindle the passions of his lady, deposits half a dozen rare red ROSES on her doorstep each day. Assuming that rare quantities are indeed odd, how many must be delivered in order to insure a total ROMANCE? That is, solve

$$ROSES + ROSES + \cdots + ROSES = ROMANCE$$

where the number of summands, currently unspecified, must be a multiple of six.

JRM 716.

by Michael R. W. Buckley

Solve the alphametic:

$$\mathtt{COLOR} + \mathtt{COLOR} + \mathtt{COLOR} + \mathtt{COLOR} = \mathtt{ENOUGH}$$

where no zeros are allowed.

NYSMTJ 99.

by Alan Wayne

Restore the digits in the decimal alphametic to answer the question, "Where was it done?"

$$\mathtt{MADE} + \mathtt{MEAD} = 2961.$$

SSM 3691.

by Alan Wayne

This might be a possible Dutch treat:

$$\mathtt{MADE} + \mathtt{MEAD} = \mathtt{EDAM}.$$

Interpret the above to be an addition problem in the decimal system, where each letter corresponds uniquely to a digit and conversely. Restore the digits.

SSM 3726.

by Al White

Solve the alphametic:

$$\mathtt{MADE} - \mathtt{MEAD} = \mathtt{EDAM}$$

in base b. For which values of b does this problem have exactly one solution?

PENT 287.

by Randall J. Covill

Solve the alphametic:

SUBTEND + ADDEND = ANSWERS

in base 14 where $E \neq 0$.

SSM 3718.

by Alan Wayne

by Alan Wayne

Solve the alphametic:

TITHE + TITHE = FIFTH.

·

SSM 3780. "What is the sound?"

$$ON + ONE + NOTE + ONE = 6943.$$

Regard the preceding as an addition in which each letter corresponds in a one-to-one manner with a decimal digit. Restore the digits and the letters in order to answer the question.

Alphametics: words Problems sorted by topic Chess tours

SSM 3708.

by Alan Wayne

Solve the alphametic:

LIVE + VILE = EVIL.

TYCMJ 88.

by Alan Wayne

Solve the independent alphametics:

- (a) ETNA + NEAT = ANTE, and
- (b) ANTE + NEAT = ETNA.

JRM 407.

by Sidney Kravitz

Solve the alphametic:

PISCES + TAURUS = SCORPIO.

JRM 430.

by Garry Crum

Solve the alphametic:

BISHOP + BISHOP = KNIGHTS.

CRUX 361.

by R. Robinson Rowe

Find MATH in the two-stage alphametic:

 $MH \cdot M \cdot AT/H = MATH$

MATH

 $\mathbf{A}xxx$

xxxxx

xxxxx

xxxxx

xxMATHxx

in which the x's need not be distinct from M, A, T, or H.

JRM 607.

by Fred Pence

Solve the alphametic:

 $\mathtt{NBC} + \mathtt{ABC} = \mathtt{CBS}.$

where NBC is the PRIME network in this problem, but each network manages to avoid a zero.

JRM 722.

by Martinus Ngantung

Solve the alphametic:

 ${\tt MAN + WOMAN = CHILD}$

where CHILD is as small as possible, and his birthdate is $\mathtt{C}/\mathtt{HI}/\mathtt{LD}.$

JRM 546.

by A. G. Bradbury

Solve the alphametic:

 $\mathtt{DING} + \mathtt{DONG} + \mathtt{DING} + \mathtt{DONG} + \mathtt{BELLS} = \mathtt{SOUND}$

where SOUND is as small as possible.

JRM 545.

by Les Marvin

Solve the alphametic:

QUARK + QUARK + QUARK = BARYON

where these tiny particles are, of course, as small as they can be!

Arrays

JRM 443.

by David L. Silverman

Remove the $A, 2, 3, \ldots, 9$ of spades, hearts, and diamonds from a pack of playing cards. Counting the ace as one, is it possible to arrange these 27 cards in nine groups of three in such a way that each group of three

- (a) contains a spade, a heart, and a diamond and
- (b) has a square total?

Is it possible if requirement (a) is removed?

SSM 3650. by E. J. Ulrich

The letters a, b, c, d, e, f, g, h, n, m are arranged around a pentagon. Replace each letter by a number from 1 through 10 (using each number but once) so that the totals of the three numbers on each of the five sides of the pentagon will all be the same. Call this common total T.

- (a) What is the minimum value for T?
- (b) What is the maximum value for T?
- (c) Are solutions possible for all integers between these two?

JRM 420.

by P. MacDonald

Using some or all of the calculator numerals 0, 1, 2, 5, 6, 8, 9, create a 3×3 array such that:

- (a) the center row contains no zeros;
- (b) when the top number (3 digits) is added to the middle number (3 digits), the result equals the bottom number;
- (c) when the page is turned upside down, (b) is true again.

PME 377.

by Charles W. Trigg

From the following square array of the first 25 positive integers, choose five, no two from the same row or column, so that the maximum of the five elements is as small as possible.

CRUX 22.

by H. G. Dworschak

Show how to make the row-sums equal by moving just two of the numbers in the matrix

$$\left(\begin{array}{rrr}1 & 2 & 7 & 9\\3 & 4 & 5 & 8\end{array}\right).$$

Chess tours

PARAB 283.

A king moves on an 8×8 chessboard so that in 64 moves it goes through all squares, on the last move returning to its original position. Furthermore, if the circuit is drawn by joining the center points of consecutive positions with straight line segments, the path obtained does not cross itself. Prove that at least 28 of the moves have been either horizontal or vertical.

OMG 14.2.2.

Is it possible for a knight in chess to start at one corner of a chessboard and move to the opposite corner landing exactly once on each square of the board?

Chessboard problems: coloring problems Problems sorted by topic Chessboard problems: distribution problems

Chessboard problems: coloring problems

NYSMTJ 68.

by Alvin J. Paullay and Sidney Penner

Each square of a 4×6 chessboard is colored black or white so that the four distinct corner squares of every rectangle formed by the horizontal and vertical lines of the board are not the same color. Show that any such coloring has the same number — namely 12 — of squares of each color.

USA 1976/1. OMG 15.1.3.

- (a) Suppose that each square of a 4×7 chessboard is colored either black or white. Prove that with any such coloring, the board must contain a rectangle (formed by the horizontal and vertical lines of the board) whose four distinct unit corner squares are all of the same color.
- (b) Exhibit a black-white coloring of a 4×6 board in which the four corner squares of every rectangle are not all of the same color.

AMM 6211.*

by Alvin J. Paullay and Sidney Penner

Suppose that each square of an $n \times n$ chessboard is colored either black or white. A square, formed by the horizontal and vertical lines of the board, will be called chromatic if its four distinct corner squares are all of the same color.

- (a) Exhibit a black and white coloring of a 9×9 board in which every such square, as described above (there are 204) is not chromatic.
- (b) Find the smallest n, say s, such that with any such coloring, every $s \times s$ board must contain a chromatic square.

PARAB 292.

The plane is divided (like a chessboard) into congruent squares. A finite number of squares are colored black, the others (infinitely many) remain white. After 1 second, the squares change their color according to the following rule:

If the upper and right neighbors of a given square, S, have the same color, then S takes this color (irrespective of whether it had this color already or not); if they have opposite colors, then the color of S remains unchanged. This process is repeated after 2 seconds, 3 seconds,

Describe the eventual coloring of all squares and prove your assertion.

Chessboard problems: counting problems

JRM 703. by Sidney Kravitz

A typesetter who works for a chess magazine sets up chessboard diagrams by placing square type molds in an 8×8 array. He has a mold that shows a black king on a black square, another for a black king on a white square, etc. He also has molds for unoccupied black squares and unoccupied white squares. Taking account of all the possibilities, however unusual, allowed by chess rules, how many molds must be have so that he can compose any chess diagram arising from a legitimate game?

AMM 6096. by Jan Mycielski

A set of cells of a chessboard is called connected if a rook can visit the whole set without moving over cells that are not in the set. Set $s = a_n n^2$ and let 2^s be the number of connected subsets for a chessboard of size $n \times n$. Prove that the sequence a_1, a_2, \ldots converges and estimate its limit.

Chessboard problems: covering problems

ISMJ 14.5.

A rectangle m inches by n inches is drawn where m and n are odd integers. The rectangle is divided into mn one inch boxes that are alternately colored red and black, like a chessboard. The four corners are colored black. We have $\frac{(mn-1)}{2}$ 1-inch \times 2-inch dominoes and one 1-inch \times 1-inch square half-domino.

- (a) Show that if the half-domino is on a red square, it is not possible to cover the rest of the rectangle with dominoes.
- (b) Show that if the half-domino is placed on a black square, then it is possible to cover the rest of the rectangle with dominoes, regardless of which black square we start with.

Chessboard problems: deleted squares

AMM E2665.

by Sidney Penner

A partial chessboard is a chessboard from which squares have been removed so that

- (a) it is impossible to place even one domino on the remaining board; and
- (b) the replacement of a single deleted square, regardless of its location, makes it possible to place a domino on the board. (A domino covers two squares having a common side.)

It is easy to see that for an 8×8 partial chessboard, the minimum number of deleted squares is 32. What is the maximum number?

Chessboard problems: distribution problems

PARAB 415.

Thirty-two counters are placed on a chessboard so that there are four in every row and four in every column. Show that it is always possible to select eight of them so that there is one of the eight in each row and one in each column.

JRM C6. by Ray Lipman

Although there are actually six different ways of placing two checkers on different squares of a 2×2 board, if we consider two arrangements the same if they are reflections and/or rotations of each other, there are only two arrangements: rookwise adjacent and bishopwise adjacent. Similarly, instead of nine ways of placing a single checker on a 3×3 board, there are, topologically, only three: middle, corner, or side. The (k, N)-entry in the matrix below (which has two questionable entries) gives f(k, N), the number of topologically distinct ways of placing k checkers on different squares of an $N \times N$ board (k = 1, 2, 3, 4) and N = 1, 2, 3, 4:

$$\begin{pmatrix} 1 & 1 & 3 & 3 \\ 0 & 2 & 8 & 20 \\ 0 & 1 & 16 & 43? \\ 0 & 1 & 23 & 77? \end{pmatrix}$$

Devise a program to extend the matrix to values of both k and N up to 10.

Chessboard problems: maxima and minima

AMM E2605. by Andreas P. Hadjipolakis

Consider a chessboard of odd order $n \ (n \geq 5)$. Assign label m to a cell of the chessboard if it can be reached by the knight in m steps starting from the central cell, and this m is minimal. Determine the number K(n;m) of cells labeled m.

Chessboard problems: n queens problem

AMM E2698. by Paul Monsky

Let A_n be an $n \times n$ chessboard. The n queens problem (placing n counters on A_n so that no two lie in any row, column, or diagonal) admits solutions for all $n \neq 2$ or 3.

Let B_n be the "chessboard" obtained from A_n by identifying opposite sides so that the resulting surface is a torus. (Now, every diagonal of B_n consists of n squares.)

- (a) For which values of n does there exist a solution of the n queens problem on B_n ?
- (b) If n satisfies (a), then a solution of (a) gives, by cyclic permutation, n superimposable solutions to the n queens problem on A_n . Do there exist n superimposable solutions (for A_n) for other values of n?

Chessboard problems: paths

TYCMJ 145. by Sidney Penner

A checker is placed in the upper left-hand corner of an $(n+1) \times n$ checkerboard. It begins a tour by making moves diagonally until it reaches an edge. At this point, it makes a right-angle turn and the process continues until the checker reaches a corner, after which the tour is complete. What is the number of moves for a complete tour?

Chessboard problems: probability

CRUX 446. by R. Robinson Rowe

An errant knight stabled at one corner of an $N \times N$ chessboard is "lost", but home happens to be at the diagonally opposite corner. If he moves at random, what is the probable number of moves he will need to get home (a) if N=3 and (b) if N=4?

JRM C7. by Les Marvin

A knight starts at the corner of a standard 8×8 chess-board and moves successively, at each stage randomly and with equal probability choosing his next square from the ones legally available. Let E equal the expected number of moves required to visit each of the 64 squares at least once. The best bounds I have at the moment for E are $64 < E < \infty$. Determine E to 3-place decimal accuracy.

JRM 425. by David L. Silverman

A white knight and a black knight are situated on diagonally opposite corners of a 3×3 square. In turn, starting with White, they move randomly until (inevitably) Black captures White. What is the expected number of Black moves to achieve capture?

Cryptarithms: alphabet

SSM 3593. by Alan Wayne

Restore the following addition in which each letter represents precisely one decimal digit, and different letters represent different digits.

 ${\tt ABCDEFGHIJ} + {\tt ABCDEFGHIJ} = {\tt BDFIACEGHJ}.$

SSM 3622.

by Alan Wayne

Solve the system

$$(\mathtt{CJ})^{\mathtt{F}} = \mathtt{A}\mathtt{B}\mathtt{C}\mathtt{D}$$
 $(\mathtt{CJ})^{\mathtt{E}} = \mathtt{E}\mathtt{F}\mathtt{G}\mathtt{H}\mathtt{I}\mathtt{J}$

in which each letter represents one and only one decimal digit, and different letters represent different digits.

Cryptarithms: chess moves

JRM 434. by Mike Keith

The ten distinct digits are distributed among the ten symbols

$$P, -, K, B, R, Q, x, I, W, N$$

(the 3's and 4's already given can be reused) and the chess moves given by the alphametic — in proper order as shown — yield a unique, legal game, ending, as is indicated by the total, in white checkmate.

$$\begin{aligned} (P-K4) + (P-K4) + (B-B4) + (P-R4) \\ + (Q-B3) + (P-R4) + (QxP) = (IWIN) \end{aligned}$$

Cryptarithms: encrypted messages

CRUX 215. by David L. Silverman

Convert the expression given below from mathematics to English, thereby obtaining the perfect scansion and rhyme scheme of a limerick:

$$\frac{12 + 144 + 20 + 3\sqrt{4}}{7} + 5(11) = 9^2 + 0.$$

Cryptarithms: hand codes

OMG 17.3.2.

Some children developed the following coding system for numbers: both hands down = 0; one hand up = 1; both hands up = 2; one hand up, both hands down = 3; one hand up, one hand up = 4; etc. What number would be represented by one hand up, one hand up, both hands up, one hand up?

Cryptarithms: powers

SSM 3639. by Alan Wayne

Find the five-digit decimal integer ABCCA whose Cth power is the fifteen-digit integer CCCCCDEBFEGFGFA.

Cryptarithms: products

NYSMTJ 70.

In the cryptarithm A(BC) = D(CB), each letter represents a distinct decimal digit. If A < D, find all solutions.

Cryptarithms: skeletons

JRM 579.

by A. G. Bradbury

Solve the skeleton: TAJ)MAHAL(AT

**** **** AG*R

* A

Cryptarithms: skeletons Problems sorted by topic Logic puzzles: Caliban puzzles

JRM 698.

by Nobuyuki Yoshigahara

Solve the skeleton

$$\frac{*****}{***} = 1978$$

where the digits * are to be distinct. Find an appropriate alphametic to fit the skeleton.

JRM 780.

by A. G. Bradbury

Solve the skeleton: FOUR) SIXTEEN (FOUR

JRM 410.

by Michael R. W. Buckley

Solve the skeleton:

JRM 585.

by Frank Rubin

Solve the skeleton: ***A*** PROBLEM ****P ****R ***** *****B *POMPOM

JRM 617.

by J. A. H. Hunter

Solve the skeleton:

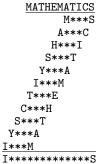
Solve the skeleton:

where the digit 7 appears but once.

JRM 664.

by J. A. H. Hunter

RUN RUN **** SEE *** BRAWI.


```
JRM 781.
                                      by Frank Rubin
    In base 14, solve the skeleton:
      EIGHT
        TWO
    SIXTEEN
```

EASY

CRUX 371.

by Charles W. Trigg

Solve the skeleton:

JRM 696.

by Frank Rubin

Solve the skeleton:

Cryptarithms: tournaments

MENEMUI 1.1.3.

by K. Unsworth

Four football teams A, B, C, and D are going to play each other once. The figures written in the incomplete table below give part of the situation when some of the matches have been played. The digits from 0 to 9 are replaced by letters, and each letter stands for the same digit wherever it appears; different letters stand for different digits.

	Goals						
	Played	Won	Lost	Drawn	For	Against	Pts.
A	x			k	h	p	
В		h			m	m	
\mathbf{C}	p	x	h	k	t		m
D	k						

Two points are given for a win, and one point to each side in a drawn match. List the matches played and the score in each match.

Logic puzzles: Caliban puzzles

OMG 18.2.3.

The manager, the accountant, the teller and the auditor at a local bank are Mr. Smith, Mr. Brown, Mr. Jones and Mr. Foster, but I can never remember who is who. I do know that:

- 1) Mr. Brown is taller than the auditor or the teller.
- 2) The manager lunches alone.
- 3) Mr. Jones plays bridge with Mr. Smith.
- 4) The tallest of the four plays basketball.
- 5) Mr. Foster lunches with the auditor and the teller.
- 6) Mr. Smith is older than the auditor.
- 7) Mr. Brown plays no sports.

Determine which job each man performs.

Logic puzzles: Caliban puzzles Problems sorted by topic Logic puzzles: incomplete information

PARAB 335.

A school held a special examination to decide which student in year 12 was best overall in the subjects of English, History, French, Mathematics, and Science. Five students — Alan, Barbara, Charles, David, and Evonne — sat for five papers, one in each of these five subjects. To simplify matters, the top student in a paper was given 5 marks, the next student was given 4 marks, and so on; the last student in a paper being awarded 1 mark (fortunately, no two students tied in any of the papers). When the marks for each student were collected, the following facts were noted:

- (1) Alan had an aggregate mark of 24.
- (2) Charles had obtained the same mark in four out of the five subjects.
- (3) Evonne, the mathematician, had topped Mathematics, although she only came in third in Science.
- (4) The students' aggregate marks were in alphabetical order, and no two students had the same aggregate.

What we want to know is:

- (a) What was Barbara's mark in Mathematics?
- (b) How many of the five students obtained the same mark in at least four out of the five subjects? (Charles was one of these!)

PARAB 384.

When the fire alarm went off, the six patrons in the restaurant all hurriedly seized a coat. Safely outside, they discovered that no one had his own. The coat that Alf had belonged to the man who had seized Bert's. The owner of the coat grabbed by Colin held a coat which belonged to the man who was holding Dave's coat. If the man who had seized Ern's coat was not the owner of that grabbed by Fred, who borrowed Alf's coat? Whose coat did Alf seize?

Logic puzzles: incomplete information

PENT 309. by Richard A. Gibbs

Once upon a time in a far away kingdom there lived many married couples. It came to the attention of the King (himself unmarried) that there were some unfaithful wives in his kingdom and he issued the following decree:

"It has come to my attention that there are unfaithful wives in my kingdom. If a husband discovers that his wife is unfaithful, he may slay her without punishment provided he does so on the day of the discovery."

Now, it so happens that if a man's wife were unfaithful he would be the only husband not to know it. Further, husbands never talk among themselves about the fidelity of their wives, and an unfaithful wife is clever enough not to be caught by her husband.

Well, following the King's decree, a month passed without incident. Then, on the 40th day, 40 unfaithful wives were slain; all that were in the kingdom.

The King was amazed! He summoned his Math Wizard for consultation and told him what had happened. The Wizard said, "That's not at all amazing." Prove that the Wizard knew that all unfaithful wives in the kingdom would be slain on the same day.

CRUX 357. by Leroy F. Meyers

In a certain multiple-choice test, one of the questions was illegible, but the choice of answers was clearly printed. Determine the true answer(s).

- (a) All of the below.
- (b) None of the below.
- (c) All of the above.
- (d) One of the above.
- (e) None of the above.
- (f) None of the above.

MM 1051.

by A. K. Austin

A game involves a quizmaster and two players, X and Y. The quizmaster chooses an ordered pair of real numbers (x,y) and tells x to player X and y to player Y. The quizmaster also tells the players that (x,y) is in the set $A = \{(x_i,y_i) \mid i=1,2,\ldots,n\}$. The quizmaster then asks X and Y alternately if they know (x,y). Find a characterization of the set A that guarantees that either X or Y will eventually know (x,y).

FUNCT 1.2.6.

A person A is told the product xy and a person B is told the sum x+y of two integers x and y, where 2 < x and y < 200. Person A knows that B knows the sum, and B knows that A knows the product. The following dialogue develops:

A: I do not know (x, y).

B: I could have told you so!

A: Now I know (x, y).

B: So do I.

What is (x, y)?

MM 977.

by David J. Sprows

Let x and y be two integers with 1 < x < y and $x+y \le 100$. Suppose Ms. S. is given the value of x+y and Mr. P. is given the value of xy.

- (a) Mr. P. says: "I don't know the values of x and y."
- (b) Ms. S. replies: "I knew that you didn't know the values."
- (c) Mr. P. responds: "Oh, then I do know the values of x and y."
- (d) Mr. S. exclaims: "Oh, then so do I."

What are the values of x and y?

ISMJ 13.19.

I have two different integers larger than 1. I inform Sam and Pam of this fact and I tell Sam the sum of my two numbers and I tell Pam their product. The following dialog then occurs:

Pam: I can't determine the numbers.

Sam: The sum is less than 23.

Pam: Now I know the numbers.

Sam: Now I know the numbers, too.

What are the numbers?

CRUX 400.

by Andrejs Dunkels

In the false bottom of a chest which had belonged to the notorious pirate Captain Kidd was found a piece of parchment with instructions for finding a treasure buried on a certain island. The essence of the directions was as follows.

"Start from the gallows and walk to the white rock, counting your paces. At the rock turn left through a right angle and walk the same number of paces. Mark the spot with your knife. Return to the gallows. Count your paces to the black rock, turn right through a right angle and walk the same distance. The treasure is midway between you and the knife."

However, when the searchers got to the island they found the rocks but no trace of the gallows remained. After some thinking they managed to find the treasure anyway. How?

Logic puzzles: incomplete information

Problems sorted by topic

JRM 685.

by David L. Silverman

"Bah! There are less than 100 doubloons here. How do you propose to divide them?"

"Let one of us take ϕ of them, then the other takes ϕ of what's left, and so on until they are all taken," said Silverbeard.

"Fine, but who gets the first pick?"

"Oh, you take it," said Silverbeard, knowing that he would get the most. How many doubloons were there?

JRM 469. by David K. Orndoff

In the Secret Word game, one player writes down a word of five different letters and his opponent attempts to guess it by posing candidate words of the same type which are scored according to the number of letters they have in common with the secret word (not necessarily in the same position). After 12 cracks at my opponent's word, he has scored me as follows: VOICE LYMPH DWARF JUMPY TWIGS CHAMP and EQUIP all scored 1, JUNKS SWORD BLACK and FLUNK got 2, and BOXED scored zero. I have sufficient information now. What is the word?

Logic puzzles: labeled boxes

FUNCT 1.4.5.

A repair shop has three boxes, one containing left-foot bicycle pedals, another containing right-foot bicycle pedals, and a third containing both left- and right-foot pedals. Labels describe the contents of the boxes. A naughty customer changed all the labels around. You are allowed to inspect one pedal from one box. Which box should you choose from in order to identify which box is which?

Logic puzzles: liars and truthtellers

FUNCT 1.2.4.

Three golfers named Tom, Dick, and Harry are walking to the clubhouse. The first man in line says, "The guy in the middle is Harry." The man in the middle says, "I'm Dick." The last man says, "The guy in the middle is Tom." Tom, the best golfer of the three, always tells the truth. Dick sometimes tells the truth, while Harry, the worst golfer, never does. Figure out who is who.

JRM 392. by Victor Reyes

On the Island of Kyensahbay the natives are divided into two tribes — the Blues, who always tell the truth, and the Reds, who never do. Twelve of them met me at the jetty, and because their names were too exotic to remember I labeled them with the letters from A to L. Since none wore his tribal colors, I made it a point to ask each during the first day of my governorship about the composition of my staff. I received the following replies:

A: H and I are Blues.

B: A and L are Blues.

C: B and G are Blues.

D: E and L are Blues.

E: C and H are Blues.

F: D and I are Blues.

G: E and J are Reds.

H: F and K are Reds. I: G and K are Reds.

J: A and C are Reds.

K: D and F are Reds.

L: B and J are Reds.

I was quickly able to determine which of them to doubt and which to believe. Can you do likewise?

JRM 792.

by Randall J. Covill

Logic puzzles: transportation

The police have detained three suspects who know each other very well. The police know that one of the suspects always lies, one sometimes lies, and one never lies. How can they most easily determine which is which?

Logic puzzles: relationships

ISMJ 13.7.

No family has more than four children in a certain school. One day when all the boys are in school, they answer a questionnaire that includes the question: How many brothers have you in the school? In the report put out by the school this statement appears:

"216 boys have no brother or two brothers in the

195 boys have one or three brothers in the school." Can this statement be correct?

OMG 16.1.10.

If in a certain diagram " \to " means "-" is brother of "-", how is A related to B?

Logic puzzles: statements

FUNCT 2.4.1.

Simplify the following statement:

"If Monday is a public holiday, then I will not go to the beach, or I will stay at home, or I will neither stay at home nor go to the beach."

FUNCT 1.1.6.

The blackboard has been filled with 100 statements, as follows:

"Exactly one of these statements is incorrect.

Exactly two of these statements are incorrect.

:

Exactly one hundred of these statements are incorrect."

Which (if any) of the 100 statements is correct?

MM 931. by Alan Wayne

In a list of n statements, the rth statement is, for $r=1,2,\ldots,n$, "The number of false statements in this list is greater than r." Determine the truth value of each statement.

Logic puzzles: switches

AMM S17. by Leonard Gillman

When the upstairs switch is in one position, the downstairs switch turns the stairway light on and off as it should, but when the upstairs switch is in the other position, the stairway light remains off irrespective of the position of the downstairs switch. Which is the defective switch?

Logic puzzles: transportation

OMG 15.2.1.

A man must transport a fox, a goose, and a sack of corn over a river in a boat that will hold only him and one of the fox, goose, or sack of corn. He cannot leave the fox and goose, or the goose and corn alone together or one will eat the other. How does he accomplish his task?

Logic puzzles: yes or no questions

Problems sorted by topic

Magic configurations: magic squares

Logic puzzles: yes or no questions

PARAB 345.

During a trial, three different witnesses A, B, and C were called one after the other, and asked the same questions. In each case, each witness answered "yes" or "no", and the following facts were noted:

- (1) All questions answered "yes" by both B and C were also answered "yes" by A;
- (2) Every question answered "yes" by A was also answered "yes" by B;
- (3) Every question answered "yes" by B was also answered "yes" by at least one of A and C.

Show that the witnesses A and B agreed in their answers to all questions.

Magic configurations: gnomon magic squares

SSM 3629. by Charles W. Trigg

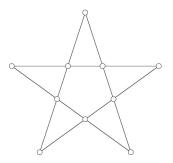
In a 3×3 array there is a 2×2 array in each corner. The other five cells form an L-shaped gnomon. If the sum of the elements in each of the four corners is the same, this sum is said to be the magic sum of the gnomon magic square. Such a square is

1 6 7 8 5 2 3 4 9

with a magic sum of 20.

Rearrange the nine digits to form a gnomon magic square with magic sum of 16.

Magic configurations: hexagons


NYSMTJ 79. by Bernard G. Hoerbelt

The minor diagonals of a regular hexagon are drawn, forming a figure with 13 regions. Six dashed lines are drawn through the center of the hexagon, parallel to the sides and diagonals of the hexagon. Six more dashed lines are drawn connecting the midpoints of adjacent edges of the hexagon. Place the integers from 1 to 13 in the 13 regions so that the sum of every triple along each of the dashed lines is 21.

Magic configurations: magic pentagrams

JRM 385. by Vance Revennaugh

Can the ten vertices of the pentagram shown be labeled with the integers from 1 to 10 in such a way that the sum of the four labels along each of the five edges is the same, thus qualifying it to be called a *pentacle*, that is, a magic pentagram?

CRUX 145.

by Walter Bluger

A pentagram is a set of 10 points consisting of the vertices and the intersections of the diagonals of a regular pentagon with an integer assigned to each point. The pentagram is said to be magic if the sums of all sets of 4 collinear points are equal.

Construct a magic pentagram with the smallest possible positive primes.

Magic configurations: magic squares

ISMJ 14.23.

Nine numbers are placed in a 3×3 array to form a magic square (the three row sums, three column sums, and two diagonal sums are each equal to some number S). Prove that S is three times the central number. Show that the conditions of the problem cannot be met if the nine numbers are all of the numbers from 1 to 10 except 7.

MSJ 430. by Donald Baker

Fill in the five missing entries in the following 3×3 array to form an additive magic square.

 $\begin{array}{rrrr}
17 & - & 22 \\
- & - & - \\
13 & - & 19
\end{array}$

SSM 3632.

by Bob Prielipp

An $n \times n$ magic multiplication square is an $n \times n$ array in which the product of the entries of each diagonal, in each row, and in each column are all the same. Prove that there are infinitely many 3×3 magic multiplication squares, all of whose entries are positive integers.

PARAB 301.

The numbers 27, 20, 25, 22, 24, 26, 23, 28, and 21 are arranged in a 3×3 magic square.

27 20 25 22 24 26 23 28 21

By moving the digits (and using no other operation), find 9 numbers in 3 rows and 3 columns such that, when the numbers in any row or column or diagonal are multiplied together, you get the same answer.

CRUX 359. by Charles W. Trigg

Construct a third-order additive magic square that contains three prime elements and has a magic constant of 37.

MM 943. by Charles W. Trigg

Early in his reign as Emperor of the West, Charlemagne ordered a pentagonal fort to be built at a strategic point of his domain. As good luck charms, he had a third order magic square with all prime elements engraved on each wall. The five magic squares were different from each other, but they had the same magic constant — the year in which the fort was completed. The fort proved its ability to resist attack midway through his reign.

On this evidence, reconstruct the magic squares.

Magic configurations: magic squares Problems sorted by topic

PENT 319. by Charles W. Trigg

Use the basic nine-digit third-order magic square to generate eight other third-order magic squares that have a common magic constant. Each new square is to have nine distinct elements, and at least three elements are to be prime in five of the new squares.

PME 364. by Charles W. Trigg

Show that there is only one third-order magic square with positive prime elements and a magic constant of 267.

CRUX 399. by Gilbert W. Kessler

A prime magic square of order 3 is a square array of 9 distinct primes in which the three rows, three columns, and two main diagonals all add up to the same magic constant. What prime magic square of order 3 has the smallest magic constant

- (a) when the 9 primes are in arithmetic progression;
- (b) when they are not.

JRM 569. by Greg Fitzgibbon

Sidney Kravitz coined the term and the concept "talisman square" to designate a square array of numbers such that any two neighboring elements (i.e., kingwise adjacent elements) differ by at least some constant. There exist 4×4 squares whose elements are the numbers $1,2,\ldots,16$ that are both magic and talismanic with talisman constant 2.

- (a) Display all 24 such squares.
- (b) What is the maximum possible talismanic constant for an $n \times n$ magic talisman square consisting of the numbers $1, 2, \ldots, n^2$?

CRUX 482. by Allan Wm. Johnson Jr.

Construct a fourth-order magic square composed of distinct 2-digit primes, four of which are situated as shown:

Magic configurations: triangles

OSSMB 76-13.

The numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 are arranged in a triangular pattern, as shown:

If the sum of the numbers along each side of the triangle is 20, prove that the number 5 must go in a corner.

Mazes

OMG 14.3.1.

In a maze of connected straight lines, how can you tell if a point is inside or outside a closed figure without tracing a path?

AMM 6163.

by John Myhill

Polyominoes: maxima and minima

Devise an algorithm for escaping from a connected, countably infinite, locally finite maze. "Countably infinite" means the number of edges and nodes is \aleph_0 , "locally finite" means only a finite number of edges meet at each node. "Algorithm" means this: You are lost in the middle of the maze, having no idea of where the exit is. Your only possibility of escape, therefore, is to devise a tour that will take you through every node of the maze after a finite number of steps. In order to keep track of your route, you are given an everlasting pencil and an infallible eraser; at each node, and at the roadside of each road near the node, is a board on which you can write and erase. However, you have only a finite alphabet to write with, and there is a fixed bound on how many characters you can write on the boards. (In particular, then, you cannot keep on any board a record of how many times you have passed it.) Your field of vision is limited to being able to see, from any node, what is written on the board at that node and what is written on the nearby roadside boards.

Can this procedure be altered to solve the locally infinite case?

Polyominoes: coloring problems

JRM 386. by C. R. Gossett

Using various combinations of Red, White, and Blue (R, W, B), there are 18 linear Union Jack (or, if you prefer, "Old Glory") tromino types. One of each type has been placed in the 6×9 diagram shown. Determine the placement of each of the 18 trominoes, using, not a trial-and-error approach, but a direct line of inference that will ensure your solution is unique.

Polyominoes: dominoes

CRUX 328. by Charles W. Trigg

A set of 2k(k+1) dominoes each 2×1 , can be arranged to form a square with an empty 1×1 space in the center.

- (a) Show that for all k there is an arrangement such that no straight line can divide the ensemble into two parts without cutting a domino.
- (b) Is it always possible to arrange the dominoes so that the ensemble can be separated into two parts by a straight line that cuts no domino?

ISMJ 12.31.

Show that if $18\ 1\times 2$ dominoes are arranged to form a 6×6 square, then there is a line that divides the square into two rectangles without cutting any domino.

Polyominoes: maxima and minima

CRUX 276. by Sidney Penner

How many unit squares must be deleted from a 17×22 checkerboard so that it is impossible to place a 3×5 polyomino on the remaining portion of the board?

Polyominoes: maxima and minima Problems sorted by topic Puzzles: block puzzles

CRUX 282. by Erwin Just and Sidney Penner

On a 6×6 board we place 3×1 trominoes until no more trominoes can be accommodated. What is the maximum number of squares that can be left vacant?

CRUX 429. by M. S. Klamkin and A. Liu

On a $2n \times 2n$ board we place $n \times 1$ polyominoes (each covering exactly n unit squares of the board) until no more $n \times 1$ polyominoes can be accommodated. What is the maximum number of squares that can be left vacant?

NYSMTJ 77. by Erwin Just and Sidney Penner

On a 5×5 board, we place 3×1 triominoes until no more triominoes can be accommodated.

- (a) What is the minimum number of squares that can be left vacant?
- (b) What is the maximum number of squares that can be left vacant?

Polyominoes: pentominoes

JRM 470. by Makoto Arisawa

Let a pair of pentominoes, juxtaposed to form a decomino, be called a doublet. If two doublets are congruent, let the constituent pentomino pairs be connected by the double arrow — thus $VY \leftrightarrow PT$. There are many amusing and challenging exercises based on the doublet concept. In the present one, let us ignore congruent doublets in which the two doublets share a common pentomino or in which one or both doublets use the same pentomino twice. Using only congruences in which four distinct pentominoes are involved and, otherwise, employing as many or as few of the 66 distinct doublets as you wish, but including each of the 12 pentominos at least once, what is the shortest closed doublet chain of the form $AB \leftrightarrow CD \leftrightarrow EF \leftrightarrow \ldots \leftrightarrow AB$ you can construct?

JRM 391. by Michael Keith

The twelve different pentominoes are divided into two sets of six each and, placing each pentomino on a square grid, the two sets are arranged to form two congruent, connected figures having a single hole.

Diagrams using this division of the pentominoes or other divisions, with two sets of six each, can be used to create alternative patterns sharing a hole area of 17, but no arrangement has been discovered to date that yields a larger hole. Is 17 the maximum possible?

JRM 426. by Michael Keith

The twelve different pentominoes are divided into two sets of six each and, placing each pentomino on a square grid, the two sets are arranged to form two congruent, connected figures having one or more holes. What is the maximum number of holes that these figures can contain?

Polyominoes: tiling

PME 358. by Sidney Penner and H. Ian Whitlock

From a $2n+1\times 2n+1$ checkerboard, in which the corner squares are black, two black squares and one white square are deleted. If the deleted white square and at least one of the deleted black squares are not edge squares, prove that the reduced board can be tiled with 2×1 dominoes.

MM 969.

A cube can be unfolded into a polyomino of order six in the form of a Latin cross.

by Veit Elser

- (a) Show that five congruent Latin crosses can cover the surface of the cube without overlap.
- (b) Can the surface of the cube be covered with seven congruent polygons?

JRM 600. by Andrew L. Clarke

What is the smallest rectangle that can be tiled using only U-shaped and T-shaped pentominoes?

MSJ 477.

Consider an $n \times n$ chessboard whose four corner squares have been removed. For what values of n can this board be covered by "L"-shaped pieces having 3 squares on the long side and 2 squares on the short side?

PARAB 336.

You are given an 8×8 chessboard and 16 tiles in the shape of a "T" where each of the four squares in the T-shape is the same size as the squares of the chessboard.

- (a) Can the chessboard be completely covered with these tiles?
- (b) If one of the T-shaped tiles were replaced by a square tile which just covers four of the chessboard squares, can the chessboard be completely covered by these 16 tiles?

In each case, you must either show how to cover the board, or prove that it is impossible.

TYCMJ 78. by Sidney Penner

Assume that a single square is deleted from a $2n \times 2n$ checkerboard in which $3 \nmid n$. Prove that it is possible to tile the resultant board with right trominoes.

JRM 381. by Mark A. Ricci

Can a patio of dimensions 10 feet \times 11 feet, from one of whose ten-foot sides two 1-square-foot areas have been removed at the corners, be tiled with 36 1-foot \times 3-foot stones?

AMM E2595. by Sidney Penner

Consider $(2n+1)^2$ hexagons arranged in a "diamond" pattern, the kth column from the left and also from the right consisting of k hexagons, $1 \le k \le 2n+1$. Show that if $n \not\equiv 1 \pmod{3}$ and the center hexagon is deleted, then the remaining hexagons can be tiled by trominoes.

Puzzles: block puzzles

PARAB 338.

You are given 216 blocks, each of dimensions $1\times1\times8$. Is it possible to build a cube of dimensions $12\times12\times12$ with these blocks?

JRM 759. by Makoto Arisawa

Most recreational mathematicians are familiar with the two cubes whose faces are numbered so as to be able to display any day of the month from 01 to 31. How should the faces of four cubes be numbered so as to be able to display as many years as possible from 1979 on?

Puzzles: block puzzles Problems sorted by topic Puzzles: peg solitaire

AMM E2596.*

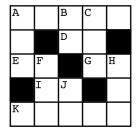
by Mark A. Spikell

Given is a collection of Cuisenaire rods having dimension $1 \times 1 \times a$, where the length a belongs to a finite set A of positive integers and the number of rods of length a may be supposed to be unlimited for each $a \in A$. For which s can a $1 \times s \times s$ square be constructed from this collection?

Puzzles: crossnumber puzzles

JRM 473.

by Michael R. W. Buckley

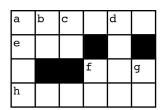

Solve the crossnumber puzzle below.

Across:

- A. The square of H down.
- D. E across plus a factor of H down.
- E. The sum of all the digits in the puzzle.
- G. The sum of the digits in C down.
- I. The sum of the digits in K across.
- K. The square of C down.

Down:

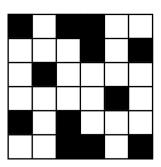
- A. The root mean square of C down and H down.
- B. A multiple of G across.
- C. A prime.
- F. H down less one of its factors.
- H. A palindrome.
- J. The sum of the digits in A across.


JRM 704.

by Harry L. Nelson

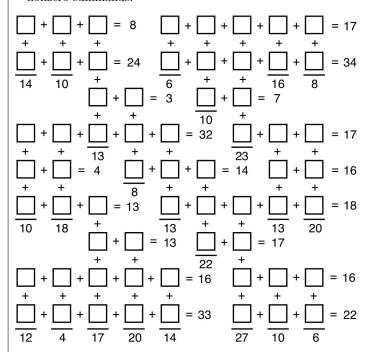
Within the puzzle shown, all numbers formed from the various digits reading across are in the decimal system, while all numbers reading down are in the octal system. Capital letters in the clues represent positive integers.

ACROSS (decimal) DOWN (octal)


a.
$$A^B$$
 a. $G \cdot (A+Z)^E + Z \cdot F^E + X$
b. C^E b. $E+F+G$
f. $D \cdot Z^Z + B$ c. $Y+Y$
h. F^G+E d. E^D+E
f. $C+B$
g. Y

JRM 798.

by Nobuyuki Yoshigahara


Fill in the diagram shown with distinct 2-, 3-, and 4-digit numbers that are perfect squares, none of which start with 0.

JRM 678.

by Sidney Kravitz

In this puzzle, the 63 squares are to be filled with one decimal digit each. Each horizontal group sums to the number to its right, and each vertical group sums to the number shown below it. Each sum is made up of distinct nonzero summands.

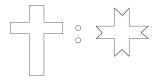
Puzzles: peg solitaire

MM 952.

by F. D. Hammer

The object of a familiar puzzle is to interchange the positions of n white and n black pegs on a linear board of 2n+1 positions, where the empty position initially separates all the white pegs from all the black pegs. One is allowed to jump pegs of opposite color, but never of the same color. A white (black) peg may move to the right (left) to an adjacent empty position.

Show that the transfer is always possible and establish a lower bound on the number of moves that is less than 2n(n+1).


Puzzles: picture puzzles Problems sorted by topic Words

Puzzles: picture puzzles

PME 458.

by Charles W. Trigg and Leon Bankoff

Translate the following sketch into a mathematical term. [Other similar puzzles appear in this problem.]

Puzzles: sliding tile puzzles

JRM 471.

by Makoto Arisawa

The sliding puzzle shown admits two interpretations:

- (a) Show that if it is interpreted as consisting of one unengraved tile and two vacant cells, all positions fall into the same class.
- (b) Assuming, on the other hand, that there are two untraversible spaces and one vacant cell, determine the number of positional classes.

11	12	1
10		2
9		ფ
8		4
7	6	5

Riddles

CRUX 151.

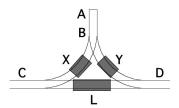
by Léo Sauvé

Identify the speaker and thereby solve the riddle:

METAPHORS

I'm a riddle in nine syllables, An elephant, a ponderous house, A melon strolling on two tendrils. O red fruit, ivory, fine timbers! This loaf's big with its yeasty rising. Money's new-minted in this fat purse. I'm a means, a stage, a cow in calf. I've eaten a bag of green apples, Boarded the train there's no getting off.

SYLVIA PLATH (1932 - 1963)


From Crossing the Water.

Shunting problems

PARAB 275.

A straight railway line has two sidings with part AB, common to both sidings, long enough to contain either of the two wagons X and Y but not both at once. The locomotive L is too long to go on AB.

The wagons X and Y are initially uncoupled, one on each siding. How can the positions of X and Y be interchanged? (The couplings can be connected or disconnected only while the locomotive and wagons are stationary.)

PARAB 333.

Two trains A and B are traveling in opposite directions on a line with a single track and wish to pass with the help of a siding. The siding will only take one car or one engine at a time and can only be entered from the right. If train A to the left of the siding has 3 cars and one engine and train B to the right of the siding has 4 cars and one engine, how can they pass with the minimum number of moves?

Word problems

JRM 656.

by Harry Nelson

If the integers from 1 to 5000 are listed in equivalence classes according to the number of characters (including blanks and hyphens) needed to write them out in full in correct English, there are exactly 40 such nonempty classes. For example, class 4 contains FOUR, FIVE, and NINE. Similarly, class 42 contains the nine members 3373, 3377, 3378, 3773, 3777, 3778, 3873, 3877, and 3878.

There is only one such class that contains exactly one member. What is it?

Words

CRUX 61.

solution. Find that solution.

by Léo Sauvé

Find autological adjectives other than those given in the article on page 55 of this issue.

JRM 751. by Michael R. W. Buckley

Four words, each an anagram of the same set of five different letters, are missing from the following rhyme: Should her renown as a cook be at ----, ---' ---- the cake. The same four words, when appropriately arranged, form an alphametic which has a unique

Chains Problems sorted by topic Symbolic logic

Chains

AMM 6220. by Mohammad Ismail

A collection K of sets is called a chain (resp. antichain) if for any $A, B \in K$, either $A \subseteq B$ or $B \subseteq A$ (resp. for any $A, B \in K$, $A \not\subset B$ and $B \not\subset A$). Let ω_1 be the first uncountable ordinal. Does there exist a family $\mathcal{P} = \{K_{\alpha} : \alpha < \omega_1\}$ of collections of subsets of a set X satisfying the following conditions?

- (a) Each K_{α} is an infinite countable antichain.
- (b) If $\alpha < \beta < \omega_1$, then every member of K_{β} is contained in some member of K_{α} and no member of K_{α} is contained in any member of K_{β} .
- (c) If $\mathcal{P}^* = \bigcup_{\alpha < \omega_1} K_{\alpha}$, then every chain and every antichain in \mathcal{P}^* is countable.

Mappings

AMM 6128.

by Martin Schechter and Peter Borwein

Let 2^{ω} be the set of all sequences with entries 0 or 1, and let N^{ω} be the set of all sequences with entries from the nonnegative integers. Can one construct a bijection f from 2^{ω} onto N^{ω} with the property that for any sequence X in 2^{ω} , one can compute the first n entries of f(X) given only the first m entries of X (where m may depend on X and n)?

FQ B-333. by Phil Mana

Let S_n be the set of ordered pairs of integers (a,b) with both 0 < a < b and $a+b \le n$. Let T_n be the set of ordered pairs of integers (c,d) with both 0 < c < d < n and $c+d \le n$. For $n \ge 3$, establish at least one bijection between S_n and T_{n+1} .

AMM 6266. by Leopoldo Nachbin

It is easily shown that every countable set S has the following property:

(P) Given any function $f: S \times S \to \mathbb{R}^+$, there exists a function $g: S \to \mathbb{R}^+$ such that $f(x,y) \leq g(x)g(y)$ for all $x,y \in S$.

It can be shown that (P) fails if the cardinal number of S is at least equal to that of the continuum. Can it be shown without the Continuum Hypothesis that (P) fails when S is uncountable?

Power set

MATYC 86. by Joseph Griffin

Given are sets A and B, with B having 24 more subsets than A. How many elements are in each set?

Relations

OSSMB 79-7.

Let S be a set and let \mathbf{R} be a relation holding or not holding between every ordered pair of distinct elements of S. Suppose \mathbf{R} satisfies the following conditions:

- (a) If a, b are distinct elements of S, then $a\mathbf{R}b$ or $b\mathbf{R}a$ holds, but not both.
- (b) If a, b, c are distinct elements of S such that $a\mathbf{R}b$ and $b\mathbf{R}c$ hold, then $c\mathbf{R}a$ holds.

Find the maximum number of elements in S.

Subsets

MM 924.

by J. Michael McVoy and Anton Glaser

How many *n*-tuples, (S_1, \ldots, S_n) , exist with

$$S_1 \subseteq S_2 \subseteq \cdots \subseteq S_n \subseteq V$$
,

where V is a set of k elements?

CRUX 82.

by Léo Sauvé

Let E be a finite set containing n elements. The following facts are well known and easy to prove.

- (a) The number of subsets of E is 2^n .
- (b) The number of relations of the form $A \subseteq B$, where $A \subseteq E$ and $B \subseteq E$, is $(2^n)^2 = 4^n$.

How many of the relations in (b) are true?

AMM E2666. by Peter Frankl

Let S be a finite set, and let $\mathcal P$ be the set of all subsets of S. For $\mathcal A \subset \mathcal P$ and $\mathcal B \subset \mathcal P$, define $\mathcal A * \mathcal B$ to be the subset of $\mathcal P$ consisting of subsets $X \subset S$ such that $X \subset A \cup B$ for some $A \in \mathcal A$ and $B \in \mathcal B$.

If $|\mathcal{A}| + |\mathcal{B}| > 2^k$, prove that $|\mathcal{A} * \mathcal{B}| \ge 2^k$.

CMB P242. by P. Frankl

Let \mathcal{A} be a set of subsets of $\{1, 2, \dots, n\}$ such that

$$|A_1 \cup A_2 \cup A_3 \cup A_4| \le n - 2$$

whenever $A_1, A_2, A_3, A_4 \in \mathcal{A}$. Prove that $|\mathcal{A}| \leq 2^{n-2}$.

AMM E2792. by Robert Patenaude

Let U be a finite set. Characterize those collections C of subsets of U with the following property: There is a unique subset R of U such that the number of sets in C which R intersects is odd.

AMM 6022. by Neal Felsinger

Given a collection X of subsets of S, no one containing another, let C(X) consist of all minimal subsets of S that intersect every member of X. Show that if S is infinite, C(X) does not necessarily exist.

ISMJ 14.4.

Let X and Y be subsets of a finite set F.

- (a) Show that $X \triangle Y = X \triangle Z$ implies Y = Z, where $X \triangle Y = (X \cup Y) \setminus (X \cap Y)$.
- (b) Suppose \mathcal{F} is a family of subsets of F that is closed under \triangle (i.e., $X \triangle Y$ is in \mathcal{F} whenever both X and Y are; thus $X \triangle X \in \mathcal{F}$ for each $X \in \mathcal{F}$). Given $X \in \mathcal{F}$ and $a \in X$, show that a is in exactly half of the elements of \mathcal{F} .

Symbolic logic

AMM 6272. by P. Olin and Kenneth W. Smith

Given: There is a complete, \aleph_1 -categorical theory T of first-order logic such that the direct product $T \times T$ is not \aleph_1 -categorical. Are there complete first-order theories T_1 , T_2 with T_1 the theory of a finite model, $T_2 \aleph_1$ -categorical, and $T_1 \times T_2$ not \aleph_1 -categorical? If so, find such a pair T_1 , T_2 with the cardinality of the model of T_1 as small as possible.

Set Theory

Symbolic logic Problems sorted by topic Symbolic logic

AMM 6139.

by D. P. Munro

Consider a first-order predicate calculus and all the relational structures appropriate to that calculus.

- (a) Let P_1, \ldots, P_k be a finite collection of mutually exclusive and exhaustive axiomatizable properties (so every relational structure has exactly one of the properties P_i). Must any of the P_i be in fact finitely axiomatizable, and if so, how many?
- (b) As for (a), but with a countably infinite collection of mutually exclusive and exhaustive axiomatizable properties

NAvW 391. by J. F. A. K. van Benthem

Let L be a first-order language with the usual logical signs (but without identity). Identify all logically equivalent sentences in L; let f(L) be the cardinality of the set thus obtained. Let m(L) be the cardinality of the set of all complete L-theories.

(a) Give the values of f and m for the following logics: L_1^n : only unary predicate-letters, viz. A_1, \ldots, A_n ($n \geq 1$). L_2 : only unary predicate-letters, countably many. L_3 : exactly one (and binary) predicate-letter (R). L_4 : only the identity-sign (=).

(b) Which connections exist between f(L) and m(L) for arbitrary logics L?

Analytic geometry Problems sorted by topic Covering problems

Analytic geometry

PARAB 319.

A rectangular box has sides of length x, y, and z, where x, y, z are different numbers. The perimeter of the box is p = 4(x + y + z), its surface area is

$$s = 2(xy + yz + zx),$$

and the length of its main diagonal is $d=\sqrt{x^2+y^2+z^2}$. Show that the length of the shortest side is less than $\frac{1}{4}p-\sqrt{d^2-\frac{1}{2}s}$ and the length of the longest side is greater than $\frac{1}{4}p+\sqrt{d^2-\frac{1}{2}s}$.

NYSMTJ 64. by Robert Exner

Let a solid cube have one vertex at (0,0,0) and let its diagonal from that vertex be along the positive z-axis. If the positive z-axis passes through the sun, what shadow does the cube cast on the xy-plane?

AMM E2576. by Robert L. Helmbold

Given any unit vector $\mathbf{n} = (n_1, n_2, n_3)$, what is the area $A(\mathbf{n})$ of the orthogonal projection of the ellipsoid

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1$$

onto a plane perpendicular to **n**?

TYCMJ 132. by R. S. Luthar

Let k be a nonzero constant, and let P be the set of planes with the property that the sum of the reciprocals of the x, y, and z intercepts equals k. Prove or disprove that the members of P contain a common point.

SSM 3761. by Gregory Wulczyn

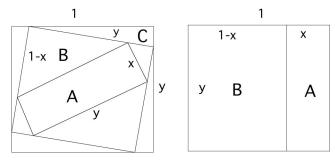
Find positive numbers r, s, and t that maximize the volume of the rectangular parallelepiped having one vertex at the origin and opposite diagonal vertex at (r, s, t), subject to the constraint that (r, s, t) lies on the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ with a, b, and c all positive.

NYSMTJ 86. by Robert Exner

If one looks at the paraboloid

$$z = ax^2 + by^2, \qquad a > 0, \quad b > 0,$$

from a viewpoint in the first octant, what kind of curve on the paraboloid outlines the silhouette?


AMM E2563. by J. Th. Korowine

Let f_1 and f_2 be nonnegative periodic functions of period 2π , and let h > 0. Let $P_1(\theta)$ and $P_2(\theta)$ be the points whose cylindrical coordinates are $(f_1(\theta), \theta, 0)$ and $(f_2(\theta), \theta, h)$, respectively. Find integrals for the volume and surface area of the solid bounded by the planes z = 0, z = h, and the lines $P_1(\theta)P_2(\theta)$.

Boxes

JRM 390. by R. Robinson Rowe

Given are three rectangular boxes that can be nested in two ways. Box A just fits diagonally in Box B, which just fits diagonally in Box C. Alternately, using the same storage space, Boxes A and B fit snugly side by side in Box C, which is one meter long. Neglecting thickness of the box material, find the length and breadth of each box.

Complexes

AMM E2584.

by H. S. M. Coxeter

Describe an infinite complex of congruent isosceles triangles extending systematically throughout 3-dimensional Euclidean space in such a way that each side of every triangle belongs to just two other triangles.

Convexity

AMM E2617. by Eugene Ehrhart

A convex body is cut by three parallel planes. If the three sections thus produced have the same area, show that the portion of the body lying between the two outside planes is a cylinder. Does the same conclusion follow if instead we are given that the three sections have the same perimeter?

JRM 507. by Susan Laird

Without consulting Man, the two most advanced races in the universe divided it up between them. The Riss staked out the part they wanted, taking care to consolidate their empire by claiming the line AB whenever the points A and B lay in their territory. The more peaceful Prott were content with the large, unclaimed portion left to them, even though the Riss got the larger share in the sense that a randomly traveling spaceship was more likely, at any given time, to find itself in Riss rather than Prott territory.

Accepting this as true metahistory, prove that space is finite.

Covering problems

PUTNAM 1975/B.2.

In 3-dimensional Euclidean space, define a slab to be the open set of points lying between two parallel planes. The distance between the planes is called the thickness of the slab. Given an infinite sequence S_1, S_2, \ldots of slabs of thicknesses d_1, d_2, \ldots , respectively, such that $\sum_{i=1}^{\infty} d_i$ converges, prove that there is some point in the space which is not contained in any of the slabs.

Cubes Problems sorted by topic Locus

Cubes

ISMJ 12.26.

Consider a line ℓ joining the midpoints of opposite edges of a cube. A cube has four diagonals. Show that ℓ is perpendicular to two of them.

SSM 3693. by Charles W. Trigg

An antiprism is a polyhedron with two regular n-gons (the parallel bases) connected by 2n isosceles triangles. The regular octahedron is an antiprism with n=3. The regular icosahedron consists of an antiprism capped on each base with a pentagonal pyramid.

- (a) Show that a cube can be viewed as an antiprism with two pyramidal caps.
- (b) Find the relative volumes of the antiprism and the cube.
- (c) Find the relative surface areas of the antiprism and the cube.
- (d) Describe the midsection of the antiprism and find its area in terms of an edge of the cube.

Curves

CRUX 367. by Viktors Linis

- (a) A closed polygonal curve lies on the surface of a cube with edge of length 1. If the curve intersects every face of the cube, show that the length of the curve is at least $3\sqrt{2}$.
- (b) Formulate and prove similar theorems about (i) a rectangular parallelepiped, (ii) a regular tetrahedron.

Cylinders

AMM E2728. by J. G. Mauldon

Let a, b, c, and d be radii of four mutually externally tangent right circular cylinders whose axes are parallel to the four principal diagonals of a cube. Characterize all quadruples (a, b, c, d) that arise in this way.

NYSMTJ 46.

Prove that the intersection of a right circular cylinder and a plane, neither parallel with nor perpendicular to the axis of the cylinder, is an ellipse.

OMG 17.1.3.

A roller has an outer casing of circumference 150 cm and an inner casing of circumference 125 cm. It contains a small cylinder of circumference 60 cm which is free to roll around inside. How many revolutions will the small cylinder make if the roller is pushed a distance of $18\ m$?

JRM 629. by Archimedes O'Toole

A sphere rests on the bottom of a cylindrical container of radius r. What is the minimum volume of liquid required to immerse the sphere?

Dissection problems

FUNCT 2.2.2.

You can clearly cut a $3 \times 3 \times 3$ cube up into 27 cubes, each $1 \times 1 \times 1$, using 6 cuts. What is the smallest number of cuts that you can use to achieve the same result, perhaps by rearranging the parts after each cut?

JRM 783.

by Harry L. Nelson

- (a) Is there a solid from which 27 one-inch cubes can be cut in less than five cuts?
- (b) What is the minimum largest dimension of a solid out of which 27 one-inch cubes can be cut in less than six cuts?

JRM 787. by Scott Kim

A *torus* is defined to be any shape which has exactly one hole through it. A *rectangular* torus is a right rectangular prism with a rectangular hole drilled through it. The hole need not be centered, but the edges of the hole must be parallel to the edges of the prism.

- (a) Cut a cube into exactly two unlinked tori.
- (b) Cut a cube into exactly five rectangular tori.

SSM 3672. by William K. Viertel

Using a plane parallel to the base, show how to cut a hemisphere into two parts of equal volume.

JRM 498. by Robert Walsh

The seam of a baseball divides the spherical surface into two congruent regions. Prove or disprove: A great circle is the only curve on a spherical surface having the above property and the additional property that the shortest route on the sphere between any two points of the same region lies entirely in that region.

Lattice points

MM 927. by Roy Dubisch

Pick's formula for the area of polygonal regions whose vertices are lattice points is $\frac{1}{2}b+i-1$ where b is the number of lattice points on the boundary and i is the number of lattice points in the interior. Show that no such formula exists for the volume of polyhedra whose vertices are lattice points even if we allow as variables, in addition to b and i, e = the number of edges, f = the number of faces, and i' = the number of lattice points in the interior of the faces.

Lines

AMM E2769. by Harry D. Ruderman

Let λ and λ' be (not necessarily coplanar) lines in space. On each of these lines, set up a real number coordinate system, with possibly different units of length. Let XX' be the line segment joining a point X on λ to the point X' on λ' with the same coordinate. Describe how to obtain X such that XX' has minimal length for all such segments.

Locus

NAvW 414. by O. Bottema

Determine the locus of the points with equal distances to three skew edges of a cube.

IMO 1978/2.

Let P be a point inside a given sphere. Three mutually perpendicular rays from P intersect the sphere at points U, V and W; Q denotes the vertex diagonally opposite to P in the parallelepiped determined by PU, PV and PW. Find the locus of Q for all such triads of rays from P.

Locus Problems sorted by topic Paper folding

CRUX 497.

by Ferrell Wheeler

Given is a cube of edge length a with diagonal CD, face diagonal AB, and edge CB. Points P and Q start at the same time from A and C, respectively, move at constant rates along AB and CD, respectively, and reach B and D, respectively, at the same time. Find the area of the surface swept out by segment PQ.

Maxima and minima

CRUX 113.

by Léo Sauvé

If $\vec{u} = (b, c, a)$ and $\vec{v} = (c, a, b)$ are two nonzero vectors in Euclidean 3-space, what is the maximum value of the angle between \vec{u} and \vec{v} ? When is this value attained?

AMM E2757.* by Harry D. Ruderman

Let a, b, and c be three lines in \mathbb{R}^3 . Find points A, B, and C on a, b, and c, respectively, such that AB+BC+CA is a minimum.

PME 367. by R. Robinson Rowe

A box of unit volume consists of a square prism topped by a pyramid. Find the side of the square base and heights of the prism and pyramid to minimize the surface area.

OSSMB 77-13.

Find the maximum volume and minimum total edge length among all rectangular solids having fixed surface area S. Show that these extreme values are attained by, and only by, the cube.

OMG 16.1.3.

If a cable spool is 1 meter wide, has an inner radius of 1/2 meter and an outer radius of 1 meter, what is the maximum possible length of nylon rope of radius 1 cm that can be wound on the spool?

CRUX 394. by Harry D. Ruderman

A wine glass has the shape of an isosceles trapezoid rotated about its axis of symmetry. If R, r, and h are the measures of the larger radius, smaller radius, and altitude of the trapezoid, find r:R:h for the most economical dimensions.

USA 1976/4.

If the sum of the lengths of the six edges of a trirect-angular tetrahedron PABC is S, determine its maximum volume.

Octahedra

MM 929.

by Charles W. Trigg

Show that there are only two octahedrons with equilateral triangular faces.

MM Q632. by F. David Hammer

A tetrahedron and an octahedron are built from a common stock of equilateral triangles. The tetrahedron holds a quart; what does the octahedron hold?

Packing problems

TYCMJ 100. by Sidney Penner

A 3-brick is a $3\times 1\times 1$ rectangular parallelepiped. Assume that a $7\times 7\times 7$ cube has been packed with 3-bricks and a single unit cube which is not located on the periphery. Prove that the unit cube must be located in the center.

IMO 1976/3.

A rectangular box can be filled completely with unit cubes. If one places as many cubes as possible, each with volume 2, in the box, so that their edges are parallel to the edges of the box, one can fill exactly 40% of the box. Determine the possible dimensions of all such boxes.

JRM 646. by Harry Nelson

A rectangular box with integer dimensions $H \leq W \leq L$ can be packed with more than WL cylindrical cans of height 5 and diameter 1. What is the smallest possible volume? What is the smallest possible surface area? Other such boxes can be packed with more than HWL spheres of diameter 1. Find those with the smallest possible volume and surface area.

PARAB 361.

A number of blocks, each $2~\mathrm{cm} \times 2~\mathrm{cm} \times 1~\mathrm{cm}$, have been fitted snugly together to make a solid 20 cm high. (The top dimensions of the solid are, say, $m~\mathrm{cm} \times n~\mathrm{cm}$.) A straight line, parallel to the 20 cm sides, pierces the solid from top to bottom. Prove that the straight line cannot pierce exactly one of the blocks.

JRM 733. by Frank Rubin

A cube is inscribed in a sphere. A second sphere is tangent externally to the cube at the center of one face and internally to the first sphere. A set of n identical spheres are tangent to the face of the cube, the first sphere, and the second sphere. What is the maximum value of n?

Paper folding

PME 460. by Barbara Seville

The dihedral angle of a cube is 90° . The other four Platonic solids have dihedral angles which are approximately $70^{\circ}31'43.60''$, $109^{\circ}28'16.3956''$, $116^{\circ}33'54.18''$, and $138^{\circ}11'22.866''$. How closely can these angles be constructed with straightedge and compass? Can good approximations be accomplished by paper folding? If so, how?

CRUX PS2-3.

Three unequal disjoint circles are given on a large (planar) card. If the centers of the circles are collinear, show that it is always possible to fold the card along two straight lines such that the three circles lie on a common sphere.

CRUX 375. by M. S. Klamkin

A convex n-gon P of cardboard is such that if lines are drawn parallel to all the sides at distances x from them so as to form within P another polygon P', then P' is similar to P. Now let the corresponding consecutive vertices of P and P' be A_1, A_2, \ldots, A_n and A'_1, A'_2, \ldots, A'_n respectively. From A'_2 , perpendiculars A'_2B_1 , A'_2B_2 are drawn to A_1A_2 , A_2A_3 respectively, and the quadrilateral $A'_2B_1A_2B_2$ is cut away. Then quadrilaterals formed in a similar way are cut away from all the other corners. The remainder is folded along $A'_1A'_2, A'_2A'_3, \ldots, A'_nA'_1$ so as to form an open polygonal box of base $A'_1A'_2 \ldots A'_n$ and of height x. Determine the maximum volume of the box and the corresponding value of x.

Paper folding Problems sorted by topic Polyhedra: squares

AMM E2630.

by Edward T. Ordman

Suppose that a polyhedral model (made, say, of cardboard) is slit along certain edges and unfolded to lie flat in the plane. The cuts may not be made so as to disconnect the figure. Now suppose that the resulting plane figure is again folded up to make a polyhedron (folding is allowed only on the original lines). The new polyhedron is not necessarily congruent to the original one. Find some interesting examples.

CRUX 140. by Dan Pedoe

A paper cone is cut along a generator and unfolded into a plane sheet of paper. What curves in the plane do the originally plane sections of the cone become?

ISMJ J10.13.

For what tetrahedra is it true that if the three faces are folded out and down to lie flat in the plane of the base the resulting plane figure is a triangle?

Pentahedra

CRUX 182. by Charles W. Trigg

A framework of uniform wire is congruent to the edges of the pentahedron in the previous problem. If the resistance of one side of the square is 1 ohm, what resistance does the framework offer when the longest edge is inserted in a circuit?

CRUX 181. by Charles W. Trigg

A polyhedron has one square face, two equilateral triangular faces attached to opposite sides of the square, and two isosceles trapezoidal faces, each with one edge equal to twice a side, e, of the square. What is the volume of this pentahedron in terms of a side of the square?

Plane figures

PME 420. by Herbert Taylor

Given four lines through a point in 3-space (no three of the lines in a plane), find four points, one on each line, forming the vertices of a parallelogram.

PUTNAM 1977/B.2.

Given a convex quadrilateral ABCD and a point O not in the plane of ABCD locate point A' on line OA, point B' on line OB, point C' on line OC, and point D' on line OD so that A'B'C'D' is a parallelogram.

PUTNAM 1975/A.6.

Let P_1 , P_2 and P_3 be the vertices of an acute-angled triangle situated in 3-dimensional space. Show that it is always possible to locate two additional points P_4 and P_5 in such a way that no three of the points are collinear and so that the line through any two of the five points is perpendicular to the plane determined by the other three.

Points in space

CANADA 1976/6.

NYSMTJ 75. by Sidney Penner

If A, B, C and D are four points in space, such that

$$\angle ABC = \angle BCD = \angle CDA = \angle DAB = \pi/2,$$

prove that A, B, C and D lie in a plane.

USA 1975/2.

Let A, B, C and D denote four points in space and AB the distance between A and B, and so on. Show that

$$AC^2 + BD^2 + AD^2 + BC^2 > AB^2 + CD^2$$
.

Polyhedra: combinatorial geometry

JRM 763.

by Frank R. Bernhart

A simple polyhedron is a polyhedron on which exactly three faces meet at every vertex. Prove that if every face of a simple polyhedron is a 3n-gon, the number of vertices is divisible by four.

OSSMB 75-8.

by Murray Klamkin

Show that in every simple polyhedron there always exist two pairs of faces that have the same number of edges.

ISMJ 12.21.

Euler proved his formula by considering how many edges and faces were added to a polyhedron (or its map) when a vertex was added. Can you reproduce his proof?

CRUX 336. by Viktors Linis

Prove that if in a convex polyhedron there are four edges at each vertex then every planar section which does not pass through any vertex is a polygon with an even number of sides.

Polyhedra: convex polyhedra

PARAB 385.

Let v be the number of vertices of a convex polyhedron, e the number of edges, and f the number of faces.

- (a) Show that, for any convex polyhedron, $3f \leq 2e$ and $3v \leq 2e$.
- (b) Is it possible to cut a potato into a convex polyhedron having exactly seven edges?

CRUX 93.

by H. G. Dworschak

Is there a convex polyhedron having exactly seven edges?

CRUX 121.

by Léo Sauvé

For which n is there a convex polyhedron having exactly n edges?

Polyhedra: pentagons

CRUX 73.

by Viktors Linis

Is there a polyhedron with exactly ten pentagons as

Polyhedra: spheres

PME 352.

by Charles W. Trigg

The edges of a semi-regular polyhedron are equal. The faces consist of eight equilateral triangles and six regular octagons. In terms of the edge e, find the diameters of the following spheres:

- (a) the sphere touching the octagonal faces,
- (b) the circumsphere, and
- (c) the sphere touching the triangular faces.

Polyhedra: squares

AMM E2740.*

by Victor Pambuccian

Show that if P is a convex polyhedron, one can find a square all of whose vertices are on some three faces of P, as well as a square whose vertices are on four different faces of P.

Projective geometry Problems sorted by topic Right circular cones

Projective geometry

NAvW 460.

by O. Bottema ISM.

In a projective 3-space S, a tetrahedron T and a plane U, not passing through any vertex of T, are given. To define a Euclidean metric in S, the plane U is taken as the plane at infinity and a suitable conic K in U as the isotropic conic. How should K be chosen so that T is

- (a) orthocentric;
- (b) equifacial;
- (c) regular?

NAvW 469.

by O. Bottema

In a projective 3-dimensional space, a (nonsingular) quadric Q is given. Determine the (nonsingular) tetrahedra with their vertices on Q and their faces tangent to Q.

NAvW 491.

by O. Bottema and J. T. Groenman

In 3-dimensional projective space, a tetrahedron

$$A = A_1 A_2 A_3 A_4$$

and two points P and Q are given. The line A_iP intersects the opposite face of A at B_i ; the line B_iQ intersects the opposite face of B (= $B_1B_2B_3B_4$) at C_i . Show that the four lines A_iC_i are generators of a hyperboloid.

NAvW 536. by O. Bottema

In projective 3-spaces, a tetrahedron $A_1A_2A_3A_4$ and four points P, Q, R, S, not on one of its faces, are given. Let A_iP , A_iQ , A_iR , A_iS meet the opposite face at P_i , Q_i , R_i , S_i (i=1,2,3,4). The planes $P_2P_3P_4$, $P_3P_4P_1$, $P_4P_1P_2$, and $P_1P_2P_3$ are denoted by U_1 , U_2 , U_3 , and U_4 respectively, and the planes analogously associated with Q, R, and S by V_i , W_i , and T_i .

If U_1 , V_1 , W_1 , T_1 pass through one point, show that the same holds for U_i , V_i , W_i , T_i (i=2,3,4). Show furthermore that this takes place if and only if P, Q, R, S are on a Cayley cubic surface with double points at A_i .

NAvW 546. by O. Bottema

In a projective 3-space, the tetrahedron $A_1A_2A_3A_4$ is taken as the fundamental tetrahedron of a projective coordinate system; α_i is the face opposite A_i . In α_i , the point $B_i = (a_{i1}, a_{i2}, a_{i3}, a_{i4}), i = 1, 2, 3, 4$, is given, such that $a_{ij} + a_{ji} = 0, a_{ij} \neq 0$ if $i \neq j$, and

$$a_{12}a_{34} + a_{13}a_{42} + a_{14}a_{23} = 0.$$

Show that the quadruple of lines A_iB_i is parabolic, and determine the Plücker coordinates of the unique transversal.

Pyramids

MM Q621. by Charles W. Trigg

Show that in a square pyramid with all edges equal, a dihedral angle formed by two triangular faces is twice a dihedral angle at the base.

KURSCHAK 1979/1.

The base of a convex pyramid is a polygon with an odd number of sides, its lateral edges are all of the same length, and the angles between its neighboring lateral faces are also equal. Prove that the base of the pyramid is a regular polygon.

Rectangular parallelepipeds

ISMJ J11.4.

If the sides of a rectangular box are increased by 2, 3, and 4 inches, respectively, it becomes a cube and its volume is increased by 827 cubic inches. Find the dimensions of the box.

SSM 3584. by Robert A. Carman

If (a, b, c) is a Pythagorean triple, $a^2 + b^2 = c^2$, then prove that the rectangular solid with edges $(ab)^2$, $(ac)^2$, and $(bc)^2$ has its major diagonal equal to $c^4 - a^2b^2$.

TYCMJ 134. by Norman Schaumberger

Let A be the surface area of a rectangular parallelepiped, V be the volume, and d be the diagonal. Prove that $2d^2 \ge A \ge 6V^{2/3}$.

Regular tetrahedra

CRUX 245.

by Charles W. Trigg

Find the volume of a regular tetrahedron in terms of its bimedian b. (A bimedian is a segment joining the midpoints of opposite edges.)

USA 1978/4.

- (a) Prove that if the six dihedral angles of a given tetrahedron are congruent, then the tetrahedron is regular.
- (b) Is a tetrahedron necessarily regular if five dihedral angles are congruent?

CRUX PS5-3.

In a regular (equilateral) triangle, the circumcenter O, the incenter I, and the centroid G all coincide. Conversely, if any two of O, I, G coincide, the triangle is equilateral. Also, for a regular tetrahedron, O, I, and G coincide. Prove or disprove the converse result that if O, I, and G all coincide for the tetrahedron, the tetrahedron must be regular.

PME 425. by Charles W. Trigg

Without using its altitude, compute the volume of a regular tetrahedron by the prismoidal formula.

Right circular cones

FUNCT 1.1.3.

by A. Nesbit

Prove that the volume of a frustum of a cone is obtained by either of the rules:

- (a) To the areas of the two ends of the frustum add the square root of their product; multiply the result by 1/3 of the perpendicular height.
- (b) To the product of the diameters of the two ends, add the sum of their squares; multiply this sum by the height, and again by 0.2618.

JRM 785. by R. Robinson Rowe

The Burr brothers, Tim and Lum, felled a tree and slashed off the branches, leaving a cone-shaped log, then lopped off the spindle top, leaving the trunk truncated where its diameter was six inches. Guessing it was his share, Tim cut off the next 19 feet, but when Lum cut off an equal volume from the butt end, it was only 7 feet long. This left a two-foot-long chunk, which they split up for stove wood. What was the diameter of the log at the butt end?

Right circular cones Problems sorted by topic Spherical geometry

PARAB 410.

Mount Zircon is shaped like a perfect cone whose base is a circle of radius 2 miles, and the straight line paths up to the top are all 3 miles long. From a point A at the southernmost point of the base, a path leads to B, a point on the northern slope and 2/5 of the way to the top. If AB is the shortest path on the mountainside joining A to B, find

- (a) the length of the whole path AB, and
- (b) the length of the path between P and B, where P is a point on the path at which it is horizontal.

CANADA 1977/5. OMG 16.2.5.

A right circular cone of base radius 1 cm and slant height 3 cm is given. Suppose P is a point on the circumference of the base and the shortest path from P around the cone and back to P is drawn. What is the minimum distance from the vertex V to this path?

Skew quadrilaterals

MM Q630.

by M. S. Klamkin and M. Sayrafiezadeh

Suppose a skew quadrilateral ABCD, with diagonal AC perpendicular to diagonal BD, is transformed into the quadrilateral A'B'C'D' so that the corresponding lengths of the sides are preserved. Prove that A'C' is perpendicular to B'D'.

USA 1977/4.

Prove that if the opposite sides of a skew quadrilateral are congruent, then the line joining the midpoints of the two diagonals is perpendicular to these diagonals, and conversely, if the line joining the midpoints of the two diagonals of a skew quadrilateral is perpendicular to these diagonals, then the opposite sides of the quadrilateral are congruent.

Solids of revolution

CRUX 436. by R. Robinson Rowe

The following method is used to approximate an oval using four circular sectors. Two nonoverlapping sectors that are symmetric about the horizontal diameter of a given circle are each translated vertically towards one another by equal distances small enough to allow their four bounding radii to continue to extend past their intersection by amounts R_1 and R_2 on the left- and right-hand sides, respectively. The other two sectors in the approximation have radii R_1 and R_2 .

Determine the radii of the four circular sectors in terms of the angles these radii make with the horizontal and the lengths of the horizontal and vertical diameters of the constructed figure.

Space curves

AMM 6087. by Nathaniel Grossman

A loxodrome on a Riemannian surface is a curve meeting members of a specified one-parameter family of curves at a constant angle. For example, a torus has two special families, the meridians and the parallels, each defining the same family of loxodromes. Prove that a loxodrome on a torus is either periodic or dense.

MM 962.

by Curt Monash

Consider the space curve, C(t), defined by

- $C(t) = (t^k, t^m, t^n)$ for $t \ge 0$ and k, m, and n integers.
- (a) Show that if (k, m, n) equals (1, 2, 3) or (-2, -1, 1), then C(t) does not contain four coplanar points.
- (b) Show that for (k, m, n) equal to (1, 3, 4), C(t) does contain four coplanar points.
- (c) Find a characterization of (k, m, n) so that C(t) does not contain four coplanar points.

MM 981. by Steven Jordan

Show that if a smooth curve in \mathbb{R}^3 has the property that each principal normal line passes through a fixed point, then the curve must be an arc of a circle.

Spheres

OMG 16.1.9.

A hole of length 6 m is drilled through a sphere of radius greater than 3 m. What is the volume of the remaining material?

CRUX 453. by Viktors Linis

In a convex polyhedron each vertex is of degree 3 (i.e. is incident with exactly 3 edges) and each face is a polygon which can be inscribed in a circle. Prove that the polyhedron can be inscribed in a sphere.

PENT 303. by Charles W. Trigg

Show that the ratio of the volume of a sphere to the volume of its inscribed regular octahedron is π .

AMM E2694. by I. J. Schoenberg

Let Π be a prism inscribed in the sphere S of unit radius and center O. The base of Π is a regular n-gon of radius r. For each face F of Π , drop a directed perpendicular from O and let A_F be the point where it intersects S. Let Π^* be the polyhedron obtained by adding to Π , for each face F, the pyramid of base F and apex A_F .

For which values of r is Π^* convex?

CRUX PS6-2.

Given are two points, one on each of two given skew lines. Prove that there exists a unique sphere tangent to each of the two given points.

CRUX 500. by H. S. M. Coxeter

Let 1, 2, 3, 4 be four mutually tangent spheres with six distinct points of contact 12, 13, ..., 34. Let 0 and 5 be the two spheres that touch all the first four. Prove that the five "consecutive" points of contact 01, 12, 23, 34, 45 all lie on a sphere (or possibly a plane).

Spherical geometry

PARAB 305.

An airplane leaves a town of latitude 1° S, flies x km due South, then x km due East, then x km due North. He is then 3x km due East of his starting point. Find x.

USA 1979/2.

Let S be a great circle with pole P. On any great circle through P, two points A and B are chosen equidistant from P. For any spherical triangle ABC (the sides are great circle arcs), where C is on S, prove that the great circle arc CP is the angle bisector of angle C.

Solid Geometry

Surfaces Problems sorted by topic Triangles

Surfaces

OMG 16.1.8.

If a 3 m high statue takes 5 liters of paint to cover, how much will be needed to cover a 30 cm high copy?

Tetrahedra: altitudes

NAvW 513. by O. Bottema

It is known that the four altitudes of a tetrahedron T are generators of a hyperboloid. Determine their cross ratio in terms of the six dihedral angles of T.

Tetrahedra: dihedral angles

CANADA 1979/2.

Prove that the sum of the dihedral angles of a tetrahedron is not constant.

Tetrahedra: faces

CRUX 478. by Murray S. Klamkin

Prove that if the circumcircles of the four faces of a tetrahedron are mutually congruent, then the circumcenter O of the tetrahedron and its incenter I coincide.

CRUX 330. by M. S. Klamkin

It is known that if any one of the following three conditions holds for a given tetrahedron then the four faces of the tetrahedron are mutually congruent (i.e., the tetrahedron is isosceles):

- 1. The perimeters of the four faces are mutually equal.
- 2. The areas of the four faces are mutually equal.
- $3.\ {\rm The\ circumcircles}$ of the four faces are mutually congruent.

Does the condition that the incircles of the four faces be mutually congruent also imply that the tetrahedron is isosceles?

Tetrahedra: family of tetrahedra

NAvW 514. by O. Bottema

A tetrahedron $A_1A_2A_3A_4$ with $A_2A_3 = a$, $A_3A_1 = b$, $A_1A_2 = c$, $A_1A_4 = a_1$, $A_2A_4 = b_1$, $A_3A_4 = c_1$ is called harmonic (or isodynamic) if $aa_1 = bb_1 = cc_1 = k$. Given a nonequilateral triangle $A_1A_2A_3$ with sides a, b, and c, show that there exists a set of harmonic tetrahedra $A_1A_2A_3A_4$, and determine the upper and lower bound of k.

Tetrahedra: incenter

NAvW 526.

by O. Bottema and J. T. Groenman

A tetrahedron $A_1A_2A_3A_4$ is given; α_i is the face opposite A_i , I is the center of the inscribed sphere, and B_i its tangent point on α_i ($1 \le i \le 4$). The point P_i on IB_i is defined by $IP_i = d$, where d is given ($-\infty \le d \le \infty$).

Show that the four lines A_iP_i are hyperbolic.

Tetrahedra: inscribed spheres

MM Q616.

by C. W. Trigg

The faces of a tetrahedron and a hexahedron (triangular dipyramid) are congruent equilateral triangles. What is the ratio of the radii of their inscribed spheres?

Tetrahedra: maxima and minima

JRM 532.

by R. S. Field Jr.

Of all plane sections of a regular tetrahedron, which one has the maximum perimeter?

Tetrahedra: octahedra

PME 386.

by Charles W. Trigg

Show that the volume of Kepler's Stella Octangula (a compound of two interpenetrating tetrahedrons) is three times that of the octahedron that was stellated.

Tetrahedra: opposite edges

AMM S12. CRUX PS4-3.

by M. S. Klamkin

If a, a_1 ; b, b_1 ; and c, c_1 denote the lengths of the three pairs of opposite sides of an arbitrary tetrahedron, prove that $a + a_1, b + b_1$, and $c + c_1$ satisfy the triangle inequality.

CRUX 94. by H. G. Dworschak

If, in a tetrahedron, two pairs of opposite edges are orthogonal, is the third pair of opposite sides necessarily orthogonal?

Tetrahedra: planes

NAvW 451.

by O. Bottema

Let $T = A_1A_2A_3A_4$ be a given tetrahedron, and let M_{ij} denote the midpoint of A_iA_j . Determine the convex polyhedron P bordered by the twelve planes $A_iM_{jk}M_{j\ell}$, where i,j,k,ℓ is a permutation of 1,2,3,4. Determine the volume of P if that of T is unity.

Tetrahedra: triangular pyramids

SPECT 10.2.

A pyramid on a triangular base has the length of each sloping side 1 and the length of each base side $\sqrt{2}$. The point P is a point on the base, distance d_1, d_2, d_3 from the base vertices. Determine the distance of P from the apex of the pyramid.

Triangles

AMM E2727.

by David P. Robbins

Two triangles $A_1A_2A_3$ and $B_1B_2B_3$ in \mathbb{R}^3 are equivalent if there exist three different parallel lines p_1 , p_2 , and p_3 and rigid motions σ and τ such that $\sigma(A_i)$ and $\tau(B_i)$ lie on p_i (i = 1, 2, 3).

Find necessary and sufficient conditions for equivalence of two triangles.

Banach spaces Problems sorted by topic Graph of a function

Banach spaces

NAvW 440. by D. van Dulst

Let X be a Banach space, and let B denote its unit ball. If X is nonreflexive, show that there exists an $\varepsilon>0$ with the property that, for no weakly compact set $K\subset X$, we have $B\subset K+\varepsilon B$.

AMM 6283. by Gordon R. Feathers

It is well known that a strongly closed convex subset of a Banach space is weakly closed. Is the same true of a strongly closed star-shaped subset?

Cantor set

AMM 6213. by C. G. Mendez

Let G be an open dense subset of the Cantor set C. Is the boundary ∂G of G countable?

Compactifications

AMM 6124.* by Thomas E. Elsner

Let Y be a compactification of a completely regular space X. Is there a base B for Y such that the smallest algebra of sets containing B has no element in $Y \setminus X$?

Composed operations

AMM 6260. by Eric Langford

If X is a subset of a topological space S, then it is known that there can be formed at most six new sets by repeated formations of closures and interiors iterated in any order. It is also known that if we further allow the formation of unions, then no more than six new sets can be generated for a maximum total of thirteen. Given that we start with X and the additional six sets described in the first sentence, what is the minimum number of new sets that can occur when we further allow unions?

Connected sets

JRM 445. by Michael R. W. Buckley

Define a *tetrad* as the union of four closed, simply connected regions such that each of the six pairs of regions shares a boundary of positive measure. It is simple to construct a tetrad that is, itself, simply connected. It is also simple to exhibit tetrads in which the four component regions are congruent, in which, however, the tetrads themselves are not simply connected.

- (a) Can a simply connected tetrad with four congruent component regions be constructed?
- (b) Failing this, can a sequence of tetrads with four congruent components be exhibited in which the ratio of hole area to tetrad area approaches zero?
- (c) Failing this, what is the greatest lower bound on the ratio of hole area to tetrad area for a tetrad with four congruent components?

JRM 684. by Frank Rubin

Define a *tetrad* as the union of four closed, simply connected regions such that each of the six pairs of regions shares a boundary of positive measure. It is possible to construct tetrads that are simply connected and which are composed of four congruent component regions. Is it possible to construct such a tetrad which in addition is convex?

MM 932.

by R. A. Struble

Is there a topology for the set of real *n*-tuples, other than the Euclidean topology, relative to which the family of connected sets is exactly the usual one?

CRUX 186. by Leroy F. Meyers

Let A, B, C, and D be the subsets of the plane \mathbb{R}^2 having, respectively, both coordinates rational, both coordinates irrational, exactly one coordinate rational, and both or neither coordinates rational. Which of these sets is/are connected?

Euclidean plane

AMM 6122. by Albert A. Mullin

Does there exist a compact set $S \subset E^2$ such that for each $x \in E^2 \setminus S$, there exist precisely two nearest points of S? Clearly, S cannot be convex.

Function spaces

AMM 6093. by Richard Johnsonbaugh

Let X be a completely regular Hausdorff space, and let C(X) denote all real-valued continuous functions on X with the topology of uniform convergence on compact sets. Let F be a continuous nonzero linear functional on C(X). Prove that there exists a smallest compact set K with the property that if f=0 on K, then F(f)=0.

AMM 6113. by Claudia Simionescu

Let X be a compact metric space, and let F be a real finitely additive set function not of bounded variation. Let T_F be the set of Riemann-Stieltjes integrable functions. Then T_F is of first category in C(X). Can this result be improved to show that T_F is nowhere dense?

AMM 6257. by Jan Mycielski

Let X be the space of continuous nondecreasing functions $f\colon [0,1] \to [0,1]$ having f(0)=0 and f(1)=1 and with the distance function $d(f,g)=\max|f(x)-g(x)|$ over $0\le x\le 1$. Let Y be the subset of all f in X such that f is strictly increasing and the length of f is 2. Prove that $X\setminus Y$ is meager in X.

Functions

AMM 6181.* by J. M. Arnaudies

Let n be an integer larger than 2, and A_0, A_1, \ldots, A_n be n single-valued real functions defined and continuous on a given topological Hausdorff space T. Suppose that for all $t \in T$, the 2-form

$$A_0x^n + A_1x^{n-1}y + \dots + A_ny^n$$

(where the A_i take their values for t) defines n real distinct lines in the two-dimensional real projective space.

Give a characterization of those spaces T such that for any choice of the A_i , there necessarily exists a system of continuous functions $(P_1, Q_1, P_2, Q_2, \ldots, P_n, Q_n)$, real-valued, defined on T, satisfying the formal equality,

$$A_0x^n + A_1x^{n-1}y + \dots + A_ny^n$$

= $(P_1x + Q_1y)(P_2x + Q_2y) \dots (P_nx + Q_ny).$

Graph of a function

AMM 6255. by Adam Riese

Let $f: \mathbb{R} \to \mathbb{R}$ be a function whose graph, considered as a subset of \mathbb{R}^2 , is both closed and connected. Prove that f is continuous. What can be said when $f: \mathbb{R}^m \to \mathbb{R}^n$?

Problems sorted by topic Hilbert spaces Metric spaces

Hilbert spaces

CMB P257.

by S. Zaidman

Let V and H be two Hilbert spaces and V a vector subspace of H with $v \neq H$. Suppose the inclusion map i: $V \to H$ is continuous and that V is dense in H. Then there is a function $v:[-1,1]\to V$ such that $i\circ v:[-1,1]\to H$ is continuous, but v itself is not continuous.

NAvW 554. by A. A. Jagers and H. Th. Jongen

Let H be a separable Hilbert space and P be the set of all positive, semidefinite Hermitian operators from the whole of H into H. To each convex cone F in P, we may associate a topology τ_F on H such that (H, τ_F) is a locally convex topological vector space: Take

$$\left\{ \left\{ x \in H \mid (Ax, x) < 1 \right\} \mid A \in F \right\}$$

as a neighborhood base at 0 for τ_F . If

$$F = \left\{ A \in P \mid \dim A(H) < \infty \right\},\,$$

then τ_F is the weak topology on H; if F consists of all nuclear $A \in P$, then τ_F is called the S-topology; if F = P, then τ_F is just the norm topology. Prove that τ_F is equal to the bounded weak topology if F consists of all compact $A \in P$.

Knots

JRM 444. by Horace W. Hinkle

It is simple enough to tie up a rectangular box with string and then tie the loose ends together. Is it possible, however, to do the job with a single rubber band of suitable size with each of the six faces of the box having two segments of the band intersecting in an over-and-under knot rather than in a simple cross-over?

Locally convex spaces

AMM 6029.*

by P. P. Carreras

Let E[t] be a linear space provided with a separated locally convex topology t. Show that E[t] is bornological if and only if every absolutely convex bornivorous and algebraically closed subset of E[t] is a t-neighborhood of the origin.

NAvW 471.

by D. van Dulst

Give an example of a locally convex Hausdorff space that is separable but contains a nonseparable linear subspace.

Metric spaces

FUNCT 1.2.3.

If X is a Cartesian plane and, for all points $P, Q \in X$,

$$d(P,Q) = \begin{cases} 0, & \text{if } P = Q, \\ 1, & \text{if } P \neq Q, \end{cases}$$

verify that d is a metric on X. Describe the open balls B((0,0); 2) and B((0,0); 1/2) in this metric space. Verify that every subset of the metric space is open.

FUNCT 1.2.2.

If X is a Cartesian plane and, for all points $P, Q \in X$, d(P,Q) is defined as |x-u|+|y-v|, where (x,y) are the coordinates of P and (u, v) those of Q, verify that d is a metric on X. Draw the open ball B((0,0); 1) in this metric space.

AMM S8. by R. Johnsonbaugh

Call a function f from a metric space (M, d) into itself a weak contraction map if whenever $x, y \in M$ with $x \neq y$, we have

$$d\left(f(x), f(y)\right) < d(x, y).$$

- (a) Give an example of a weak contraction map on a complete metric space with no fixed point.
- (b) Show that even on a compact metric space a weak contraction map need not be a contraction map; i.e., it need not satisfy $d(f(x), f(y)) \le cd(x, y)$ for 0 < c < 1.
- (c) Prove that a weak contraction map on a compact metric space has a unique fixed point.

AMM 6081. by T. Šalát

Let (X,d) be a metric space. We call $f:X\to\mathbb{R}$ quasicontinuous at x_0 if for each positive ε and δ there exists an open sphere

$$S(x_1, \delta_1) = \{x : d(x, x_1) < \delta_1\} \subset S(x_0, \delta),$$

such that

$$f[S(x_1, \delta_1)] \subset (f(x_0 - \varepsilon), f(x_0 + \varepsilon)).$$

Does there exist a metric space of first category and with no isolated points that allows a quasicontinuous function that is nowhere continuous?

AMM 6063. by H. J. Marcum

Let S be the set of all circles in the plane provided with the Hausdorff metric ρ induced by the usual Euclidean metric d, i.e.,

$$\rho(A,B) = \max \left\{ \sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A) \right\},\,$$

where $d(a, B) = \inf \{d(a, b) \mid b \in B\}$ denotes the distance from the point a to the set B.

Let $z: S \to \mathbb{R}^2$ be the function that to each circle A assigns its center z(A). Prove that $d(z(A), z(B)) \leq \rho(A, B)$ for all $A, B \in S$.

AMM 6126.

M 6126. by Harold Reiter Let X be a metric space, and let $(2^X, D)$ be the associated space of compact subsets, with the Hausdorff metric. Let S be a zero-dimensional collection of compact zerodimensional sets. Prove or disprove that $\cup \{C \mid C \in S\}$ is zero-dimensional.

AMM S16. by I. J. Schoenberg

Characterize the closed sets S of the complex plane such that $d(z+w) \leq d(z) + d(w)$ for all complex numbers z and w, where d(z) denotes the Euclidean distance from z to S.

AMM 6275. by S. Foldes and E. Howorka

Let r be a metric on \mathbb{R}^n giving the same topology as the usual Euclidean metric d. Let I(r), I(d) denote their groups of isometries. The following conjecture has not yet been settled: If I(r) contains an isomorphic copy of I(d), then $I(r) \cong I(d)$. Show that $I(d) \subseteq I(r)$ implies I(r) = I(d).

Metric spaces Problems sorted by topic Unit interval

AMM 6025.

by S. F. Wong and B. B. Winter

Let (X, d) be a metric space, T an arbitrary subset of X, and t an arbitrary element of T. As usual,

$$d(t, A) = \inf \left\{ d(t, a) \mid a \in A \right\}$$

is $-\infty$ if $A = \emptyset$; ∂T and T^c are, respectively, the boundary and the complement of T.

- (a) Is it always true that $d(t,x) < d(t,\partial T)$ implies $x \in T$? If not, find a condition on (X,d) that is necessary and sufficient for the validity of this implication.
- (b) Is it always true that $d(t, \partial T) = d(t, T^c)$? If not, find a condition on (X, d) that is necessary and sufficient for the validity of this equality.

Product spaces

AMM 6023.

by S. J. Sidney

If for each k in the uncountable index set K, I_k denotes a copy of [0,1] and U_k denotes the copy of (0,1] contained therein, prove or disprove that $\prod_k U_k$ is a Borel set in the compact space $\prod_k I_k$.

Separation properties

AMM E2806. AMM 6274.

by F. S. Cater by F. S. Cater

Let S denote a topological space in which every compact set is closed, and let x and y be distinct points of S.

- (a) Prove that x and y have disjoint neighborhoods if each of x and y has a countable local base.
- (b) Show by example that x and y need not have disjoint neighborhoods if each element of S, other than x, has a countable local base.

Sets

AMM E2614.

by Frank Siwiec

A set $A \subset \mathbb{R}^n$ is called a g-set if there is a countable family $\{U_n|n=1,2,\ldots\}$ of open sets containing A with the property that for each open set $G \supset A$, there is a U_n with $A \subset U_n \subset G$. Which subsets of \mathbb{R}^n are g-sets?

AMM 6188.

by F. S. Cater

Do there exist complementary subsets \tilde{A} and B of the set of irrational numbers such that for any open intervals I and J in the real line,

- (a) $A\cap I$ and $B\cap J$ are not homeomorphic in the Euclidean topology;
- (b) there is a one-to-one continuous function mapping $A \cap I$ onto $B \cap J$?

AMM 6014.

by C. H. Kimberling

Does there exist an uncountable set of real numbers all of whose closed subsets are countable?

AMM 6261.

by Hugh Noland

Let S be an uncountable set of real numbers, and let A be a countable subset of S. Must there exist an open set U, containing A, such that $S \setminus U$ is uncountable?

CRUX 59.

by John Thomas

Find the shortest proof to the following proposition: every open subset of R is a countable disjoint union of open intervals.

AMM E2613.

by D. E. Knuth

and the Mayagüez Problems Group

Partition the real line $\mathbb R$ into a countable union of compact subsets.

PUTNAM 1975/B.4.

Does there exist a subset B of the unit circle $x^2+y^2=1$ such that

- (1) B is topologically closed, and
- (2) B contains exactly one point from each pair of diametrically opposite points on the circle?

Subspaces

PME 372.

by Sidney Penner

Prove the following theorem: Let (X_1, τ_1) and (X_2, τ_2) be topological spaces and let f be a function from a subset of X_1 into X_2 . The function f is continuous in the relative topology on its domain if and only if, for every $a \in \tau_2$, there exists $b \in \tau_1$ such that

- (1) Dom $f \cap b \subset f^{-1}(a)$, and
- (2) If $c \subset a \cap \text{Range } f$, then $f^{-1}(c) \subset \text{Dom } f \cap b$.

AMM 6147

by Richard Johnsonbaugh

Can a normal, separable space possess a closed, uncountable, discrete subspace?

Surfaces

AMM 6141.*

by Dennis Johnson and Herbert Taylor

Can the Borromean rings be drawn without crossing on a surface of genus 2?

AMM E2585.

by Jan Mycielski

Prove that for every triangulation of a two-dimensional closed surface, the average number of edges meeting at a vertex approaches 6 in the limit as the number of triangles used approaches infinity.

Topological groups

AMM 6246. by L. Washington and W. Parry

Let G be a compact Hausdorff topological group. Show that the only group homomorphism (not assumed continuous) from G to the integers is the trivial one.

Topological vector spaces

AMM 6009.

by J. A. Goldstein

Let X be a finite dimensional topological vector space whose topology is given by a metric d. Let T be a surjective isometry on X such that T0 = 0. If d is invariant, i.e., if

$$d(p,q) = d(p-q,0)$$

for all $p, q \in X$, so that X is a Fréchet space, then T is necessarily linear. Must T still be linear if the assumption that d is invariant is dropped? What if dim X = 1?

Unit interval

AMM E2768.

by Jim Fickett

Is there a subset E of [0,1] with E and $[0,1]\setminus E$ homeomorphic?

AMM 6282.

by David P. Robbins

Exhibit a homeomorphism between the metric space of rational numbers r with 0 < r < 1 and that of rationals t with $0 \le t \le 1$.

Problems sorted by topic Identities: constraints Approximations

Approximations

AMM E2693.

by Alexandru Lupas

Find a rational function

$$f(x) = \frac{P(x)}{Q(x)}$$

where P(x) and Q(x) are polynomials with integral coefficients of degree at most 6, which is a good approximation to $\arctan x$ on [0, 1]. More precisely, we want

$$g(x) = \arctan x - f(x)$$

to satisfy $0 \le g(x) < \varepsilon$ for $x \in [0,1]$ and ε to be small (such approximations exist if $\varepsilon = 0.000033$).

FUNCT 1.2.7.

A very good approximate method of calculating $\sin x$ for x between 0 and $\pi/2$ is by means of the formula

$$\sin x \approx x(1 - 0.16605x^2 + 0.00761x^4).$$

Use a calculator or a computer to make your own table of $\sin x$, and compare it with published tables.

OSSMB G77.2-4.

Show that $\tan \pi/10$ is a root of the equation

$$5x^4 - 10x^2 + 1 = 0.$$

Hence calculate $\tan \pi/10$ to two decimal places.

Calculator problems

NYSMTJ 55.

by Bruce King

Suppose you are using a calculator and need to find $\tan^{-1} x$, but the calculator will give only $\sin^{-1} x$ and $\cos^{-1} x$. How can you find $\tan^{-1} x$?

Determinants

AMM E2589.

by Joe Sunday

Let d_1, \ldots, d_n be distinct integers > 1. If

$$a_{ij} = \sin^2\left(\frac{j\pi}{d_i}\right)$$

for $1 \le i, j \le n$, show that $det(a_{ij}) \ne 0$.

CRUX 462. by Hippolyte Charles

Let A, B, and C be the angles of a triangle. Show that

$$\begin{vmatrix} \tan \frac{A}{2} & \cos A & 1 \\ \tan \frac{B}{2} & \cos B & 1 \\ \tan \frac{C}{2} & \cos C & 1 \end{vmatrix} = 0.$$

Fallacies

FUNCT 2.3.4.

Spot the fallacy: Since

$$\cos^2 x = 1 - \sin^2 x.$$

it follows that

$$1 + \cos x = 1 + (1 - \sin^2 x)^{\frac{1}{2}};$$

that is,

$$(1 + \cos x)^2 = \left\{1 + (1 - \sin^2 x)^{\frac{1}{2}}\right\}^2.$$

In particular, when $x = \pi$, we have

$$(1-1)^2 = \left\{1 + (1-0)^{\frac{1}{2}}\right\}^2,$$
$$0 = (1+1)^2 = 4.$$

Identities: constraints

CRUX 234.

by Viktors Linis

If $\sin \frac{2^n \pi}{13} = \pm \sin \frac{\pi}{13}$, prove that

$$\cos\frac{\pi}{13}\cos\frac{2\pi}{13}\cos\frac{4\pi}{13}\cdots\cos\frac{2^{n-1}\pi}{13} = \pm\frac{1}{2^n}$$

CRUX 103.

by H. G. Dworschak

If

$$\frac{\cos \alpha}{\cos \beta} + \frac{\sin \alpha}{\sin \beta} = 1,$$

prove that

$$\frac{\cos^3\beta}{\cos\alpha} + \frac{\sin^3\beta}{\sin\alpha} = 1.$$

DELTA 5.1-1.

by R. S. Luthar

If $\cos \theta + \cos \phi + \cos \psi = \sin \theta + \sin \phi + \sin \psi = 0$, evaluate

$$\cos 3(\theta - \phi) + \cos 3(\phi - \psi) + \cos 3(\psi - \theta).$$

OSSMB G76.2-3.

(a) Given that

 $(1 + \sin A)(1 + \sin B)(1 + \sin C) = \cos A \cos B \cos C \neq 0$

$$(1 - \sin A)(1 - \sin B)(1 - \sin C).$$

(b) Given that in $\triangle ABC$

$$(a+b+c)(b+c-a) = 3bc,$$

find $\angle A$.

TYCMJ 120.

by K. R. S. Sastry

Let $\sin A + \cos B = P$ and $\cos A + \sin B = Q$, where P and Q are not both zero and $P^2 + Q^2 \le 4$. Express in terms of P and Q the values of

- (a) $\sin(A+B)$,
- (b) $\cos(A+B)$,
- (c) $\sin(A-B)$, and
- (d) $\cos(A B)$.

OSSMB G79.2-5. Given $A = \tan^{-1} \frac{1}{7}$, $B = \tan^{-1} \frac{1}{3}$ (A, B acute), show that $\cos 2A = \sin 4B$.

Identities: constraints Problems sorted by topic Inequalities: Huygens

OSSMB G78.1-6.

If $\tan A$ and $\tan B$ are the roots of the equation

$$x^2 + cx + d = 0,$$

show that

$$\sin^{2}(A+B) + c\sin(A+B)\cos(A+B) + d\cos^{2}(A+B) = d.$$

Identities: cos

PME 397.

by J. S. Frame

If $c_j = 2\cos(j\pi/n)$, prove that

$$\prod_{j=1}^{n} (1 + 3c_j^4) = (3^n - 3^{n/2} \cdot 2\cos(5\pi n/6) + 1)^2,$$

and more generally that

$$\prod_{j=1}^{n} (t^4 + c_j^4) = (x^n + x^{-n} - z^n - z^{-n})^2 = F_n^2(t),$$

where $F_n(t)/F_1(t)$ is a polynomial in t^2 with integral coefficients, and

$$x = u\overline{u} \ge 1$$
, $z = u/\overline{u}$, and $u + u^{-1} = te^{\pi i/4}$.

Identities: inverse trigonometric functions

MATYC 132.

by Warren Page

Show that

$$\csc^{-1}(\sqrt{n+2}) + \sec^{-1}(\sqrt{n+1}) + \tan^{-1}(\sqrt{n+1}) - \tan^{-1}(\sqrt{n}) = 2 \left[\cot^{-1}(2) + \cot^{-1}(3)\right]$$

for every natural number n.

PME 399.

by Jack Garfunkel

Show that

$$\arcsin\left(\frac{x-3}{3}\right) + 2\arccos\sqrt{\frac{x}{6}} = \frac{\pi}{2}$$
, $(3 \le x \le 6)$.

Identities: multiple angles

OSSMB 76-9.

If f denotes the function that gives $\cos 17x$ in terms of $\cos x$, that is,

$$\cos 17x = f(\cos x),$$

show that

$$\sin 17x = f(\sin x).$$

Identities: sin

OSSMB 78-8. by Neal E. Reid

Let $\theta_n = \pi/(n+1)$. Prove that, for any positive integer n,

$$\sin \theta_n \cdot \sin 2\theta_n \cdot \sin 3\theta_n \cdot \dots \cdot \sin n\theta_n = \frac{\sqrt{2n+1}}{2n}.$$

OSSMB G79.1-4.

(a) Prove that for all A and B,

$$\sin(A+B)\sin(A-B) = \sin^2 A - \sin^2 B.$$

(b) Prove that for any triangle ABC.

$$(b^2 - c^2) \cot A + (c^2 - a^2) \cot B + (a^2 - b^2) \cot C = 0.$$

Identities: sin and cos

OMG 17.3.8.

Given that $\cos \theta = A \cos^3 \theta + B \cos \theta$ holds for every real number θ , determine the values of A and B.

OMG 18.1.6.

Prove the identity

$$(1 + \tan A + \cot A)^{2} = \frac{(\sin A \cdot \cos A + 1)^{2}}{\sin^{2} A \cdot \cos^{2} A}.$$

Identities: tan

CRUX 222.

by Bruce McColl

Prove that

$$\tan\frac{\pi}{11}\tan\frac{2\pi}{11}\tan\frac{3\pi}{11}\tan\frac{4\pi}{11}\tan\frac{5\pi}{11} = \sqrt{11}.$$

ISMJ 11.5.

Prove that

$$\tan\frac{\pi}{20} - \tan\frac{3\pi}{20} + \tan\frac{5\pi}{20} - \tan\frac{7\pi}{20} + \tan\frac{9\pi}{20} = 5.$$

TYCMJ 128.

by Mangho Ahuja

Prove that

$$\tan\frac{\pi}{14} \left(\cos\frac{\pi}{14} + \cos\frac{3\pi}{14} + \cos\frac{5\pi}{14} \right) = \frac{1}{2} .$$

Inequalities: cos

SIAM 77-19.

by P. Barrucand

Let

$$F_1(\theta) = \sum_{n=1}^{\infty} \frac{\cos^n \theta \cos n\theta - \cos^{2n} \theta}{n \left(1 - 2\cos^n \theta \cos n\theta + \cos^{2n} \theta\right)},$$

$$F_2(\theta) = \sum_{\substack{n=1 \ n \equiv 1 \pmod{2}}}^{\infty} \frac{\cos^n \theta \cos n\theta - \cos^{2n} \theta}{n \left(1 - 2\cos^n \theta \cos n\theta + \cos^{2n} \theta\right)}.$$

It is conjectured that $F_1(\theta)$ and $F_2(\theta)$ are negative for

$$0 < \theta < \frac{\pi}{2}$$
.

Inequalities: Huygens

CRUX 115.

by Viktors Linis

Prove the following inequality of Huygens:

$$2\sin\alpha + \tan\alpha \ge 3\alpha, \quad 0 \le \alpha < \frac{\pi}{2}.$$

CRUX 167.

by Léo Sauvé

Prove that

$$\alpha > \frac{3\sin\alpha}{2 + \cos\alpha}$$

for $0 < \alpha < \pi/2$.

CRUX 303.

by Viktors Linis

Prove that

$$2\sinh x + \tanh x \ge 3x, \quad x \ge 0.$$

Inequalities: sin Problems sorted by topic Infinite series

Inequalities: sin

AMM E2720. by Ralph P. Boas Show that $\sin^2 x < \sin (x^2)$ for $0 < x \le (\pi/2)^{1/2}$.

CRUX 306. by Irwin Kaufman Solve the following inequality:

. . . 1

$$\sin x \sin 3x > \frac{1}{4}.$$

PUTNAM 1978/A.5.

Let $0 < x_i < \pi$ for $i = 1, 2, \dots, n$ and set

$$x = \frac{x_1 + x_2 + \dots + x_n}{n}.$$

Prove that

$$\prod_{i=1}^{n} \frac{\sin x_i}{x_i} \le \left(\frac{\sin x}{x}\right)^n.$$

Inequalities: sin and cos

CRUX 36. by Léo Sauvé

If m and n are positive integers, show that

$$\sin^{2m}\theta\cos^{2n}\theta \le \frac{m^m n^n}{(m+n)^{m+n}},$$

and determine the values of θ for equality to hold.

IMO 1977/4.

Four real constants a, b, A and B are given, and

$$f(\theta) = 1 - a\cos\theta - b\sin\theta - A\cos 2\theta - B\sin 2\theta.$$

Prove that if $f(\theta) \geq 0$ for all real θ , then

$$a^2 + b^2 \le 2$$
 and $A^2 + B^2 \le 1$.

Inequalities: sin and tan

MM 1082. by C. S. Gardner Prove that $\tan \sin x > \sin \tan x$ for $0 < x < \pi/2$.

Inequalities: tan

NAvW 521. by M. E. Muldoon

Prove that

$$\frac{\tan t}{t} < 2 - (1 - t^2)^{\frac{1}{2}}, \quad 0 < t \le 1.$$

Inequalities: tan and cot

OSSMB G76.1-4.

Show that $\tan 3a \cot a$ cannot lie between 1/3 and 3.

Inequalities: tan and sec

AMM E2739. by Marvin C. Papenfuss

Prove that

$$x \sec^2 x - \tan x \le \frac{8\pi^2 x^3}{(\pi^2 - 4x^2)^2}, \qquad 0 \le x < \frac{\pi}{2}.$$

MM Q652. by Murray S. Klamkin Show that

$$\sum_{i=1}^{n} (1 + \tan \alpha_i) \le \sqrt{2} \sum_{i=1}^{n} \sec \alpha_i$$

when $\sec \alpha_i > 0$. When does equality hold?

Infinite products

PARAB 425.

Show that $2\cos x + 1 = 4\cos^2 \frac{1}{2}x - 1$. Find

$$\lim_{n \to \infty} \left(2\cos\frac{x}{2} - 1 \right) \left(2\cos\frac{x}{2^2} - 1 \right) \cdots \left(2\cos\frac{x}{2^n} - 1 \right).$$

OSSMB 75-17.

Prove that

$$\cos\frac{x}{2}\cdot\cos\frac{x}{4}\cdot\cos\frac{x}{8}\cdot\cos\frac{x}{16}\dots = \frac{\sin x}{x}.$$

Infinite series

MM Q629.

by Norman Schaumberger

Show that

$$\sum_{k=1}^{\infty} \tan^{-1} \frac{1}{2k^2} = \frac{\pi}{4}.$$

DELTA 5.2-3. by Charles R. McConnell

Show that

$$-\frac{1}{2}\log(1 - 2x\cos 3\theta + x^{2})$$

$$= x\cos 3\theta + \frac{x^{2}\cos 6\theta}{2} + \frac{x^{3}\cos 9\theta}{2} + \cdots$$

For what real values of x and θ is this equation valid?

AMM 6241. by Robert Baillie

Prove that

$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n} = \sum_{n=1}^{\infty} \left(\frac{\sin(n)}{n}\right)^2 = \frac{\pi - 1}{2}$$

and

$$\sum_{n=1}^{\infty} \frac{\sin^2(n)}{n^4} = \frac{(\pi - 1)^2}{6}.$$

PME 363. by Robert C. Gebhardt Does $\sum_{k=1}^{\infty} \frac{\sin k}{k}$ converge, and if so, to what?

CRUX 235. by Viktors Linis

Prove Gauss' Theorema Elegantissimum: If

$$f(x) = 1 + \frac{1}{2} \cdot \frac{1}{2}x^2 + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4}x^4 + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{5}{6}x^6 + \cdots,$$

show that

 $\sin \phi f(\sin \phi) f'(\cos \phi) + \cos \phi f(\cos \phi) f'(\sin \phi)$

$$=\frac{2}{\pi \sin \phi \cos \phi}$$

MM 1039.

by M. B. Gregory and J. M. Metzger

Evaluate

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \tan \frac{k\pi}{m} \tan \frac{k\pi}{n}.$$

TYCMJ 63. by Norman Schaumberger For which values of k will $\sum_{n=1}^{\infty} \tan^k(1/n)$ converge?

Infinite series

Problems sorted by topic

Solution of equations: tan and sec

SIAM 77-18.

by A. M. Liebetrau

Show that

$$\sum_{j=1}^{\infty} \alpha_j^{-6} \left[\frac{\sin \alpha_j - \sinh \alpha_j}{\cos \alpha_j + \cosh \alpha_j} \right]^2 = \frac{1}{80} ,$$

where the α_i 's are the positive solutions to the equation

$$(\cos \alpha)(\cosh \alpha) + 1 = 0.$$

Numerical evaluations

OSSMB 76-18.

Evaluate $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ}$.

SSM 3702.

by Tony To

Prove:

$$(\cos 54^{\circ} + \cos 18^{\circ}) \tan 18^{\circ} = \sin 30^{\circ}.$$

CRUX 305. by Bruce McColl

How many distinct values does $\cos(\frac{1}{3}\sin^{-1}\alpha)$ have? What is the product of these values?

PENT 317. by John A. Winterink

Arc ABC of a circle has a measure of 150° and its center is at D. If AB=3 and BC=2, what is the value of $\cot(\frac{1}{2}\angle BDC)$?

OSSMB G79.3-2.

From the top of a hill, the angle of depression of a point D on the level plain below is 30° , and from the point three quarters of the way down the hill, the angle of depression of D is 15° . Find the tangent of the angle of inclination of the hill.

Recurrences

FQ B-308. by Philip Mana

- (a) Let $c_n = \cos(n\theta)$ and find the integers a and b such that $c_n = ac_{n-1} + bc_{n-2}$ for $n = 2, 3, \dots$
- (b) Let r be a real number such that $\cos(r\pi) = p/q$, with p and q relatively prime positive integers and q not in $\{1, 2, 4, 8\}$. Prove that r is not rational.

Series

MM 1036.

by Joseph Silverman

If a_0, a_1, \ldots, a_N are complex numbers such that

$$|a_N| > \sum_{k=0}^{N-1} |a_k|,$$

show that

$$\sum_{n=0}^{N} a_n \cos n\theta = 0$$

has at least 2N solutions for $0 \le \theta < 2\pi$.

Solution of equations: arctan

JRM 789. by Hans Havermann

Let $\theta_n = \sum_{i=1}^n \tan^{-1} \left(1/\sqrt{i} \right)$. Do there exist three positive integers (p,q,r) such that $\theta_p = \theta_q + 2\pi r$?

Solution of equations: sin and cos

CRUX 369. by Hippolyte Charles

Find all real solutions of the equation

$$\sin(\pi\cos x) = \cos(\pi\sin x).$$

MSJ 493.

Find all real values of x that satisfy the equation

$$\sin^{10} x + \cos^{10} x = 29/64.$$

NYSMTJ 69.

by 11th year Honors Class at Benjamin N. Cardozo H.S. Find $\sin 2\theta$ if $\sin^6 \theta + \cos^6 \theta = 2/3$.

OSSMB G78.3-5.

- (a) A statue standing on top of a 25 foot pillar subtends an angle θ whose tangent is .125 at a point 60 feet from the foot of the pillar. Find the height of the statue.
 - (b) Determine \bar{a} and b such that

$$\frac{-3 + 4\cos^2\theta}{1 - 2\sin\theta} = a + b\sin\theta.$$

OSSMB G79.3-1.

Find all values of x that satisfy the equation

$$\sin x + 2\sin x \cos(a - x) = \sin a$$

where a is a real constant.

SSM 3715. by Herta T. Freitag

Find a positive integer n such that $\cos n^2$ equals $2\cos n\sin 4n$, where degree measure is being used.

MSJ 452. by Steven R. Conrad

Find the degree-measure of the least positive angle that satisfies

$$\sin 6x + \cos 4x = 0.$$

MATYC 120. by Marc Glucksman

Find the condition(s) for which the equation

$$a\sin\theta + b\cos\theta = c$$
,

 $0 \le \theta < 2\pi$, has exactly one root.

PME 385. by John T. Hurt

Find all α and β such that

$$\sin \alpha = \tan(\alpha - \beta) + \cos \alpha \tan \beta.$$

Solution of equations: tan

TYCMJ 125. by Milton H. Hoehn

Determine all values of $x \in (0, \pi)$ that satisfy

 $\tan x = \tan 2x \tan 3x \tan 4x.$

Find all angles θ other than zero such that

$$\tan 11\theta = \tan 111\theta = \tan 11111\theta = \tan 111111\theta = \cdots.$$

Solution of equations: tan and sec

NYSMTJ 78. by Norman Schaumberger

Find all θ such that

$$(\tan \theta + \sec \theta)^{1/3} + (\tan \theta - \sec \theta)^{1/3} = 1.$$

Systems of equations

Problems sorted by topic

Triangles

Systems of equations

TYCMJ 115.

by Thomas E. Elsner

Find all positive integer coefficients $A \neq B$ for which the system

$$\cos At + \cos Bt = 0$$

$$A\sin At + B\sin Bt = 0$$

has solutions.

Triangles

NYSMTJ 82.

by Madelaine Bates

Show that the area of triangle ABC is numerically equal to its perimeter if and only if

$$a + b - c = 4(\cot C + \csc C).$$

NYSMTJ 97. by Norman Schaumberger

If $A,\,B,$ and C are the angles of a triangle and K is its area, show that

$$a^{2} + b^{2} + c^{2} = 4K(\cot A + \cot B + \cot C).$$

TYCMJ 143

by K. R. S. Sastry

Let $AD,\,BE,\,$ and CF be the medians of triangle ABC. Prove that

$$\cot \angle DAB + \cot \angle EBC + \cot \angle FCA$$

$$= 3(\cot A + \cot B + \cot C).$$

OSSMB G75.1-6.

Given the triangle ABC, where a + b = 2c, show that

$$\cot\frac{A}{2} + \cot\frac{B}{2} = 2\cot\frac{C}{2}.$$

SSM 3786

by Fred A. Miller

If D is the midpoint of side BC of triangle ABC, the measure of angle BAD is θ , and the measure of angle CAD is ϕ , show that

$$\cot \theta - \cot \phi = \cot B - \cot C.$$

NYSMTJ 100.

by Bertram Kabak

If A, B, and C are the angles of a triangle and

$$\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c} \; ,$$

show that the triangle is equilateral.

CRUX 423.

by Jack Garfunkel

In a triangle ABC whose circumcircle has unit diameter, let m_a and t_a denote the lengths of the median and the internal angle bisector to side a, respectively. Prove that

$$t_a \le \cos^2 \frac{A}{2} \cos \frac{B - C}{2} \le m_a.$$

TYCMJ 49.

by Alan Wayne

In triangle ABC, determine the maximum value of

$$\frac{\sin A + \sin B + \sin C}{\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}} \ .$$

TYCMJ 118.

by Norman Gore

Triangles ABC and DEF are inscribed in the same circle. Prove that

$$\sin A + \sin B + \sin C = \sin D + \sin E + \sin F$$

if and only if the perimeters of the triangles are equal.

TYCMJ 72.

by Clyde A. Bridger

In the triangle ABC with sides a > b > c, prove or disprove that

$$\begin{split} \left(\frac{a-b}{c} + \frac{b-c}{a} + \frac{c-a}{b}\right) \left(\frac{c}{a-b} + \frac{a}{b-c} + \frac{b}{c-a}\right) \\ &= 1 - 8\sin\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right). \end{split}$$

OSSMB G77.1-4.

The bisectors of the interior angles of $\triangle ABC$ make angles of $\alpha,\ \beta,\ \gamma$ with the sides $a,\ b,\ c$ respectively. Prove that

$$a\sin 2\alpha + b\sin 2\beta + c\sin 2\gamma = 0.$$

TYCMJ 109.

by Bertram Kabak

Let K denote the area and R the circumradius of triangle ABC with angle $A \neq \pi/3$. Prove that

$$K = \frac{4R^2(\sin^2 A + \sin B \sin C) - b^2 - c^2}{2\csc A - 4\cot A}.$$

CRUX 126.

by Viktors Linis

Show that, for any triangle ABC,

$$|OA|^2 \sin A + |OB|^2 \sin B + |OC|^2 \sin C = 2K$$
,

where O is the center of the inscribed circle and K is the area of $\triangle ABC$.

CRUX 27.

by Léo Sauvé

Given a triangle with angles A, B, and C, it is easy to verify that if $A = B = 45^{\circ}$, then

$$\cos A \cos B + \sin A \sin B \sin C = 1.$$

Does the converse proposition hold?

NYSMTJ 80.

by Bertram Kabak

If A, B, and C are the angles of a triangle, show that

$$\sin^2 C = \sin^2 A + \sin^2 B - 2\sin A \sin B \cos C.$$

OSSMB G76.2-4.

Show that in any triangle ABC,

$$(b-c)\cos\frac{A}{2} = a\sin\frac{B-C}{2}.$$

TYCMJ 47.

by Bertram Kabak

Prove that if $\sum_{i=1}^{3} A_i = \pi$, then

$$\sum_{i=1}^{3} \sin^2 A_i = 2 \sum_{i=1}^{3} \sin A_i \cdot \sin A_{i+1} \cdot \cos A_{i+2}$$

$$(A_4 = A_1, A_5 = A_2).$$

Triangles Problems sorted by topic Triangles

SSM 3734. by Ralph King and Joseph Stangle

Given two sides a and b and their included angle C in triangle ABC, prove that

$$\tan A = \frac{a \sin C}{b - a \cos C} \ .$$

CRUX 268.

by Gali Salvatore

Show that in $\triangle ABC$, with $a \ge b \ge c$, the sides are in arithmetic progression if and only if

$$2\cot\frac{B}{2} = 3(\tan\frac{C}{2} + \tan\frac{A}{2}).$$

CRUX 493.*

by R. C. Lyness

(a) Let A, B, and C be the angles of a triangle. Prove that there are positive x, y, and z, each less than 1/2, simultaneously satisfying

$$y^{2} \cot \frac{B}{2} + 2yz + z^{2} \cot \frac{C}{2} = \sin A,$$

$$z^{2} \cot \frac{C}{2} + 2zx + x^{2} \cot \frac{A}{2} = \sin B,$$

$$x^{2} \cot \frac{A}{2} + 2xy + y^{2} \cot \frac{B}{2} = \sin C.$$

(b) In fact, 1/2 may be replaced by a smaller k > 0.4. What is the least value of k?

OSSMB G76.1-3.

A triangle ABC is such that 3AB = 2AC. A point D on BC is such that BD = 2DC and AD = BC. Show that

$$\tan\frac{\angle ADB}{2} = \sqrt{\frac{5}{19}}.$$

MM Q636.

by Richard L. Francis

Does there exist a triangle such that the tangents of its angles are of the form x, 1 + x, and 1 - x?

OMG 18.2.5.

In any triangle ABC,

(a) prove

$$\frac{a^2 + b^2 - c^2}{a^2 + c^2 - b^2} = \frac{\tan B}{\tan C} \ .$$

- (b) If a:b:c=4:5:6, find $\tan A:\tan B$.
- (c) If $\tan B = 2 \tan C$, prove $a^2 + 3c^2 = 3b^2$.

SSM 3740.

by Fred A. Miller

Let ABC be a triangle having a right angle at C. Construct a perpendicular to AB at A meeting line BCat E. Also construct a perpendicular to AB at \bar{B} meeting line AC at D. Prove that

- (a) the tangent of angle CED is equal to the cube of the tangent of angle BAC and
- (b) the area of triangle ECD is equal to the area of triangle ABC.

PENT 293. by Kenneth M. Wilke

On a trigonometry test, one question asked for the largest angle of the triangle having sides 21, 41, and 50. L. A. Z. Thinker, a student, obtained the answer as follows: Let C denote the desired angle, then

$$\sin C = \frac{50}{41} = 1.2195.$$

But $\sin 90^\circ = 1$ and $.2195 = \sin 12^\circ 40' 48''$. Therefore $C = 90^\circ + 12^\circ 40' 48'' = 102^\circ 40' 48''$ which is correct.

Find another triangle having this property that is not similar to the given triangle.

PROBLEM CHRONOLOGY

Use this section to

or

- determine where a given problem was originally published
- determine where to find the solution
- · find all references to a given problem from a specific journal.

We list every problem or solution that was published during the years 1975–1979 in a journal problem column that is covered by this index. For each proposed problem, we list the volume and page number where the proposal can be found. The list is sorted first by journal abbreviation, and then by problem number within that journal. If a journal has more than one problem column, the problems in each column are grouped together. The page reference is presented in the form:

vol(year)page vol(year/issue)page

where vol is the volume number (if known),

year is the year of the volume,

issue is the issue number in which the problem appears, and

page is the page number where the problem appears.

The issue number will be included if the magazine numbers each issue beginning with page number 1 (instead of consecutively numbering throughout the year).

For each problem that was proposed during the years 1975–1979, we list references (in the problem columns) to all corrections, comments, and solutions to this problem. The page number reference is followed by a single character code that describes the nature of the reference. The codes are explained in the following table:

<u>Code</u>	<u>Description</u>
а	acknowledgment (out of order solvers list)
С	comment
r	reprint of a previously published problem
S	solution
V	version (correction to original problem proposal)
W	problem has been withdrawn
Χ	partial solution

Lists of solvers names are not usually referenced unless they appear out of order from their usual place of appearance in the journal, either immediately after the solution or at the end of the problem column in which the solution is published. This might happen for late solutions. The code "s" appears for a generalization as well as a normal solution. If a problem has multiple parts, sometimes solutions by different authors are given for each part. These are still considered solutions (code "s") as opposed to partial solutions (code "x"). Code "x" is reserved for the case where a complete solution is not known (at the time of publication), and a partial solution is being printed.

For a given problem, the references appear in chronological order. When making bibliographic references to these solutions, you should go back to the original source to get the complete list of page numbers. We have attempted to locate all references to problems published during the selected years, even if these references occurred later than 1979. All journals through January 1992 have been searched for references to problems that were originally published prior to 1980. We have also given the page numbers for all solutions or comments published during 1975–1979, even if the original problem was first published prior to 1975.

To find solutions to contest problems, consult the Citation Index (page 423).

JOURNALS COVERED BY THE CHRONOLOGY

Abbreviation Name

AMM The American Mathematical Monthly CMB Canadian Mathematical Bulletin

CRUX Crux Mathematicorum

DELTA Delta

FQ The Fibonacci Quarterly

FUNCT Function

ISMJ Indiana State Mathematics Journal JRM Journal of Recreational Mathematics

MATYC The MATYC Journal
MENEMUI Menemui Matematik
MM Mathematics Magazine

MSJ The Mathematics Student Journal NAvW Nieuw Archief voor Wiskunde

NYSMTJ The New York State Mathematics Teachers' Journal

OMG Ontario Mathematics Gazette

OSSMB Ontario Secondary School Mathematics Bulletin

PARAB Parabola PENT The Pentagon

PME The Pi Mu Epsilon Journal

SIAM SIAM Review

SPECT Mathematical Spectrum

SSM School Science and Mathematics

TYCMJ The Two-Year College Mathematics Journal

Notes: DELTA merged into MM.

AMM 2797	1975-	75–1979 AMM 6			
AMM		5946		82(1975)310s	
		5947		82(1975)411s	
<u>Problem</u> <u>Proposal</u>	References	5948		82(1975)413s	
2797	88(1981)149v	5949		82(1975)536s	
3189	96(1989)260s	5950		82(1975)414s	
3834	85(1978)836c	5951		82(1975)679c	
3887	90(1983)486s 94(1987)1019c	5952		82(1975)679s, 680s 83(1976)819c	
3951	85(1978)836c	5953		83(1976)574s	
4003	85(1978)836c	5954		85(1978)835c	
4052	82(1975)1016s 85(1978)836c	5955		82(1975)415s	
4306	85(1978)836c	5956		85(1978)835c	
4444	85(1978)836c	5957		82(1975)770s	
4538	85(1978)836c	5958		82(1975)858s	
4555	85(1978)836c	5959		82(1975)859s	
4603 4638	97(1990)937s	5960		82(1975)859s	
4664	85(1978)836c 85(1978)836c	5961		82(1975)861s	
4744	85(1978)836c 85(1978)836c	5962		82(1975)943s	
5124	83(1976)662s 85(1978)836c	5963 5964		82(1975)861s 82(1975)944c	
5297	88(1981)295s	5965		82(1975)944s	
5314	82(1975)672s 85(1978)836c	5966		82(1975)945s	
5385	83(1976)662s 85(1978)836c	5967		82(1975)1018s	
5405	82(1975)1017s 85(1978)836c	5968		82(1975)1020s	
5413	82(1975)85c 85(1978)836c	5969		82(1975)1020s	
	89(1982)279c	5970		83(1976)65s	
5415	85(1978)836c	5971		83(1976)66s	
5427	82(1975)673s 85(1978)836c	5972		83(1976)67s	
5437	83(1976)818s 85(1978)836c	5973		83(1976)142c, 142x	
5499	87(1980)65s	5974		83(1976)143s	
5540	90(1983)135s	5975		83(1976)144s	
5575	82(1975)674s 85(1978)836c	5976		83(1976)145s	
5589	83(1976)141s 85(1978)836c	5977		83(1976)206s	
5608	85(1978)500s, 836c	5978		83(1976)206s	
5643 5670	82(1975)677s 85(1978)836c 82(1975)677s 85(1978)836c	5979		83(1976)207s	
5687	82(1975)677s 85(1978)836c 82(1975)767c, 767s 83(1976)572v	5980 5981		85(1978)835c 88(1981)540v 83(1976)209s	
3001	85(1978)836c	5982		83(1976)209s	
5723	83(1976)62s, 64s 85(1978)836c	5983		83(1976)293c, 293x, 294c	
5735	97(1990)937s	5984		83(1976)294s	
5773	82(1975)943s 85(1978)836c	5985		83(1976)295s	
5790	89(1982)215s	5986		83(1976)295s	
5794	88(1981)214s	5987		83(1976)297s	
5861	82(1975)767× 88(1981)150s	5988		83(1976)386s	
5871	82(1975)530× 83(1976)573c	5989		83(1976)749c	
	85(1978)829s	5990		83(1976)387s	
5872	85(1978)834c 90(1983)403s	5991		85(1978)835c	
5878 5880	82(1975)678c	5992		83(1976)388s 83(1976)749s	
5881	82(1975)857s 85(1978)834c	5993 5994		83(1976)389s	
5884	85(1978)834c 87(1980)66s	5995		83(1976)399s	
5888	85(1978)834c 87(1980)583s	5996		85(1976)3908 85(1978)283s	
5889	85(1978)834c	5997		83(1976)490s	
5893	85(1978)835c	5998		83(1976)491s	
5895	82(1975)531s	5999		83(1976)492s 84(1977)62s	
5897	82(1975)532s	6000		83(1976)492s	
5910	85(1978)835c	6001		83(1976)493c	
5917	85(1978)835c	6002		83(1976)494s	
5927	85(1978)835c	6003		83(1976)575s	
5931	82(1975)86s	6004		83(1976)575s	
5932	82(1975)86s	6005	00(10==)01	85(1978)835c	
5933	82(1975)87s, 768c	6006	82(1975)84	83(1976)576s	
5934	82(1975)184s	6007	82(1975)84	83(1976)663s	
5935 5936	82(1975)88s 82(1975)185s 83(1976)65s	6008	82(1975)84 82(1075)84	83(1976)664s 83(1976)666c	
5937	82(1975)185s 83(1976)65s 82(1975)308s	6009	82(1975)84 82(1975)84	83(1976)666s 83(1976)666s, 667s	
5938	82(1975)185s	6010	82(1975)85	83(1976)750s	
5939	82(1975)533s	6012	82(1975)183	83(1976)750s 83(1976)751s	
5940	82(1975)186s	6013	82(1975)183	83(1976)752s	
5941	82(1975)309s	6014	82(1975)183	83(1976)752s	
5942	82(1975)186s, 768s	6015	82(1975)183	83(1976)820s	
5943	82(1975)309s	6016	82(1975)184	83(1976)820c	
5944	82(1975)310s	6017	82(1975)184	83(1976)821s	
5945	82(1975)410s	6018	82(1975)307	83(1976)821s	

AMM 6	019	1975	-1979	GJ	AMM 6160
6019	82(1975)307	84(1977)63s	6090	83(1976)385	85(1978)122s
6020	82(1975)307	84(1977)65c	6091	83(1976)385	85(1978)55s
6021	82(1975)307	84(1977)66s	6092	83(1976)385	85(1978)123s
6022	82(1975)308	84(1977)67s	6093	83(1976)386	85(1978)56s
6023	82(1975)308	84(1977)67s 90(1983)136s, 487c	6094	83(1976)386	85(1978)57s
6024	82(1975)409	85(1978)835c 87(1980)68s	6095	83(1976)386	85(1978)59s
6025	82(1975)409	84(1977)141s	6096	83(1976)489	85(1978)124s
6026	82(1975)409	84(1977)142s	6097	83(1976)489	85(1978)286s
6027	82(1975)409	84(1977)143s	6098	83(1976)489	85(1978)125s
6028 6029	82(1975)410 82(1975)410	85(1978)835c 85(1978)835c	6099 6100	83(1976)489 83(1976)490	85(1978)204s 85(1978)205s
6030	82(1975)528	84(1977)143s	6101	83(1976)490	85(1978)126s
6031	82(1975)528	84(1977)144s	6102	83(1976)572	85(1978)504s
6032	82(1975)529	84(1977)222s	6103	83(1976)572	85(1978)205s
6033	82(1975)529	84(1977)223s	6104	83(1976)573	85(1978)206s
6034	82(1975)529	84(1977)224s	6105	83(1976)573	85(1978)207s
6035	82(1975)529	84(1977)225s	6106	83(1976)573	85(1978)208s
6036	82(1975)671	84(1977)226s 85(1978)830s	6107	83(1976)573	85(1978)287s
6037	82(1975)671	84(1977)226s	6108	83(1976)661	85(1978)289s
6038	82(1975)671	84(1977)301s	6109	83(1976)661	85(1978)291s
6039	82(1975)671	84(1977)301s	6110	83(1976)661	0E(1070)200 ₀
6040 6041	82(1975)672 82(1975)672	84(1977)302s 84(1977)302s	6111 6112	83(1976)661 83(1976)661	85(1978)390s 85(1978)391s
6042	82(1975)766	84(1977)302s	6113	83(1976)661	85(1978)391s
6043	82(1975)766	84(1977)304s 92(1985)363s	6114	83(1976)748	85(1978)392s
6044	82(1975)766	84(1977)392s 87(1980)583c	6115	83(1976)748	85(1978)393s
6045	82(1975)766	84(1977)394s	6116	83(1976)748	85(1978)505s
6046	82(1975)766	84(1977)395s	6117	83(1976)748	85(1978)505s
6047	82(1975)766	84(1977)396s	6118	83(1976)748	85(1978)506s
6048	82(1975)856	84(1977)397c	6119	83(1976)748	
6049	82(1975)856	84(1977)397s	6120	83(1976)817	85(1978)601s
6050	82(1975)856	85(1978)687s	6121	83(1976)817	85(1978)602s
6051	82(1975)857	84(1977)492x	6122	83(1976)817	85(1978)603s
6052 6053	82(1975)857	84(1977)492s 87(1980)68s	6123 6124	83(1976)817 83(1976)818	
6054	82(1975)857 82(1975)941	84(1977)493s 84(1977)494s	6125	83(1976)818	87(1980)495s 89(1982)503c
6055	82(1975)942	85(1978)600s	0125	03(1370)010	91(1984)60s
6056	82(1975)942	84(1977)494s	6126	84(1977)61	85(1978)604s
6057	82(1975)942	84(1977)495s, 496s	6127	84(1977)62	85(1978)604s
	,	94(1987)1020c	6128	84(1977)62	85(1978)688s 86(1979)597s
6058	82(1975)942	84(1977)576s	6129	84(1977)62	85(1978)689s
6059	82(1975)942	84(1977)577s	6130	84(1977)62	85(1978)689s
6060	82(1975)1016	85(1978)390×	6131	84(1977)62	85(1978)690s
6061	82(1975)1016	84(1977)577s	6132	84(1977)140	85(1978)690s
6062	82(1975)1016	84(1977)578x 88(1981)152s	6133	84(1977)140	85(1978)771s 85(1978)771s
6063	82(1975)1016	89(1982)503c 84(1977)579s	6134 6135	84(1977)141 84(1977)141	03(1970)7715
6064	82(1975)1016	84(1977)580s	6136	84(1977)141	85(1978)772s 87(1980)225c
6065	82(1975)1016	84(1977)580s	6137	84(1977)141	85(1978)830s, 831c 87(1980)495c
6066	83(1976)62	84(1977)660s		()	88(1981)215c
6067	83(1976)62	84(1977)661s	6138	84(1977)221	85(1978)772s
6068	83(1976)62	84(1977)661s	6139	84(1977)221	85(1978)831s
6069	83(1976)62	84(1977)662s	6140	84(1977)221	88(1981)296s 89(1982)603c
6070	83(1976)62	84(1977)662s	6141	84(1977)221	05(1070)770
6071	83(1976)62	83(1976)572v 84(1977)663s	6142	84(1977)222	85(1978)773s
6072 6073	83(1976)140 83(1976)140	84(1977)744s 84(1977)745s	6143 6144	84(1977)222 84(1977)299	85(1978)774s
6074	83(1976)140	84(1977)746s	6145	84(1977)300	85(1978)832s
6075	83(1976)141	84(1977)740s 84(1977)747s	6146	84(1977)300	85(1978)833s
6076	83(1976)141	85(1978)835c 88(1981)152s	6147	84(1977)300	86(1979)60s
6077	83(1976)141	84(1977)747s	6148	84(1977)300	86(1979)61s
6078	83(1976)205	84(1977)829s, 830c	6149	84(1977)301	86(1979)61s
6079	83(1976)205	84(1977)748s	6150	84(1977)391	86(1979)63s
6080	83(1976)205	85(1978)503s, 503x	6151	84(1977)391	86(1979)64s
6081	83(1976)205	84(1977)830s	6152	84(1977)391	86(1979)66s
6082	83(1976)205	85(1978)503s 86(1979)597c	6153	84(1977)392	86(1979)132s
6083	83(1976)205	84(1977)830s	6154	84(1977)392	86(1979)133s
6084 6085	83(1976)292	84(1977)832s 84(1977)833c	6155	84(1977)392 84(1077)401	86(1979)133s
6085 6086	83(1976)292 83(1976)292	84(1977)833s 85(1978)54s	6156 6157	84(1977)491 84(1977)491	86(1979)134s
6087	83(1976)292	85(1978)284s	6158	84(1977)491	
6088	83(1976)293	85(1978)55s	6159	84(1977)491	86(1979)135s
6089	83(1976)293	87(1980)495c	6160	84(1977)491	86(1979)598s
	, ,	` '		` / -	• /

AMM	5161		1975–1979		AMM E1445
6161	84(1977)491	86(1979)136s	6234	85(1978)770	87(1980)829s, 830s
6162	84(1977)575	86(1979)227s	6235	85(1978)770	87(1980)761s
6163	84(1977)575	86(1979)228s	6236	85(1978)770	88(1981)69s 89(1982)65s
6164	84(1977)575	86(1979)229s	6237	85(1978)770	87(1980)496s
6165	84(1977)575	86(1979)229s	6238	85(1978)770	87(1980)409s
6166	84(1977)576	88(1981)296s	6239	85(1978)770	87(1980)410s
6167	84(1977)576	86(1979)230s	6240	85(1978)828	87(1980)410s
6168	84(1977)659	86(1979)312s	6241	85(1978)828	87(1980)496s, 497s
6169 6170	84(1977)659	88(1981)447s	6242	85(1978)828	87(1980)411s
6171	84(1977)659 84(1977)660	86(1979)231s 86(1979)312s	6243 6244	85(1978)828 85(1978)828	87(1980)498s 87(1980)676s, 677c
6172	84(1977)660	00(1979)3123	6245	85(1978)828	87(1980)584s
6173	84(1977)660	86(1979)312s	6246	86(1979)59	87(1980)584s
6174	84(1977)743	86(1979)313s	6247	86(1979)59	87(1980)761s
6175	84(1977)743	86(1979)314s	6248	86(1979)59	87(1980)584s
6176	84(1977)744	86(1979)314s	6249	86(1979)59	87(1980)831s
6177	84(1977)744	86(1979)399s	6250	86(1979)60	87(1980)679s
6178	84(1977)744	86(1979)400s	6251	86(1979)60	88(1981)154s
6179 6180	84(1977)744 84(1977)828	87(1980)826s 86(1979)401s	6252	86(1979)131	87(1980)832s
6181	84(1977)828	00(1979)4013	6253 6254	86(1979)132 86(1979)132	87(1980)762s
6182	84(1977)828	86(1979)510s	6255	86(1979)132	87(1980)679s 87(1980)679s 89(1982)704c
6183	84(1977)829	85(1978)389v 86(1979)510s	6256	86(1979)132	90(1983)487s
6184	84(1977)829	87(1980)827s	6257	86(1979)132	88(1981)216s
6185	84(1977)829	87(1980)759s	6258	86(1979)226	00(1301)=103
6186	85(1978)53	, ,	6259	86(1979)226	88(1981)448s
6187	85(1978)53	87(1980)583s	6260	86(1979)226	87(1980)680s
6188	85(1978)53	88(1981)447s	6261	86(1979)226	88(1981)70s
6189	85(1978)54		6262	86(1979)226	88(1981)71s
6190	85(1978)54	00(1002)124-	6263	86(1979)226	88(1981)154s
6191 6192	85(1978)54 85(1978)121	89(1982)134s 86(1979)598c, 598s	6264	86(1979)311	88(1981)449s
6193	85(1978)121	86(1979)710s	6265	86(1979)311 86(1979)311	87(1980)763s
6194	85(1978)122	86(1979)511s	6266 6267	86(1979)311	88(1981)216s 88(1981)69s
6195	85(1978)122	86(1979)710s	6268	86(1979)398	88(1981)217s
6196	85(1978)122	86(1979)794s	6269	86(1979)399	88(1981)72s
6197	85(1978)122	` ,	6270	86(1979)509	()
6198	85(1978)203	86(1979)710s	6271	86(1979)509	88(1981)217s
6199	85(1978)203	87(1980)226s	6272	86(1979)509	88(1981)353s
6200	85(1978)203	87(1980)140s	6273	86(1979)596	88(1981)354s
6201 6202	85(1978)203 85(1978)203	86(1979)869s	6274	86(1979)597	88(1981)219s 90(1983)60a
6203	85(1978)203	86(1979)870s 87(1980)68s	6275	86(1979)597	88(1981)355s
6204	85(1978)282	07(1500)003	6276 6277	86(1979)709	88(1981)356s
6205	85(1978)282	85(1978)828v 87(1980)227s	6278	86(1979)709 86(1979)709	88(1981)449s 88(1981)541s
6206	85(1978)282	88(1981)215s	6279	86(1979)793	88(1981)542s 90(1983)488s
6207	85(1978)282	88(1981)153s	6280	86(1979)793	88(1981)623s
6208	85(1978)283	87(1980)228s	6281	86(1979)793	11(11)
6209	85(1978)283	87(1980)141s	6282	86(1979)869	88(1981)357s
6210	85(1978)389	87(1980)228s	6283	86(1979)869	88(1981)624s
6211	85(1978)389	87(1980)229×	6284	86(1979)869	89(1982)136s
6212 6213	85(1978)389 85(1978)389	89(1982)279s	Problem	n Proposal	References
6214	85(1978)389	09(1902)2195	E435	<u>1 1000381</u>	83(1976)813s 85(1978)836c
6215	85(1978)390	87(1980)309s	E570		83(1976)285c 85(1978)836c
6216	85(1978)499	()	E585		83(1976)134s 85(1978)836c
6217	85(1978)499		E604		82(1975)400r
6218	85(1978)500	89(1982)134× 90(1983)408s	E966		83(1976)378r 84(1977)568s
6219	85(1978)500	87(1980)141s			85(1978)836c
6220	85(1978)500	87(1980)310s	E984		83(1976)567c 84(1977)739c
6221	85(1978)500	87(1980)310s	E1000		87(1980)303c
6222	85(1978)599 95(1079)600	87(1980)760s	E1030		82(1975)1010s, 1011s
6223 6224	85(1978)600 85(1978)600	86(1979)795s 87(1980)828x, 829x 89(1982)70	4s E1073		85(1978)836c 82(1975)72r 83(1976)135s
6225	85(1978)600	87(1980)326x, 629x 69(1962)70 87(1980)311s	-3 10/3		85(1978)836c
6226	85(1978)600	86(1979)796s	E1075		83(1976)54s 85(1978)836c
6227	85(1978)600	87(1980)311s	E1150		85(1978)836c
6228	85(1978)686	86(1979)870s	E1243		84(1977)58c, 567c 86(1979)593c,
6229	85(1978)686				914v
6230	85(1978)686	87(1980)142s	E1255		82(1975)661c 84(1977)652s
6231	85(1978)686	87(1980)676s	F1000		85(1978)836c
6232	85(1978)686	87(1980)312c	E1298		82(1975)661s 85(1978)836c
6233	85(1978)686	87(1980)408s	E1445		82(1975)73r

AMM E1822		1975–1979	<u> </u>	AMM E2571
E1822	83(1976)53r 84(1977)569s	E2499		82(1975)1015s
	85(1978)836c	E2500		82(1975)1015s
E1847	85(1978)836c	E2501		82(1975)940s, 940v
E2003	89(1982)274×	E2502		82(1975)941s
E2125	83(1976)567s	E2503		83(1976)58s, 59s
E2289	85(1978)835c 87(1980)489s	E2504		83(1976)289s
E2331	82(1975)1012c, 1012s	E2505		83(1976)59s
	85(1978)836c	E2506		83(1976)60c, 60s
E2344	82(1975)937s 85(1978)836c	E2507		83(1976)61s
E2349	83(1976)54s 85(1978)836c	E2508		83(1976)200s
E2372	84(1977)387c	E2509		83(1976)136s
E2384	83(1976)285s 85(1978)836c	E2510	82(1975)73	83(1976)137s, 138s
E2392	83(1976)380s 84(1977)59c	E2511	82(1975)73	83(1976)291s
L2332	85(1978)836c	E2512	82(1975)73	83(1976)139s
E2401	83(1976)198s 85(1978)836c	E2513	82(1975)73	83(1976)140s
E2428		E2514	· · · · · · ·	` '
	82(1975)401c	E2515	82(1975)73	83(1976)200c, 200s
E2432	85(1978)835c		82(1975)74	83(1976)201s
E2434	82(1975)402c, 402s	E2516	82(1975)168	83(1976)201s, 202s
E2438	85(1978)835c	E2517	82(1975)168	83(1976)204s
E2440	82(1975)74s, 75s, 76c	E2518	82(1975)169	83(1976)291s
F0446	84(1977)567c	E2519	82(1975)169	83(1976)382s
E2446	82(1975)77s	E2520	82(1975)169	83(1976)383s
E2447	82(1975)78s, 80c	E2521	82(1975)169	85(1978)835c
E2448	82(1975)80s	E2522	82(1975)300	83(1976)384s
E2450	82(1975)81s, 82c	E2523	82(1975)300	83(1976)384s, 385c
E2451	82(1975)83s	E2524	82(1975)300	83(1976)741s
E2452	82(1975)169c 83(1976)568s	E2525	82(1975)300	83(1976)483s
E2453	82(1975)170s	E2526	82(1975)300	83(1976)484s 88(1981)539c
E2454	82(1975)171s, 172s	E2527	82(1975)301	83(1976)485s
E2455	82(1975)173s	E2528	82(1975)400	83(1976)486s
E2456	82(1975)301s	E2529	82(1975)400	83(1976)487s
E2457	82(1975)175s, 176s	E2530	82(1975)400	85(1978)835c
E2458	82(1975)302s	E2531	82(1975)400	83(1976)488s
E2459	82(1975)178s, 181c	E2532	82(1975)400	83(1976)569s
E2460	82(1975)303s	E2533	82(1975)401	83(1976)570c, 570s
E2461	82(1975)304s, 305c	E2534	82(1975)520	83(1976)571s
E2462	85(1978)835c 92(1985)360s	E2535	82(1975)520	83(1976)657s
E2463	82(1975)305s, 306s	E2536	82(1975)521	83(1976)657s
E2464	82(1975)403s, 404s	E2537	82(1975)521	83(1976)658s
E2465	82(1975)405s, 406s	E2538	82(1975)521	83(1976)659s
E2466	82(1975)406s	E2539	82(1975)521	83(1976)742c
E2467	82(1975)407s, 408s	E2540	82(1975)659	83(1976)659s
E2468	83(1976)288c 84(1977)59c	E2541	82(1975)659	83(1976)660s
E2469	82(1975)521s	E2542	82(1975)660	83(1976)743s
E2470	82(1975)523s	E2543	82(1975)660	83(1976)744s
E2471	82(1975)523s	E2544	82(1975)660	83(1976)745s 83(1976)747s
E2472 E2473	82(1975)525s	E2545	82(1975)660	83(1976)813s
	82(1975)526s, 527s	E2546	82(1975)756	
E2474	82(1975)527s	E2547	82(1975)756	83(1976)814s 83(1976)815s
E2475	82(1975)662s	E2548	82(1975)756	
E2476 E2477	82(1975)663x	E2549 E2550	82(1975)756 82(1975)756	83(1976)815s 83(1976)815s
E2477 E2478	82(1975)664s 82(1975)667s, 668s	E2551	82(1975)756	83(1976)816s, 817c
E2479	82(1975)668s, 669c	E2552	82(1975)851	84(1977)60s
E2480	82(1975)670s	E2553	82(1975)851	84(1977)60s
E2481	· · · · · · · · · · · · · · · · · · ·	E2554	82(1975)851	84(1977)61s
E2482	82(1975)1013s		· · · · · · ·	` '
E2483	82(1975)757s, 757v 82(1975)758s, 759s	E2555 E2556	82(1975)851 82(1975)852	84(1977)135s 84(1977)136s
E2484	, , ,	E2557	82(1975)852	` '
	82(1975)761c, 761s			84(1977)137s
E2485	82(1975)762s	E2558	82(1975)936	84(1977)138c, 138s
E2486	82(1975)852s 82(1975)764s	E2559	82(1975)936	84(1977)140s
E2487		E2560	82(1975)936	84(1977)140s
E2488	82(1975)765s 89(1982)757s	E2561 E2562	82(1975)936 82(1075)037	84(1977)217s 84(1977)218c
E2489 E2400	82(1975)853c, 853s		82(1975)937 82(1975)937	84(1977)218s 84(1977)218e
E2490 E2401	82(1975)854s	E2563	82(1975)937 82(1075)1000	84(1977)218s 84(1977)210c 654c
E2491 E2492	82(1975)854c, 854s	E2564	82(1975)1009	84(1977)219s, 654s
	82(1975)855s 82(1975)855s	E2565 E2566	82(1975)1009 82(1975)1010	84(1977)220s 84(1977)220s 221c
E2493	82(1975)855s		82(1975)1010	84(1977)220s, 221c
E2494	85(1978)835c	E2567	82(1975)1010	84(1977)570s
E2495	82(1975)168v, 938s	E2568	82(1975)1010	84(1977)295s
E2496 E2497	82(1975)939s	E2569 E2570	82(1975)1010 83(1976)53	84(1977)296c 84(1977)296s
E2497 E2498	82(1975)939c, 939s	E2570 E2571	83(1976)53	` '
L247U	83(1976)382s	E23/1	02(1210)22	84(1977)297c

AMM E	2572		1975-	-1979		AMM E2717
E2572	83(1976)53	84(1977)298s		E2645	84(1977)217	85(1978)498s
E2573	83(1976)54	84(1977)298s, 299s		E2646	84(1977)217	85(1978)499s
E2574	83(1976)54	84(1977)387s		E2647	84(1977)294	85(1978)594s
E2575	83(1976)133	84(1977)388s		E2648	84(1977)294	85(1978)595c, 595s
E2576	83(1976)133	84(1977)388s		E2649	84(1977)294	85(1978)596s 86(1979)504a
E2577 E2578	83(1976)133 83(1976)133	84(1977)389s 84(1977)390s		E2650 E2651	84(1977)294 84(1977)295	85(1978)597s 85(1978)598s
E2579	83(1976)133	84(1977)487s		E2652	84(1977)295	84(1977)567v 85(1978)765s
E2580	83(1976)133	84(1977)488s		E2653	84(1977)386	85(1978)599s
E2581	83(1976)197	84(1977)488s		E2654	84(1977)386	85(1978)766s
E2582	83(1976)197	84(1977)489s		E2655	84(1977)386	85(1978)682s
E2583	83(1976)198	84(1977)571s		E2656	84(1977)386	85(1978)766s
E2584 E2585	83(1976)198 83(1976)198	84(1977)489s, 490s 84(1977)490s		E2657 E2658	84(1977)386 84(1977)387	85(1978)683s 86(1979)504s
E2586	83(1976)198	84(1977)572s		E2659	84(1977)486	85(1978)767s
E2587	83(1976)284	84(1977)572s		E2660	84(1977)487	85(1978)683s
E2588	83(1976)284	84(1977)573s		E2661	84(1977)487	85(1978)685s
E2589	83(1976)284	84(1977)574s		E2662	84(1977)487	85(1978)685s
E2590	83(1976)284	84(1977)654s		E2663	84(1977)487	85(1978)686s
E2591	83(1976)284	84(1977)655s		E2664	84(1977)487	85(1978)768s
E2592 E2593	83(1976)285 83(1976)378	84(1977)656s 84(1977)739s		E2665 E2666	84(1977)567 84(1977)567	85(1978)769s 85(1978)824s
E2594	83(1976)379	85(1978)835c		E2667	84(1977)567	85(1978)825s
E2595	83(1976)379	84(1977)657s		E2668	84(1977)568	85(1978)825s
E2596	83(1976)379	85(1978)835c		E2669	84(1977)568	85(1978)825s
E2597	83(1976)379	84(1977)657s, 658s		E2670	84(1977)568	85(1978)826s
E2598	83(1976)379	84(1977)659s		E2671	84(1977)651	85(1978)827c, 827s
E2599	83(1976)482 83(1976)482	84(1977)740s		E2672	84(1977)651	86(1979)56s
E2600 E2601	83(1976)482	84(1977)741s 84(1977)741s, 742s		E2673 E2674	84(1977)652 84(1977)652	86(1979)57s 86(1979)57s
E2602	83(1976)482	84(1977)742s		E2675	84(1977)652	86(1979)58s
E2603	83(1976)483	84(1977)743s		E2676	84(1977)652	86(1979)58s
E2604	83(1976)483	84(1977)821s		E2677	84(1977)738	86(1979)394s
E2605	83(1976)566	84(1977)822s		E2678	84(1977)738	86(1979)506s
E2606	83(1976)566	84(1977)823s		E2679	84(1977)738	86(1979)59s
E2607 E2608	83(1976)566 83(1976)567	84(1977)824s 85(1978)835c 88(1981)148s		E2680 E2681	84(1977)738 84(1977)738	86(1979)128s 86(1979)129s
E2609	83(1976)567	84(1977)825s, 826c		E2682	84(1977)738	86(1979)223s
E2610	83(1976)567	85(1978)198s		E2683	84(1977)820	86(1979)129s
E2611	83(1976)656	85(1978)199s		E2684	84(1977)820	86(1979)130s
E2612	83(1976)656	85(1978)199s		E2685	84(1977)820	86(1979)130s
E2613	83(1976)656	84(1977)827s		E2686	84(1977)820	86(1979)131s
E2614 E2615	83(1976)657 83(1976)657	85(1978)48s 85(1978)49s		E2687 E2688	84(1977)820 84(1977)820	86(1979)785s
E2616	83(1976)657	85(1978)50s		E2689	85(1978)47	86(1979)224s
E2617	83(1976)740	85(1978)51s		E2690	85(1978)48	86(1979)308s
E2618	83(1976)740	85(1978)51s		E2691	85(1978)48	86(1979)225s
E2619	83(1976)740	85(1978)52c, 52s		E2692	85(1978)48	86(1979)394s, 395s
E2620	83(1976)740	85(1978)117s		E2693	85(1978)48	86(1979)308s
E2621 E2622	83(1976)741 83(1976)741	85(1978)118s 85(1978)119s		E2694 E2695	85(1978)48 85(1978)116	86(1979)506s 86(1979)309s
E2623	83(1976)812	85(1978)119s		E2696	85(1978)116	86(1979)507s
E2624	83(1976)812	85(1978)120s		E2697	85(1978)116	86(1979)225s
E2625	83(1976)812	85(1978)121s		E2698	85(1978)116	86(1979)309s
E2626	83(1976)812	85(1978)200s		E2699	85(1978)117	86(1979)310s
E2627	83(1976)812	85(1978)201s		E2700	85(1978)117	86(1979)311s
E2628 E2629	83(1976)813	85(1978)202s 85(1978)277s		E2701 E2702	85(1978)197 85(1978)197	86(1979)396s
E2630	84(1977)57 84(1977)57	85(1978)277s 85(1978)279s		E2702	85(1978)197	86(1979)397s
E2631	84(1977)57	85(1978)279s		E2704	85(1978)198	86(1979)398s
E2632	84(1977)57	85(1978)280s		E2705	85(1978)198	86(1979)398s
E2633	84(1977)58	85(1978)281s		E2706	85(1978)198	86(1979)593s
E2634	84(1977)58	85(1978)282s		E2707	85(1978)276	86(1979)508s
E2635	84(1977)134 84(1077)134	85(1978)385s		E2708	85(1978)276 85(1078)276	86(1979)594s 86(1970)55y 703c 704c
E2636 E2637	84(1977)134 84(1977)134	85(1978)386s 85(1978)386s		E2709 E2710	85(1978)276 85(1978)276	86(1979)55v, 703s, 704s 86(1979)594s
E2638	84(1977)135	85(1978)387s		E2710	85(1978)277	86(1979)595s
E2639	84(1977)135	85(1978)388s		E2712	85(1978)277	86(1979)704s, 705s
E2640	84(1977)135	85(1978)388s		E2713	85(1978)384	,
E2641	84(1977)216	85(1978)496s		E2714	85(1978)384	86(1979)596s
E2642	84(1977)216	85(1978)497s		E2715	85(1978)384 85(1078)384	86(1979)705s 87(1980)304s
E2643 E2644	84(1977)217 84(1977)217	85(1978)497s 85(1978)497s		E2716 E2717	85(1978)384 85(1978)384	89(1982)594s
	0.(1311)211	00(10)1013			00(10/0)004	

AMM E	2718	1975	-1979	67	CMB P241
E2718	85(1978)384	86(1979)509s	E2789	86(1979)592	87(1980)674s
E2719	85(1978)495	86(1979)787s 91(1984)143a	E2790	86(1979)593	87(1980)755s
E2720	85(1978)495	86(1979)706s, 707c, 707s	E2791	86(1979)702	87(1980)675s
E2721	85(1978)496	86(1979)865s	E2792	86(1979)702	87(1980)756s 90(1983)59a
E2722	85(1978)496	86(1979)708c	E2793	86(1979)703	88(1981)707s
E2723	85(1978)496	86(1979)788s, 789s	E2794	86(1979)703	87(1980)756c
E2724	85(1978)496	86(1979)708s	E2795	86(1979)703	87(1980)757s
E2725	85(1978)593	86(1979)790s	E2796	86(1979)703	87(1980)824s
E2726	85(1978)593	87(1980)61s	E2797	86(1979)785	88(1981)149s
E2727	85(1978)594	86(1979)791s 90(1983)55s	E2798	86(1979)785	87(1980)824s
E2728	85(1978)594	86(1979)792s	E2799	86(1979)785	87(1980)825s 89(1982)334c
E2729	85(1978)594	87(1980)137s		()	91(1984)143a
E2730	85(1978)594	86(1979)866s	E2800	86(1979)785	87(1980)825s
E2731	85(1978)681	86(1979)866s	E2801	86(1979)785	,
E2732	85(1978)681	86(1979)867s	E2802	86(1979)785	88(1981)67s
E2733	85(1978)682	86(1979)868s	E2803	86(1979)864	88(1981)149s
E2734	85(1978)682	86(1979)869s	E2804	86(1979)864	,
E2735	85(1978)682	87(1980)577s	E2805	86(1979)864	88(1981)68s
E2736	85(1978)682	89(1982)131s	E2806	86(1979)864	88(1981)210s 90(1983)59a
E2737	85(1978)764	87(1980)305s	E2807	86(1979)865	88(1981)68s
E2738	85(1978)764	87(1980)61s, 62c	E2808	86(1979)865	88(1981)211s
E2739	85(1978)765	87(1980)62s		, ,	` ,
E2740	85(1978)765	92(1985)591×	Problem	Proposal	References
E2741	85(1978)765	87(1980)63s	S1	86(1979)54	87(1980)134s
E2742	85(1978)765	87(1980)63s	S2	86(1979)55	87(1980)134c, 134s
E2743	85(1978)823	87(1980)221s	S3	86(1979)55	87(1980)136s
E2744	85(1978)823	86(1979)503v 88(1981)705s	S4	86(1979)127	87(1980)219s
E2745	85(1978)824	87(1980)222s	S5	86(1979)127	87(1980)219s
E2746	85(1978)824	87(1980)64s	S6	86(1979)222	87(1980)302s
E2747	85(1978)824	86(1979)592v 87(1980)305s	S7	86(1979)222	87(1980)403s
		90(1983)59a	S8	86(1979)222	87(1980)487s
E2748	85(1978)824	87(1980)138s	S9	86(1979)306	87(1980)488s
E2749	86(1979)55	87(1980)138s	S10	86(1979)306	87(1980)575s
E2750	86(1979)55	87(1980)138s	S11	86(1979)392	87(1980)753s
E2751	86(1979)56	88(1981)291s	S12	86(1979)392	87(1980)576s
E2752	86(1979)56	89(1982)757c, 757s	S13	86(1979)392	87(1980)670s
E2753	86(1979)56	87(1980)139s	S14	86(1979)503	90(1983)335s
E2754	86(1979)56	87(1980)139s	S15	86(1979)503	87(1980)670s
E2755	86(1979)127	87(1980)222s	S16 S17	86(1979)591 86(1979)591	87(1980)754s
E2756	86(1979)128	87(1980)223s	S18	· · · · · ·	87(1980)822s, 823s
E2757	86(1979)128		S19	86(1979)592 86(1979)702	88(1981)64s, 65s
E2758	86(1979)128	87(1980)405s	S20	86(1979)702	88(1981)147s 88(1981)207s
E2759	86(1979)128	(S21	86(1979)784	88(1981)443×
E2760	86(1979)128	87(1980)223s	S22	86(1979)863	88(1981)348s
E2761	86(1979)222	87(1980)224s	S23	86(1979)863	88(1981)537s
E2762	86(1979)223	87(1980)405s 88(1981)350c, 350s 90(1983)59a	323	00(1979)003	00(1901)3375
E2763	86(1979)223	90(1983)56s 91(1984)204c	CMP		
E2764	86(1979)223	87(1980)306s	СМВ		
E2765	86(1979)223	87(1980)307s	Problem	Proposal	References
E2766	86(1979)223	87(1980)406s	P169		25(1982)506c
E2767	86(1979)307	87(1980)490s	P191		22(1979)520s, 521c
E2768	86(1979)307	87(1980)406s	P207		23(1980)118s
E2769	86(1979)307	87(1980)308s	P212		25(1982)506c
E2770	86(1979)307	87(1980)491s	P217		19(1976)380s
E2771	86(1979)308	87(1980)407s	P222		18(1975)616s
E2772	86(1979)308	88(1981)350s	P223		18(1975)618s
E2773	86(1979)393	87(1980)492s	P226		19(1976)250s
E2774	86(1979)393	(,	P227		18(1975)619s
E2775	86(1979)393	87(1980)578s, 579s	P228		18(1975)619s
E2776	86(1979)393	87(1980)493s	P229		19(1976)122s
E2777	86(1979)393	87(1980)494s	P230		19(1976)123s, 123v
E2778	86(1979)393	87(1980)580s	P231		19(1976)381s
E2779	86(1979)503	,	P232		20(1977)148s
E2780	86(1979)503	88(1981)764s 90(1983)59a	P233		19(1976)251s
E2781	86(1979)503	87(1980)580s 90(1983)59a	P234		19(1976)124s
E2782	86(1979)503	87(1980)581s 90(1983)59a	P235		23(1980)382s
E2783	86(1979)504	87(1980)581s 90(1983)59a	P236		19(1976)124s
E2784	86(1979)504	88(1981)209s	P237		20(1977)149s
E2785	86(1979)592	87(1980)672s	P238		19(1976)252s
E2786	86(1979)592	87(1980)672s	P239		20(1977)520s
E2787	86(1979)592	87(1980)673s	P240		20(1977)518s
E2788	86(1979)592	87(1980)673s	P241	18(1975)615	19(1976)382s
	•			•	

CMB P2	42	1975-	-1979		CRUX 103
				1/1075\05	
P242 P243	18(1975)615 18(1975)615	20(1977)274s 22(1979)248s	32 33	1(1975)25 1(1975)25	1(1975)59c, 59s 1(1975)60s
P244	18(1975)616	20(1977)150s	34	1(1975)25	1(1975)60s 1(1975)60c, 60s
P245	18(1975)616	20(1977)1303 20(1977)274s	35	1(1975)25	1(1975)61s
P246	19(1976)121	22(1979)250s	36	1(1975)25	1(1975)61s
P247	19(1976)121	20(1977)520s	37	1(1975)26	1(1975)62c, 62s
P248	19(1976)121	20(1977)276s	38	1(1975)26	1(1975)64c, 64s
P249	19(1976)122	22(1979)251s	39	1(1975)26	1(1975)64s, 65c, 65s 2(1976)7s
P250	19(1976)249	22(1979)122s	40	1(1975)26	1(1975)66s
P251 P252	19(1976)249	20(1977)522s	41	1(1975)38	1(1975)72c, 72s
P252 P253	19(1976)249 20(1977)517	22(1979)252s 22(1979)252s, 253c	42 43	1(1975)38 1(1975)38	1(1975)73s 1(1975)73x, 85s
P254	19(1976)380	20(1977)523s	44	1(1975)38	1(1975)73x, 053 1(1975)74s
P255	19(1976)379	22(1979)253s	45	1(1975)39	1(1975)74s 6(1980)213s
P256	19(1976)379	20(1977)522s	46	1(1975)39	1(1975)75c, 75s
P257	20(1977)147	20(1977)517v 22(1979)386s	47	1(1975)39	1(1975)76s
P258	20(1977)147	20(1977)517v, 523s 22(1979)125a	48	1(1975)39	1(1975)77s
P259	20(1977)147	22(1979)387s	49	1(1975)39	1(1975)77s
P260	20(1977)147	22(1979)388s	50	1(1975)39	1(1975)78s, 80c
P261	20(1977)148	20(1977)524s 22(1979)125a	51	1(1975)48	1(1975)86s 2(1976)7a
P264 P265	20(1977)273 20(1977)273	22(1979)122s 20(1977)525s	52 53	1(1975)48	1(1975)87s
P266	20(1977)273	20(1977)525s 20(1977)517v 22(1979)389s	54	1(1975)48 1(1975)48	1(1975)88s 2(1976)7a 1(1975)89s
P267	20(1977)518	22(1979)123s	55	1(1975)48	1(1975)89s 2(1976)7a
P268	20(1977)518	25(1982)506c	56	1(1975)48	1(1975)89s, 90c
P269	20(1977)518	22(1979)125s	57	1(1975)49	1(1975)56v, 91s
P270	22(1979)121	23(1980)119v, 120s, 121s, 253a	58	1(1975)49	2(1976)43s
P271	22(1979)121	23(1980)122s	59	1(1975)49	1(1975)91s, 92c, 92s
P272	22(1979)121	23(1980)124s, 125s	60	1(1975)49	1(1975)92s
P273	22(1979)247	23(1980)249s	61	1(1975)56	1(1975)98s 2(1976)26a
P274	22(1979)248	23(1980)249s	62	1(1975)56	1(1975)99s 2(1976)7a
P275 P276	22(1979)248	23(1980)250s	63	1(1975)56	1(1975)99s
P270 P277	22(1979)248 22(1979)385	23(1980)251s 25(1982)508a, 508c 25(1982)506c	64 65	1(1975)57 1(1975)57	1(1975)100s 1(1975)100s 2(1976)7a, 69s
P278	22(1979)386	23(1982)500c 23(1980)507× 24(1981)252s	66	1(1975)57	1(1975)100s 2(1970)7a, 09s 1(1975)100s
P279	22(1979)386	23(1980)508s	67	1(1975)57	1(1975)1003 1(1975)101s
P280	22(1979)386	23(1980)509s	68	1(1975)57	1(1975)101s
P281	22(1979)519	24(1981)127s, 256a	69	1(1975)57	1(1975)102s
			70	1(1975)57	1(1975)102s
CRUX			71	1(1975)71	2(1976)8s
			72	1(1975)71	2(1976)9s
Problem	Proposal	References	73	1(1975)71	2(1976)9s
1	1(1975)3	1(1975)12s	74 75	1(1975)71 1(1975)71	2(1976)10s 2(1976)10s, 11c, 11s, 172a
2 3	1(1975)3 1(1975)3	1(1975)12s 1(1975)14c, 14s	76	1(1975)71	2(1976)10s, 11c, 11s, 172a 2(1976)12s
4	1(1975)3	1(1975)14c, 145 1(1975)15s	77	1(1975)71	2(1976)12s
5	1(1975)3	1(1975)15s	78	1(1975)72	2(1976)13s, 14c
6	1(1975)3	1(1975)17s, 27a	79	1(1975)72	2(1976)15s, 16c, 16v
7	1(1975)4	1(1975)18s	80	1(1975)72	2(1976)17c, 17s
8	1(1975)4	1(1975)19s	81	1(1975)84	2(1976)26s, 27c
9	1(1975)4	1(1975)19s	82	1(1975)84	2(1976)27s
10	1(1975)4	1(1975)20c, 20s, 49c	83	1(1975)84	2(1976)28c, 28s 9(1983)278c
11 12	1(1975)7	1(1975)27s	84 85	1(1975)84 1(1975)84	2(1976)29s 2(1976)29s, 30s
13	1(1975)7 1(1975)7	1(1975)27s 1(1975)27s	86	1(1975)84	2(1976)29s, 30s 2(1976)30s
14	1(1975)7	1(1975)28s	87	1(1975)84	2(1976)32s
15	1(1975)8	1(1975)28s	88	1(1975)85	2(1976)33c, 33s 5(1979)48c
16	1(1975)8	1(1975)29s	89	1(1975)85	2(1976)33s, 34c
17	1(1975)8	1(1975)29s, 30s	90	1(1975)85	2(1976)34s, 36c 8(1982)279s
18	1(1975)8	1(1975)31s, 32s 2(1976)42c, 69c	91	1(1975)97	2(1976)44s, 69a
19	1(1975)8	1(1975)32s	92	1(1975)97	2(1976)44s, 45c, 69a
20	1(1975)8	1(1975)33s, 34s	93	1(1975)97	2(1976)45s, 46c, 111s
21	1(1975)11	1(1975)40c, 40s, 58a	04	1/1075\07	10(1984)293s
22 23	1(1975)11 1(1975)11	1(1975)40s, 58a 1(1975)41c, 41s	94 95	1(1975)97 1(1975)97	2(1976)25v, 46s, 47s 2(1976)47s, 48s
23 24	1(1975)11	1(1975)41c, 41s 1(1975)42s	96	1(1975)97	2(1976)47s, 46s 2(1976)48s
25	1(1975)11	1(1975)425 1(1975)42s, 43c, 43s, 58c	97	1(1975)97	2(1976)46s 2(1976)48s, 49c, 69a
26	1(1975)12	1(1975)43s	98	1(1975)97	2(1976)49s, 49s
27	1(1975)12	1(1975)44s	99	1(1975)98	2(1976)50s, 51s, 52c, 69s
28	1(1975)12	1(1975)44s	100	1(1975)98	2(1976)52s, 53c
29	1(1975)12	1(1975)45s, 46c	101	2(1976)5	2(1976)72c, 72s
30	1(1975)12	1(1975)46s	102	2(1976)5	2(1976)73s, 74s
31	1(1975)25	1(1975)58s	103	2(1976)5	2(1976)74s, 75s

CRUX	104	1975-	-1979	67	CRUX 236
104	2(1976)5	2(1976)76s	167	2(1976)136	3(1977)23s
105	2(1976)5	2(1976)703 2(1976)77s, 78c	168	2(1976)136	2(1976)233s
106	2(1976)6	2(1976)775, 766 2(1976)78s, 79s	169	2(1976)136	2(1976)2335 2(1976)234c, 234s
107	2(1976)6	2(1976)70s, 79s 2(1976)79s, 80c	170	2(1976)136	2(1976)170v 3(1977)25s, 26c
108	2(1976)6	2(1976)80s, 81s	171	2(1976)170	3(1977)26s
100	2(1976)6	2(1976)81s, 83c	172	2(1976)170	3(1977)28s, 29c
110	` '	2(1976)84s, 85s, 87c 14(1988)16s	173	· · · · · ·	` '
	2(1976)6		1	2(1976)171	3(1977)47c, 68s
111	2(1976)25	2(1976)95c, 95s, 111a	174	2(1976)171	3(1977)48s
112	2(1976)25	2(1976)96c, 96s	175	2(1976)171	3(1977)49s, 50c
113	2(1976)25	2(1976)97s	176	2(1976)171	3(1977)30s, 69c
114	2(1976)25	2(1976)98s	177	2(1976)171	3(1977)50s, 52c, 132c, 133s
115	2(1976)25	2(1976)98c, 98s, 112c, 112s, 137s,	178	2(1976)171	3(1977)53c, 53s
	- ()	138c	179	2(1976)171	3(1977)54s, 55c
116	2(1976)25	2(1976)100s	180	2(1976)172	3(1977)56s
117	2(1976)26	2(1976)100s	181	2(1976)193	3(1977)57c, 57s 4(1978)37a
118	2(1976)26	2(1976)101s	182	2(1976)193	3(1977)58s
119	2(1976)26	2(1976)102s	183	2(1976)193	3(1977)69s
120	2(1976)26	2(1976)103s, 104s, 139c	184	2(1976)193	3(1977)70s
121	2(1976)41	2(1976)113s, 114s	185	2(1976)194	3(1977)70s, 71s 4(1978)37a
122	2(1976)41	2(1976)114s, 115c, 115s, 116c	186	2(1976)194	3(1977)71s
123	2(1976)41	2(1976)116s, 117s, 118c, 119c	187	2(1976)194	3(1977)72c, 72s
124	2(1976)41	2(1976)119s	188	2(1976)194	3(1977)73c, 73s
125	2(1976)41	2(1976)120s, 121c, 121s, 139c	189	2(1976)194	3(1977)74c, 75c, 193c, 252c
126	2(1976)41	2(1976)123s, 172a	103	2(13/0)13/	4(1978)37a 15(1989)75s
127	2(1976)41	2(1976)124c, 124s, 125c, 140c,	190	2(1976)194	3(1977)76s
121	2(1970)41	2(1970)124C, 124S, 123C, 140C, 221c	191	2(1976)219	3(1977)70s 3(1977)77s, 78s
120	2(1076)41			· · · · · ·	` '
128	2(1976)41	2(1976)125s, 126c, 141a	192	2(1976)219	3(1977)79c, 79s, 80c
129	2(1976)42	2(1976)126s, 127c	193	2(1976)219	3(1977)81s
130	2(1976)42	2(1976)128s 3(1977)44s	194	2(1976)219	3(1977)82c, 82s
131	2(1976)67	2(1976)141c, 141s, 172a	195	2(1976)220	3(1977)84s, 87s, 195c
132	2(1976)67	2(1976)142s, 143c, 172c	196	2(1976)220	3(1977)108s
		3(1977)11c	197	2(1976)220	3(1977)108s, 156c
133	2(1976)67	2(1976)144c, 147c, 148c, 149c,	198	2(1976)220	3(1977)111s
		221c	199	2(1976)220	3(1977)112s, 113s, 114c, 299c
134	2(1976)68	2(1976)151c, 151s, 152c, 173s,	200	2(1976)220	3(1977)133s, 228c
		174s, 222c, 222s 3(1977)12c, 44c	201	3(1977)9	3(1977)136c, 136s
135	2(1976)68	2(1976)153s, 154c, 154s, 223c	202	3(1977)9	3(1977)137s, 138c
	, ,	3(1977)45c	203	3(1977)9	3(1977)138s, 140c
136	2(1976)68	2(1976)155c, 155s	204	3(1977)10	3(1977)140s, 141c
137	2(1976)68	2(1976)156s, 157c	205	3(1977)10	3(1977)142s, 196a
138	2(1976)68	2(1976)157s, 158c	206	3(1977)10	3(1977)143c, 143s
139	2(1976)68	2(1976)158s	207	3(1977)10	3(1977)144c, 144s
140	2(1976)68	3(1977)13s, 46c	208	3(1977)10	3(1977)157s, 158c
141	2(1976)93	2(1976)175s	209	3(1977)10	3(1977)159s
142	2(1976)93	2(1976)175s, 176s, 177c	210	3(1977)10	3(1977)160s, 163c, 163s, 196c, 197s
172	2(13/0)33	3(1977)106c	210	3(13/1)10	4(1978)13c, 16c, 193c
143	2(1976)93	2(1976)178s, 180c	211	3(1977)42	3(1977)164c, 164s
	-/	0/10=6/101		0/10==(10	` '
144	2(1976)94	2(1976)181s	212	3(1977)42	3(1977)165c, 165s
145	2(1976)94	2(1976)181c, 182c, 225c	213	3(1977)42	3(1977)166s
146	0(1076)04	3(1977)16c, 18c, 67s	214	3(1977)42	3(1977)166s
146	2(1976)94	2(1976)182s	215	3(1977)42	3(1977)167s, 168c, 168s, 198a
147	2(1976)94	2(1976)183c, 183s	216	3(1977)42	3(1977)170s, 198c
148	2(1976)94	2(1976)183s, 184c	217	3(1977)43	3(1977)172s
149	2(1976)94	2(1976)184s 3(1977)47c, 47s	218	3(1977)43	3(1977)172s
150	2(1976)94	2(1976)185s, 186c	219	3(1977)43	3(1977)173s, 175c
151	2(1976)109	2(1976)195s	220	3(1977)43	3(1977)175c, 175s
152	2(1976)109	2(1976)196s	221	3(1977)65	3(1977)199s, 200s
153	2(1976)110	2(1976)196s, 197c, 197s	222	3(1977)65	3(1977)200s, 201c, 201s
		3(1977)19c, 19s	223	3(1977)65	3(1977)202s, 203c
154	2(1976)110	2(1976)159v, 197s, 198c, 226c	224	3(1977)65	3(1977)203s, 203v
	, ,	3(1977)20c, 108c, 191c, 191s	225	3(1977)65	3(1977)204s, 205s
155	2(1976)110	2(1976)199s 3(1977)22c	226	3(1977)66	3(1977)205s, 206c
156	2(1976)110	2(1976)199s	227	3(1977)66	3(1977)228s, 230c
157	2(1976)110	2(1976)200s, 201c	228	3(1977)66	3(1977)230s
158	2(1976)111	2(1976)2003, 2016 2(1976)201s	229	3(1977)66	3(1977)230s 3(1977)231s
159	2(1976)111	2(1976)201s 2(1976)202c, 202s	230	3(1977)66	3(1977)231s 3(1977)233s, 234c, 235c
160	2(1976)111	2(1976)202c, 202s 2(1976)203c, 203s 3(1977)23c	231	3(1977)104	3(1977)233s, 234c, 233c 3(1977)236s, 237c
161	2(1976)111	2(1976)226s 3(1977)23C 2(1976)226s	231	· · · · · ·	` '
	` '	` '	232	3(1977)104	3(1977)238s, 240c, 240s
162	2(1976)135	2(1976)226s, 227c	222	2(1077)104	4(1978)17s
163	2(1976)135	2(1976)228s	233	3(1977)104	3(1977)253s
164	2(1976)135	2(1976)230c, 230s	234	3(1977)104	3(1977)154v, 257s, 258c, 299a
165	2(1976)135	2(1976)230s, 231c, 231s	235	3(1977)105	3(1977)258s
166	2(1976)136	2(1976)231s, 232c	236	3(1977)105	3(1977)260s

CRUX	237	197	5–1979	<u> </u>	CRUX 377
237	3(1977)105	3(1977)261s	307	4(1978)12	4(1978)198c, 198s
238	3(1977)105	3(1977)262s	308	4(1978)12	4(1978)199s
239	3(1977)105	3(1977)263s	309	4(1978)12	4(1978)200s
240	3(1977)105	3(1977)264s, 299c 4(1978)18a,	310	4(1978)12	4(1978)202s, 203s, 204c
	, ,	37c	311	4(1978)35	4(1978)204s, 205c
241	3(1977)130	3(1977)265c, 265s, 299a	312	4(1978)35	4(1978)205s, 207c
242	3(1977)130	3(1977)266s, 267s	313	4(1978)35	4(1978)207s, 208s
243	3(1977)130	3(1977)268s	314	4(1978)35	4(1978)209s
244	3(1977)130	4(1978)19s	315	4(1978)35	4(1978)227s
245	3(1977)130	4(1978)21s	316	4(1978)36	4(1978)228s, 229s
246 247	3(1977)131 3(1977)131	4(1978)22c, 22s 4(1978)24s, 38c	317 318	4(1978)36 4(1978)36	4(1978)230s 4(1978)231s, 233s
248	3(1977)131	3(1977)154v 4(1978)27c, 27s,	319	4(1978)36	4(1978)235c, 235s
	()	102c	320	4(1978)36	4(1978)238s
249	3(1977)131	4(1978)28s, 29c	321	4(1978)65	4(1978)252c, 252s 5(1979)18a
250	3(1977)132	4(1978)39s, 40c, 40s 5(1979)17x	322	4(1978)65	4(1978)254s 5(1979)18a
251	3(1977)154	4(1978)42s, 43c	323	4(1978)65	4(1978)255c, 255s 5(1979)18a
252	3(1977)154	4(1978)44s, 47c	324	4(1978)66	4(1978)257s
253	3(1977)154	4(1978)49s, 50c	325	4(1978)66	4(1978)258s 5(1979)18a, 49c
254	3(1977)155	4(1978)50s	326	4(1978)66	5(1979)18s
255 256	3(1977)155 3(1977)155	4(1978)52c, 52s 4(1978)53x, 103s, 161a	327 328	4(1978)66 4(1978)66	4(1978)260s 5(1979)18a 4(1978)260s
257	3(1977)155	4(1978)54s	329	4(1978)66	4(1978)260s 4(1978)262s
258	3(1977)155	4(1978)56s	330	4(1978)67	4(1978)263s
259	3(1977)155	4(1978)57c, 57s	331	4(1978)100	4(1978)265s
260	3(1977)155	4(1978)58s, 59c 9(1983)81c	332	4(1978)100	4(1978)267c, 267s, 285a
261	3(1977)189	4(1978)67s, 68c, 69c			5(1979)18a
262	3(1977)189	4(1978)70s	333	4(1978)101	4(1978)269c, 269s
263	3(1977)189	4(1978)71s	334	4(1978)101	4(1978)285s
264	3(1977)189	4(1978)73s	335	4(1978)101	4(1978)287s
265	3(1977)190	4(1978)74s, 75c, 104a	336	4(1978)101	4(1978)288c, 288s
266 267	3(1977)190 3(1977)190	4(1978)75× 4(1978)76s, 77c, 104s	337 338	4(1978)101 4(1978)101	4(1978)289s 4(1978)290s, 291s 5(1979)23a
268	3(1977)190	4(1978)78s, 79c	339	4(1978)102	4(1978)292c
269	3(1977)190	4(1978)79s, 80c, 81c, 82c	340	4(1978)102	4(1978)293s, 294c, 294s
	, ,	6(1980)45c	341	4(1978)133	4(1978)296s, 297s
270	3(1977)190	4(1978)82s	342	4(1978)133	6(1980)319×
271	3(1977)226	4(1978)85s	343	4(1978)133	4(1978)298×
272	3(1977)226	4(1978)86s, 87c	344	4(1978)133	5(1979)23s
273	3(1977)226	4(1978)87s	345	4(1978)134	5(1979)25s
274 275	3(1977)226 3(1977)227	4(1978)88s 4(1978)105s	346	4(1978)134	5(1979)26s, 29c, 30c 10(1984)294c
276	3(1977)227	4(1978)107s, 108c	347	4(1978)134	4(1978)191v 5(1979)50s
277	3(1977)227	4(1978)109s	348	4(1978)134	5(1979)50s, 51s, 52s
278	3(1977)227	4(1978)110c, 110s	349	4(1978)134	5(1979)53s
279	3(1977)227	4(1978)110s	350	4(1978)135	5(1979)54s
280	3(1977)227	4(1978)111s, 112c	351	4(1978)159	5(1979)54s
281	3(1977)250	4(1978)113s	352	4(1978)159	5(1979)55c, 55s
282	3(1977)250	4(1978)114s, 115c, 135a	353	4(1978)159	5(1979)56s
283 284	3(1977)250 3(1977)250	4(1978)195s 4(1978)115s, 116s	354 355	4(1978)159 4(1978)160	5(1979)57s, 58c, 59s 5(1979)78x, 79x, 80c, 168c
285	3(1977)251	4(1978)116s, 117s, 118s	356	4(1978)160	5(1979)80s, 82c
286	3(1977)251	4(1978)119s, 120c	357	4(1978)160	5(1979)83s
287	3(1977)251	4(1978)135s, 136c, 138c	358	4(1978)161	5(1979)84s
288	3(1977)251	4(1978)136s	359	4(1978)161	5(1979)85s
289	3(1977)251	4(1978)139c, 139s, 140c	360	4(1978)161	5(1979)87s, 88c
290	3(1977)251	4(1978)142s, 144c 11(1985)222c	361	4(1978)191	5(1979)88c, 88s
291	3(1977)297	4(1978)147s, 148s	362	4(1978)191	5(1979)89s, 90c
292	3(1977)297	4(1978)148s, 149c	363	4(1978)191	5(1979)111s
293 294	3(1977)297 3(1977)297	4(1978)150s 4(1978)161s, 162c	364 365	4(1978)192 4(1978)192	5(1979)113s 5(1979)115s
295	3(1977)297	4(1978)162s, 163c, 163s	366	4(1978)192	5(1979)117c, 117s
296	3(1977)297	4(1978)164s	367	4(1978)192	5(1979)118s
297	3(1977)298	4(1978)165s, 167c	368	4(1978)192	5(1979)134s
298	3(1977)298	4(1978)167s	369	4(1978)192	5(1979)135s
299	3(1977)298	4(1978)170s	370	4(1978)193	5(1979)135s
300	3(1977)298	4(1978)172s, 173c	371	4(1978)224	5(1979)136s, 137c
301	4(1978)11	4(1978)174c, 174s	372	4(1978)224	5(1979)138s
302	4(1978)11	4(1978)176s	373	4(1978)225	5(1979)139s 5(1979)140c
303 304	4(1978)11 4(1978)11	4(1978)177s 4(1978)178c, 178s	374 375	4(1978)225 4(1978)225	5(1979)140s 5(1979)142s
305	4(1978)11	4(1978)180s, 227a	376	4(1978)225	5(1979)142s 5(1979)143s, 145c
306	4(1978)12	4(1978)196s, 197c	377	4(1978)226	5(1979)146c, 146s
	` '	, ,	•	` '	

CRUX 3	378	1975	-1979		CRUX PS7-1
378	4(1978)226	5(1979)147s, 148c, 148s	451	5(1979)166	6(1980)122s
379	4(1978)226	5(1979)149s, 150c	452	5(1979)166	6(1980)123c, 123s
380	4(1978)226	5(1979)171s	453	5(1979)166	6(1980)124s
381	4(1978)250	5(1979)172s	454	5(1979)166	6(1980)125s
382	4(1978)250	5(1979)172s, 173s	455	5(1979)167	6(1980)127s
383	4(1978)250	5(1979)174s, 175c, 175s	456	5(1979)167	6(1980)128s
384	4(1978)250	5(1979)176s, 178c	457	5(1979)167	6(1980)155s
385 386	4(1978)250 4(1978)251	5(1979)178s, 179c	458	5(1979)167	6(1980)158s
387	4(1978)251	5(1979)179s, 180x 6(1980)47x, 114s, 285a	459 460	5(1979)167 5(1979)167	6(1980)158s 6(1980)160s
388	4(1978)251	5(1979)201s, 202c	461	5(1979)199	6(1980)161s
389	4(1978)251	5(1979)202s, 203c, 203s	462	5(1979)199	6(1980)162c, 162s
390	4(1978)251	5(1979)205s, 206c	463	5(1979)199	6(1980)163s
391	4(1978)282	5(1979)207s, 208c	464	5(1979)200	6(1980)185s, 186s
392	4(1978)282	5(1979)208s, 209c	465	5(1979)200	6(1980)188s, 216a
393	4(1978)283	5(1979)210s, 211c	466	5(1979)200	6(1980)189c, 189s, 252a
394	4(1978)283	5(1979)229s	467	5(1979)200	6(1980)191s
395	4(1978)283	5(1979)232s	468	5(1979)200	6(1980)192s
396 397	4(1978)283 4(1978)283	5(1979)233s, 234c 5(1979)234s, 235s	469	5(1979)200	6(1980)193s
398	4(1978)284	5(1979)234s, 233s 5(1979)235s	470 471	5(1979)201 5(1979)228	6(1980)194s 6(1980)196s 7(1981)240a
399	4(1978)284	5(1979)237s, 239c, 241c	472	5(1979)228	6(1980)196s
400	4(1978)284	5(1979)243s, 294c	473	5(1979)229	6(1980)197c
401	5(1979)14	5(1979)267c, 267s	474	5(1979)229	6(1980)198s
402	5(1979)15	5(1979)267s, 268c	475	5(1979)229	6(1980)216s
403	5(1979)15	5(1979)269s	476	5(1979)229	6(1980)217s
404	5(1979)15	5(1979)270s	477	5(1979)229	6(1980)218s, 285a
405	5(1979)15	5(1979)272s	478	5(1979)229	6(1980)219s 11(1985)189c, 190c
406	5(1979)16	5(1979)273s		= (4 0=0) 000	13(1987)151c
407 408	5(1979)16 5(1979)16	5(1979)273s, 275c 5(1979)295s 9(1983)114c	479	5(1979)229	6(1980)220s
409	5(1979)16	5(1979)2935 9(1903)114C 5(1979)277s	480 481	5(1979)229	6(1980)222s 6(1980)222s
410	5(1979)17	5(1979)296c, 298c	482	5(1979)264 5(1979)265	6(1980)223s
411	5(1979)46	5(1979)299s, 300s	483	5(1979)265	6(1980)227s, 285a
412	5(1979)47	5(1979)300s, 301s 6(1980)214a	484	5(1979)265	6(1980)253s, 285c
413	5(1979)47	5(1979)302s, 303c	485	5(1979)265	6(1980)256s
414	5(1979)47	5(1979)304s, 305s, 306c	486	5(1979)266	6(1980)258s
415	5(1979)47	5(1979)306s, 307c	487	5(1979)266	6(1980)259s
416	5(1979)47	5(1979)307s	488	5(1979)266	6(1980)260s, 261s, 262s
417 418	5(1979)47 5(1979)48	5(1979)309s 6(1980)17s, 18c	489	5(1979)266	6(1980)263s, 288a
419	5(1979)48	6(1980)19s	490	5(1979)266	6(1980)288c
420	5(1979)48	6(1980)21s	491 492	5(1979)291 5(1979)291	6(1980)290s, 291c 7(1981)20c 6(1980)291s 7(1981)50s, 117a,
421	5(1979)76	6(1980)23s	792	3(1979)291	277c 8(1982)79c
422	5(1979)76	6(1980)24s, 25c	493	5(1979)291	6(1980)294x 7(1981)51c
423	5(1979)76	6(1980)26s	494	5(1979)291	6(1980)297×
424	5(1979)77	6(1980)27s, 28c	495	5(1979)291	7(1981)20s
425	5(1979)77	6(1980)29s	496	5(1979)291	6(1980)323s
426	5(1979)77 5(1979)77	6(1980)30s	497	5(1979)293	6(1980)324s
427 428	5(1979)77	6(1980)31s, 49c 6(1980)50s	498	5(1979)293	6(1980)325s
429	5(1979)77	6(1980)51s	499 500	5(1979)293 5(1979)293	6(1980)327s 6(1980)328s, 329s
430	5(1979)78	6(1980)52s, 53c	300	5(1979)295	, ,
431	5(1979)107	6(1980)55s	Problem	Proposal	References
432	5(1979)108	6(1980)57s	PS1-1	5(1979)13	5(1979)44s 6(1980)310s
433	5(1979)108	6(1980)58s	PS1-2	5(1979)13	5(1979)44s
434	5(1979)108	6(1980)59×	PS1-3	5(1979)13	5(1979)45s
435	5(1979)108	6(1980)60s	PS2–1 PS2–2	5(1979)13 5(1979)13	5(1979)66s 5(1979)67s
436 437	5(1979)109 5(1979)109	6(1980)61s, 62c 6(1980)63c, 63s, 64c	PS2-3	5(1979)13	5(1979)67s 5(1979)67s
438	5(1979)109	6(1980)79s	PS3-1	5(1979)13	5(1979)106s
439	5(1979)109	6(1980)81s	PS3-2	5(1979)14	5(1979)106s
440	5(1979)110	6(1980)83s	PS3-3	5(1979)14	5(1979)106s
441	5(1979)131	6(1980)84s, 85c	PS4-1	5(1979)44	5(1979)129s
442	5(1979)131	6(1980)86s	PS4-2	5(1979)44	5(1979)130s
443	5(1979)132	6(1980)88×	PS4-3	5(1979)44	5(1979)130s
444	5(1979)132	6(1980)90s	PS5-1	5(1979)66	5(1979)162s
445	5(1979)132	6(1980)92s	PS5-2	5(1979)66	5(1979)163s
446	5(1979)132 5(1070)132	6(1980)94s	PS5-3	5(1979)66 5(1070)105	5(1979)164s
447 448	5(1979)132 5(1979)133	6(1980)115s 6(1980)117s	PS6-1 PS6-2	5(1979)105 5(1979)105	5(1979)197s 5(1979)198s
449	5(1979)133	6(1980)117s 6(1980)118s	PS6-3	5(1979)105	5(1979)198s 5(1979)198s
450	5(1979)133	6(1980)120s, 214c	PS7-1	5(1979)259	5(1979)1903 5(1979)289s
	-(-3.3)100	(,,		-(-3.3)=33	- (

CRUX PS	CRUX PS7-2 1975-1979 FQ B-388						
			B-316	12/1075)272	14(1076)470-	. Q 2 333	
PS7–2 PS7–3	5(1979)259 5(1979)259	5(1979)290s 5(1979)290s	B-310 B-317	13(1975)373 13(1975)373	14(1976)470s 14(1976)471s		
PS8-1	5(1979)288	6(1980)11s	B-318	13(1975)373	14(1976)471s		
PS8-2	5(1979)289	6(1980)12s	B-319	13(1975)373	14(1976)472s		
PS8–3	5(1979)289	6(1980)13s	B-320 B-321	13(1975)373 13(1975)373	14(1976)472s 14(1976)472s		
DELT			B-322	14(1976)93	15(1977)94s		
DELTA	4		B-323	14(1976)93	15(1977)94s		
<u>Problem</u>	Proposal	References	B-324	14(1976)93	15(1977)95s		
4.2–1		5(1975)45s	B-325 B-326	14(1976)93 14(1976)93	15(1977)95s 15(1977)95s		
4.2–2 4.2–3		5(1975)46s 5(1975)47s	B-327	14(1976)93	15(1977)95s		
4.2–4		5(1975)47s	B-328	14(1976)188	15(1977)190s		
5.1-1	5(1975)48	5(1975)94s	B-329	14(1976)188	15(1977)190s		
5.1–2	5(1975)48	5(1975)95s	B-330 B-331	14(1976)188 14(1976)188	15(1977)191s 15(1977)191s		
5.1–3 5.2–1	5(1975)48 5(1975)96	5(1975)95s 6(1976)92s	B-332	14(1976)188	15(1977)191s		
5.2-2	5(1975)96	6(1976)93s	B-333	14(1976)188	15(1977)192s		
5.2-3	5(1975)96	6(1976)43s	B-334 B-335	14(1976)286 14(1976)286	15(1977)286s 15(1977)286s		
6.1–1	6(1976)44	6(1976)92s	B-336	14(1976)286	15(1977)286s		
6.1–2 6.1–3	6(1976)44 6(1976)45	6(1976)93s 6(1976)93s	B-337	14(1976)286	15(1977)286s		
6.1–4	6(1976)45	6(1976)93s	B-338	14(1976)286	15(1977)287s		
6.2–1	6(1976)94	` ,	B-339 B-340	14(1976)286 14(1976)470	15(1977)288s 15(1977)376s		
6.2–2 6.2–3	6(1976)94		B-341	14(1976)470	15(1977)376s		
0.2–3	6(1976)94		B-342	14(1976)470	15(1977)376s		
FQ			B-343	14(1976)470	15(1977)376s		
ΓŲ			B-344 B-345	14(1976)470 14(1976)470	15(1977)377s 15(1977)377s		
Problem	Proposal	References	B-346	15(1977)93	16(1978)89s		
B–141 B–274		13(1975)370c 13(1975)95c, 95s 14(1976)94c	B-347	15(1977)93	16(1978)89s		
B-275		13(1975)95s 14(1970)94c	B-348 B-349	15(1977)93 15(1977)93	16(1978)90s 16(1978)90s		
B-276		13(1975)96s	B-350	15(1977)93	16(1978)91s		
B-277		13(1975)96s	B-351	15(1977)94	16(1978)91s		
B-278 B-279		13(1975)96s 13(1975)96v, 286s	B-352 B-353	15(1977)189	16(1978)185s		
B-280		13(1975)191s	B-353	15(1977)189 15(1977)189	16(1978)185s 16(1978)185s		
B-281		13(1975)191s	B-355	15(1977)189	16(1978)186s		
B-282 B-283		13(1975)192s 13(1975)192s	B-356	15(1977)189	16(1978)186s		
B-284		13(1975)192s 13(1975)192c	B–357 B–358	15(1977)189 15(1977)285	16(1978)186s 16(1978)474s		
B-285		13(1975)192s	B-359	15(1977)285	16(1978)474s		
B-286		13(1975)286s	B-360	15(1977)285	16(1978)474s		
B-287 B-288		13(1975)286s 13(1975)287s	B-361 B-362	15(1977)285 15(1977)285	16(1978)475s 16(1978)475s		
B-289		13(1975)287s	B-363	15(1977)285	16(1978)476s		
B-290		13(1975)287s	B-364	15(1977)375	16(1978)563s		
B-291 B-292		13(1975)288s 13(1975)374s	B-365 B-366	15(1977)375	16(1978)563s		
B-293		13(1975)374s	B-367	15(1977)375 15(1977)375	16(1978)563s 16(1978)564s		
B-294		13(1975)375s	B-368	15(1977)375	16(1978)564s		
B-295		13(1975)375s	B-369	15(1977)375	16(1978)565s		
B-296 B-297		13(1975)376s 13(1975)377s	B–370 B–371	16(1978)88 16(1978)88	17(1979)91s 17(1979)91s 18(19	80)85c	
B-298	13(1975)94	14(1976)94s	B-372	16(1978)88	17(1979)913 10(19 17(1979)92s	00)030	
B-299	13(1975)94	14(1976)94s	B-373	16(1978)88	17(1979)92s		
B-300 B-301	13(1975)94 13(1975)94	14(1976)94s 14(1976)95s	B–374 B–375	16(1978)88 16(1978)89	17(1979)93s 17(1979)93s		
B-302	13(1975)94	14(1976)95s	B-376	16(1978)184	17(1979)935 17(1979)185s		
B-303	13(1975)95	14(1976)96s	B-377	16(1978)184	17(1979)185s		
B-304	13(1975)190	14(1976)188s	B-378	16(1978)184	17(1979)185s		
B-305 B-306	13(1975)190 13(1975)190	14(1976)189s 14(1976)189s	B–379 B–380	16(1978)184 16(1978)184	17(1979)186s 17(1979)186s		
B-307	13(1975)190	14(1976)190s	B-381	16(1978)184	17(1979)187s		
B-308	13(1975)190	14(1976)191s	B-382	16(1978)473	17(1979)282c, 282s		
B-309 B-310	13(1975)191 13(1975)285	14(1976)191s 14(1976)287s	B-383 B-384	16(1978)473 16(1978)473	17(1979)283c 17(1979)283s		
B-311	13(1975)285	14(1976)287s	B-385	16(1978)473	17(1979)283s		
B-312	13(1975)285	14(1976)287s	B-386	16(1978)473	17(1979)284c, 284s		
B-313 B-314	13(1975)285 13(1975)285	14(1976)288s 14(1976)288s	B–387 B–388	16(1978)473 16(1978)562	17(1979)284c, 284s 17(1979)370s		
D-314	19(1919)509	14(1310)2002	15-300	10(1910)205	11(1212)2102		

FQ B-38	9	1975-	-1979		FUNCT 1.1.10
B-389	16(1978)562	17(1979)371s	H-252	13(1975)281	15(1977)187s
B-390	16(1978)562	17(1979)371s	H-253	13(1975)281	15(1977)188s
B-391	16(1978)562	17(1979)372s	H-254	13(1975)281	17(1979)288r
B-392	16(1978)562	17(1979)373s	H-255	13(1975)369	15(1977)281s
B-393	16(1978)562	17(1979)373s	H-256	13(1975)369	15(1977)374s
B-394	17(1979)90	18(1980)85s	H-257 H-258	13(1975)369 14(1976)88	15(1977)283s 15(1977)284s 16(1978)96a
B-395 B-396	17(1979)90 17(1979)90	18(1980)86s 18(1980)87s	H-259	14(1976)88	15(1977)284s 16(1978)96a
B-397	17(1979)90	18(1980)87c, 87s	H-260	14(1976)88	17(1979)288r
B-398	17(1979)90	18(1980)88s	H-261	14(1976)182	15(1977)371s
B-399	17(1979)90	18(1980)89s, 89v	H-262	14(1976)182	15(1977)372s 16(1978)96a
B-400	17(1979)184	18(1980)187s	H-263	14(1976)182	15(1977)373s 16(1978)96a
B-401	17(1979)184	18(1980)187s	H-264 H-265	14(1976)282 14(1976)282	16(1978)92s 16(1978)94s, 189a
B-402 B-403	17(1979)184 17(1979)184	18(1980)188s 18(1980)188s	H-266	14(1976)282	16(1978)94s, 189a
B-404	17(1979)184	18(1980)188s	H-267	14(1976)466	15(1977)192v 16(1978)190s
B-405	17(1979)184	18(1980)189s	H-268	14(1976)466	16(1978)191s, 569a
B-406	17(1979)281	18(1980)274s	H-269	15(1977)89	16(1978)478s
B-407	17(1979)281	18(1980)274s	H-270	15(1977)89	16(1978)479s, 569a
B-408	17(1979)281	18(1980)275c	H–271 H–272	15(1977)89 15(1977)185	16(1978)480v 17(1979)288r 16(1978)567s
B-409 B-410	17(1979)281 17(1979)282	18(1980)275s 18(1980)275s	H-273	15(1977)185	16(1978)568s
B-410 B-411	17(1979)282	18(1980)276s	H-274	15(1977)281	17(1979)95s, 192a
B-412	17(1979)369	18(1980)371s	H-275	15(1977)281	17(1979)191s
B-413	17(1979)369	18(1980)371s	H-276	15(1977)371	17(1979)287s
B-414	17(1979)369	18(1980)372s	H-277	15(1977)371	22(1984)91s
B-415	17(1979)369	18(1980)372c	H-278	16(1978)92	17(1979)375s 18(1980)96a 17(1979)376s 18(1980)96a
B-416	17(1979)370	18(1980)372c	H-279 H-280	16(1978)92 16(1978)92	17(1979)370s 18(1980)90a 17(1979)377s 18(1980)96a
B-417	17(1979)370	18(1980)373s	H-281	16(1978)188	18(1980)91s, 192a 19(1981)191a
<u>Problem</u>	Proposal	References	H-282	16(1978)188	18(1980)93s
H-91		29(1991)186v, 187s	H-283	16(1978)188	18(1980)94s, 192a 19(1981)191a
H-123		16(1978)189c	H-284	16(1978)188	18(1980)191s 19(1981)384c
H-125 H-152		27(1989)95c 26(1988)284s	H-285	16(1978)477	18(1980)281s
H-179		14(1976)88v	H-286 H-287	16(1978)477 16(1978)477	18(1980)281s 26(1988)283s
H-188		13(1975)370c	H-288	16(1978)477	18(1980)282s
H-206		13(1975)370c	H-289	16(1978)477	18(1980)283s
H-211		16(1978)154s 26(1988)90s, 283c	H-290	16(1978)566	18(1980)285s
H-213		16(1978)165s 26(1988)91s	H-291	16(1978)566	18(1980)286s
H-215 H-216		26(1988)285s 13(1975)90s	H-292 H-293	16(1978)566 16(1978)566	18(1980)286s 18(1980)287s
H-217		13(1975)91s	H-294	16(1978)567	18(1980)280v, 375s 20(1982)288a
H-218		13(1975)92s	H-295	17(1979)94	18(1980)281v, 376s
H-219		13(1975)185s	H-296	17(1979)94	18(1980)377×
H-220		13(1975)187s	H-297	17(1979)94	18(1980)378s
H-221		13(1975)188s	H-298	17(1979)94	18(1980)379s
H-223		13(1975)370s 16(1978)569v 17(1979)95s	H-299	17(1979)189 17(1979)189	19(1981)94s
H-225 H-226		13(1975)281s	H-300 H-301	17(1979)189	19(1981)96s
H-227		13(1975)370s	H-302	17(1979)286	19(1981)190s
H-229		13(1975)371s	H-303	17(1979)286	19(1981)191s
H-230		14(1976)89s	H-304	17(1979)286	
H-231		14(1976)89s	H-305	17(1979)286	19(1981)191×
H-232 H-233		14(1976)90s 14(1976)90s	H-306 H-307	17(1979)287 17(1979)374	26(1988)286s 25(1987)285s 26(1988)90c
H-234		14(1976)182s	H-308	17(1979)374	19(1981)382s
H-235		14(1976)184s	H-309	17(1979)374	13(1301)0020
H-236		14(1976)184s	H-310	17(1979)375	19(1981)383s, 384c
H-237		14(1976)92v, 186s			
H-238		14(1976)282s	FUNC	CT	
H–239		13(1975)370v 14(1976)283s			D-f
H-240 H-241		14(1976)284s 13(1975)370c 14(1976)285s	Problem 1.1.1	<u>Proposal</u> 1(1977/1)23	References 1(1977/3)25s
H-243		14(1976)285s	1.1.1	1(1977/1)23 1(1977/1)29	1(1977/3)23s 1(1977/3)28s
H-244		14(1976)466s	1.1.3	1(1977/1)30	1(1977/4)8s
H-245	13(1975)89	14(1976)468s	1.1.4	1(1977/1)30	1(1977/2)31s
H-246	13(1975)89	14(1976)469s	1.1.5	1(1977/1)30	1(1977/3)28s
H-247	13(1975)89	15(1977)89s	1.1.6	1(1977/1)30	1(1977/3)28s
H-248 H-249	13(1975)89 13(1975)185	15(1977)90s 15(1977)91s	1.1.7 1.1.8	1(1977/1)30 1(1977/1)30	1(1977/4)9s 1(1977/4)11s
H-250	13(1975)185	15(1977)91s 15(1977)92s	1.1.0	1(1977/1)30	1(1977/4)115 1(1977/4)9s
H-251	13(1975)185	15(1977)185s	1.1.10	1(1977/1)30	1(1977/4)13s, 15c
	•				

FUNCT	1.2.1	1975	5–1979	6,		ISMJ 12.31
1.2.1	1(1977/2)23	1(1977/4)22s	ISMJ			
1.2.2	1(1977/2)29	1(1977/5)27s	Problem	Proposal	References	
1.2.3 1.2.4	1(1977/2)29 1(1977/2)30	1(1977/4)22s 1(1977/3)27s	9.13	<u>i Toposai</u>	10(1975/1)7s	
1.2.4	1(1977/2)30	1(1977/3)27s 1(1977/3)27s, 27v	9.14		10(1975/1)8s	
1.2.6	1(1977/2)31	2(1978/1)19s 4(1980/3)27c	10.1	10(1975/1)6	10(1975/2)6s	
1.2.7	1(1977/2)31	1(1977/5)27s 3(1979/1)28s	10.2	10(1975/1)6		
1.3.1	1(1977/3)6	1(1977/4)31s	10.3	10(1975/1)6	10(1975/2)7s	
1.3.2	1(1977/3)29	2(1978/3)11s	10.4 10.5	10(1975/1)6 $10(1975/1)6$	10(1975/4)5s 10(1975/2)8s	
1.3.3	1(1977/3)29	1(1977/5)27s	10.5	10(1975/1)0	10(1975/2)6s 10(1975/3)6s	
1.3.4	1(1977/3)29	1(1977/4)31s	10.7	10(1975/2)5	10(1975/3)7s	
1.3.5 1.3.6	1(1977/3)30 1(1977/3)30	1(1977/4)31s 1(1977/5)28s 1(1977/5)29s	10.8	10(1975/2)5	` , ,	
1.3.7	1(1977/3)30	1(1977/5)29s 1(1977/5)29s	10.9	10(1975/2)5		
1.4.1	1(1977/4)32	1(1977/5)29s 1(1977/5)29s	10.10	10(1975/2)6	10(1975/3)8s	
1.4.2	1(1977/4)32	1(1977/5)30s	10.11 10.12	10(1975/3)4 10(1975/3)4	10(1975/4)6s 10(1975/4)6s	11(1976/1)8a
1.4.3	1(1977/4)32	1(1977/5)31s	10.12	10(1975/3)4	10(1975/4)03	11(1970/1)0a
1.4.4	1(1977/4)32	1(1977/5)31s	10.14	10(1975/3)4		
1.4.5	1(1977/4)32	1(1977/5)32s	10.15	10(1975/3)4	10(1975/4)7s	
1.5.1	1(1977/5)32	3(1979/1)28s	10.16	10(1975/4)8	11(1976/1)8s	
1.5.2	1(1977/5)32	2(1978/2)7s	10.17	10(1975/4)8	11(1976/1)8s	
1.5.3 1.5.4	1(1977/5)32 1(1977/5)32	2(1978/1)28s 2(1978/3)29s	11.1 11.2	11(1976/1)7 $11(1976/1)7$	11(1976/2)9s	
2.1.1	2(1978/1)32	2(1978/5)28s 3(1979/1)21c	11.3	11(1976/1)7 $11(1976/1)7$	11(1976/2)10s	•
2.1.2	2(1978/1)32	2(1978/5)29s	11.4	11(1976/1)7	11(1976/2)11s	
2.1.3	2(1978/1)32	2(1978/5)29s	11.5	11(1976/1)8	11(1976/2)11s	;
2.1.4	2(1978/1)32	2(1978/3)30s, 32c	11.6	11(1976/2)7	11(1976/3)6s	
2.2.1	2(1978/2)7	2(1978/3)30s	11.7 11.8	11(1976/2)7 11(1976/2)7	11(1976/3)6s	
2.2.2	2(1978/2)7	2(1978/3)30s	11.9	11(1976/2)7 $11(1976/2)7$	11(1976/3)7s 11(1976/3)8s	
2.2.3 2.2.4	2(1978/2)27 2(1978/2)27	2(1978/3)31s 3(1979/1)28s 3(1979/2)29s	11.10	11(1976/2)7	11(13) 0/0/00	
2.3.1	2(1978/3)25	2(1978/5)31s	11.11	11(1976/3)2	11(1976/4)7s	
2.3.2	2(1978/3)32	3(1979/1)30r 3(1979/3)27s	11.12	11(1976/3)2	11/1076 /4)7	
2.3.3	2(1978/3)32	2(1978/4)31s	11.13 11.14	11(1976/3)2 11(1976/3)2	11(1976/4)7s	
2.3.4	2(1978/3)32	2(1978/5)32s	11.14	11(1976/3)2	11(1976/4)8s	
2.3.5	2(1978/3)32	2(1978/5)30s	11.16	11(1976/4)5	11(1310/1)00	
2.4.1 2.4.2	2(1978/4)32	3(1979/1)29s	11.17	11(1976/4)5		
2.4.2	2(1978/4)32 2(1978/4)32	3(1979/1)29s 3(1979/1)29s	11.18	11(1976/4)5		
2.4.4	2(1978/4)32	3(1979/1)29s 3(1979/3)27c	11.19 11.20	11(1976/4)5 11(1976/4)5		
2.5.1	2(1978/5)20	3(1979/3)29s	12.1	12(1977/1)5	12(1977/2)6s	
2.5.2	2(1978/5)32	3(1979/2)29s	12.2	12(1977/1)5	12(1977/2)7s	
2.5.3	2(1978/5)32	3(1979/2)30s	12.3	12(1977/1)5	12(1977/2)7s	
2.5.4	2(1978/5)32	3(1979/3)29s	12.4	12(1977/1)5	12(1977/2)7s	
3.1.1	3(1979/1)30	3(1979/4)27s 3(1979/4)28x 3(1979/5)26s	12.5	12(1977/1)5	12(1977/2)8s	
3.1.2 3.1.3	3(1979/1)30 3(1979/1)30	3(1979/4)28x 3(1979/5)26s 3(1979/3)30s	12.6 12.7	12(1977/1)5 12(1977/1)5	12(1977/2)9s 12(1977/2)9s	
3.1.4	3(1979/1)30	3(1979/2)30s	12.8	12(1977/1)5 $12(1977/1)5$	12(1977/2)10s	•
3.1.5	3(1979/1)30	3(1979/4)28s	12.9	12(1977/1)5	12(1977/2)10s	
3.1.6	3(1979/1)31	3(1979/4)29s	12.10	12(1977/1)5	12(1977/2)10s	i
3.2.1	3(1979/2)31	3(1979/4)29s	12.11	12(1977/2)6	12(1977/3)5s	
3.2.2	3(1979/2)31	3(1979/5)26s	12.12 12.13	12(1977/2)6 12(1977/2)6	12(1977/3)5s 12(1977/3)6s	
3.2.3 3.2.4	3(1979/2)31 3(1979/2)31	3(1979/4)27c 3(1979/5)26s 3(1979/5)27s	12.14	12(1977/2)6	12(1977/3)6s	
3.2.4	3(1979/2)31	3(1979/5)27s 3(1979/4)30s	12.15	12(1977/2)6	12(1977/3)6s	
3.2.6	3(1979/2)31	3(1979/4)30s	12.16	12(1977/2)6		
3.2.7	3(1979/2)32	3(1979/5)27s	12.17	12(1977/2)6	12(1977/3)7s	
3.2.8	3(1979/2)32	3(1979/5)28s	12.18 12.19	12(1977/2)6 12(1977/3)4	12(1977/3)7s	
3.3.1	3(1979/3)30	3(1979/5)28s	12.19	12(1977/3)4	12(1977/4)6s	
3.3.2	3(1979/3)32	4(1980/2)27s	12.21	12(1977/3)4	12(1977/4)7s	
3.3.3 3.3.4	3(1979/3)32 3(1979/3)32	3(1979/5)28s 3(1979/5)29s	12.22	12(1977/3)5		
3.3.4	3(1979/3)32	5(1981/1)27v 5(1981/3)16s	12.23	12(1977/3)5		
3.4.1	3(1979/4)32	4(1980/2)30s 4(1980/3)29c	12.24 12.25	12(1977/3)5 12(1977/3)5		
3.4.2	3(1979/4)32	4(1980/1)28s	12.26	12(1977/3)5 $12(1977/3)5$	12(1977/4)7s	
3.4.3	3(1979/4)32	4(1980/1)28s	12.27	12(1977/3)5	12(1977/4)7s	
3.5.1	3(1979/5)30	4(1980/1)30s	12.28	12(1977/4)5	` , ,	
3.5.2	3(1979/5)30	4(1980/3)28s	12.29	12(1977/4)5	13(1978/1)9s	
3.5.3 3.5.4	3(1979/5)30 3(1979/5)30	4(1980/3)30s 4(1980/3)30s	12.30 12.31	12(1977/4)5 12(1977/4)5	13(1978/1)10s	j
5.5.4	2(12/2)20	7(1300/3)303	12.51	14/1311/4/3		

ISMJ 12.	32		1975-	-1979	<u> </u>	JRM 247
12.32	12(1977/4)6			J11.1	11(1976/1)6	11(1976/2)8s
13.1	13(1978/1)9			J11.2	11(1976/1)6	11(1976/2)8s
13.2	13(1978/1)9	13(1978/2)6s		J11.3	11(1976/1)6	()
13.3	13(1978/1)9	13(1978/2)7s		J11.4	11(1976/1)6	11(1976/2)9s
13.4	13(1978/1)9	13(1978/2)7s		J11.5	11(1976/1)6	11(1976/2)9s
13.5	13(1978/1)9	13(1978/2)7s		J11.6	11(1976/2)7	11(1976/3)3s
13.6	13(1978/1)9	13(1978/2)7s		J11.7	11(1976/2)7	11(1976/3)3s 12(1977/2)6s
13.7	13(1978/1)9	, ,		J11.8	11(1976/2)7	11(1976/3)4s
13.8	13(1978/1)9			J11.9	11(1976/2)7	11(1976/3)4c, 4v
13.9	13(1978/2)5			J11.10	11(1976/2)7	11(1976/3)5s, 6s
13.10	13(1978/2)5			J11.11	11(1976/3)2	11(1976/4)5s
13.11	13(1978/2)5	13(1978/3)6s		J11.12	11(1976/3)2	11(1976/4)6s
13.12	13(1978/2)5	13(1978/3)7s		J11-13	11(1976/3)2	
13.13	13(1978/2)5			J11.13	11/1076 (2)0	11(1976/4)6s
13.14	13(1978/2)5	13(1978/3)7s		J11-14	11(1976/3)2	11(1076 /4)6 7
13.15	13(1978/2)5			J11.14	11/1076 /2\2	11(1976/4)6s, 7c
13.16	13(1978/2)5			J11.15	11(1976/3)2	11(1976/4)7s
13.17	13(1978/2)5			J11.16 J11.17	11(1976/4)4 11(1976/4)5	12(1977/1)5s 12(1977/2)6a
13.18	13(1978/2)5	12/1070 /4)6-		J11.18	11(1976/4)5	12(1977/1)6s
13.19 13.20	13(1978/3)6	13(1978/4)6s 13(1978/4)6s		J11.19	11(1976/4)5	12(1977/1)05
13.20	13(1978/3)6 13(1978/3)6	13(1978/4)7s		J11.20	11(1976/4)5	12(1977/1)6s
13.21	13(1978/3)6	13(1978/4)7s		311.20	11(15/0/4)5	12(13/7/1)03
13.23	13(1978/3)6	13(1978/4)8s		IDM		
13.24	13(1978/4)5	14(1979/1)7s		JRM		
13.25	13(1978/4)5	14(1979/3)7s 14(1979/4)1c	Problem	Proposal	References
13.26	13(1978/4)5	14(1979/3)7s)	43	<u> </u>	8(1976)53×
13.27	13(1978/4)5	14(1979/3)8s		50		8(1976)55s
13.28	13(1978/4)5	14(1979/3)8s		58		9(1977)127r, 129x 10(1978)131c
14.1	14(1979/1)6	14(1979/2)6s		71		9(1977)138s 20(1988)301s
14.2	14(1979/1)6	14(1979/2)7s		75		8(1976)56s
14.3	14(1979/1)6	14(1979 [′] /2)7s		81a	9(1977)130	10(1978)131s
14.4	14(1979/1)6	14(1979/3)6s		89		8(1976)59s
14.5	14(1979/1)7	14(1979/2)8× 14(1979/3)6s	92		8(1976)61s
14.6	14(1979/2)6	14(1979/3)3s		96		8(1976)62s
14.7	14(1979/2)6	14(1979/3)3s		98		9(1977)139c
14.8	14(1979/2)6	14(1979/3)3s		112		8(1976)145c 9(1977)208c
14.9		14(1979/3)4s		117		9(1977)32s
14.10	1.(10=0.(0).6	14(1979/3)4s		120		9(1977)37s
14.11	14(1979/2)6	14(1070/0)4		121		9(1977)38s
14.12	14(1979/2)6	14(1979/3)4s		126 162		9(1977)209r 9(1977)209c
14.13	14(1979/2)6	14(1979/3)5s		163		9(1977)41s, 42s
14.14 14.15	14(1979/2)6	14(1979/3)5s		164		8(1976)145c 9(1977)216s
14.15	14(1979/3)2 14(1979/3)2			166		8(1976)146s 10(1978)316c
14.17	14(1979/3)3			167		9(1977)209c
14.18	14(1979/3)3			170		8(1976)147s
14.19	14(1979/3)3			175		9(1977)42s
14.20	14(1979/4)4			177		8(1976)148s
14.21	14(1979/4)4			180		9(1977)141s, 142s, 143s
14.22	14(1979/4)4			184		9(1977)45s
14.23	14(1979/4)4			185		9(1977)45s, 144s 10(1978)132c
14.24	14(1979/4)4					13(1981)141c
	` ' '			198		8(1976)149s
Problem	Proposal	References		201		9(1977)48c, 50c 10(1978)56c,
J9.20		10(1975/1)6s				316c
J10.1	10(1975/1)6	10(1975/2)6s		202		9(1977)53s, 54s
J10.2	10(1975/1)6	10(1975/2)6s		210		9(1977)54s, 56s
J10.3	10(1975/1)6	10/1075 /4)0		211		9(1977)56s
J10.4	10(1975/1)6	10(1975/4)2s		212		9(1977)58a, 58s, 59c, 60c, 79c
J10.5 J10.6	10(1975/1)6	10(1075 /2)45		213		9(1977)294r
J10.6 J10.7	10(1975/2)5	10(1975/3)4s 10(1975/3)5s		214		9(1977)218s
J10.7 J10.8	10(1975/2)5 10(1975/2)5	10(1975/3)5s 10(1975/3)5s		216		9(1977)145s 10(1978)316c
J10.6 J10.9	10(1975/2)5	10(1975/3)6s		217 218		9(1977)146s 8(1976)236c
J10.9 J10.10	10(1975/2)5	10(1975/3)6s 10(1975/3)6s		227		8(1976)236c 9(1977)147s
J10.11	10(1975/3)3	10(1975/4)2s		228		9(1977)1475 9(1977)294r
J10.11	10(1975/3)3	10(1975/4)3s		229		9(1977)2941 9(1977)295r
J10.13	10(1975/3)3	10(1975/4)4s		230		9(1977)295r 9(1977)295r
J10.14	10(1975/3)4	- (/ - /		232		8(1976)150s, 151s
J10.15	10(1975/3)4			242		9(1977)220s 10(1978)316c
J10.16	10(1975/4)8			246		9(1977)61s
J10.17	10(1975/4)8			247		9(1977)62s
						•

JRM 249			1975–1979		JRM 439
249		9(1977)63s 10(1978)316c	367	8(1976)45	9(1977)69s
251		9(1977)64s	368	8(1976)45	9(1977)70c, 70s
258		9(1977)65s	369	8(1976)45	9(1977)71s
260		9(1977)222s 10(1978)316c	370	8(1976)46	9(1977)72s
261		9(1977)66s	371	8(1976)47	9(1977)72s
262		9(1977)66s	372	8(1976)47	11(1979)48c
281 288		12(1980)291s 9(1977)223s	373 374	8(1976)47 8(1976)47	11(1979)49s 9(1977)73s
291		9(1977)223s 9(1977)224s	375	8(1976)47	9(1977)73s 9(1977)74s
294		9(1977)299s	376	8(1976)48	9(1977)151c
296		8(1976)66s	377	8(1976)49	9(1977)75s
297		8(1976)66s	378	8(1976)49	9(1977)75s, 76s
298		8(1976)66s 9(1977)151v	379	8(1976)49	10(1978)65s
299 300		8(1976)66s 8(1976)66s	380 381	8(1976)50 8(1976)50	9(1977)76s 9(1977)77s, 78c
303		10(1978)58s	382	8(1976)136	10(1978)66s
306		9(1977)300s 10(1978)316c	383	8(1976)137	10(1978)67s
309		9(1977)303× 10(1978)160a	384	8(1976)137	10(1978)68s
311		9(1977)304s	385	8(1976)137	10(1978)288s
313		9(1977)305s	386	8(1976)137	10(1978)133s
314 315		9(1977)306s 9(1977)307s	387 388	8(1976)138 8(1976)138	10(1978)134s
316		10(1978)59s	389	8(1976)139	11(1979)49r 12(1980)60s 10(1978)135s
317		9(1977)308s 10(1978)240a	390	8(1976)140	10(1978)1993 10(1978)290s
318		8(1976)67s	391	8(1976)140	10(1978)137s
319		8(1976)151s	392	8(1976)141	10(1978)140s, 240a
320		8(1976)67s, 68s	393	8(1976)141	10(1978)291s
321		8(1976)69s	394	8(1976)141	10(1978)140s
322 323		8(1976)70s 9(1977)308s	395 396	8(1976)141 8(1976)141	10(1978)142s, 320a 10(1978)142s
324		8(1976)70s, 237c	397	8(1976)141	9(1977)226s
325		8(1976)70s	398	8(1976)143	9(1977)226s 10(1978)160a
326		8(1976)71s	399	8(1976)143	9(1977)227s 10(1978)160a
327		8(1976)71s	400	8(1976)143	9(1977)227s 10(1978)160a
328		8(1976)71s	401	8(1976)143	9(1977)227s
329 330		8(1976)71s 8(1976)151s	402 403	8(1976)143 8(1976)144	9(1977)227s 9(1977)228c 10(1978)240a
331		8(1976)151s 8(1976)151c, 151s	404	8(1976)144	9(1977)228s
332		8(1976)152s	405	8(1976)144	9(1977)228s
333		8(1976)152s	406	8(1976)144	9(1977)229s
334		8(1976)152s	407	8(1976)144	9(1977)229s
335 336		8(1976)153s	408 409	8(1976)144	9(1977)229s 9(1977)229s
337		8(1976)153s 8(1976)153s	410	8(1976)227 8(1976)227	9(1977)229s 9(1977)229s
338		8(1976)153s	411	8(1976)227	9(1977)229c
339		8(1976)153s	412	8(1976)227	9(1977)230s 10(1978)160a
340		8(1976)154s	413	8(1976)228	9(1977)230s
341		9(1977)310s	414	8(1976)228	9(1977)152v, 230s 10(1978)160a
342 343		9(1977)310s 9(1977)311s	415 416	8(1976)228 8(1976)228	9(1977)230s 9(1977)152v, 231s 10(1978)160a
344		9(1977)311s 9(1977)312s	417	8(1976)228	9(1977)132V, 231s 10(1978)100a 9(1977)231s
345		9(1977)312s 10(1978)160a	418	8(1976)228	9(1977)231s
346		8(1976)155s	419	8(1976)229	10(1978)214s
347		9(1977)314s	420	8(1976)229	10(1978)215s
348		9(1977)314s	421	8(1976)230	10(1978)72s
349 350		9(1977)315s 9(1977)316s	422 423	8(1976)230 8(1976)231	9(1977)152v, 209r 10(1978)216s 10(1978)217s 12(1980)94c
351		9(1977)310s 9(1977)317s 10(1978)316c	423	8(1976)231	10(1976)2175 12(1980)94C 10(1978)217s
352		9(1977)318s	425	8(1976)231	10(1978)218s
353		11(1979)47r 12(1980)57×	426	8(1976)231	10(1978)219s
354		9(1977)319s	427	8(1976)232	10(1978)292c
355		10(1978)62s	428	8(1976)308	9(1977)282s
356 357		10(1978)62s	429 430	8(1976)308	9(1977)282s 10(1978)240a
358		8(1976)155s 8(1976)155s	430	8(1976)308 8(1976)308	9(1977)282s 9(1977)282s
359		8(1976)155s	432	8(1976)309	9(1977)283s
360		8(1976)156s	433	8(1976)309	9(1977)283s
361		8(1976)156s	434	8(1976)309	9(1977)283s
362		8(1976)156s	435	8(1976)309	9(1977)283s 10(1978)160a
363	0(1076)44	8(1976)156s	436	8(1976)309	9(1977)284s
364 365	8(1976)44 8(1976)44	9(1977)68s 9(1977)68s	437 438	8(1976)309 8(1976)310	9(1977)284s 10(1978)208c 9(1977)284s
366	8(1976)44	9(1977)69s	439	8(1976)310	9(1977)284s 10(1978)160a
•	/	` '	1 27	(12/2-2	(- (5)

JRM 440			1975–1979	.06)	JRM 585
440	8(1976)311	10(1978)293s	513	9(1977)137	10(1978)125s, 316v
441	8(1976)311	10(1978)294s	514	9(1977)206	10(1978)206s, 320a
442	8(1976)311	10(1978)295s	515	9(1977)206	10(1978)207s, 320a
443	8(1976)312	10(1978)296s 12(1980)115c	516	9(1977)206	10(1978)207s, 320a
444 445	8(1976)312 8(1976)312	11(1979)50c 12(1980)60s 10(1978)297s	517 518	9(1977)206 9(1977)206	10(1978)207s, 320a 10(1978)207s, 320a
446	8(1976)313	10(1978)298s	519	9(1977)207	10(1978)207s, 320a
447	8(1976)313	10(1978)298s	520	9(1977)207	10(1978)207s, 320a
448	8(1976)313	11(1979)51s	521	9(1977)207	10(1978)207s, 320a
449	9(1977)21	10(1978)42s	522	9(1977)207	10(1978)208s, 320a
450 451	9(1977)21	10(1978)42s	523 524	9(1977)207 9(1977)207	10(1978)208s, 320a 10(1978)208s, 320a
452	9(1977)21 9(1977)21	10(1978)42s 10(1978)42s	525	9(1977)207	10(1976)2008, 320a 10(1978)208s, 320a
453	9(1977)21	10(1978)43s, 240a	526	9(1977)207	10(1978)208s, 320a
454	9(1977)22	10(1978)43s	527	9(1977)210	10(1978)221s, 320a
455	9(1977)22	10(1978)43s	528	9(1977)210	10(1978)223s, 240a 11(1979)58s
456 457	9(1977)22	10(1978)43s 10(1978)43s	529 530	9(1977)211	10(1978)223s 10(1978)225s 12(1980)94c
457 458	9(1977)22 9(1977)22	10(1976)435 10(1978)44s	531	9(1977)212 9(1977)212	10(1978)225s 12(1980)94c 10(1978)225s
459	9(1977)22	10(1978)44s	532	9(1977)212	10(1978)226s
460	9(1977)23	10(1978)44s	533	9(1977)212	10(1978)226r 11(1979)218s
461	9(1977)23	10(1978)44s	534	9(1977)212	10(1978)227s
462 463	9(1977)24 9(1977)24	11(1979)52s 10(1978)72s	535 536	9(1977)213 9(1977)213	10(1978)229s 10(1978)230s
464	9(1977)24	10(1976)725 10(1978)73s	537	9(1977)213	10(1978)230s 10(1978)230s, 240a
465	9(1977)25	11(1979)54s	538	9(1977)214	10(1978)232s, 320a
466	9(1977)25	10(1978)74s	539	9(1977)214	10(1978)232r
467	9(1977)25	10(1978)74s, 160a	540	9(1977)214	10(1978)233s
468 469	9(1977)26 9(1977)26	10(1978)143r 10(1978)75s, 240a	541 542	9(1977)215 9(1977)280	10(1978)235c, 235s, 240a 10(1978)276s, 320a
470	9(1977)26	10(1976)735, 240a 10(1978)144s	543	9(1977)280	10(1978)270s, 320a 10(1978)276s
471	9(1977)27	11(1979)56s	544	9(1977)280	10(1978)276s
472	9(1977)27	10(1978)76s	545	9(1977)280	10(1978)276s
473	9(1977)28	10(1978)77s	546	9(1977)280	10(1978)277s
474 475	9(1977)28 9(1977)28	10(1978)146s 10(1978)146c	547 548	9(1977)281 9(1977)281	10(1978)277s 10(1978)277s
476	9(1977)29	10(1978)77s, 160a	549	9(1977)281	10(1978)277s
477	9(1977)30	10(1978)47s	550	9(1977)281	10(1978)277s
478	9(1977)31	10(1978)49r	551	9(1977)281	10(1978)278s
479 480	9(1977)31	10(1978)49r	552	9(1977)281	10(1978)278s
481	9(1977)31 9(1977)125	10(1978)50s 10(1978)116s, 240a, 320a	553 554	9(1977)281 9(1977)295	10(1978)278s 10(1978)300s
482	9(1977)125	10(1978)116s, 240a, 320a	555	9(1977)296	10(1978)302s
483	9(1977)125	10(1978)117s, 240a, 320a	556	9(1977)296	10(1978)303s
484	9(1977)125	10(1978)117s, 240a, 320a	557	9(1977)296	11(1979)59s
485 486	9(1977)126 9(1977)126	10(1978)117s, 240a 10(1978)117s, 240a	558 559	9(1977)296 9(1977)297	10(1978)304s 10(1978)306s
487	9(1977)126	10(1978)1173, 240a 10(1978)118s, 240a, 320a	560	9(1977)297	10(1978)306s
488	9(1977)126	10(1978)118s, 240a, 320a	561	9(1977)297	10(1978)307s
489	9(1977)126	10(1978)118s, 240a, 320a	562	9(1977)297	10(1978)308s
490	9(1977)126	10(1978)118s, 240a, 320a	563	9(1977)297	10(1978)309s
491 492	9(1977)126 9(1977)126	10(1978)118s, 240a 10(1978)118s, 240a	564 565	9(1977)298 9(1977)298	10(1978)310s 10(1978)311s
493	9(1977)130	10(1978)147s	566	9(1977)298	10(1978)311c, 311s
494	9(1977)131	10(1978)220s	567	9(1977)298	10(1978)314s
495	9(1977)132	10(1978)221c 11(1979)145c	568	9(1977)298	11(1979)147s
496 497	9(1977)132	10(1978)148s, 240a 10(1978)148s 12(1980)94c	569	9(1977)286 9(1977)286	10(1978)279x
498	9(1977)132 9(1977)132	10(1978)148s 12(1980)94c 10(1978)149s	570 571	9(1977)287	10(1978)280s 12(1980)299s 10(1978)281s
499	9(1977)132	10(1978)150s	572	9(1977)287	10(1978)281r
500	9(1977)133	10(1978)152s	573	9(1977)287	10(1978)282c 11(1979)132s
501	9(1977)133	10(1978)153s	574	10(1978)40	11(1979)31s
502 503	9(1977)133 9(1977)134	11(1979)146r 12(1980)159s 10(1978)154s, 240a, 320a	575 576	10(1978)40 10(1978)40	11(1979)31s 11(1979)31s
503 504	9(1977)134	10(1978)154s, 240a, 320a 10(1978)155s, 240a, 320a	576	10(1978)40	11(1979)31s 11(1979)31s
505	9(1977)134	10(1978)156s 12(1980)94c	578	10(1978)41	11(1979)31s
506	9(1977)134	, , ,	579	10(1978)41	11(1979)32s
507	9(1977)135	11(1979)146c	580	10(1978)41	11(1979)32s
508 500	9(1977)136	10(1978)120r	581	10(1978)41	11(1979)32s
509 510	9(1977)136 9(1977)136	10(1978)121s 10(1978)122r	582 583	10(1978)41 10(1978)41	11(1979)32s 11(1979)33s
511	9(1977)137	10(1978)122s, 320a	584	10(1978)41	11(1979)33s
512	9(1977)137	10(1978)123s, 320a	585	10(1978)42	11(1979)33s

JRM 586		1	975–1979	6,	JRM 725
586	10(1978)45	11(1979)43s	658	10(1978)213	11(1979)234s
587	10(1978)46	11(1979)137r	659	10(1978)213	11(1979)235s
588	10(1978)46	11(1979)45s	660	10(1978)274	11(1979)296s 12(1980)50a, 217a
589	10(1978)46	11(1979)46s	661	10(1978)274	11(1979)296s 12(1980)50a, 217a
590	10(1978)46	11(1979)137s	662	10(1978)274	11(1979)296s 12(1980)50a, 217a
591	10(1978)51	10(1978)316v 11(1979)64r 12(1980)62s	663	10(1978)274	11(1979)297s 12(1980)50a, 135a, 217a
592	10(1978)52	11(1979)64s	664	10(1978)275	11(1979)297s 12(1980)50a, 217a
593	10(1978)52	11(1979)65s	665		12(1980)50a, 217a
594	10(1978)52	11(1979)65s	665–1	10(1978)275	11(1979)297s
595	10(1978)52	11(1979)66s	665–2	10(1978)275	11(1979)297s
596	10(1978)52	11(1979)66s	665–3	10(1978)275	11(1979)297s
597 598	10(1978)53 10(1978)53	11(1979)67s 11(1979)69s	666 667	10(1978)275 10(1978)275	11(1979)298s 12(1980)50a, 217a 11(1979)298s 12(1980)50a, 217a
599	10(1978)53	11(1979)095 11(1979)70s	668	10(1978)275	11(1979)298s 12(1980)50a, 217a 11(1979)298s 12(1980)50a, 217a
600	10(1978)54	11(1979)70s 11(1979)70r 12(1980)63s	669	10(1978)275	11(1979)298s 12(1980)50a, 217a
601	10(1978)54	11(1979)71s 12(1980)64s	670	10(1978)276	11(1979)298s 12(1980)50a, 217a
602	10(1978)54	11(1979)75s	671	10(1978)283	11(1979)306s
603	10(1978)55	11(1979)76s	672	10(1978)283	11(1979)307s
604	10(1978)55	11(1979)76s	673	10(1978)284	11(1979)308s 12(1980)80a
605	10(1978)114	11(1979)124s 12(1980)51a	674	10(1978)284	11(1979)309s, 320c 12(1980)80a,
606	10(1978)114	11(1979)124s 12(1980)51a		(240a
607	10(1978)114	11(1979)125s 12(1980)51a	675	10(1978)284	11(1979)309s
608	10(1978)114	11(1979)125s 12(1980)51a	676	10(1978)284	11(1979)310s 12(1980)80a
609 610	10(1978)115	11(1979)125s 12(1980)51a	677 678	10(1978)284 10(1978)284	11(1979)310r 12(1980)300s 11(1979)311s 12(1980)80a
611	10(1978)115 10(1978)115	11(1979)125s 12(1980)51a 11(1979)125s 12(1980)51a	679	10(1978)284	11(1979)311s 12(1980)80a 11(1979)312s
612	10(1978)115	11(1979)125s 12(1980)51a 11(1979)125s 12(1980)51a	680	10(1978)285	11(1979)312s 11(1979)312r
613	10(1978)115	11(1979)126s 12(1980)51a	681	10(1978)286	11(1979)313s 12(1980)80a
614	10(1978)115	11(1979)126s	682	10(1978)286	11(1979)314s 12(1980)80a
615	10(1978)116	11(1979)126s	683	10(1978)287	11(1979)315s
616	10(1978)116	11(1979)126s	684	10(1978)287	11(1979)316c
617	10(1978)116	11(1979)126s	685	10(1978)287	11(1979)317s
618	10(1978)119	11(1979)139s	686	11(1979)28	12(1980)47s, 134a, 217a
619	10(1978)119	11(1979)140c	687	11(1979)28	12(1980)47s, 134a
620 621	10(1978)120	11(1979)141s	688 689	11(1979)28	12(1980)47s, 134a
622	10(1978)120 10(1978)120	11(1979)143s 11(1979)144r 12(1980)160x	690	11(1979)28 11(1979)29	12(1980)48s, 134a 12(1980)48s, 134a
623	10(1978)127	11(1979)1441 12(1960)160X 11(1979)149s	691	11(1979)29	12(1980)48s, 134a
624	10(1978)128	11(1979)150s	692	11(1979)29	12(1980)48s, 134a
625	10(1978)128	11(1979)304×	693	11(1979)29	12(1980)48s, 134a
626	10(1978)128	11(1979)151s	694	11(1979)29	12(1980)48s, 134a
627	10(1978)128	11(1979)152s	695	11(1979)30	12(1980)49s, 134a
628	10(1978)129	11(1979)220s	696	11(1979)30	12(1980)49s, 134a
629	10(1978)129	11(1979)152s 12(1980)80a	697	11(1979)30	12(1980)49s, 134a
630	10(1978)129	11(1979)154s	698	11(1979)30	12(1980)49s, 50s, 134a, 217a
631	10(1978)129	11(1979)156s 11(1979)157s	699 700	11(1979)35 11(1979)35	12(1980)65s 12(1980)66c
632 633	10(1978)130 10(1978)204	11(1979)1375 11(1979)209s 12(1980)50a	700	11(1979)35	12(1980)67c
634	10(1978)204	11(1979)2093 12(1900)50a 11(1979)209s 12(1980)50a	702	11(1979)36	12(1980)67s
635	10(1978)204	11(1979)209s 12(1980)50a	703	11(1979)36	12(1980)68s
636	10(1978)204	11(1979)210s 12(1980)50a	704	11(1979)36	12(1980)69s
637	10(1978)204	11(1979)210s 12(1980)50a	705	11(1979)37	12(1980)70s, 240a
638	10(1978)204	11(1979)210s 12(1980)50a	706	11(1979)37	12(1980)70s
639	10(1978)204	11(1979)210s 12(1980)50a	707	11(1979)37	12(1980)71s
640	10(1978)204	11(1979)210s 12(1980)50a	708	11(1979)37	12(1980)72s
641	10(1978)206	11(1979)210s 12(1980)50a	709	11(1979)38	12(1980)73x
642 643	10(1978)206 10(1978)206	11(1979)211s 12(1980)50a 11(1979)211s 12(1980)50a	710	11(1979)38	12(1980)74s
644	10(1978)200	11(1979)211s 12(1980)50a 11(1979)211s	711 712	11(1979)38 11(1979)38	12(1980)75s, 240a 12(1980)75s
645	10(1978)210	11(1979)221s 11(1979)223s	713	11(1979)38	12(1980)141s
646	10(1978)210	11(1979)224s	714	11(1979)39	12(1300)1.13
647	10(1978)211	11(1979)226s	715	11(1979)39	12(1980)77s, 240a, 291a
648	10(1978)211	11(1979)226s	716	11(1979)122	12(1980)132s, 217a, 291a
649	10(1978)211	11(1979)227s	717	11(1979)122	12(1980)132s, 217a, 291a
650	10(1978)211	11(1979)227s	718	11(1979)122	12(1980)132s, 217a, 291a
651	10(1978)211	11(1979)229s	719	11(1979)122	12(1980)133s, 217a, 291a
652	10(1978)212	11(1979)230c	720	11(1979)123	12(1980)133s, 217a, 291a
653 654	10(1978)212	11(1979)230s 11(1979)231c 12(1980)222c	721 722	11(1979)123 11(1979)123	12(1980)133s, 291a
655	10(1978)212 10(1978)212	11(1979)231c 12(1980)222c 11(1979)232x	722	11(1979)123 11(1979)123	12(1980)133s, 217a, 291a 12(1980)133s, 217a, 291a
656	10(1978)212	11(1979)232X 11(1979)233s	724	11(1979)123	12(1980)133s, 217a, 291a 12(1980)133s, 217a, 291a
657	10(1978)213	11(1979)233s	725	11(1979)124	12(1980)1335, 2174, 2314 12(1980)134s, 217a, 291a
	(-, -,	` '	1	- /	, , , , , , , , , , , , , , , , , , , ,

JRM 726		1975-	-1979	<u> </u>	MATYC 112
726	11(1979)124	12(1980)134s, 217a, 291a	798	11(1979)303	12(1980)317s 13(1981)80a, 160a
727	11(1979)124	12(1980)134s		, ,	
728	11(1979)127	12(1980)145s	Problem C1	<u>Proposal</u>	References 9(1977)233s
729	11(1979)128	12(1980)145s	C2	8(1976)233 8(1976)234	9(1977)2335 9(1977)235s, 237s
730 731	11(1979)128	12(1980)146s	C3	8(1976)234	9(1977)238s
732	11(1979)128 11(1979)128	12(1980)147s 12(1980)149s	C4	8(1976)234	9(1977)239s
733	11(1979)129	12(1980)150s	C5	8(1976)305	10(1978)47r
734	11(1979)129	12(1980)151×	C6	8(1976)306	9(1977)289s 10(1978)160a
735	11(1979)129	12(1980)152s	C7 C8	8(1976)306 8(1976)306	9(1977)290s 9(1977)291c, 291s
736	11(1979)129	12(1980)153s	C9	8(1976)306	9(1977)291c, 2913 9(1977)292s
737 738	11(1979)130 11(1979)130	12(1980)154s 12(1980)155s		-()	()
739	11(1979)130	12(1980)156s	MATY	/C	
740	11(1979)131	12(1980)157c	WALL		
741	11(1979)131	12(1980)158s 13(1981)160a	Problem	Proposal	References
742	11(1979)207	12(1980)214s, 291a	56		9(1975/1)50s
743 744	11(1979)207 11(1979)207	12(1980)214s, 291a 12(1980)214s, 291a	57 58		9(1975/1)50s 9(1975/1)51s
745	11(1979)207	12(1980)2143, 291a 12(1980)215s, 291a	59		9(1975/1)51s 9(1975/1)51s
746	11(1979)207	12(1980)215s, 291a	60		9(1975/1)52s
747	11(1979)208	12(1980)215s, 291a	61		9(1975/2)51s
748	11(1979)208	12(1980)215s, 291a	62		9(1975/2)52s
749 750	11(1979)208	12(1980)215s, 291a 12(1980)215s, 291a	63 64		9(1975/2)52s 9(1975/2)53s
750 751	11(1979)208 11(1979)208	12(1980)216s, 291a 12(1980)216s, 291a	65		9(1975/2)33s 9(1975/3)45s
752	11(1979)208	12(1980)216s, 291a	66		9(1975/3)47s
753	11(1979)209	12(1980)216s, 291a	67		9(1975/3)47s
754	11(1979)209	12(1980)216s, 291a	68		9(1975/3)49s
755 756	11(1979)213	12(1980)222s	69 70	9(1975/1)49	9(1975/3)50s 11(1977)142s 10(1976)43s, 201c 14(1980)155s
750 757	11(1979)214 11(1979)214	12(1980)223s, 320a 12(1980)224c, 224x	70	9(1975/1)49	10(1976)44s
758	11(1979)214	12(1980)227c	72	9(1975/1)49	10(1976)45s
759	11(1979)214	12(1980)227s	73	9(1975/1)49	10(1976)45s
760	11(1979)214	12(1980)228s, 320a	74	9(1975/2)51	10(1976)122s
761 762	11(1979)215	12(1980)228s, 320a	75 76	9(1975/2)51 9(1975/2)51	10(1976)123s 10(1976)124s
763	11(1979)215 11(1979)215	12(1980)229s, 320a	77	9(1975/2)51	10(1976)124s 10(1976)124s
764	11(1979)215	12(1980)230x, 320a	78	9(1975/3)45	10(1976)201s
765	11(1979)215	12(1980)230s	79	9(1975/3)45	10(1976)201s
766	11(1979)215	12(1980)231s	80	9(1975/3)45	10(1976)202s
767 768	11(1979)216 11(1979)216	12(1980)232s 12(1980)232s	81 82	9(1975/3)45 10(1976)43	10(1976)203s 11(1977)63s, 145c
769	11(1979)216	12(1980)232s 12(1980)233s, 235s	83	10(1976)43	11(1977)64s, 65s
770a	11(1979)216	12(1980)235s	84	10(1976)43	11(1977)67s
770b	11(1979)294	12(1980)289s 13(1981)55a	85	10(1976)43	11(1977)67s
771	11(1979)294	12(1980)289s 13(1981)55a, 136a	86	10(1976)122	11(1977)143s
772 773	11(1979)294 11(1979)295	12(1980)289s 13(1981)55a 12(1980)289s	87 88	10(1976)122 10(1976)122	11(1977)144s 11(1977)144s
774	11(1979)295	12(1980)289s 13(1981)55a	89	10(1976)122	11(1977)144s
775	11(1979)295	12(1980)289s 13(1981)55a, 136a	90	10(1976)122	11(1977)145s
776	11(1979)295	12(1980)290s 13(1981)55a, 136a	91	10(1976)200	11(1977)222s
777 770	11(1979)295	12(1980)290s 13(1981)55a	92	10(1976)200	11(1977)222s
778 779	11(1979)295 11(1979)295	12(1980)290s 13(1981)55a, 136a 12(1980)290s 13(1981)55a, 136a	93 94	10(1976)200 10(1976)200	11(1977)223s 11(1977)224s
780	11(1979)296	12(1980)290s 13(1981)55a	95	10(1976)200	11(1977)224s
781	11(1979)296		96	11(1977)63	12(1978)78s
782	11(1979)299	12(1980)302s	97	11(1977)63	12(1978)79s
783	11(1979)300	12(1980)302x	98	11(1977)63	12(1978)79s
784 785	11(1979)300 11(1979)300	12(1980)304s 13(1981)80a, 160a 12(1980)304s 13(1981)80a, 160a	99 100	11(1977)63 11(1977)63	12(1978)80s 12(1978)80s
786	11(1979)300	12(1980)305s	101	11(1977)142	12(1978)174s
787	11(1979)301	12(1980)306s	102	11(1977)142	12(1978)175s
788	11(1979)301	12(1980)307s	103	11(1977)142	12(1978)175s
789 700	11(1979)301	13(1981)300s, 320a	104	11(1977)142	12(1978)176s
790 791	11(1979)302 11(1979)302	12(1980)310s 13(1981)80a, 160a 12(1980)311s	105 106	11(1977)221 11(1977)221	12(1978)254s 12(1978)255s
791 792	11(1979)302	12(1980)311s 12(1980)311s	107	11(1977)221	12(1978)256s, 256v
793	11(1979)302	12(1980)312s 13(1981)80a, 160a	108	11(1977)221	12(1978)256s
794	11(1979)302	12(1980)314s 13(1981)80a, 160a	109	11(1977)222	13(1979)65s
795 706	11(1979)303	12(1980)315s 13(1981)80a, 160a	110	12(1978)78	13(1979)67s 14(1980)155c
796 797	11(1979)303 11(1979)303	12(1980)315s 12(1980)316s 13(1981)80a	111 112	12(1978)78 12(1978)78	13(1979)68s 13(1979)69s
131	11(1919)303	12(1300)3103 13(1301)004	1 112	12(1910)10	10(1010)000

MATYC	113	1975	-1979		MM 980
113	12(1978)78	13(1979)69s	908		48(1975)241s
114	12(1978)78	13(1979)70s	909		48(1975)241s
115 116	12(1978)173 12(1978)173	13(1979)136s 13(1979)137s	910 911		48(1975)242s 48(1975)244s
117	12(1978)173	13(1979)137s	912		48(1975)245s
118	12(1978)173	13(1979)138s	913		48(1975)246s
119	12(1978)173	13(1979)138s	914		48(1975)247s 49(1976)254c, 254s
120 121	12(1978)253 12(1978)253	13(1979)215s 13(1979)216s	915 916		48(1975)295s, 296s 48(1975)297s
122	12(1978)253	13(1979)217s	917		48(1975)297s
123	12(1978)253	13(1979)218s	918		48(1975)298s
124 125	12(1978)254 13(1979)64	13(1979)219s	919 920		48(1975)299s 48(1975)300s
126	13(1979)64	14(1980)73s 14(1980)74s	921		48(1975)300s
127	13(1979)64	14(1980)75s	922	48(1975)51	49(1976)44s
128	13(1979)65	14(1980)75s	923	48(1975)51	49(1976)45s
129 130	13(1979)65 13(1979)135	14(1980)76s 14(1980)156s	924 925	48(1975)51 48(1975)51	49(1976)46s 49(1976)46s
131	13(1979)135	14(1980)150s 14(1980)157s	926	48(1975)51	49(1976)46s
132	13(1979)135	14(1980)157s	927	48(1975)51	49(1976)47s
133	13(1979)135	14(1980)233s	928	48(1975)52	49(1976)48s
134 135	13(1979)136 13(1979)214	14(1980)234s 14(1980)235s	929 930	48(1975)115 48(1975)115	49(1976)97s 49(1976)97s
136	13(1979)214	14(1980)233s 14(1980)236s	931	48(1975)115	49(1976)98s
137	13(1979)214	14(1980)237s	932	48(1975)115	49(1976)99s
138	13(1979)214	15(1981)72s	933 934	48(1975)115 48(1975)116	49(1976)100s 49(1976)100s, 254c, 254s
139	13(1979)215	15(1981)73s	935	48(1975)116	49(1976)255s
MENE	- N / I I I I		936	48(1975)116	49(1976)101s 59(1986)179c
IVICINE	IVIOI		937	48(1975)180	49(1976)150s
Problem	Proposal	References	938 939	48(1975)180 48(1975)180	49(1976)151s 49(1976)152s
0.2.1 0.2.2		1(1979/1)54s 1(1979/1)56s	940	48(1975)180	49(1976)152s
0.2.2		1(1979/1)50s 1(1979/1)57s	941	48(1975)181	49(1976)153s
0.3.2		1(1979/1)58s	942 943	48(1975)181 48(1975)181	49(1976)153s 49(1976)212s
1.1.1	1(1979/1)52	1/1070/2)50	944	48(1975)181	49(1976)2123 49(1976)214s
1.1.2 1.1.3	1(1979/1)53 1(1979/1)53	1(1979/3)58s 1(1979/2)47s 1(1979/3)58a	945	48(1975)238	49(1976)215s
1.2.1	1(1979/2)46	1(13/3/2)//3 1(13/3/3)334	946	48(1975)238	49(1976)215s
1.2.2	1(1979/2)46	1(1979/3)59s	947 948	48(1975)238 48(1975)238	49(1976)216s 49(1976)217s
1.3.1 1.3.2	1(1979/3)56 1(1979/3)56		949	48(1975)238	49(1976)218s
1.3.2	1(1979/3)57		950	48(1975)239	49(1976)256s
	(,,_,_,_,		951 952	48(1975)239 48(1975)239	49(1976)256s 49(1976)257s
MM			953	48(1975)239	50(1977)100s
	D 1	D (954	48(1975)293	49(1976)257s
Problem 643	Proposal	<u>References</u> 56(1983)112s	955 956	48(1975)293 48(1975)293	50(1977)47s 49(1976)258s
879		48(1975)300a	957	48(1975)293	50(1977)103s, 104c
880		48(1975)53s, 300a	958	48(1975)293	50(1977)49s
881 882		48(1975)54s 48(1975)54s, 301c, 302c	959	48(1975)294	50(1977)50s, 212c
883		48(1975)55s	960 961	48(1975)294 48(1975)294	50(1977)52s 50(1977)52s
884		48(1975)56s	962	48(1975)294	50(1977)165s
885		48(1975)57s	963	49(1976)43	50(1977)53s
886 888		48(1975)58c, 301c 48(1975)300a	964 965	49(1976)43 49(1976)43	50(1977)104s 50(1977)166s
889		48(1975)300a	966	49(1976)43	50(1977)166s 59(1986)52c
893		48(1975)301a	967	49(1976)43	50(1977)167s
894 895		48(1975)117s, 301a 48(1975)118s, 301a	968 969	49(1976)44	50(1977)168s
896		48(1975)119c, 301a	970	49(1976)44 49(1976)95	50(1977)169s 50(1977)213s
897		48(1975)120s	971	49(1976)95	50(1977)214s
898		48(1975)120s	972	49(1976)95	50(1977)215s
899 900		48(1975)121s 48(1975)121s	973 974	49(1976)95 49(1976)95	49(1976)211v 50(1977)215s 50(1977)216s
901		48(1975)182s	975	49(1976)95	50(1977)210s 50(1977)266s
902		48(1975)183s	976	49(1976)96	50(1977)267s
903		48(1975)184s	977	49(1976)96 40(1076)140	50(1977)268s
905 906		48(1975)184s 48(1975)185s, 301a	978 979	49(1976)149 49(1976)149	50(1977)268s 50(1977)269s
907		48(1975)186s	980	49(1976)149	50(1977)2033 50(1977)270s
					•

MM 981		1975-	-1979	67	MM Q642
981	49(1976)149	50(1977)271s	1053	51(1978)245	53(1980)51s
982	49(1976)149	50(1977)271s	1054	51(1978)305	53(1980)52s
983	49(1976)149	51(1978)70s	1055	51(1978)305	53(1980)53s
984 985	49(1976)150 49(1976)150	51(1978)195c, 195s 49(1976)211v 51(1978)70s	1056 1057	51(1978)305 51(1978)305	53(1980)54s 53(1980)113s, 114s
986	49(1976)150	51(1978)196s	1058	52(1979)46	53(1980)114s
987	49(1976)150	51(1978)71s	1059	52(1979)46	53(1980)115s
988	49(1976)211	51(1978)71s	1060	52(1979)46	53(1980)116s
989 990	49(1976)211 49(1976)211	51(1978)72s 51(1978)128s	1061 1062	52(1979)46 52(1979)46	53(1980)116s 53(1980)117s
991	49(1976)211	51(1978)129s	1063	52(1979)47	53(1980)181s
992	49(1976)211	51(1978)129s	1064	52(1979)47	53(1980)181s, 183s
993	49(1976)212	51(1978)130s	1065	52(1979)47	53(1980)184s
994 995	49(1976)212 49(1976)212	51(1978)130s 51(1978)130s	1066 1067	52(1979)113 52(1979)113	53(1980)184s 53(1980)185s
996	49(1976)252	51(1978)196s	1068	52(1979)113	53(1980)186c, 186x
997	49(1976)252	51(1978)198s, 199c, 199s	1069	52(1979)113	53(1980)245s
998	49(1976)252	51(1978)199s	1070	52(1979)113	53(1980)245s
999 1000	49(1976)252 49(1976)253	51(1978)200s 51(1978)201s	1071 1072	52(1979)114 52(1979)179	53(1980)247× 54(1981)141s 53(1980)247s
1001	49(1976)253	51(1978)246s	1073	52(1979)179	33(1300)2473
1002	49(1976)253	51(1978)247s	1074	52(1979)258	53(1980)248s
1003	50(1977)46	51(1978)247c, 247s	1075	52(1979)258	53(1980)249s
1004 1005	50(1977)46 50(1977)46	51(1978)248s 51(1978)249s	1076 1077	52(1979)258 52(1979)258	53(1980)249s 53(1980)250s
1006	50(1977)46	51(1978)306s	1078	52(1979)258	53(1980)251s
1007	50(1977)46		1079	52(1979)258	53(1980)301s
1008	50(1977)99	56(1983)113s	1080	52(1979)316	53(1980)302s
1009 1010	50(1977)99 50(1977)99	51(1978)307s 51(1978)307s	1081 1082	52(1979)316 52(1979)316	53(1980)302s 53(1980)302s
1011	50(1977)99	51(1978)308s	1083	52(1979)316	53(1980)302s 53(1980)303s
1012	50(1977)99	52(1979)48s	1084	52(1979)317	54(1981)85s
1013	50(1977)163	52(1979)48c, 48s 50(1977)221v 52(1979)318s	1085	52(1979)317	53(1980)303s
1014	50(1977)163	50(1977)221v 52(1979)318s 58(1985)244c	1086 1087	52(1979)317 52(1979)317	53(1980)304s 53(1980)304s
1015	50(1977)164	55(2555)2115	1088	52(1979)317	54(1981)36×
1016	50(1977)164	52(1979)49s		, ,	,
1017 1018	50(1977)164 50(1977)164	52(1979)49s 52(1979)50s	Problem Q608	<u>Proposal</u> 48(1975)52	<u>References</u> 48(1975)58s
1019	50(1977)164	52(1979)50s 52(1979)50s	Q609	48(1975)52	48(1975)58s
1020	50(1977)164	52(1979)51s	Q610	48(1975)52	48(1975)58s
1021	50(1977)211	52(1979)51s	Q611 Q612	48(1975)52 48(1975)52	48(1975)58s
1022 1023	50(1977)211 50(1977)211	52(1979)52s 52(1979)53s	Q612 Q613	48(1975)52	48(1975)58s 48(1975)58s
1024	50(1977)211	52(1979)53s	Q614	48(1975)116	48(1975)122s
1025	50(1977)265	52(1979)53s	Q615	48(1975)116	48(1975)122s
1026	50(1977)265	52(1979)55s	Q616 Q617	48(1975)116 48(1975)116	48(1975)122s 48(1975)122s
1027 1028	50(1977)265 50(1977)265	52(1979)114s 52(1979)180s	Q618	48(1975)117	48(1975)122s 48(1975)122s
1029	51(1978)69	52(1979)180s, 182c	Q619	48(1975)117	48(1975)122s
1030	51(1978)69	52(1979)115s	Q620	48(1975)181	48(1975)186s
1031	51(1978)69	52(1979)116s	Q621 Q622	48(1975)182 48(1975)182	48(1975)186s 48(1975)186s
1032 1033	51(1978)69 51(1978)127	52(1979)117s 52(1979)182s	Q623	48(1975)182	48(1975)186s
1034	51(1978)127	52(1979)183c, 183s	Q624	48(1975)182	48(1975)186s
1035	51(1978)127	52(1979)259s	Q625	48(1975)240	48(1975)248s
1036 1037	51(1978)127	52(1979)260s 52(1979)319s 58(1985)244c	Q626 Q627	48(1975)240 48(1975)240	48(1975)248s 48(1975)248s
1037	51(1978)128 51(1978)128	52(1979)319s 58(1985)244c 52(1979)319s	Q628	48(1975)295	48(1975)302s
1039	51(1978)193	52(1979)260s, 261s	Q629	48(1975)295	48(1975)302s
1040	51(1978)193	52(1979)261s, 262s	Q630	48(1975)295	48(1975)303s
1041 1042	51(1978)193 51(1978)193	52(1979)262s 58(1985)244c 52(1979)263s	Q631 Q632	49(1976)44 49(1976)44	49(1976)48s 49(1976)48s
1042	51(1978)193	52(1979)320c, 320s	Q633	49(1976)96	49(1976)101s
1044	51(1978)194	52(1979)263s	Q634	49(1976)96	49(1976)101s
1045	51(1978)194	52(1979)264s	Q635	49(1976)150	49(1976)154s
1046 1047	51(1978)194 51(1978)194	52(1979)264s 52(1979)265s	Q636 Q637	49(1976)150 49(1976)150	49(1976)154s 49(1976)154s
1047	51(1978)194	52(1979)321s 58(1985)244c	Q638	49(1976)212	49(1976)218s
1049	51(1978)245	52(1979)322s	Q639	49(1976)212	49(1976)218s
1050	51(1978)245	52(1979)322s	Q640	49(1976)253	49(1976)258s
1051 1052	51(1978)245 51(1978)245	53(1980)50s 53(1980)50s	Q641 Q642	49(1976)253 49(1976)253	49(1976)258s 49(1976)258s
1002	31(13/0)273	33(1300)303	ا کرت	13(1310)233	13(1310)2303

MM Q643	3		1975–1979		NAvW 389
Q643	50(1977)47	50(1977)53s	452	25(1978/3)4	25(1978/7)2s
Q644	50(1977)47	50(1977)53s	453	25(1978/4)4	25(1978/8)2s
Q645 Q646	50(1977)164 50(1977)164	50(1977)169s 50(1977)169s	454 455	25(1978/4)4 25(1978/5)4	25(1978/8)2s 26(1979/1)2s
Q647	50(1977)164	50(1977)169s	456	25(1978/5)4	26(1979/1)3s
Q648	50(1977)164	50(1977)169s	457	25(1978/6)4	26(1979/2)3s
Q649	50(1977)266	50(1977)271s	458	25(1978/6)4	26(1979/2)3s
Q650 Q651	50(1977)266 51(1978)128	50(1977)271s 51(1978)130s	459 460	25(1978/7)2 25(1978/7)2	26(1979/3)3s 26(1979/3)3s
Q652	51(1978)128	51(1978)130s	461	25(1978/8)2	26(1979/3)3s
Q653	51(1978)194	51(1978)201s	462	25(1978/8)2	26(1979/4)3s
Q654 Q655	51(1978)194 51(1978)246	51(1978)201s 51(1978)249s	463 464	26(1979/1)2 26(1979/1)2	26(1979/6)2s 26(1979/6)2s 27(1980/1)5c
Q656	52(1979)47	52(1979)55s	465	26(1979/1)2	26(1979/6)2c, 2s
Q657	52(1979)47	52(1979)55s	466	26(1979/1)2	26(1979/6)2s, 3c 27(1980/1)5c
Q658	52(1979)114	52(1979)117s	467	26(1979/1)2	26(1979/6)3s 27(1980/1)5c
Q659 Q660	52(1979)114 52(1979)179	52(1979)117s 52(1979)184s	468 469	26(1979/2)2 26(1979/2)2	26(1979/7)2c, 2s 26(1979/7)2c, 2s
Q661	52(1979)179	52(1979)184s	470	26(1979/2)2	26(1979/7)2c, 2s 26(1979/7)2s, 2v
Q662	52(1979)259	52(1979)265s	471	26(1979/2)2	26(1979/7)2s
Q663	52(1979)317	52(1979)323s	472	26(1979/2)2	26(1979/7)3c, 3s 27(1980/1)5c
Q664	52(1979)317	52(1979)323s	473 474	26(1979/3)2 26(1979/3)2	26(1979/8)2s 26(1979/8)2c, 2s
MCI			475	26(1979/3)2	26(1979/8)2c, 2s 26(1979/8)2c, 2s
MSJ			476	26(1979/3)2	26(1979/8)2s, 3c 27(1980/1)5c
<u>Problem</u>	<u>Proposal</u>	References	477	26(1979/3)2	26(1979/8)3c, 3s 27(1980/1)5c
406		22(1975/1)6s	478 479	26(1979/4)2 26(1979/4)2	27(1980/1)5c, 5s 27(1980/1)5s
407 408		22(1975/1)6s 22(1975/1)7s	480	26(1979/4)2	27(1980/1)5s 27(1980/1)5c, 5s
409		22(1975/1)7s	481	26(1979/4)2	27(1980/1)6s
410		22(1975/1)7s	482	26(1979/4)2	27(1980/1)5c, 6s
411		22(1975/2)6s	483 484	26(1979/5)2 26(1979/5)2	27(1980/1)5c 27(1980/2)3s 27(1980/2)3s
412 413		22(1975/2)6s 22(1975/2)7s	485	26(1979/5)2	27(1980/2)3s 27(1980/2)3s
414		22(1975/2)7s	486	26(1979/5)2	27(1980/2)4s
415		22(1975/1)5v 22(1975/2)7c	487	26(1979/5)2	27(1980/2)4s
41.0	00(1075 /1)5	22(1975/3)6s	488	26(1979/6)2	27(1980/1)5c 27(1980/3)2s
416 417	22(1975/1)5 22(1975/1)5	22(1975/3)6s 22(1975/3)6s	489 490	26(1979/6)2 26(1979/6)2	27(1980/1)5c 27(1980/3)2s 27(1980/3)3s
418	22(1975/1)5	22(1975/3)03 22(1975/3)7s	491	26(1979/6)2	27(1980/1)5c 27(1980/3)3s
419	22(1975/1)5	22(1975/3)7s	492	26(1979/6)2	27(1980/1)5c 27(1980/3)3s
420	22(1975/1)5	22(1975/3)7s	493 494	26(1979/7)2 26(1979/7)2	27(1980/1)5c 27(1980/3)4s 27(1980/3)4s
421 422	22(1975/2)5 22(1975/2)5	22(1975/4)5s 22(1975/4)5s	495	26(1979/7)2	27(1980/3)4s
423	22(1975/2)5	22(1975/4)6s	496	26(1979/7)2	27(1980/3)4s
424	22(1975/2)5	22(1975/4)6s	497	26(1979/7)2	27(1980/3)4s
425	22(1975/2)5	22(1975/4)7s	498 499	26(1979/8)2 26(1979/8)2	27(1980/1)5c 27(1980/4)3s 27(1980/4)3s
426 427	22(1975/3)5 22(1975/3)5	23(1976/1)6s 23(1976/1)7s	500	26(1979/8)2	27(1980/1)5c 27(1980/4)3s, 4s
428	22(1975/3)5	23(1976/1)7s	501	26(1979/8)2	27(1980/1)5c 27(1980/4)4s
429	22(1975/3)5	23(1976/1)7s	502	26(1979/8)2	27(1980/4)4s
430	22(1975/3)5	23(1976/1)7s	DIA \A	,	
431 432	23(1976/1)8 23(1976/1)8	23(1976/3)8s 23(1976/3)8s	NAvW	•	
433	23(1976/2)8	23(1976/4)8s	<u>Problem</u>	Proposal	References
434	23(1976/2)8	23(1976/4)8s	372		23(1975)83s
435 436	23(1976/3)8 23(1976/3)8	24(1977/1)4s 24(1977/1)4s	373 374		23(1975)84s, 85s, 86c 23(1975)86s
430	23(1976/4)8	24(1977/1)45 24(1977/2)5s	374		23(1975)88s, 89c
438	23(1976/4)8	24(1977/2)6s	376		23(1975)89s
439	24(1977/1)4	24(1977/3)5s	377		23(1975)90s
440 441	24(1977/1)4 24(1977/2)5	24(1977/3)5c, 5s 24(1977/4)2s	378 379		23(1975)246s 23(1975)92s
441 442	24(1977/2)5	24(1977/4)2s 24(1977/4)2s	380		23(1975)925 23(1975)248s
443	24(1977/3)5	25(1978/1)4s	381		23(1975)94s
444	24(1977/3)5	25(1978/1)4s	382		23(1975)178s, 179s
445 446	24(1977/4)2 24(1977/4)2	25(1978/2)4s 24(1977/4)2c 25(1978/2)4s	383 384		23(1975)180s 23(1975)181s, 182c
440 447	25(1977/4)2	24(1977/4)2c 25(1978/2)4s 25(1978/5)4s	385		23(1975)181s, 182c 24(1976)81s
448	25(1978/1)4	25(1978/5)4s	386		24(1976)82s, 83s, 84c
449	25(1978/2)4	25(1978/6)4s	387		23(1975)183s, 184s
450 451	25(1978/2)4 25(1978/3)4	25(1978/6)4s 25(1978/7)2s	388 389		23(1975)190s 23(1975)191s
401	23(1310/3)4	23(1310/1)25	309		57(1217)1212

NA _v W 3	390		1975–1979	<u> </u>		NAvW 535
390		23(1975)193s	463	25(1977)87	25(1977)441s	
391	23(1975)79	24(1976)190s	464	25(1977)88	25(1977)442c, 442s	
392	23(1975)79	23(1975)249s	465	25(1977)88	25(1977)443s	
393	23(1975)80	23(1975)250s	466	25(1977)88	25(1977)444s	
394	23(1975)80	23(1975)251s	467	25(1977)88	25(1977)445s	
395 396	23(1975)80 23(1975)81	24(1976)192s 23(1975)252s	468 469	25(1977)186 25(1977)186	26(1978)235s, 236c 26(1978)237s	
397	23(1975)81	23(1975)252s 23(1975)252s	470	25(1977)187	26(1978)237s	
398	23(1975)81	24(1976)194s	471	25(1977)187	26(1978)241s	
399	23(1975)82	23(1975)254s, 255s	472	25(1977)187	26(1978)242s, 243c	, 243s
400	23(1975)82	23(1975)257s	473	25(1977)187	26(1978)244s	
401	23(1975)173	24(1976)84s	474	25(1977)187	26(1978)245s	
402 403	23(1975)173	24(1976)87s	475 476	25(1977)188	26(1978)246s, 248c	
404	23(1975)174 23(1975)174	24(1976)88c, 88s 24(1976)89s, 90s	477	25(1977)188 25(1977)189	26(1978)248c, 250s 26(1978)251s	
405	23(1975)174	24(1976)93s	478	25(1977)423	26(1978)354s	
406	23(1975)175	24(1976)95s, 96s	479	25(1977)423	26(1978)356s	
407	23(1975)175	24(1976)98s	480	25(1977)424	26(1978)357s	
408	23(1975)176	24(1976)100s	481	25(1977)424	26(1978)358s	
409	23(1975)176	24(1976)101s	482	25(1977)424	26(1978)359s, 360c	
410	23(1975)176	24(1976)103s	483	25(1977)424	26(1978)361s, 362s	
411	23(1975)176	24(1976)104s 24(1976)106s	484	25(1977)425	26(1978)363s 26(1978)363s	
412 413	23(1975)176 23(1975)176	24(1976)100s 24(1976)107c, 107s, 189c	485 486	25(1977)425 25(1977)425	26(1978)364s	
414	23(1975)242	24(1976)1975, 1975, 1996 24(1976)195s, 196s	487	25(1977)425	26(1978)365s	
415	23(1975)242	24(1976)198s, 201c	488	26(1978)231	26(1978)465s	
416	23(1975)242	24(1976)202s, 203c, 204s	489	26(1978)231	27(1979)271s	
417	23(1975)243	25(1977)89s	490	26(1978)232	26(1978)466s	
418	23(1975)243	24(1976)205s	491	26(1978)232	26(1978)468s	
419	23(1975)243	24(1976)206s, 207c	492	26(1978)232	26(1978)469s, 470s	
420 421	23(1975)244 23(1975)244	24(1976)210s	493 494	26(1978)232 26(1978)232	26(1978)470s	
421	23(1975)244	24(1976)211s 24(1976)212s, 273c, 273s	494	26(1978)232	26(1978)471s 27(1979)274s	
423	23(1975)245	24(1976)212s, 273c, 273s	496	26(1978)233	26(1978)472s	
424	24(1976)77	24(1976)275s, 276c	497	26(1978)233	26(1978)474s	
425	24(1976)77	24(1976)276s	498	26(1978)233	26(1978)474s	
426	24(1976)78	24(1976)277s, 278s, 279c	499	26(1978)234	26(1978)475s	
427	24(1976)78	24(1976)279s	500	26(1978)234	26(1978)476s	
428	24(1976)78	25(1977)190s	501	26(1978)348	27(1979)136s	
429 430	24(1976)78 24(1976)79	25(1977)192s 24(1976)280s	502 503	26(1978)348 26(1978)349	27(1979)137s 27(1979)137s	
431	24(1976)79	24(1976)281s	504	26(1978)349	27(1979)1373 27(1979)138s	
432	24(1976)79	24(1976)282s	505	26(1978)349	27(1979)140s	
433	24(1976)80	24(1976)283s	506	26(1978)350	27(1979)142s, 143s	
434	24(1976)80	24(1976)284s	507	26(1978)350	27(1979)143s	
435	24(1976)80	24(1976)285s	508	26(1978)350	27(1979)145s, 146s	
436	24(1976)184	25(1977)90s, 92c	509	26(1978)350	27(1979)147s	
437 438	24(1976)184 24(1976)185	25(1977)426s 25(1977)428s	510 511	26(1978)351 26(1978)351	27(1979)148s 27(1979)150s	
439	24(1976)185	25(1977)420s 25(1977)429s	512	26(1978)462	27(1979)130s 27(1979)275s	
440	24(1976)185	25(1977)93s	513	26(1978)462	28(1980)119s, 120c	
441	24(1976)185	25(1977)93s, 94s	514	26(1978)463	27(1979)277s	
442	24(1976)186	25(1977)431s	515	26(1978)463	28(1980)120s	
443	24(1976)186	25(1977)95s	516	26(1978)463	27(1979)278s	
444	24(1976)187	25(1977)95s	517	26(1978)463	27(1979)279s, 280c	
445 446	24(1976)187	25(1977)97s 25(1977)98s, 99s	518 519	26(1978)463 26(1978)464	27(1979)132v, 280s 27(1979)282s	
440 447	24(1976)187 24(1976)187	25(1977)100s, 101s	520	26(1978)464	27(1979)282s 27(1979)282s	
448	24(1976)270	25(1977)1003, 1013 25(1977)193s	521	26(1978)464	27(1979)283s	
449	24(1976)270	25(1977)194s	522	26(1978)464	27(1979)283s, 284s	
450	24(1976)270	25(1977)196s	523	27(1979)132	27(1979)412s	
451	24(1976)271	25(1977)197s	524	27(1979)132	27(1979)414s	
452	24(1976)271	25(1977)198s	525	27(1979)133	27(1979)415s	
453	24(1976)271	25(1977)199s	526	27(1979)133	27(1979)415s	
454 455	24(1976)272	25(1977)200s	527	27(1979)133	27(1979)417s	
455 456	24(1976)272 24(1976)272	25(1977)201c, 201s 25(1977)202s	528 529	27(1979)133 27(1979)134	28(1980)205s, 206c 27(1979)418s, 419s	
450 457	24(1976)272	25(1977)2025 25(1977)204s	530	27(1979)134	28(1980)207s	, 7203
458	25(1977)86	26(1978)352s	531	27(1979)134	27(1979)421s	
459	25(1977)86	25(1977)434c, 434s	532	27(1979)134	28(1980)207s	
460	25(1977)87	25(1977)436s	533	27(1979)135	27(1979)422s, 423s	
461	25(1977)87	25(1977)438s	534	27(1979)267	28(1980)122s	
462	25(1977)87	25(1977)439s	535	27(1979)267	28(1980)123s, 124s	

NAvW 53	36	1975	- 1979	67		OMG 16.1.2
536	27(1979)267	28(1980)125s	70	27(1977)99	28(1978)56s	
537	27(1979)268	28(1980)127s, 129s	71	27(1977)136	28(1978)83s	
538	27(1979)268	,	72	27(1977)136	28(1978)83s	
539	27(1979)268		73	27(1977)136	28(1978)84s	
540	27(1979)268	28(1980)130c, 130s	74	28(1978)52	28(1978)152s	
541	27(1979)268	28(1980)131c, 131s, 205a	75	28(1978)52	28(1978)153s	
542	27(1979)269	28(1980)132s	76	28(1978)52	28(1978)154s	
543	27(1979)269	28(1980)133s	77	28(1978)53	28(1978)155s	
544	27(1979)269	28(1980)134s, 135c	78	28(1978)77	29(1979)57s	
545	27(1979)270	28(1980)136s, 137c	79	28(1978)77	29(1979)58s, 59s	
546 547	27(1979)408	28(1980)209s	80	28(1978)78	29(1979)60s	
547	27(1979)408	28(1980)211s	81	28(1978)78 28(1978)78	29(1979)60s	
548 549	27(1979)408 27(1979)409	28(1980)213s, 214c 28(1980)214s	82 83	28(1978)150	29(1979)61s 29(1979)84s	
550	27(1979)409	28(1980)215s, 216c	84	28(1978)151	29(1979)85s	
551	27(1979)409	29(1981)106s	85	28(1978)151	29(1979)85s, 86s	
552	27(1979)409	29(1981)107s	86	28(1978)151	29(1979)88s	
553	27(1979)410	28(1980)216s	87	29(1979)56	29(1979)146s	
554	27(1979)410	29(1981)108s	88	29(1979)57	29(1979)147s	
555	27(1979)410	28(1980)218s	89	29(1979)57	29(1979)147s	
556	27(1979)410	28(1980)219s	90	29(1979)57	29(1979)148s	
557	27(1979)411	28(1980)220c, 220s	91	29(1979)57	29(1979)150s	
558	27(1979)411	28(1980)221s	92	29(1979)83	30(1980)55s	
	. ,	` ,	93	29(1979)83	30(1980)55s	
NYSM	IT I		94	29(1979)83	30(1980)56s	
141510	113		95	29(1979)84	30(1980)57s	
<u>Problem</u>	Proposal	References	96	29(1979)145	30(1980)170s	
27		25(1975)171s	97	29(1979)145	30(1980)170s	
28		25(1975)21s	98	29(1979)145	30(1980)171s	
29		25(1975)21s	99	29(1979)145	30(1980)172s	
30		25(1975)22s	100	29(1979)145	30(1980)173s	
31		25(1975)22c, 55r, 125s	Problem	Proposal	References	
32		25(1975)22c, 56s	OBG1	27(1977)99	27(1977)103s	
33		26(1976)151r 27(1977)54s	OBG2	27(1977)136	27(1977)138s	
34		25(1975)56s, 126s	OBG3	28(1978)53	28(1978)57s	
35 36		25(1975)126s	OBG4	28(1978)78	28(1978)85s	
30 37	25(1975)20	25(1975)57s 25(1975)127s	OBG5	28(1978)78	28(1978)85s	
38	25(1975)20	25(1975)127s 25(1975)127c, 127s	OBG6	28(1978)151	28(1978)157s	
39	25(1975)20	25(1975)171s	OBG7	29(1979)57	29(1979)61s	
40	25(1975)20	25(1975)1713 25(1975)172s 26(1976)150c	OBG8	29(1979)84	29(1979)88s	
10	23(1313)20	27(1977)100s	OBG9	29(1979)146	29(1979)150s	
41	25(1975)55	25(1975)172s				
42	25(1975)55	25(1975)172s	OMG			
43	25(1975)55	25(1975)173s 26(1976)150c				
44	25(1975)56	26(1976)19s	<u>Problem</u>	Proposal	References	
45	25(1975)124	26(1976)19s	14.1.1	14(1975/1)42		
46	25(1975)124	26(1976)97s	14.1.2	14(1975/1)42		
47	25(1975)124	26(1976)98s	14.1.3	14(1975/1)42		
48	25(1975)170	26(1976)99s, 150c	14.2.1	14(1975/2)30		
49	25(1975)170	26(1976)100s, 101c	14.2.2	14(1975/2)30		
50	25(1975)170	26(1976)151c, 151s	14.2.3	14(1975/2)30		
51	25(1975)170	26(1976)152x	14.3.1	14(1975/3)44		
52 52	26(1976)18	26(1976)152c 27(1977)51s	14.3.2	14(1975/3)44		
53	26(1976)18	26(1976)150c 27(1977)52s	14.3.3	14(1975/3)44		
54	26(1976)18	26(1976)152c 27(1977)52x	15.1.1	15(1976/1)51		
55	26(1976)96	28(1978)157s 27(1977)53s	15.1.2 15.1.3	15(1976/1)52 15(1976/1)52		
55 56	26(1976)96	27(1977)53s 27(1977)53s	15.1.3	15(1976/1)52	15(1976/3)61s	
50 57	26(1976)97	27(1977)53s 27(1977)54c, 101s	15.2.2	15(1976/2)66	15(1976/3)61s 15(1976/3)61s	
58	26(1976)97	27(1977)54c, 1013 27(1977)54c, 98c, 137s	15.2.3	15(1976/2)66	15(1976/3)61s	
-	_0(_0,0)01	28(1978)53c	15.3.1	15(1976/3)59	-(, 0,020	
59	26(1976)151	27(1977)101s	15.3.2	15(1976/3)59		
60	26(1976)151	27(1977)102s 28(1978)53s	15.3.3	15(1976/3)60		
61	26(1976)151	27(1977)102s	15.3.4	15(1976/3)60		
62	27(1977)54	27(1977)137s	15.3.5	15(1976/3)60		
63	27(1977)54	27(1977)137s	15.3.6	15(1976/3)60		
64	27(1977)54	27(1977)136r 28(1978)78s, 82s	15.3.7	15(1976/3)60		
65	27(1977)54	27(1977)138s	15.3.8	15(1976/3)60		
66	27(1977)98	28(1978)54s	15.3.9	15(1976/3)60		
67	27(1977)99	28(1978)52r, 152s	15.3.10	15(1976/3)60		
68	27(1977)99	28(1978)55s	16.1.1	16(1977/1)64		
69	27(1977)99	28(1978)56c, 56s	16.1.2	16(1977/1)64		

D.1.4 16(1977)1964	OMG 16	.1.3	1975-	1979	67	OSSMB 77-14
10.15 10(1977/1)64 Problem Proposal References 10.16 10(1977/1)64 74-11 11(1977/1)235 11(1				OSSM	1B	
16.16				Problem	Proposal	References
10.1		, , ,		74–11		$\overline{11(1975/1})23s$
10.10 16(1977) 194 74-14 11(1975) 195; 24a 11(1975) 195;						
1.0.1 1.0.		, , ,				(/ /
10.2.1 16(1977/2)51 74-37 74-18 74-1				74–15		11(1975/1)20s, 24a
10.22 10(1977/2)ps						
10.2.4 16(1977/2)S2 75.2.7 11(1975/1)16 11(1975/2)20 10.2.6 16(1977/2)S2 75.2.7 75.2.7 12(1976/1)16s 12(1976/1)16s 12(1976/1)16s 12(1976/1)16s 12(1976/1)16s 12(1976/1)17s 17(1978/1)S9 17(1978/1)S8 175.4		, , ,				
10.2.5 16(1977/2952 75.2-7 12(1976/1)16s 10.2.6 16(1977/2953 75.2-19 12(1976/1)16s 10.2.7 16(1977/2953 75.2-10 12(1976/1)17s 17.1.1 17(1978/1)59 17(1978/3)59s 75.2-10 12(1976/1)18s 17.1.2 17(1978/1)59 17(1978/3)59s 75.2-11 12(1976/1)18s 17.1.3 17(1978/1)59 17(1978/3)60s 75.2-12 12(1976/1)18s 17.1.4 17(1978/1)59 17(1978/3)60s 75.3-13 12(1976/1)19s 17.1.5 17(1978/1)59 17(1978/3)60s 75.3-13 12(1976/1)19s 17.1.6 17(1978/1)59 17(1978/3)60s 75.3-13 12(1976/1)19s 17.1.1 17(1978/1)59 17(1978/3)60s 75.3-13 12(1976/1)19s 17.1.1 17(1978/1)59 17(1978/3)60s 75.3-13 12(1976/1)10s 17.1.1 17(1978/1)59 17(1978/3)60s 75.3-14 12(1976/1)10s 17.1.1 17(1978/1)59 17(1978/3)60s 75.3-16 12(1976/1)12s 17.1.2 17(1978/1)59 17(1978/3)60s 75.3-17 12(1976/1)12s 17.1.3 17(1978/1)59 17(1978/3)60s 75.3-18 12(1976/1)12s 17.1.2 17(1978/1)59 17(1978/3)60s 75.3-18 12(1976/1)12s 17.1.2 17(1978/2)58 75.4 11(1975/1)16 11(1975/2)23 17.1.3 17(1978/2)58 75.4 11(1975/1)16 11(1975/2)23 17.1.3 17(1978/2)58 75.4 11(1975/2)18 11(1975/2)23 17.1.3 17(1978/2)58 75.4 11(1975/2)18 17.1.1 17(1978/2)58 75.4 11(1975/2)18 17.1.2 17(1978/2)58 75.4 11(1975/2)18 17.1.3 17(1978/3)58 75.1 11(1975/3)22 17.1.3 17(1978/3)58 75.1 11(1975/3)22 17.1.3 17(1978/3)59 17(1978/3)59 75.1 11(1975/3)22 17.1.3 17(1978/3)59 18(1979/1)60 76.4 12(1976/2)19 12(1976/2)28 17.1.3 17(1978/3)59 18(1979/1)60 76.4 12(1976/2)19 12(1976/2)23 17.1.3 17(1978/3)59 18(1979/1)60 76.4 12(1976/2)19 12(1976/2)23 17.1.3 17(1978/3)59 18(1979/1)60 76.4 12(1976/2)19 12(1976/2)23 17.1.3 17(1978/3)59 18(1979/1)60 76.4 12(1976/2)19 12(1976/2)23 17.1.3 17(1978/3)59 18(1979/1)60 76.4 12(1976/2)19 12(1976/2)23 17.1.3 17(1978/3)59 18(1979/1)60 76.4						
10.2.6 16(1977/2)52 75.2-8 12(1976/1)16s 17.1.1 17(1978/1)59 17(1978/3)59s 75.2-9 12(1976/1)18s 17.1.1 17(1978/1)59 17(1978/3)59s 75.2-10 12(1976/1)18s 17.1.2 17(1978/1)59 17(1978/3)59s 75.2-11 12(1976/1)18s 17.1.3 17(1978/1)59 17(1978/3)50s 75.2-12 12(1976/1)19s 17.1.4 17(1978/1)59 17(1978/3)50s 75.2-12 12(1976/1)19s 17.1.5 17(1978/1)59 17(1978/3)50s 75.3-13 12(1976/1)20s 17.1.6 17(1978/1)59 17(1978/3)50s 75.3-14 12(1976/1)20s 17.1.7 17(1978/1)59 17(1978/3)50s 75.3-15 12(1976/1)20s 17.1.8 17(1978/1)59 17(1978/3)50s 75.3-16 12(1976/1)20s 17.1.9 17(1978/1)59 17(1978/3)60s 75.3-17 12(1976/1)22s 17.1.1 17(1978/1)59 17(1978/3)60s 75.3-16 12(1976/1)22s 17.1.2 17(1978/2)58 75.3-17 12(1976/2)24s 17.1.3 17(1978/2)58 75.3-17 12(1976/2)24s 17.1.4 17(1978/2)58 75.3-17 12(1976/2)24s 17.1.5 17(1978/2)58 75.3-17 12(1976/2)24s 17.1.1 17(1978/2)58 75.3-17 12(1976/2)24s 17.1.2 17(1978/2)58 75.3-17 12(1976/2)24s 17.1.3 17(1978/3)58 75.3-17 12(1976/2)25 17.1.3 17(1978/3)58 75.3-17 12(1976/2)25 17.1.3 17(1978/3)58 75.3-17 12(1976/2)25 17.1.3 17(1978/3)58 75.3-17 12(1976/2)25 17.1.3 17(1978/3)58 75.3-17 12(1976/2)25 18.1.1 18(1979/1)56 18(1979/1)50 76.3 12(1976/2)25 18.1.1 18(1979/1)56 18(1979/1)50 76.3 12(1976/2)25 18.1.1 18(1979/1)56 18(1979/1)50 76.3 12(1976					11(1975/1)16	
16.2.7 16(1977/2)53 17(1978/1)59 17(1978/3)598 75.2-10 12(1976/1)178 17(11.1 17(1978/1)59 17(1978/3)598 75.2-11 12(1976/1)188 17(11.2 17(1978/1)59 17(1978/3)508 75.2-12 12(1976/1)198 17(11.4 17(1978/1)59 17(1978/3)608 75.2-13 12(1976/1)198 17(1.5 17(1978/1)59 17(1978/3)608 75.3-13 12(1976/1)198 17(1.6 17(1978/1)59 17(1978/3)608 75.3-14 12(1976/1)198 17(1.7 17(1978/1)59 17(1978/3)608 75.3-15 12(1976/1)198 17(1978/1)59 17(1978/3)608 75.3-15 12(1976/1)128 17(1978/1)59 17(1978/3)608 75.3-16 12(1976/1)128 17(1978/1)59 17(1978/3)608 75.3-16 12(1976/1)128 17(1978/1)59 17(1978/3)608 75.3-16 12(1976/1)128 17(1978/1)59 17(1978/3)608 75.3-16 12(1976/1)128 17(1978/1)59 17(1978/2)58 1						
17.1.2 17(1978/1)59 17(1978/3)506 75.2-11 12(1976/1)188 17.1.14 17(1978/1)59 17(1978/3)506 75.2-12 12(1976/1)198 17.1.14 17(1978/1)59 17(1978/3)506 75.3-13 12(1976/1)198 17.1.15 17(1978/1)59 17(1978/3)506 75.3-13 12(1976/1)198 17.1.16 17(1978/1)59 17(1978/3)506 75.3-14 12(1976/1)208 17.1.17 17(1978/1)59 17(1978/3)506 75.3-15 12(1976/1)218 17.1.18 17(1978/1)59 17(1978/3)506 75.3-16 12(1976/1)218 17.1.18 17(1978/1)59 17(1978/3)506 75.3-16 12(1976/1)228 17.1.19 17(1978/2)58 17(1978/2)58 17.2.2 17(1978/2)58 17.2.2 17(1978/2)58 17.2.3 17(1978/2)58 17.2.4 17(1978/2)58 17.2.5 17(1978/2)58 17.2.			4=(4.0=0./0)=0			12(1976/1)17s
17.1.3 17(1978/1)59 17(1978/3)606 75-3 11(1975/1)16 17(1978/1)59 17(1978/3)606 75-3 11(1975/1)16 12(1976/1)198 17(1978/3)606 75-3-14 12(1976/1)198 17(1978/3)606 75-3-15 12(1976/1)198 17(1978/3)606 75-3-15 12(1976/1)128 17(1978/3)606 75-3-15 12(1976/1)128 17(1978/3)608 75-3-16 12(1976/1)128 17(1978/3)608 75-3-16 12(1976/1)128 17(1978/3)608 75-3-16 12(1976/1)128 17(1978/3)608 75-3-16 12(1976/1)128 17(1978/3)608 75-3-16 12(1976/1)128 17(1978/3)608 75-3-18 12(1976/1)128 17(1978/2)188 75-5 11(1975/2)188 17(1978/2)188 75-5 11(1975/2)188 17(1978/2)188 75-5 11(1975/2)188 17(1978/2)188 75-6 11(1975/2)188 17(1978/2)188 75-6 11(1975/2)188 17(1978/2)188 75-6 11(1975/2)188 17(1978/2)1						
17.1.5						
17.1.6					11(1975/1)16	
17.1.7 17(1978/1)59 17(1978/3)605 75.3-15 12(1976/1)215 17(1978/1)59 17(1978/3)605 75.3-16 12(1976/1)225 17(1978/1)55 17(1978/3)605 75.3-17 12(1976/1)225 17(1978/1)55 17(1978/3)53 75.3-18 12(1976/1)225 17(1978/2)53 17(1978/2)53 75.3-18 12(1976/1)225 17(1978/2)53 75.3-18 12(1976/1)225 17(1978/2)53 75.3-18 12(1976/1)225 17(1978/2)53 75.3-18 12(1976/1)225 17(1978/2)53 75.3-18 12(1976/1)225 17(1978/2)53 75.3-18 12(1976/1)16 11(1975/2)225 17(1978/2)53 75.3-18 11(1975/1)16 11(1975/2)225 17(1978/2)53 75.3-18 11(1975/1)16 11(1975/2)235 17.2.5 17(1978/2)53 75.3-18 11(1975/1)16 11(1975/2)18 17.2.6 17(1978/2)53 75.3-18 11(1975/2)18 17.2.7 17(1978/2)53 75.3-18 11(1975/2)18 17.2.8 17(1978/2)53 75.3-18 11(1975/2)18 17.2.1 17(1978/2)53 75.3-18 11(1975/2)18 17.3.1 17(1978/3)53 75.13 11(1975/2)18 17.3.3 17(1978/3)53 75.13 11(1975/2)18 17.3.3 17(1978/3)53 75.13 11(1975/3)22 17.3.4 17(1978/3)53 75.15 11(1975/3)22 17.3.3 17(1978/3)53 75.16 11(1975/3)22 17.3.3 17(1978/3)59 75.17 11(1975/3)23 17.3.4 17(1978/3)59 75.17 11(1975/3)23 17.3.8 17(1978/3)59 75.18 11(1975/3)23 17.3.8 17(1978/3)59 75.18 11(1975/3)23 17.3.8 17(1978/3)59 75.18 11(1975/3)23 17.3.8 17(1978/3)59 75.18 11(1975/3)23 17(1978/3)59 17.3.9 17(1978/3)59 75.18 11(1975/2)25 18.1.1 18(1979/1)55 18(1979/1)60 76.10 12(1976/1)15 12(1976/2)20 18.1.1 18(1979/1)55 18(1979/1)60 76.10 12(1976/1)15 12(1976/2)23 18.1.1 18(1979/1)56 18(1979/1)60 76.10 12(1976/2)19 12(1976/3)215 18.1.1 18(1979/1)56 18(1979/1)60 76.10 12(1976/2)19 12(1976/3)24 18.1.1 18(1979/2)56 18(1979/2)66 76.10 12(1976/2)19 12(1976/3)24 18(1979/2)66 76.10 12(1976/2)19 12(1976/3)24 18(1979/2)66 76.10 12(1976/2)19 12(1976/3)24 18(1979/2)66 76.10 12(1976/3)20 13(1977/1)21 18(1979/2)66 77.2 13(1977/1)19						
17.1.8			` ' '			
17.21 17(1978/1958 17(1978/2)58 75-4 11(1975/1)16 11(1975/2)22s 17.2.2 17(1978/2)58 75-5 11(1975/1)16 11(1975/2)23s 17.2.4 17(1978/2)58 75-6 11(1975/1)16 11(1975/2)24s 17.2.4 17(1978/2)58 75-7 11(1975/2)18 11(1975/2)24s 17.2.5 17(1978/2)58 75-7 11(1975/2)18 17.2.6 17(1978/2)58 75-9 11(1975/2)18 17.2.7 17(1978/2)58 75-9 11(1975/2)18 17.2.8 17(1978/2)58 75-9 11(1975/2)18 17.2.9 17(1978/2)58 75-11 11(1975/2)18 17.2.9 17(1978/2)58 75-11 11(1975/2)18 17.3.1 17(1978/3)58 75-12 11(1975/2)18 17.3.2 17(1978/3)58 75-13 11(1975/3)22 17.3.3 17(1978/3)58 75-15 11(1975/3)22 17.3.4 17(1978/3)58 75-15 11(1975/3)22 17.3.5 17(1978/3)58 75-16 11(1975/3)22 17.3.5 17(1978/3)58 75-17 11(1975/3)22 17.3.7 17(1978/3)59 76-18 12(1976/1)15 12(1976/2)20s 17.3.8 17(1978/3)59 76-2 12(1976/1)15 12(1976/2)20s 17.3.8 17(1978/3)59 76-2 12(1976/1)15 12(1976/2)20s 17.3.8 17(1978/3)59 76-3 12(1976/1)15 12(1976/2)218 18.1.1 18(1979/1)160 18(1979/1)60s 76-6 12(1976/2)19 12(1976/3)218 18.1.1 18(1979/1)160 18(1979/1)160s 76-6 12(1976/1)15 12(1976/2)218 18.1.1 18(1979/1)160 18(1979/1)160s 76-6 12(1976/2)19 12(1976/3)218 18.1.1 18(1979/1)160s 76-6 12(1976/1)15 12(1976/2)223 18.1.1 18(1979/1)160s 76-6 12(1976/1)19 12(1976/3)221 18.1.1 18(1979/1)160s 76-6 12(1976/1)19 12(1976/3)221 18.1.1 18(1979/2)160s 76-10 12(1976/2)19 12(1976/3)221 18.			` ' '			
17.2.1 17(1978/2)58 75-4 17(1978/1)6 17(1975/2)22s 17(1978/2)58 75-5 17(1975/1)16 17(1975/2)23s 17(1978/2)58 75-6 17(1975/1)16 17(1975/2)24s 17(1978/2)58 75-6 17(1975/2)18 17(1978/2)58 75-8 17(1975/2)18 17(1978/2)58 75-8 17(1975/2)18 17(1978/2)58 75-10 17(1975/2)18 17(1978/2)58 75-10 17(1975/2)18 17(1978/2)58 75-11 17(1975/2)18 17(1978/2)58 75-12 17(1975/2)18 17(1978/2)58 75-13 17(1975/2)18 17(1978/3)58 75-13 17(1975/3)22 17(1978/3)58 75-15 17(1975/3)22 17(1978/3)58 75-15 17(1975/3)22 17(1978/3)58 75-16 17(1975/3)22 17(1978/3)58 75-17 17(1975/3)22 17(1978/3)58 75-17 17(1975/3)23 17(1978/3)59 75-17 17(1975/3)23 17(1978/3)59 75-17 17(1976/3)23 17(1978/3)59 76-1 12(1976/1)15 12(1976/2)20s 17(1978/3)59 76-2 12(1976/1)15 12(1976/2)20s 17(1978/3)59 76-2 12(1976/1)15 12(1976/2)20s 17(1978/3)59 76-3 12(1976/1)15 12(1976/2)20s 18(1979/1)56 18(1979/1)50s 76-5 12(1976/1)15 12(1976/2)22s 18(1.2 18(1979/1)56 18(1979/1)50s 76-5 12(1976/1)15 12(1976/2)22s 18(1.3 18(1979/1)56 18(1979/1)50s 76-6 12(1976/1)15 12(1976/2)22s 18(1.3 18(1979/1)50s 18(1979/1)50s 76-6 12(1976/1)15 12(1976/2)22s 18(1.4 18(1979/1)50s 18(1979/1)50s 76-7 12(1976/2)19 12(1976/3)21s 18(1.5 18(1979/1)50s 18(1979/1)50s 76-8 12(1976/2)19 12(1976/3)21s 18(1.5 18(1979/1)50s 18(1979/1)50s 76-10 12(1976/2)19 12(1976/3)21s 18(1.5 18(1979/1)50s 18(1979/1)50s 76-10 12(1976/2)19 12(1976/3)21s 18(1.5 18(1979/1)50s 18(1979/1)50s 76-10 12(1976/2)19 12(1976/3)21s 18(1.5 18(1979/2)50s 76-10 12(19			17(1978/3)61s			
17.2.3					11(1975/1)16	
17.2.4		` ' '				
17.2.5					1 1 1	11(1975/2)24s
17.2.7						
17.2.8						
17.2.9						
17.3.2 17(1978/3)58 75-14 11(1975/3)22 75-15 11(1975/3)22 75-15 11(1975/3)22 75-16 11(1975/3)22 75-16 11(1975/3)23 75-17 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)23 75-18 11(1975/3)25 11(1975/3)25 11(1		17(1978/2)58		75–12		
17.3.3 17(1978/3)58 75-15 11(1975/3)22 17.3.5 17(1978/3)58 75-16 11(1975/3)22 17.3.5 17(1978/3)58 75-17 11(1975/3)23 17.3.6 17(1978/3)59 76-1 11(1975/3)23 17.3.7 17(1978/3)59 76-2 12(1976/1)15 12(1976/2)20s 17.3.9 17(1978/3)59 76-3 12(1976/1)15 12(1976/2)21s 18.1.1 18(1979/1)56 18(1979/1)60s 76-4 12(1976/1)15 12(1976/2)22s 18.1.2 18(1979/1)56 18(1979/1)60s 76-5 12(1976/1)15 12(1976/2)23s 18.1.4 18(1979/1)56 18(1979/1)60s 76-6 12(1976/1)15 12(1976/2)23s 18.1.5 18(1979/1)56 18(1979/1)60s 76-7 12(1976/2)19 12(1976/3)21s 18.1.5 18(1979/1)56 18(1979/1)60s 76-8 12(1976/2)19 12(1976/3)22s 18.1.6 18(1979/1)56 18(1979/1)60s 76-10 12(1976/2)19 12(1976/3)22s 18.1.7 18(1979/1)57 18(1979/1)60s 76-11 12(1976/2)19 12(1976/3)23s 18.1.9 18(
17.3.4 17(1978/3)58 75-16 11(1975/3)22 17.3.5 17(1978/3)59 75-17 11(1975/3)23 17.3.7 17(1978/3)59 76-1 12(1976/1)15 12(1976/2)20s 17.3.8 17(1978/3)59 76-2 12(1976/1)15 12(1976/2)20s 17.3.9 17(1978/3)59 76-3 12(1976/1)15 12(1976/2)21s 18.1.1 18(1979/1)56 18(1979/1)60s 76-4 12(1976/1)15 12(1976/2)22s 18.1.2 18(1979/1)56 18(1979/1)60s 76-6 12(1976/1)15 12(1976/2)22s 18.1.4 18(1979/1)56 18(1979/1)60s 76-6 12(1976/1)15 12(1976/3)21s 18.1.4 18(1979/1)56 18(1979/1)60s 76-7 12(1976/2)19 12(1976/3)21s 18.1.4 18(1979/1)56 18(1979/1)60s 76-8 12(1976/2)19 12(1976/3)21s 18.1.5 18(1979/1)56 18(1979/1)60s 76-9 12(1976/2)19 12(1976/3)22s 18.1.7 18(1979/1)56 18(1979/1)60s 76-11 12(1976/2)19 12(1976/3)24s					1 1 1	
17.3.6				75–16	11(1975/3)22	
17.3.7 17(1978/3)59 76-1 12(1976/1)15 12(1976/2)20s 17.3.8 17(1978/3)59 76-2 12(1976/1)15 12(1976/2)20s 17.3.9 17(1978/3)59 76-3 12(1976/1)15 12(1976/2)21s 18.1.1 18(1979/1)56 18(1979/1)60s 76-4 12(1976/1)15 12(1976/2)22s 18.1.2 18(1979/1)56 18(1979/1)60s 76-5 12(1976/1)15 12(1976/2)23s 18.1.3 18(1979/1)56 18(1979/1)60s 76-6 12(1976/1)15 12(1976/2)24s 18.1.4 18(1979/1)56 18(1979/1)60s 76-6 12(1976/1)15 12(1976/2)24s 18.1.5 18(1979/1)56 18(1979/1)60s 76-7 12(1976/2)19 12(1976/3)21s 18.1.6 18(1979/1)56 18(1979/1)60s 76-9 12(1976/2)19 12(1976/3)21s 18.1.7 18(1979/1)56 18(1979/1)60s 76-10 12(1976/2)19 12(1976/3)23s 18.1.8 18(1979/1)57 18(1979/1)60s 76-11 12(1976/2)19 12(1976/3)23s 18.1.9 18(1979/1)57 18(1979/1)60s 76-12 12(1976/2)19 12(1976/3)24s 18.1.9 18(1979/2)51 18(1979/2)66s 76-12 12(1976/3)20 13(1977/1)20s 18.2.1 18(1979/2)61 18(1979/2)66s 76-15 12(1976/3)20 13(1977/1)21s 18.2.2 18(1979/2)62 18(1979/2)66s 76-15 12(1976/3)20 13(1977/1)21s 18.2.3 18(1979/2)62 18(1979/2)66s 76-15 12(1976/3)20 13(1977/1)21s 18.2.4 18(1979/2)62 18(1979/2)66s 76-16 12(1976/3)20 13(1977/1)22s 18.2.5 18(1979/2)62 18(1979/2)66s 76-18 12(1976/3)20 13(1977/1)22s 18.2.6 18(1979/2)62 18(1979/2)66s 76-18 12(1976/3)20 13(1977/1)22s 18.2.7 18(1979/2)62 18(1979/2)66s 76-18 12(1976/3)20 13(1977/1)24s 18.2.9 18(1979/2)62 18(1979/2)66s 77-1 13(1977/1)19 13(1977/2)21s 18.2.9 18(1979/2)63 18(1979/2)67s 77-2 13(1977/1)19 13(1977/2)21s 18.3.1 18(1979/3)65 18(1979/3)67s 77-6 13(1977/1)19 13(1977/2)24s 18.3.3 18(1979/3)65 18(1979/3)67s 77-6 13(1977/1)19 13(1977/2)24s 18.3.4 18(1979/3)65 18(1979/3)67s 77-7 13(1977/2)19 18.3.5 18(1979/3)65 18(1979/3)67s 77-9 13(1977/2)19 18.3.6 18(1979/3)65 18(1979/3)67s 77-10 13(1977/2)19 18.3.6 18(1979/3)65 18(1979/3)67s 77-9 13(1977/2)19						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						12(1976/2)20s
17.3.9					12(1976/1)15	12(1976/2)20s
18.1.1 18(1979/1)56 18(1979/1)60s 76-5 12(1976/1)15 12(1976/2)23s 18.1.2 18(1979/1)56 18(1979/1)60s 76-6 12(1976/2)15 12(1976/2)24s 18.1.4 18(1979/1)56 18(1979/1)60s 76-8 12(1976/2)19 12(1976/3)21s 18.1.5 18(1979/1)56 18(1979/1)60s 76-9 12(1976/2)19 12(1976/3)22s 18.1.6 18(1979/1)56 18(1979/1)60s 76-10 12(1976/2)19 12(1976/3)23s 18.1.7 18(1979/1)57 18(1979/1)60s 76-11 12(1976/2)19 12(1976/3)23s 18.1.8 18(1979/1)57 18(1979/1)60s 76-12 12(1976/2)19 12(1976/3)24s 18.1.9 18(1979/2)61 18(1979/2)66s 76-12 12(1976/2)19 12(1976/3)24s 18.2.1 18(1979/2)61 18(1979/2)66s 76-14 12(1976/3)20 13(1977/1)20s 18.2.1 18(1979/2)62 18(1979/2)66s 76-15 12(1976/3)20 13(1977/1)21s 18.2.2 18(1979/2)62 18(1979/2)66s 76-16 12(1976/3)20 13(1977/1)21s 18.2.5 18(1979/2)62 18(1979/2)66s 76-1		17(1978/3)59				
18.1.3 18(1979/1)56 18(1979/1)60s 76-7 12(1976/2)19 12(1976/3)21s 18.1.4 18(1979/1)56 18(1979/1)60s 76-8 12(1976/2)19 12(1976/3)21s 18.1.5 18(1979/1)56 18(1979/1)60s 76-9 12(1976/2)19 12(1976/3)22s 18.1.6 18(1979/1)56 18(1979/1)60s 76-10 12(1976/2)19 12(1976/3)23s 18.1.7 18(1979/1)57 18(1979/1)60s 76-11 12(1976/2)19 12(1976/3)24s 18.1.9 18(1979/1)57 18(1979/1)61s 76-12 12(1976/2)19 12(1976/3)24s 18.1.9 18(1979/2)61 18(1979/2)66s 76-13 12(1976/3)20 13(1977/1)20s 18.2.1 18(1979/2)62 18(1979/2)66s 76-14 12(1976/3)20 13(1977/1)21s 18.2.2 18(1979/2)62 18(1979/2)66s 76-15 12(1976/3)20 13(1977/1)21s 18.2.3 18(1979/2)62 18(1979/2)66s 76-16 12(1976/3)20 13(1977/1)22s 18.2.4 18(1979/2)62 18(1979/2)66s 76-17 12(1976/3)20 13(1977/1)24s 18.2.5 18(1979/2)62 18(1979/2)66s 77-		` ' '				
18.1.4 18(1979/1)56 18(1979/1)60s 76-8 12(1976/2)19 12(1976/3)21s 18.1.5 18(1979/1)56 18(1979/1)60s 76-9 12(1976/2)19 12(1976/3)22s 18.1.6 18(1979/1)56 18(1979/1)60s 76-10 12(1976/2)19 12(1976/3)23s 18.1.7 18(1979/1)56 18(1979/1)60s 76-11 12(1976/2)19 12(1976/3)24s 18.1.8 18(1979/1)57 18(1979/1)60s 76-12 12(1976/2)19 12(1976/3)24s 18.1.9 18(1979/1)57 18(1979/1)61s 76-13 12(1976/3)20 13(1977/1)20s 18.2.1 18(1979/2)61 18(1979/2)66s 76-14 12(1976/3)20 13(1977/1)21s 18.2.2 18(1979/2)62 18(1979/2)66s 76-15 12(1976/3)20 13(1977/1)21s 18.2.4 18(1979/2)62 18(1979/2)66s 76-17 12(1976/3)20 13(1977/1)22s 18.2.5 18(1979/2)62 18(1979/2)66s 76-18 12(1976/3)20 13(1977/1)24s 18.2.6 18(1979/2)66s 77-1 13(1977/1)19 13(1977/2)21s 18.2.7 18(1979/2)63 18(1979/3)67s 77-3 13(1977/1)1				76–6	12(1976/1)15	
18.1.5 18(1979/1)56 18(1979/1)60s 76-9 12(1976/2)19 12(1976/3)22s 18.1.6 18(1979/1)56 18(1979/1)60s 76-10 12(1976/2)19 12(1976/3)23s 18.1.7 18(1979/1)57 18(1979/1)60s 76-11 12(1976/2)19 12(1976/3)24s 18.1.8 18(1979/1)57 18(1979/1)61s 76-13 12(1976/2)19 12(1976/3)24s 18.2.1 18(1979/2)61 18(1979/2)66s 76-14 12(1976/3)20 13(1977/1)20s 18.2.2 18(1979/2)62 18(1979/2)66s 76-15 12(1976/3)20 13(1977/1)21s 18.2.3 18(1979/2)62 18(1979/2)66s 76-16 12(1976/3)20 13(1977/1)22s 18.2.4 18(1979/2)62 18(1979/2)66s 76-17 12(1976/3)20 13(1977/1)22s 18.2.5 18(1979/2)62 18(1979/2)66s 76-18 12(1976/3)20 13(1977/1)24s 18.2.6 18(1979/2)62 18(1979/2)66s 77-1 13(1977/1)19 13(1977/2)21s 18.2.7 18(1979/2)66 77-2 13(1977/1)19 13(1977/2)22s 18.2.9 18(1979/3)65 18(1979/3)67s 77-3 13(1977/1)19						
18.1.6 18(1979/1)56 18(1979/1)60s 76-10 12(1976/2)19 12(1976/3)23s 18.1.7 18(1979/1)55 18(1979/1)60s 76-11 12(1976/2)19 12(1976/3)24s 18.1.8 18(1979/1)57 18(1979/1)60s 76-12 12(1976/2)19 12(1976/3)24s 18.1.9 18(1979/1)57 18(1979/1)61s 76-13 12(1976/3)20 13(1977/1)20s 18.2.1 18(1979/2)61 18(1979/2)66s 76-14 12(1976/3)20 13(1977/1)21s 18.2.2 18(1979/2)62 18(1979/2)66s 76-15 12(1976/3)20 13(1977/1)21s 18.2.3 18(1979/2)62 18(1979/2)66s 76-16 12(1976/3)20 13(1977/1)22s 18.2.4 18(1979/2)62 18(1979/2)66s 76-17 12(1976/3)20 13(1977/1)22s 18.2.5 18(1979/2)62 18(1979/2)66s 76-18 12(1976/3)20 13(1977/1)24s 18.2.7 18(1979/2)66 77-1 13(1977/1)19 13(1977/2)21s 18.2.8 18(1979/2)63 18(1979/2)67s 77-2 13(1977/1)19 13(1977/2)22s 18.3.1 18(1979/3)65 18(1979/3)67s 77-5 13(1977/1)1	18.1.5				12(1976/2)19	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
18.1.9 18(1979/1)57 18(1979/1)61s 76-13 12(1976/3)20 13(1977/1)20s 18.2.1 18(1979/2)61 18(1979/2)66s 76-14 12(1976/3)20 13(1977/1)21s 18.2.2 18(1979/2)62 18(1979/2)66s 76-15 12(1976/3)20 13(1977/1)21s 18.2.3 18(1979/2)62 18(1979/2)66s 76-16 12(1976/3)20 13(1977/1)22s 18.2.4 18(1979/2)62 18(1979/2)66s 76-17 12(1976/3)20 13(1977/1)22s 18.2.5 18(1979/2)62 18(1979/2)66s 76-18 12(1976/3)20 13(1977/1)24s 18.2.6 18(1979/2)62 18(1979/2)66s 77-1 13(1977/1)19 13(1977/2)21s 18.2.7 18(1979/2)62 18(1979/2)67s 77-2 13(1977/1)19 13(1977/2)21s, 22s 18.2.8 18(1979/2)63 18(1979/2)67s 77-4 13(1977/1)19 13(1977/2)22s 18.3.1 18(1979/3)65 18(1979/3)67s 77-5 13(1977/1)19 13(1977/2)19 18.3.2 18(1979/3)65 18(1979/3)67s 77-6 13(1977/2)19 13(1977/2)19 18.3.4 18(1979/3)65 18(1979/3)67s 77						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.1.9	18(1979/1)57		76–13		13(1977/1)20s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			` ' '			13(1977/1)21s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				76–17	12(1976/3)20	13(1977/1)22s
18.2.7 18(1979/2)62 18(1979/2)67s 77-2 13(1977/1)19 13(1977/2)21s, 22s 18.2.8 18(1979/2)63 18(1979/2)67s 77-3 13(1977/1)19 13(1977/2)22s 18.2.9 18(1979/2)63 18(1979/2)67s 77-4 13(1977/1)19 13(1977/2)23s 18.3.1 18(1979/3)65 18(1979/3)67s 77-5 13(1977/1)19 13(1977/2)19v 18.3.2 18(1979/3)65 18(1979/3)67s 77-6 13(1977/1)19 13(1977/2)24s 18.3.3 18(1979/3)65 18(1979/3)67s 77-7 13(1977/2)19 18.3.4 18(1979/3)65 18(1979/3)67s 77-8 13(1977/2)19 18.3.5 18(1979/3)65 18(1979/3)67s 77-9 13(1977/2)19 18.3.6 18(1979/3)65 18(1979/3)68s 77-10 13(1977/2)20	18.2.5	18(1979/2)62	18(1979/2)66s			
18.2.8 18(1979/2)63 18(1979/2)67s 77-3 13(1977/1)19 13(1977/2)22s 18.2.9 18(1979/2)63 18(1979/2)67s 77-4 13(1977/1)19 13(1977/2)23s 18.3.1 18(1979/3)65 18(1979/3)67s 77-5 13(1977/1)19 13(1977/2)19v 18.3.2 18(1979/3)65 18(1979/3)67s 77-6 13(1977/1)19 13(1977/2)24s 18.3.3 18(1979/3)65 18(1979/3)67s 77-7 13(1977/2)19 13(1977/2)19 18.3.4 18(1979/3)65 18(1979/3)67s 77-8 13(1977/2)19 18.3.5 18(1979/3)65 18(1979/3)67s 77-9 13(1977/2)19 18.3.6 18(1979/3)65 18(1979/3)68s 77-10 13(1977/2)20			(/ /			
18.2.9 18(1979/2)63 18(1979/2)67s 13(1977/1)19 13(1977/2)19v 18.3.1 18(1979/3)65 18(1979/3)67s 77-6 13(1977/1)19 13(1977/2)19v 18.3.2 18(1979/3)65 18(1979/3)67s 77-7 13(1977/2)19 13(1977/2)19 18.3.3 18(1979/3)65 18(1979/3)67s 77-8 13(1977/2)19 13(1977/2)19 18.3.4 18(1979/3)65 18(1979/3)67s 77-9 13(1977/2)19 18.3.5 18(1979/3)65 18(1979/3)67s 77-10 13(1977/2)19 18.3.6 18(1979/3)65 18(1979/3)68s 77-11 13(1977/2)20				77–3	13(1977/1)19	13(1977/2)22s
18.3.1 18(1979/3)65 18(1979/3)67s 77-6 13(1977/1)19 13(1977/2)24s 18.3.2 18(1979/3)65 18(1979/3)67s 77-7 13(1977/2)19 18.3.3 18(1979/3)65 18(1979/3)67s 77-8 13(1977/2)19 18.3.4 18(1979/3)65 18(1979/3)67s 77-9 13(1977/2)19 18.3.5 18(1979/3)65 18(1979/3)67s 77-10 13(1977/2)19 18.3.6 18(1979/3)65 18(1979/3)68s 77-11 13(1977/2)20						
18.3.2 18(1979/3)65 18(1979/3)67s 77-7 13(1977/2)19 18.3.3 18(1979/3)65 18(1979/3)67s 77-8 13(1977/2)19 18.3.4 18(1979/3)65 18(1979/3)67s 77-9 13(1977/2)19 18.3.5 18(1979/3)65 18(1979/3)67s 77-10 13(1977/2)19 18.3.6 18(1979/3)65 18(1979/3)68s 77-11 13(1977/2)20					13(1977/1)19	
18.3.4 18(1979/3)65 18(1979/3)67s 13(1977/2)19 18.3.5 18(1979/3)65 18(1979/3)67s 77-9 13(1977/2)19 18.3.6 18(1979/3)65 18(1979/3)68s 77-10 13(1977/2)19 18.3.6 18(1979/3)65 18(1979/3)68s 77-11 13(1977/2)20				77–7	13(1977/2)19	, , , -
18.3.5 18(1979/3)65 18(1979/3)67s 77–10 13(1977/2)19 18.3.6 18(1979/3)65 18(1979/3)68s 77–11 13(1977/2)20						
18.3.6 18(1979/3)65 18(1979/3)68s 77–11 13(1977/2)20		18(1979/3)65	18(1979/3)67s			
18.3.7 18(1979/3)05 18(1979/3)08s 77–12 13(1977/2)20				77–11	13(1977/2)20	
18.3.8 18(1979/3)65 18(1979/3)68s 77–13 13(1977/3)19 14(1978/1)16s					13(1977/2)20 13(1977/3)10	1//(1078/1)16c
18.3.9 18(1979/3)65 18(1979/3)68s 77–14 13(1977/3)19 14(1978/1)16s						

OSSMB	77–15		1975-	-1979			PARAB 266
77–15	13(1977/3)19	14(1978/1)17s		G76.3-4	12(1976/3)7	12(1976/3)15s	
77–15 77–16	13(1977/3)19	14(1978/1)17s 14(1978/1)17s		G76.3-5	12(1976/3)7	12(1976/3)15s 12(1976/3)15s	
77–17	13(1977/3)19	14(1978/1)18s		G76.3–6	12(1976/3)7	12(1976/3)16s	
77–18	13(1977/3)19	14(1978/1)19s		G77.1–1	13(1977/1)5	13(1977/1)13s	
78–1	14(1978/1)15	14(1978/2)23s		G77.1-2	13(1977/1)5	13(1977/1)13s	
78–2 78–3	14(1978/1)15 14(1978/1)15	14(1978/2)24s 14(1978/2)22r 14(1978/3)18s		G77.1–3 G77.1–4	13(1977/1)5 13(1977/1)5	13(1977/1)13s 13(1977/1)14s	
78–3 78–4	14(1978/1)15	14(1978/2)22r 14(1978/3)18s 14(1978/2)22r 14(1978/3)18s		G77.1-5	13(1977/1)5	13(1977/1)14s 13(1977/1)15s	
78–5	14(1978/1)15	14(1978/2)22r 14(1978/3)19s		G77.1-6	13(1977/1)5	13(1977/1)16s	
78–6	14(1978/1)15	14(1978/2)24s		G77.2-1	13(1977/2)9	13(1977/2)10s	
78–7	14(1978/2)22	14(1978/3)19s		G77.2–2 G77.2–3	13(1977/2)9 13(1977/2)9	13(1977/2)10s 13(1977/2)14s	
78–8 78–9	14(1978/2)22 14(1978/2)23	14(1978/3)19s 14(1978/3)20s		G77.2-4	13(1977/2)9	13(1977/2)14s 13(1977/2)15s	
78–10	14(1978/3)17	15(1979/1)21s		G77.2–5	13(1977/2)9	13(1977/2)16s	
78-11	14(1978/3)17	15(1979/1)21s		G77.2–6	13(1977/2)9	13(1977/2)17s	
78–12	14(1978/3)17	15(1979/1)22s		G77.3–5	14/1070/1)0	14(1978/1)2v	
78–13 78–14	14(1978/3)17 14(1978/3)17	15(1979/1)22s 15(1979/1)23s		G78.1–1 G78.1–2	14(1978/1)2 14(1978/1)2	14(1978/1)3s 14(1978/1)4s	
78–14 78–15	14(1978/3)17	15(1979/1)23s 15(1979/1)23s		G78.1–3	14(1978/1)2	14(1978/1)4s	
79–1	15(1979/1)20	15(1979/2)18s		G78.1–4	14(1978/1)2	14(1978/1)5s	
79–2	15(1979/1)20	15(1979/2)18s		G78.1-5	14(1978/1)2	14(1978/1)5s	
79–3	15(1979/1)20	15(1979/2)18s		G78.1–6 G78.2–1	14(1978/1)2 14(1978/2)13	14(1978/1)7s 14(1978/2)14s	
79–4 79–5	15(1979/1)20 15(1979/1)20	15(1979/2)19s 15(1979/2)20s		G78.2-1 G78.2-2	14(1978/2)13	14(1978/2)14s 14(1978/2)14s	
79–5 79–6	15(1979/1)20	15(1979/2)20s 15(1979/2)21s		G78.2–3	14(1978/2)13	14(1978/2)14s	
79–7	15(1979/2)17	16(1980/1)11s		G78.2–4	14(1978/2)13	14(1978/2)15s	
79–8	15(1979/2)17	16(1980/1)12s		G78.2–5	14(1978/2)13	14(1978/2)16s	
79–9 70–10	15(1979/2)17	16(1980/1)13s		G78.3–1 G78.3–2	14(1978/3)7 14(1978/3)7	14(1978/3)7s 14(1978/3)8s	
79–10 79–11	15(1979/2)17 15(1979/2)17	16(1980/1)14s 16(1980/1)14s		G78.3–3	14(1978/3)7	14(1978/3)8s	
79–12	15(1979/2)17	16(1980/1)14s		G78.3-4	14(1978/3)7	14(1978/3)9s	
79-13	15(1979/3)23	16(1980/1)15s		G78.3–5	14(1978/3)7	14(1978/3)10s	
79–14	15(1979/3)23	16(1980/1)15s		G78.3–6	14(1978/3)7	14(1978/3)10s	
79–15	15(1979/3)23	16(1980/1)16s		G79.1–1 G79.1–2	15(1979/1)6 15(1979/1)6	15(1979/1)7s 15(1979/1)8s	
79–16 79–17	15(1979/3)23 15(1979/3)23	16(1980/1)17c 16(1980/1)17s		G79.1–3	15(1979/1)6	15(1979/1)9s	
79–18	15(1979/3)23	16(1980/1)17s		G79.1–4	15(1979/1)6	15(1979/1)10s	
Duahlam	` ' '	` , ,		G79.1–5	15(1979/1)6	15(1979/1)11s	
<u>Problem</u> G75.1–1	<u>Proposal</u> 11(1975/1)7	References 11(1975/1)11s		G79.1–6 G79.2–1	15(1979/1)6 15(1979/2)9	15(1979/1)11s 15(1979/2)10s	
G75.1-2	11(1975/1)7	11(1975/1)11s		G79.2-2	15(1979/2)9	15(1979/2)10s	
G75.1-3	11(1975/1)7	11(1975/1)11s, 12s		G79.2-3	15(1979/2)9	15(1979/2)10s	
G75.1–4	11(1975/1)7	11(1975/1)13s		G79.2-4	15(1979/2)9	15(1979/2)10s	
G75.1–5 G75.1–6	11(1975/1)7 11(1975/1)7	11(1975/1)14s 11(1975/1)14s		G79.2–5 G79.2–6	15(1979/2)9 15(1979/2)9	15(1979/2)10s 15(1979/2)11s	
G75.2-1	11(1975/2)6	11(1975/1)143 11(1975/2)11s		G79.2-7	15(1979/2)9	15(1979/2)11s	
G75.2-2	11(1975/2)6	11(1975/2)11s		G79.2–8	15(1979/2)9	15(1979/2)11s	
G75.2-3	11(1975/2)6	11(1975/2)12s		G79.3-1	15(1979/3)12	15(1979/3)12s	
G75.2–4 G75.2–5	11(1975/2)6 11(1975/2)6	11(1975/2)13s 11(1975/2)14s		G79.3–2 G79.3–3	15(1979/3)12 15(1979/3)12	15(1979/3)13s 15(1979/3)13s	
G75.2-6	11(1975/2)6	11(1975/2)14s 11(1975/2)15s		G79.3-4	15(1979/3)12	15(1979/3)13s	
G75.3-1	11(1975/3)12	11(1975/3)18s		G79.3–5	15(1979/3)12	15(1979/3)14s	
G75.3-2	11(1975/3)12	11(1975/3)18s		G79.3–6	15(1979/3)12	15(1979/3)14s	
G75.3–3 G75.3–4	11(1975/3)12	11(1975/3)19s 11(1975/3)20s			_		
G75.3-4 G75.3-5	11(1975/3)12 11(1975/3)12	11(1975/3)20s 11(1975/3)20s		PARA	В		
G75.3-6	11(1975/3)12	11(1975/3)21s		Problem	Proposal	References	
G76.1-1	12(1976/1)6	12(1976/1)10s		251			11(1975/2)34a
G76.1-2	12(1976/1)6	12(1976/1)11s		252			11(1975/2)34a
G76.1–3 G76.1–4	12(1976/1)6 12(1976/1)6	12(1976/1)11s 12(1976/1)12s		253			11(1975/2)34a
G76.1-5	12(1976/1)6	12(1976/1)12s 12(1976/1)12s		254 255		11(1975/1)21s 11(1975/1)22s	11(1975/2)34a
G76.1-6	12(1976/1)6	12(1976/1)13s		256			11(1975/2)34a
G76.2-1	12(1976/2)7	12(1976/2)11s		257		11(1975/1)23s	11(1975/2)34a
G76.2–2	12(1976/2)7	12(1976/2)11s		258		` '. '	11(1975/2)34a
G76.2–3 G76.2–4	12(1976/2)7 12(1976/2)7	12(1976/2)12s 12(1976/2)13s		259 260		11(1975/1)24s 11(1975/1)25s	11(1975/2)34a
G76.2-5	12(1976/2)7	12(1976/2)13s 12(1976/2)13s		261	11(1975/1)18	11(1975/1)23s 11(1975/2)27s	
G76.2-6	12(1976/2)7	12(1976/2)14s		262	11(1975/1)18	11(1975/2)27s	
G76.2-7	12(1976/2)7	12(1976/2)14s		263	11(1975/1)18	11(1975/2)28s	
G76.3–1 G76.3–2	12(1976/3)7 12(1976/3)7	12(1976/3)13s 12(1976/3)13s		264 265	11(1975/1)18 11(1975/1)19	11(1975/2)28s 11(1975/2)29s	
G76.3-2 G76.3-3	12(1976/3)7	12(1976/3)13s 12(1976/3)14s		266	11(1975/1)19 $11(1975/1)19$	11(1975/2)29s 11(1975/2)30s	
	(/ - / -	\ / - / -			(/ - / -)	(, -, 500	

PARAB	267			1975–1	.979			PARAB 409
		11/1075/0)01		13.0 1		10/1077/1)06	10/1077/0)00	
267 268	11(1975/1)19 11(1975/1)19	11(1975/2)31s 11(1975/2)31s			340 341	13(1977/1)26 13(1977/1)26	13(1977/3)33s 13(1977/3)34s	14(1978/1)36a 14(1978/1)36a
269	11(1975/1)19 $11(1975/1)19$	11(1975/2)31s 11(1975/2)32s			342	13(1977/1)26	13(1977/3)34s 13(1977/3)35s	14(1978/1)36a
270	11(1975/1)20	11(1975/2)32s			343	13(1977/1)27	13(1977/3)35s	14(1978/1)36a
271	11(1975/1)20	11(1975/2)9c, 3	33s		344	13(1977/1)27	13(1977/3)36s	14(1978/1)26s,
272	11(1975/1)20	11(1975/2)34s					36a	
273	11(1975/2)25	11(1975/3)20s	12(1976/1)32a		345	13(1977/2)34	14(1978/1)30s	
274	11(1975/2)25	11(1975/3)21s	10/1076 /1\20-		346	13(1977/2)34	14(1978/1)30s	
275 276	11(1975/2)25 11(1975/2)26	11(1975/3)22s 11(1975/3)22s	12(1976/1)32a 12(1976/1)32a		347 348	13(1977/2)34 13(1977/2)35	14(1978/1)30s 14(1978/1)31s	
277	11(1975/2)26	11(1975/3)22s	12(1976/1)32a		349	13(1977/2)35	14(1978/1)31s	
278	11(1975/2)26	11(1975/3)23s			350	13(1977/2)35	14(1978/1)32s	
279	11(1975/2)26	11(1975/3)23s	12(1976/1)32a		351	13(1977/2)35	14(1978/1)32s	
280	11(1975/2)26	11(1975/3)23s	10(10=6(1)00		352	13(1977/2)35	14(1978/1)33s	
281	11(1975/2)26	11(1975/3)24s	12(1976/1)32a		353 354	13(1977/2)35	14(1978/1)33s	
282 283	11(1975/2)26 11(1975/2)26	11(1975/3)24s 11(1975/3)25s	12(1976/1)32a		354 355	13(1977/2)35 13(1977/2)36	14(1978/1)34s 14(1978/1)35s	
284	11(1975/2)27	11(1975/3)25s			356	13(1977/2)36	14(1978/1)35s	
285	11(1975/3)18	12(1976/1)25s	12(1976/3)32a		357	13(1977/3)25	14(1978/2)31s,	32c
286	11(1975/3)18	12(1976/1)25s	12(1976/3)32a		358	13(1977/3)25	14(1978/2)32s	
287	11(1975/3)18	12(1976/1)25s			359	13(1977/3)25	14(1978/2)32s	
288	11(1975/3)19	12(1976/1)26s			360	13(1977/3)25	14(1978/2)33s	
289 290	11(1975/3)19 11(1975/3)19	12(1976/1)27s 12(1976/1)27s			361 362	13(1977/3)26 13(1977/3)26	14(1978/2)34s 14(1978/2)34s	
290	11(1975/3)19	12(1976/1)27s 12(1976/1)28s			363	13(1977/3)26	14(1978/2)34s 14(1978/2)36s	
292	11(1975/3)19		12(1976/3)32a		364	13(1977/3)26	14(1978/2)36s	
293	11(1975/3)19	12(1976/1)30s			365	13(1977/3)26	14(1978/2)38s	
294	11(1975/3)20	12(1976/1)30s			366	13(1977/3)27	14(1978/2)38s	
295	11(1975/3)20	12(1976/1)31s			367	13(1977/3)27	14(1978/2)39s	
296	11(1975/3)20	12(1976/1)32s	12(1976/3)32a		368	13(1977/3)27	14(1978/2)40s	
297 298	12(1976/1)22 12(1976/1)22	12(1976/2)29s 12(1976/2)29s	12(1976/3)32a		369 370	14(1978/1)28 14(1978/1)28	14(1978/3)29s 14(1978/3)30s	
299	12(1976/1)22	12(1976/2)30s			371	14(1978/1)28	14(1978/3)30s	
300	12(1976/1)22	12(1976/2)30s			372	14(1978/1)28	14(1978/3)31s	
301	12(1976/1)23	12(1976/2)31s			373	14(1978/1)28	14(1978/3)31s	
302	12(1976/1)23	12(1976/2)31s			374	14(1978/1)28	14(1978/3)32s	
303	12(1976/1)23	12(1976/2)32s			375	14(1978/1)29	14(1978/3)33s	
304 305	12(1976/1)23 12(1976/1)23	12(1976/2)33s 12(1976/2)34s	12(1976/3)32a		376 377	14(1978/1)29 14(1978/1)29	14(1978/3)33s 14(1978/3)34s	
306	12(1976/1)24	12(1976/2)34s	12(1976/3)32a		378	14(1978/1)29	14(1978/3)34s	
307	12(1976/1)24	12(1976/2)35s	12(1976/3)32a		379	14(1978/1)29	14(1978/3)35s	
308	12(1976/1)24	12(1976/2)36s	12(1976/3)32a		380	14(1978/1)29	14(1978/3)36s	
309	12(1976/2)26	12(1976/3)26s			381	14(1978/2)30	15(1979/1)28s	4=(40=0 (0) 44
310	12(1976/2)26	12(1976/3)26s			382	14(1978/2)30	15(1979/1)29s	15(1979/2)44a
311 312	12(1976/2)26 12(1976/2)26	12(1976/3)26s 12(1976/3)27s			383 384	14(1978/2)30 14(1978/2)30	15(1979/1)29s 15(1979/1)30s	15(1979/2)44a 15(1979/2)44a
313	12(1976/2)27	12(1976/3)27s			385	14(1978/2)30	15(1979/1)30s 15(1979/1)31s	15(1979/2)44a
314	12(1976/2)27	12(1976/3)28s			386	14(1978/2)30	15(1979/1)32s	15(1979/2)44a
315	12(1976/2)27	12(1976/3)29s			387	14(1978/2)30	15(1979/1)32s	
316	12(1976/2)27	12(1976/3)29s			388	14(1978/2)31	15(1979/1)33s	15(1979/2)44a
317	12(1976/2)27	12(1976/3)30s	13(1977/1)36a 13(1977/1)36a		389	14(1978/2)31 14(1978/2)31	15(1979/1)34s	15(1979/2)44a
318 319	12(1976/2)28 12(1976/2)28	12(1976/3)30s 12(1976/3)31s	15(1977/1)50a		390 391	14(1978/2)31	15(1979/1)34s 15(1979/1)35s	15(1979/2)44a
320	12(1976/2)28	12(1976/3)313 12(1976/3)32s			392	14(1978/2)31	15(1979/1)35s	
321	12(1976/3)23	13(1977/1)27s			393	14(1978/3)28	15(1979/2)37s,	38s
322	12(1976/3)23	13(1977/1)28s				, , ,	15(1979/3)39a	
323	12(1976/3)23	13(1977/1)28s			394	14(1978/3)28	15(1979/2)38s	15(1979/3)39a
324	12(1976/3)23	13(1977/1)28s			395	14(1978/3)28 14(1978/3)28	15(1979/2)38s,	
325 326	12(1976/3)24 12(1976/3)24	13(1977/1)29s 13(1977/1)29s			396 397	14(1978/3)28	15(1979/2)39s 15(1979/2)40s	15(1979/3)39a 15(1979/3)39a
327	12(1976/3)24	13(1977/1)293 13(1977/1)30s			398	14(1978/3)29	15(1979/2)40s,	
328	12(1976/3)24	13(1977/1)31s				(/-)=3	15(1979/3)39a	-
329	12(1976/3)24	13(1977/1)31s	13(1977/2)36a		399	14(1978/3)29	15(1979/2)41s	15(1979/3)39a
330	12(1976/3)25	13(1977/1)32s			400	14(1978/3)29	15(1979/2)42s	15(1979/3)40s
331	12(1976/3)25	13(1977/1)34s			401	14(1978/3)29	15(1979/2)42s	15(1070/2)20-
332 333	12(1976/3)25 13(1977/1)24	13(1977/1)35s 13(1977/3)27s			402 403	14(1978/3)29 14(1978/3)29	15(1979/2)43s 15(1979/2)43s	15(1979/3)39a
334	13(1977/1)24	13(1977/3)27s 13(1977/3)28s			403	14(1978/3)29	15(1979/2)43s 15(1979/2)44s	
335	13(1977/1)25	13(1977/3)29s			405	15(1979/1)26	15(1979/3)32s	
336	13(1977/1)25	13(1977/3)30s			406	15(1979/1)26	15(1979/3)33s	
337	13(1977/1)25	13(1977/3)31s	14(1978/1)36a		407	15(1979/1)26	15(1979/3)33s	
338	13(1977/1)25	13(1977/3)31s	14(1978/1)36a		408 400	15(1979/1)26	15(1979/3)34s	
339	13(1977/1)26	13(1977/3)32s	14(1978/1)36a	I	409	15(1979/1)26	15(1979/3)34s	

	PARAB 4	10	1975-	-1979		PME 341
12	410	15(1979/1)27	15(1979/3)35s	297	37(1977)26	37(1978)82v 38(1978)28c
1413 15(1079/1)27 15(1979/3)37a 299 37(1377)26 38(1379)30a, 30s 1414 15(1979/1)28 15(1979/3)38s 300 37(1977)27 38(1979)32a 1415 15(1979/1)28 15(1979/3)38s 301 37(1977)27 38(1979)32a 1416 15(1979/1)28 15(1979/3)38s 302 37(1978)82 38(1979)82a 1418 15(1979/2)36 306 37(1978)82 38(1979)83s 1419 15(1979/2)36 306 37(1978)82 38(1979)83s 1420 15(1979/2)36 306 37(1978)82 38(1979)83s 1421 15(1979/2)36 306 37(1978)82 38(1979)82a 1422 15(1979/2)36 308 38(1978)82 38(1979)82a 1423 15(1979/2)37 309 309 38(1978)82 38(1979)82a 1424 15(1979/2)37 301 38(1978)27 39(1979)32a 1425 15(1979/2)37 311 38(1978)27 39(1979)32a 1426 15(1979/2)37 311 38(1979)27 39(1990)30a 1427 15(1979/2)37 313 38(1979)79 39(1990)103 1428 15(1979/2)37 313 38(1979)79 39(1990)103 1429 15(1979/3)31 314 38(1979)79 39(1990)103 1429 15(1979/3)31 316 38(1979)79 39(1990)103 1432 15(1979/3)31 316 38(1979)79 39(1990)103 1433 15(1979/3)31 316 38(1979)79 39(1990)103 1434 15(1979/3)31 316 38(1979)79 39(1990)103 1435 15(1979/3)31 316 38(1979)79 39(1990)103 1436 15(1979/3)31 318 39(1979)30 40(1980)18a 15(1979/3)31 318 39(1979)30 40(1980)18a 15(1979/3)32 40(1980)18a 40(1980)18a 15(1979/3)33 31(1979)30 40(1980)18a 15(1979/3)31 318 39(1979)30 40(1980)18a 15(1979/3)32 40(1980)18a 40(1980)18a 15(1979/3)32 40(1980)18a 40(1980)18a 15(1979/3)33 39(1979)30 40(1980)18a 15(1979/3)32 40(1980)18a 40(1980)18a 15(1979/3)33 40(1980)18a 40(1980)18a 15(1979/3)34 40(1980)18a 40(15(1979/1)27	15(1979/3)36s		, ,	38(1979)80s
1414 15 1797/1222 15 1797/3388 300 37 1777/122 38 1797/3318 301 37 1797/338 301 37 179					` '	
415 15(1979/12)8 15(1979/3)36 5 15(1979/3)36 5 301 37(1977)27 38(1978)32 33(1979)86 11 15(1979/2)36 303 37(1978)82 38(1979)81 38(197						
1417 15(1979/2)36 303 37(1978)82 38(1979)81s 38(1979)81s 38(1979)81s 38(1979)81s 38(1979)81s 38(1979)81s 38(1979)81s 38(1979)81s 38(1979)81s 38(1979)82s 38(1979)83s 3		` '. '				,
1418 15(1979/2)36 304 37(1978)32 38(1979)81s 38(1979)81s 305 37(1978)32 38(1979)83 38(197		1 '. '	15(1979/3)39s			,
15(1979/2)36 306 37(1978)82 38(1979)82s 38(1979)83s		1 '. '				
200 15(1979/2)36 306 37(1978)83 30(1979)83 30(1979)32						,
A223 15(1979/2)36 308 38(1978)27 30(1979)344 A23 15(1979/2)37 310 38(1978)27 30(1979)355 A246 15(1979/2)37 311 38(1978)27 30(1979)356 A25 15(1979/2)37 312 38(1979)78 30(1979)358 A26 15(1979/2)37 312 38(1979)78 30(1980)1025 A27 15(1979/2)37 313 38(1979)79 39(1980)1025 A28 15(1979/2)37 313 38(1979)79 39(1980)1025 A28 15(1979/2)31 314 38(1979)79 39(1980)1025 A29 15(1979/2)31 315 38(1979)79 39(1980)1025 A20 15(1979/3)31 315 38(1979)79 39(1980)1025 A21 15(1979/3)31 315 38(1979)79 39(1980)1025 A22 15(1979/3)31 316 38(1979)79 39(1980)1025 A23 15(1979/3)31 317 39(1979)30 40(1980)46a A24 15(1979/3)31 318 39(1979)30 40(1980)38 40(1980)1025 A23 15(1979/3)31 319 39(1979)30 40(1980)38 40(1980)145 A23 15(1979/3)31 319 39(1979)30 40(1980)38 A23 15(1979/3)31 320 39(1979)31 40(1980)445 A33 15(1979/3)31 320 39(1979)31 40(1980)445 A34 15(1979/3)31 320 39(1979)31 40(1980)445 A35 15(1979/3)31 321 39(1979)30 40(1980)445 A36 15(1979/3)31 321 39(1979)30 40(1980)445 A37 15(1979/3)31 321 39(1979)30 40(1980)445 A38 15(1979/3)32 PME POBLET Proposal References Problem Proposal References A3(1975)105 170 120 A34 15(1979/3)31 321 37(1984)673. 673 673 A34 15(1979/3)31 321 37(1984)673. 673 A35 15(1979/3)32 A35 33(1975)85 278 77(1983)610 A44 77(1983)610 87(1984)44 A45 77(1983)610 87(1984)44 A47 77(1983)610 87(1984)44 A48 77(1983)610 87(1984)44 A49 77(1983)6	420			1	37(1978)83	38(1979)83s
423 15(1979/2)36 309 38(1978)27 30(1979)35s 30				1		,
A24		1 '. '				
426 15(1979/2)37 311 38(1978)27 39(1979)38 39(1980)102s 427 15(1979/2)37 313 38(1979)79 39(1980)102s 40(1980)164s 428 15(1979/3)31 315 38(1979)79 39(1980)105s 40(1980)164s 400 15(1979/3)31 315 38(1979)79 39(1980)105s 40(1980)164s 40(1980)164s				1		
A27 15(1979/2)37 39(1900)1038 428 15(1979/3)31 315 38(1979)79 39(1900)1058 40(1980)146a 429 15(1979/3)31 315 38(1979)79 39(1980)1058 40(1980)146a 40(1981)114c 40(1981)	425	15(1979/2)37			38(1978)27	
Age		1 '. '				,
Age					38(1979)79 38(1979)79	
A30 15(1979/3)51				511	30(1313)13	, , , ,
15 1797 1798 17	430	15(1979/3)31		315	38(1979)79	39(1980)105s, 107s 40(1980)46a
434 15 1979 3 3 1 3 40 1980 388 40 40 1980 40 43 43 43 5 15 1979 3 3 1 31 30 30 1979 30 40 40 40 40 40 40 40				216	20(1070)70	()
A34						
A36				1		, , ,
A38						40(1980)41s
Problem Proposal References Problem References Refer					` ,	,
Problem				321	39(1979)31	40(1980)44s
Problem				DME		
Proposal Proposal References 120						
PENT		<u>Proposal</u>			<u>Proposal</u>	
PENT 190 7(1983)610r 7(1984)673c, 673s, 673v Problem 262 Proposal References 34(1975)105s 239 7(1983)610r 8(1984)44c 262 34(1975)105s 278 7(1983)610r 1(1983)610r 264 34(1975)108s 294 6(1975)107s, 108s 265 34(1975)109s, 110c 297 7(1980)206c 266 34(1975)110s, 111s 298 6(1975)192s 267 35(1975)34s 304 6(1975)102s 268 35(1975)35s, 36s 313 6(1975)109s 270 35(1975)37s 315 6(1975)110s 271 35(1975)38s 316 6(1975)110s 272 34(1975)103 35(1976)98s 317 6(1975)111s 272 34(1975)103 35(1976)98s 316 6(1975)112s 273 34(1975)103 35(1976)99s 318 6(1975)113s 274 34(1975)104 35(1976)99s 318 6(1975)113s 275 34(1975)104 35(1976)07s 320 6(1975)118s 2	Q415		16(1980/1)22s	-		7(1983)609r
Problem	DENIT			1		
Problem 262 Proposal References 239 7(1983)610° 8(1984)44c 262 34(1975)105s 278 7(1983)610° 8(1984)44c 263 34(1975)108s 294 6(1975)107s, 108s 264 34(1975)109s, 110c 297 7(1980)206c 265 34(1975)101s, 111s 298 6(1975)192s 266 34(1975)104s, 111s 298 6(1975)192s 267 35(1975)34s 304 6(1975)102s 268 35(1975)36s 313 6(1975)109s 269 35(1975)37s 315 6(1975)109s 270 35(1975)38s 316 6(1975)110s 271 35(1975)30s 317 6(1975)112s 272 34(1975)103 35(1976)99s 318 6(1975)112s 273 34(1975)103 35(1976)99s 319 6(1975)113s 115c, 117c, 118c 274 34(1975)104 35(1976)99s 319 6(1975)112s 6(1975)112s 275 34(1975)104 35(1976)35s 322 6(1975	PENI			1		
262 34(1975)105s 278 7(1983)610r 264 34(1975)106s, 107c 292 6(1975)107s, 108s 264 34(1975)109s, 110c 297 7(1980)206c 265 34(1975)110s, 1111s 298 6(1975)192s 267 35(1975)34s 304 6(1975)109s 268 35(1975)34s 304 6(1975)109s 269 35(1975)35s 314 6(1975)109s 270 35(1975)35s 315 6(1975)109s 271 35(1975)35s 315 6(1975)10s 271 35(1975)35s 316 6(1975)10s 271 35(1975)36s 316 6(1975)111s 272 34(1975)103 35(1976)99s 31(1976)99s 318 6(1975)113s 274 34(1975)103 35(1976)99s 319 6(1975)113s 274 34(1975)104 35(1976)99c, 99s 319 6(1975)115s, 116s, 117c, 118c 275 34(1975)104 35(1976)100s 320 6(1975)118s 276 34(1975)104 35(1976)101s, 102c 321 6(1975)119s 277 35(1975)33 36(1976)33s 32 32 6(1975)135 278 35(1975)33 36(1976)33s 322 6(1975)119s 278 35(1975)33 36(1976)34s 324 6(1975)12s 280 35(1975)33 36(1976)34s 324 6(1975)12s 280 35(1975)34 36(1976)35s 325 6(1975)12s 281 35(1975)34 36(1976)35s 325 6(1975)12s 281 35(1975)34 36(1976)35s 326 6(1975)12s 281 35(1976)97 36(1977)94s 327 6(1975)18s 2176)97 36(1977)94s 327 6(1975)188 283 35(1976)97 36(1977)95s 328 6(1975)188 284 35(1976)97 36(1977)95s 328 6(1975)188 285 35(1976)97 36(1977)95s 328 6(1975)188 286 35(1976)97 36(1977)95s 329 6(1975)188 288 36(1976)31 37(1977)28s 330 6(1975)188 288 36(1976)31 37(1977)28s 331 6(1975)188 288 36(1976)31 37(1977)28s 332 6(1975)188 288 36(1976)31 37(1977)28s 333 6(1976)32 36(1977)96s 329 6(1975)188 288 36(1976)31 37(1977)28s 332 6(1975)188 288 36(1976)31 37(1977)28s 333 6(1976)32 36(1977)96s 329 6(1975)188 288 36(1976)31 37(1977)28s 333 6(1976)31 37(1977)28s 333 6(1976)32 36(1977)325 335 6(1975)189 336 6(1975)189 336(1976)33 36(1977)325 335 6(1975)189 336 6(1975)189 336 6(1975)189 336(1976)33 36(1977)325 336 6(1975)191 36(1977)195 336(1977)325 336 6(1975)191 36(1977)195 336(1977)325 336 6(1975)191 36(1977)195 336(1977)325 336 6(1975)191 36(1977)195 336(1977)325 336 6(1975)191 36(1977)195 336(1977)325 336 6(1975)191 36(1977)195 336(1977)335 346 6(1975)191 36(1977)1905 34(1977)335 346 6(1975)191 36(1977)1905 34(1977)335 34(1977)335 34(1977)335 34(1977)335	Problem	Proposal	References			
264 34(1975)108s 294 6(1975)193c 265 34(1975)109s, 110c 297 7(1980)206c 266 34(1975)110s, 111s 298 6(1975)192s 267 35(1975)34s 304 6(1975)102s 268 35(1975)36s 313 6(1975)109s 269 35(1975)36s 314 6(1975)105 270 35(1975)38s 315 6(1975)110s 271 35(1975)38s 316 6(1975)111s 272 34(1975)103 35(1976)98s 317 6(1975)112s 273 34(1975)103 35(1976)98s 317 6(1975)112s 273 34(1975)103 35(1976)99c, 99s 319 6(1975)113s, 116s, 117c, 118c 274 34(1975)104 35(1976)01s, 102c 321 6(1975)118s 276 34(1975)104 35(1976)33s 36(1976)33s 322 6(1975)119s 278 35(1975)33 36(1976)34s 324 6(1975)12s 279 35(1975)34 36(1976)35s 325 6(1975)12s <td></td> <td></td> <td></td> <td></td> <td></td> <td>7(1983)610r</td>						7(1983)610r
265 34(1975)100s, 110c 297 7(1980)206c 266 34(1975)110s, 111s 298 6(1975)192s 267 35(1975)34s 304 6(1975)122a 268 35(1975)35s, 36s 313 6(1975)109s 269 35(1975)37s 315 6(1975)110s 271 35(1975)38s 316 6(1975)110s 271 35(1975)38s 316 6(1975)111s 272 34(1975)103 35(1976)98s 317 6(1975)112s 273 34(1975)103 35(1976)99s 319 6(1975)112s 274 34(1975)103 35(1976)99c, 99s 319 6(1975)113s 275 34(1975)104 35(1976)105 320 6(1975)118s 276 34(1975)104 35(1976)105 320 6(1975)119s 277 35(1975)33 36(1976)32s 32c 321 6(1975)119s 278 35(1975)33 36(1976)32s 32c 322 6(1975)119s 278 35(1975)33 36(1976)32s 32c 322 6(1975)120s 279 35(1975)33 36(1976)34s 324 6(1975)121s 280 35(1975)33 36(1976)35s 326 6(1975)122s 281 35(1975)34 36(1976)35s 326 6(1975)122s 281 35(1975)37 36(1977)94s 327 6(1975)182s 282 35(1976)97 36(1977)94s 327 6(1975)182s 283 35(1976)97 36(1977)94s 327 6(1975)182s 284 35(1976)97 36(1977)94s 327 6(1975)182s 283 35(1976)97 36(1977)94s 327 6(1975)182s 284 35(1976)97 36(1977)94s 327 6(1975)182s 285 35(1976)97 36(1977)98s 328 6(1975)185s 286 35(1976)97 36(1977)98s 330 6(1975)184s 287 36(1976)31 37(1977)27s 322 6(1975)188s 288 36(1976)31 37(1977)27s 322 6(1975)188s 289 36(1976)31 37(1977)28s 333 6(1975)185 280 36(1976)31 37(1977)28s 335 6(1975)189s 290 36(1976)31 37(1977)28s 335 6(1975)191s 292 36(1977)93 37(1978)85s 338 6(1975)104 6(1975)191s 293 36(1977)93 37(1978)85s 338 6(1975)104 6(1975)191s 293 36(1977)93 37(1978)85s 338 6(1975)104 6(1975)191s 293 36(1977)93 37(1978)85s 338 6(1975)104 6(1976)230s				1		
266 34(1975)110s, 111s 298 6(1975)192s 267 35(1975)34s 304 6(1975)102s 268 35(1975)35s, 36s 313 6(1975)109s 269 35(1975)36s 314 6(1975)109s 270 35(1975)38s 315 6(1975)110s 271 35(1975)38s 316 6(1975)111s 272 34(1975)103 35(1976)99s 317 6(1975)111s 273 34(1975)103 35(1976)99s 318 6(1975)111s 274 34(1975)104 35(1976)99s 319 6(1975)115s, 116s, 117c, 118c 275 34(1975)104 35(1976)100s 320 6(1975)115s, 116s, 117c, 118c 276 34(1975)104 35(1976)33s 322 6(1975)119s 277 35(1975)33 36(1976)34s 322 6(1975)112s 278 35(1975)33 36(1976)34s 324 6(1975)122s 280 35(1975)33 36(1976)35s 325 6(1975)122s 281 35(1976)97 36(1976)35s 3				1		
267 35(1975)34s 304 6(1975)122a 268 35(1975)35s, 36s 313 6(1975)109s 269 35(1975)37s 314 6(1975)109s 270 35(1975)38s 315 6(1975)110s 271 35(1975)38s 316 6(1975)111s 272 34(1975)103 35(1976)98s 317 6(1975)112s 273 34(1975)103 35(1976)99c, 99s 319 6(1975)115s, 116s, 117c, 118c 274 34(1975)104 35(1976)100s 320 6(1975)118s 275 34(1975)104 35(1976)101s, 102c 321 6(1975)119s 276 34(1975)33 36(1976)33s 322 6(1975)119s 277 35(1975)33 36(1976)34s 324 6(1975)120s 279 35(1975)33 36(1976)34s 324 6(1975)122s 280 35(1975)33 36(1976)35s 325 6(1975)122s 281 35(1975)34 36(1976)35s 325 6(1975)122s 281 35(1976)97 36(1977)95s				1		,
269 35(1975)36s 314 6(1975)109s 270 35(1975)37s 315 6(1975)110s 271 35(1975)38s 316 6(1975)111s 272 34(1975)103 35(1976)98s 317 6(1975)112s 273 34(1975)103 35(1976)99s 318 6(1975)113s 274 34(1975)103 35(1976)99s 319 6(1975)113s 275 34(1975)104 35(1976)100s 320 6(1975)118s 276 34(1975)104 35(1976)101s, 102c 321 6(1975)119s 277 35(1975)33 36(1976)32s, 33c 322 6(1975)119s 278 35(1975)33 36(1976)33s 323 6(1976)32s 279 35(1975)33 36(1976)34s 322 6(1975)12s 280 35(1975)33 36(1976)34s 322 6(1975)12s 280 35(1975)34 36(1976)35s 325 6(1975)12s 281 35(1975)34 36(1976)35s 326 6(1975)180s 282 35(1976)97 36(1977)94s 327 6(1975)182s 283 35(1976)97 36(1977)95s 328 6(1975)183s 284 35(1976)97 36(1977)96s 329 6(1975)184s 285 35(1976)97 36(1977)97s 330 6(1977)88 286 35(1976)97 36(1977)97s 330 6(1975)185s 286 35(1976)97 36(1977)97s 330 6(1975)185s 286 35(1976)97 36(1977)97s 332 6(1975)184s 287 36(1976)31 37(1977)27s 332 6(1975)188s 288 36(1976)31 37(1977)27s 332 6(1975)188s 289 36(1976)31 37(1977)29s 37(1977)32s 335 6(1975)189s 290 36(1976)31 37(1977)29s 37(1977)32s 335 6(1975)191s 292 36(1977)93 37(1978)85s 85 338 6(1975)104 6(1976)230s			35(1975)34s			6(1975)122a
270 35(1975)37s 315 6(1975)110s 271 35(1975)38s 316 6(1975)111s 272 34(1975)103 35(1976)98s 317 6(1975)112s 273 34(1975)103 35(1976)99s 318 6(1975)112s 274 34(1975)104 35(1976)100s 320 6(1975)118s 275 34(1975)104 35(1976)101s, 102c 321 6(1975)119s 276 34(1975)33 36(1976)32s, 33c 322 6(1975)119s 277 35(1975)33 36(1976)33s 323 6(1975)120s 279 35(1975)33 36(1976)34s 324 6(1975)120s 279 35(1975)33 36(1976)35s 325 6(1975)122s 281 35(1975)34 36(1976)35s 326 6(1975)180s, 181s 6(1975)182s 281 35(1976)97 36(1977)94s 327 6(1975)180s, 181s 6(1975)182s 283 35(1976)97 36(1977)95s 328 6(1975)184s 285 35(1976)97 36(1977)98s 331				1		` '
271 35(1975)38s 316 6(1975)111s 272 34(1975)103 35(1976)98s 317 6(1975)112s 273 34(1975)103 35(1976)99s 318 6(1975)113s 274 34(1975)103 35(1976)99c, 99s 319 6(1975)115s, 116s, 117c, 118c 275 34(1975)104 35(1976)101s, 102c 321 6(1975)119s 276 34(1975)33 36(1976)32s, 33c 322 6(1975)119s 277 35(1975)33 36(1976)33s 323 6(1975)120s 279 35(1975)33 36(1976)34s 324 6(1975)122s 280 35(1975)33 36(1976)35s 325 6(1975)122s 281 35(1976)97 36(1976)35s 326 6(1975)180s, 181s 6(1976)244c 282 35(1976)97 36(1977)94s 327 6(1975)182s 283 35(1976)97 36(1977)95s 328 6(1975)183s 284 35(1976)97 36(1977)95s 329 6(1975)184s 285 35(1976)97 36(1977)98 330 <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>,</td>				1		,
272 34(1975)103 35(1976)99s 318 6(1975)112s 273 34(1975)103 35(1976)99c, 99s 319 6(1975)115s, 116s, 117c, 118c 274 34(1975)104 35(1976)100s 320 6(1975)118s 276 34(1975)104 35(1976)101s, 102c 321 6(1975)119s 277 35(1975)33 36(1976)32s, 33c 322 6(1975)119s 278 35(1975)33 36(1976)34s 324 6(1975)120s 279 35(1975)33 36(1976)35s 325 6(1975)121s 280 35(1975)34 36(1976)35s 326 6(1975)180s, 181s 6(1976)244c 281 35(1976)97 36(1977)94s 327 6(1975)182s 283 35(1976)97 36(1977)95s 328 6(1975)183s 284 35(1976)97 36(1977)96s 329 6(1975)184s 285 35(1976)97 36(1977)97s 330 6(1975)185s 286 35(1976)97 36(1977)98s 331 6(1975)188s 287 36(1976)31 37(1977)27s 332 6(1975)188s 288 36(1976)31						
274 34(1975)103 35(1976)99c, 99s 319 6(1975)115s, 116s, 117c, 118c 275 34(1975)104 35(1976)100s 320 6(1975)118s 276 34(1975)104 35(1976)13c, 102c 321 6(1975)119s 277 35(1975)33 36(1976)32s, 33c 322 6(1975)120s 278 35(1975)33 36(1976)34s 324 6(1975)121s 280 35(1975)33 36(1976)35s 325 6(1975)121s 281 35(1975)34 36(1976)35s 326 6(1975)180s, 181s 6(1976)244c 282 35(1976)97 36(1977)94s 327 6(1975)182s 6(1975)182s 283 35(1976)97 36(1977)95s 328 6(1975)183s 6(1975)184s 284 35(1976)97 36(1977)97s 330 6(1975)184s 329 6(1975)184s 285 35(1976)98 36(1977)98s 331 6(1975)188s 6(1975)188s 286 35(1976)31 37(1977)27s 332 6(1975)188s 288 36(1976)31			35(1976)98s	317		6(1975)112s
275 34(1975)104 35(1976)100s 320 6(1975)118s 276 34(1975)104 35(1976)101s, 102c 321 6(1975)119s 277 35(1975)33 36(1976)32s, 33c 322 6(1975)119s 278 35(1975)33 36(1976)34s 323 6(1975)120s 279 35(1975)33 36(1976)35s 324 6(1975)121s 280 35(1975)34 36(1976)35s 325 6(1975)122s 281 35(1976)97 36(1977)94s 327 6(1975)180s, 181s 6(1975)182s 282 35(1976)97 36(1977)95s 328 6(1975)183s 284 35(1976)97 36(1977)97s 329 6(1975)184s 285 35(1976)97 36(1977)97s 330 6(1975)185s 286 35(1976)98 36(1977)98s 331 6(1975)186s, 187c, 187s 287 36(1976)31 37(1977)27s 332 6(1975)188s 289 36(1976)31 37(1977)32s 335 6(1975)189s 290 36(1976)31 3						
276 34(1975)104 35(1976)101s, 102c 321 6(1975)119s 277 35(1975)33 36(1976)32s, 33c 322 6(1975)119s 278 35(1975)33 36(1976)33s 323 6(1975)120s 279 35(1975)33 36(1976)34s 324 6(1975)121s 280 35(1975)34 36(1976)35s 325 6(1975)120s 281 35(1976)97 36(1977)94s 327 6(1975)182s 282 35(1976)97 36(1977)95s 328 6(1975)183s 284 35(1976)97 36(1977)96s 329 6(1975)184s 285 35(1976)97 36(1977)97s 330 6(1975)184s 285 35(1976)97 36(1977)98s 331 6(1975)186s, 187c, 187s 286 35(1976)93 37(1977)27s 332 6(1975)188s 287 36(1976)31 37(1977)28s 333 6(1975)188s 288 36(1976)31 37(1977)29s, 30c 334 6(1975)19s 290 36(1976)31 36(1977)93c 37(19						
278 35(1975)33 36(1976)33s 323 6(1975)120s 279 35(1975)33 36(1976)34s 324 6(1975)121s 280 35(1975)33 36(1976)35s 325 6(1975)122s 281 35(1975)34 36(1976)35s 326 6(1975)180s, 181s 6(1976)244c 282 35(1976)97 36(1977)94s 327 6(1975)182s 283 35(1976)97 36(1977)96s 328 6(1975)184s 284 35(1976)97 36(1977)97s 330 6(1975)184s 285 35(1976)97 36(1977)98s 331 6(1975)186s, 187c, 187s 286 35(1976)98 36(1977)98s 331 6(1975)188s 287 36(1976)31 37(1977)27s 332 6(1975)188s 288 36(1976)31 37(1977)28s 333 6(1975)188s 289 36(1976)31 37(1977)29s, 30c 334 6(1975)189s 290 36(1976)31 36(1977)93 37(1977)32s 335 6(1975)191s 291 36(1977)93 37(1978)85s, 84s 337 6(1975)104 6(1975)191s			· · · · · · · · · · · · · · · · · · ·			
279 35(1975)33 36(1976)34s 324 6(1975)121s 280 35(1975)33 36(1976)35s 325 6(1975)122s 281 35(1975)34 36(1976)35s 326 6(1975)180s, 181s 6(1976)244c 282 35(1976)97 36(1977)94s 327 6(1975)182s 283 35(1976)97 36(1977)95s 328 6(1975)183s 284 35(1976)97 36(1977)97s 330 6(1975)185s 285 35(1976)97 36(1977)98s 331 6(1975)185s 286 35(1976)98 36(1977)98s 331 6(1975)188s 287 36(1976)31 37(1977)27s 332 6(1975)188s 288 36(1976)31 37(1977)28s 333 6(1975)188s 289 36(1976)31 37(1977)29s, 30c 334 6(1975)189s 290 36(1976)31 36(1977)93c 37(1977)32s 335 6(1975)191s 291 36(1976)32 36(1977)93c 37(1977)33s, 34s 336 6(1975)191s 292 36(1977)93 37(1978)85s 338 6(1975)104 6(1975)128s, 324a <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
280						` '
281 35(1975)34 36(1976)35s 326 6(1975)180s, 181s 6(1976)244c 282 35(1976)97 36(1977)94s 327 6(1975)182s 283 35(1976)97 36(1977)95s 328 6(1975)183s 284 35(1976)97 36(1977)96s 329 6(1975)184s 285 35(1976)97 36(1977)97s 330 6(1975)185s 286 35(1976)98 36(1977)98s 331 6(1975)186s, 187c, 187s 287 36(1976)31 37(1977)27s 332 6(1975)188s 288 36(1976)31 37(1977)28s 333 6(1975)188s 289 36(1976)31 37(1977)29s, 30c 334 6(1975)189s 290 36(1976)31 37(1977)93c 37(1977)32s 335 6(1975)190s 291 36(1976)32 36(1977)93 37(1977)33s, 34s 36 292 36(1977)93 37(1978)83s, 84c, 84s 37 293 36(1977)93 37(1978)85c, 85s 338 6(1975)104 6(1975)228s, 324a 294 36(1977)93 37(1978)86s 339 6(1975)104 6(1976)230s			,			
282 35(1976)97 36(1977)94s 327 6(1975)182s 283 35(1976)97 36(1977)95s 328 6(1975)183s 284 35(1976)97 36(1977)96s 329 6(1975)184s 285 35(1976)98 36(1977)97s 330 6(1975)185s 286 35(1976)98 36(1977)98s 331 6(1975)186s, 187c, 187s 287 36(1976)31 37(1977)27s 332 6(1975)188s 288 36(1976)31 37(1977)28s 333 6(1975)188s 289 36(1976)31 37(1977)29s, 30c 334 6(1975)189s 290 36(1976)31 36(1977)93c 37(1977)32s 335 6(1975)190s 291 36(1976)32 36(1977)93c 37(1977)33s, 34s 336 6(1975)191s 292 36(1977)93 37(1978)83s, 84c, 84s 337 6(1975)191s 293 36(1977)93 37(1978)85c, 85s 338 6(1975)104 6(1976)228s, 324a 294 36(1977)93 37(1978)86s 339 6(1975)104 6(1976)230s						
284 35(1976)97 36(1977)96s 329 6(1975)184s 285 35(1976)97 36(1977)97s 330 6(1975)185s 286 35(1976)98 36(1977)98s 331 6(1975)186s, 187c, 187s 287 36(1976)31 37(1977)27s 332 6(1975)188s 288 36(1976)31 37(1977)28s 333 6(1975)188s 289 36(1976)31 37(1977)29s, 30c 334 6(1975)189s 290 36(1976)31 36(1977)93c 37(1977)32s 335 6(1975)190s 291 36(1976)32 36(1977)93c 37(1977)33s, 34s 336 6(1975)191s 292 36(1977)93 37(1978)85s 338 6(1975)104 6(1975)191s 293 36(1977)93 37(1978)85s 338 6(1975)104 6(1976)228s, 324a 294 36(1977)93 37(1978)86s 339 6(1975)104 6(1976)230s		` '				6(1975)182s
285 35(1976)97 36(1977)97s 330 6(1975)185s 286 35(1976)98 36(1977)98s 331 6(1975)186s, 187c, 187s 287 36(1976)31 37(1977)27s 332 6(1975)188s 288 36(1976)31 37(1977)28s 333 6(1975)188s 289 36(1976)31 37(1977)29s, 30c 334 6(1975)189s 290 36(1976)31 36(1977)93c 37(1977)32s 335 6(1975)190s 291 36(1976)32 36(1977)93c 37(1977)33s, 34s 336 6(1975)191s 292 36(1977)93 37(1978)83s, 84c, 84s 337 6(1975)191s 293 36(1977)93 37(1978)85c, 85s 338 6(1975)104 6(1976)228s, 324a 294 36(1977)93 37(1978)86s 339 6(1975)104 6(1976)230s		· · · · · ·	,			
286 35(1976)98 36(1977)98s 331 6(1975)186s, 187c, 187s 287 36(1976)31 37(1977)27s 332 6(1975)188s 288 36(1976)31 37(1977)28s 333 6(1975)188s 289 36(1976)31 37(1977)29s, 30c 334 6(1975)189s 290 36(1976)31 36(1977)93c 37(1977)32s 335 6(1975)190s 291 36(1976)32 36(1977)93c 37(1977)33s, 34s 336 6(1975)191s 292 36(1977)93 37(1978)83s, 84c, 84s 337 6(1975)194 6(1975)191s 293 36(1977)93 37(1978)86s 338 6(1975)104 6(1976)228s, 324a 294 36(1977)93 37(1978)86s 339 6(1975)104 6(1976)230s		· · · · · ·	,			
287 36(1976)31 37(1977)27s 332 6(1975)188s 288 36(1976)31 37(1977)28s 333 6(1975)188s 289 36(1976)31 37(1977)29s, 30c 334 6(1975)189s 290 36(1976)31 36(1977)93c 37(1977)32s 335 6(1975)190s 291 36(1976)32 36(1977)93c 37(1977)33s, 34s 336 6(1975)191s 292 36(1977)93 37(1978)83s, 84c, 84s 337 6(1975)104 6(1975)191s 293 36(1977)93 37(1978)85s 338 6(1975)104 6(1976)228s, 324a 294 36(1977)93 37(1978)86s 339 6(1975)104 6(1976)230s		· · · · · ·				
289 36(1976)31 37(1977)29s, 30c 334 6(1975)189s 290 36(1976)31 36(1977)93c 37(1977)32s 335 6(1975)190s 291 36(1976)32 36(1977)93c 37(1977)33s, 34s 336 6(1975)191s 292 36(1977)93 37(1978)83s, 84c, 84s 337 6(1975)191s 293 36(1977)93 37(1978)85s, 85s 338 6(1975)104 6(1976)228s, 324a 294 36(1977)93 37(1978)86s 339 6(1975)104 6(1976)230s		36(1976)31	· · · · · · · · · · · · · · · · · · ·	332		6(1975)188s
290 36(1976)31 36(1977)93c 37(1977)32s 335 6(1975)190s 291 36(1976)32 36(1977)93c 37(1977)33s, 34s 336 6(1975)191s 292 36(1977)93 37(1978)83s, 84c, 84s 337 6(1975)191s 293 36(1977)93 37(1978)85s, 85s 338 6(1975)104 6(1976)228s, 324a 294 36(1977)93 37(1978)86s 339 6(1975)104 6(1976)230s						` '
291 36(1976)32 36(1977)93c 37(1977)33s, 34s 336 6(1975)191s 292 36(1977)93 37(1978)83s, 84c, 84s 337 6(1975)191s 293 36(1977)93 37(1978)85c, 85s 338 6(1975)104 6(1976)228s, 324a 294 36(1977)93 37(1978)86s 339 6(1975)104 6(1976)230s		· · · · · ·				` '
292 36(1977)93 37(1978)83s, 84c, 84s 337 6(1975)191s 293 36(1977)93 37(1978)85s, 85s 338 6(1975)104 6(1976)228s, 324a 294 36(1977)93 37(1978)86s 339 6(1975)104 6(1976)230s		` '		1		` '
294 36(1977)93 37(1978)86s 339 6(1975)104 6(1976)230s	292	36(1977)93	37(1978)83s, 84c, 84s	337		6(1975)191s
294 30(1977)93 37(1978)80s 339 6(1975)104 6(1976)230s 295 36(1977)94 37(1978)87s 340 6(1975)104 6(1976)231s		· · · · · ·			` '	` '
			31(1918)80s 37(1978)87s			
296 36(1977)94 37(1978)88s 341 6(1975)105 6(1976)232s, 309c					` '	

PME 342	2	1975-	-1979	65	SIAM 74-21
342	6(1975)105	6(1976)233s	414	6(1978)482	6(1979)623s
343	6(1975)105	6(1976)236s	415	6(1978)482	6(1979)624s
344	6(1975)105	6(1976)237s	416	6(1978)482	6(1979)625s
345	6(1975)106	6(1976)239s	417	6(1978)483	6(1979)626s
346	6(1975)106	6(1976)240s	418	6(1978)483	6(1979)627s
347	6(1975)106	6(1976)242s	419	6(1978)483	6(1979)628c 7(1983)611r
348	6(1975)106	6(1976)242s			8(1984)46s
349	6(1975)106	6(1976)243s	420	6(1978)483	6(1979)628s, 629s
350	6(1975)177	6(1976)310s	421	6(1978)483	6(1979)631s
351	6(1975)178	6(1976)311s	422	6(1978)484	6(1979)632s
352 353	6(1975)178 6(1975)178	6(1976)312s 6(1976)313s	423	6(1978)484	6(1979)615v 7(1980)134s 7(1981)266c 7(1983)611r
354	6(1975)178	6(1976)313s 6(1976)314s	424	6(1978)484	6(1979)633s
355	6(1975)178	6(1976)315c, 315s 6(1977)381c	425	6(1978)539	7(1979)61s
356	6(1975)179	6(1976)316s	426	6(1978)539	7(1979)62s
357	6(1975)179	6(1976)317s	427	6(1978)539	7(1979)63s
358	6(1975)179	6(1976)317s	428	6(1978)540	7(1979)64s
359	6(1975)179	6(1976)320s, 320v	429	6(1978)540	7(1979)65s
360	6(1975)179	6(1976)321s 6(1977)381c	430	6(1978)540	7(1979)67s
361	6(1975)180	6(1976)323s, 323v, 324c	431	6(1978)540	7(1979)68s
362	6(1976)226	6(1977)368s, 369s	432	6(1978)540	7(1979)69s
363	6(1976)227	6(1977)370s, 436s	433	6(1978)540	7(1979)70s
364	6(1976)227	6(1976)309s 6(1977)371s	434	6(1978)541	7(1979)73s
		6(1978)501c	435	6(1978)541	7(1979)73s
365	6(1976)227	6(1977)372s, 373c, 374c	436	6(1978)542	7(1979)74s
366	6(1976)227	6(1977)374s, 435s, 436c	437	6(1978)542	7(1979)75s
367	6(1976)227	6(1977)375s	438	6(1979)615	7(1980)135c, 190s 7(1981)267s
368	6(1976)227	6(1977)376s	439	6(1979)616	7(1980)136s
369	6(1976)227	6(1977)377s	440 441	6(1979)616 6(1979)616	7(1980)137s 7(1980)137s
370 371	6(1976)227 6(1976)227	6(1977)378s 6(1977)378s, 379s	442	6(1979)616	7(1980)1378 7(1980)139s
372	6(1976)227	6(1977)379s	443	6(1979)617	7(1980)139s
373	6(1976)228	6(1977)380s	444	6(1979)617	7(1980)140s
374	6(1976)306	6(1977)421s	445	6(1979)617	7(1980)141s
375	6(1976)306	6(1977)422s	446	6(1979)618	7(1980)143s
376	6(1976)306	6(1977)423s, 424s	447	6(1979)618	7(1980)145s
377	6(1976)306	6(1977)425s	448	6(1979)619	7(1980)146s
378	6(1976)306	6(1977)426s	449	7(1979)57	7(1980)191s
379	6(1976)308	6(1977)427s	450	7(1979)57	7(1980)191s
380	6(1976)308	6(1977)427s	451	7(1979)58	7(1980)192s
381	6(1976)308	6(1977)428s 6(1978)559c	452	7(1979)58	7(1980)193s, 194s
382	6(1976)308	6(1977)429s	453	7(1979)58	7(1980)195s
383	6(1976)308	6(1977)431s, 432s	454	7(1979)58	7(1980)195s
384	6(1976)308	6(1977)434s	455 456	7(1979)58 7(1979)58	7(1980)196s 7(1980)197c 7(1981)262v
385 386	6(1976)309	6(1977)435s	430	1(1919)30	7(1983)612r
387	6(1977)364 6(1977)365	6(1978)485s, 486c 6(1978)486s, 559c	457	7(1979)58	7(1980)197s, 198c
388	6(1977)365	6(1978)488s	458	7(1979)59	7(1980)199s
389	6(1977)366	6(1978)488c, 559c	459	7(1979)59	7(1980)200s
390	6(1977)366	6(1978)489s	460	7(1979)60	7(1980)201s
391	6(1977)366	6(1978)490s	461	7(1979)60	7(1980)203s
392	6(1977)366	6(1978)491s, 559a		, ,	, ,
393	6(1977)366	6(1978)492s	SIAM		
394	6(1977)366	6(1978)493s, 559a	5.7.1		
395	6(1977)367	6(1978)495s, 559a	<u>Problem</u>	Proposal	References
396	6(1977)367	6(1978)496s, 559a	63–9		27(1985)447c 28(1986)234c
397	6(1977)367	6(1978)497s	71–19		25(1983)403s
398	6(1977)367	6(1978)499s, 500s	73–2		18(1976)492c, 492s
399	6(1977)417	6(1978)542s, 543s	74–3		17(1975)171s
400	6(1977)417	6(1978)544s, 545s	74–4		17(1975)172s
401 402	6(1977)417 6(1077)418	6(1978)546s 6(1979)619c	74–5		17(1975)174s, 175c, 175s
402 403	6(1977)418 6(1977)418	6(1978)550s 7(1983)611r 8(1984)45s	74–8 74–9		17(1975)687s 17(1975)690s, 691c
403 404	6(1977)418	6(1978)551s	74–9		17(1975)690s, 691c 17(1975)691s, 693c
404	6(1977)419	6(1978)542v, 551c 7(1979)76s	74–10		23(1981)102s
406	6(1977)419	6(1978)552s, 553c, 554c	74–12		17(1975)693s
407	6(1977)419	6(1978)554s 8(1985)182c	74–14		17(1975)694s
408	6(1977)419	6(1978)555s	74–16		17(1975)695s
409	6(1977)419	6(1978)557s	74–17		18(1976)119s
410	6(1977)420	6(1978)557s	74–18		18(1976)120s
411	6(1977)421	6(1978)558s, 559s	74–19		18(1976)121s
412	6(1978)481	6(1979)620s	74–20		18(1976)123s
413	6(1978)481	6(1979)621s	74–21		18(1976)126s

SIAM 74	-22	1975	-1979		SPECT 9.8
-		10/1076)120-	70.2	20(1079)192	
74–22 75–1	17(1975)167	18(1976)130s 18(1976)299s, 300c, 763a	78–3 78–4	20(1978)182 20(1978)183	21(1979)145s, 146c, 258a
75-1	17(1973)107	19(1970)2995, 300C, 703a 19(1977)148a	78–5	20(1978)183	21(1979)146s
75–2	17(1975)167	18(1976)300s, 301s	78–6	20(1978)394	21(1979)258s, 259c, 259s, 260c
75–3	17(1975)168	18(1976)302s, 303c, 763a	78–7	20(1978)394	21(1979)560s
	` /	19(1977)148a	78–8	20(1978)394	21(1979)261s, 263c
75–4	17(1975)168	18(1976)303s	78–9	20(1978)395	
75–5	17(1975)169	18(1976)764c, 764s	78–10	20(1978)593	21(1979)397s 22(1980)102a
75–6	17(1975)169		78–11	20(1978)593	21(1979)398s
75–7	17(1975)169	18(1976)305s	78–12	20(1978)594	21(1979)398s
75–8 75–9	17(1975)565	18(1976)493s 19(1977)737a 18(1976)494s	78–13 78–14	20(1978)594 20(1978)594	21(1979)562x 21(1979)400c
75–9 75–10	17(1975)565 17(1975)566	18(1976)4945 18(1976)496s 19(1977)565a	78–14	20(1978)594	21(1979)400s 21(1979)401s 22(1980)102a
75–11	17(1975)566	18(1976)497s	78–16	20(1978)855	21(1979)564s
75–12	17(1975)566	18(1976)497c, 498c, 498s, 500s	78–17	20(1978)855	21(1979)565s
	()	19(1977)334c	78–18	20(1978)855	21(1979)567s, 568s
75-13	17(1975)567	` ,	78–19	20(1978)855	21(1979)568s
75–14	17(1975)567	18(1976)501×	78–20	20(1978)856	21(1979)569s
75–15	17(1975)567	18(1976)503c, 503s 19(1977)148a	79–1	21(1979)139	/
75–16	17(1975)685	18(1976)766s	79–2	21(1979)139	22(1980)99s 23(1981)105c
75–17	17(1975)685	18(1976)767s, 768c	79–3	21(1979)139	22(1980)100s
75–18 75–19	17(1975)686 17(1975)686	18(1976)769s, 770c 19(1977)148a	79–4 79–5	21(1979)139 21(1979)140	22(1980)101s 23(1981)113a
75–19 75–20	17(1975)686	19(1977)738s 18(1976)306v, 770s, 772c	79–5	21(1979)140	22(1980)101s 23(1981)113a 21(1979)256c
75–20 75–21	17(1975)687	18(1976)773c, 773s	79–7	21(1979)256	22(1980)230s 23(1981)113a
76–1	18(1976)117	19(1977)149s, 149x, 335c, 744c	79–8	21(1979)257	22(1980)231s
	()	20(1978)184c	79–9	21(1979)257	22(1980)232s
76–2	18(1976)117	19(1977)150s	79–10	21(1979)257	21(1979)257c 22(1980)234s
76–3	18(1976)117	` ,	79–11	21(1979)395	22(1980)364s
76–4	18(1976)118	19(1977)153s	79–12	21(1979)395	22(1980)366s
76–5	18(1976)118	19(1977)155s	79–13	21(1979)396	22(1980)369s 23(1981)113a
76–6	18(1976)118	19(1977)155s	79–14	21(1979)396	22(1980)369s
76–7 76–8	18(1976)294	19(1977)329s, 330s, 331c	79–15 79–16	21(1979)396 21(1979)559	22(1980)373s 22(1980)504x
76–8 76–9	18(1976)295 18(1976)295	19(1977)3298, 3308, 3310 19(1977)331s	79–10	21(1979)559	22(1900)304x
76–10	18(1976)296	19(1977)148v, 332x, 737a	79–18	21(1979)559	22(1980)508s, 509s
. 0 10	10(13.0)230	20(1978)183a	79–19	21(1979)559	22(1980)509s
76-11	18(1976)296	19(1977)334s	79–20	21(1979)560	22(1980)503s, 504c
76-12	18(1976)296	` ,			
76–13	18(1976)489	19(1977)565s, 737a 20(1978)183a	SPEC	Т	
76–14	18(1976)489	19(1977)567v, 567×			
76–15	18(1976)490	19(1977)568s	Problem	Proposal	References
76–16 76–17	18(1976)490 18(1976)491	23(1981)104s 19(1977)740s 20(1978)856c	6.3 6.5		7(1975)69c 7(1975)68s
76–17 76–18	18(1976)762	19(1977)740s 20(1978)650C 19(1977)742s	6.6		7(1975)68s
76–19	18(1976)762	20(1978)184s, 863a	6.7		7(1975)69s
76–20	18(1976)762	19(1977)742s	6.8		7(1975)69s
76-21	18(1976)763	` ,	7.1	7(1975)31	7(1975)102s 8(1976)34c
76–22	18(1976)763	19(1977)743s 20(1978)183a	7.2	7(1975)31	7(1975)103s
77–1	19(1977)146	20(1978)186s, 856c, 863v	7.3	7(1975)31	7(1975)103s
77–2	19(1977)146	20(1978)187s, 863v	7.4	7(1975)67	8(1976)34s
77–3	19(1977)147	20(1978)189c, 189s	7.5	7(1975)67	8(1976)34s
77–4 77–5	19(1977)147 19(1977)148	20(1978)190s	7.6 7.7	7(1975)67 7(1975)102	8(1976)34s 8(1976)64s
77–6	19(1977)328	20(1978)396x 22(1980)102v, 373v	7.8	7(1975)102	8(1976)65s
77–7	19(1977)328	20(1978)398s	7.9	7(1975)102	8(1976)65s
77–8	19(1977)329	20(1978)595c, 595s	8.1	8(1976)33	8(1976)92s
77–9	19(1977)329	20(1978)400c, 400s 21(1979)140a	8.2	8(1976)33	8(1976)92s
77–10	19(1977)329	20(1978)400s	8.3	8(1976)33	8(1976)93s
77–11	19(1977)563	20(1978)597c, 597s	8.4	8(1976)64	9(1977)33s
77–12	19(1977)563	20(1978)598c, 598s, 599c	8.5	8(1976)64	9(1977)33s
77–13	10(1077)564	21(1979)140a, 258a 20(1078)500e	8.6	8(1976)64	9(1977)34s 0(1977)64c
77–13 77–14	19(1977)564 19(1977)564	20(1978)599s 20(1978)857×	8.7 8.8	8(1976)92 8(1976)92	9(1977)64s 9(1977)65s
77–14 77–15	19(1977)564	20(1978)601c, 601s, 604a	8.9	8(1976)92	9(1977)65s 9(1977)65s
15	13(1311)307	21(1979)140a	9.1	9(1977)32	9(1977)98s
77–16	19(1977)736	20(1978)858s 21(1979)140a	9.2	9(1977)32	9(1977)98s
77–17	19(1977)736	20(1978)859c, 859s	9.3	9(1977)32	9(1977)98s
77–18	19(1977)736	20(1978)860s, 862c	9.4	9(1977)64	10(1978)32s
77–19	19(1977)737	21(1979)140c, 141s	9.5	9(1977)64	10(1978)32s
77–20	19(1977)737	20(1978)862s	9.6	9(1977)64	10(1978)33s
78–1	20(1978)181	21(1070)142- 144-	9.7	9(1977)97	10(1978)64s
78–2	20(1978)182	21(1979)143s, 144c	9.8	9(1977)97	10(1978)64s

SPECT 9	0.9		1975-1979		SSM 3646
0.0	0(1077)07	10(1070)65	2575	75(1075)007	75(1075)654 76(1076)061 600
9.9	9(1977)97	10(1978)65s	3575	75(1975)297	75(1975)654s 76(1976)261a, 622c
10.1	10(1978)31	10(1978)97s	3576	75(1975)297	75(1975)655s, 743a 76(1976)261a,
10.2	10(1978)31 10(1978)31	10(1978)97s	2577	75/1075\207	623c
10.3	10(1970)31	10(1978)97v, 99s 11(1979)29c,	3577	75(1975)297	75(1975)655s, 743a 76(1976)261a
10.4	10(1070)62	64s	3578	75(1975)298	75(1975)656s
10.4 10.5	10(1978)63	11(1979)28s	3579	75(1975)298	75(1975)656c 76(1976)624s
	10(1978)63	11(1979)29s	3580	75(1975)386	75(1975)743s 76(1976)439a
10.6 10.7	10(1978)63	11(1979)29s	3581	75(1975)386	75(1975)744s
10.7	10(1978)97 10(1978)97	11(1979)61s	3582 3583	75(1975)386 75(1975)387	75(1975)744s 75(1975)568v, 744s
10.0	10(1978)97	11(1979)61s 11(1979)62s		` '	75(1975)568v, 745s 76(1976)261a
11.1	11(1979)28		3584	75(1975)387	
11.1	` '	11(1979)100s 11(1979)101s	3585 3586	75(1975)387	75(1975)746s
11.3	11(1979)28 11(1979)28	11(1979)101s 11(1979)101s	3587	75(1975)477 75(1975)477	76(1976)82s, 170a, 442a 76(1976)83s, 442a, 528c
11.4	11(1979)61	12(1980)27s	3588	75(1975)477	76(1976)84s, 442a
11.5	11(1979)61	12(1980)27s	3589	75(1975)477	76(1976)84c, 170a, 442a
11.6	11(1979)61	12(1980)27s	3590	75(1975)477	76(1976)84s, 442a
11.7	11(1979)100	12(1980)61s	3591	75(1975)478	76(1976)85s, 170a, 442a
11.8	11(1979)100	12(1980)62s	3592	75(1975)568	76(1976)170s, 261a, 534a
11.9	11(1979)100	12(1980)62s	3593	75(1975)568	76(1976)171s, 261a, 265a, 439a
11.5	11(13/3)100	12(1300)023	3594	75(1975)568	76(1976)172s, 261a, 528c, 534a
CCNA			3595	75(1975)568	76(1976)172s, 261a, 445a, 528c
SSM			3596	75(1975)568	76(1976)172s, 261a, 445a, 526c 76(1976)173s, 261a, 265a, 439a,
Problem	Proposal	References	3390	13(13)300	442a
680A	і торозаі	75(1975)563a	3597	75(1975)657	76(1976)174s, 262s
680B		78(1978)621s	3598	75(1975)657	76(1976)262s, 439a, 445a, 534a
2496		` '	3599	75(1975)657	76(1976)263s, 529c, 534a
2547		75(1975)743a 79(1979)80s	3600	75(1975)657	76(1976)264s, 445a
2617		79(1979)805 77(1977)621s	3601	75(1975)657	76(1976)264s
2928		79(1977)0215 79(1979)445c	3602	75(1975)658	76(1976)264s
3489		78(1978)714c, 714s	3603	75(1975)658	76(1976)265s, 445a, 534a
3513		75(1975)199a	3606	75(1975)747	76(1976)439s, 534a
3515		75(1975)199a 75(1975)199a	3607	75(1975)747	76(1976)440s, 533a, 534a
3517		75(1975)199a 75(1975)199a	3608	75(1975)747	76(1976)441s, 534a, 716c
3526		75(1975)199a	3609	75(1975)748	76(1976)441s, 534a, 623c
3529		75(1975)199a	3610	75(1975)748	76(1976)441s, 534a
3530		75(1975)199a	3611	75(1975)748	76(1976)442s, 534a
3531		75(1975)199a, 293c	3612	76(1976)85	76(1976)442s, 533a, 534a
3535		75(1975)199a 75(1975)199a	3613	76(1976)85	76(1976)443s, 533a, 534a, 627a,
3537		75(1975)199a	0020	.0(23.0)00	715c
3541		75(1975)473a	3614	76(1976)86	76(1976)444s, 534a
3543		75(1975)199a	3615	76(1976)86	76(1976)444s, 534a
3544		75(1975)199s	3616	76(1976)86	76(1976)444c, 534a
3545		75(1975)200s	3617	76(1976)86	76(1976)444c, 529s
3546		75(1975)201s	3618	76(1976)174	76(1976)531s
3547		75(1975)201s	3619	76(1976)175	76(1976)532s, 627a 77(1977)358a
3548		75(1975)202s	3620	76(1976)175	76(1976)533s
3549		75(1975)202s	3621	76(1976)175	76(1976)625s 77(1977)354c
3550		75(1975)294s, 381a, 386a, 473a	3622	76(1976)175	76(1976)626s 77(1977)358a
3551		75(1975)294c, 294s, 381a	3623	76(1976)175	76(1976)626s
3552		75(1975)296s, 381a	3624	76(1976)266	76(1976)627s 77(1977)358a
3553		75(1975)296s, 381a, 473a, 563c	3625	76(1976)266	76(1976)717s 77(1977)82a, 174a
3554		75(1975)382s	3626	76(1976)266	76(1976)717s 77(1977)82a
3555		75(1975)382s, 473a, 743a	3627	76(1976)266	76(1976)718×
3556		75(1975)383s, 473a	3628	76(1976)266	76(1976)718s 77(1977)82a
3557		75(1975)383s, 473a, 563a	3629	76(1976)266	77(1977)78s
3558		75(1975)383s, 473a	3630	76(1976)445	77(1977)79s
3559		75(1975)384s, 473a	3631	76(1976)445	77(1977)79s, 358a
3560		75(1975)385s, 473a	3632	76(1976)445	77(1977)80s, 532c
3561		75(1975)385s, 473a	3633	76(1976)445	77(1977)82s
3562		75(1975)474s, 563a	3634	76(1976)446	77(`1977)´170s
3563		75(1975)474s	3635	76(1976)446	77(`1977)´170s
3564		75(1975)475s	3636	76(1976)446	77(1977)171s, 268a
3565		75(1975)475s, 563a	3637	76(1976)446	77(1977)172s
3566		75(1975)476s, 563a	3638	76(1976)446	77(1977)173s, 268a
3567		75(1975)476s, 563a	3639	76(1976)446	77(1977)265s, 358a
3568	75(1975)204	75(1975)564s	3640	76(1976)446	77(1977)265s
3569	75(1975)204	75(1975)564s	3641	76(1976)446	77(`1977)´266s
3570	75(1975)204	75(1975)565s, 743a	3642	76(1976)527	77(1977)266s
3571	75(1975)204	75(1975)565s 76(1976)170a	3643	76(1976)527	77(1977)267s
3572	75(1975)204	75(1975)566c, 566s, 743a	3644	76(1976)527	77(1977)355s
3573	75(1975)204	75(1975)567s, 743a	3645	76(1976)527	77(1977)355s, 449a
3574	75(1975)297	75(1975)653s	3646	76(1976)528	77(1977)356s

SSM 36	47	197	5–1979	6)		SSM 3791
3647	76(1976)528	77(1977)357s	3720	78(1978)353	79(1979)175s	
3648	76(1976)621	77(1977)357s, 449a	3721	78(1978)353	79(1979)260s	
3649	76(1976)621	77(1977)444s	3722	78(1978)353	79(1979)261s	
3650 3651	76(1976)621 76(1976)622	77(1977)445s 77(1977)446s	3723 3724	78(1978)354 78(1978)354	79(1979)261s 79(1979)262s	
3652	76(1976)622	77(1977)447s	3725	78(1978)354	79(1979)262s 79(1979)264s	
3653	76(1976)622	77(1977)447s, 536a	3726	78(1978)443	79(1979)356s	
3654	76(1976)714	77(1977)533s 78(1978)358a	3727	78(1978)443	79(1979)356s	81(1981)439c
3655	76(1976)714	77(1977)533s	3728	78(1978)443	79(1979)357s,	
3656 3657	76(1976)714 76(1976)715	77(1977)534s 77(1977)535s	3729	78(1978)443	79(1979)358s,	528c
3658	76(1976)715	77(1977)535s 77(1977)535s	3730 3731	78(1978)444 78(1978)444	79(1979)358s 79(1979)360s	
3659	76(1976)715	77(1977)536s	3732	78(1978)532	79(1979)446s,	529c
3660	77(1977)77	77(1977)622s	3733	78(1978)533	79(1979)447s	
3661	77(1977)77	77(1977)623s	3734	78(1978)533	79(1979)448s	
3662 3663	77(1977)77 77(1977)78	77(1977)624s 77(1977)625s	3735	78(1978)533	79(1979)449s	710-
3664	77(1977)78	77(1977)626s	3736 3737	78(1978)533 78(1978)533	79(1979)449s, 79(1979)450s	/ 12C
3665	77(1977)78	77(1977)626s	3738	78(1978)620	79(1979)529s	
3666	77(1977)169	77(1977)714s	3739	78(1978)620	79(1979)529s	80(1980)80a
3667 3668	77(1977)169 77(1977)169	77(1977)715s 77(1977)715s	3740	78(1978)620	79(1979)530s,	
3669	77(1977)169	77(1977)713s 77(1977)716s	3741	78(1978)621	79(1979)532s,	717a
3670	77(1977)170	77(1977)716s	3742 3743	78(1978)621 78(1978)621	79(1979)532s 79(1979)533s	
3671	77(1977)170	77(1977)717s	3744	78(1978)712	79(1979)713s	
3672	77(1977)263	78(1978)82c, 82s	3745	78(1978)712	79(1979)713s	
3673 3674	77(1977)263 77(1977)263	78(1978)83s 78(1978)84s	3746	78(1978)712	79(1979)714s	
3675	77(1977)263	78(1978)84s	3747	78(1978)713	79(1979)716s	
3676	77(1977)264	78(1978)85s	3748 3749	78(1978)713 78(1978)713	79(1979)716s 79(1979)717s	
3677	77(1977)264	78(1978)86s	3750	79(1979)79	80(1980)77s	
3678	77(1977)353	78(1978)171s	3751	79(1979)79	80(1980)78s	
3679 3680	77(1977)353 77(1977)353	78(1978)172s 78(1978)172s 79(1979)712c	3752	79(1979)79	80(1980)78s	
3681	77(1977)353	78(1978)174s	3753	79(1979)80	80(1980)78s	
3682	77(1977)353	78(1978)174s, 533c	3754 3755	79(1979)80 79(1979)80	80(1980)79s 80(1980)79s	
3683	77(1977)354	78(1978)176s	3756	79(1979)80	80(1980)174s	
3684	77(1977)443	78(1978)354s	3757	79(1979)172	80(1980)174s	
3685 3686	77(1977)443 77(1977)443	78(1978)355s 78(1978)356s	3758	79(1979)172	80(1980)175s	
3687	77(1977)443	78(1978)356s	3759	79(1979)172	80(1980)176s	
3688	77(`1977´)444	78(1978)356s, 357s	3760 3761	79(1979)173 79(1979)173	80(1980)176s 80(1980)176s	
3689	77(1977)444	78(1978)357s, 449a	3762	79(1979)173	80(1980)264s	
3690 3691	77(1977)530 77(1977)530	78(1978)444s 78(1978)445s, 537a	3763	79(1979)259	80(1980)264s	
3692	77(1977)530	78(1978)446s	3764	79(1979)259	80(1980)265s	
3693	77(1977)531	78(1978)447s, 537a	3765	79(1979)259	80(1980)265s	
3694	77(1977)531	78(1978)447s	3766 3767	79(1979)259 79(1979)260	80(1980)266s 80(1980)267s	
3695	77(1977)531	78(1978)448s	3768	79(1979)355	80(1980)350s	
3696 3697	77(1977)620 77(1977)620	78(1978)534s 78(1978)534s	3769	79(1979)355	80(1980)351s	
3698	77(1977)620	78(1978)535s	3770	79(1979)355	80(1980)352s	
3699	77(1977)621	78(1978)536s	3771	79(1979)355	80(1980)353s	
3700	77(1977)621	78(1978)536s	3772 3773	79(1979)356 79(1979)356	80(1980)353s 80(1980)355s	
3701 3702	77(1977)621 77(1977)713	78(1978)622s 78(1978)623s, 624s	3774	79(1979)330	80(1980)442s	
3702	77(1977)713	78(1978)624s	3775	79(1979)444	80(1980)443s,	444s
3704	77(1977)713	78(1978)626s	3776	79(1979)444	80(1980)444s	
3705	77(1977)714	78(1978)626s	3777	79(1979)444	80(1980)446s	
3706	77(1977)714	78(1978)714s	3778 3779	79(1979)445	80(1980)446s	
3707 3708	77(1977)714 78(1978)81	78(1978)715s 78(1978)716s	3780	79(1979)445 79(1979)527	80(1980)447s 80(1980)526s	
3700	78(1978)81	78(1978)717s	3781	79(1979)527	80(1980)527s	
3710	78(1978)81	78(1978)717s	3782	79(1979)528	80(1980)528s,	710s
3711	78(1978)82	79(1979)81c, 81s	3783	79(1979)528	80(1980)528s	
3712	78(1978)82	79(1979)82s	3784	79(1979)528	80(1980)529s	
3713 3714	78(1978)82 78(1978)170	79(1979)83s 79(1979)84s	3785 3786	79(1979)528 79(1979)711	80(1980)529s 80(1980)710s	
3715	78(1978)170	79(1979)84s 79(1979)86s	3787	79(1979)711	80(1980)711s	
3716	78(1978)170	79(1979)173s	3788	79(1979)711	80(1980)712s	
3717	78(1978)170	79(1979)173s, 174s	3789	79(1979)711	80(1980)712s,	714s
3718	78(1978)170	79(1979)174s	3790	79(1979)712	80(1980)715s	
3719	78(1978)171	79(1979)175s	3791	79(1979)712	80(1980)715s	

Problem Chronology

Problem	TYCMJ 1	17	19	75–1979	67	TYCMJ 155
Problem	TYCM	IJ		87	8(1977)95	9(1978)238s
				88	8(1977)96	9(1978)239s
18		<u>Proposal</u>			` '	
19			1. 1. 1		` ,	
20			1. 1. 1		,	
21			1. 1. 1		` '	`
22			1. 1. 1		1 1	: :
1,1976,1338						: :
1,1977, 1,1975, 1,19	23		6(1975/2)33s			`. '.
1.0						
28			1. 1. 1		` '	1 (
100						1 (
101			1. /. /		` '	1 (
30						1 (
31				102	8(1977)292	10(1979)129s
32			1. 1. 1	103	8(1977)292	10(1979)130s
33			1. 1. 1	104	8(1977)292	10(1979)131s
35 6/1975/132 7/1976/1/31s 108 9/1978/40 10/1979/124s 36 6/1975/131 7/1976/1531s 108 9/1978/40 10/1979/1216s 37 6/1975/231 7/1976/2553s 110 9/1978/40 10/1979/127s 39 6/1975/231 7/1976/2553s 111 9/1978/95 10/1979/127s 40 6/1975/231 7/1976/2553s 112 9/1978/95 10/1979/1904s 41 6/1975/231 7/1976/348s 114 9/1978/95 10/1979/1905s 42 6/1975/334 7/1976/349s 115 9/1978/95 10/1979/1907s 43 6/1975/335 7/1976/349s 115 9/1978/156 10/1979/1907s 44 6/1975/335 7/1976/349s 116 9/1978/156 10/1979/305s 45 6/1975/3124 7/1976/343s 117 9/1978/176 10/1979/305s 47 6/1975/3125 7/1976/4/334s 118 9/1978/176 10/1979/305s 48 6/1975/4/24 7/1976/4/376 12		6(1975/1)32		105	8(1977)293	10(1979)211s
36 6(1975/13)2 7(1976/15)65, 50v 109 9(1978)40 10(1979)215s 37 6(1975/2)31 7(1976/2)50s, 50v 109 9(1978)41 10(1979)215s 38 6(1975/2)31 7(1976/2)52s 111 9(1978)45 10(1979)294s 40 6(1975/2)31 7(1976/2)53s 112 9(1978)95 10(1979)295s 41 6(1975/2)33 7(1976/3)48s 112 9(1978)95 10(1979)295s 42 6(1975/3)34 7(1976/3)48s 114 9(1978)95 10(1979)297s 43 6(1975/3)34 7(1976/3)49s 115 9(1978)95 10(1979)297s 44 6(1975/3)34 7(1976/4)349s 115 9(1978)95 10(1979)298s 45 6(1975/3)35 7(1976/4)35c 116 9(1978)176 10(1979)360s 46 6(1975/3)35 7(1976/4)35c 118 9(1978)176 10(1979)365s 48 6(1975/4)24 7(1976/4)35c 12 9(1978)176 10(1979)365s 50 6(1975/4)24 8(1977)43c <	34	6(1975/1)32	7(1976/1)30s		9(1978)40	10(1979)213s
1975 1975 1976		6(1975/1)32	7(1976/1)31s			1 (
38 6(1975/2)31 7(1976/2)515 110 9(1978)945 10(1979)2945 40 6(1975/2)31 7(1976/2)525 111 9(1978)95 10(1979)2945 41 6(1975/2)31 7(1976/2)535 112 9(1978)95 10(1979)2945 42 6(1975/3)34 7(1976/3)485 114 9(1978)95 10(1979)2976 43 6(1975/3)34 7(1976/3)495 115 9(1978)95 10(1979)2976 44 6(1975/3)34 7(1976/3)495 116 9(1978)95 10(1979)2976 45 6(1975/3)34 7(1976/3)495 116 9(1978)95 10(1979)2976 46 6(1975/3)35 7(1976/3)495 116 9(1978)176 10(1979)3605 47 6(1975/4)35 7(1976/4)346 117 9(1978)176 10(1979)3605 48 6(1975/4)24 7(1976/4)355 118 9(1978)176 10(1979)3633 49 6(1975/4)24 7(1976/4)365 119 9(1978)176 10(1979)3633 40 6(1975/4)24 7(1976/4)365 129 9(1978)176 10(1979)3635 41 6(1975/4)24 8(1977)435 120 9(1978)176 10(1979)3635 42 6(1975/4)24 8(1977)435 120 9(1978)176 10(1979)3635 43 6(1975/4)25 7(1976/2)494 8(1977)444, 455 123 9(1978)256 11(1980)1625 45 6(1975/4)25 7(1976/2)494 8(1977)444, 455 123 9(1978)256 11(1980)1625 46 7(1976/1)28 8(1977)965 125 9(1978)256 11(1980)1635 47 7(1976/1)28 8(1977)975 126 9(1978)279 11(1980)1335 48 8(1977)976 128 8(1977)978 129 9(1978)297 11(1980)1335 49 6(1975/4)25 8(1977)465 125 9(1978)297 11(1980)1335 40 6(1975/4)25 8(1977)465 126 9(1978)297 11(1980)1335 40 6(1975/4)26 8(1977)1799 130 9(1978)297 11(1980)1335 40 6(1976/1)28 8(1977)1799 130 9(1978)297 11(1980)1335 40 6(1976/2)49 8(1977)1799 130 9(1978)297 11(1980)1335 40 6(1976/2)49 8(1977)180 129 9(1978)297 11(1980)1375 40 6(1976/2)49 8(1977)2415 132 10(1979)53 11(1980)125 40 7(1976/2)49 8(1977)2415 133 10(1979)53 11(1980)2125 40 7(1976/2)49 8(1977)243 136 10(1979)127 11(1980)1375 40 7(1976/3)47 8(1977)293 138 10(1979)127 11(1980)3375 40 7(1976/3)47 8(1977)293 138 10(1979)127 11(1980)3375 40 7(1976/3)47 8(1977)2945 139 10(1979)128 11(1980)3375 40 7(1976/3)47 8(1977)2945 139 10(1979)128 11(1980)3375 40 7(1976/3)47 8(1977)2945 139 10(1979)128 11(1980)3375 41 7(1976/3)48 9(1978)44 445 144 10(1979)120 11(1980)3375 41 7(1976/4)33 9(1978)45 140 10(1979)120 11(1980)3375 41 7(1976/4)33 9(1978)45 140 10(1979)204 12(1981)1665 41 7(1976/4)33 9(1978)45 140			1. 1.		1 1	` ,
99 6(1975/2)31 7(1976/2)528 111 9(1978)95 10(1979)2945 40 6(1975/2)31 7(1976/2)538 112 9(1978)95 10(1979)2955 41 6(1975/2)31 7(1976/2)538 113 9(1978)95 10(1979)2955 42 6(1975/3)34 7(1976/3)485 113 9(1978)95 10(1979)2975 43 6(1975/3)34 7(1976/3)495 115 9(1978)95 10(1979)2975 44 6(1975/3)34 7(1976/3)495 115 9(1978)95 10(1979)2975 45 6(1975/3)35 7(1976/3)495 116 9(1978)176 10(1979)2975 46 6(1975/3)35 7(1976/4)346 117 9(1978)176 10(1979)3605 47 6(1975/3)35 7(1976/4)355 118 9(1978)176 10(1979)3635 48 6(1975/4)24 7(1976/4)355 118 9(1978)176 10(1979)3635 49 6(1975/4)24 7(1976/4)355 119 9(1978)176 10(1979)3665 49 6(1975/4)24 7(1976/4)375 120 9(1978)177 10(1979)3665 50 6(1975/4)24 7(1976/4)375 121 9(1978)236 11(1980)625 51 6(1975/4)25 8(1977)435 122 9(1978)236 11(1980)638 52 6(1975/4)25 8(1977)485 122 9(1978)236 11(1980)648 53 6(1975/4)25 8(1977)465 124 9(1978)236 11(1980)648 54 7(1976/1)28 8(1977)965 125 9(1978)236 11(1980)1335 55 7(1976/1)28 8(1977)976, 909 127 9(1978)297 11(1980)1335 56 7(1976/1)28 8(1977)1798, 909 127 9(1978)297 11(1980)1335 57 7(1976/1)28 8(1977)1798 126 9(1978)297 11(1980)1348 60 7(1976/1)28 8(1977)1798 129 9(1978)297 11(1980)1348 61 7(1976/1)28 8(1977)1798 120 129 9(1978)297 11(1980)1348 61 7(1976/1)28 8(1977)128 130 10(1979)121 11(1980)1376 62 7(1976/1)28 8(1977)128 130 10(1979)121 11(1980)1376 63 7(1976/2)49 8(1977)2415 132 10(1979)153 11(1980)2108 64 7(1976/2)49 8(1977)2415 132 10(1979)153 11(1980)2108 65 7(1976/2)49 8(1977)2435 136 10(1979)127 11(1980)278 66 7(1976/2)49 8(1977)2435 136 10(1979)127 11(1980)278 67 7(1976/3)47 8(1977)293 137 10(1979)127 11(1980)278 68 7(1976/3)47 8(1977)2945 139 10(1979)127 11(1980)278 69 7(1976/3)47 8(1977)2945 139 10(1979)127 11(1980)278 60 7(1976/3)47 8(1977)2945 139 10(1979)127 11(1980)278 60 7(1976/3)47 8(1977)2945 139 10(1979)127 11(1980)278 60 7(1976/3)47 8(1977)2945 139 10(1979)127 11(1980)278 60 7(1976/3)47 8(1977)2945 139 10(1979)128 11(1980)278 60 7(1976/3)47 8(1977)2945 139 10(1979)129 11(1980)278 60 7(1976/3)47 8(1977)2945 139 10(1979)129 11(1980)27			1. 1.			,
10						` ,
41 6(1975/2)31 7(1976/2)53s 113 9(1978)95 10(1979)206s 42 6(1975/3)34 7(1976/3)48s 114 9(1978)95 10(1979)208s 43 6(1975/3)34 7(1976/3)49s 115 9(1978)176 10(1979)208s 45 6(1975/3)35 7(1976/3)49s 116 9(1978)176 10(1979)303s 46 6(1975/3)25 7(1976/4)34s 117 9(1978)176 10(1979)303s 47 6(1975/4)24 7(1976/4)34s 118 9(1978)176 10(1979)363s 48 6(1975/4)24 7(1976/4)35s 118 9(1978)177 10(1979)363s 49 6(1975/4)24 7(1976/4)37c, 37s 120 9(1978)177 10(1979)363s 50 6(1975/4)25 8(1977)44s 122 9(1978)236 11(1980)62s 51 6(1975/4)25 8(1977)44s 122 9(1978)236 11(1980)63s 52 6(1975/4)25 8(1977)44s 122 9(1978)236 11(1980)63s 53 6(1975/4)25 8(1977)48s 122 </td <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>,</td>					,	,
42 6(1975/3)34 7(1976/3)48s 114 9(1978)65 10(1979)207s 43 6(1975/3)34 7(1976/3)49s 115 9(1978)95 10(1979)207s 44 6(1975/3)35 7(1976/3)49s 116 9(1978)176 10(1979)360s 45 6(1975/3)35 7(1976/4)34s 117 9(1978)176 10(1979)363s 46 6(1975/4)25 7(1976/4)34s 118 9(1978)176 10(1979)363s 47 6(1975/4)24 7(1976/4)35s 119 9(1978)176 10(1979)363s 48 6(1975/4)24 7(1976/4)35s 119 9(1978)176 10(1979)363s 49 6(1975/4)24 7(1976/4)37c 7 40 6(1975/4)24 8(1977)43c 122 9(1978)236 11(1980)62s 50 6(1975/4)25 7(1976/2)49v 8(1977)44v, 45s 122 9(1978)236 11(1980)62s 51 6(1975/4)25 7(1976/2)49v 8(1977)44v, 45s 123 9(1978)236 11(1980)63s 52 6(1975/4)25 7(1976/2)49v 8(1977)44v, 45s 123 9(1978)236 11(1980)63s 53 6(1975/4)25 7(1976/2)49v 8(1977)40s 125 9(1978)236 11(1980)63s 54 7(1976/1)28 8(1977)96s 125 9(1978)236 11(1980)132s 55 7(1976/1)28 8(1977)978s 126 9(1978)297 11(1980)133s 56 7(1976/1)28 8(1977)100s 128 9(1978)297 11(1980)133s 57 7(1976/1)28 8(1977)178s 129 9(1978)297 11(1980)134s 59 7(1976/1)29 8(1977)178s 129 9(1978)297 11(1980)137s 59 7(1976/1)29 8(1977)178s 129 9(1978)297 11(1980)137s 60 7(1976/2)49 8(1977)181s, 181v 131 10(1979)52 11(1980)120s 61 7(1976/2)49 8(1977)245 133 10(1979)53 11(1980)210s 62 7(1976/2)49 8(1977)245 133 10(1979)53 11(1980)212s 65 7(1976/2)49 8(1977)245 133 10(1979)53 11(1980)212s 66 7(1976/2)49 8(1977)245 133 10(1979)53 11(1980)212s 67 7(1976/2)49 8(1977)245 133 10(1979)53 11(1980)212s 68 7(1976/2)49 8(1977)245 133 10(1979)53 11(1980)212s 69 7(1976/2)49 8(1977)245 133 10(1979)13 11(1980)276s 67 7(1976/2)49 8(1977)245 133 10(1979)13 11(1980)276s 67 7(1976/2)49 8(1977)245 134 10(1979)293 11(1980)276s 67 7(1976/2)49 8(1977)245 134 10(1979)293 11(1980)276s 67 7(1976/3)47 8(1977)295 139 139 10(1979)127 11(1980)3378 67 7(1976/3)47 8(1977)295 139 139 10(1979)127 11(1980)3378 67 7(1976/3)47 8(1977)295 139 139 149 149 11(1980)3378 67 7(1976/4)33 9(1978)454 448 144 10(1979)294 12(1981)66s 67 7(1976/4)33 9(1978)454 448 144 10(1979)294 12(1981)66s 67 7(1976/4)33 9(1978)475 148 149 149 149 149 149 149 149 149 149 149			1. /. /			` ,
43 6(1975/3)34 7(1976/3)49s 115 9(1978)95 10(1979)298s 444 6(1975/3)35 7(1976/3)49s 116 9(1978)176 10(1979)303s 10(1979)303s 6(1975/3)35 7(1976/3)49s 116 9(1978)176 10(1979)303s 10(1979)303s 17(1976/3)49s 117 9(1978)176 10(1979)303s 119 9(1978)177 119 9(1979)170 119 9(1978)170			1. 1.		1 1	1 (
44 6(1975/3)34 7(1976/3)49s 116 9(1978)176 10(1979)360s 45 6(1975/3)35 7(1976/4)358 117 9(1978)176 10(1979)360s 47 6(1975/4)24 7(1976/4)34s 118 9(1978)176 10(1979)363s 48 6(1975/4)24 7(1976/4)358 119 9(1978)176 10(1979)363s 49 6(1975/4)24 7(1976/4)358 120 9(1978)176 10(1979)363s 49 6(1975/4)24 7(1976/4)358 120 9(1978)176 10(1979)363s 49 6(1975/4)24 7(1976/4)358 120 9(1978)176 11(1980)628 49 6(1975/4)25 8(1977)43s 122 9(1978)236 11(1980)628 51 6(1975/4)25 8(1977)44s 122 9(1978)236 11(1980)638 52 6(1975/4)25 8(1977)458 122 9(1978)236 11(1980)638 52 6(1975/4)25 8(1977)468 124 9(1978)236 11(1980)638 53 6(1975/4)25 8(1977)96s 125 9(1978)236 11(1980)132 55 7(1976/1)28 8(1977)96s 125 9(1978)236 11(1980)132 55 7(1976/1)28 8(1977)96s 125 9(1978)237 11(1980)1338 55 7(1976/1)28 8(1977)96s 125 9(1978)297 11(1980)1338 55 7(1976/1)28 8(1977)170s 128 9(1978)297 11(1980)1348 55 7(1976/1)28 8(1977)170s 128 9(1978)297 11(1980)1375 59 7(1976/1)29 8(1977)170s 129 9(1978)297 11(1980)1375 59 7(1976/1)29 8(1977)170s 130 9(1978)297 11(1980)1375 60 7(1976/1)29 8(1977)181s, 181v 131 10(1979)52 11(1980)138 60 7(1976/2)49 8(1977)181s, 181v 131 10(1979)52 11(1980)210s 61 7(1976/2)49 8(1977)181s, 181v 131 10(1979)53 11(1980)210s 63 7(1976/2)49 8(1977)241s 133 10(1979)53 11(1980)210s 64 7(1976/2)49 8(1977)243s 135 10(1979)53 11(1980)211s 64 7(1976/2)49 8(1977)243s 135 10(1979)53 11(1980)211s 66 7(1976/2)49 8(1977)243s 135 10(1979)53 11(1980)2175 67 7(1976/3)47 8(1977)243s 136 10(1979)127 11(1980)2775 67 7(1976/3)47 8(1977)243s 136 10(1979)127 11(1980)2775 67 7(1976/3)47 8(1977)243s 136 10(1979)127 11(1980)278 77 7(1976/3)47 8(1977)293s 137 10(1979)210 11(1980)2775 77 7(1976/3)47 8(1977)293s 137 10(1979)210 11(1980)2775 77 7(1976/3)47 8(1977)293s 137 10(1979)210 11(1980)2775 77 7(1976/4)33 9(1978)45 14 14 10(1979)211 11(1980)3375 77 7(1976/4)33 9(1978)44 41 14 10(1979)211 11(1980)3375 77 7(1976/4)33 9(1978)96 147 10(1979)293 12(1981)665 145 10(1979)293 12(1981)665 145 10(1979)399 12(1981)665 145 10(1979)399 12(1981)665 145 10(1979)399 12(1981			1. 1.			1 (
6 (1975/3)35 7 (1976/1)36s 110 9(1978)176 10(1979)361s 46 (61975/4)24 7 (1976/4)34s 1118 9(1978)176 10(1979)361s 47 (61975/4)24 7 (1976/4)35s 1118 9(1978)176 10(1979)363s 48 (61975/4)24 7 (1976/4)35s 119 9(1978)176 10(1979)363s 48 (61975/4)24 7 (1976/4)35s 119 9(1978)177 10(1979)363s 49 (61975/4)24 7 (1976/4)37c, 37s 120 9(1978)177 10(1979)366s 49 (61975/4)24 8(1977)44s 122 9(1978)236 11(1980)62s 51 (61975/4)24 8(1977)44s 122 9(1978)236 11(1980)62s 51 (61975/4)25 8(1977)44s 123 9(1978)236 11(1980)64s 52 6(1975/4)25 8(1977)46s 122 9(1978)236 11(1980)64s 52 6(1975/4)25 8(1977)46s 123 9(1978)236 11(1980)64s 53 6(1975/4)25 8(1977)46s 125 9(1978)236 11(1980)64s 55 7 (1976/1)28 8(1977)97s 126 9(1978)297 11(1980)132s 55 7 (1976/1)28 8(1977)97s 126 9(1978)297 11(1980)133s 55 7 (1976/1)28 8(1977)97s 126 9(1978)297 11(1980)133s 55 7 (1976/1)28 8(1977)178s 129 9(1978)297 11(1980)135s 59 7 (1976/1)28 8(1977)178s 129 9(1978)297 11(1980)135s 60 7 (1976/1)29 8(1977)179s 130 9(1978)297 11(1980)137s 60 7 (1976/1)29 8(1977)180s 130 9(1978)297 11(1980)137s 60 7 (1976/2)29 8(1977)180s 130 9(1978)297 11(1980)137s 130 9(1978)297 11(1980)137s 60 7 (1976/2)29 8(1977)124s 131 10(1979)52 11(1980)209 13(1982)71a 130 10(1979)53 11(1980)210s 63 7 (1976/2)49 8(1977)124s 132 10(1979)53 11(1980)210s 64 7 (1976/2)49 8(1977)241s 132 10(1979)53 11(1980)210s 66 7 (1976/2)49 8(1977)243s 136 10(1979)53 11(1980)210s 67 7 (1976/2)49 8(1977)243s 136 10(1979)53 11(1980)210s 67 7 (1976/3)47 8(1977)293s 138 10(1979)127 11(1980)277s 11(1980)277s 11(1980)278 139 10(1979)127 11(1980)278 139 10(1979)127 11(1980)278 139 10(1979)127 11(1980)278 139 10(1979)127 11(1980)278 139 10(1979)294 11(1980)338 139 10(1979)127 11(1980)338 139 10(1979)127 11(1980)338 139 10(1979)127 11(1980)338 139 10(1979)127 11(1980)338 139 10(1979)127 11(1980)338 139 10(1979)294 11(1980)338 139 10(1979)294 11(1980)338 139 10(1979)294 12(1981)65 145 140 10(1979)294 12(1981)65 145 140 10(1979)294 12(1981)65 145 140 10(1979)294 12(1981)65 141 140 10(1979)294 12(1981)65 141 140 10(1979)294			1. 1.		` '	
66 (61975/3)35 7(1976/4)34s 118 9(1978)176 10(1979)363s 47 6(1975/4)24 7(1976/4)35s 1119 9(1978)176 10(1979)363s 48 6(1975/4)24 7(1976/4)36s 119 9(1978)176 10(1979)363s 48 6(1975/4)24 7(1976/4)36s 1120 9(1978)177 10(1979)363s 49 6(1975/4)24 8(1977)43s 120 9(1978)177 10(1979)365s 51 6(1975/4)24 8(1977)43s 122 9(1978)236 11(1980)62s 51 6(1975/4)25 8(1977)44s 122 9(1978)236 11(1980)63s 51 6(1975/4)25 8(1977)46s 122 9(1978)236 11(1980)63s 52 6(1975/4)25 8(1977)46s 124 9(1978)236 11(1980)64s 53 6(1975/4)25 8(1977)96s 125 9(1978)236 11(1980)132s 54 7(1976/1)28 8(1977)96s 125 9(1978)236 11(1980)132s 55 7(1976/1)28 8(1977)978 126 9(1978)297 11(1980)133s 55 7(1976/1)28 8(1977)98,99s 127 9(1978)297 11(1980)134s 57 7(1976/1)28 8(1977)178s 126 9(1978)297 11(1980)137s 58 7(1976/1)28 8(1977)178s 129 9(1978)297 11(1980)137s 59 7(1976/1)29 8(1977)179s 130 9(1978)297 11(1980)137s 59 7(1976/1)29 8(1977)179s 130 9(1978)297 11(1980)137s 60 7(1976/2)49 8(1977)181s,181v 131 10(1979)52 11(1980)20s 60 7(1976/2)49 8(1977)241s 132 10(1979)35 11(1980)20s 60 7(1976/2)49 8(1977)241s 132 10(1979)35 11(1980)210s 60 7(1976/2)49 8(1977)241s 132 10(1979)35 11(1980)210s 60 7(1976/2)49 8(1977)243s 135 10(1979)35 11(1980)211s 60 7(1976/2)49 8(1977)243s 135 10(1979)35 11(1980)212s 60 7(1976/2)49 8(1977)243s 135 10(1979)35 11(1980)213s 60 7(1976/2)49 8(1977)243s 135 10(1979)35 11(1980)213s 60 7(1976/3)47 8(1977)293s 137 10(1979)127 11(1980)277s 60 7(1976/3)47 8(1977)293s 137 10(1979)127 11(1980)277s 60 7(1976/3)47 8(1977)293s 137 10(1979)127 11(1980)277s 60 7(1976/3)47 8(1977)293s 137 10(1979)127 11(1980)278s 7(1976/4)33 9(1978)45s 144 10(1979)291 11(1980)337s 7(1976/4)33 9(1978)45s 144 10(1979)291 11(1980)337s 7(1976/4)33 9(1978)45s 144 10(1979)291 11(1980)337s 7(1976/4)33 9(1978)44s 41 14 10(1979)291 11(1980)337s 7(1976/4)33 9(1978)44s			1. 1.		1 1	1 (
47	46		7(1976/4)34s		1 1	1 (
48 0 (1975/4)24 7 (1976/4)375 120 9(1978)177 10(1979)366s 49 6 (1975/4)24 8 (1977)438 121 9(1978)236 11(1980)62s 50 6 (1975/4)24 8 (1977)438 122 9(1978)236 11(1980)63s 51 6 (1975/4)25 7 (1976/2)49v 8(1977)44v, 45s 123 9(1978)236 11(1980)63s 52 6 (1975/4)25 7 (1976/2)49v 8(1977)44v, 45s 123 9(1978)236 11(1980)64s 53 6 (1975/4)25 8 (1977)746s 124 9(1978)236 11(1980)65s 54 7 (1976/1)28 8 (1977)96s 125 9(1978)236 11(1980)133s 55 7 (1976/1)28 8 (1977)98s, 99s 127 9(1978)297 11(1980)133s 56 7 (1976/1)28 8 (1977)178s 129 9(1978)297 11(1980)135s 57 7 (1976/1)28 8 (1977)178s 129 9(1978)297 11(1980)135s 58 7 (1976/1)28 8 (1977)178s 129 9(1978)297 11(1980)135s 59 7 (1976/1)29 8 (1977)178s 129 9(1978)297 11(1980)135s 60 7 (1976/2)49 8 (1977)178s 129 9(1978)297 11(1980)135s 61 7 (1976/2)49 8 (1977)178s 129 110(1979)210v 11(1980)138c, 138s 62 7 (1976/2)49 8 (1977)1241s 131 10(1979)52 11(1980)209s 62 7 (1976/2)49 8 (1977)241s 132 10(1979)53 11(1980)210s 63 7 (1976/2)49 8 (1977)243s 135 10(1979)53 11(1980)210s 64 7 (1976/2)50 8 (1977)243s 135 10(1979)53 11(1980)212s 65 7 (1976/2)50 8 (1977)243s 135 10(1979)127 11(1980)276s 67 7 (1976/3)47 8 (1977)293s 137 10(1979)127 11(1980)276s 67 7 (1976/3)47 8 (1977)293s 138 10(1979)127 11(1980)278s 69 7 (1976/3)47 8 (1977)294s 139 10(1979)127 11(1980)278s 70 7 (1976/3)47 8 (1977)294s 139 10(1979)127 11(1980)278s 71 7 (1976/3)48 9 (1978)42s 144 10(1979)211 11(1980)337s 72 7 (1976/3)48 9 (1978)45s 144 10(1979)211 11(1980)337s 73 7 (1976/4)33 9 (1978)45s 144 10(1979)211 11(1980)338s 74 7 (1976/4)33 9 (1978)45s 144 10(1979)211 11(1980)337s 75 7 (1976/4)33 9 (1978)45s 144 10(1979)211 11(1980)337s 76 7 (1976/4)33 9 (1978)45s 144 10(1979)211 11(1980)337s 77 7 (1976/4)33 9 (1978)45s 146 10(1979)291 11(1980)338s 77 7 (1976/4)33 9 (1978)45s 146 10(1979)299 12(198)165s 80 8 (1977)42 9 (1978)197s 1778 150 10(1979)299 12(198)165s 150 10(1979)299 12(198)165s 150 10(1979)299 12(198)165s 150 10(1979)299 12(198)165s 150 10(1979)299 12		6(1975/4)24	7(1976/4)35s			1 (
19			1. 1.			1 (
50 0(1973/4):24 8(1977)44s 122 9(1978):236 11(1980):63s 51 6(1975/4):25 8(1977):44s 123 9(1978):236 11(1980):64s 52 6(1975/4):25 8(1977):46s 124 9(1978):236 11(1980):65s 54 7(1976/1):28 8(1977):96s 125 9(1978):236 11(1980):13s 55 7(1976/1):28 8(1977):97s 126 9(1978):297 11(1980):13s 56 7(1976/1):28 8(1977):100s 128 9(1978):297 11(1980):13s 57 7(1976/1):28 8(1977):179s 129 9(1978):297 11(1980):13s 58 7(1976/1):29 8(1977):179s 130 9(1978):297 11(1980):13s 59 7(1976/1):29 8(1977):181s 131 10(1979):52 11(1980):13s 13(1980):21s 60 7(1976/2):49 8(1977):241s 132 10(1979):52 11(1980):21s 13(1980):21s 61 7(1976/2):49 8(1977):242s 134 10(1979):53 11(1980):21s					1 1	1 (
123 9(1978) 236 11(1980)64s						,
53 6(1975/4)25 8(1977)46s 124 9(1978)236 11(1980)152s 54 7(1976/1)28 8(1977)96s 125 9(1978)297 11(1980)132s 55 7(1976/1)28 8(1977)97s 126 9(1978)297 11(1980)133s 56 7(1976/1)28 8(1977)100s 128 9(1978)297 11(1980)137s 57 7(1976/1)28 8(1977)178s 129 9(1978)297 11(1980)137s 59 7(1976/1)29 8(1977)178s 129 9(1978)297 11(1980)137s 59 7(1976/1)29 8(1977)178s 129 9(1978)297 11(1980)137s 60 7(1976/1)29 8(1977)180s 130 9(1978)297 11(1980)137s 61 7(1976/1)29 8(1977)181s 131 10(1979)52 11(1980)209s 62 7(1976/2)49 8(1977)241s 131 10(1979)53 11(1980)210s 63 7(1976/2)49 8(1977)243s 133 10(1979)53 11(1980)213s 64 7(1976/2)48 8(1977)243s 136		` '. '		123	9(1978)236	11(1980)64s
54 7(1976/1)28 8(1977)96s 125 9(1978)236 11(1980)132s 55 7(1976/1)28 8(1977)97s 126 9(1978)297 11(1980)134s 56 7(1976/1)28 8(1977)100s 128 9(1978)297 11(1980)134s 57 7(1976/1)28 8(1977)178s 129 9(1978)297 11(1980)137s 59 7(1976/1)29 8(1977)178s 130 9(1978)297 10(1979)210v 11(1980)138c, 138s 60 7(1976/1)29 8(1977)180s 131 10(1979)52 11(1980)210s 61 7(1976/2)49 8(1977)241s 131 10(1979)53 11(1980)210s 62 7(1976/2)49 8(1977)241s 132 10(1979)53 11(1980)211s 64 7(1976/2)49 8(1977)243s 135 10(1979)53 11(1980)212s 65 7(1976/2)50 8(1977)243s 135 10(1979)127 11(1980)213s 66 7(1976/3)47 8(1977)293s 136 10(1979)127 11(1980)278s 69 7(1976/3)47 8(124	9(1978)236	11(1980)65s
55 7(1976/1)28 8(1977)97s 126 9(1978)297 11(1980)133s 56 7(1976/1)28 8(1977)98s, 99s 127 9(1978)297 11(1980)135s 57 7(1976/1)28 8(1977)170s 128 9(1978)297 11(1980)137s 59 7(1976/1)29 8(1977)179s 129 9(1978)297 11(1980)137s 59 7(1976/1)29 8(1977)179s 130 9(1978)297 11(1980)137s 59 7(1976/1)29 8(1977)179s 130 9(1978)297 11(1980)210s 60 7(1976/1)29 8(1977)180s 13(1992)71a 13(1982)71a 61 7(1976/2)49 8(1977)241s 131 10(1979)53 11(1980)210s 63 7(1976/2)49 8(1977)242s 134 10(1979)53 11(1980)211s 64 7(1976/2)49 8(1977)243s 135 10(1979)53 11(1980)213s 65 7(1976/3)47 8(1977)243s 136 10(1979)53 11(1980)213s 66 7(1976/3)47 8(1977)293s 137 10(197				125	9(1978)236	11(1980)132s
56 7(1976/1)28 8(1977)100s 127 9(1978)297 11(1980)134s 57 7(1976/1)28 8(1977)100s 128 9(1978)297 11(1980)137s 58 7(1976/1)29 8(1977)179s 130 9(1978)297 10(1979)210v 11(1980)137s 59 7(1976/1)29 8(1977)181s 130 9(1978)297 10(1979)210v 11(1980)210s 60 7(1976/2)49 8(1977)181s 131 10(1979)52 11(1980)210s 61 7(1976/2)49 8(1977)241s 132 10(1979)53 11(1980)210s 63 7(1976/2)49 8(1977)242s 134 10(1979)53 11(1980)210s 63 7(1976/2)49 8(1977)243s 135 10(1979)53 11(1980)210s 65 7(1976/2)50 8(1977)243s 135 10(1979)53 11(1980)212s 65 7(1976/3)47 8(1977)293s 135 10(1979)127 11(1980)277s 68 7(1976/3)47 8(1977)294s 139 10(1979)127 11(1980)277s 69 7(197			· /	126		11(1980)133s
58 7(1976/1)28 8(1977)178s 129 9(1978)297 11(1980)137s 59 7(1976/1)29 8(1977)179s 130 9(1978)297 10(1979)210v 11(1980)138c, 138s 60 7(1976/1)29 8(1977)181s, 181v 131 10(1979)52 11(1980)209s 61 7(1976/2)49 8(1977)241s 132 10(1979)53 11(1980)210s 62 7(1976/2)49 8(1977)242s 134 10(1979)53 11(1980)210s 63 7(1976/2)49 8(1977)242s 134 10(1979)53 11(1980)211s 64 7(1976/2)50 8(1977)243s 135 10(1979)53 11(1980)213s 65 7(1976/3)47 8(1977)293s 135 10(1979)127 11(1980)276s 67 7(1976/3)47 8(1977)293s 137 10(1979)127 11(1980)278s 69 7(1976/3)47 8(1977)294s 138 10(1979)127 11(1980)278s 70 7(1976/3)47 8(1977)295s 138 10(1979)127 11(1980)278s 71 7(1976/3)47	56	7(1976/1)28	8(1977)98s, 99s		1 1	1 (
59 7(1976/1)29 8(1977)179s 130 9(1978)297 10(1979)210v 11(1980)138c, 138s 60 7(1976/1)29 8(1977)180s 13(1982)71a 13(1982)71a 61 7(1976/2)49 8(1977)241s 131 10(1979)53 11(1980)210s 62 7(1976/2)49 8(1977)241s 132 10(1979)53 11(1980)210s 63 7(1976/2)49 8(1977)242s 134 10(1979)53 11(1980)211s 64 7(1976/2)50 8(1977)243s 135 10(1979)53 11(1980)213s 65 7(1976/2)50 8(1977)243s 136 10(1979)127 11(1980)217s 66 7(1976/3)47 8(1977)293s 137 10(1979)127 11(1980)277s 67 7(1976/3)47 8(1977)293s 138 10(1979)127 11(1980)278s 69 7(1976/3)47 8(1977)294s 139 10(1979)127 11(1980)278s 70 7(1976/3)47 8(1977)295s 140 10(1979)127 11(1980)278s 71 7(1976/3)48 9(1978)41c, 41s <td></td> <td>7(1976/1)28</td> <td></td> <td></td> <td></td> <td>1 (</td>		7(1976/1)28				1 (
60 7(1976/1)29 8(1977)180s 13(1982)71a 61 7(1976/2)49 8(1977)181s, 181v 131 10(1979)52 11(1980)209s 62 7(1976/2)49 8(1977)241s 132 10(1979)53 11(1980)211s 63 7(1976/2)49 8(1977)242s 134 10(1979)53 11(1980)212s 65 7(1976/2)50 8(1977)243s 135 10(1979)127 11(1980)213s 66 7(1976/2)50 8(1977)243s 136 10(1979)127 11(1980)276s 67 7(1976/3)47 8(1977)293s 137 10(1979)127 11(1980)277s 68 7(1976/3)47 8(1977)294s 139 10(1979)127 11(1980)277s 69 7(1976/3)47 8(1977)295s 138 10(1979)127 11(1980)278s 70 7(1976/3)47 8(1977)295s 139 10(1979)127 11(1980)278s 71 7(1976/3)47 8(1977)295s 139 10(1979)121 11(1980)278s 71 7(1976/3)47 9(1978)41c, 41s 141 10(1979)128		` '. '			1 1	` ,
61 7(1976/2)49 8(1977)181s, 181v				130	9(1978)297	
62 7(1976/2)49 8(1977)241s 132 10(1979)53 11(1980)210s 63 7(1976/2)49 8(1977)241s 133 10(1979)53 11(1980)211s 64 7(1976/2)49 8(1977)242s 134 10(1979)53 11(1980)212s 65 7(1976/2)50 8(1977)243s 135 10(1979)127 11(1980)276s 67 7(1976/3)47 8(1977)293s 137 10(1979)127 11(1980)276s 68 7(1976/3)47 8(1977)293s 138 10(1979)127 11(1980)277s 68 7(1976/3)47 8(1977)294s 139 10(1979)127 11(1980)278s 69 7(1976/3)47 8(1977)294s 139 10(1979)127 11(1980)278s 70 7(1976/3)47 8(1977)295s 140 10(1979)128 11(1980)278s 71 7(1976/3)48 9(1978)41c, 41s 141 10(1979)128 11(1980)337s 72 7(1976/4)33 9(1978)42s 142 10(1979)211 11(1980)337s 73 7(1976/4)33 9(1978)45s <td< td=""><td></td><td>= (10=0'/0) 10</td><td></td><td>121</td><td>10(1070)52</td><td></td></td<>		= (10=0'/0) 10		121	10(1070)52	
63 7(1976/2)49 8(1977)241s 133 10(1979)53 11(1980)211s 64 7(1976/2)49 8(1977)242s 134 10(1979)53 11(1980)212s 65 7(1976/2)50 8(1977)243s 135 10(1979)53 11(1980)212s 66 7(1976/2)50 8(1977)243s 135 10(1979)127 11(1980)276s 67 7(1976/3)47 8(1977)293s 136 10(1979)127 11(1980)277s 68 7(1976/3)47 8(1977)293s 138 10(1979)127 11(1980)278s 69 7(1976/3)47 8(1977)294s 139 10(1979)127 11(1980)278s 70 7(1976/3)47 8(1977)295s 140 10(1979)128 11(1980)279s 71 7(1976/3)47 9(1978)41c, 41s 141 10(1979)210 11(1980)37s 72 7(1976/3)48 9(1978)42s 142 10(1979)210 11(1980)337s 73 7(1976/4)33 9(1978)42s 142 10(1979)211 11(1980)338s 74 7(1976/4)33 9(1978)45s 144 10(1979)211 11(1980)338s 75 7(1976/4)33 9(1978)45s 144 10(1979)211 11(1980)339s 76 7(1976/4)33 9(1978)96s 145 10(1979)211 11(1980)339s 76 7(1976/4)33 9(1978)96s 146 10(1979)211 11(1980)339s 77 7(1976/4)33 9(1978)96s 146 10(1979)293 12(1981)64s 78 7(1976/4)33 9(1978)98s 146 10(1979)293 12(1981)64s 79 8(1977)42 9(1978)99s 146 10(1979)294 12(1981)66s 81 8(1977)42 9(1978)100c, 100s 149 10(1979)294 12(1981)66s 81 8(1977)42 9(1978)107s 150 10(1979)294 12(1981)66s 81 8(1977)42 9(1978)177s 150 10(1979)294 12(1981)66s 81 8(1977)42 9(1978)177s 150 10(1979)359 12(1981)157s 82 8(1977)42 9(1978)177s 150 10(1979)359 12(1981)157s 84 8(1977)95 9(1978)178s 152 10(1979)359 12(1981)158s, 159s 85 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)158s, 159s						
64 7(1976/2)49 8(1977)242s 134 10(1979)53 11(1980)212s 65 7(1976/2)50 8(1977)243s 135 10(1979)53 11(1980)213s 66 7(1976/2)50 8(1977)243s 136 10(1979)127 11(1980)276s 67 7(1976/3)47 8(1977)293s 137 10(1979)127 11(1980)277s 68 7(1976/3)47 8(1977)293s 138 10(1979)127 11(1980)277s 69 7(1976/3)47 8(1977)294s 139 10(1979)127 11(1980)278s 70 7(1976/3)47 8(1977)295s 140 10(1979)127 11(1980)278s 71 7(1976/3)47 9(1978)41c, 41s 141 10(1979)210 11(1980)337s 72 7(1976/3)48 9(1978)42s 142 10(1979)211 11(1980)337s 73 7(1976/4)33 9(1978)44c, 44s 142 10(1979)211 11(1980)337s 74 7(1976/4)33 9(1978)44c, 44s 144 10(1979)211 11(1980)339s 75 7(1976/4)33 9(1978)45s 144 10(1979)211 11(1980)339s 75 7(1976/4)33 9(1978)96s 145 10(1979)211 11(1980)339s 76 7(1976/4)33 9(1978)96s 145 10(1979)211 11(1980)340s 77 7(1976/4)33 9(1978)96s 145 10(1979)293 12(1981)64s 79 8(1977)42 9(1978)99s 148 10(1979)294 12(1981)65s 80 8(1977)42 9(1978)197s 150 10(1979)294 12(1981)65s 80 8(1977)42 9(1978)177s 150 10(1979)294 12(1981)65s 81 8(1977)42 9(1978)177s 150 10(1979)294 12(1981)65s 81 8(1977)42 9(1978)177s 150 10(1979)359 12(1981)157s 82 8(1977)42 9(1978)178s 151 10(1979)359 12(1981)157s 84 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)158s, 159s 8(1977)95 9(1978)181s					` ,	1 (
65 7(1976/2)50 8(1977)243s 135 10(1979)53 11(1980)213s 66 7(1976/2)50 8(1977)243s 136 10(1979)127 11(1980)277s 67 7(1976/3)47 8(1977)293s 137 10(1979)127 11(1980)277s 68 7(1976/3)47 8(1977)294s 138 10(1979)127 11(1980)278s 69 7(1976/3)47 8(1977)294s 139 10(1979)127 11(1980)278s 70 7(1976/3)47 8(1977)295s 140 10(1979)128 11(1980)279s 71 7(1976/3)47 9(1978)41c, 41s 141 10(1979)128 11(1980)337s 72 7(1976/3)48 9(1978)42s 142 10(1979)211 11(1980)337s 73 7(1976/4)33 9(1978)43s, 43v 142 10(1979)211 11(1980)337s 74 7(1976/4)33 9(1978)45s 144 10(1979)211 11(1980)337s 75 7(1976/4)33 9(1978)96s 145 10(1979)211 11(1980)339s 76 7(1976/4)33 9(1978)96s						1 (
66 7(1976/2)50 8(1977)243s					` ,	
67 7(1976/3)47 8(1977)293s 137 10(1979)127 11(1980)277s 68 7(1976/3)47 8(1977)294s 138 10(1979)127 11(1980)278s 69 7(1976/3)47 8(1977)294s 139 10(1979)127 11(1980)278s 70 7(1976/3)47 8(1977)295s 140 10(1979)128 11(1980)279s 71 7(1976/3)47 9(1978)41c, 41s 141 10(1979)210 11(1980)337s 72 7(1976/3)348 9(1978)42s 142 10(1979)211 11(1980)337s 73 7(1976/4)33 9(1978)43s, 43v 143 10(1979)211 11(1980)337s 74 7(1976/4)33 9(1978)44s, 44s 143 10(1979)211 11(1980)338s 75 7(1976/4)33 9(1978)96s 144 10(1979)211 11(1980)339s 76 7(1976/4)33 9(1978)97s 146 10(1979)291 11(1980)340s 77 7(1976/4)33 9(1978)98s 147 10(1979)293 12(1981)64s 80 8(1977)42 9(1978)17s		7(1976/2)50				
69 7(1976/3)47 8(1977)294s 139 10(1979)127 11(1980)278s 70 7(1976/3)47 8(1977)295s 140 10(1979)128 11(1980)279s 71 7(1976/3)47 9(1978)41c, 41s 141 10(1979)210 11(1980)337s 72 7(1976/4)33 9(1978)43s, 43v 142 10(1979)211 11(1980)337s 74 7(1976/4)33 9(1978)44c, 44s 143 10(1979)211 11(1980)338s 75 7(1976/4)33 9(1978)45s 144 10(1979)211 11(1980)339s 76 7(1976/4)33 9(1978)96s 145 10(1979)211 11(1980)339s 76 7(1976/4)33 9(1978)96s 145 10(1979)211 11(1980)340s 77 7(1976/4)33 9(1978)96s 146 10(1979)293 12(1981)64s 78 7(1976/4)33 9(1978)98s 147 10(1979)293 12(1981)64s 79 8(1977)42 9(1978)99s 148 10(1979)294 12(1981)65s 80 8(1977)42 9(1978)100c, 100s 149 10(1979)294 12(1981)66s 81 8(1977)42 9(1978)177s 150 10(1979)294 12(1981)66s 81 8(1977)42 9(1978)177s 150 10(1979)294 12(1981)67s 82 8(1977)42 9(1978)177s 150 10(1979)359 12(1981)155s 83 8(1977)43 9(1978)178s 152 10(1979)359 12(1981)157s 84 8(1977)95 9(1978)180s 153 10(1979)359 12(1981)157s 85 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)150s				137		11(1980)277s
70				138	10(1979)127	11(1980)278s
71				139	10(1979)127	11(1980)278s
72 7(1976/3)48 9(1978)42s 144 10(1979)211 11(1980)337s 145 10(1979)211 11(1980)337s 146 10(1979)211 11(1980)338s 147 10(1979)211 11(1980)338s 148 8(1977)95 9(1978)181s 154 10(1979)359 12(1981)158s 159s 154 10(1979)350 12(1981)158s 159s 154 10(1979)360 12(1981)150s 159s 154 10(1979)360 12(1981)150s 154 10(1979)360 12(1981)160s 154 10(1979)360 12(1981)160s 154 10(1979)360 12(1981)160s				140		
73					10(1979)210	11(1980)337s
74 7(1976/4)33 9(1978)44c, 44s 144 10(1979)211 11(1980)338s 75 7(1976/4)33 9(1978)45s 145 10(1979)211 11(1980)339s 76 7(1976/4)33 9(1978)96s 145 10(1979)291 11(1980)340s 77 7(1976/4)33 9(1978)97s 146 10(1979)293 12(1981)64s 78 7(1976/4)33 9(1978)98s 147 10(1979)293 12(1981)64s 79 8(1977)42 9(1978)99s 148 10(1979)294 12(1981)65s 81 8(1977)42 9(1978)100c, 100s 149 10(1979)294 12(1981)66s 81 8(1977)42 9(1978)177s 150 10(1979)294 12(1981)66s 81 8(1977)42 9(1978)177s 150 10(1979)294 12(1981)67s 82 8(1977)42 9(1978)177s, 178s 151 10(1979)359 12(1981)155s 83 8(1977)43 9(1978)178s 152 10(1979)359 12(1981)157s 84 8(1977)95 9(1978)180s 153 10(1979)359 12(1981)158s, 159s 85 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)160s		` '. '				1 (
75 7(1976/4)33 9(1978)45s 144 10(1979)211 11(1980)339s 76 7(1976/4)33 9(1978)96s 145 10(1979)293 12(1981)64s 77 7(1976/4)33 9(1978)97s 146 10(1979)293 12(1981)64s 78 7(1976/4)33 9(1978)98s 147 10(1979)293 12(1981)64s 79 8(1977)42 9(1978)99s 148 10(1979)294 12(1981)65s 80 8(1977)42 9(1978)100c, 100s 149 10(1979)294 12(1981)66s 81 8(1977)42 9(1978)177s 150 10(1979)294 12(1981)67s 82 8(1977)42 9(1978)177s, 178s 151 10(1979)359 12(1981)155s 83 8(1977)43 9(1978)178s 152 10(1979)359 12(1981)157s 84 8(1977)95 9(1978)180s 153 10(1979)359 12(1981)158s, 159s 85 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)160s						
76 7(1976/4)33 9(1978)96s 145 10(1979)211 11(1980)340s 77 7(1976/4)33 9(1978)97s 146 10(1979)293 12(1981)64s 78 7(1976/4)33 9(1978)98s 147 10(1979)293 12(1981)64s 79 8(1977)42 9(1978)99s 148 10(1979)294 12(1981)65s 80 8(1977)42 9(1978)100c, 100s 149 10(1979)294 12(1981)66s 81 8(1977)42 9(1978)177s 150 10(1979)294 12(1981)67s 82 8(1977)42 9(1978)177s, 178s 151 10(1979)359 12(1981)155s 83 8(1977)43 9(1978)178s 152 10(1979)359 12(1981)157s 84 8(1977)95 9(1978)180s 153 10(1979)359 12(1981)158s, 159s 85 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)160s						` ,
78 7(1976/4)33 9(1978)98s 147 10(1979)293 12(1981)64s 79 8(1977)42 9(1978)99s 148 10(1979)294 12(1981)65s 80 8(1977)42 9(1978)100c, 100s 149 10(1979)294 12(1981)66s 81 8(1977)42 9(1978)177s 150 10(1979)294 12(1981)67s 82 8(1977)42 9(1978)177s 151 10(1979)359 12(1981)155s 83 8(1977)43 9(1978)178s 152 10(1979)359 12(1981)157s 84 8(1977)95 9(1978)180s 153 10(1979)359 12(1981)158s, 159s 85 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)160s		7(1976/4)33				` ,
79 8(1977)42 9(1978)99s 148 10(1979)294 12(1981)65s 80 8(1977)42 9(1978)100c, 100s 149 10(1979)294 12(1981)66s 81 8(1977)42 9(1978)177s 150 10(1979)294 12(1981)67s 82 8(1977)42 9(1978)177s, 178s 151 10(1979)359 12(1981)155s 83 8(1977)43 9(1978)178s 152 10(1979)359 12(1981)157s 84 8(1977)95 9(1978)180s 153 10(1979)359 12(1981)158s, 159s 85 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)160s	77	7(1976/4)33) (
80 8(1977)42 9(1978)100c, 100s 149 10(1979)294 12(1981)66s 81 8(1977)42 9(1978)177s 150 10(1979)294 12(1981)67s 82 8(1977)42 9(1978)177s, 178s 151 10(1979)359 12(1981)155s 83 8(1977)43 9(1978)178s 152 10(1979)359 12(1981)157s 84 8(1977)95 9(1978)180s 153 10(1979)359 12(1981)158s, 159s 85 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)160s		1 ' '			ì :	1 (
81 8(1977)42 9(1978)177s 150 10(1979)294 12(1981)67s 82 8(1977)42 9(1978)177s, 178s 151 10(1979)359 12(1981)155s 83 8(1977)43 9(1978)178s 152 10(1979)359 12(1981)157s 84 8(1977)95 9(1978)180s 153 10(1979)359 12(1981)158s, 159s 85 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)160s						
82 8(1977)42 9(1978)177s, 178s 151 10(1979)359 12(1981)155s 83 8(1977)43 9(1978)178s 152 10(1979)359 12(1981)157s 84 8(1977)95 9(1978)180s 153 10(1979)359 12(1981)158s, 159s 85 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)160s			_ } { .			
83 8(1977)43 9(1978)178s 152 10(1979)359 12(1981)157s 84 8(1977)95 9(1978)180s 153 10(1979)359 12(1981)158s, 159s 85 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)160s		· · · · ·			ì :	1 (
84 8(1977)95 9(1978)180s 153 10(1979)359 12(1981)158s, 159s 85 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)160s		· · · · ·				1 (
85 8(1977)95 9(1978)181s 154 10(1979)360 12(1981)160s						1 (
		· · · · ·				
	86	8(1977)95	9(1978)237s	155	10(1979)360	12(1981)162s, 213a

AUTHOR INDEX

Use this section to

- · locate problems proposed by a given author
- find all published works (problems, solutions, or comments) by a given author that appear in a journal problem column covered by this index
- · determine if an author proposed a problem without submitting a solution
- · find the names of prominent problem proposers or problem solvers

In this section, we list the name of every person who has published a problem, solution or comment during the years 1975–1979 (in one of the columns covered by this index). We also list the name of every person who has published a solution or comment to a problem published in one of those years even if this solution appeared later than 1979. All journal issues through January 1992 have been scanned for solutions to problems covered by this index.

We have attempted to group together variant names under the longest name given, for example, works by M. Klamkin, M. S. Klamkin, and Murray Klamkin will appear under Murray S. Klamkin. We have also attempted to consolidate names when a nickname or variant spelling is used. Thus problems by Joe Konhauser would be listed under Joseph Konhauser. Similarly, shortened names such as Tom/Thomas, Chris/Christopher, Mike/Michael, etc. will appear using the longer name. Each reference to a problem, solution, or comment published by this person follows the author's name. It is given in the form

JNL prob vol(year/issue)page code

where	JNL	is the abbreviation of the journal name
	prob	is the problem number
	vol	is the volume number of the issue (if known)
	year	is the year of publication
	/issue	is given if the periodical numbers its pages beginning with page 1 in every issue
	page	is the page number where the reference begins
	code	is a single character code specifying the type of reference as listed below:

<u>Code</u>	<u>Description</u>
С	comment
р	problem proposal
S	solution
X	partial solution

To save space, we have omitted duplicate information from the reference list. For example, the journal name is listed just once per author. The journal name and problem number are given in boldface. Thus, a boldface problem number with no immediately preceding journal name refers to the last journal name listed. Similarly, if no volume or year information is listed for a reference, scan backwards for the last listed volume and year information for the journal in question. Multiple page number references in the same volume of a journal are separated by commas. References to different volumes in a given journal are separated by semicolons. An asterisk after a problem number indicates that the author submitted the problem without submitting a solution. For a given journal, the references are listed chronologically.

Thus, for example, an author entry of

AMATYC C-3 4(1982/1)54p, **A-3** 57s; 4(1983/2) **B-2** 67c. **TYCMJ 128** 11(1980)135s.

means that the author proposed problem C-3 in the AMATYC Review on page 54 of issue number 1 of volume 4 (published in 1982) and had his solution to problem A-3 published on page 57 of that same issue. In issue 2 of the 1983 volume (vol. 4), he had a comment to problem B-2 published on page 67. In the Two-Year College Mathematics Journal (TYCMJ), he had a solution to problem 128 published on page 135 of volume 11 published in 1980.

Only references to published material are indexed. If a person is listed in a solver's list or editor's comment indicating that he has solved a certain problem, his name will not appear in this author index unless his solution or comment was actually printed in the journal.

Works published under a pseudonym are indexed under that pseudonymic name.

Abbat, Pierre	1975	-1979	Baldick, Ross
Abbat, Pierre	MSJ 502 27(1980/4)4s.	Anderson, William	1
Abbott, H. L.	AMM E2766 87(1980)406s, E2776 493s,	,	AMM E2697 85(1978)116p.
	E2799 825s, E2800 825s.	Andresen, Einar	AMM 6101 85(1978)126s.
Aboudi, Ronny	PME 393 6(1978)492s.	Andrews, George 1	
Abramson, Michae			AMM 5950 82(1975)414s; S7 86(1979)222p.
Alaman Camalia	CRUX 451 6(1980)122s.		SIAM 75-10 17(1975)566p; 75-10
Ackermans, S. T. 1	AMM E2517 83(1976)204s.	Andrews, J. A.	18(1976)496s. AMM E2710 85(1978)276p.
Ackermans, S. 1.	NAvW 534 27(1979)267p.	Annulis, John T.	MATYC 136 13(1979)214p, 123 218s.
Adams, Scot	AMM 6102 85(1978)504s.	Amuns, John 1.	SSM 3652 77(1977)447s, 3667 715s; 3709
Addor, Peter	MM 1023 52(1979)53s.		78(1978)717s; 3720 79(1979)175s, 3741 532s;
Adelberg, Arnold			3784 80(1980)529s.
0,	88(1981)764s.	Anon	AMM E2473 82(1975)526s, 6057 942p;
Adin, Ron	AMM E2761 86(1979)222p; E2787		6095 83(1976)386p; S19 86(1979)702p.
	87(1980)673s.		TYCMJ 154 12(1981)160s.
Adler, Andrew	AMM 6244 87(1980)676s.	Apostol, Tom M.	MM 1064 53(1980)183s. PME 401
Africk, Henry	TYCMJ 91 9(1978)298s.		6(1978)546s; 452 7(1979)58p; 452
Ahlburg, Hayo	CRUX 385 5(1979)178s, 388 202c, 389 203s,	A 1 D /	7(1980)193s.
Abuia Mangha	475 229p; 428 6(1980)50s, 475 216s. MATYC 101 12(1978)174s; 138	Arends, Peter	CRUX 379 4(1978)226p.
Ahuja, Mangho	13(1979)214p. MM 1018 52(1979)50s.	Arendt, Stephen E	
	SSM 3661 77(1977)623s, 3664 626s; 3692	Argila, Carl A.	SSM 3639 77(1977)265s. PME 361 6(1975)180p.
	78(1978)446s, 3696 534s, 3698 535s,	Arisawa, Makoto	JRM 470* 9(1977)26p, 471* 27p, 501 133p;
	3702 623s, 3704 626s, 3707 715s; 3728	11115awa, manoto	759 11(1979)214p.
	79(1979)358s; 3753 80(1980)78s, 3771 353s.	Armstrong, David	ISMJ J11.10 11(1976/3)6s.
	TYCMJ 102 8(1977)292p, 67 293s; 128	Arnaudies, J. M.	AMM 6181* 84(1977)828p.
	9(1978)297p; 122 11(1980)63s, 128 135s.	Arnold, J. T.	AMM 6251 88(1981)154s.
Aiello, W.	SIAM 78-9* 20(1978)395p.	Arnold, L. K.	SIAM 76-13* 18(1976)489p.
Alex, Leo J.	AMM E2749 86(1979)55p.	Ash, David	OSSMB 78-9 14(1978/2)23p; 79-4
Alexander, J. R.	SPECT 10.9 10(1978)97p.	·	15(1979/2)19s.
Alexander, Steven Allegretto, W.	MM 992 51(1978)129s.	Ashlar, Chip	AMM E2508 83(1976)200s.
Allen, Duane	SIAM 77-4 20(1978)190s. JRM 789 13(1981)300s.	Askey, Richard	AMM S7 86(1979)222p. SIAM 74-10
Allen, H. D.	JRM 568 11(1979)147s.		17(1975)693c; 74-19 18(1976)121s.
Allen, R. W.	SIAM 75-1* 17(1975)167p.	Atlani, Richard	CRUX 62 1(1975)99s.
Allgower, E. L.	SIAM 79-3 22(1980)100s.	Aulicino, Daniel J.	
Allison, Joe F.	MATYC 139 13(1979)215p. TYCMJ 83		MATYC 90 10(1976)122p; 69 11(1977)142s. MM 1046 51(1978)194p. TYCMJ 93
	8(1977)43p.		8(1977)177p.
Allwright, David J		Austin, A. K.	AMM 6182* 84(1977)828p. MM 1051
	AMM E2778 86(1979)393p; E2778		51(1978)245p. SPECT 11.6 11(1979)61p.
Alamaa III Niaama	87(1980)580s. CMB P277 22(1979)385p.	Austin, Joe Dan	MM 1022 50(1977)211p. PME 347
Alonso III, Nicome	CRUX 236 3(1977)260s, 240 264s. MSJ 444		6(1975)106p; 373 6(1976)228p; 395
	25(1978/1)4s.		6(1977)367p, 373 380s. SSM 3601
Alpert, Louis	TYCMJ 37 6(1975/2)31p; 46 6(1975/3)35p;		75(1975)657p; 3681 77(1977)353p.
F ,	65 8(1977)243s, 101 292p.	Avidon, Michael	MSJ 406 22(1975/1)6s, 409 7s; 412
Altmann, Michael	MSJ 410 22(1975/1)7s.		22(1975/2)6s, 414 7s; 416 22(1975/3)6s,
Amos, D. E.	SIAM 77-3 20(1978)189s.		417 6s, 419 7s; 423 22(1975/4)6s; 426 23(1976/1)6s.
Ampe, John	MM 1050 52(1979)322s; 1053 53(1980)51s.	Avital, Shmuel	CRUX 271* 3(1977)226p, 200 228c.
An, Myoung Hee	CRUX 262 4(1978)70s.		TYCMJ 40 7(1976/2)53s; 44 7(1976/3)49s.
Andersen, K. F.	AMM E2636 85(1978)386s; E2720	Bach, Günter	AMM E2739 87(1980)62s.
	86(1979)707s; 6140 88(1981)296s; 6140	Bachand, Paul	JRM 202 9(1977)53s.
Anderson Ir W	89(1982)603c. SIAM 76-8 18(1976)295p.	Baer, Robert	MATYC 126 14(1980)74s, 129 76s.
Anderson, Bernard	` / -	Bager, Anders	AMM E2501 82(1975)940s, E1030
ringerson, Bernare	TYCMJ 43 6(1975/3)34p.		1011s; E2659 85(1978)767s. MM 1045
Anderson, Claude			52(1979)264s.
, , , , , , , , , , , , , , , , , , , ,	AMM 6015 82(1975)183p, 6020* 307p,	Baglio, James M.	MATYC 82 11(1977)63s. TYCMJ 56
	E2465 405s, E2543 660p, 6065 1016p, 5967		8(1977)98s.
	1018s; 6066* 83(1976)62p, 6070 62p, E2543	Bailey, William T.	SSM 3785 79(1979)528p; 3790
	744s; 6020 84(1977)65c.	Deillie Delema	80(1980)715s.
Anderson, D. H.	SIAM 74-9 17(1975)690s.	Baillie, Robert	AMM 6241 85(1978)828p; 6241 87(1980)496s.
Anderson, Daniel		Bain, Osias	JRM 506* 9(1977)134p.
Andorson Edm	AMM 6201 85(1978)203p.	Bajer, Antonios	MSJ 406 22(1975/1)6s.
Anderson, Edmund	а н. АММ 6225 85(1978)600р.	Baker, Donald	CRUX 134 2(1976)222s; 285 4(1978)116s.
Anderson, Hal	SSM 3760 80(1980)176s.	Dunoi, Donaid	MSJ 430 22(1975/3)5p; 432 23(1976/1)8p.
Anderson, Robert		Baker, I. N.	AMM 6109 85(1978)291s; 6208
, 1000010	AMM 6235 85(1978)770p; 6235		87(1980)228s.
	87(1980)761s.	Baker, John A.	AMM E2607 84(1977)824s.
Anderson, Robert		Baldick, Ross	PARAB 370 14(1978/3)30s, 373 31s, 374
	AMM 6076* 83(1976)141p.		32s, 376 33s; 393 15(1979/2)38s, 394 38s,

Baldick, Ross	1975–	1979	Berzsenyi, George
	395 39s, 397 40s, 398 41s, 399 41s, 403 43s; 408 15(1979/3)34s, 409 34s, 410 35s.	Beck, Anatole Becker, Charles H	SIAM 63-9 27(1985)447c.
Baldwin, Gary	MATYC 84 10(1976)43p.	, , , , , , , , , , , , , , , , , , , ,	NYSMTJ 28 25(1975)21s.
Baltz, Jay	MSJ 418 22(1975/3)7s.	Beeler, Mike	JRM 600 12(1980)63s.
Banaschewski, B.		Beesack, Paul R.	CRUX 348 5(1979)50s, 349 53s, 362 89s, 362
Bange, D. W.	SIAM 79-3* 21(1979)139p.	Desein Ministra	90c.
Banis, W. M.	JRM 320 8(1976)68s. CRUX 386 4(1978)251p.	Beesing, Miriam Beidler, John	AMM E2480 82(1975)670s. MM 903 48(1975)184s.
Bankoff, Leon	AMM E2471 82(1975)523s; S23	Beigel, Richard	MM 1034 52(1979)183s; 1083
Bumon, Been	86(1979)863p. CRUX 141 2(1976)93p, 115	Beiger, Hieriara	53(1980)303s.
	98s, 134 173s, 144 181s, 147 183s, 148	Beiter, Sister Mar	ion
	184c, 168 233s; 181 3(1977)57s, 182 58s,		FQ B-304 14(1976)188s.
	189 74c, 220 175c, 220 175s, 222 201s, 225	Beitz, Mark	ISMJ 13.11 13(1978/3)6s; 14.1
	204s; 210 4(1978)13c, 248 27c, 313 35p, 255 52c, 268 78s, 291 148s, 330 263s, 332 267s;		14(1979/2)6s, 14.3 7s, 14.5 8x; 14.8
	348 5(1979)51s, 397 234s; 444 6(1980)90s.	Bell, Stroughton	14(1979/3)3s, 14.9 4s, 14.10 4s, 14.14 5s. AMM E2568 82(1975)1010p.
	JRM 370 8(1976)46p, 382 136p. MM 936	Beller, Eliyahu	AMM E2695 85(1978)116p.
	49(1976)101s. PME 319 6(1975)118c, 331		nior High Math Teachers, the
	187c; 361 6(1976)324c; 362 6(1977)369s; 386		SSM 3726 79(1979)356s.
	6(1978)486c, 364 501c; 458 7(1979)59p; 458		AMM 6250 87(1980)679s.
Dontler Joffman	7(1980)199s. TYCMJ 64 8(1977)242s.	Bence, Ray	FUNCT 3.5.1 3(1979/5)30p.
Bantly, Jeffrey Barbeau, E. J.	MSJ 494 27(1980/3)4s. CMB P278 22(1979)386p. CRUX 406	Bencze, Mihály	AMM 6247 86(1979)59p. CMB P273
Barbeau, E. v.	5(1979)273s, 496 291p. JRM 477	Bender, E. D.	22(1979)247p. NAvW 524 27(1979)132p. SSM 3658 76(1976)715p.
	9(1977)30p; 652* 10(1978)212p.	,	lozo H.S., 11th year Honors Class at
Barger, Samuel F	loyd	,	NYSMTJ 69 27(1977)99p.
	AMM E2752 89(1982)757c. MM 1041	Benkoski, Stanley	J.
D 1 1 4 E	52(1979)262s. TYCMJ 81 9(1978)177s.		MM 1034 52(1979)183c.
Barkauskas, A. E. Barker, Ricky J.	SIAM 79-3* 21(1979)139p. SSM 3551 75(1975)294s.	Bennett College T	
, ,	SSM 3717 78(1978)170p.	Ponnott Cross	AMM E2446 82(1975)77s.
Barning, F. J. M.		Bennett, Greg Benz, Jan	OSSMB 79-17 15(1979/3)23p. MSJ 452 25(1978/7)2s.
Baron, Julius G.	MM 925 48(1975)51p.	Beresin, Max	AMM E2526 83(1976)484s.
Barr, Leonard	PME 317 6(1975)112s.	Bergen, Jeffrey	PME 316 6(1975)111s, 331 187s; 366
Barr, Michael	AMM 6145 84(1977)300p; 6271		6(1977)374s; 393 6(1978)492s.
Barrucand, P.	86(1979)509p, E2723 789s. SIAM 75-4* 17(1975)168p; 76-21*	Berger, Michael	MSJ 413 22(1975/2)7s.
Darrucand, F.	18(1976)763p; 77-19* 19(1977)737p.	Bergerson, Howard	
Bartel, Gladwin E		Bergum, Gerald E	JRM 75 8(1976)56s.
,	MATYC 63 9(1975/2)52s; 74 10(1976)122s;	Borgam, Gorara L	FQ B-298 14(1976)94s, B-317 471s, B-320
	117 13(1979)137s. MM 945 49(1976)215s.		472s, B-321 472s; B-367 15(1977)375p.
	SSM 3548 75(1975)202s. TYCMJ 26		MM 896 48(1975)119c. TYCMJ 99
Bartholomew, Jar	6(1975/3)35s; 47 7(1976/4)35s.	D 4	10(1979)56s.
Dartholomew, 5ar	AMM E2491 82(1975)854c.	Berman, A.	SIAM 76-15* 18(1976)490p. . SIAM 76-1* 18(1976)117p, 76-17* 491p;
Barton, John	FUNCT 2.4.4 3(1979/3)27c.	Derman, David N.	76-1 19(1977)149x.
Barwell, Brian R.	JRM 320 8(1976)68s, 321 69s, 409 227p;	Berman, Martin	MATYC 58 9(1975/1)51s. MM 970
	368 9(1977)70s, 375 74s; 391 10(1978)137s,		49(1976)95p; 1011 51(1978)308s.
	392 140s; 673 11(1979)308s, 682 314s, 683		TYCMJ 27 6(1975/3)36s; 57 7(1976/1)28p;
	315s; 698 12(1980)49s, 702 67s, 729 145s, 736 153s, 739 156s, 756 223s, 786 305s, 787		79 8(1977)42p, 94 177p; 137 10(1979)127p,
	306s.	Bern Problem Sol	103 130s, 148 294p.
Baskaran, S.	AMM 6059 82(1975)942p.	Bern 1 replem per	MM 977 50(1977)268s.
Bateman, Keith	CRUX 21 1(1975)40s.	Bernard., George	ISMJ 13.24 14(1979/1)7s.
Bateman, P. T.	AMM 6137 87(1980)495c.	Berndt, Bruce C.	AMM 5952 82(1975)679s; E2758
Bates, Madelaine	NYSMTJ 70 28(1978)56s, 82 78p.		86(1979)128p, E2719 787s. SIAM 76-11
Batman, Donald Battany, David M	MM 949 49(1976)218s.	Bernhart, Arthur	18(1976)296p. PME 354 6(1975)178p.
David IV	AMM 6110* 83(1976)661p.	Bernhart, Frank F	` / -
Baum, J. D.	MM Q633 49(1976)96p, Q633 101s; Q648	Berman, Train 1	JRM 763 11(1979)215p.
	50(1977)164p, Q648 169s.	Bernshtein, D.	CRUX 396 5(1979)233s.
Bauman, Norman		Bernstein, B.	TYCMJ 66 7(1976/2)50p.
Doumenantman Ion	83(1976)140s.	· · · · · · · · · · · · · · · · · · ·	l JRM 601 11(1979)71s.
Baumgartner, Jan	AMM 6022 84(1977)67s.	Berzsenyi, George	FQ B-320 13(1975)373p, B-321 373p, B-293
Baumwell, Jeffrey	,		374s; B-327 14(1976)93p, B-300 94s, H-263 182p, B-330 188p, B-331 188p, B-306
, · · · · · · · · · · · · · · · · ·	JRM C2 9(1977)235s.		189s, B-307 190s, H-266 282p, B-338 286p,
Bayer, David	JRM C6 9(1977)289s.		B-318 471s; H-269 15(1977)89p, H-248
Bayless, James	MSJ 416 22(1975/3)6s; 424 22(1975/4)6s.		90s, B-351 94p, B-323 94s, H-274 281p,
Bean, Dwight R.	AMM 065 40(1076)42p		H-257 283s, H-263 373s, B-364 375p, B-369
Beard, Bernard B Beaupré, G.	. MM 965 49(1976)43p. SIAM 71-19 25(1983)403s.		375p, B-341 376s; B-346 16(1978)89s, B-349 90s, B-378 184p, B-387 473p, B-367 564s,
Deaupre, G.	JIAN 11-13 20(1300) 4038.		300, 2-310 104p, 2-301 413p, 2-301 3048,

Berzsenyi, George	1975-	-1979	Boyle, Patrick J.
	H-291 566p; H-274 17(1979)95s, H-275 191s,		85(1978)495p. MM 1032 51(1978)69p; 1078
	H-302 286p; H-302 19(1981)190s. JRM 559	D 1 D 11 D	52(1979)258p.
	10(1978)306s. MM 961 50(1977)52s; Q654 51(1978)194p, Q654 201s. MSJ 465	Bock, David E.	NYSMTJ 40 25(1975)20p, 32 56s, 38 127c;
	26(1979/6)2c, 466 3c; 468 26(1979/7)2c, 469		46 26(1976)97s, 47 98s, 49 101c, 50 151c, 51 152x; 52 27(1977)51s, 53 52s, 54 52x.
	2c, 472 3c; 474 26(1979/8)2c, 475 2c, 476	Boersma, J.	NAvW 379 23(1975)92s, 393 250s; 406
	3c, 477 3c.		24(1976)95s, 408 100s, 419 206s, 449
Best, Clarence H.	AMM 6151 84(1977)391p.		270p; 449 25(1977)194s, 479 423p; 458
Best, M. R.	NAvW 459 25(1977)86p.		26(1978)352s, 479 356s; 522 27(1979)284s.
Bétancourt, Rober		D.I.I II	SIAM 75-20 18(1976)770s.
Dauliona E	CRUX 250 4(1978)39s.	Bolder, H. Bolduan, M. S.	NAvW 468 26(1978)236c. SSM 3638 77(1977)173s.
Beukers, F. Beverage, David C	NAvW 392 23(1975)79p.		AMM E2547 82(1975)756p; E2629
Deverage, David C	FQ H-259 15(1977)284s, B-334 286s; H-283	Bons, Theodore S.	85(1978)277s; E2706 86(1979)593s, E2721
	16(1978)188p.		865s; E2751 88(1981)291s.
Bezuszka, Stanley		Bolker, Ethan	AMM 6242 87(1980)411s.
	JRM 791 12(1980)311s.	Boman, Jan	AMM 6042 84(1977)303s, 6056 494s.
Biagioli, Anthony	\ / ·	Bondesen, Aage	AMM E2516 83(1976)202s, E2548
Bickley, Jeanette	PME 331 6(1975)186s; 377 6(1977)425s; 433		815s, E2549 815s, E2551 816s; E2609 84(1977)825s; E2708 86(1979)594s.
D: / 1 E:	7(1979)70s; 453 7(1980)195s.	Boneh, Arnon	JRM 795 11(1979)303p.
Bienstock, Eric Binz, J. C.	NYSMTJ 99 30(1980)172s. MM 885 48(1975)57s; 978 50(1977)268s.	Booker, John	OSSMB 76-6 12(1976/2)24s.
Bioch, J. C.	NAvW 448 24(1976)270p; 501 26(1978)348p.	Borenson, Henry	AMM 6238 87(1980)409s.
Bloch, J. C.	502 348p.	Borosh, I.	AMM E2766 86(1979)223p, E2777 393p.
Bird, M. T.	MM 938 49(1976)151s.	Boroson, D. M.	SIAM 78-13 21(1979)562x.
Bishop, Brenda Ke	, ,	Borwein, David	AMM 5880 82(1975)857s; 5971 83(1976)66s;
- '	ISMJ 12.7 12(1977/2)9s.		6105 85(1978)207s; E2679 86(1979)59s; 6227
* /	AMM E2664 84(1977)487p.	Borwein, Jon	87(1980)311s. CMB P269 22(1979)125s. CMB P269 20(1977)518p; P272
Bissell, Martin	CRUX 189 15(1989)75s.	Borwein, Jon	22(1979)121p; P272 23(1980)125s.
Bixby, R. E.	CMB P247 19(1976)121p.	Borwein, Peter B.	AMM 5971 83(1976)66s; 6128 84(1977)62p,
Blackburn, Norma		,	6074 746s.
Blair, Charles E.	AMM E2331 82(1975)1012s. AMM E2591 84(1977)655s.	Bos, P.	PARAB 344 13(1977/3)36s.
Blair, William D.		Bosch, A. J.	AMM 6114 85(1978)392s; 6125
Bian, minim Bi	88(1981)448s.		89(1982)503c. NAvW 388 23(1975)190s; 489
Blake, Louis H.	AMM 6085 84(1977)833s.	Bosch, William	26(1978)231p; 489 27(1979)271s. MM 1069 53(1980)245s.
Blanchard, Charles	s E.	Bottema, O.	CRUX 232 4(1978)17s, 278 110c, 370
	SSM 3627 76(1976)266p, 3627 718x.	Bottema, O.	193p, 313 207s, 318 233s; 370 5(1979)135s.
Blanford, Gene P.	MATYC 67 9(1975/3)47s; 115		NAvW 393 23(1975)80p, 373 86c, 401 173p,
Blasberg, Steven	13(1979)136s. TYCMJ 103 10(1979)130s.		402 173p, 403 174p, 382 179s, 414 242p,
Blass, A.	AMM 6262 86(1979)226p.		415 242p; 424 24(1976)77p, 425 77p, 403
Blau, Julian H.	AMM E2506 83(1976)60s. MM Q609		88c, 436 184p, 437 184p, 438 185p, 450 270p, 451 271p, 452 271p; 460 25(1977)87p,
Biaa, banan ii.	48(1975)52p, Q609 58s.		461 87p, 436 90s, 468 186p, 469 186p,
Blazej, Richard	FQ B-298 13(1975)94p.		450 196s, 452 198s, 480 424p, 481 424p,
Bloom, David M.	AMM E2447 82(1975)80c, E2450 81s,		482 424p, 437 426s, 438 428s, 460 436s,
	5938 185s, E2461 304s, E2467 408s, E2490		461 438s; 490 26(1978)232p, 491 232p,
	854s, E2497 939c; E2526 83(1976)484s;		503 349p, 504 349p, 482 360c, 512 462p,
	E2672 86(1979)56s, E2708 594s; E2766 87(1980)406s; S18 88(1981)65s.		513 462p, 514 463p; 525 27(1979)133p, 526 133p, 504 138s, 535 267p, 536 267p,
Bluger, Walter	CRUX 95 1(1975)97p; 105 2(1976)5p,		546 408p, 547 408p, 548 408p; 535
Biager, warter	75 10s, 123 41p, 96 48s, 101 72s, 145		28(1980)123s, 548 213s, 548 214c.
	94p, 118 101s, 145 181c, 148 183s, 150	Boucher, Wayne	AMM E2789 87(1980)674s.
	185s. JRM 374 8(1976)47p. MM 1057	Bouler, Mark	MM 965 50(1977)166s.
	53(1980)113s.	Bourbeau, André	CRUX 43 1(1975)38p; 74 2(1976)10s, 131
Blumberg, Walter	PME 432 7(1979)69s, 405 76s; 441		67p, 142 93p, 158 111p, 187 194p, 164 230s,
	7(1980)137s, 443 139s, 458 199s.		168 233s; 178 3(1977)53s. OSSMB 75.2-11
	TYCMJ 131 11(1980)209s; 147 12(1981)64s, 148 65s, 149 66s, 153 158s, 154 160s.	Bouwkamp, C. J.	12(1976/1)18s. SIAM 74-20 18(1976)123s; 75-12
Blundon, W. J.	AMM E2464 82(1975)404s; E2505	p, c. o.	19(1977)334c.
7	83(1976)59s. CRUX 213 3(1977)42p, 227	Bowman, Frank	AMM E2803 86(1979)864p.
	66p, 188 73s, 260 155p, 210 160s, 213 166s,	Boyd, A. V.	SIAM 78-10 20(1978)593p.
	216 170s, 222 200s, 227 228s, 288 251p; 210	Boyd, David W.	CMB P270 23(1980)120s, P276 251s.
	4(1978)13c, 260 58s, 269 80c, 271 85s, 274	D 1 D	NAvW 404 23(1975)174p; 404 24(1976)89s.
	88s, 295 162s, 388 251p; 384 5(1979)176s; 462 6(1980)162c. NAvW 478 25(1977)423p;	Boyle, Dave	OMG 15.2.1 15(1976/3)61s, 15.2.2 61s,
	488 26(1978)231p, 478 354s, 488 465s.	Boyle, Patrick J.	15.2.3 61s. JRM 326 8(1976)71s; 370 9(1977)72s;
	SIAM 77-9 20(1978)400s.	Doyle, I atrick J.	627 11(1979)152s; 762 12(1980)229s.
	31AW 11-9 20(1910)400s.		
Boa, James A.	AMM 6055 85(1978)600s.		MATYC 105 11(1977)221p; 108
Boa, James A. Boas, Ralph P.			

Boyle, Patrick J.	1975-	-1979	Bundschuh, Peter
	3568 564s; 3659 77(1977)536s; 3717	Brousseau, Alfred	MM 881 48(1975)54s, 884 56s, 913
Boymel, Paul E.	79(1979)173s. JRM 163 9(1977)41s, 202 53s, 518 206p; 454		246s, Q628 295p, Q628 302s. SSM 3659
boymer, Faur E.	10(1978)43s, 455 43s; 601 12(1980)64s.	Brower, Aaron	76(1976)715p. MSJ 418 22(1975/3)7s.
Bracken, Paul	FQ B-390 17(1979)371s. MM 1043	Brown, Charles	NYSMTJ 39 25(1975)171s, 40 172s.
	52(1979)320s; 1077 53(1980)250s.	Brown, Eddie J.	MATYC 56 9(1975/1)50s; 78 10(1976)201s;
Brackett, A. Dick	son MM 1056 53(1980)54s.		120 13(1979)215s. TYCMJ 47
Bradbury, Arthur	,	Drawn I M	7(1976/4)35s. AMM E2483 82(1975)759s.
	JRM 366 8(1976)44p, 369 45p, 428 308p;	Brown, J. M. Brown, M. R.	SIAM 77-11 20(1978)597c.
	450 9(1977)21p, 481 125p, 524 207p, 546	Brown, Thomas C	,
	280p; 579 10(1978)41p, 610 115p, 633 204p, 663 274p; 686 11(1979)28p, 718 122p, 744	, , , , , , , , , , , , , , , , , , , ,	AMM E2619* 83(1976)740p.
	207p, 745 207p, 773 295p, 780 296p, 794	Browne, Joseph P.	JRM 313 9(1977)305s. MATYC 127
	302p.	D : 1 M: 1	13(1979)64p. MM 1071 52(1979)114p.
Bradley, A. Day	SSM 3672 78(1978)82c; 3759 80(1980)176s,	Brozinsky, Michae	AMM E2724 86(1979)708s. MATYC 92
Duadlas Vince	3769 351s.		10(1976)200p. SSM 3587 76(1976)528c,
Bradley, Vince Brady, Wray G.	CRUX 89 1(1975)85p. FQ B-319 13(1975)373p; B-337		3625 717s; 3633 77(1977)82s, 3645 355s,
Diady, Wildy G.	14(1976)286p; H-273 15(1977)185p, B-366		3646 356s, 3692 531p, 3654 533s, 3655 533s,
	375p, B-345 377s; B-406 17(1979)281p,		3698 620p, 3664 626s, 3665 626s; 3673 78(1978)83s, 3675 84s, 3683 176s, 3704
D D	B-390 371s.		626s, 3746 712p; 3728 79(1979)357s, 3731
Braess, D. Braist, Al G.	CMB P265 20(1977)525s. AMM 6108 85(1978)289s.		360s, 3781 527p, 3740 531s, 3788 711p,
Brandler, Jacob	AMM E2536 82(1975)521p.		3749 717s; 3761 80(1980)176s, 3762 264s,
Brandon, Mike	MSJ 434 23(1976/4)8s.	D C. W	3773 355s, 3788 712s.
Brands, J. J. A. N		Bruce, C. W. Bruckman, Paul S	AMM E966 83(1976)378r.
	NAvW 394 23(1975)80p, 375 89c, 416 242p, 394 251s; 426 24(1976)78p, 409 101s, 411	Diuckinan, raur 5	AMM E2472 82(1975)525s; E2510
	104s, 416 202s, 418 205s, 422 273s, 426		83(1976)137s. FQ H-245 13(1975)89p,
	278s; 447 25(1977)101s; 492 26(1978)232p,		H-217 91s, H-218 92s, B-274 95s, H-251
D 1: D 11	474 245s.		185p, B-280 191s, B-279 286s, B-287 286s, H-206 370c, H-241 370c; H-233 14(1976)90s,
Brandt, David Brannan, David I	MSJ 417 22(1975/3)6s.		H-234 182s, H-236 184s, B-308 191s, B-314
Diamian, David L	AMM 6071 84(1977)663s.		288s, H-245 468s; H-249 15(1977)91s, H-251
Brantley, Jerry	TYCMJ 45 7(1976/3)50s; 48 7(1976/4)36s;		185s, H-252 187s; H-280 16(1978)92p, H-264
D D	57 8(1977)100s, 60 180s, 101 292p.		92s, H-266 94s, H-213 165s, B-377 184p, B-352 185s, B-356 186s, B-357 186s, H-267
Braune, E. Breach, D. R.	NAvW 472 26(1978)243c. SIAM 76-14 19(1977)567x.		190s, H-268 191s, H-286 477p, H-270 479s,
Bredon, Glen E.	AMM 6097* 83(1976)489p, E2609 * 567p.		B-366 563s, H-272 567s; B-396 17(1979)90p,
Brennan, J. G.	SPECT 9.7 9(1977)97p.		B-371 91s, B-372 92s, B-376 185s, B-386
Brenner, Joel L.	AMM S15 86(1979)503p. CMB P270		284s, H-303 286p, H-276 287s, B-389 371s, B-391 372s, B-393 373s, H-308 374p, H-279
	23(1980)120s. CRUX 495 5(1979)291p; 495 7(1981)20s; 346 10(1984)294c.		376s; B-371 18(1980)85c, B-396 87s, B-397
Bressel, Jonathan	MSJ 496 27(1980/3)4s.		87s, B-399 89s, B-404 188s, B-406 274s,
Bressoud, D. M.	SIAM 74-12 23(1981)102s.		B-407 274s, B-410 275s, B-411 276s, H-286
Breusch, Robert	AMM E2465 82(1975)405s; E2532		281s, H-289 283s, B-414 372s, B-417 373s, H-297 378s; H-301 19(1981)96s, H-303 191s,
	83(1976)569s; E2616 85(1978)50s; E2686		H-308 382s, H-310 383s; H-211 26(1988)90s,
	86(1979)131s, E2771 308p, E2723 788s, E2728 792s; E2766 87(1980)406s, 6239		H-213 91s.
	410s, E2800 825s, 6252 832s; E2752	Brunner, A. M.	AMM 6099 85(1978)204s.
D 7	89(1982)757s.	Bu, Tor	AMM E2461 82(1975)305c. AMM E2465 82(1975)406s.
Brewer, J.	AMM 6039 84(1977)301s.	Buchman, Aaron l	
Brewer, Paula Bridger, Clyde A.	MSJ 410 22(1975/1)7s. TYCMJ 72 7(1976/3)48p.	Buomman, radion i	NYSMTJ OBG6 28(1978)151p, 75 153s, 54
	lem Solving Group, the		157s. SSM 3682 78(1978)174s, 3690 444s;
	AMM E2465 82(1975)405s.	D 1 D D	3714 79(1979)84s.
Brindza, B.	AMM E2800 87(1980)825s.	Buck, E. F. Buck, R. C.	AMM S11 86(1979)392p. AMM S11 86(1979)392p. DELTA 5.2-1
Brink-Spalink, Ja	n SIAM 79-10 22(1980)234s.	Buck, n. C.	5(1975)96p; 6.1-1 6(1976)44p, 5.2-1
Brinn, John	JRM 556 10(1978)303s, 558 304s, 567 314s;		92s, 6.1-1 92s, 6.2-1 94p. TYCMJ 126
•	764 11(1979)215p, 652 230c, 654 231c, 674		9(1978)297p.
	320c; 732 12(1980)149s, 740 157c, 741 158s,	Buckley, Michael I	
Broline Duana M	769 233s. . AMM E2731 86(1979)866s, E2732 867s;		JRM 368 8(1976)45p, 324 70s, 384 137p, 408 144p, 410 227p, 445* 312p; 451
bronne, Duane W	E2742 87(1980)63s, S1 134s, E2758 405s,		9(1977)21p, 452 21p, 453 21p, 473 28p, 482
	E2789 674s, E2800 825s; 6251 88(1981)154s.		125p, 494 131p, 495* 132p, 514 206p, 549
D 1 D	MM 1074 53(1980)248s; 1084 54(1981)85s.		281p; 578 10(1978)41p, 454 43s, 608 114p,
Brooke, Patrick	SPECT 8.4 9(1977)33s, 8.5 33s.		396 142s, 642 206p, 666 275p, 667 275p, 385 288s, 390 290s; 687 11(1979)28p, 716
Brooks, Sarah	MATYC 95 10(1976)200p, 79 201s; 99 12(1978)80s, 123 253p. NYSMTJ 83		122p, 751 208p, 533 218s.
	29(1979)84s.	Bundschuh, Peter	AMM 6233 87(1980)408s.
	•		,

Burgmeier, James	W. 1975-	-1979	Charnow, A. R.
Burgmeier, James			379s. MM 912 48(1975)245s, 959 294p,
	AMM E2767 86(1979)307p. CRUX 304		918 298s; 978 49(1976)149p, 989 211p;
	4(1978)178c.		989 51(1978)72s. SIAM 74-4 17(1975)172s;
Burman, David	AMM E2681 84(1977)738p.		76-14* 18(1976)489p; 77-17 19(1977)736p;
Burnett, Paul	FUNCT 3.3.4 3(1979/5)29s.		79-8 22(1980)231s.
Burns, Alan	SPECT 9.3 9(1977)98s; 9.4 10(1978)32s.	Carlson, B. C.	SIAM 75-9 18(1976)494s.
Burns, Dan Willia		Carlson, David	AMM E2764 87(1980)306s.
D D: 1 1 C	JRM 596 10(1978)52p.	Carlson, Eric	MSJ 475 26(1979/8)2s; 487 27(1980/2)4s;
Burns, Richard G	. AMM 5946 82(1975)310s. CRUX 317	G 1 77 11	499 27(1980/4)3s, 500 3s.
Burrell Benjamin	4(1978)230s; 452 6(1980)123s. TYCMJ 44 6(1975/3)34p.	Carlson, Kathleer	
	JRM 467 10(1978)74s.	Common Dobom	PENT 289 37(1977)29s; 294 37(1978)86s.
Bury, Richard	NYSMTJ 38 25(1975)20p.	Carman, Robert	MATYC 103 11(1977)142p; 103
Bushard, L. B.	SIAM 76-20* 18(1976)762p.		12(1978)175s. SSM 3572 75(1975)204p,
Bushman, Bruce I			3578 298p, 3584 387p, 3589 477p, 3572
	JRM 710 11(1979)38p.		566c, 3576 655s, 3577 655s, 3611 748p; 3616
Butcher, J. C.	SIAM 77-11 20(1978)597s.		76(1976)86p, 3621 175p, 3636 446p, 3646
Butler, Mark W.	MATYC 113 12(1978)78p, 102 175s.		528p; 3663 77(1977)78p; 3719 78(1978)171p,
Butler, William	MSJ 437 24(1977/2)5s.		3725 354p, 3742 621p; 3752 79(1979)79p.
Butter Jr., F. A.	AMM E2125 83(1976)567s.	Carpenter, James	
Butterill, R. Duff			TYCMJ 47 7(1976/4)35s; 95 9(1978)301s.
Byrd, Paul F.	FQ H-293 18(1980)287s.	Carpenter, John	SSM 3553 75(1975)296s; 3643 77(1977)267s,
Cahit, Ibrahim	AMM E2671* 84(1977)651p. SIAM 77-15* 19(1977)564p.		3644 355s, 3670 716s; 3709 78(1978)81p,
Cairoli, Louis H.	CRUX 239 3(1977)263s; 390 5(1979)205s.	Comé Dosino	3710 717s; 3711 79(1979)81c.
Callon, Louis II.	MATYC 98 12(1978)79s. PME 316	Carré, Racine Carreras, P. P.	JRM 628 11(1979)220s. AMM 6029* 82(1975)410p.
	6(1975)111s, 322 119s; 394 6(1978)493s, 395	Carter, David S.	AMM 5790 89(1982)215s.
	495s, 406 553c. SSM 3627 76(1976)718x;	Cartwright, D. I.	CRUX 247 4(1978)38c.
	3773 80(1980)355s, 3785 529s.	Carus, Herbert	AMM 6057 84(1977)496s.
Cal Poly Solution	Group, the	Castevens, Philip	
	AMM E2489 82(1975)853s.	Cater, F. S.	AMM 6140* 84(1977)221p; 6188
Calcaterra, Rober		Catci, i.b.	85(1978)53p; 6147 86(1979)60s, E2784
G 11 F	PME 316 6(1975)111s.		504p, 6274 597p, E2806 864p; E2758
Cald, Francis	AMM 6094* 83(1976)386p.		87(1980)405s, E2766 406s, 6242 411s;
Call, David J.	NYSMTJ 97 30(1980)170s.		6273 88(1981)354s, 6188 447s; 6140
Cambanis, Stamat	AMM 6115 85(1978)393s.		89(1982)603c. CMB P279 22(1979)386p,
Cameron, Christia	, ,		P280 386p; P280 23(1980)509s. FQ H-292
Cameron, Christie	FUNCT 1.3.1 1(1977/4)31s; 1.3.2		16(1978)566p; H-292 18(1980)286s.
	2(1978/3)11s.	Catlin, Paul A.	MM 991 49(1976)211p.
Cameron, Magnus	FUNCT 1.3.4 1(1977/4)31s; 3.1.4	Cauley, Elizabeth	AMM E2651 85(1978)598s.
	3(1979/2)30s; 3.4.2 4(1980/1)28s, 3.5.1	Cauley, Elizabeth Cavendish, J. C.	SSM 3702 78(1978)624s. SIAM 78-2 20(1978)182p.
	30s.	CDC-7600	CRUX 267 4(1978)104s.
Camier, E. D.	AMM E2793 86(1979)703p.	Chaff, I.	AMM E2527 83(1976)485s.
1 ,	CRUX 273 4(1978)87s, 276 107s.	Chaiken, Seth	AMM E2562 84(1977)218s.
Campbell, Thoma			AMM E2714 86(1979)596s.
C I	SSM 3640 77(1977)265s.	Chamberlain, Mic	
Cano, J. Canterbury, Steph	AMM 6133 84(1977)140p.		AMM E2655 84(1977)386p. MM 947
Canterbury, Stepi	SSM 3631 77(1977)79s; 3679 78(1978)172s.		48(1975)238p; 979 49(1976)149p; 1031
Cantor, David G	AMM 6084 84(1977)832s. SIAM 78-3		52(1979)116s. TYCMJ 152 12(1981)157s.
2 3 1 1 4 7 .	21(1979)145s.	Chambers, Donal	
Capobianco, Mich			SSM 3684 77(1977)443p, 3656 534s; 3688
	MM 1026 50(1977)265p.		78(1978)356s.
Card, Leslie E.	JRM 429 8(1976)308p; 454 9(1977)22p,	Chandler, Eric	AMM 6100 83(1976)490p.
	455 22p, 483 125p, 515 206p; 700*	Chandra, Ashok l	
G 11: T 1	11(1979)35p.	Chappell, Geoffre	JRM 212 9(1977)60c, 214 218s.
Carlitz, Leonard	AMM 6010 82(1975)84p, E2453 170s,	Chappen, Geome	FUNCT 1.2.5 1(1977/3)27s; 1.4.3
	E2465 405s, 5947 411s, E2482 757s, E2502 941s; 6214* 85(1978)389p; 6170		1(1977/5)31s; 1.5.3 2(1978/1)28s; 1.5.2
	86(1979)231s; E2758 87(1980)405s.		2(1978/2)7s; 1.5.4 2(1978/3)29s, 2.2.1 30s,
	CMB P228 18(1975)619s. FQ H-246		2.2.2 30s, 2.2.3 31s; 2.2.4 3(1979/1)28s.
	13(1975)89p, H-216 90s, H-250 185p, H-220		PARAB 369 14(1978/3)29s.
	187s, H-221 188s, H-253 281p, H-226 281s,	Charles, Edmund	JRM 440 8(1976)311p.
	H-255 369p, H-223 370s, H-227 370s, H-229	Charles, Hippolyt	e
	371s; H-258 14(1976)88p, H-262 182p,		CRUX 176 2(1976)171p, 184 193p, 196
	H-264 282p, H-240 284s, H-268 466p, H-244		220p, 161 226s; 176 3(1977)30s, 196 108s,
	466s, H-246 469s; H-270 15(1977)89p, H-250		243 130p; 316 4(1978)36p, 253 49s, 335
	92s, H-272 185p, H-253 188s, H-255 281s,		101p, 360 161p, 301 174s, 369* 192p, 313 208e 384* 250p; 347 5(1979)50e 455 167p
	H-258 284s, B-361 285p, H-262 372s; H-265 16(1978)94s, H-289 477p, H-293 566p;		208s, 384* 250p; 347 5(1979)50s, 455 167p, 462 199p, 477 229p.
	B-394 18(1980)85s, H-284 191s, H-298	Charnow, A. R.	AMM 6069 83(1976)62p.
	2 33 . 10(1000)005, 11 20 7 1015, 11-230	marilow, A. It.	7 0003 00(±310)02p.

Chauveheid, Paul	G. 1975	-1979	Coxeter, H. S. M.
Chauveheid, Paul	G.	Coles, Jack	OSSMB 75-3 11(1975/2)20s; 76-5
· · · · · · · · · · · · · · · · · · ·	AMM 5957 82(1975)770s; 6080	Coros, vacin	12(1976/2)23s; 78-1 14(1978/2)23s;
	85(1978)503x.		78-5 14(1978/3)19s, 78-8 19s; 79-1
Chavez, John	MATYC 139 15(1981)73s.		15(1979/2)18s; 79-8 16(1980/1)12s, 79-11
Chee, Lim Hsing	MENEMUI 0.2.2 1(1979/1)56s.		14s, 79-15 16s, 79-18 17s.
Cheifetz, Philip	MATYC 98 11(1977)63p.	Collings, Stanley	CRUX 483 5(1979)265p.
Chein, E. Z.	JRM 81a 10(1978)131s.	Collins, Don	MATYC 114 13(1979)70s.
Chen, C. C.	AMM 6157* 84(1977)491p.	Collins, S.	AMM E2704 85(1978)198p.
Cheng, Benny	SSM 3782 80(1980)528s.	Collison, D. M.	MM 1057 51(1978)305p; 1057
Chernoff, Paul R.	,		53(1980)114s.
, ,	84(1977)396s; 5871 85(1978)829s; E2712	Comfort, Edwin	JRM 596 11(1979)66s.
	86(1979)704s; 6279 88(1981)542s; 6279	Comiskey, J. P.	AMM E2491 82(1975)854s.
	90(1983)488s.	Commoner, Fred	AMM 6026 82(1975)409p.
Cherry, Jerome C.	MM 1054 51(1978)305p.	Conrad, Steven R.	CRUX 135 2(1976)68p, 136 68p, 102 73s,
Chihara, Laura	ISMJ J9.20 10(1975/1)6s; J10.7		147 94p, 148 94p, 155 110p, 157 110p, 122
	10(1975/3)5s, 10.6 6s; J10.4 $10(1975/4)2s$,		115c, 123 117s, 127 124c, 164 135p, 166
	10.4 5s.		136p, 135 153s, 172 170p, 179 171p, 141
Chihara, Linda	ISMJ 12.8 12(1977/2)10s; 12.14		175s, 142 177c, 150 186c, 194 219p, 164 230s; 205 3(1977)10p, 214 42p, 178 53c,
	12(1977/3)6s; 12.26 12(1977/4)7s; 12.29		223 65p, 244* 130p, 262 189p, 272 226p;
CI II I I	13(1978/1)9s.		307 4(1978)12p, 339* 102p, 343* 133p, 292
Chilaka, James	MATYC 75 9(1975/2)51p.		148s, 372 224p, 392* 282p; 392 5(1979)209c.
Childs, Lindsay	AMM E2578 84(1977)390s.		MM Q642 49(1976)253p, Q642 258s; 1023*
Chin, Lim Chjan	MENEMUI 0.3.1 1(1979/1)57s.		50(1977)211p. MSJ 436 23(1976/3)8p;
• /	SSM 3756 80(1980)174s, 3764 265s.		440 24(1977/3)5c; 446 24(1977/4)2c; 448
Chosid, Leo	MATYC 110 13(1979)67s, 133 135p.		25(1978/1)4p; 449 25(1978/2)4p; 452
• /	MM 915 48(1975)295s.		25(1978/3)4p; 454 25(1978/4)4p; 456
Chouteau, Charles	TYCMJ 118 10(1979)363s; 149		25(1978/5)4p. NYSMTJ 48 25(1975)170p;
Ch V N	12(1981)66s.		44 26(1976)19s, 48 99s; 66 27(1977)98p, 71
Chow, Kwang-Nar			136p; 66 28(1978)54s, 68 55s, 69 56c, 83
Choy, Chua Lai	AMM E2788 86(1979)592p. MENEMUI 1.2.2 1(1979/3)59s.		150p. PME 414 6(1978)482p. SSM 3660
	AMM 6093 85(1978)56s.		77(1977)77p, 3667 169p, 3675 263p, 3695 531p; 3710 78(1978)81p, 3743 621p.
Christiansen, R. A	· · ·		TYCMJ 40 6(1975/2)31p.
Christiansen, it. A	AMM 6007 83(1976)663s; 6060	Conrey, Brian	AMM 6200 85(1978)203p.
	85(1978)390x.	Conway, J. H.	AMM E2567 82(1975)1010p. CMB P234
Christiansen, Sara			19(1976)124s.
0	TYCMJ 34 7(1976/1)30s; 106	Conwill, Mike	MSJ 455 25(1978/5)4p.
	10(1979)213s.	Cook, David	MSJ 479 27(1980/1)5s.
Christopher, John	AMM E2766 87(1980)406s.	Cook, John H.	AMM 6265 86(1979)311p.
Chumack, Marie	JRM 601 11(1979)71s.	Cook, Steven	JRM 511* 9(1977)137p.
Chung, F. R. K.	SIAM 77-15 20(1978)601s.	Cooke, Roger L.	AMM 6165 86(1979)229s; E2755
Chung, K. L.	AMM 6273 86(1979)596p.		87(1980)222s.
Chung, Lung Ock	AMM 6054 82(1975)941p; 6142	Cooper, C. D. H.	AMM E2572 83(1976)53p.
	84(1977)222p.	Cooper, Howard	SSM 3741 79(1979)532s.
Clack, Diana	MSJ 410 22(1975/1)7s; 418 22(1975/3)7s.	Cooper, Rodney	MM Q614 48(1975)116p, Q614 122s.
Clapham, Charles	JRM 595 11(1979)66s, 597 67s.		OSSMB 75-3 11(1975/1)16p; 75-3
Clark, Robert	MM 1012 52(1979)48s, 1048 321s; 1053	Cormier, Romae	11(1975/2)21s. JRM 446 10(1978)298s, 556 303s, 558 304s,
	53(1980)51s, 1060 116s.	Cormier, Itoliiae	567 314s; 764 11(1979)215p, 652 230c, 654
	JRM 600* 10(1978)54p.		231c, 674 320c; 732 12(1980)149s, 740 157c,
Clarke, Francis	CMB P241 19(1976)382s.		741 158s, 769 233s. MM 886 48(1975)301c.
Clarke, L. E.	AMM 5933 82(1975)87s, 5942 186s; 6146	Cornell, Robert H	
	85(1978)833s; 6174 86(1979)313s; 5884	,	MM 927 49(1976)47s. TYCMJ 79
CI CI I	87(1980)66s, 6253 762s.		9(1978)99s.
Clary, Stuart	AMM E2384 83(1976)285s.	Cornette, James L	
Class 18.325, Mass	sachusetts Institute of Technology		AMM 6081 84(1977)830s.
Cleveland, Terry I	SIAM 75-2 18(1976)300s.	Cortey, N.	CMB P217 19(1976)380s.
Cieveiand, Terry I	TYCMJ 17 6(1975/1)33s.	Costa, Douglas	AMM 6116 85(1978)505s.
Cochran, A. C.	AMM 5937 82(1975)308s.	Costello, Patrick	JRM 742 11(1979)207p.
Cohen, A. M.	NAvW 527 27(1979)133p, 506 142s.	Covill, Randall J.	AMM E2766 87(1980)406s. JRM 456
Cohen, Cecile M.	CRUX 293 4(1978)150s.		9(1977)22p; 679 10(1978)285p; 792
Cohen, Jeffrey Mit	, ,		11(1979)302p. PENT 285 35(1976)97p;
Conen, Jenrey Win	AMM 6170 86(1979)231s; S9 87(1980)488s,		287 36(1976)31p; 302 37(1978)82p; 316 38(1979)70p. SSM 3610 76(1976)175p.
	6222 760s, E2796 824s, E2800 825s.	Cox Jr., S. H.	38(1979)79p. SSM 3619 76(1976)175p. AMM 6116 83(1976)748p.
Cohen, Lawrence		Cox, A. B.	SIAM 71-19 25(1983)403s.
John, Lawrence (MATYC 118 12(1978)173p; 137	Cox, A. B. Cox, Carolyn	SSM 3771 80(1980)353s, 3776 444s.
	13(1979)214p.		AMM E2584 83(1976)198p; E2584
Cohen, Stanley F.	AMM E2690 86(1979)308s.	COACUCI, II. D. WI.	84(1977)490s; S2 86(1979)55p; S2
Cohn, Harvey	AMM E2544 82(1975)660p.		87(1980)134c. CMB P276 22(1979)248p.
Cohn, J. H. E.	AMM 6223 86(1979)795s.		CRUX 500 5(1979)293p; 500 6(1980)329s.
•	` ,	•	* * * * * * * * * * * * * * * * * * * *

Crandall, Richard	1975-	-1979	Dodge, Clayton W.
	MM 1003 50(1977)46p.	Debelak, Roger	MATYC 59 9(1975/1)51s; 107
Crandell, Christop	JRM 483 10(1978)117s, 500 152s; 618	Debrunner, H.	11(1977)221p. AMM 5872 90(1983)403s.
	11(1979)139s; 794 12(1980)314s.	DeCarlucci, Charl	
Cranga, Robert	MM 973* 49(1976)95p.	Becarracei, enari	AMM E2796 87(1980)824s.
Craven, Thomas C		Dekkers, A. J.	JRM 570 12(1980)299s.
	AMM 6082 83(1976)205p.	DeKoninck, Jean-	
Cripe, Frederick	PENT 299 38(1978)30s, 301 32s.	D 10 . D .1	AMM 5964 82(1975)944c.
Crippen, Peter	OSSMB G75.1-2 11(1975/1)7p; 75-5	Del Sesto, David DeLeon, M. J.	PME 372 6(1977)379s. AMM E2631 85(1978)279s.
Crittenden B W	11(1975/2)23s. MATYC 94 10(1976)200p. SSM 3651	Delisi, C.	SIAM 76-12* 18(1976)296p.
Office and the vv.	76(1976)622p; 3662 77(1977)77p.	DeMeo Jr., Roy E	
Croach Jr., Jesse	JRM 372* 8(1976)47p; 539* 9(1977)214p.	, ,	AMM 6107* 83(1976)573p. MM 982
Crofts, Gabriel	ISMJ 14.6 14(1979/3)3s.		49(1976)149p.
Crofts, George	AMM 6073 83(1976)140p.	Demir, Hüseyin	AMM E2625 83(1976)812p. MM 963 49(1976)43p, 998 252p.
Cross, John A. Crowe, D. W.	AMM E2521* 82(1975)169p. DELTA 6.2-3 6(1976)94p.	Denlinger, Jonath	
Cruddis, T. B.	SPECT 10.3 10(1978)31p.	8,	ISMJ J10.2 10(1975/2)6s; J10.13
Crum, Garry	JRM 430 8(1976)308p; 212 9(1977)79c.		10(1975/4)4s; J11.4 11(1976/2)9s; J11.18
Crump, Peter	PARAB 337 13(1977/3)31s; 357	р : , р п ;	12(1977/1)6s.
	14(1978/2)31s; 382 15(1979/1)29s.	Denniston, R. H.	NAvW 439 24(1976)185p; 439
	JRM 590 11(1979)137s.		25(1977)429s.
Cullen, T. J. Cuny, Charles	TYCMJ 46 7(1976/4)34s. MSJ 489 27(1980/3)2s.	des Amorie, E. C.	
Curran, Steve	CRUX 377 5(1979)146s.		JRM 761 12(1980)228s, 797 316s.
Curtis, A. R.	SIAM 76-9 19(1977)331s.	Desmond, James 1	
Cusick, T. W.	AMM E2555 82(1975)851p.		AMM 5385 83(1976)662s; E2640* 84(1977)135p. FQ H-91 29(1991)187s.
Daily, J.	FQ H-292 16(1978)566p; H-292	Deutsch, Emeric	AMM 6237 85(1978)770p; 6150 86(1979)63s;
Daley, D. J.	18(1980)286s. SIAM 75-12 18(1976)498s.	,	6237 87(1980)496s, 6249 831s.
Daniels, Russell	MSJ 428 23(1976/1)7s.	Deutsch, Jesse	AMM E2450 82(1975)82c. MSJ 411
Dankel Jr., Thad	AMM 6040 84(1977)302s.	Devereux, E. J.	22(1975/2)6s. NYSMTJ 34 25(1975)126s.
Davidon, William	C.	Dhombres, Jean	CRUX 300 4(1978)172s.
D : D 0	SIAM 74-3 17(1975)171s.	Diamond, H.	AMM E2777 86(1979)393p.
Davies, R. O. Davis Jr., Robert	AMM 5935 82(1975)88s.	Dickman, R. F.	AMM E2614 85(1978)48s.
Davis Jr., Robert	DELTA 5.1-3 5(1975)48p, 5.1-3 95s.	Dickson, L. J.	AMM E2465 82(1975)405s; 5970
Davis, C. A.	CRUX 318 4(1978)36p.	Dienske, W. M.	83(1976)65s. SIAM 75-8 17(1975)565p. NAvW 549 27(1979)409p; 549
Davis, G.	PARAB 344 13(1977/1)27p.	Dieliske, W. M.	28(1980)214s.
Davis, James A.	MM 914 49(1976)254s.	Dietsche, Kristin	CRUX 317 4(1978)230s.
Davison, John L.	AMM 6065 84(1977)580s. CRUX 133 2(1976)221c, 162 226s, 163 228s.	Dijkstra-Kluyver,	
Dawes, A. M.	AMM 6128 86(1979)597s.	D:11 D	NAvW 373 23(1975)85s.
,	AMM 5986 83(1976)295s; E2654	Dillon, Doug	CRUX 172 3(1977)28s, 176 30s, 175 49s, 178 53s, 180 56s, 212 165s.
•	84(1977)386p, 6157 * 491p; 6190	Diminnie, Carol	PME 440 7(1980)137s.
	85(1978)54p, E2654 766s; 5499	Diminnie, Charles	R.
	87(1980)65s. JRM 89 8(1976)59s. MM 1059 52(1979)46p.		AMM 6021* 82(1975)307p. PME 440
de Boer, Fokko J.	AMM 5988 83(1976)386s.	Dipert, David	7(1980)137s. TYCMJ 71 9(1978)41c. ISMJ 12.20 12(1977/4)6s.
de Boer, P. C. T.	SIAM 75-6* 17(1975)169p.	Dixon, Danny	SSM 3711 79(1979)81s.
de Bruijn, N. G.	NAvW 405 23(1975)174p; 427 24(1976)78p,	Dixon, Edmond D	
	405 93s, 420 210s, 423 213s; 456 25(1077)202s; 515 26(1078)462p		AMM 6168 84(1977)659p.
de Bruin, M. G.	25(1977)202s; 515 26(1978)463p. NAvW 510 27(1979)148s.	Dixon, Michael J.	AMM E2796 87(1980)824s; E2784 88(1981)209s. MM 1036 52(1979)260s.
de Buda, Ingrid	AMM 6211 87(1980)229x.	Djoković, Dragom	
	AMM E2507 83(1976)61s.	Djoković, Dragom	AMM E2525 82(1975)300p; 6023
de Doelder, P. J.	NAvW 406 23(1975)175p; 462 25(1977)87p,		84(1977)67s; E2635 85(1978)385s,
	470 187p; 470 26(1978)238s; 550 27(1979)409p; 557 28(1980)220c.		E2652 765s; E2674 86(1979)57s; E2767
	SIAM 79-12 21(1979)395p.		87(1980)490s, E2735 577s. CMB P251 19(1976)249p, P252 249p, P254 380p;
de la Rosa, B.	AMM E2800 86(1979)785p.		P266 20(1977)273p, P253 517p; P252
De Land, Paul N.	TYCMJ 123 11(1980)64s.		22(1979)252s, P253 252s, P266 389s.
de Pagter, B.	NAvW 541 27(1979)268p.	Djorup, F.	AMM 6162 86(1979)227s.
	CRUX 214 3(1977)166s.	Dodes, Irving A.	AMM E2720 86(1979)707c.
de Vries, P. C. G. Deakin, Gay	NAvW 445 24(1976)187p. FUNCT 1.2.4 1(1977/3)27s.	Dodge, Clayton W	V. AMM S17 87(1980)823s. CRUX 123
Deakin, Michael A			2(1976)117s, 123 118c, 127 140c, 133 147c,
*	FUNCT 3.5.2 4(1980/3)28s.		134 151s, 135 153s, 135 154c, 143 178s, 153
Dean, Nathaniel	MSJ 423 22(1975/2)5p.		197s, 159 202s, 127 221c, 135 223c, 164
Deaton, Leonard V	V. AMM 6104 83(1976)573p.		230s, 168 233s, 169 234s; 201 3(1977)9p, 172 28s, 172 29c, 176 30s, 211 42p, 182 58s,
	2000 0104 00(1910)919p.	I	112 200, 112 200, 110 508, 211 42p, 102 508,

Dodge, Clayton V	V. 1975-	-1979	Eldridge, Sandra
'	221 65p, 192 79s, 238 105p, 239 105p, 240		11(1976/3)3s, J11.8 4s, 11.7 6s, 11.8 7s;
	105p, 249 131p, 201 136c, 201 136s, 204	D 1 '1 D	11.11 11(1976/4)7s, 11.15 8s.
	140s, 208 157s, 209 159s, 226 206c, 227 228s, 237 261s, 298 298p; 248 4(1978)27s,	Dybvik, Ragnar	MM 920 48(1975)300s. TYCMJ 49 7(1976/4)37c; 77 9(1978)97s.
	251 43c, 257 54s, 264 73s, 277 109s, 282	Dyer, Matthew	PARAB 350 14(1978/1)32s, 354 34s, 355
	114s, 290 142s, 320 238s, 338 290s; 345 5(1979)25s, 437 109p, 460 167p, 411 299s,	To I III.:-l.	35s; 366 14(1978/2)38s, 367 39s, 368 40s.
	414 304s; 433 6(1980)58s, 436 61s, 461	E. J. Ulrich E. Montana Colle	SSM 3650 77(1977)445s.
	161s, 475 216s. MATYC 127 14(1980)75s.		AMM E2607 83(1976)566p.
	MM 966 49(1976)43p; 963 50(1977)53s. PME 292 6(1975)107s, 316 111s, 319 116s,	Eberhart, H. O.	NYSMTJ 73 28(1978)84s, 77 155s; 90
	319 117c, 320 118s, 323 120s, 324 121s,		29(1979)57p, 79 58s, 94 83p, 90 148s; 92 30(1980)55s. TYCMJ 134 11(1980)212s; 148
	353 178p, 326 181s, 327 182s, 336 191s;		12(1981)65s.
	365 6(1976)227p, 349 243s, 381 308p, 353 313s, 355 315s, 356 316s, 358 317s; 391	Eccles, Frank	MSJ 438 23(1976/4)8p. . AMM E2738 85(1978)764p, E2665
	6(1977)366p, 363 370s, 364 371s, 366 374s,	Ecker, Michael W	769s; E2773 86(1979)393p. CRUX 314
	368 376s, 371 378s, 408 419p, 374 421s, 375 422s, 380 427s, 383 431s; 417 6(1978)483p,		4(1978)35p, 300 172s, 377 226p; 408*
	386 485s, 393 492s, 433 540p, 402 550s, 404		5(1979)16p, 490 266p. JRM 705 12(1980)70s, 734 151x. MM 1016
	551s, 408 555s; 446 6(1979)618p, 417 626s;		50(1977)164p. OSSMB 78-7 14(1978/3)19s;
	450 7(1979)57p, 430 67s, 434 73s, 435 73s, 436 74s; 445 7(1980)141s.		78-10 15(1979/1)21s, 78-14 23s; 79-9
Dodge, W. J.	AMM E2493 82(1975)855s.		16(1980/1)13s. PENT 300 38(1978)31s; 313 38(1979)79p, 302 80s; 320 39(1979)31p,
Dodson, L.	SIAM 76-13* 18(1976)489p.		311 38s; 320 40(1980)43s. PME 366
Dollins, Anabeth Doob, Michael	SSM 3734 79(1979)448s, 3739 529s. AMM E2465 82(1975)405s.		6(1977)374s; 419 6(1978)483p, 393 492s;
Doornbos, R.	NAvW 399 23(1975)254s; 480 26(1978)357s;		458 7(1980)199s. TYCMJ 111 9(1978)95p; 136 10(1979)127p, 113 296s, 115 298s; 145
D + 1 II 1	509 27(1979)147s.		11(1980)340s.
Dostal, Helen Dou, Jordi	MATYC 135 14(1980)235s. AMM E2503 83(1976)58s; E2625	Eddy, Roland H.	CRUX 363 4(1978)191p; 397 5(1979)235s. NAvW 478 25(1977)423p; 488 26(1978)231p,
204, 00141	85(1978)121s; E2802 88(1981)67s, S19 147s.		478 354s, 488 465s.
	CRUX 354 5(1979)58c, 363 111s, 445 132p,	Edelman, Alan	MSJ 485 27(1980/2)3s; 492 27(1980/3)3s;
	372 138s, 383 175s, 472 228p, 499 293p; 422 6(1980)25c, 423 26s, 500 328s.	Edgar, G. A.	502 27(1980/4)4s. AMM 5861 82(1975)767x; E2768
Douglas, A. J.	AMM E2737 87(1980)305s. SPECT 11.9		87(1980)406s. MM 1030 51(1978)69p; 1062
Dowe, David	11(1979)100p. FUNCT 1.3.3 1(1977/5)27s, 1.3.6 29s,	Edgar, Hugh Max	52(1979)46p; 1062 53(1980)117s.
Dowe, David	1.3.7 29s, 1.4.2 30s, 1.4.4 31s, 1.4.5	Edgar, Hugh Max	AMM 6048* 82(1975)856p; 6268
	32s. PARAB 342 13(1977/3)35s; 345		86(1979)398p; E2785 87(1980)672s, E2787
	14(1978/1)30s, 352 33s, 353 33s, 356 35s; 358 14(1978/2)32s, 359 32s, 363 36s; 377		673s; 6268 88(1981)217s. FQ H-260 14(1976)88p.
	14(1978/3)34s.	Edwards, Bob	SSM 3744 78(1978)712p; 3727
Dreyfus, Tommy Dubisch, Roy	SSM 3778 80(1980)446s. MM 927 48(1975)51p.	Ef C	79(1979)356s, 3729 358s, 3744 713s.
Dudley, Underwoo	` / -	Efroymson, G. Egerland, Walter	SIAM 79-2 21(1979)139p. O.
	JRM 89 8(1976)59s; 637 10(1978)204p; 785	g,	AMM E2586 83(1976)198p; 6154
Duemmel James	12(1980)304s, 797 316s. AMM 5794 88(1981)214s.	Eggleton, R. B.	86(1979)133s. AMM E2460 82(1975)303s; E2648
	. ISMJ 10.1 10(1975/2)6s, 10.3 7s; J11.2	Eggleton, It. D.	84(1977)294p. MM Q645 50(1977)164p,
D M	11(1976/2)8s, 11.2 9s, 11.5 11s.	Di i e D	Q645 169s.
Dumont, M. Dundas, Kay	JRM 586 11(1979)43s. MM 1009 51(1978)307s. TYCMJ 86	Ehrhart, Eugene	AMM 6089* 83(1976)293p, E2617 740p; E2660 84(1977)487p, 6179 744p; E2717
,,	8(1977)95p; 87 9(1978)238s.		85(1978)384p, E2736 682p, E2660 683s;
Dunkels, Andrejs	CRUX 175 2(1976)171p; 175 3(1977)49s,	Eisenberg, Bernar	6089 87(1980)495c; E2736 89(1982)131s.
	175 50c, 201 136s; 400 4(1978)284p, 340 294s.	Eisenberg, Bernar	SSM 3662 77(1977)624s. TYCMJ 42
	I. MM 1075 52(1979)258p.		6(1975/3)34p.
0 /	AMM E2569 82(1975)1010p. CRUX 3 1(1975)3p, 7 4p, 15 8p, 19 8p, 21	Eisenberg, Theod	ore A. SSM 3641 77(1977)266s, 3660 622s; 3688
Dworschak, II. G.	11p, 22 11p, 4 15s, 5 15s, 34 25p, 12 27s, 45		78(1978)356s; 3758 80(1980)175s, 3762 264s.
	39p, 49 39p, 21 40s, 51 48p, 63 56p, 68 57p,		TYCMJ 36 7(1976/1)31s; 51 8(1977)44s.
	32 59s, 39 65s, 76 71p, 77 71p, 43 73x, 45 74s, 81 84p, 87 84p, 53 88s, 93 97p, 94 97p,	Eisner, Milton P.	AMM 6155 84(1977)392p; E2648 85(1978)595c; 6248* 86(1979)59p; E2769
	99 98p, 61 98s, 64 100s; 103 2(1976)5p, 104		87(1980)308s, E2766 406s. MATYC 137
	5p, 110 6p, 72 9s, 80 17s, 111 25p, 112 25p, 87 32c, 88 33c, 80 34c, 04 46c, 103 74c, 110		14(1980)237s. TYCMJ 100 10(1979)57s; 136
	87 32s, 88 33s, 89 34c, 94 46s, 103 74s, 110 84s, 185 194p, 199 220p; 312 4(1978)205s.	Eke, B. G.	11(1980)276s. SPECT 7.3 7(1975)31p, 7.6 67p, 7.9 102p;
Dwyer, Rex A.	ISMJ 10.5 10(1975/2)8s; J10.6		8.6 8(1976)64p, 8.7 92p; 9.2 9(1977)32p, 9.5
	10(1975/3)4s, J10.8 5s, J10.9 6s, 10.7 7s, 10.10 8s; J10.11 10(1975/4)2s,		64p, 9.8 97p; 10.1 10(1978)31p, 10.4 63p; 11.2 11(1979)28p, 11.4 61p.
	J10.12 3s, 10.11 6s, 10.12 6s, 10.15 7s;	Ekl, Randy	MSJ 464 26(1979/6)2s.
	10.16 11(1976/1)8s, 10.17 8s; J11.6	Eldridge, Sandra	MATYC 114 13(1979)70s.

Elliot, Donald	1975-	-1979	Field, Maurice J.
Elliot, Donald	MM 1069 53(1980)245s.	Everson, Terry	MSJ 465 26(1979/6)2s.
Elser, Veit	MM 969 49(1976)44p.	Eves, Howard	CRUX 412 5(1979)300s; 450 6(1980)120s,
Elsner, Thomas E.			454 125s, 456 128s, 463 163s, 466 189c,
	AMM E2465 82(1975)405s; 6124*		472 196s, 478 219s, 480 222s. MM 1006
	83(1976)818p; 6048 84(1977)397c, 6159 491p; 6254 86(1979)132p. MATYC 121		51(1978)306s; 1020 52(1979)51s, 1028 180s; 1054 53(1980)52s. PME 292 6(1975)108s,
	13(1979)216s. MM 925 48(1975)51p,		319 117c. TYCMJ 146 12(1981)64s, 148
	880 53s, 903 184s, 914 247s; 1007*		65s.
	50(1977)46p; 1070 52(1979)113p.	Ewen, Ira	CRUX 155 2(1976)110p. MSJ 422
	TYCMJ 68 8(1977)293s; 115 9(1978)95p,		22(1975/2)5p; 426 22(1975/3)5p.
	119 176p, 81 177s; 141 10(1979)210p; 139	Exner, Robert	NYSMTJ 64 27(1977)54p; 86 28(1978)151p;
E All	11(1980)278s.		86 29(1979)88s.
Emerson, Allen Emerson, W.	AMM 6167 86(1978)496p.	Fadéev, D.	CRUX 447 6(1980)115s.
Emery, L.	AMM 6167 86(1979)230s. MATYC 81 10(1976)203s.	Faires, J. D.	AMM E2787 87(1980)673s.
Engel, Douglas	MM 886 48(1975)301c.	Fala, Gino T.	MATYC 80 9(1975/3)45p; 106 11(1977)221p; 112 12(1978)78p, 106 255s;
Engels, Eric	MSJ 488 27(1980/3)2s.		126 13(1979)64p, 129 65p. TYCMJ 33
Engelson, Iris	MSJ 463 26(1979/6)2s, 466 2s; 472		7(1976/1)29s; 43 7(1976/3)49s; 81
,	26(1979/7)3s.		8(1977)42p; 135 10(1979)53p, 111 294s; 144
Engle, Roger	FQ B-360 16(1978)474s, B-361 475s.		11(1980)339s.
	PME 407 6(1978)554s.	Falconer, Kennet	
	AMM 6229* 85(1978)686p.		AMM 6120 85(1978)601s.
Erdős, Paul	AMM 5413 82(1975)85c; E2505	Falmouth High S	chool Problem Solving Team, the
	83(1976)59s, 6070 62p, 5983 294c, 6016 820c; 6135* 84(1977)141p, E2651 295p;	For day C. D.	MSJ 412 22(1975/2)6s; 421 22(1975/4)5s.
	6090 85(1978)122s, E2626 200s; S21	Fandry, C. B. Fanone, Philip	FUNCT 3.5.2 4(1980/3)28s. SSM 3787 80(1980)711s.
	86(1979)784p. CMB P244 18(1975)616p,	Farebrother, R. V	,
	P222 616s; P247 19(1976)121p, P250 249p;	rarebrother, it.	AMM E2597 83(1976)379p.
	P264 20(1977)273p, P265 273p, P267	Farmer, Gregory	
	518p, P268 518p, P239 520s, P247 520s;		JRM 563 10(1978)309s.
	P250 22(1979)122s, P267 123s. JRM 502	Farnell, A. B.	AMM 5974 83(1976)143s.
	12(1980)159s, 622 160x, 654 222c. MM 949 48(1975)238p; 964 49(1976)43p, 986	Farnsworth, Davi	
	150p; 1008 50(1977)99p; 983 51(1978)70s,		TYCMJ 25 6(1975/3)35s, 27 36s.
	1048 245p; 1029 52(1979)180s; 1008	Feathers, Gordon	
	56(1983)113s. MSJ 462 25(1978/8)2p.	Federico, P. J.	AMM 6283 86(1979)869p. AMM E2481 82(1975)1013s.
	NAvW 396 23(1975)81p, 397 81p, 387 183s,	· · · · · · · · · · · · · · · · · · ·	MSJ 495 27(1980/3)4s.
	417 243p, 397 252s; 428 24(1976)78p, 441	Feinstein, Irwin I	. , ,
	185p; 463 25(1977)87p, 417 89s, 483 424p;		MATYC 94 11(1977)224s. SSM 3641
	493 26(1978)232p, 505 349p, 483 361s, 516 463p, 493 470s; 528 27(1979)133p,		76(1976)446p; 3651 77(1977)446s,
	538 268p, 539 268p, 551 409p, 552		3658 535s, 3706 714p, 3669 716s; 3676
	409p; 528 28(1980)205s, 528 206c; 551		78(1978)85s; 3777 79(1979)444p; 3775
	29(1981)106s. OSSMB 75-5 11(1975/1)16p;	Foliate Antal F	80(1980)443s, 3789 712s.
	75-5 11(1975/2)23s; 76-8 12(1976/3)21s.	Fekete, Antal E.	AMM 6236 85(1978)770p; 6267 86(1979)398p; 6236 89(1982)65s.
	PME 339 6(1975)104p, 360 179p, 298 192s; 369 6(1976)227p, 360 321s; 389		PARAB 340 13(1977/3)33s, 343 35s.
	6(1977)366p, 406 419p; 456 7(1979)58p.	Feldstein, A.	SIAM 76-16* 18(1976)490p.
Erhart, John V.	AMM 5998 83(1976)491s.	Felsinger, Neal	AMM E2513 82(1975)73p, 6022 308p, E2465
Erickson, Scott	MSJ 425 22(1975/4)7s.		405s, E2466 406s, 5949 536s.
Erlebach, Lee	AMM E2585 84(1977)490s; E2696	Ferguson, Le Bar	
	86(1979)507s; E2780 88(1981)764s.	D (1 D)	AMM 6240 87(1980)410s.
	SIAM 79-5 21(1979)140p.	Fernández, Edilio	
Eşanu, Mihai	AMM 6132 84(1977)140p; 6240	Ferrer, Alex G.	FQ B-401 18(1980)187s. AMM E2517 82(1975)168p.
Essiel- I	85(1978)828p.	Ferrero, B.	AMM 6194 86(1979)511s.
Essick, J.	AMM 6279 88(1981)542s; 6279 90(1983)488s.	Feser, Victor G.	JRM 320 8(1976)68s, 383 137p; 350
Eustice, Dan	CRUX 123 2(1976)118c, 165 135p, 134	reser, victor d.	9(1977)316s, 352 318s; 474 10(1978)146s,
Eastree, Buil	151c, 173 171p, 162 226s, 165 230s; 173		528 223s, 531 225s, 566 311s; 557
	3(1977)68s; 354 5(1979)57s. MM 914		11(1979)59s, 594 65s, 599 70s, 647 226s,
	49(1976)254c, 934 254c; 957 50(1977)104c,		678 311s, 685 317s; 707 12(1980)71s, 759
	982 271s; 984 51(1978)195c, 997 199c; 1013		227s, 765 230s. MATYC 136 14(1980)236s.
	52(1979)48c, 1029 182c.		PME 316 6(1975)111s; 366 6(1977)374s; 393
Evans, Debra	PENT 264 34(1975)108s.	Fottis U F	6(1978)492s. SIAM 70 12 22(1080)366c
Evans, Ronald J.	AMM E2469 82(1975)521s, E2542 660p, E2545 660p; 6067 83(1076)62p, 5087	Fettis, H. E.	SIAM 79-12 22(1980)366s. V. AMM E2733 85(1978)682p; E2754
	E2545 660p; 6067 83(1976)62p, 5987 297s, E2600 482p, E2627 812p; E2668	Fickett, James W	86(1979)56p, E2768 307p; E2766
	84(1977)568p, E2685 820p, E2687 820p;		87(1980)406s.
	6186 85(1978)53p, 6187 53p, E2668 825s;	Field, Maurice J.	` '
	E2758 86(1979)128p; E2760 87(1980)223s.	,	13(1977/1)21s; 77-2 13(1977/2)22s;
	CMB P226 19(1976)250s. DELTA 4.2-1 5(1975)45s.		78-11 15(1979/1)21s, 78-13 22s; 79-8 15(1979/2)17p.

Field, Richard S.	1975	5–1979	Friedman, Joel
Field, Richard S.	CRUX 252 3(1977)154p. FQ B-359	Foster, Lorraine I	
	15(1977)285p. JRM 376* 8(1976)48p; 532		AMM E2554 84(1977)61s, E2559 140s,
	9(1977)212p; 645 10(1978)210p. PME 366 6(1976)227p, 375 306p; 398 6(1977)367p,		6044 392s, 6058 576s, E2590 654s; E2650 85(1978)597s; E2763 86(1979)223p, 6176
	366 374s, 375 422s; 423 6(1978)484p, 429		314s, E2708 594s; E2749 87(1980)138s,
	540p; 445 6(1979)617p; 423 7(1980)134s;		E2750 138s, E2753 139s, E2758 405s,
	423 7(1981)266c.		E2766 406s, E2777 494s, E2786 672s,
Filaseta, Michael	AMM E2766 87(1980)406s. TYCMJ 88		6222 760s, E2798 824s, E2800 825s; E2772 88(1981)350s; E2752 89(1982)757c; E2763
Finch, P. D.	9(1978)239s, 93 299s. FUNCT 2.2.4 3(1979/2)29s.		91(1984)204c.
Fine, N. J.	AMM E2643 85(1978)497s.	Fox, Ernest W.	TYCMJ 77 9(1978)97s.
Fink, A. M.	SIAM 75-21 18(1976)773s.	Fox, L.	SIAM 79-20 22(1980)504c.
Fink, Robert	SSM 3599 75(1975)657p.	Fox, William F.	MM 1052 53(1980)50s. TYCMJ 46 7(1976/4)34s; 125 11(1980)132s.
Finkel, Daniel	FQ B-310 13(1975)285p; H-239 14(1976)283s.	Frame, J. Sutherl	
Finkelstein, Raph	` '	Traine, o. Sauneri	AMM E2782 87(1980)581s. PME 326
, -	AMM 6053* 82(1975)857p. FQ H-259		6(1975)180s; 397 6(1977)367p; 397
T: M: 1 1	14(1976)88p.	D M: 1 1 M	6(1978)497s.
Finn, Michael	MM 1063 53(1980)181s. MSJ 463 26(1979/6)2s, 465 2s, 467 3s; 471	France, Michel M	endes AMM 6077 84(1977)747s.
	26(1979/7)2s; 476 26(1979/8)2s; 501	Franceschine III,	
	27(1980/4)4s.	,	AMM E2766 87(1980)406s, E2799 825s,
Fischer, David	CRUX 253 3(1977)154p.	D . D. 1 11	E2800 825s; E2807 88(1981)68s.
Fischler, Roger Fishburn, Jack	CRUX 466 5(1979)200p. AMM 6120 83(1976)817p.	Francis, Richard l	L. JRM 708 11(1979)37p. MM 954
Fisher, Benji	CRUX 485 6(1980)256s. MSJ 472		48(1975)293p; Q636 49(1976)150p, Q636
, ,	26(1979/7)3s; 500 27(1980/4)4s.		154s. SSM 3583 75(1975)387p; 3674
Fisher, D. E.	CRUX 76 2(1976)12s, 84 29s.		77(1977)263p; 3722 78(1978)353p, 3728
Fisher, Gordon Fisher, J. Chris	MM 1081 53(1980)302s. CRUX 464 5(1979)200p.		443p, 3735 533p; 3770 79(1979)355p, 3779 445p. TYCMJ 97 8(1977)240p; 121
Fisk, Robert S.	MM 955 50(1977)47s.		9(1978)236p.
Fitzgibbon, Greg	AMM E1243 84(1977)58c. JRM 569	Franck, Wallace	SIAM 63-9 28(1986)234c, 63-9 234c.
T) 1 II 1	9(1977)286p; 391 10(1978)137s, 569 279x.	Franco, Zachary	AMM E2748 87(1980)138s.
Flanders, Harley	AMM E2743 87(1980)221s, S7 403s. TYCMJ 74 7(1976/4)33p.	Frank, Alan Frankl, Peter	MM 944 49(1976)214s. AMM E2666 84(1977)567p. CMB P242
Flanigan, Francis		Tranki, reter	18(1975)615p; P242 20(1977)274s.
0 ,	AMM 6066 84(1977)660s. MM 935	Frederickson, Gre	` / - ' ` '
El D	49(1976)255s.		JRM 309 9(1977)303x.
Fleenor, David Flegler, Daniel	MSJ 418 22(1975/3)7s. CRUX 179 3(1977)54s, 212 165s. MSJ 453	Frederickson, P. C	SIAM 79-20 22(1980)503s.
r regier, Damer	25(1978/4)4p. NYSMTJ 69 28(1978)56s.	Freed, Daniel S.	MM 1010 51(1978)307s; 1013 52(1979)48s.
Flener, Frederick		Freese, Ralph	AMM E2700 86(1979)311s.
Eleteken Henre	SSM 3713 79(1979)83s, 3718 174s.	Freilich, Gerald	TYCMJ 23 6(1975/2)33s.
Fletcher, Harvey	TYCMJ 25 6(1975/3)35s; 29 6(1975/4)25s.	Freiling, Chris Freitag, Herta T.	AMM E2464 82(1975)403s. CRUX 217 3(1977)172s; 316 4(1978)228s.
Fletcher, Travis J	JRM 387 8(1976)138p, C5* 305p; 602	Frentag, Herta 1.	FQ B-314 13(1975)285p, B-317 373p,
	10(1978)54p. SPECT 7.4 7(1975)67p.		B-318 373p; B-324 14(1976)93p, B-329
Fliegel, Isabel	NYSMTJ 29 25(1975)21s.		188p, B-335 286p, B-336 286p; B-356
Flor, Peter	AMM 5437 83(1976)818s. SIAM 77-12* 19(1977)563p.		15(1977)189p, B-333 192s, B-362 285p, B-363 285p, B-368 375p; B-371
Flores, P. J.	JRM 513* 9(1977)137p.		16(1978)88p, B-372 88p, B-379 184p, B-385
Flowers, Joe	AMM E2463 82(1975)305s; E2742		473p, B-388 562p; B-398 17(1979)90p,
Dissal Dissais D	87(1980)63s.		B-375 93s, B-400 184p, B-413 369p,
Floyd, Edwin E. Flusser, Peter	JRM 613 10(1978)115p; 692 11(1979)29p. TYCMJ 154 12(1981)160s.		B-414 369p, B-390 371s. SSM 3571 75(1975)204p, 3558 383s, 3585 387p, 3590
Fogarty, Kenneth			477p, 3597 657p, 3603 658p, 3585 746s;
Foldes, S.	AMM 6275 86(1979)597p; 6275		3615 76(1976)86p, 3597 174s, 3628 266p,
	88(1981)355s.		3615 444s, 3635 446p, 3640 446p, 3655
Foldvary, Fred Foley, R. D.	JRM 462 9(1977)24p. SIAM 77-11 20(1978)597s.		714p; 3670 77(1977)170p, 3677 264p, 3683 354p, 3687 443p, 3656 534s, 3699 621p,
Ford Jr., L. R.	JRM 699 11(1979)35p.		3704 713p; 3715 78(1978)170p, 3721 353p,
Ford, Gary	FQ B-296 13(1975)376s.		3729 443p, 3732 532p, 3701 622s; 3751
Foregger, Thomas			79(1979)79p, 3758 172p, 3766 259p, 3772
	AMM E2524* 82(1975)300p; 5997 83(1976)490s, E2533 570s, E2524 741s; 6095		356p, 3778 445p; 3754 80(1980)79s, 3759 176s.
	85(1978)59s; 6234 87(1980)829s. CMB P229	Freund, Arthur	AMM E2506 83(1976)60s.
	19(1976)122s; P248 20(1977)276s.	Fricke, Gerd H.	AMM 5985 83(1976)295s; 6045
D	SIAM 74-16 17(1975)695s.	D.,	84(1977)394s.
Forrest, Scott Forster, Robert	AMM E2465 82(1975)406s. MATYC 85 10(1976)43p.	Fridman, Leonid Friedlander, Stan	AMM 6238 87(1980)409s.
Fortune, Andrew	FUNCT 1.3.6 1(1977/3)30p.	Firediander, Stall	MM 1017 50(1977)164p.
Foss, Arthur H.	TYCMJ 58 8(1977)178s.	Friedman, Joel	MSJ 486 $27(1980/2)4s$.

Friedman, Linda	1975-	-1979	Glasser, M. L.
Friedman, Linda	MSJ 447 25(1978/5)4s; 449 25(1978/6)4s.	Gebhardt, Robert	С.
Friesen, Charles I			PME 363 6(1976)227p; 365 6(1977)373c;
	SSM 3691 78(1978)445s; 3724 79(1979)262s.	Gedrich, Thomas	418 6(1978)483p. SPECT 7.8 8(1976)65s.
Fritts, Jackie E.	PME 427 6(1978)539p.	Geissinger, Ladnor	r
Frye, Roger	JRM 540 10(1978)233s, 561 307s.	Geistfeld, Vinton	AMM E2597 84(1977)657s. TYCMJ 108 10(1979)215s.
Fulks, Watson Fuller, Donald C.	AMM E2495 82(1975)938s. MM 934 49(1976)100s. TYCMJ 32	Geller, Murray	SIAM 76-2 18(1976)117p.
runer, Bonaid C.	6(1975/4)27s; 54 8(1977)96s, 61 181s, 65	Geller, S. C.	MM 938 48(1975)180p.
	243s; 86 9(1978)237s; 110 10(1979)217s, 116	Geluk, J. L. Georgevic, Robert	NAvW 524 27(1979)414s.
Funkenbusch, W.	360s; 130 11(1980)138s, 135 213s. W.	deergevie, ressere	AMM E2535 83(1976)657s.
,	JRM 177 8(1976)148s; 423 10(1978)217s;	Gerber, Leon	AMM E2556 82(1975)852p; E2558 84(1977)138s; E2720 86(1979)707s. MM 919
Furman Universit	648 11(1979)226s. y Problem Group, the		48(1975)299s; 959 50(1977)50s, 1020 164p,
ruiman Omversit	JRM 681 11(1979)313s.	G D	1028 265p.
Furth, D.	NAvW 529 27(1979)134p.	Gerrish, F. Gerst, Irving	AMM E2799 89(1982)334c. AMM 6010 83(1976)667s, 6012 751s.
Gadd, J. Orten	MSJ 427 22(1975/3)5p. TYCMJ 58 7(1976/1)28p.	Gerstell, Margueri	
Gagola Jr., Steph			AMM 6170 86(1979)231s. MM 1026 52(1979)55s.
a D. I	AMM E2785 86(1979)592p.	Gessel, Ira	AMM E2683 84(1977)820p; 6151
Gaitley, B. J. Galecki, Steven	AMM E2800 87(1980)825s. ISMJ 12.9 12(1977/2)10s.	, , , ,	86(1979)64s; S14 90(1983)335s.
Gallin, Daniel	AMM E2467 82(1975)407s; E2647	Geurts, A. J. Ghez, R.	NAvW 492 26(1978)469s. SIAM 74-8 17(1975)687s.
	84(1977)294p. TYCMJ 152 10(1979)359p.		CRUX 286 3(1977)251p, 243 268s; 246
Galovich, Steve Galvin, Fred	AMM E2661 84(1977)487p. AMM 6034 82(1975)529p; 6220		4(1978)22s, 286 119s, 286 120c; 404
Gaivin, Tred	87(1980)310s; 6218 89(1982)134x.		5(1979)270s. MATYC 73 10(1976)45s, 91 200p; 87 11(1977)144s; 100 12(1978)80s,
Galvin, Rob	MSJ 426 23(1976/1)6s.		116 173p, 117 173p; 130 14(1980)156s.
Gannon, Gerald F	E. MM 1012 50(1977)99p.		MM 939 48(1975)180p, 902 183s, 921 300s; 996 49(1976)252p, 951 256s; 1011
Ganter, Bernhard	t AMM E2582 84(1977)489s.		50(1977)99p, 975 266s; 1031 51(1978)69p,
Gantner, T. E.	AMM 6014 83(1976)752s.		1041 193p; 1016 52(1979)49s. PENT 309 38(1978)27p, 299 30s; 309 39(1979)35s.
Garcia, Raymond	A. TYCMJ 67 8(1977)293s.		PME 340 6(1976)231s, 356 316s; 366
Gard, J. R.	AMM 6052* 82(1975)857p.		6(1977)374s, 400 417p; 393 6(1978)492s,
Gardner, C. S.	AMM E2504 83(1976)289s; E2715 87(1980)304s; E2716 89(1982)594s.	Gibson, P. M.	436 542p, 400 545s; 441 6(1979)616p. AMM E2742 85(1978)765p. SIAM 76-15
	MM 1082 52(1979)316p; 1082		19(1977)568s.
~	53(1980)302s.	Gilbert, William J	AMM 5935 82(1975)88s; 6122
Gardner, Jim Gardner, Mariann	MSJ 456 26(1979/1)3s.		85(1978)603s.
Garanor, 111ariani.	AMM E2672 84(1977)651p.	Gilkey, P. B. Gill, J. T.	AMM 6008 82(1975)84p.
Gardner, Martin	JRM 89 8(1976)59s.	Gilles, Jacques	AMM E2465 82(1975)405s. AMM 6044* 82(1975)766p.
Gardner, Melvin l	т. ММ 926 48(1975)51р.	Gillespie, Frank	MM Q639 49(1976)212p, Q639 218s.
Garey, Michael R.	AMM E2569 84(1977)296c.	Gillman, Leonard Gilmer, Robert	AMM S17 86(1979)591p. AMM E2473 82(1975)527s, 6039 671p;
Garfield, Ralph	FQ B-390 17(1979)371s.	Gillier, Robert	E2536 83(1976)657s; 6043 84(1977)304s,
Garfunkel, Jack	AMM E2538* 82(1975)521p; E2634 84(1977)58p; E2715* 85(1978)384p, E2716*		6046 395s, E2676 652p, 6069 662s; 6177
	384p; S23 86(1979)863p. CRÚX 168		86(1979)399s; E2773 87(1980)492s, E2773 492s; 6264 88(1981)449s.
	2(1976)136p; 310 4(1978)12p, 323 65p, 310 202s, 323 255c, 323 255s, 397 283p; 423	Giri, G. C.	CRUX 306 4(1978)196s; 413 5(1979)47p,
	5(1979)76p, 463 199p, 476 229p. MM 936*	Ciudiai Dainalda	416 307s; 477 6(1980)218s.
	48(1975)116p; Q646 50(1977)164p,	Giudici, Reinaldo	MM 954 49(1976)257s.
	Q646 169s. PME 341 6(1975)105p, 292 108s, 351 178p; 368 6(1976)227p, 374	Giuli, Robert M.	FQ H-231 14(1976)89s; B-407 17(1979)281p,
	306p; 387 6(1977)365p, 399 417p; 422	Givens, Clark	B-390 371s; H-282 18(1980)93s. AMM 5992 83(1976)388s; E2597
	6(1978)484p, 431 540p; 442 6(1979)616p; 453 7(1979)58p.		84(1977)658s; E2658 86(1979)504s.
Garlick, P. K.	AMM E2503 83(1976)58s. MM 1040		SIAM 77-14 20(1978)857x, 77-17 859s; 78-3 21(1979)145s.
	52(1979)262s.	Gladman, Robert	JRM 753 11(1979)209p.
Garth, M. Gasper, George	PARAB 333 13(1977/3)27s, 339 32s. SIAM 74-21 18(1976)126s.	Glaeser, Georges	AMM 6179 87(1980)826s.
Gates, Henry	SSM 3738 79(1979)529s.	Glaser, Anton	AMM 6036 84(1977)226s, 6146 300p. MM 924 48(1975)51p. SSM 3790
Gauss, Carl Fried	rich		79(1979)712p, 3748 716s; 3760
Gbur, M.	CRUX 232 3(1977)240s, 233 253s. AMM E2777 86(1979)393p.	Classer M I	80(1980)176s.
Gearhart, George	` / -	Glasser, M. L.	AMM 5608 85(1978)500s. PME 378 6(1976)306p. SIAM 75-9 17(1975)565p,
Gearhart, Tom	MM 932 49(1976)99s.		75-20 686p; 76-10 18(1976)296p; 77-5*

Glasser, M. L.	1975-	-1979	Groenman, J. T.
	19(1977)148p, 77-8 329p, 76-10 332x; 77-8 20(1978)595s, 78-19 855p, 77-20 862s; 79-18	Goulden, I. P.	AMM E2735 85(1978)682p; E2703 86(1979)397s.
Glidewell, Samuel	21(1979)559p. Ray	Graham, R. L.	AMM E2564 82(1975)1009p, E2567 1010p; E2730 85(1978)594p; S5 86(1979)127p.
Glucksman, Marc	AMM E2568 84(1977)295s. MATYC 120 12(1978)253p; 116 13(1979)137s.	Granville, Robert Grassl, Richard M	JRM 71 9(1977)138s. PENT 316 39(1980)108s.
Godbold, Landy	MM 1024 52(1979)53s. TYCMJ 78 9(1978)98s.	Grassi, fuchard iv.	FQ B-349 15(1977)93p, B-350 93p; B-417 17(1979)370p.
Godwin, H. J. Golberg, M.	SPECT 11.1 11(1979)28p. SIAM 75-13* 17(1975)567p.	Grassmann, E. Gray, Ernest P.	CMB P238 19(1976)252s. SIAM 78-19 21(1979)568s.
Gold, Ben Goldberg, Karl	PME 407 6(1977)419p; 407 8(1985)182c. AMM E2488 82(1975)765s.	Green, M. W. Green, Peter J.	SIAM 75-14* 17(1975)567p. JRM 715 11(1979)39p.
Goldberg, Michae.	1 AMM E2459 82(1975)181c, E2497 939c; 5973 83(1976)142c, E2392 380s; E2617 85(1978)51s; E2727 86(1979)791s.	Green, Thomas M Greenberg, Benjar	MM 975 49(1976)96p.
	CRUX 424 6(1980)27s, 427 31s. MM 896 48(1975)119c, 900 121s, 901 182s; 969	Greenberg, Ronald	TYCMJ 56 8(1977)98s.
Goldberg, Seymou		Greene, Francis	MSJ 478 27(1980/1)5s. MATYC 72 10(1976)45s, 80 202s.
,	AMM 6078 84(1977)829s. JRM 232 8(1976)151s. CRUY 323 4(1078)384a	Greening, M. G.	AMM E2500 82(1975)1015s; E2526 83(1976)484s, E2534 571s; 6020 84(1077)65 - E3642 85(1078)407
Goldman, Al Goldstein, Arnold	CRUX 322 4(1978)254s. S. AMM 6131 85(1978)690s.		84(1977)65c; E2643 85(1978)497s, E2646 499s. MM 906 48(1975)185s; 960 50(1977)52s.
Goldstein, Danny Goldstein, Jeffrey	MM 979 50(1977)269s; 985 51(1978)70s.	Greenspan, Samue	
Callatain Lin	AMM 6009 82(1975)84p. MATYC 131 13(1979)135p.	Greger, Robert	96 145p. MATYC 118 13(1979)138s.
Goldstein, Lin Goldstein, Richard	MSJ 468 26(1979/7)2s; 487 27(1980/2)4s. d Z. AMM E2698 86(1979)309s.	Gregory, D. A. Gregory, Michael	AMM 6166 84(1977)576p; 6166 88(1981)296s.
Goldstone, Leonar		Gregory, minimum	CMB P256 20(1977)522s; P272 23(1980)124s. MM 907 48(1975)186s;
Golin, Mordecai Golomb, Michael	MSJ 475 26(1979/8)2s. AMM 5968 82(1975)1020s; E2401 83(1976)198s. MM Q627 48(1975)240p,	Croim W. F.	922 49(1976)44s; 994 51(1978)130s, 1039 193p; 1039 52(1979)261s. TYCMJ 37 7(1976/2)50s.
Golomb, Solomon	Q627 248s. W. AMM E2529 82(1975)400p, 6041 672p;	Greig, W. E. Greitzer, Samuel 1	FQ H-282 16(1978)188p. L. CRUX 153 3(1977)19s, 181 57s, 201 136s;
	E2644 84(1977)217p, E2679 738p; E2725 85(1978)593p; E2807 86(1979)865p.	Grell, Andrew	284 4(1978)116s. NYSMTJ 31 25(1975)125s.
	JRM 388* 8(1976)138p. PME 376 6(1976)306p; 412 6(1978)481p, 428 540p,	Gribble, Sheila Griffeath, David	CRUX 95 2(1976)48s, 96 48s, 97 48s. AMM 6030 82(1975)528p.
Gonzales, Elaine I	399 543s; 412 6(1979)620s; 451 7(1979)58p, 428 64s.	Griffin, Joseph Griffith, G.	MATYC 86 10(1976)122p. TYCMJ 128 11(1980)135s.
Good, I. J.	PENT 278 36(1976)33s. AMM 5897 82(1975)532s; 6137*	Griffith, William S Griffiths, Tom J.	AMM 5994 83(1976)389s. CRUX 185 3(1977)70s, 219 173s.
3334, 11 01	84(1977)141p; 6137 85(1978)831c; 6137 88(1981)215c. MM Q624 48(1975)182p,	Gilliums, Tolli 3.	OSSMB 74-15 11(1975/1)20s; 75.3-17 12(1976/1)22s; 76-11 12(1976/3)24s.
	Q624 186s. . AMM E2796 87(1980)824s.		AMM E2588 84(1977)573s; 6121 85(1978)602s; 6151 86(1979)64s.
Goodman, A. W. Goodman, Michae	CRUX 283* 3(1977)250p. bl L. JRM 50 8(1976)55s.	Grimland Jr., Jose Grinstead, Charle	AMM E2568 84(1977)295s.
Goodman, R. Goodman, T. N. 7	SIAM 76-16* 18(1976)490p.	Grinstein, Louise	CRUX 387 6(1980)114s.
Gordon, Clifford I			MATYC 110 12(1978)78p; 125* 13(1979)64p. SSM 3621 76(1976)625s; 3636
Gore, L. Gore, Norman	TYCMJ 147 12(1981)64s. SIAM 71-19 25(1983)403s. NYSMTJ 74 28(1978)52p, OBG3 53p,	Gripenberg, Gusta	
Gore, Norman	84 151p; 89 29(1979)57p, 98 145p; 98 30(1980)171s. TYCMJ 118 9(1978)176p.		AMM E2692 86(1979)395s; 6203 87(1980)68s; E2744 88(1981)705s; E2736 89(1982)131s. SIAM 79-18 22(1980)509s.
Gossett, C. R. Goth, John	JRM 386 8(1976)137p; 386 10(1978)133s. AMM E2729 85(1978)594p.	Groeneveld, Richa	ard A. AMM E2601 84(1977)742s.
Gottschalk, Paul Gould, Henry W.	16(1978)188p, H-123 189c. MM 974	Groenman, J. T.	NAvW 373 23(1975)86c; 472 25(1977)187p, 481 424p, 482 424p, 484 425p; 491 26(1978)232p, 494 232p, 472 243c, 482
Gould, William E	50(1977)216s. . AMM E2522 83(1976)384s.		360c; 526 27(1979)133p, 553 410p; 553 28(1980)216s.

Grosser, Stella	1975-	-1979	Herink, Curtis D.
Grosser, Stella	MSJ 410 22(1975/1)7s; 427 23(1976/1)7s.	Hansell, Walter	FQ B-328 14(1976)188p.
Grossman, Anita	AMM E2344 82(1975)937s.	Hanser, Philip	AMM 6027* 82(1975)409p.
*	. ,		· , -
Grossman, Jerrold		Harary, F.	AMM 6262 86(1979)226p.
	AMM E2645 84(1977)217p, E2680* 738p;	Harborth, Heiko	FQ B-334 15(1977)286s.
	E2645 85(1978)498s; E2696 86(1979)507s.	Harmeling, Henry	MATYC 119 13(1979)138s.
Grossman, Nathar	niel	Harris, John W.	JRM 184 9(1977)45s, 185 45s; 574
	AMM 6087 83(1976)293p, 6088* 293p, 6002		10(1978)40p, 422 216s, 554 300s; 471
	494s.		11(1979)56s.
Grosswald, Emil	AMM 6083 83(1976)205p, 6002 494s; 6019	Harrison Jr., Fred	
	84(1977)63s; E2747 85(1978)824p, 6243	11001135011 511, 11150	PENT 279 36(1976)34s.
	828p.	Hart, Jeffry D.	PENT 290 37(1977)32s.
Charan Vinad V.			
Grover, Vinod Ku		Hartman, Elliott	MATYC 93 10(1976)200p.
~	AMM E2555 84(1977)135s.	Haruki, H.	OSSMB 79-5 15(1979/1)20p.
Gruebler, A.	AMM 6133 84(1977)140p.	Hashway, Robert	M.
Gruenberger, Keit	h		AMM E2624 83(1976)812p.
	JRM 356 10(1978)62s.	Hassett, James	NYSMTJ 64 28(1978)78s.
Guillotte, G. A. R		Haste, Marian	PME 454 7(1979)58p.
	FQ H-225 17(1979)95s.	Hastings, William	
Guinand, A. P.	CRUX 260 9(1983)81c.	l liastings, ,, initiali	AMM E2640* 84(1977)135p.
Gundersen, Gary	AMM 6208 85(1978)283p.	Hotmonbubles Jose	
		Hatzenbuhler, Jan	
	NYSMTJ 40 27(1977)100s.		AMM 6213 89(1982)279s.
Gunter, Bert	AMM E2613 84(1977)827s.	Hausner, Melvin	AMM E2592 83(1976)285p; E2734
Gupta, M. M.	SIAM 75-5* 17(1975)169p.		85(1978)682p.
Guralnick, Robert	M.	Haussmann, U. G	. SIÀM 75-3 17(1975)168p.
:	AMM E2711 86(1979)595s; 6210	Hautus, M. L. J.	AMM 5995 83(1976)390s; E2721
	87(1980)228s.		86(1979)865s; E2762 88(1981)350s.
Guy, Richard K.	AMM S4 86(1979)127p, S10 306p; E2526		NAvW 407 23(1975)175p, 416 242p, 418
Guy, Idenaid IX.			
O I .	88(1981)539c.		243p; 426 24(1976)78p, 416 202s, 426 278s;
Guyer, Janet	PENT 264 34(1975)108s.		517 26(1978)463p.
Guzman, Alberto	AMM E2738 87(1980)61s.		JRM 774 11(1979)295p, 789* 301p.
Haberman, Clair	SSM 3725 79(1979)264s.	Hawkins, John	MM 979 49(1976)149p.
Haddad, Emile	AMM E2699 85(1978)117p.	Hawthorne, Frank	NYSMTJ 27 25(1975)171s.
Hadjipolakis, And	reas P.	Hayes, Raymond	MSJ 452 25(1978/7)2s.
,	AMM E2605* 83(1976)566p.	Haynsworth, Emil	
Haertel, Ray	MATYC 90 11(1977)145s.		AMM 6222 85(1978)599p; 6222
	AMM 6170 84(1977)659p; 6170		87(1980)760s.
Haggard, Faur W.		II.	_ ` ' '
** 1 * 0	86(1979)231s.	Hayre, L. S.	SPECT 7.5 8(1976)34s.
Hahn, LS.	AMM E2689 85(1978)47p.		TYCMJ 49 7(1976/4)37s.
Haigh, G.	SSM 3735 79(1979)449s.	Hayward, Gregory	PENT 285 36(1977)97s, 286 98s; 291
Haigh, John	SIAM 78-7 20(1978)394p; 78-7		37(1977)33s; 293 37(1978)85s.
	21(1979)560s.	Healy, Joel H.	MSJ 450 25(1978/6)4s.
Hájek, Otomar	AMM 6173 84(1977)660p. SIAM 79-7	Hearon, John Z.	AMM E2448 82(1975)80s. MM Q644
3 ,	21(1979)256p.	,	50(1977)47p, Q644 53s.
Hale, Bob	FUNCT 3.1.3 3(1979/3)30s.	Heckbert, Paul S.	
*		Heinicke, A. G.	CMB P258 20(1977)523s.
Hale, Roger	SPECT 8.7 9(1977)64s.	1	
Haley Jr., James I		Hekl, Robert	MSJ 412 22(1975/2)6s.
	JRM 50 8(1976)55s; 210 9(1977)56s, 212	Hekster, N.	NAvW 540 27(1979)268p.
	59c.	Helmbold, Robert	L.
Hall, J. I.	NAvW 448 25(1977)193s; 495 26(1978)233p;		AMM E2576 83(1976)133p.
	495 27(1979)274s.	Henderson, G. P.	CRUX 380 4(1978)226p; 427 5(1979)77p,
Hall, Louis J.	SSM 3690 77(1977)530p.		380 171s, 393 210s, 479 229p, 394 229s, 398
Hall, Lucien T.	SSM 3691 78(1978)445s.		235s, 498 293p; 387 6(1980)47x, 479 220s,
Hall, Michael	PARAB 400 15(1979/3)40s.		498 325s.
	, , ,	Handaraan I Dal	
Hall, Richard J.	AMM E2628 83(1976)813p.	Henderson, J. Rol	
Hamada, Jennie	TYCMJ 31 6(1975/4)26s.	TT 1 5	AMM E2650 85(1978)597s.
Hamberg, Charles		Henderson, Ruth	TYCMJ 34 7(1976/1)30s.
	MM 975 49(1976)96p.	Hendriks, M. H.	NAvW 377 23(1975)90s.
Hammer, F. David	1	Henley, Christoph	er
. ,	AMM E2527 82(1975)301p, 6028* 410p,	1	AMM 6106 85(1978)208s.
	E2554 851p; E2574* 83(1976)54p; 6032	Hennagin, Stephen	
	84(1977)222s; 6204* 85(1978)282p, 6221	Training in, Deep ite	TYCMJ 35 7(1976/1)31s.
		Honrici D	AMM E2796 86(1979)703p, E2720 706s,
	500p, 6238* 770p, 6239 770p, E2745* 824p;	Henrici, P.	1
	S6 87(1980)302s, E2758 405s. CRUX PS1-1	TT , T	E2808 865p; 6241 87(1980)497s.
	6(1980)310s. MATYC 121 12(1978)253p;	Hensley, Douglas	
	111 13(1979)68s. MM 952 48(1975)239p;		AMM 6172* 84(1977)660p, E2682 738p;
	Q632 49(1976)44p, Q632 48s, 993 212p;		E2766 86(1979)223p, E2682 223s, E2777
	1052 51(1978)245p; 1069 52(1979)113p.		393p, E2789 592p, E2798 785p; S3
	SSM 3749 78(1978)713p.		87(1980)136s.
Hampton, C. R.	AMM E2730 86(1979)866s.	Henson, C. W.	AMM 5933 82(1975)768c.
. ,	,		
Hanazawa, Masazi		Herbert, John	JRM 650 11(1979)227s.
	JRM 611 10(1978)115p, 665-1 275p; 691	Herfordt, Jean	PENT 265 34(1975)109s.
	11(1979)29p, 749 208p, 775 295p.	Herink, Curtis D.	AMM 6261 88(1981)70s.

Herman, E. A.	1975–	1979	Irvin, Sally R.
Herman, E. A.	AMM E2512 82(1975)73p.		466p, B-343 470p; B-346 15(1977)93p,
Hertz, Ellen	TYCMJ 36 7(1976/1)31s. AMM E2662 85(1978)685s, 6142 773s;		B-347 93p, B-352 189p, B-353 189p, H-275 281p, H-276 371p; B-373 16(1978)88p,
Hertzig, David	E2706 86(1979)593s. AMM 5935 82(1975)88s.		B-375 89p, H-278 92p, B-381 184p, H-281 188p, H-285 477p, B-390 562p, B-393 562p;
Hess, A. L. Hess, Richard I.	SSM 3757 80(1980)174s. JRM 463 10(1978)72s, 470 144s, 527 221s,		B-395 17(1979)90p, B-399 90p, H-297 94p, H-301 190p, H-304 286p, H-306 287p, B-415
ness, ruchard i.	530 225s, 535 229s; 675 11(1979)309s; 698		369p, B-416 370p, H-310 375p.
	12(1980)49s, 699 65s, 704 69s, 709 73x, 757 224x, 765 230s, 766 231s. PME 439	Holland, A. S. B. Holland, Finbarr	CMB P281 24(1981)127s. AMM 6072 84(1977)744s.
Hesterberg, Tim	6(1979)616p; 449 7(1979)57p. MM 1021 52(1979)51s.	Hollander, Mike Holley, Ann D.	ISMJ 14.12 14(1979/3)4s, 14.13 5s. TYCMJ 22 6(1975/2)32s.
Heuer, C. V.	AMM 6011 83(1976)750s.	Holliday, Dick	SSM 3672 78(1978)82s.
Heuer, G. A.	AMM E2453 82(1975)170s, E2465 405s; 6011 83(1976)750s. MM 951 48(1975)239p;	Holliday, Robert I	MM 964 50(1977)104s.
	1006 50(1977)46p; 990 51(1978)128s, 993 130s; 1071 53(1980)247x, 1074 248s, 1075	Hollingsworth, B.	J. SIAM 76-17 20(1978)856c.
House Keel W	249s, 1080 302s.	Holshouser, Arthu	r L.
Heuer, Karl W.	AMM E2453 82(1975)170s, E2478 667s. MM 991 51(1978)129s; 1080 53(1980)302s.	Holt, A. R.	AMM E2659 84(1977)486p. SIAM 74-10 17(1975)691s.
Hevener Jr., R. N.	AMM 6080* 83(1976)205p; 6080 85(1978)503x.		NAvW 552 29(1981)107s. CRUX 192 2(1976)219p; 207 3(1977)10p.
Hewitt, Mike Hickerson, Dean	PENT 314 39(1980)105s. AMM 6020* 82(1975)307p; 6020	Hood, Rodney T.	AMM E2584 84(1977)489s.
	84(1977)65c.	Hooper, Peter Hopkins, Garland	AMM 6030 84(1977)143s. JRM 479 9(1977)31p.
	MM 990 49(1976)211p. SSM 3682 78(1978)174s.	Hopkins, Larry M. Hornstein, Barry	. MM 929 49(1976)97s. CRUX 255 3(1977)155p.
Higgins, Frank	FQ B-305 13(1975)190p, B-306 190p, B-292 374s, B-294 375s; B-299 14(1976)94s,	Howard, Ralph	AMM E2559 84(1977)140s.
	B-303 96s, B-344 470p, B-345 470p; B-327	Howell, John M.	PME 355 6(1975)178p; 407 6(1977)419p; 430 6(1978)540p; 407 8(1985)182c.
Higgins, J. R.	15(1977)95s, B-357 189p. AMM 6013 82(1975)183p.	Howorka, E.	AMM 6275 86(1979)597p; 6275 88(1981)355s.
Hill, Rebecca N.	SIAM 74-22 18(1976)130s. TYCMJ 25 6(1975/3)35s, 27 36s.	Hoyt, John P.	MM 974 49(1976)95p, 1002 253p.
Hillman, A. P.	AMM E2750 86(1979)55p, E2693 308s, E2718 509s, S20 702p, E2722 708c.	Hsu, David Y.	TYCMJ 54 7(1976/1)28p. JRM 528 9(1977)210p.
	FQ B-382 17(1979)282c, B-386 284c, B-387	Hudson, Joseph C	MM 1070 52(1979)113p.
Hilton, A. J. W.	284c. FQ H-261 14(1976)182p; H-261	Huey, Lai Lane Huff, Barthel W.	MSJ 462 26(1979/4)3s. AMM 6111 83(1976)661p; 6174
Hindmarsh, A. C.	15(1977)371s. AMM E2454 82(1975)171s, 5939 533s; 5979		84(1977)743p.
Hinkle Horace W	83(1976)207s. JRM 444 8(1976)312p; 541 9(1977)215p;	Huff, G. B. Hughes, C. Bruce	AMM E2520 82(1975)169p. AMM 6025 84(1977)141s.
,	541 10(1978)235s.	Hui, Chung-Ying Huijsmans, C. B.	OSSMB 79-6 15(1979/2)21s. NAvW 541 27(1979)268p.
Hirsch, Martin Hirschfeld, Barry	SSM 3682 78(1978)533c. AMM E2526 83(1976)484s.	Hull, Don	CRUX 21 1(1975)40s.
Hirschfeld, Raphae	l MSJ 455 26(1979/1)2s.	Humphreys, J. Hùng, Dinh Thế	AMM 6169 88(1981)447s. SSM 3628 76(1976)718s; 3632 77(1977)80s,
Hirschhorn, Daniel	` ' '		3634 170s, 3643 267s, 3621 354c, 3632 532c, 3657 535s, 3663 625s; 3673 78(1978)83s.
Hirschhorn, M.	PARAB 344 14(1978/1)26s.		TYCMJ 72 9(1978)42s.
Hobbes, V. G.	CRUX 337 4(1978)101p, 376 225p. JRM 626 11(1979)151s, 631 156s; 353 12(1980)57x.	Hunsucker, J. L. Hunter, J. A. H.	FQ H-230 14(1976)89s. CRUX 331 4(1978)100p; 435 5(1979)108p;
Hoehn, Larry Hoehn, Milton H.	TYCMJ 114 9(1978)95p. JRM 202 9(1977)53s. MM 946		441 6(1980)84s, 441 85c. FQ B-312 13(1975)285p, B-316 373p; B-323
,	48(1975)238p. TYCMJ 96 8(1977)240p; 125		14(1976)93p. JRM 365 8(1976)44p, 380 50p; 58 9(1977)129x, 542 280p; 582
Hoerbelt, Bernard	9(1978)236p; 103 10(1979)130s. G.		10(1978)41p, 617 116p, 653 212p, 664 275p;
	MM 882 48(1975)302c. NYSMTJ 79 28(1978)77p.		689 11(1979)28p. PME 344 6(1975)105p; 344 6(1976)237s.
Hoffman, Dale T.	MÀTYĆ 112 13(1979)69s. TYCMJ 155 12(1981)162s.	Hurd, Carl	AMM E2447 82(1975)78s. CRUX 495 7(1981)20s.
Hoffman, Michael	J. `	Hurt, John Tom	PME 385 6(1976)309p, 361 323s; 369
	AMM 5958 82(1975)858s. FQ B-329 15(1977)190s, B-333 192s.	Hyler, Rosann	6(1977)377s, 385 435s. JRM 669 10(1978)275p.
Hoffman, Peter Hogan, Brian	AMM E2762 86(1979)223p. MM 1005 50(1977)46p.	Hysjulien, Niki Iannello, Victor	MSJ 420 22(1975/3)7s. MSJ 433 23(1976/4)8s.
Hoggatt Jr., Verner	r E.	Indlekofer, KH. Inkeri, K.	NAvW 390 23(1975)193s. AMM E2571 84(1977)297c; E2642
	AMM S18 86(1979)592p. FQ B-299 13(1975)94p, B-300 94p, B-302 94p, B-307	IIIKEII, IX.	85(1978)497s, E2643 497s. NAvW 421
	190p, H-252 281p, B-313 285p, H-257 369p; B-325 14(1976)93p, H-265 282p, H-267	Irvin, Sally R.	24(1976)211s. PENT 316 39(1980)108s.

Isaacs, I. Martin		1975–1979	Joseph, R. I.
Isaacs, I. Martin	AMM E2668 84(1977)568p; E2628 85(1978)202s, E2668 825s; 6202 86(1979)870s; E2783 87(1980)581s.	Jeurissen, R.	NAvW 430 24(1976)280s, 431 281s; 506 26(1978)350p, 487 365s; 511 27(1979)150s, 527 417s.
Isaacs, Rufus	CRUX 494 5(1979)291p; 494 6(1980)297x.	Jewett, Bob	TYCMJ 34 6(1975/1)32p.
	AMM E2595 84(1977)657s; E2638 85(1978)387s, E2647 594s; E2733	Johari, Shyam Johnson Jr., Allan	AMM E2670* 84(1977)568p.
	86(1979)868s; E2741 87(1980)63s, E2747 305s, 6222 760s; E2752 89(1982)757c. MM 974 50(1977)216s, 980 270s; 984		AMM E2609 84(1977)826c; E2619 85(1978)52c, 6232* 686p, E2664 768s; 6232 87(1980)312c. CRUX 303 4(1978)177s, 378 226p, 319 235c, 331 265s, 391 282p,
T '1 M 1	51(1978)195s, 996 196s; 1030 52(1979)115s 1046 264s, 1047 265s.	,	341 297s; 407 5(1979)16p, 351 54s, 430 78p, 356 80s, 443 132p, 378 148s, 457*
Ismail, Mohamma	AMM 6220* 85(1978)500p.		167p, 470 201p, 391 208c, 399 239c, 482 265p, 407 273s, 407 275c, 411 300s; 426
Ismail, Mourad E.	H. AMM E2550 83(1976)815s. SIAM 75-3 18(1976)302s; 77-2 20(1978)187s.		6(1980)30s, 430 53c, 443 88x, 482 223s. MM 953 48(1975)239p; 953 50(1977)100s,
Israel, Robert B.	AMM 6127 85(1978)604s, 6133 771s; 6253 87(1980)762s; 5297 88(1981)295s, 6280	Johnson, B. R.	1015* 164p. TYCMJ 73 7(1976/4)33p; 73 9(1978)43s, 80 100c. AMM 6248 87(1980)584s. MM 1070
Itors, Edward	623s. MM 913 48(1975)246s.	Johnson, Charles	53(1980)245s. AMM E2516 82(1975)168p.
Ivanoff, Vladimir I	AMM E2531 82(1975)400p. PME 345	Johnson, Dana J.	AMM 6032 82(1975)529p. MSJ 448 25(1978/5)4s.
	6(1975)106p; 380 6(1976)308p; 380 6(1977)427s.	Johnson, David S. Johnson, Dennis	AMM E2569 84(1977)296c. AMM 6141 84(1977)221p. PME 420
Ivić, Aleksander Ivie, John	AMM 6108 83(1976)661p. FQ B-302 14(1976)95s.	Johnson, H. H.	6(1979)629s. AMM E2456 82(1975)301s.
Jackson, David M.	AMM E2688 84(1977)820p; E2702	Johnson, Jerry Johnson, Marvin	SSM 3632 77(1977)86s. MATYC 79 9(1975/3)45p.
Jaech, Warren	85(1978)197p, E2703 198p, E2735 682p. TYCMJ 59 8(1977)179s.	Johnson, Norman	L. AMM E2705 86(1979)398s.
Jaeger, Mark	PME 331 6(1975)187s; 375 6(1977)422s; 39 6(1978)492s.	Johnson, Peter Johnson, Robert S	AMM E2699 85(1978)117p.
Jager, H. Jager, Thomas	NAvW 429 24(1976)78p. AMM E2707 86(1979)508s, 6183 510s;		CRUX 251 3(1977)154p, 285 251p; 240 4(1978)37c, 256 53x, 265 75c, 285 118s;
Jager, Thomas	E2742 87(1980)63s, S5 219s, E2766 406s; E2752 89(1982)757s.		348 5(1979)52s. JRM 395 8(1976)141p, 403 144p, 404 144p, 166 146s, 411 227p, 431
Jagers, A. A.	AMM 5972 83(1976)67s, 5977 206s; E2556 84(1977)136s, 6026 142s, 6032 222s, E2580		308p; 457 9(1977)22p, 247 62s, 484 125p, 180 143s, 521 207p, 547 281p, 309 303x; 576
	488s, 6079 748s; E2620 85(1978)117s, 6202 203p; E2676 86(1979)58s, E2681 129s,		10(1978)40p, 476 77s, 643 206p, 442 295s, 555 302s, 565 311s; 782 11(1979)299p; 698
	E2683 129s, E2678 506s, E2709 703s, E272 707s; E2767 87(1980)490s, E2787 673s,	Johnson, Wells	12(1980)50s, 764 230x. AMM E435 83(1976)813s; E2805
	E2796 824s; E2806 88(1981)210s; 3189 96(1989)260s. NAvW 376 23(1975)89s,	· ·	86(1979)864p. MATYC 68 9(1975/3)49s.
	381 94s, 388 190s, 396 252s, 400 257s; 406 24(1976)95s, 407 98s, 413 107c, 426	Johnsonbaugh, Ric	AMM 6093 83(1976)386p, E2626* 812p;
	277s; 440 25(1977)93s, 446 98s, 457 204s, 459 434s; 486 26(1978)364s, 496 472s, 498		6147 84(1977)300p; S8 86(1979)222p; 6241 87(1980)497s. MM 944 48(1975)181p. TYCMJ 60 7(1976/1)29p; 67 7(1976/3)47p;
	474s; 527 27(1979)133p, 506 143s, 510 148s, 542 269p, 520 282s, 521 283s, 554	Johnston, Elgin	103 8(1977)292p, 70 295s; 112 9(1978)95p. AMM E2600 84(1977)741s.
	410p; 534 28(1980)122s, 540 130s, 557 220c. SIAM 75-11 18(1976)497s, 76-18 762p; 78-14 21(1979)400s, 78-15 401s; 79-1	Johnston, Jimmy	MSJ 472 26(1979/7)3s; 497 27(1980/3)4s. SPECT 7.9 8(1976)65s.
I-lash and Gara	22(1980)369s.	. ,	ISMJ 9.13 10(1975/1)7s, 9.14 8s. CMB P275 22(1979)248p.
James, Leigh	FQ B-416 17(1979)370p. PENT 263 34(1975)106s, 265 110c; 291 36(1976)32p; 282 36(1977)94s; 291	Jones, Ralph	AMM 5427 82(1975)673s. TYCMJ 133 11(1980)211s.
James, Robert C.	37(1977)33s.	Jongen, H. Th. Jonsson, Dag	NAvW 542 27(1979)269p, 554 410p. JRM 593 11(1979)65s.
Jan, Heng Fock	MENEMUI 0.3.2 1(1979/1)58s; 1.1.3 1(1979/2)47s.	Jonsson, Wilbur Jordan, Dean	CMB P207 23(1980)118s. MATYC 109 11(1977)222p; 114
Janardan, K. G. Janes, Leigh	TYCMJ 116 10(1979)360s. CRUX 319 4(1978)36p. JRM 316	Jordan, Steven	12(1978)78p; 109 13(1979)65s. MM 981 49(1976)149p.
Jantzen, Chris	10(1978)59s. MSJ 467 26(1979/6)3s; 485 27(1980/2)3s.	Jordan, William B	SIAM 76-2 19(1977)150s, 76-1 335c, 76-13
	AMM E2650 85(1978)597s. SIAM 74-5 17(1975)175s.		565s, 76-22 743s; 76-19 20(1978)184s, 77-13 599s; 77-19 21(1979)141s; 79-3 22(1980)100s, 79-9 232s, 79-14 369s.
Jespersen, Dennis		Jørsboe, Ole	AMM 6184 84(1977)829p; E2723 86(1979)789s; 6184 87(1980)827s.
	19(1977)742s.	Joseph, R. I.	SIAM 76-19 18(1976)762p.

Josephson, Robert	F. 19	75–1979	Kierstead Jr., Friend H.
Josephson, Robert			119 10(1979)363s; 130 11(1980)138c; 150
T 1 M. 1 1	JRM 476 9(1977)29p.		12(1981)67s, 151 155s.
Josephy, Michael	AMM E2541 83(1976)660s; E2742 87(1980)63s, E2787 673s, E2789 674s, 6222	Kaufman, E. Kaufman, Ilia	NYSMTJ 69 28(1978)56s. SIAM 77-13* 19(1977)564p.
	760s.	Kaufman, Irwin	CRUX 306 4(1978)12p.
Jr.	SSM 3691 78(1978)445s.	Kay, David C.	CRUX 316 4(1978)229s. PME 354
Jungreis, Irwin	AMM 6238 87(1980)409s. PME 315		6(1975)178p; 390 6(1977)366p, 376 423s;
	6(1975)110s.		390 6(1978)489s; 420 6(1979)628s; 461
Jungreis, Rosalie	PME 316 6(1975)111s.	W 0 D	7(1979)60p.
Jungreis, Theodor	PME 375 6(1977)422s; 443 7(1980)139s.	Kaye, G. D.	CRUX 21 1(1975)40c, 23 41s, 24 42s, 38 64s, 55 89s, 65 100s, 68 101s; 85 2(1976)29s, 89
Just, Erwin	AMM E2532 82(1975)400p; E2598		33s, 91 44s, 96 48s, 97 48s, 105 78c, 107
	83(1976)379p; 6130 84(1977)62p, E2677		79s, 117 100s, 135 153s, 149 184s, 157 200s,
	738p; 6194 85(1978)122p. CRUX 282		164 230s.
	3(1977)250p. DELTA 4.2-2 5(1975)46s.	Keese, Earl E.	SSM 3621 76(1976)625s; 3671 77(1977)717s;
	MM Q611 48(1975)52p, Q611 58s, 934 116p, Q617 116p, Q617 122s, Q623 182p,	Keese, Nancy C.	3681 78(1978)174s, 3699 536s. SSM 3768 80(1980)350s.
	Q623 186s, 950 239p, 957 293p; Q635	Keith, Michael	JRM 391* 8(1976)140p, 412 227p, 426*
	49(1976)150p, Q635 154s, 992 211p, Q641		231p, 434 309p, 446 313p; 487 9(1977)126p;
	253p, Q641 258s; Q643 50(1977)47p, Q643		584 10(1978)41p, 639 204p, 446 298s;
	53s, 957 103s. NYSMTJ 41 25(1975)55p;		592 11(1979)64s, 721 123p. PME 331
	OBG2 27(1977)136p, OBG2 138s; 77 28(1978)53p; 93 29(1979)83p. PME 356	Keller, James B.	6(1975)187s. AMM 5687 82(1975)767c; E2691
	6(1975)179p; 394 6(1977)366p; 432	Kener, James D.	85(1978)48p. ISMJ 12.1 12(1977/2)6s,
	6(1978)540p.		12.2 7s, 12.3 7s, 12.4 7s, 12.10 10s; 12.11
Kabak, Bertram	NYSMTJ 80 28(1978)78p; 100		12(1977/3)5s, 12.12 5s, 12.15 6s, 12.17
	29(1979)145p. PME 394 6(1977)366p.		7s, 12.18 7s; 12.21 12(1977/4)7s; 13.2
	TYCMJ 47 6(1975/4)24p; 85 8(1977)95p; 109 9(1978)40p.		13(1978/2)6s, 13.3 7s, 13.4 7s, 13.6 7s; 13.11 13(1978/3)6s, 13.14 7s; 13.19
Kahan, Steven	JRM 364 8(1976)44p, 398 143p, 399 143p,		13(1978/4)6s, 13.20 6s, 13.21 7s, 13.22 7s,
,	400 143p, 418 228p, 432 309p, 433 309p;		13.23 8s.
	449 9(1977)21p, 458 22p, 459 22p, 485	Keller, Philip	MATYC 83 11(1977)64s, 89 144s.
	126p, 486 126p, 496 132p, 525 207p, 526	Kelly, Paul	PME 438 7(1981)267s.
Kahn, Steven	207p, 550 281p. MATYC 71 9(1975/1)49p; 100 11(1977)63p,	Kemp Jr., L. Fran	AMM 6115 83(1976)748p.
ramin, Storem	91 222s; 128 13(1979)65p, 113 69s; 133	Kennedy, Gary	AMM 6086 85(1978)54s.
	14(1980)233s. TYCMJ 52 6(1975/4)25p, 30	Kermayer, Greg	AMM E2544 83(1976)745s.
	26s; 35 7(1976/1)31s, 36 31s; 80 8(1977)42p,	Kerney, K. P.	AMM E2523 82(1975)300p.
Kamerud, Dana B	63 241s; 82 9(1978)178s.	Kerns, Carl M.	MATYC 69 9(1975/3)50s.
Ramerud, Dana E	AMM 6104 85(1978)206s.	Kerr, Jeanne W.	AMM E2593 83(1976)378p; E2593 84(1977)739s.
Kandall, Geoffrey	MM 968 50(1977)168s; Q651 51(1978)128p,	Kerr, Steven	MATYC 81 9(1975/3)45p.
	Q651 130s.	Kessler, Gilbert V	
Kantowski, Mary			CRUX 218 3(1977)43p, 181 57c, 181 57s,
Kapoor, J.	SSM 3586 76(1976)82s; 3688 78(1978)357s. MATYC 74 9(1975/2)51p; 89 10(1976)122p,		250 132p, 264* 189p, 275* 227p, 291 297p;
rapoor, s.	75 123s.		329 4(1978)66p, 348 134p, 372 224p, 329 262s, 399* 284p; 357 5(1979)83s, 359 85s,
Kappus, Hans	MM 1068 53(1980)186x, 1087		486 266p. SSM 3735 79(1979)449s.
	304s. NAvW 468 26(1978)235s; 529	Kestelman, H.	AMM E2663 85(1978)686s; 6249
7/ 7.1	27(1979)418s.		86(1979)59p, S13 392p, E2720 707s; 6209
Karam, John Karlsson, P. W.	CRUX 195 2(1976)220p. SIAM 77-2 19(1977)146p.		87(1980)141s. MM 1018 50(1977)164p; 1033 51(1978)127p, 1035 127p, 1040 193p; 1058
Karol, Mark	MSJ 431 23(1976/3)8s; 438 24(1977/2)6s;		52(1979)46p, 1065 47p, 1035 259s; 1058
,	439 24(1977/3)5s; 441 24(1977/4)2s, 442		53(1980)114s.
	2s; 443 25(1978/1)4s; 445 25(1978/2)4s, 446	Kester, A. D. M.	NAvW 558 28(1980)221s.
W D :1	4s.	Kettner, James E	2. AMM 6259 86(1979)226p; 6259
Karr, David Karst, E.	CRUX 319 4(1978)235s. FQ H-256 13(1975)369p; H-256	Kezlan, Thomas	88(1981)448s.
Kaist, E.	15(1977)374s.	Kezian, Thomas	AMM E2536 83(1976)657s.
Kass, Seymour	AMM 6170 86(1979)231s.	Khoury, Paul	CRUX 117 2(1976)26p, 118 26p, 128 41p.
Katz, D.	NAvW 456 24(1976)272p.	Kidwell, Mark	AMM 5969 82(1975)1020s.
Katz, Zazou	PME 314 6(1975)109s, 316 111s, 330 185s,	Kienker, Paul	MSJ 470 26(1979/7)2s.
	331 187s, 337 191s; 409 6(1977)419p; 447 7(1980)145s.	Kierstead Jr., Fri	
Katz, Zelda	CRUX 386 5(1979)180x. PME 362		CRUX 402 5(1979)267s, 403 269s; 435 6(1980)60s, 439 81s, 446 94s, 468 192s, 490
a.z., a.a.a	6(1976)226p, 342 233s, 351 311s; 401		288c, 499 327s. JRM 472 9(1977)27p, 120
	6(1977)417p; 437 6(1978)542p; 447		37s, 211 56s, 371 72s, 378 76s, 380 76s, 381
	6(1979)618p; 437 7(1979)75s; 460		77s, 217 146s, C1 233s, C7 290s, C8 291c,
Kaufman Allan	7(1980)201s. TYCMJ 20 6(1975/1)34s; 29 6(1975/4)25s;		C9 292s, 294 299s, 309 303x, 315 307s, 348
Kaufman, Allen	42 7(1976/3)48s; 50 8(1977)43s, 59 179s; 74		314s, 351 317s; 586 10(1978)45p, 477 47s, 480 50s, 356 62s, 472 76s, 621 120p, 509
	9(1978)44c, 75 45s, 79 99s, 83 178s, 90 242s;		121s, 511 122s, 512 123s, 58 131c, 497 148s,
		•	,

Kierstead Jr., Friend H. 1975–1979 Komlós, J.

501 153s, **505** 156s, **655** 212p, **494** 220s, **529** 223s, **536** 230s, **571** 281s, **674*** 284p, **440** 293s; **705** 11(1979)37p, **711** 38p, **712** 38p, **586** 43s, **588** 45s, **372** 48c, **444** 50c, **448** 51s, **621** 143s, **495** 145c, **755** 213p, **655** 232x, **784** 300p, **791** 302p, **676** 310s; **712** 12(1980)75s.

Kierstead, Henry A

JRM 249 9(1977)63s, 251 64s, 341 310s; 541 10(1978)235c; 628 11(1979)220s; 713 12(1980)141s, 788 307s.

Kiltinen, John O. AMM 6170 86(1979)231s. Kim, Ki Hang AMM 6215 85(1978)390p.

Kim, Scott JRM 445 10(1978)297s; **787** 11(1979)301p. PME 416 6(1978)482p; 416 6(1979)625s.

Kimberling, Clark H.

AMM 6014 82(1975)183p, E2534 520p; E2580 83(1976)133p, E2581 197p; 6161 84(1977)491p; E2705 85(1978)198p, E2722* 496p; E2752* 86(1979)56p, 6281* 793p. FQ H-296 17(1979)94p; H-296 18(1980)377x.

Kimbrough, Wilbur D.

SSM 3666 77(1977)714s; 3694

78(1978)447s.

Kimura, Naoki AMM E2765 86(1979)223p. NAvW 545

28(1980)136s. **SIAM 79-2** 22(1980)99s.

Kinch, Lael F. AMM E2599 84(1977)740s; E2669

85(1978)825s.

Kinderlehrer, D. **AMM E2801** 86(1979)785p.

King, Bruce **NYSMTJ 49** 25(1975)170p; **55** 26(1976)96p;

55 27(1977)53s; **67** 28(1978)152s.

King, L. R. **AMM 6225** 87(1980)311s.

King, Mary Katherine

TYCMJ 110 10(1979)217s.

King, Ralph **NYSMTJ 64** 28(1978)82s; **87** 29(1979)146s; **94** 30(1980)56s. **SSM 2617** 77(1977)621s;

3734 78(1978)533p, **680B** 621s; **2547** 79(1979)80s; **3777** 80(1980)446s.

Kirmser, P. G. Kitchin, John Kivel, George SIAM 75-18 18(1976)769s. PENT 277 36(1976)32s. MSJ 414 22(1975/2)7s.

Kivel, George Klamkin, Murray S.

AMM E1445 82(1975)73r, **E2535** 520p, E1298 661s, E2548 756p, E2483 759s; **E2573** 83(1976)54p, **E2505** 59s, **E2514** 200c, **E2603** 483p; **E2563** 84(1977)218s, **E2573** 299s; **S6** 86(1979)222p, **S9** 306p, **S12** 392p. **CMB P244** 18(1975)616p; **P248** 19(1976)121p; **P261** 20(1977)524s; **P270** 22(1979)121p, **P281** 519p; **P270** 23(1980)121s. CRUX 106 2(1976)78s; 210 3(1977)10p, **224** 65p, **189** 75c, **199** 112s, **202** 137s, **207** 144c, **207** 144s, **254** 155p, **210** 163s, **224** 203s, **273** 226p, **232** 240c, **287** 251p, **235** 258s, **299** 298p; **323** 4(1978)65p, 330* 67p, 269 81c, 280 112c, 282 115c, 347 134p, **287** 135s, **358** 161p, **375** 225p, **323** 255c, **323** 255s, **398** 284p; **88** 5(1979)48c, **429** 77p, **358** 84s, **375** 142s, **378** 147s, **383** 174s, **478** 229p, **400** 243s, **485** 265p, **408** 295s, **413** 302s; **427** 6(1980)49c, **429** 51s, **459** 158s, **460** 160s, **464** 186s, **484** 253s, **487** 259s, **488** 260s, **489** 263s, **484** 285c; **493** 7(1981)51c; **478** 11(1985)189c; **478** 13(1987)151c. MATYC 122 13(1979)217s. MM Q608 48(1975)52p, Q608 58s, 930 $115p, \, \textbf{Q618} \,\, 1\dot{1}7p, \, \, \textbf{Q618} \,\, 122s, \, \textbf{942} \,\, 181p,$ **Q622** 182p, **Q622** 186s, **949** 238p, **910** 242s, **958** 293p, **Q630** 295p, **916** 297s, **Q630** 303s; **Q631** 49(1976)44p, **926** 46s, Q631 48s, Q634 96p, Q634 101s, 988

211p, **Q638** 212p, **Q638** 218s, **1000** 253p;

1004 50(1977)46p, **962** 165s, **959** 212c; **1029*** 51(1978)69p, **Q652** 128p, **Q652** 130s, **1043** 193p; **1067** 52(1979)113p, **Q658** 114p, Q658 117s, 1076 258p, Q662 259p, 1035 259s, Q662 265s, 1083 316p, Q664 317p, **1043** 320c, **Q664** 323s. **NAvW 377** 23(1975)90s; **475** 26(1978)248c, **476** 248c. **OSSMB 75-3** 11(1975/1)16p, **74-12** 24c; **75-8** 11(1975/2)18p, **75-3** 21s; **75.2-8** 12(1976/1)16s; **76-4** 12(1976/2)22s. **PME 313** 6(1975)109s; **378** 6(1976)306p; **410** 6(1977)420p; **421** 6(1978)483p, **394** 493s, **410** 557s, **411** 558s; **421** 6(1979)631s; **427** 7(1979)63s, **429** 65s. **SIAM** 74-5 17(1975)175c, **74-9** 691c; **76-6** 18(1976)118p, **75-1** 300c, **75-3** 303c, **75-4** 303s, **76-17*** 491p, **75-12** 497c, **75-15** 503c, **75-5** 764c, **75-17** 768c, **75-20** 772c, **75-21** 773c; **76-5** 19(1977)155s, **76-6** 155s, **77-10** 329p, **76-8** 331c; **77-3** 20(1978)189c, **77-9** 400c, **77-10** 400s, 77-8 595c, 77-12 598c, 77-12 599c, **77-15** 601c, **78-20** 856p, **77-1** 856c, **77-17** 859c, **77-18** 862c; **77-19** 21(1979)140c, **78-2** 144c, **78-3** 146c, **79-6** 256c, **79-10** 257c, **78-6** 260c, **78-8** 263c, **78-11** 398s, **79-19** 559p, **78-20** 569s; **79-19** 22(1980)509s; **63-9** 28(1986)234c. **TYCMJ 96** 10(1979)53s, **101** 128c, **146** 293p, **117** 361s; **130** 11(1980)138s, 140 279s.

Klebanov, L. B. SIAM 79-6* 21(1979)256p. Kleenan, John SPECT 9.1 9(1977)98s.

Kleiman, Mark

AMM E2570 84(1977)296s. CRUX 183
3(1977)69s; 327 4(1978)260s. MM 949
49(1976)218s; 959 50(1977)50s, 967 167s;

Q655 51(1978)246p, **Q655** 249s.

Klein, Benjamin G.

AMM E2579 83(1976)133p; **E2633** 84(1977)58p; **E2761** 87(1980)224s.

MATYC 97 11(1977)63p. MM 1066 53(1980)184s.

Kleiner, David MM 1066 53(1980)184s. Kleinstein, Arnold MATYC 69 11(1977)142s.

Kleitman, Daniel J.

AMM 5895 82(1975)531s; **6079**

83(1976)205p; **E2564** 84(1977)654s; **6190**

85(1978)54p. **SIAM 74-13** 17(1975)693s.

Klimova, I CRUX 405 5(1979)272s. Klinger, Kenneth MM 1005 51(1978)249s. Klinger, Wm. R. TYCMJ 92 8(1977)177p.

Klostergaard, Henry

MM 1042 51(1978)193p; **1077**

52(1979)258p.

Kløve, Torleiv
Knight, C. J.
Knight, M. J.
Knight, William

AMM 5951 82(1975)679c.
SPECT 9.4 9(1977)64p.
AMM E2726 87(1980)61s.
AMM 5955 82(1975)415s; E2783

86(1979)504p.

Knothe, Herbert **AMM 6156** 84(1977)491p.

Knuth, Donald E. **AMM 6049** 82(1975)856p, **6050** 856p;

E2613 83(1976)656p; **E2636** 84(1977)134p. **JRM 212** 9(1977)59c. **SIAM 76-17**

19(1977)740s; **79-5** 22(1980)101s.

Kocher, Frank FQ B-376 16(1978)184p. MATYC 135

13(1979)214p, **124** 219s.

Koether, Robb PME 390 6(1977)366p; 390 6(1978)489s. Koh, E. L. CRUX 464 5(1979)200p.

Kohler, Alfred Kolesnik, G. JRM 185 9(1977)144s. AMM 6094 85(1978)57s.

Kolodner, Ignace I.

AMM E2479 82(1975)669c; E2576 84(1977)388s. SIAM 75-16 18(1976)766s.

Komlós, J. **AMM 6167** 86(1979)230s.

Konečný, Václav	1975-	-1979	Lee, S. L.
Konečný, Václav	MM 901 48(1975)182s, 908 241s; 962 50(1977)165s.		10(1978)154s, 537 230s, 441 294s, 562 308s; 626 11(1979)151s; 762 12(1980)229s, 782
Konhauser, Joseph	D. E. CRUX 199 3(1977)113s. PME 406	Kussmaul, A.	302s. AMM 6256 86(1979)132p.
	6(1978)554c.	Kwakernaak, H.	NAvW 388 23(1975)190s.
Kopetzky, H. G.	AMM E966 84(1977)568s.		AMM E2766 87(1980)406s, S13 670s.
Kopp, P. E. Korowine, J. Th.	AMM 6256 86(1979)132p. AMM E2563 82(1975)937p.	Labbers Jr., Hosia	W. NAvW 398 23(1975)81p, 420 244p; 432
Korsak, A. J.	SIAM 75-14* 17(1975)567p.		24(1976)79p, 398 194s.
Kossy, Donna	JRM 435 8(1976)309p.	Labute, Tamara	TYCMJ 56 8(1977)99s; 82 9(1978)178s.
Kost, Larry L	CRUX 304 4(1978)178c.	LaCurts, Carvel	SSM 3565 75(1975)475s; 3609 76(1976)441s.
Kotlarski, Ignacy I	 AMM 6031 82(1975)528p; 6092	Ladouceur, André	CRUX 3 1(1975)14s, 8 19s, 21 40s, 25 42s,
	83(1976)385p; 6164 84(1977)575p,		26 43s, 51 86s, 53 88s; 82 2(1976)27s, 85
	6175 743p; 6207 85(1978)282p; E2720		30s, 94 46s, 95 47s, 96 48s, 102 73s, 113 97s,
Kottman, C. A.	86(1979)707s. AMM 5958 82(1975)858s.	Lagarias, Jeff C.	115 98s, 116 100s, 126 123s, 160 203s. AMM 6035 84(1977)225s, 6049 397s, 6053
Kowalski, Robert	AMM 6178* 84(1977)744p.	Zagarias, ven er	493s.
Krall, Allan M.	CMB P277 22(1979)385p.	Lagnese, John	AMM 6021 84(1977)66s.
Krall, H. L.	AMM E2F46 82(1075)1010m	Laird, Susan	JRM 427* 8(1976)232p; 507 9(1977)135p; 620* 10(1978)120p.
Kramer, Edvard Kravitz, Sidney	AMM E2566 82(1975)1010p. AMM E2571 83(1976)53p. CRUX 311	Lal, Sunder	CRUX 441 5(1979)131p.
Tiravioz, Siancy	4(1978)35p, 351 159p, 381 250p; 421	Lam, H. K.	AMM E2803 86(1979)864p.
	5(1979)76p. FQ B-304 13(1975)190p; B-322	Lam, Robert	MSJ 428 22(1975/3)5p.
	14(1976)93p; B-348 15(1977)93p. JRM 371 8(1976)47p, 320 67s, 322 70s, 407 144p,	LaMacchia, Sam Lambert, J. P.	CRUX 210 3(1977)197s; 342 6(1980)319x. AMM E2459 82(1975)178s, E2465 405s.
	413 228p, 419 229p, 436 309p, 437 309p,	Lana, Charles	NYSMTJ 42 25(1975)172s.
	441 311p, 447 313p; 460 9(1977)23p, 378	Lancaster, Ronald	
	75s, 497 132p, 571 287p, 554* 295p, 309 303x; 464 10(1978)73s, 678 284p; 703		JRM 605 10(1978)114p, 644 206p, 661 274p, 662 274p; 690 11(1979)29p, 720 123p, 743
	11(1979)36p, 706 37p, 717 122p, 656 233s,		207p, 747 208p, 772 294p.
	777 295p, 797 303p. MM 903 48(1975)184s;		NYSMTJ 50 26(1976)151s.
Veiler Chiele	971 49(1976)95p; 1009* 50(1977)99p.	Lander, E. S.	AMM E2497 82(1975)939s.
Krilov, Shiela Krimmel, Mary S.	SSM 3778 80(1980)446s. SSM 3630 77(1977)79s, 3666 169p, 3637	Lane, Jean Langford, Eric	MATYC 86 11(1977)143s. AMM 6260 86(1979)226p.
Timmer, mary at	172s; 3734 79(1979)448s, 3742 532s.	Langhaar, H. L.	SIAM 78-3* 20(1978)182p.
Krist, Betty	NYSMTJ 72 28(1978)83s.	Lapcevic, Brian	OSSMB 74-11 11(1975/1)23s; 75-1
	SIAM 77-14* 19(1977)564p. AMM 6129 84(1977)62p; 6129		11(1975/2)19s, 75-6 24s; 75.2-9 12(1976/1)17s, 75.2-10 18s, 75.2-12
Kronnenner, E. 11.	85(1978)689s.		19s, 75.3-13 19s, 75.3-14 20s; 79-3
Kruijer, H.S.M.	NAvW 430 24(1976)79p.		15(1979/2)18s.
Kuckes, Haralyn	NYSMTJ 63 27(1977)54p.	Lapidus, Arnold	TYCMJ 108 9(1978)40p. FQ B-336 15(1977)286s, B-338 287s, B-340
Kuehl, Roger E. Kuenzi, N. J.	PME 458 7(1980)199s. MM 948* 48(1975)238p, 915 296s.	Laquer, II. Turner	376s.
,	PME 348 6(1975)106p, 323 120s, 329 184s.	Lark III, J. W.	AMM E2712 86(1979)705s.
	SSM 3575 75(1975)297p, 3591 478p; 3608	Larsen, Jesper Larson, Henry	SIAM 79-18 22(1980)508s. JRM 555 9(1977)296p, 566 298p; 594
	76(1976)716c; 3720 78(1978)353p; 3760 79(1979)173p, 3719 175s, 3767 260p; 3752	Larson, Henry	10(1978)52p, 627 128p, 628 129p, 566 311c;
	80(1980)78s. TYCMJ 62 7(1976/2)49p, 41		465 11(1979)54s, 630 154s, 625 304x; 758
TZ 11 TT TZ	53s; 54 8(1977)96s.	I amaam I C	12(1980)227c.
Kuiken, H. K.	AMM 6010 83(1976)666s. NAvW 408 23(1975)176p, 419 243p.	Larson, L. C. Laseau, F. T.	AMM 6180 84(1977)828p. AMM 6042* 82(1975)766p.
Kuipers, L.	AMM 6024 82(1975)409p; 6002	Lasky, Mark	ISMJ J11.10 11(1976/3)6s; J11.11
	83(1976)494s, E2547 814s; E2623		11(1976/4)5s, J11.13 6s; J11.7 12(1977/2)6s;
	85(1978)119s; E2766 87(1980)406s, E2796 824s; 6269 88(1981)72s. CMB P243	Lass, Harry	12.13 12(1977/3)6s; 12.27 12(1977/4)7s. AMM E2535 83(1976)657s; E2724
	18(1975)615p; P243 22(1979)248s.	Eass, Harry	85(1978)496p, 6050 687s.
	FQ H-298 17(1979)94p. MM Q653	Latham, Ray	AMM 6162 84(1977)575p.
	51(1978)194p, Q653 201s. NAvW 431 24(1976)79p, 442 186p, 414 196s; 451	Lauder, Michael Laugwitz, Detlef	JRM 502 9(1977)133p, 568 298p. AMM E2516 83(1976)201s; 6098
	25(1977)197s, 455 201c, 485 425p, 442 431s,	Laugwitz, Detici	85(1978)125s.
	465 443s; 496 26(1978)233p, 472 243s, 507	Lawrence, Jim	AMM 6037 82(1975)671p.
Kullman, David E.	350p, 508 350p, 518 463p.	Lawton, Thomas Lawton, Wayne	SPECT 9.7 10(1978)64s. AMM 6072* 83(1976)140p.
ramman, David E.	SSM 3767 80(1980)267s.	Lax, Peter D.	AMM 5643 82(1975)677s.
Kumar, J.	SIAM 79-10* 21(1979)257p.	Leavitt, William G	· .
Kundert, E. G. Kung, Mou-Liang	AMM 6123 83(1976)817p.	loBol I E	AMM 6068 84(1977)661s.
Kung, Mou-Liang Kuo, Morgan	AMM E2720 86(1979)707s. TYCMJ 124 11(1980)65s.	leBel, J. E. Lee, Brant	AMM E2489 82(1975)853c. MSJ 440 24(1977/3)5s.
Kuper, Lenny	MM 1038 52(1979)319s.	Lee, S. L.	MENEMUI 1.1.2 1(1979/1)53p; 1.2.2
Kurosaka, Robert			1(1979/2)46p; 1.3.1 1(1979/3)56p, 1.3.2
	JRM 346 8(1976)155s; 374 9(1977)73s; 503		56p, 1.3.3 57p.

Leech, Jonathan	1975-	-1979	Lossers, O. P.
Leech, Jonathan	AMM E2789 87(1980)674s, E2790 755s.		6(1977)366p; 393 6(1978)492s, 399
Leeland, Steve	PME 350 6(1976)310s, 355 315s.		542s; 444 6(1979)617p; 444 7(1980)140s.
Leep, David	AMM 6200 85(1978)203p.		TYCMJ 36 7(1976/1)31s; 61 7(1976/2)49p;
Lehman, R. Shern			71 7(1976/3)47p; 76 7(1976/4)33p; 151
T 1 D	AMM E2619 85(1978)52s.	T. I. D.	10(1979)359p.
Lehmer, Emma	AMM E2673 86(1979)57s, 6156 134s.	Lindstrom, Peter	
Leibowitz, G. M.	CMB P233 19(1976)251s. AMM 6042* 82(1975)766p.	Ling, Chih-Bing	MM 1032 52(1979)117s. SIAM 78-5 20(1978)183p; 78-5
	SSM 3560 75(1975)385s, 3578 656s, 3584	Ling, Chin-Bing	21(1979)146s, 79-8 257p.
	745s; 3593 76(1976)171s, 3600 264s; 3695	Linis, Viktors	CRUX 12 1(1975)7p, 14 7p, 17 8p, 24 11p,
	78(1978)448s; 3772 80(1980)353s, 3787		25 11p, 26 12p, 29 12p, 3 14c, 7 18s, 32
	711s.		25p, 33 25p, 17 29s, 42 38p, 44 38p, 21
Leipälä, Timo	SIAM 78-8 20(1978)394p; 78-8		40s, 25 43c, 25 43s, 27 44s, 29 45s, 30 46s,
Longtro In H W	21(1979)261s. AMM 6064 82(1975)1016p; E2565		52 48p, 55 48p, 65 57p, 67 57p, 70 57p, 35 61s, 36 61s, 73 71p, 74 71p, 44 74s, 46 75s,
Lensua Ji., II. W.	84(1977)220s, 6064 580s. NAvW 543		48 77s, 49 77s, 84 84p, 85 84p, 86 84p, 43
	27(1979)269p, 555 410p; 543 28(1980)133s.		85s, 96 97p, 97 97p, 98 97p, 67 101s, 70
Lent, E. M.	JRM C4 9(1977)239s.		102s; 106 2(1976)6p, 107 6p, 108 6p, 79
Lesage, Jack	CRUX 221 3(1977)199s. OSSMB 78-12		15s, 115 25p, 116 25p, 126 41p, 127 41p,
T 11 A G	15(1979/1)22s.		96 48s, 99 51s, 137 68p, 144 94p, 159 111p,
Leslie, A. S.	SIAM 75-1 18(1976)299s.		160 111p, 115 112c, 115 112s, 125 120s, 161 135p, 162 135p, 183 193p, 169 234s;
Leslie, Robert A. Lessells, Gordon S	AMM E2794* 86(1979)703p.		140 3(1977)13s, 167 23s, 231 104p, 232
Lessens, Gordon S	AMM E2766 87(1980)406s. JRM 634		104p, 233 104p, 234 104p, 235 105p, 236
	10(1978)204p; 725 11(1979)124p, 779 295p.		105p; 303 4(1978)11p, 304 11p, 336 101p,
Letac, Gérard	AMM 6103 83(1976)572p; 6149		285 116s, 344 133p, 304 178s, 367 192p,
	84(1977)301p, E2567 570s; 6103		396 283p; 405 5(1979)15p, 326 18s, 447
	85(1978)205s, 6206 282p, 6230 686p; 6206		132p, 453 166p, 382 173s, 468 200p; 425 6(1980)29s. MM 1068 53(1980)186c.
Levatin, JoAnne	88(1981)215s. JRM 527 10(1978)221s.	Lipman, Ray	JRM 396 8(1976)141p, C6 306p, C9* 306p;
Levin, Linda	MSJ 457 26(1979/2)3s.	1,,	475* 9(1977)28p, 478 31p, 556 296p; 588*
Levine, Eugene	AMM 6130 84(1977)62p. CRUX 355		10(1978)46p.
	5(1979)79x.	Liron, N.	SIAM 76-22 18(1976)763p.
Levitt, J.	OSSMB 77-4 13(1977/2)23s; 78-6	Litchfield, Kay P.	MM 903 48(1975)184s.
Laure Casan	14(1978/1)15p; 78-2 14(1978/2)24s.	Littlejohn, Lance	AMM E2748 85(1978)824p. TYCMJ 122 9(1978)236p.
Levy, Cesar Levy, Jordan I.	AMM 5687 82(1975)767s. AMM 6153 86(1979)132s. MM 972	Liu, Andy	AMM S9 86(1979)306p. CRUX 366
Levy, verdan 1.	50(1977)215s; 1001 51(1978)246s, 1002		4(1978)192p, 328 260s; 404 5(1979)15p,
	247s.		415 47p, 429 77p, 450* 133p, 371 136s,
Levy, P.	SIAM 76-11 19(1977)334s.		389 202s, 473 229p, 412 301s; 429
Lew, John S.	AMM E2719 85(1978)495p; 6258		6(1980)51s, 465 188s; 478 11(1985)189c; 478
	86(1979)226p. SIAM 74-8 17(1975)687s; 78-1* 20(1978)181p, 78-17 855p; 78-17	Liu, Tsai-Sheng	13(1987)151c. MM 1083 52(1979)316p. TYCMJ 115 10(1979)298s.
	21(1979)565s.	Lloyd, Stuart P.	AMM 6109* 83(1976)661p.
Lewan, Douglas	MM 1038 51(1978)128p.	Locke, Janet	NYSMTJ 65 27(1977)54p.
Lewin, Nancy	MSJ 458 26(1979/2)3s.	Locke, S. C.	AMM E2564 84(1977)219s; E2618
Li, Hung C.	AMM 6061 82(1975)1016p. MATYC 104		85(1978)51s.
T . T/1 T/	11(1977)142p. PME 338 6(1975)104p.	Long, A. F.	AMM E2482 82(1975)757s.
Liang, Khoo Kay Lieb, E. H.	MENEMUI 1.1.2 1(1979/3)58s. SIAM 76-8 19(1977)330s.	Long, Chris	FQ H-152 26(1988)284s, H-215 285s, H-306
Lieberman, Henry		Longo, Frank	286s; H-125 27(1989)95c. PENT 262 34(1975)105s.
2100011110111, 1101111,	PME 439 7(1980)136s.	Longyear, Judith	
Liebetrau, A. M.	SIAM 77-18 19(1977)736p; 77-18	3,717,71111	AMM E2608* 83(1976)567p.
	20(1978)860s.	Lord, Graham	AMM E2450 82(1975)81s, E2455 173s;
Light Jr., F. W.	AMM E2577 83(1976)133p; E2577		E2684 86(1979)130s. FQ B-275 13(1975)95s,
Lih, Ko-Wei	84(1977)389s.		B-281 191s, B-286 286s, B-288 287s, B-289
Lim, Taw-Pin	AMM E2775 86(1979)393p. AMM E1255 84(1977)652s.		287s, B-290 287s, B-292 374s, B-295 375s; B-301 14(1976)95s, B-305 189s, B-311 287s,
Limanov, L.	CRUX 468 6(1980)192s.		B-313 288s; B-324 15(1977)95s, B-325 95s,
Lin, Shen	AMM E2569 84(1977)296c.		B-330 191s, B-332 191s, B-335 286s, B-339
Lincoln, Charles H			288s, B-342 376s; B-347 16(1978)89s, B-350
	PME 316 6(1975)111s, 331 187s, 335 190s,		91s, B-351 91s, B-354 185s, B-355 186s,
I: I. C	336 191s; 357 6(1976)317s; 431 7(1979)68s.		B-358 474s, B-359 474s, B-362 475s, B-365
Linders, J. C.	NAvW 546 28(1980)209s. MATYC 88 10(1976)122p; 88 11(1977)144s.		563s, B-369 565s; B-392 17(1979)373s; B-403 18(1980)188s. MM 898 48(1975)120s;
Emaley, 100ger G.	TYCMJ 21 6(1975/2)32s.		941 49(1976)153s; 999 51(1978)200s; 1037
Lindstrom, Peter	. , ,		52(1979)319s.
•	CRUX 258 3(1977)155p; 340 4(1978)294c;	Lossers Jr., O. P.	
	465 5(1979)200p. FQ B-341 14(1976)470p.		23(1980)249s.
	MATYC 61 9(1975/2)51s. MM Q640	Lossers, O. P.	AMM E2455 82(1975)173s, 5936 185s, 52465 405c, 52482 757c, 5880 857c.
	49(1976)253p, Q640 258s. MSJ 418 22(1975/1)5p; 435 23(1976/3)8p. PME 393		E2465 405s, E2482 757s, 5880 857s; E2515 83(1976)201s, E2511 291s, 5983
	22(1010/1)0p, 733 20(10/0)0p. FIME 393	I	L2313 00(1310)2018, L2311 2318, J303

Lossers, O. P. 1975-1979 Maruca, Raymond A 293x, **E2519** 382s, **E2520** 383s, **E2525** Machover, Maurice 483s, **E2526** 484s, **6000** 492s, **6003** 575s, **AMM 5670** 82(1975)677s; **6253** E2542 743s; E2557 84(1977)137s, E2565 86(1979)132p; **5540** 90(1983)135s. 220s, **6075** 747s, **E2613** 827s; **E2634** Macintyre, Alister W. 85(1978)282s, **E2640** 388s, **E2667** 825s; JRM 397 8(1976)143p. E2699 86(1979)310s, E2704 398s, E2706 **SPECT 9.6** 9(1977)64p. Maddox, I. J. 593s, **6192** 598s, **E2734** 869s, **6228** 870s; Madsen, Richard **AMM E2560** 82(1975)936p. E2729 87(1980)137s, S8 487s, S15 670s, S16 PENT 314 39(1980)105s. Maggio, Matt 754s, **E2795** 757s; **6251** 88(1981)154s, **S20** Mahonev, R. CRUX 81 2(1976)26s. 207s, **S23** 537s. **CMB P230** 19(1976)123s; MSJ 493 27(1980/3)4s. Maity, Amit **P244** 20(1977)150s, **P251** 522s, **P254** 523s; Makowski, Andrzej M. P264 22(1979)122s, P257 386s. NAvW 409 AMM 6160 86(1979)598s. CMB P275 23(1975)176p, **421** 244p; **412** 24(1976)106s, 23(1980)250s. NAvW 472 26(1978)243c; 540 **433** 283s. **SIAM 74-14** 17(1975)694s; 28(1980)130c. **74-17** 18(1976)119s, **75-15** 503s; **79-15** Mallison, Robert **TYCMJ 97** 10(1979)54s. 22(1980)373s. Mallows, C. L. **AMM E2515** 82(1975)74p, **E2428** 401c; Lott, John **MM 997** 49(1976)252p; **997** 51(1978)198s. **E2583** 83(1976)198p, **E2602** 482p; **6245 AMM E2530*** 82(1975)400p. Loupekine, F. 85(1978)828p; **\$14*** 86(1979)503p; **6245** Love, J. D. SIAM 79-15 21(1979)396p, 79-20* 560p. 87(1980)584s. **SIAM 78-4*** 20(1978)183p. Lovelady, David L AMM 6279 88(1981)542s; 6279 Malý, Jan **AMM E2706** 85(1978)198p. 90(1983)488s Loxterman, Barb ISMJ J10.10 10(1975/3)6s. CMB P266 20(1977)273p; P266 Malzan, J. Loxton, John H. **AMM E2648** 84(1977)294p. 22(1979)389s. AMM 5124 83(1976)662s. Lov, R. J. Mana, Philip L. AMM S18 86(1979)592p. FQ B-301 **SIAM 75-6*** 17(1975)169p. Ludford, G. S. S. 13(1975)94p, **B-308** 190p, **B-309** 191p; Ludwig, Hubert J. **TYCMJ 153** 12(1981)159s. **B-332** 14(1976)188p, **B-333** 188p, **B-309** CRUX 284 4(1978)115s, 368 192p. MSJ 459 191s, **B-334** 286p, **B-340** 470p; **B-354** Luey, Lai Lane 26(1979/3)3s; **479** 27(1980/1)5s. 15(1977)189p, **B-333** 192s, **B-358** 285p B-365 375p; B-392 16(1978)562p; B-394 **SSM 3723** 78(1978)354p. Lulli, Henry 17(1979)90p, **B-370** 91s, **B-404** 184p, Lum, Lewis AMM 5977 83(1976)206s. **B-405** 184p, **B-380** 186s, **B-412** 369p, Lumsden, David FUNCT 2.3.2 3(1979/3)27s; 3.3.4 B-417 370p, B-388 370s, B-390 371s; B-405 3(1979/5)29s. 18(1980)189s. Lund, Bruce **AMM E2783** 86(1979)504p. Mandan, Sahib Ram Lunstroth, Klaus **JRM 760** 11(1979)214p. CRUX 189 3(1977)74c, 199 112s, 263 189p, Lupaş, Alexandru **AMM E2693** 85(1978)48p. **225** 205s; **245** 4(1978)21s, **263** 71s, **364** Luthar, R. S. AMM E2606 83(1976)566p. DELTA 4.2-4 192p, **393** 283p; **353** 5(1979)56s, **438*** 109p, 5(1975)47s, **5.1-1** 48p, **5.1-2** 48p, **5.1-2** 95s; **364** 113s, **442*** 131p, **414** 305s. **5.2-2** 6(1976)93s, **6.1-2** 93s. **PENT 274** Mar, Doreen Hung 34(1975)103p; **274** 35(1976)99s. **PME 346 ISMJ 10.1** 10(1975/2)6s, **10.3** 7s. 6(1975)106p; **384** 6(1976)308p; **411** Marchione, Joe MATYC 70 14(1980)155s. 6(1977)421p; **424** 6(1978)484p, **411** 559s; **443** 6(1979)617p. **TYCMJ 77** 7(1976/4)33p; Marciniak, Robin **NYSMTJ 36** 25(1975)57s. Marcum, H. J. AMM 6063 82(1975)1016p; 6063 **84** 8(1977)95p, **95** 178p; **132** 10(1979)53p, 84(1977)579s. 144 211p. Marcus, Dan **AMM 5589** 83(1976)141s. **SIAM 79-1*** 21(1979)139p. Lux, I. AMM 6191 89(1982)134s. Marden, M. Luxemburg, W. A. J MSJ 449 25(1978/6)4s. Margolis, Paul NAvW 531 27(1979)134p, 531 421s. **AMM 5948** 82(1975)413s. Margolis, William Lynch, James Walter CRUX 8 1(1975)4p, 9 4p, 10 4p, 18 8p, 20 Marion, Jacques AMM 6233 85(1978)686p. CRUX 207 8p, **9** 19s, **40** 26p, **18** 32s, **20** 33s, **57** 49p, **58** 3(1977)144s; **424*** 5(1979)77p. 49p, **60** 49p, **10** 49c, **80** 72p, **47** 76s, **57** 91s, Lvnch, Judy CRUX 211 3(1977)164s. **60** 92s; **130** 2(1976)42p, **58** 43s, **100** 53c, **138** Lynch, Kathryn W 68p, **104** 76s, **146** 94p, **152** 109p, **130** 128s. SSM 3769 79(1979)355p. Markel, William D. Lyndon, R. C. AMM E2440 82(1975)74s. **SSM 3711** 78(1978)82p, **3736** 533p. Lyness, R. C. CRUX 493 5(1979)291p; 493 6(1980)294x. Markl, Martin AMM 6266 88(1981)216s. Lynn, Cheri JRM 562 10(1978)308s. **JRM 522** 9(1977)207p, **523** 207p. Marlow, T. Lyons, Russell AMM E2573 84(1977)298s; E2691 Marquina, Antonio 86(1979)225s. **MM 1031** 52(1979)116s. **AMM 6018*** 82(1975)307p. OSSMB 76-18 13(1977/1)24s. Ma, Simon Mars, J. G. M. NAvW 389 23(1975)191s. Mabey, Peter H. JRM 668 10(1978)275p. Marsden, Martin **SIAM 75-5** 18(1976)764s. Macdonald, A. L. AMM 6143 84(1977)222p. Marshall, Arthur AMM 6035* 82(1975)529p. MM 956 MacDonald, Carolyn 48(1975)293p. AMM E2498 83(1976)382s. Marston, Helen M Macdonald, I. G. AMM E2701 86(1979)396s. **AMM E2460** 82(1975)303s. Macdonald, Ian D. AMM 6130 85(1978)689s. Martin, Alvin F. **SPECT 8.5** 8(1976)64p. Martin, Dennis S. **NYSMTJ 57** 27(1977)101s. MacDonald, Peter JRM 420 8(1976)229p, 448 313p; 575 Martin, Peter J. JRM 724 11(1979)123p. 10(1978)40p, **609** 115p; **694** 11(1979)29p, Maruca, Raymond A **768** 216p, **796** 303p. MATYC 102 11(1977)142p. MM 931 **OSSMB 77-18** 14(1978/1)19s. MacDonald, Ray 49(1976)98s.

1975-1979 Marukian, Benedict Meany, Robert K. Marukian, Benedict **MSJ 408** 22(1975/1)7s; **412** 22(1975/2)6s; Mayka, Lawrence JRM 624 10(1978)128p. **417** 22(1975/3)6s. Marusjewski, Sr., Richard F. Mayne, David C. **TYCMJ 102** 10(1979)129s. **TYCMJ 18** 6(1975/1)33s. Mays, Michael AMM E2775 87(1980)579s. Marvin, Les JRM 393 8(1976)141p, C7* 306p; 467 McAdam, Stephen AMM 6046 82(1975)766p. 9(1977)25p, **474** 28p, **503** 134p, **509** 136p, McAllister, B. L. **SSM 3757** 80(1980)174s. **530** 212p, **537** 213p, **545** 280p, **558** 296p; McAndrew, Alisdair **587*** 10(1978)46p, **592** 52p, **597** 53p, **599 FUNCT 1.3.5** 1(1977/4)31s, **1.4.1** 32p. 53p, **616** 116p, **622*** 120p, **626** 128p, **630** McAvaney, K. L. **SIAM 79-4*** 21(1979)139p. 129p. McAvoy, Tim **OSSMB 74-16** 11(1975/1)21s. Marzillier, Leon MATYC 84 11(1977)67s. McCallum, John A CRUX 441 6(1980)85c. JRM 771 MaScoT Problems Group, the CRUX 269 6(1980)45c. 11(1979)294p. AMM E2467 82(1975)408s. Maskell, F. G. B. CRUX 5 1(1975)3p, 5 15s, 14 28s, 46 39p, McCarty, C. P. **21** 40s, **22** 40s, **25** 42s, **56** 48p, **62** 56p, **25** 58c, **31** 58s, **88** 85p, **56** 89s, **61** 98s, **63** 99s; McClintock, C. Edwin SSM 3714 79(1979)84s. McClung, Stephen MSJ 488 27(1980/3)2s. **73** 2(1976)9s, **83** 28s, **85** 29s, **87** 32s, **92** 44s, **93** 45s, **94** 47s, **105** 77s, **106** 79s, **108** 81s, **119** 102s, **120** 103s, **122** 115s, **127** 124s, McColl, Bruce CRUX 212 3(1977)42p, 222 65p, 242* 130p; **305*** 4(1978)11p. McConnell, Alan **132** 142s, **135** 154s, **142** 176s, **149** 184s, **AMM 6205** 85(1978)282p. McConnell, Charles R. **169** 234s; **182** 3(1977)58s, **218** 172s, **279** 227p, **296** 297p; **250** 4(1978)40s, **327** 66p, **DELTA 5.2-3** 5(1975)96p. 285 117s, 294 161s, 299 170s, 336 288s; 363 McConnell, Terry R. 5(1979)111s; **457** 6(1980)155s, **462** 162s.**AMM 6231** 85(1978)686p. OSSMB 77-2 13(1977/2)21s. TYCMJ 94 McCown, Jack TYCMJ 130 11(1980)138s. **AMM E2742** 87(1980)63s. McCoy, N. H. 9(1978)300s.McCoy, R. A. **AMM E2614** 85(1978)48s. Maskell, George W CRUX 61 1(1975)98s. McCranie, Judson JRM 755 12(1980)222s. McCravy, Edwin P Massimilla, Michael **MM 940** 48(1975)180p; **1081** 52(1979)316p. MSJ 447 25(1978/1)4p. McCuiston, Ronald **NYSMTJ 72** 28(1978)83s; **87** 29(1979)56p, Masters, Thomas MATYC 115 12(1978)173p. **79** 59s. AMM 6205 87(1980)227s. McDonough, T. P. Matelski, J. Peter AMM E2482 82(1975)757s. McEwen, W. R. AMM E2485 82(1975)762s. Mather, Michael **AMM E2524** 83(1976)741s. McFarland, R. L. **AMM 6148** 86(1979)61s. Mathes, Stanley L. McGrath, D. S. PARAB 406 15(1979/3)33s, 407 33s, 408 **NYSMTJ 78** 29(1979)57s, **79** 59s. 34s. **411** 36s. Mathur, K. K. **SIAM 78-2** 21(1979)143s. McGrath, J. Phipps Matsuda, Michio **JRM 757** 11(1979)214p. MM Q661 52(1979)179p, Q661 184s. Mattera, Louis MSJ 428 23(1976/1)7s. McGrath, Michael MM 643 56(1983)112s. Matthews, George **MATYC 107** 12(1978)256s. McHarg, Elizabeth A Mattics, L. E. **AMM E2459** 82(1975)178s, **5934** 184s, **AMM E2601** 84(1977)742s. **E2456** 301s, **E2465** 405s; **E2503** 83(1976)58s, McHutchion, James W **E2526** 484s, **E2534** 571s, **E2545** 747s, MM 897 48(1975)120s. 6013 752s; 6073 84(1977)745s; E2644 McIntire, Alan D. JRM 623 11(1979)149s. 85(1978)497s, **E2649** 596s, **E2660** 683s; McKane, Robert **TYCMJ 114** 10(1979)297s. **6170** 86(1979)231s; **E2758** 87(1980)405s, McLachlan, B. G. **SIAM 71-19** 25(1983)403s. **E2789** 674s; **E2805** 88(1981)68s; **E2763** McLean, Michael **TYCMJ 52** 8(1977)45s. 90(1983)56s. McLeish, D. **SIAM 78-16** 21(1979)564s. Mattingley, Andrew McLeod, Diophantus FUNCT 3.4.3 3(1979/4)32p; 3.4.3 JRM 378 8(1976)49p; 559 9(1977)297p; 632 4(1980/1)28s. 10(1978)130p. Mattson Jr., H. F. AMM E2685 86(1979)130s. MM 1025 52(1979)53s. McMullen, Curt Matulis, Robert S. **SSM 3624** 76(1976)627s; **3686** 78(1978)356s; McNamee, John J. **3780** 80(1980)526s. CRUX 241 3(1977)130p. Mauldon, James G. McNaughton, Robert AMM E2503 83(1976)59s; E2552 AMM E2638 84(1977)135p; 6163 84(1977)60s, **E2553** 60s, **6044** 392s; 86(1979)228s. **E2728** 85(1978)594p, **6145** 832s; **E2697** McNeill, Robert B. 86(1979)225s, **6173** 312s, **E2687** 785s; AMM E2772 86(1979)308p. **E2775** 87(1980)578s; **6251** 88(1981)154s. McNulty, George F. CMB P279 23(1980)508s. DELTA 6.1-3 AMM 6244 87(1980)677c. 6(1976)93s.**MSJ 438** 23(1976/4)8p. McNutt, Esmond Maulsby, Stephen **OSSMB 76-14** 13(1977/1)21s; **77-6** McVoy, J. Michael MM 924 48(1975)51p. 13(1977/2)24s; **77-15** 13(1977/3)19p; **78-4** McWorter Jr., William A. 14(1978/3)18s. CRUX 199 3(1977)112s, 257 155p, 278 227p, Maumber, Kevin **MATYC 114** 13(1979)70s. **284** 250p; **308** 4(1978)12p, **338** 101p, **350** MSJ 406 22(1975/1)6s. Maupin, Marilyn 135p, **308** 199s, **338** 291s; **406** 5(1979)16p, Maurer, Stephen B. **416** 47p, **350** 54s; **492** 6(1980)291s. **AMM E2588** 83(1976)284p. **MM 1084** 52(1979)317p. AMM E2483 82(1975)759s; E2622 Mayagüez Problems Group, the Meany, Robert K. **AMM E2613** 83(1976)656p. 85(1978)119s.

Meeus, Jean	1975-	-1979	Moore, Thomas E.
Meeus, Jean	JRM 589 11(1979)46s; 731 12(1980)147s,	Milbouer, Eva L.	JRM 488 9(1977)126p, 489 126p, 490 126p;
Megiddo, N.	738 155s. SIAM 78-11* 20(1978)593p.	Milcetich John C	770b 11(1979)294p. AMM 6071 83(1976)62p; 6185
Meijer, H. G.	NAvW 550 28(1980)215s.	Wincetten, John G.	84(1977)829p; 6185 87(1980)759s.
Meili, Richard	MATYC 76 10(1976)124s.	Milenković, Predra	
Meir, A.	AMM S6 86(1979)222p, E2706 593s; 6282	,	AMM 4052 82(1975)1016s.
	88(1981)357s. CMB P241 18(1975)615p;	Miles, Philip	DELTA 6.1-4 6(1976)45p, 6.1-4 93s.
	P240 20(1977)518s; P278 23(1980)507x.	Miles, Simon M.	MSJ 435 24(1977/1)4s.
	SIAM 77-1 20(1978)186s, 78-18* 855p; 78-6	Milgram, Judah	AMM E1030 82(1975)1010s.
Melachrinos, Step	21(1979)259c.	Millar, Dave	JRM 636 10(1978)204p, 665-2 275p; 719 11(1979)122p.
wielachimos, btep.	MSJ 421 22(1975/4)5s, 424 6s.	Miller, A. W.	AMM 6218 90(1983)408s.
Melega, David	AMM 6036 84(1977)226s.	Miller, Dale A.	DELTA 5.2-3 6(1976)43s.
Melson, John	MSJ 430 23(1976/1)7s.	Miller, David	MSJ 423 22(1975/4)6s.
Mendelsohn, Eric	` / -	Miller, Fred A.	JRM 706 12(1980)70s. PENT 307
Mendez, C. G.	AMM 6213 85(1978)389p.		38(1978)26p; 303 38(1979)81s, 304 81s,
Mercer, A. McD.	AMM E2573 84(1977)298s, 6067 661s.		305 82s; 321 39(1979)31p; 317 40(1980)38s.
Merkey, P. Merlo, Elijah Gler	MM 1011 51(1978)308s.		SSM 3652 76(1976)622p, 3656 714p; 3668 77(1977)169p, 3678 353p, 3688 444p,
Merio, Enjan Gier	FUNCT 1.4.1 1(1977/5)29s, 1.5.1 32p; 2.1.4		3653 447s, 3701 621p, 3707 714p; 3730
	2(1978/3)30s.		78(1978)444p, 3740 620p; 3754 79(1979)80p,
Merriam, Paul W.	PME 347 6(1976)242s.		3762 259p, 3763 259p, 3723 261s, 3773
Merriman, Mark	AMM E2772 88(1981)350s.		356p, 3774 444p, 3775 444p, 3786 711p;
Messner, Michael			3759 80(1980)176s.
	JRM 562 9(1977)297p, 563 297p; 770a	Miller, Jay I.	AMM 6059 84(1977)577s.
Matain look T	11(1979)216p.	Miller, R. E.	SIAM 78-3* 20(1978)182p. AMM 6175 86(1979)314s. TYCMJ 35
Metsänkylä, T.	NAvW 421 24(1976)211s. AMM E2766 87(1980)406s. FQ B-377	willer, rechard re.	6(1975/1)32p.
Metzger, John M.	17(1979)185s. MM 1039 51(1978)193p,	Miller, Sanford S.	AMM 6033 82(1975)529p; 6198
	1044 194p, 1000 201s; 1039 52(1979)261s.	, , , , , , , , , , , , , , , , , , , ,	85(1978)203p.
	TYCMJ 97 10(1979)54s, 116 360s.	Miller, Vincent	MSJ 490 27(1980/3)3s.
Meyer, Paul R.	AMM 5975 83(1976)144s.	Mills, T. M.	AMM E2796 87(1980)824s.
Meyer, W. Westor		Milner, E. C.	CMB P268 20(1977)518p; P207
	AMM E2658 84(1977)387p. MM 988	Milošević, D. M.	23(1980)118s. AMM 6227* 85(1978)600p.
	51(1978)71s. SIAM 78-2 20(1978)182p, 77-16 858s.	Minda, C. D.	AMM 6047 82(1975)766p.
Meyers, Leroy F.	AMM E2768 87(1980)406s; 6278	Miner, Scott	MSJ 436 24(1977/1)4s.
	88(1981)541s. CRUX 102 2(1976)73s, 104	Minkus, Jerome B	, , ,
	76s, 108 80s, 121 113s, 122 114s, 124 119s,		AMM E2465 82(1975)406s; 6099
	129 126s, 170 136p, 115 137s, 133 148c,		83(1976)489p; 6225 87(1980)311s.
	138 157s, 174 171p, 144 181s, 146 182s, 186 194p, 156 199s, 193 219p, 165 231c;		CMB P259 20(1977)147p; P259 22(1979)387s.
	209 3(1977)10p, 167 23s, 170 26c, 216 42p,	Minner, Richard	MSJ 475 26(1979/8)2s.
	174 48s, 176 69c, 186 71s, 187 72s, 188 73c,	Mirsky, L.	SPECT 10.6 10(1978)63p.
	191 77s, 198 111s, 201 136c, 201 136s, 202	Mitrinović, D. S.	AMM 6106* 83(1976)573p.
	137s, 219 173s, 154 191s, 280 227p, 232	Mod Set Stanford	
	238s, 289 251p; 302 4(1978)11p, 244 19s,		AMM E2468 84(1977)59c.
	246 22c, 250 40c, 254 50s, 258 56s, 259 57s, 332 100p, 279 110s, 285 117s, 346 134p.	Molini, John	PENT 288 37(1977)28s.
	289 139c, 289 139s, 357 160p, 314 209s,	Monash, Curt Monsky, Paul	MM 962 48(1975)294p. AMM E2698 85(1978)116p; E2751
	373 225p, 321 252c, 332 267c, 339 292c,	Wiolisky, 1 auf	86(1979)56p.
	343 298x; 409 5(1979)16p, 344 23s, 346	Montgomery, Hugh	` / -
	29c, 355 78x, 369 135s, 373 139s, 374 140s,		AMM E2519 82(1975)169p, 5952
	355 168c, 409 277s; 418 6(1980)17s, 418		680s, E2551 756p, E2559 936p; 6074*
	18c, 437 63s, 453 124s, 464 185s, 467 191s, 492 291s; 90 8(1982)279s; 83 9(1983)278c.		83(1976)140p, 6075 141p, 6077* 141p,
	MM 914 49(1976)254c, 934 254c. PME 213		E2610 567p, 5952 819c; 6136 84(1977)141p; 6199 85(1978)203p, E2744 823p; E2759
	7(1984)673s.		86(1979)128p; 6199 87(1980)226s.
Meyerson, Mark I	` '	Montgomery, Peter	
	AMM 6100 85(1978)205s; E2790		AMM E2581 84(1977)488s, E2583
M: Jalla Tr	86(1979)593p.		571s, E2598 659s, E2686 820p; E2689
wiiddie Tennessee	State University Math 623 Class SSM 3647 77(1977)357s.	Moore Call E	86(1979)224s.
Middle Tennessee	State University Problem Solving Group, the	Moore, Carl F.	FQ B-296 13(1975)376s; B-319 14(1976)472s.
	TYCMJ 104 10(1979)131s.	Moore, Emily	AMM E2633 85(1978)281s.
Middleton, Greg	PARAB 271 11(1975/2)9c.		JRM 754 11(1979)209p; 698 12(1980)49s.
Mieszczak, Michae	el	Moore, John J.	TYCMJ 69 8(1977)294s.
**	NYSMTJ 83 29(1979)84s, 91 150s.		MM 894 48(1975)117s. SIAM 76-8
Mijalković, Živojir			19(1977)329s.
N.C.1 N.	AMM E2691 85(1978)48p.	Moore, Steve	MM 947 48(1975)238p.
Miku, N.	AMM E2708 86(1979)594s; E2766	Moore, Thomas E.	
	87(1980)406s, 6222 760s.	I	AMM E2633 85(1978)281s.

Moran, Daniel A.	1975-	1975–1979	
Moran Daniel A	MM 1056 51(1978)305p; 1063 52(1979)47p.	Nachbin, Leopolde	
Moreno, C. J.	AMM 6016* 82(1975)184p.	ivaciibili, Leopoido	AMM 6266 86(1979)311p.
Morley, D. C.	JRM 529 9(1977)211p.	Naini, Ali	MSJ 407 22(1975/1)6s; 414 22(1975/2)7s;
Morphy IV, Paul	JRM 424* 8(1976)231p.	,	417 22(1975/3)6s; 423 22(1975/4)6s, 424
Morrison, Faith	MM 1044 52(1979)263s.		6s.
Morrison, Renee	TYCMJ 32 $6(1975/4)27s$.	Nakamura, G.	JRM 164 9(1977)216s.
Moser, J.	MSJ 425 22(1975/4)7s.	Nakassis, Dmitri	AMM E2574 84(1977)387s; E2657
Moser, William O	. J.		85(1978)683s.
	FQ B-413 18(1980)371s. JRM C6	Narayana, T. V.	CMB P235 23(1980)382s. SIAM 78-9*
	9(1977)289s. TYCMJ 116 10(1979)360s.	Negall I	20(1978)395p; 79-13 21(1979)396p.
Moses, Michael	FUNCT 1.3.1 1(1977/3)6p.	Nåsell, I. Nathanson, Melvy	SIAM 77-20 19(1977)737p.
Moskal, E. M.	OSSMB 77-16 14(1978/1)17s.	ivatilalisoff, Mervy	MM 1008 50(1977)99p; 1008 56(1983)113s.
Motteler, Zane C.	AMM 6224 87(1980)828x. MM 1033	Navarro, Francisco	
Moy, Allen	52(1979)182s; 1051 53(1980)50s. AMM E2723 85(1978)496p.	,	TYCMJ 38 7(1976/2)51s.
	. AMM 5937 82(1975)308s.	Nederpelt, R. P.	AMM E2648 84(1977)294p.
Muench, D. L.	TYCMJ 76 9(1978)96s.	Nelsen, Roger B.	AMM E2701 86(1979)396s. MM 1049
,	SSM 3774 80(1980)442s.		52(1979)322s; 1074 53(1980)248s.
Muldoon, M. E.	NAvW 521 26(1978)464p.	Nelson, Evelyn	CMB P223 18(1975)618s.
Muldowney, J.	AMM 6282 88(1981)357s.	Nelson, Harry L.	CRUX 145 3(1977)67s, 142 106c, 154
Mullen, Gary L.	FQ B-376 16(1978)184p; B-401		108c, 256* 155p; 256 4(1978)103s; 378
, ,	17(1979)184p.		5(1979)148s. JRM 379 8(1976)49p, 89 59s, 92 61s; 163 9(1977)42s, 201 50c, 210
Muller, David	JRM 261 9(1977)66s, 262 66s.		54s, 212 58s, 246 61s, 258 65s, 71 138s,
Mullin, Albert A.	AMM E2620 83(1976)740p, 6122* 817p;		180 142s, 227 147s, C3 238s, 573 287p;
	E2653* 84(1977)386p, 6150 391p, 6183*		356 10(1978)62s, 475 146c, 646 210p, 649
	829p; 6212* 85(1978)389p; S3 86(1979)55p.		211p, 654* 212p, 656 213p, 658 213p, 570
	FQ H-287 16(1978)477p.		280s; 702 11(1979)36p, 704 36p, 714* 39p,
Munro, D. P.	AMM 6139 84(1977)221p; 6139		589 46s, 462 52s, 573 132s, 761 215p, 767
Manager Jahar II	85(1978)831s.		216p, 769 216p, 646 224s, 783 300p, 793
	JRM 201 9(1977)48c. SIAM 75-12 18(1976)498c.		302p; 708 12(1980)72s, 783 302x. PME 239
,	JRM 405 8(1976)144p, 406 144p.	N.I. D.D.	8(1984)44c, 403 45s.
Murdock, James V	, ,	Nelson, R. D.	AMM E2557 82(1975)852p.
wardock, sames	TYCMJ 106 9(1978)40p, 92 298s.	Nelson, Roger B. Nelson, Scott	AMM S12 87(1980)576s. JRM 462 11(1979)52s, 647 226s.
Murphy, James L.	FQ H-300 17(1979)189p. MM 1045	Nemetz, T.	AMM E2565 82(1975)1009p.
I J)	51(1978)194p.	Nesbit, A.	FUNCT 1.1.3 1(1977/1)30p.
Murphy, John	MSJ 420 22(1975/1)5p; 424 22(1975/2)5p,	Neudecker, H.	SIAM 73-2 18(1976)492c.
	425 5p.	Neuman, Alfred E	
Murrish, Dale	ISMJ J11.16 12(1977/1)5s, J11.20 6s.		PME 458 7(1980)199s.
Murty, Hema San		Neumann, M.	SIAM 76-15* 18(1976)490p.
	OSSMB 75-4 11(1975/2)22s. SPECT 11.1 11(1979)100s, 11.2 101s. TYCMJ 87	Neumann, Steve	ISMJ 11.3 11(1976/2)10s, 11.4 11s; J11.9
	9(1978)238s.		11(1976/3)4c, 11.6 6s, 11.9 8s; J11.12
Murty, M. Ram	AMM E2457 82(1975)175s, E2492		11(1976/4)6s, J11.14 6s, 11.13 7s, J11.15 7s.
111410), 1111 104111	855s; E2514 83(1976)200s, E2528 486s;	Neuts, Marcel F.	AMM 5687 82(1975)767c; 6209
	6235 85(1978)770p; 6235 87(1980)761s.	110400, 11101001 1	85(1978)283p; 6164 86(1979)229s.
	SPECT 6.5 7(1975)68s, 6.8 69s, 7.2 103s,	Newhouse, A.	SIÀM 75-7 18(1976)305s.
	7.3 103s; 7.7 8(1976)64s.	Newman, Danny	J.
Murty, V. Kumar	AMM E2457 82(1975)175s, E2492		AMM E2610 85(1978)198s. NYSMTJ OBG3
	855s; E2514 83(1976)200s, E2528 486s.		28(1978)57s. SIAM 76-5* 18(1976)118p;
	SPECT 6.5 7(1975)68s, 6.8 69s, 7.2 103s, 7.3 103s; 7.7 8(1976)64s.	Nom. M.	77-11 19(1977)563p.
Murty, V. N.	CRUX 459 5(1979)167p, 489 266p; 487	Newman, Morris	AMM E2516 82(1975)168p; 6176
widing, v. iv.	6(1980)259s. TYCMJ 69 7(1976/3)47p;	Ngantung, Martin	84(1977)744p.
	66 8(1977)243s; 72 9(1978)42s, 116 176p,	inganitung, martin	JRM 722 11(1979)123p, 672 307s.
	123 236p; 110 10(1979)217s, 149 294p, 154	Nichols, George	SSM 3663 77(1977)78p.
	360p, 116 360s.	Nichols, John C.	JRM 602 11(1979)75s.
Mycielski, Jan	AMM 6040 82(1975)672p; E2585	Nickolas, Peter	AMM 6246 87(1980)584s.
	83(1976)198p, E2591 284p, 6096 489p, 6112	Nicol, Charles A.	AMM E2590 83(1976)284p, E2526 484s,
	661p; 6096 85(1978)124s, 6233 686p, 6242		E2611 656p; E2684 84(1977)820p.
	828p; 6257 86(1979)132p. DELTA 6.2-2	Niederreiter, H.	AMM E2547 83(1976)814s; 6024
Myerchin, Denise	6(1976)94p. PME 298 6(1975)192s.	NT. 1	87(1980)68s.
Myers, William	MSJ 425 22(1975/4)7s. AMM 6260 87(1980)680s.	Nijenhuis, Albert	AMM 5932 82(1975)86s; E2531
Myerson, Gerry	AMM 6200 85(1978)203p.		83(1976)488s; E2575 84(1977)388s; 6178 86(1970)400s; E2720 87(1980)137s, 6224
Myhill, John	AMM 6163 84(1977)575p; 6244		86(1979)400s; E2729 87(1980)137s, 6224 829x; S21 88(1981)443x.
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	85(1978)828p.	Nijon, Herman	CRUX 241 3(1977)265c; 301 4(1978)11p,
MzRecamán, Be	• / -	1,1,011, 1101111011	341 133p; 401 5(1979)14p, 481 264p; 491
- ,	AMM 6153 84(1977)392p.		7(1981)20c. JRM 414 8(1976)228p, 415
N. J. Kuenzi	SSM 3571 75(1975)565s; 3587 76(1976)83s,		228p; 519 9(1977)207p, 520 207p, 543
	3617 529s; 3669 77(1977)716s.		280p, 544 280p; 577 10(1978)40p, 612 115p,

Nijon, Herman	1975	-1979	Paullay, Alvin J
	635 204p, 535 229s, 547 277s, 555 302s,		TYCMJ 52 8(1977)45s, 56 98s; 101
	564 310s; 693 11(1979)29p, 723 123p, 746		10(1979)128s.
	207p.		AMM 5960 82(1975)859s.
Nirenberg, Louis	AMM E2801 86(1979)785p.	Opolka, Richard	
Niven, Ivan	AMM E2623 83(1976)812p; E2615 85(1978)49s.	Oppenheim, A.	NYSMTJ 84 29(1979)85s. AMM E2649 84(1977)294p. CMB P191
Nolan, Sherry	JRM 500 9(1977)133p, 505 134p, 535	Орреннени, т.	22(1979)520s.
, , , , , , , , , , , , , , , , , , , ,	213p, 536 213p, 560 297p, 564 298p; 587*	Oppenheim, J.	AMM E2800 87(1980)825s.
	10(1978)46p, 598 53p.	Ordman, Edward	
Noland, Hugh	AMM 6261 86(1979)226p. MM 1079		AMM E2630 84(1977)57p; E2630 85(1978)279s; S17 87(1980)822s.
Noltie Stephen V	53(1980)301s. 7. AMM E2720 86(1979)707s.	Orloff, Tobias	MM 1019 52(1979)50s.
	a SPECT 10.4 11(1979)28s.	Ormerod, F.	JRM 121 9(1977)38s.
	AMM E2470 82(1975)523s.		. JRM 469 9(1977)26p.
Norton, R. M.	AMM 6114 83(1976)748p; E2709	Ørno, Peter	MM 984 49(1976)150p, 994 212p; 1003
NT 4 N7: 4	85(1978)276p.		50(1977)46p, 1021 211p; 997 51(1978)199s, 1053 245p, 1003 247c, 1003 247s; 1060
Norton, Victor Nuesslein, William	AMM E2478 82(1975)668s.		52(1979)46p, Q659 114p, Q659 117s, 1072
ivuessiem, vvimai	AMM E2465 82(1975)405s. MM 924		179p.
	49(1976)46s.	Orr, Edith	CRUX 230 3(1977)235c.
Nuij, W.	NAvW 387 23(1975)184s; 447 25(1977)101s;	Orr, Rick Ortner, N.	MSJ 409 22(1975/1)7s. NAvW 419 24(1976)207c; 470 26(1978)238s,
N M D	530 28(1980)207s.	Orther, N.	522 464p; 557 27(1979)411p; 537
Nutt, M. D.	CMB P255 19(1976)379p; P245 20(1977)274s; P255 22(1979)253s.		28(1980)129s, 557 220s.
Nyman, J. E.	AMM E2465 82(1975)405s.	Oser, H. J.	SIAM 75-12 17(1975)566p.
O'Brien, Mark	MSJ 480 27(1980/1)5s.	Osofsky, Barbara	
O'Callahan, T.	FQ B-360 15(1977)285p.		AMM 5941 82(1975)309s; 6102 83(1976)572p; 6134 84(1977)141p; 6134
Odda, Tom	AMM E2440 82(1975)74s; E2526		85(1978)771s.
O'Dell, Terri	83(1976)484s. PENT 281 36(1976)35s.	O'Sullivan, Joseph	n AMM E2526 83(1976)484s. MSJ 439
Odlyzko, Andrew		Old III. Did	24(1977/1)4p.
o di j ziio, Tindre ii	AMM E2616* 83(1976)657p; 6219	O'Sullivan, Richar	rd P. NYSMTJ 71 28(1978)83s.
	87(1980)141s. SIAM 78-16 20(1978)855p.	O'Toole, Archime	
Odoni, R. W. K.	AMM 6171 84(1977)660p; 6091 85(1978)55s,	,	JRM 394 8(1976)141p; 565 9(1977)298p;
	6111 390s; 6196 86(1979)794s; 6215 87(1980)309s.	0 1::1 D 4	595 10(1978)52p, 629 129p.
O'Donnell Jr., Ge		Overdijk, D. A.	AMM 5999 84(1977)62s. NAvW 489 26(1978)231p; 489 27(1979)271s, 522 283s.
,	SSM 3601 76(1976)264s, 3613 443s; 3648	Owen, Alvin	JRM 570 9(1977)286p.
010 11 117:11:	77(1977)357s; 3764 79(1979)259p.	Özsoyoglu, M.	SIAM 79-13 21(1979)396p.
O'Donnell, Willia	m J. SSM 3602 75(1975)658p, 3609 748p; 3613	Paasche, I.	NAvW 380 23(1975)248s.
	76(1976)443s, 3644 527p, 3657 715p; 3648	Page, Warren	AMM E2770 86(1979)307p. MATYC 132
	77(1977)357s; 3745 78(1978)712p; 3764		13(1979)135p. MM Q656 52(1979)47p, Q656 55s. TYCMJ 38 6(1975/2)31p;
0.17	79(1979)259p, 3784 528p.		48 6(1975/4)24p; 89 8(1977)96p; 129
O'Farrell, Anthon	y G. AMM 6051 84(1977)492x, E1822 569s, 6165		9(1978)297p; 138 10(1979)127p; 138
	575p.	Dolmon Loonand	11(1980)278s.
Ohlsen, Dave	TYCMJ 137 11(1980)277s.	raimer, Leonard	MATYC 96 12(1978)78s. TYCMJ 102 8(1977)292p.
O'Keeffe, Ted	JRM 679 11(1979)312s.	Paloma, Angel Sa	
Oldham, Charles	ISMJ 12.5 12(1977/2)8s, 12.6 9s. AMM 6272 86(1979)509p; 6272		AMM E2586 84(1977)572s.
Olin, P.	88(1981)353s.	Pambuccian, Vict	or AMM E2740 85(1978)765p; E2740
Olitsky, Morris	AMM E2511 82(1975)73p.		92(1985)591x.
Oliver, H. William	m AMM 6200 87(1980)140s.	Papanicolau, G. C	
Oliver, R. K.	AMM 6276 86(1979)709p; 6236 88(1981)69s,		AMM 5575 82(1975)674s.
	6267 69s, E2751 291s, 6276 356s. TYCMJ 134 11(1980)212s, 142 337s, 143	Papenfuss, Marvin	
	338s.	Parker, F. D.	AMM E2739 85(1978)765p. FQ H-248 13(1975)89p, H-249 185p; H-249
Olkin, Ingram	AMM 6061 84(1977)577s. SIAM 76-18	Tarker, T. D.	15(1977)91s.
-	19(1977)742s.	Parlett, B.	SIAM 79-2 23(1981)105c.
Olsder, G. J.	NAvW 388 23(1975)190s.	Parry, W.	AMM 6246 86(1979)59p.
Olson, Melfried	SSM 3640 77(1977)265s, 3641 266s, 3658 535s; 3677 78(1978)86s, 3687 356s, 3700	Passell, Nicholas Patenaude, Rober	AMM 6009 83(1976)666s.
	536s.	i atenaude, itobei	AMM E2792 86(1979)702p. MM 1088
Olson, Roy	AMM 5962 82(1975)943s.		54(1981)36x.
Oman, John	AMM E2538 83(1976)659s; E2632	, 0 0	. NYSMTJ 89 29(1979)147s.
	85(1978)280s. MM 915 48(1975)296s; 947 49(1976)216s; 998 51(1978)199s. PME 294	Patruno, Gregg Patton Jr., Rober	CRUX 466 6(1980)189s, 474 198s.
	6(1975)193c. SSM 3617 76(1976)529s,	1 acton 31., Rober	JRM 170 8(1976)147s.
	3579 624s; 3731 78(1978)444p; 3791	Paullay, Alvin J.	AMM 6211* 85(1978)389p. NYSMTJ 68
	79(1979)712p; 3791 80(1980)715s.		27(1977)99p.

Paveri-Fontana, S. L. 1975-1979 Prielipp, Bob Paveri-Fontana, S. L. Peterson, Roger D. **AMM 6059** 84(1977)577s. NAvW 456 24(1976)272p. Pavlis, Anton JRM 367 8(1976)45p, 401 143p, 402 Phelps, Amy J. **AMM E2618*** 83(1976)740p. 143p, **416** 228p, **438** 310p, **439** 310p; **461** Philippou, Andreas N 9(1977)23p, **491** 126p, **492** 126p; **638** AMM 6195* 85(1978)122p. MM 1055 10(1978)204p; **688** 11(1979)28p, **748** 208p. 51(1978)305p. Payne, Dave JRM 601 11(1979)71s. Phillips, N. C. K. **AMM E2562** 82(1975)937p. Payne, Stanley E. **SSM 3579** 75(1975)298p. Pi Mu Epsilon California Eta Problem Solving Group, the PME 345 6(1976)239s, 348 242s. Pease Jr., Roger W TYCMJ 104 8(1977)292p. Pierce, J. G. **AMM 6062** 84(1977)578x. **SIAM 75-14*** 17(1975)567p Pieters, Richard S. Pease, M. C. FQ B-274 13(1975)95c, B-285 192s; B-319 **TYCMJ 74** 9(1978)44s. Peck, C. B. A. 14(1976)472s; **B-364** 16(1978)563s; **B-390 MM 923** 48(1975)51p. **TYCMJ 50** Pinker, Aron 17(1979)371s; **B-394** 18(1980)85s. 6(1975/4)24p; **64** 7(1976/2)49p; **47** 7(1976/4)35s; **130** 9(1978)297p; **150** Peck, G. W. AMM E2671 85(1978)827s; E2677 86(1979)394s; **S18** 88(1981)64s. 10(1979)294p. MM 946 49(1976)215s; 1022 52(1979)52s. Pinzka, C. F. MM Q610 48(1975)52p, Q610 58s. Pedler, P. J. Pitt, Joel **AMM E2434** 82(1975)402s. NYSMTJ 85 29(1979)85s. Pedley, Arthur H. CRUX 139 2(1976)68p, 140 68p, 132 172c; Platt, Robert B. NYSMTJ 82 29(1979)61s. Pedoe, Dan **206** 3(1977)10p, **189** 75c, **192** 79c, **177** Pleszkoch, Mark **AMM E2781** 87(1980)580s. Plummer, M. D. **AMM 5966** 82(1975)945s. 133s, **242** 266s; **278** 4(1978)110c, **278** 110s; **SSM 3621** 76(1976)625s, **3623** 626s. **325** 5(1979)49c, **422** 76p, **492** 291p; **492** Plummer, Robert 7(1981)50s; **492** 8(1982)79c. **TYCMJ 55** 8(1977)97s. **CRUX 37** 1(1975)26p, **39** 26p, **39** 64s. Poirier, Maurice Peebles, Herbert E **NYSMTJ 37** 25(1975)127s; **56** 27(1977)53s; **OSSMB 75-7** 11(1975/2)18p; **74-16** 11(1975/3)23c; **75.2-7** 12(1976/1)16s, **74** 28(1978)152s; **81** 29(1979)60s. **75.3-14** 20s; **79-4** 15(1979/1)20p. Peek, Allen Lee SSM 3660 77(1977)622s, 3668 715s. **AMM 5936** 83(1976)65s, **E2510** 138s, Pokrass, David AMM 6263 86(1979)226p; 6263 Pelling, M. J. **5871** 573c, **6008** 664s, **6117*** 748p, **6118*** 88(1981)154s. 748p, **6119*** 748p, **5993** 749s, **6018** 821s; ISMJ J11.10 11(1976/3)5s. Pola, Tom **AMM 6167** 86(1979)230s. **6127** 84(1977)62p, **E2555** 135s, **E2558** Pollack, R. 138c, **E2650** 294p, **6158*** 491p; **E2714** 85(1978)384p, **6216*** 499p, **6217*** 499p, Pólya, George AMM S1 86(1979)54p; E2791 87(1980)675s. 6218* 500p, 6219 500p; 6136 87(1980)225c, **AMM 5945** 82(1975)410s, **6036** 671p; Pomerance, Carl **E2289** 489s, **5888** 583s; **5861** 88(1981)150s, **E2578** 83(1976)133p, **E2539** 742c; **E2468** 84(1977)59c, **6144** 299p, **E2584** 489s. 6076 152s; 6140 89(1982)603c; E2727 90(1983)55s, **6023** 136s; **6043** 92(1985)363s. Pondiczery, E. S. **AMM E2533** 82(1975)401p. Pemberton, J. FUNCT 3.3.4 3(1979/3)32p. **SPECT 9.2** 9(1977)98s. Pope, Lindsay **JRM 548** 9(1977)281p; **607** 10(1978)114p; Poppen, Richard AMM E2496 82(1975)939s. Pence, Fred 698 12(1980)49s. Popplewell, Richard **AMM E2595** 83(1976)379p, **E2612** 656p; CRUX 39 2(1976)7s. Penner, Sidney **E2665** 84(1977)567p; **6211*** 85(1978)389p. Porkess, R. J. E. **MENEMUI 1.2.1** 1(1979/2)46p. CRUX 276 3(1977)227p, 282 250p; 354 Porter, Thomas K. 4(1978)159p, **374*** 225p. **MATYC 64** 9(1975/2)53s. **MM Q613** 48(1975)52p, JRM 260 9(1977)222s. NAvW 441 25(1977)94s; 508 27(1979)145s, Post, K. A. Q613 58s, Q620 181p, Q620 186s; **544** 269p; **544** 28(1980)135c. **968** 49(1976)44p, **987** 150p. **MSJ 419** AMM 6283 88(1981)624s. Posti, Eero 22(1975/1)5p; **439** 24(1977/1)4p; **450** Potter, Caecilia **FUNCT 3.1.6** 3(1979/4)29s. 25(1978/2)4p. **NYSMTJ 45** 25(1975)124p; Potters, M. L. NAvW 425 24(1976)276s; 445 25(1977)97s. **45** 26(1976)19s, **61** 151p; **68** 27(1977)99p; Pounder, J. R. CRUX 450 6(1980)214c. **75** 28(1978)52p, **77** 53p, **81** 78p; **AMM E2720** 86(1979)707c. Powder, C. **87** 29(1979)56p, **93** 83p. **PME 358** Powell, Barry J. AMM E2621 83(1976)741p; E2631 6(1975)179p; **372** 6(1976)228p; **377** 84(1977)57p; **E2797** 86(1979)785p; **E2771** 6(1977)425s; **434** 6(1978)541p. **TYCMJ 53** 87(1980)407s. 6(1975/4)25p; **68** 7(1976/3)47p; **78** Powers, David L. SIAM 74-5 17(1975)174s; 79-7 7(1976/4)33p; **91** 8(1977)177p, **100** 22(1980)230s. 240p; **113** 9(1978)95p, **127** 297p; **145** Pranesachar, C. R. 10(1979)211p. AMM E2715 86(1979)705s. Penney, David E. AMM E2539 83(1976)742c. MM 956 **AMM E2602** 84(1977)742s. Pratt, John W. 49(1976)258s. **PME 413** 6(1979)621s. Presciuttini, Leonardo CRUX 110 14(1988)16s. Penning, P. JRM 730 12(1980)146s. Pentagon Problems Group, the Price, David MATYC 125 14(1980)73s. TYCMJ 151 CRUX 400 5(1979)243s. 12(1981)155s. **SIAM 79-9*** 21(1979)257p. Pereira, N. R. Prichett, Gordon D. Pereira, Stephen PARAB 410 15(1979/3)35s, 414 38s. **AMM E2718** 85(1978)384p. Perelson, A. S. **SIAM 76-12*** 18(1976)296p. CRUX 238 3(1977)262s; 265 4(1978)74s, Prielipp, Bob Peremans, W. NAvW 426 24(1976)279c; 523 27(1979)412s; 285 117s, 296 164s. DELTA 5.1-1 **555** 28(1980)218s. 5(1975)94s. **FQ B-282** 13(1975)192s B-326 15(1977)95s, B-328 190s, B-337 Perisho, Clarence R AMM E2584 84(1977)489s. 286s; **B-378** 17(1979)185s, **B-379** 186s, AMM 6043 82(1975)766p; 6268 B-387 284s; B-398 18(1980)88s, H-281 Peterson, Brian 91s, **H-283** 94s, **B-403** 188s, **H-291**

88(1981)217s.

Prielipp, Bob 1975-1979 Riemersma, Martinus 286s; H-310 19(1981)384c. MATYC 138 MSJ 474 26(1979/8)2s; 486 27(1980/2)4s. Rappe, Andrew 15(1981)72s. **MM 882** 48(1975)54s, Rasmussen, Bruce **FUNCT 1.1.10** 1(1977/4)15c. Rasmussen, C. H. 948* 238p. PENT 306 38(1979)83s; 310 **AMM 6042*** 82(1975)766p. 39(1979)36s; **318** 40(1980)40s, **319** 41s. Rassias, Th. M. **NAvW 471** 26(1978)241s. PME 348 6(1975)106p, 323 120s, 334 189s; Raymond, Robert L **404** 6(1977)419p, **384** 434s; **393** 6(1978)492s, **TYCMJ 28** 6(1975/3)37s. **396** 496s, **400** 544s; **459** 7(1979)59p AMM 6137 85(1978)830s. MM 1046 Razen, Reinhard **450** 7(1980)191s, **457** 198c. SSM **3547** 52(1979)264s. 75(1975)201s, **3569** 204p, **3531** 293c, **3551** Read, R. C. JRM 421 10(1978)72s. 294s, **3552** 296s, **3575** 297p, **3557** 383s, **3582 MM 909** 48(1975)241s. Rebman, Ken 386p, **3563** 474s, **3588** 477p, **3591** 478p, Recamán, Bernardo **3553** 563c, **3570** 565s, **3592** 568p, **3575** AMM E2599 83(1976)482p, E2526 484s. 654s, **3599** 657p, **3580** 743s, **3583** 744s, **3606** 747p; **3587** 76(1976)83s, **3590** 84s, JRM 672* 10(1978)283p. MM 983 49(1976)149p, **1002** 253p. **AMM E2704** 85(1978)198p. **3612** 85p, **3595** 172s, **3620** 175p, **3623** 175p, Reddy, S. M. **3603** 265s, **3625** 266p, **3610** 441s, **3612** 442s, **3616** 444c, **3614** 444s, **3632** 445p, **3638** 446p, **3599** 529c, **3620** 533s, Redheffer, Raymond M. **AMM 6086** 83(1976)292p. Rees, John Van **OSSMB 76-16** 13(1977/1)22s **3608** 716c; **3641** 77(1977)266s, **3669** 716s; **AMM 6056*** 82(1975)942p; **5983** Reich, Simeon **3753** 79(1979)80p, **3719** 175s, **3767** 260p, 83(1976)293c, **6125** 818p; **6125 3771** 355p; **3752** 80(1980)78s. **TYCMJ 37** 87(1980)495s; **6125** 91(1984)60s. 7(1976/2)50s; **116** 10(1979)360s, **120** 366s; Reichley Jr., Richard 150 12(1981)67s. **TYCMJ 47** 7(1976/4)35s. Primer, Jeremy D. CRUX 321 4(1978)252s, 338 291s; 366 Reid, Neal E. **OSSMB 77-15** 14(1978/1)17s; **78-8** 5(1979)117s, **413** 302s, **415** 306s; **422** 14(1978/2)22p; **78-8** 14(1978/3)19s. 6(1980)24s, **455** 127s. Reil, William C. JRM 713 11(1979)38p, 765 215p. Prochaska, Emil **JRM 493*** 9(1977)130p, **561*** 297p. Reis, Michael PENT 269 35(1975)36s. Propp, James Gary Reiter, Harold AMM 6126 84(1977)61p; 6126 **AMM E2774*** 86(1979)393p, **E2781** 503p. 85(1978)604s. CRUX 317 4(1978)36p, 342* 133p, 355 ISMJ 13.5 13(1978/2)7s. Reitz, Mark 160p; **410*** 5(1979)17p, **418*** 48p, **355** Rennie, Basil C. **CRUX 164** 2(1976)230s, **165** 231s, **166** 231s; 80c, **474** 229p. **MM 1013** 50(1977)163p; **132** 3(1977)11c, **170** 25s, **130** 44s, **237** 105p, **1037** 51(1978)128p, **1047** 194p; **1068 199** 112s, **215** 168s, **219** 173s, **189** 252c, 52(1979)113p, **1073** 179p, **1079** 258p. **295** 297p; **247** 4(1978)24s, **325** 66p, **283 AMM E2788** 86(1979)592p. Protas, David 195s, **323** 255s, **324** 257s; **414** 5(1979)47p, Prouse, Howard L. **352** 55s, **354** 59s, **360** 87s, **432** 108p, SSM 3596 75(1975)568p. **367** 118s; **488** 6(1980)262s. **SIAM 79-16** Prussing, John E. JRM 314 9(1977)306s. 22(1980)504x. **MM 976** 49(1976)96p; **976** 50(1977)267s. Puckette, Miller Renz, Peter L. **AMM 6098** 83(1976)489p. Pullman, Howard W Revennaugh, Vance **SSM 3699** 78(1978)536s; **3716** 79(1979)173s, JRM 385 8(1976)137p. **3725** 264s, **3730** 358s. **TYCMJ 56** JRM 392 8(1976)141p. Reves, Victor 8(1977)98s. Reynolds, Lindsay CRUX 269 4(1978)79s. Purdue-Calumet Coffee Club, the PARAB 344 13(1977/3)36s. Reynolds, M. AMM 6132 85(1978)690s. Reznick, Bruce A. AMM E2489 82(1975)853c; E984 Pye, Wallace C. **AMM 6222** 87(1980)760s. 84(1977)739c; **6112** 85(1978)391s, **E2731** Quinzi, Anthony J. 681p. **AMM E2690** 85(1978)48p. Ribet, K. A. AMM E2463 82(1975)306s. Rabinowitz, Stanley Ricardo, Henry J. PME 324 6(1975)121s. CRUX 492 7(1981)277c. MM 941 Ricci, Mark A. JRM 381 8(1976)50p; 347 9(1977)314s, 354 48(1975)181p. **PME 415** 6(1979)624s, **422** 319s.632s. TÝCMJ 128 11(1980)135s. FQ B-411 17(1979)282p. Rice, Bart Rackusin, Jeffrey L Rice, Norman M. MM 1017 52(1979)49s. **AMM E2652** 84(1977)295p. **SIAM 76-3*** 18(1976)117p. Rice, S. A. Rahman, Saleh MSJ 451 25(1978/3)4p. Rich, Priscilla A. **NYSMTJ 59** 27(1977)101s; **60** 28(1978)53s. **SIAM 79-14*** 21(1979)396p. Raina, A. K. Richoux, Anthony MM 950 49(1976)256s. Raju, Chandrakant Rickert, John MSJ 491 27(1980/3)3s. **MM 1074** 52(1979)258p. PARAB 346 14(1978/1)30s. Rider, P. CRUX 419 5(1979)48p, 448 133p, 376 143s; Ramanaiah, G. Ridge, H. Laurence CRUX 223 3(1977)203c. PENT 298 **448** 6(1980)117s, **497** 324s. Ramanathan, G. V 37(1977)26p; **298** 38(1978)28s; **314** AMM E2670 85(1978)826s. 38(1979)79p, **315** 79p. SSM **3674** Ramos, Orlando CRUX 315 4(1978)35p, 353 159p; 456 78(1978)84s; **3712** 79(1979)82s; **3751** 5(1979)167p, **388** 201s. 80(1980)78s. Ramsden, John **SPECT 10.1** 10(1978)97s. Riebe, Norman W Rangarajan, R. **MM 944** 48(1975)181p. **MATYC 66** 9(1975/3)47s. Rao, D. Rameswar Riede, Linda **SSM 3652** 77(1977)447s; **3688** AMM E2615 83(1976)657p. CMB P245 78(1978)357s. NAvW 457 24(1976)272p; 486 18(1975)616p. Rieger, G. J. AMM 6152 84(1977)391p. CMB P258 Raphael, R. 25(1977)425p.20(1977)147p. Riemersma, Martinus MSJ 491 27(1980/3)3s. JRM 767 12(1980)232s. Rapkin, Steven

Riese, Adam	1975	5–1979	Rue, J.
Riese, Adam	AMM 6136 85(1978)772s; 6255		230 66p, 185 71s, 191 78s, 211 164c, 215
,	86(1979)132p. MM 986 51(1978)196s.		167s, 219 173s, 223 202s, 226 205s, 277
	TYCMJ 77 9(1978)97s, 82 177s.		227p, 231 236s, 231 237c, 290 251p, 242
Riley, Charles	AMM 6257 88(1981)216s.		267s; 312 4(1978)35p, 252 44s, 253 50c,
Risen, Edith E.	PME 443 7(1980)139s.		333 101p, 349 134p, 291 147s, 356 160p,
Rising, Gerald	OSSMB 76-12 $12(1976/3)24s$.		361 191p, 310 203s, 316 228s, 333 269c; 402
Ritter, M. J.	NAvW 373 23(1975)84s; 424 24(1976)275s;		5(1979)15p, 436 109p, 446 132p, 461 199p;
	447 25(1977)100s; 472 26(1978)243c; 532		436 6(1980)62c. JRM 375 8(1976)47p, 43
	27(1979)134p; 532 28(1980)207s.		53x, 390 140p, 166 146s, 177 148s, 198 149s,
Rivlin, Theodore J			232 150s; 117 9(1977)32s, 175 42s, 180 141s,
	AMM 6084 83(1976)292p.		242 220s, 288 223s, 291 224s, 306 300s, 309
,	JRM 778 11(1979)295p; 698 12(1980)49s.		303x, 314 306s, 342 310s; 384 10(1978)68s,
Robbins, David P.	AMM E2349 83(1976)54s, E2594*		466 74s, 387 134s, 395 142s, 504 155s, 541 235s, 447 298s, 567 314s; 762 11(1979)215p,
	379p; E2629* 84(1977)57p, E2566 220s;		785 300p. PME 343 6(1975)105p, 315 110s,
	E2727* 85(1978)594p, 6224* 600p; E2692		316 111s, 318 113s, 319 115s, 321 119s,
Roberts, K. L.	86(1979)394s, 6282* 869p. AMM E2679 86(1979)59s.		350 177p, 328 183s, 331 187s, 332 188s,
Roberts, Walter va	` '		336 191s; 367 6(1976)227p, 338 228s, 343
respectes, wanter ve	NYSMTJ 53 26(1976)18p.		236s, 382 308p, 355 315c, 359 320s; 392
Robertson, Christi	` / -		6(1977)366p, 362 368s, 367 375s, 371 379s,
	CRUX 89 1(1975)85p.		375 422s, 376 424s, 382 429s, 383 432s; 413
Robertson, Tim	AMM E2474 82(1975)527s.		6(1978)481p, 386 485s, 393 492s, 398 500s,
Robinson, Donald			426 539p; 448 6(1979)619p; 457 7(1979)58p,
	AMM 6006 83(1976)576s, E2539 742c;		426 62s; 448 7(1980)146s, 457 197s.
	E2742 87(1980)63s, 6222 760s. SIAM 73-2	Royden, H. F.	AMM 5871 82(1975)530x.
	18(1976)492s.	Rubel, Lee A.	AMM 6131 84(1977)62p; 6117 85(1978)505s;
Rocha, Antonio	AMM E2642 84(1977)216p.		6279 86(1979)793p.
Roedel, Sandra	ISMJ J10.1 10(1975/2)6s.	Rubenfeld, L. A.	SIAM 76-22 18(1976)763p.
Rogers, Gerald S.		Ruberg, Stephen	J.
D	87(1980)405s; 6207 88(1981)153s.		SSM 3783 79(1979)528p, 3746 714s; 3783
Rogers, T. D.	SIAM 78-13* 20(1978)594p.		80(1980)528s.
Rokhsar, Daniel	CRUX 188 2(1976)194p; 202 3(1977)9p, 266* 190p.	Rubin, David S.	AMM E2484 82(1975)761s.
Ronday, F. J.	NAvW 545 28(1980)137c.	Rubin, Frank	JRM 417 8(1976)228p; 468 9(1977)26p, 371
Roondog, M. A.	TYCMJ 149 12(1981)66s.		72s, 516 206p, 517 206p, C2 237s, 551 281p,
Rose, Haim	AMM E2673 84(1977)652p; E2753		552 281p, 553 281p, 323 308s, 344 312s; 585
10000, 1101111	86(1979)56p.		10(1978)42p, 589 46p, 590 46p, 379 65s,
Roselle, David P.	TYCMJ 24 $6(1975/2)34s$.		384 68s, 606 114p, 618* 119p, 505 156s,
Rosen, David	NYSMTJ 47 25(1975)124p; 57		521 207s, 419 214s, 424 217s, 425 218s, 532 226s, 534 227s, 541 235s, 670 276p,
	26(1976)97p.		671 283p, 684* 287p, 393 291s, 445 297s,
Rosen, Hyman	CRUX 302 4(1978)176s; 452 6(1980)123c.		446 298s; 696 11(1979)30p, 528 58s, 598
Rosen, Kenneth	AMM E2450 82(1975)82c.		69s, 601 71s, 603 76s, 604 76s, 727 124p,
Rosen, L.	SIAM 76-13* 18(1976)489p.		728 127p, 729 128p, 730 128p, 731 128p,
Rosenblum, Daniel			732 128p, 733 129p, 734 129p, 735 129p,
D f . l . l . A l	MM 1019 50(1977)164p.		736 129p, 737 130p, 738 130p, 739 130p,
Rosenfeld, Azriel	AMM E2632 84(1977)57p. JRM 389 8(1976)139p; 389 10(1978)135s.		740* 131p, 741 131p, 618 139s, 630 154s,
Rosenheck, Bernar			632 157s, 752 208p, 645 223s, 647 226s,
Trosenneck, Dernar	JRM 646 11(1979)224s.		653 230s, 657 233s, 658 234s, 659 235s, 781
Rosenthal, Eric S.	AMM 6192 86(1979)598s.		296p, 671 306s, 674 309s; 698 12(1980)49s, 591 62s, 601 64s, 708 72s, 735 152s, 737
Rosler, T.	JRM 640 10(1978)204p; 695 11(1979)30p.		154s, 741 158s, 759 227s, 768 232s, 769
Ross, Bertram	MM Q637 49(1976)150p, Q637 154s.		233s, 783 302x, 793 312s, 796 315s.
Ross, D. K.	SIAM 75-11 17(1975)566p; 79-11	Rubin, Sidney J.	JRM 680 10(1978)285p.
	21(1979)395p.	Rubinstein, I.	SIAM 77-16 19(1977)736p.
Ross, Martin	MSJ 490 27(1980/3)3s.	Ruderman, Harry	
Rosser, J. Barkley	AMM 6045 82(1975)766p; 5952	Ruderman, narry	AMM E2482 82(1975)757s; 6105*
	83(1976)819c.		83(1976)573p, 6121* 817p; E2643
Rossi, Donald	MATYC 63 9(1975/2)52s.		84(1977)217p, 6138 221p; 6191*
Rotando, Louis	TYCMJ 55 7(1976/1)28p; 56 8(1977)99s.		85(1978)54p, 6192* 121p, 6223* 600p;
Rothblum, Uriel	AMM 5723 83(1976)64s.		E2757 86(1979)128p, E2769 307p, E2804*
Rother, Ed	MSJ 411 22(1975/2)6s.		864p. CRUX 294 3(1977)297p; 326
Rothschild, Joseph	TYCMJ 51 6(1975/4)25p; 56 7(1976/1)28p.		4(1978)66p, 285 118s, 387* 251p, 394 283p;
Rotman, Joseph	AMM 6169 84(1977)659p.		326 5(1979)18s. NYSMTJ 38 25(1975)127s;
Roush, Fred	AMM 6215 85(1978)390p.		48 26(1976)99s, 49 100s; 60 27(1977)102s,
Rousseau, C. C.	AMM E2720 86(1979)707s; 6234		61 102s. SSM 3722 79(1979)261s.
	87(1980)830s.	Rudin, Murray	MSJ 447 25(1978/5)4s; 469 26(1979/7)2s.
Row, Thur	JRM 89 8(1976)59s.	Rudin, Walter	DELTA 4.2-3 5(1975)47s, 5.2-2 96p; 6.1-2
Rowe, R. Robinson			6(1976)44p.
	CRUX 141 2(1976)175s, 142 176s, 153	Rudnytsky, Joann	
	196s, 191 219p, 164 230s, 169 234s; 204		MSJ 429 22(1975/3)5p; 445 24(1977/4)2p.
	3(1977)10p, 219 43p, 135 45c, 182 58s,	Rue, J.	TYCMJ 97 10(1979)54s.

Ruehr, Otto G.	1975-	1979 Schaumberger, Norman
Ruehr, Otto G.	AMM E2472 82(1975)525s, E2487 764s; E2523 83(1976)385c; E2601 84(1977)741s; E2695 86(1979)309s, E2658 504s, E2709 704s, E2720 707s; E2765 87(1980)307s, E2787 673s. SIAM 75-18 17(1975)686p; 75-17 18(1976)767s, 75-18 770c; 77-12 20(1978)598s; 79-5 21(1979)140p, 78-6 259s,	34 60s, 36 61s, 37 62c, 37 62s, 38 64c, 39 65c, 40 66s, 71 71p, 72 71p, 41 72c, 41 72s, 46 75c, 49 77s, 50 78s, 50 80c, 82 84p, 83 84p, 90 85p, 52 87s, 53 88s, 54 89s, 56 90c, 59 91s, 59 92c, 91 97p, 92 97p, 100 98p, 61 98s, 66 100s, 69 102s; 101 2(1976)5p, 102 5p, 109 6p, 71 8s, 75 11c, 75 11s, 77 12s,
D	78-10 397s.	78 13s, 78 14c, 79 16c, 80 17c, 113 25p, 114 25p, 81 26s, 81 27c, 82 27s, 83 28c, 83 28s,
Ruemmler, Ronal	JRM 709 11(1979)38p.	86 30s, 88 33c, 90 34s, 90 36c, 121 41p, 129
Russell, D. Rutter, E. Ruud, Warren	FQ H-238 14(1976)282s. AMM 6039 84(1977)301s. MATYC 131 14(1980)157s; 138 15(1981)72s. SSM 3721 79(1979)260s, 3732 446s, 3733 447s; 3750 80(1980)77s. TYCMJ 126 11(1980)133s, 129 137s, 141 337s.	42p, 18 42c, 92 45c, 93 45s, 93 46c, 97 49c, 98 49c, 98 49s, 99 50s, 99 52c, 132 67p, 18 69c, 101 72c, 102 74s, 103 75s, 107 80c, 109 81s, 109 83c, 110 85s, 110 87c, 143 93p, 111 95s, 112 96c, 115 98c, 114 98s, 120 104s, 151 109p, 156 110p, 121 114s, 122 116c,
Sabharwal, Y. P.	SIAM 79-10* 21(1979)257p.	123 116s, 123 119c, 125 121c, 127 125c,
Sachmut, William		128 125s, 128 126c, 129 127c, 167 136p, 115 138c, 125 139c, 131 141c, 132 143c,
Sagan, Bruce	JRM 166 8(1976)146s. AMM E2588 84(1977)573s.	133 149c, 134 152c, 135 154c, 136 155c,
Šalát, T.	AMM E2465 82(1975)405s; 6081*	137 157c, 138 158c, 142 177c, 143 180c, 145 182c, 147 183c, 153 197c, 154 197s,
Salvatore, Gali	83(1976)205p, 6090 385p, 6015 820s. CRUX 178 2(1976)171p, 143 178s, 151	154 198c, 157 201c, 159 202c, 160 203c,
Sarvatore, Gan	195s, 155 199s, 198 220p, 166 232c; 177 3(1977)50s, 200 133s, 268 190p, 230 233s,	200 220p, 134 222c, 145 225c, 162 227c, 169 234c; 134 3(1977)12c, 145 18c, 153 19c, 155 22c, 160 23c, 170 26c, 134 44c, 140 46c, 173
	234 257s; 324 4(1978)66p, 266 75x, 268 78s, 275 105s, 287 135s, 298 167s, 390 251p, 325	47c, 177 52c, 179 55c, 187 72c, 189 75c, 192
	258s, 338 290s; 425 5(1979)77p, 368 134s,	80c, 195 84s, 195 87s, 154 108c, 199 114c, 177 132c, 202 138c, 203 140c, 204 141c,
	469 200p, 484 265p; 432 6(1980)57s, 442 86s, 469 193s, 45 213s.	206 143c, 208 158c, 210 163c, 212 165c,
Samborski, John		215 168c, 219 175c, 189 193c, 195 195c, 210 196c, 222 201c, 200 228c, 227 230c,
Samovlo, John M	AMM E2667 84(1977)567p. MATYC 78 9(1975/3)45p; 82 10(1976)43p.	234 258c, 300 298p, 199 299c, 240 299c; 210
Samuels, S. M.	AMM 5963 82(1975)861s.	4(1978)16c, 249 29c, 250 40c, 252 47c, 259 57c, 260 59c, 261 69c, 267 77c, 268 79c, 269
Samuelson, D. J. Sánchez, William	,	82c, 270 82s, 272 87c, 340 102p, 276 108c,
Sanchez, william	AMM 6085* 83(1976)292p.	287 136c, 287 138c, 289 140c, 290 144c, 292 149c, 294 162c, 295 163c, 297 167c,
Sandberg, Rollin	AMM 6007 82(1975)84p.	300 173c, 301 174c, 306 197c, 307 198c,
Sanders, David Sanders, W. M.	AMM 6265 86(1979)311p. MM 880 48(1975)53s.	310 204c, 311 205c, 312 207c, 336 288c; 346 5(1979)30c, 352 55c, 356 82c, 360 88c, 361
Sankoff, David	AMM 5723 83(1976)62s.	88c, 365 115s, 366 117c, 441 131p, 371 137c,
Santa Clara Prob	lem Solving Ring, the TYCMJ 152 12(1981)157s.	376 145c, 377 146c, 378 148c, 379 150c,
Sarah Brooks' stu	dents at Mohawk Valley C. C.	383 175c, 384 178c, 385 179c, 389 203c, 390 206c, 393 211c, 396 234c, 399 241c,
Sárkőzi, A.	NYSMTJ 65 27(1977)138s. NAvW 483 25(1977)424p; 483	401 267c, 402 268c, 400 294c, 410 298c,
	26(1978)361s.	413 303c, 414 304s, 414 306c, 415 307c, 417 309s; 478 11(1985)190c. OSSMB 76-9
Sarma, V. B. Sass, Louis	AMM E2553 82(1975)851p. MATYC 62 9(1975/2)52s.	$12(1976/3)22s; 76-14 \ 13(1977/1)21s.$
Sastri, V. V. S.	AMM E2457 82(1975)176s.	PENT 292 36(1977)93p, 294 93p, 283 95s; 291 37(1977)34s; 299 38(1978)30s; 297
Sastry, K. R. S.	MM 967 49(1976)43p; 1014 50(1977)163p;	38(1979)80s. PME 374 6(1977)421s, 366
	1014 52(1979)318s. TYCMJ 110 9(1978)41p, 120 177p; 143 10(1979)211p,	436c, 363 436s; 393 6(1978)492s, 399 542s; 414 6(1979)623s, 418 627s; 427 7(1979)63s;
C. t. IZ.:-l:	153 359p; 153 12(1981)158s.	213 7(1984)673c. SSM 3733 79(1979)447s.
Sato, Koichi Sattler, R.	MM 933 49(1976)100s. NAvW 387 23(1975)184s.	Sayrafiezadeh, M. MM Q630 48(1975)295p, Q630 303s.
Satyanarayana, K	esiraju	Scales, Dan MSJ 467 26(1979/6)3s. Scalisi, I. Philip AMM E2484 82(1975)761c. PME 371
	CRUX 255 4(1978)52s, 305 180s, 365 192p, 309 200s, 315 227s, 318 231s; 412* 5(1979)47p, 379 149s, 488* 266p; 438	6(1976)227p. Scarowsky, Manuel
Carradan D.1	6(1980)79s, 445 92s.	AMM 6197* 85(1978)122p. Schaffrin, Burkhard
Saunders, Rob Sauvé, Jacques	FUNCT 1.3.3 1(1977/3)29p. CRUX 47 1(1975)39p, 78 72p, 42 73s; 112 2(1976)96s; 259* 3(1977)155p.	AMM E2762 88(1981)350c. Schaumberger, Norman
Sauvé, Léo	CRUX 1 1(1975)3p, 2 3p, 4 3p, 6 3p, 11 7p, 13 7p, 16 8p, 23 11p, 27 12p, 28 12p, 30	AMM 6194 85(1978)122p. MM 928 48(1975)52p, 933 115p, Q617 116p,
	12p, 1 12s, 2 12s, 5 15s, 6 17s, 10 20c, 10 20s, 31 25p, 36 25p, 38 26p, 11 27s, 13 27s,	Q617 122s, 937 180p, Q623 182p, Q623 186s, Q629 295p, Q629 302s; 992
	15 28s, 16 29s, 17 30s, 18 31s, 19 32s, 20	49(1976)211p; Q649 50(1977)266p, Q649
	34s, 41 38p, 48 39p, 21 40s, 23 41c, 25 43s, 26 43s, 28 44s, 29 46c, 53 48p, 54 48p, 61 56p, 64 57p, 69 57p, 32 59c, 34 60c, 33 60s,	271s. NYSMTJ 41 25(1975)55p; OBG1 27(1977)99p, OBG1 103s; 78 28(1978)77p; OBG7 29(1979)57p, OBG7 61s, 92 83p,
	oop, or orp, os orp, se osc, se ooc, se oos,	2501 25(1313)51p, ODG1 015, 32 05p,

Schaumberger, No	rman 1975-	-1979	Shimmel, Norman
	97 145p. PME 383 6(1976)308p; 405	Scott, Leonard	AMM 6116 85(1978)505s.
	6(1977)419p; 405 7(1979)76s. TYCMJ 33	Scoville, Richard	FQ H-226 13(1975)281s, H-223 370s.
	6(1975/1)32p; 39 6(1975/2)31p, 23 33s;		MM 989 49(1976)211p; 989 51(1978)72s.
	63 7(1976/2)49p; 70 7(1976/3)47p; 75	Seal, David	SPECT 6.3 7(1975)69c, 6.7 69s.
	7(1976/4)33p; 82 8(1977)42p, 87 95p, 98	Seally, Vincent J.	
	240p, 105 293p; 117 9(1978)176p, 124 236p;	Sedinger, Harry T	· / -
	134 10(1979)53p, 140 128p, 105 211s, 155	Scamger, marry 1	MM 971 50(1977)214s; 995 51(1978)130s.
	360p.		TYCMJ 71 9(1978)41s; 98 10(1979)55s; 122
Schechter, Martin	AMM 6128 84(1977)62p. FQ H-305		11(1980)63s.
	17(1979)286p; H-305 19(1981)191x.	Sehgal, S. K.	CMB P241 18(1975)615p.
Schep, A. R.	NAvW 541 28(1980)131c, 541 131s.	Seider, Alf D.	JRM 641 10(1978)206p; 726 11(1979)124p.
Scherer, Karl	JRM 533* 9(1977)212p; 493 10(1978)147s,		NYSMTJ 88 29(1979)147s.
,	445 297s; 758* 11(1979)214p; 388	Sekiguchi, T.	AMM 6143 85(1978)774s. NAvW 545
	12(1980)60s, 444 60s.	Bekiguciii, 1.	28(1980)136s. SIAM 79-2 22(1980)99s.
Scherrer, Robert	MM 937 49(1976)150s; Q647 50(1977)164p,	Solfridge John I	AMM S10 86(1979)306p. JRM 442
	Q647 169s.	Senridge, John L.	8(1976)311p. MM 886 48(1975)301c; 1071
Schikhof, W. H.	NAvW 542 28(1980)132s.		· · · · · · · · · · · · · · · · · · ·
	AMM E2454 82(1975)172s, E2484 761s.	Colimnon Asses	54(1981)141s.
Schlecker, Karl W.		Seligman, Aaron	MATYC 137 13(1979)214p.
Somoonor, Hair VV.	SSM 3790 79(1979)712p.	Sellke, Thomas	AMM E2572 84(1977)298s.
Schmeichel, E. F.	AMM 6062 84(1977)578x.	Sennetti, J.	JRM 675 10(1978)284p.
Schmid, Erwin	MM 961 48(1975)294p.	Serafini, Silvanna	MSJ 434 23(1976/4)8s.
Schmidt, Gary	PENT 273 34(1975)103p; 273 35(1976)99s.	Seville, Barbara	PME 460 7(1979)60p; 458 7(1980)199s.
Schmidt, K. W.	MM 884 48(1975)56s.	Shafer, Dale M.	SSM 3555 75(1975)382s; 3596
,	AMM E2681 86(1979)129s. MM 970		76(1976)173s.
Schillet Jr., F. G.	50(1977)213s.	Shafer, Robert E.	AMM 6019 82(1975)307p; E2529
Schnapp, Lynn	MSJ 453 25(1978/8)2s.		83(1976)487s; 6160 84(1977)491p,
Schneider, Harold	` ' '		6070 662s; 6193 85(1978)121p; 6269
Schlieder, Harold			86(1979)399p, E2782 503p, E2720 707s;
Schneider, Rolf	AMM E2512 83(1976)139s. AMM E2617 85(1978)51s.		E2797 88(1981)149s.
	` '	Shallit, Jeffrey	AMM E2766 87(1980)406s. FQ B-311
Schneidman, Jeron			13(1975)285p; B-274 14(1976)94c; B-340
C-ll T T	TYCMJ 48 7(1976/4)36s.		15(1977)376s. MM 985 49(1976)150p.
Schoenberg, I. J.	AMM E2550 82(1975)756p; E2669	Shank, Herb	AMM E2752 89(1982)757c.
	84(1977)568p; E2694 85(1978)48p, 6087	Shanks, Daniel	AMM 6012* 82(1975)183p; 6176
	284s; S16 86(1979)591p. NAvW 475		84(1977)744p; 6196* 85(1978)122p.
	25(1977)188p, 476 188p; 475 26(1978)246s,		MM 899 48(1975)121s.
	476 250s; 558 27(1979)411p. SIAM 75-21	Shannon, A. G.	FQ B-291 13(1975)288s; H-235
al cp	17(1975)687p; 77-9 19(1977)329p.	, ,	14(1976)184s, H-237 186s; B-353
Schoof, R.	NAvW 540 27(1979)268p.		16(1978)185s, B-382 473p, H-269 478s,
Schor, Harry	CRUX 134 2(1976)222s; 134 3(1977)44c.		H-273 568s; B-373 17(1979)92s, B-374 93s.
	NYSMTJ 41 25(1975)172s; 44 26(1976)19s.	Shantaram, R.	MM 1074 52(1979)258p. SIAM 78-15
G 1 1 1 1 1	TYCMJ 41 $6(1975/2)31$ p.	, , , , , , , , , , , , , , , , , , ,	20(1978)594p.
Schorsch, Emanuel		Shapiro, Daniel B	. MM 1027 50(1977)265p.
a	AMM E2572 84(1977)298s.		. AMM 6091 83(1976)385p; 6250
Schram, John Mich			86(1979)60p.
	JRM 657 10(1978)213p.	Shapiro, Harold N	\ / 1
Schramm, R.	CMB P261 20(1977)148p.	Shapiro, Haroid IV	AMM 6107 85(1978)287s. CRUX 250
Schubert, C. F.	SIAM 74-18 18(1976)120s.		5(1979)17x, 434 108p, 458 167p, 382 172s,
Schultz, Mark	MSJ 478 27(1980/1)5s; 483 27(1980/2)3s,		467 200p.
a	484 3s.	Shapiro, Leonard	•
Schwandt, Lynn C		Simpiro, Econord	AMM E2528 82(1975)400p; E2707
	SSM 3763 80(1980)264s.		85(1978)276p.
Schwartz, Alan	MM 922 48(1975)51p.	Shapiro, Louis	AMM 6205 85(1978)282p.
Schwartz, Benjami		Sharma, A.	SIAM 78-2 21(1979)143s.
	JRM 377 9(1977)75s, 214 218s; 681	Sharma, A. Shawyer, Bruce L.	, ,
	10(1978)286p, 556 303s, 560 306s; 596	Juawyer, Druce L.	
	11(1979)66s, 573 132s, 620 141s, 507 146c.	Chall There	AMM 5950 82(1975)414s.
	MM 952 49(1976)257s.	Shell, Terry	SSM 3737 79(1979)450s, 3745 713s.
Schwartz, Scott	MSJ 435 24(1977/1)4s.	Shelupsky, David	AMM E2537 82(1975)521p; E2575
Schweitzer, P. J.	SIAM 77-3 19(1977)147p; 78-12		83(1976)133p.
	20(1978)594p; 78-12 21(1979)398s.	Shenton, L. R.	AMM E2803 86(1979)864p.
Schwenk, Allen J.	AMM E2516 83(1976)202s, E2527 485s;	Shepp, Larry A.	AMM E2603 84(1977)743s. SIAM 77-7
	6034 84(1977)224s, 6037 226s; 6159		19(1977)328p; 77-7 20(1978)398s, 78-16
	86(1979)135s; E2795 87(1980)757s; E2608		855p.
	88(1981)148s.	Sheppard, Brian	MSJ 463 26(1979/6)2s.
Schwerdtfeger, H.	AMM E2779 86(1979)503p.	Sher, Lawrence	MATYC 101 11(1977)142p.
Sclove, Stanley L.	AMM E2670* 84(1977)568p.	Sherwood, H.	AMM E2465 82(1975)405s.
Scott, Douglas E.	SSM 3647 77(1977)357s, 3685 443p, 3653	Shiflett, Ray C.	AMM 6242 87(1980)411s.
	447s, 3696 620p, 3700 621p, 3703 713p;	Shifrin, Jeff	OSSMB 74-14 11(1975/1)20s; 75-1
		1	
	3689 78(1978)357s, 3727 443p, 3705 626s,		11(1975/2)18s, 75-2 20s.
	3689 78(1978)357s, 3727 443p, 3705 626s, 3709 717s; 3786 80(1980)710s.	Shilling, Net	11(1975/2)18s, 75-2 20s. JRM 96 8(1976)62s.

Shine, Daniel P.	1975-	-1979	Smith, Scott
Shine, Daniel P.	JRM 650 10(1978)211p, 683 287p; 756 11(1979)214p, 651 229s, 786 300p.		17(1979)91s, B-381 187s, B-384 283s; B-395 18(1980)86s, B-402 188s, B-403 188s, B-409
Sholander, Marlow		G: 1 37	275s, B-412 371s.
	AMM 6226 85(1978)600p; E2799	Singh, V.	SIAM 79-14* 21(1979)396p.
	86(1979)785p; E2802 88(1981)67s. MM 905 48(1975)184s; 1034 51(1978)127p; 1080	Singmaster, David	AMM E2465 82(1975)405s, E2549 756p. CRUX 290 11(1985)222c. FQ B-303
	52(1979)316p.		13(1975)95p; H-179 14(1976)88v, B-310
Shor, Peter	CRUX 309 4(1978)12p. SIAM 78-6		287s; H-309 17(1979)374p. JRM 261
,	20(1978)394p; 78-6 21(1979)258s.		9(1977)66s, 262 66s; 513 10(1978)125s.
Shovlar, Paul	SPECT 7.4 8(1976)34s, 7.6 34s.		MM 1059 53(1980)115s. SIAM 79-16*
Shriver, Donald	SSM 3736 79(1979)449s.	GI. 77	21(1979)559p.
Shubert, Bruno O.		Sitomer, Harry	CRUX 322 4(1978)65p. MSJ 431
	AMM E2587 83(1976)284p; E2587	Sivaramakrishnan,	23(1976/1)8p; 440 24(1977/1)4p.
Shulman, George	84(1977)572s. AMM E2766 87(1980)406s; E2772	Sivai ailiaki isiiliali,	PME 349 6(1975)106p.
Shuiman, George	88(1981)350s.	Siwiec, Frank	AMM E2614 83(1976)657p.
Shultz, Harris S.	MM 1012 50(1977)99p.	Sjoberg, Bob	PENT 276 35(1976)101s.
Shumm, George F		Sjögren, Peter	AMM E2732 85(1978)681p.
, , , , , ,	AMM E2746* 85(1978)824p.	Skalsky, Michael	AMM 6092 85(1978)123s; E2724
Shute, Gary	MM 966 50(1977)166s.		86(1979)708s.
Sicks, Jon L.	AMM 6044 84(1977)392s.	Slater, Gary	SPECT 11.8 12(1980)62s.
Sidhu, Ravi	FUNCT 2.3.3 $2(1978/4)31s$.	Slater, Michael	AMM 6011 82(1975)85p; 6101
Sidney, Stuart Jay	AMM 6023* 82(1975)308p, 6042* 766p,		83(1976)490p; E2755 86(1979)127p, E2756
~	5961 861s; 6027 84(1977)143s.	G1: 1: G1 :	128p, E2802 785p.
Siegel, David	AMM 6280 86(1979)793p.	Slawinski, Chris	AMM 6238 87(1980)409s.
Silber, R.	SIAM 76-1 19(1977)744c; 76-1	Slepian, D.	SIAM 78-14 20(1978)594p.
C:1 E.1	20(1978)184c.	Sloan, Bob Sloane, N. J. A.	MSJ 474 26(1979/8)2s. AMM E2704 85(1978)198p. NAvW 509
Silvernen Devid	SSM 3642 76(1976)527p.	Sloane, N. J. A.	26(1978)350p.
Silverman, David	CRUX 215 3(1977)42p, 226 66p. JRM 373	Sloyan, Sister Step	
	8(1976)47p, 377 49p, 319 151s, 422 230p,		SSM 3695 78(1978)448s.
	423 231p, 425 231p, C1* 233p, C2*	Sloyan, Stephanie	AMM E2793 88(1981)707s. PME 442
	234p, C3* 234p, C4* 234p, 443 312p;		7(1980)139s, 454 195s, 461 203s. SSM 3747
	465 9(1977)25p, 480 31p, 81a* 130p, 499		79(1979)716s; 3777 80(1980)446s.
	132p, 508 136p, 527 210p, 531 212p, 534		TYCMJ 128 11(1980)135s.
	212p, 540 214p, 288 223s, 291 224s, 572*	Small, Charles	AMM 6148 84(1977)300p.
	287p, 557 296p, 567 298p, 343 311s; 601	Small, R. D.	SIAM 75-14 18(1976)501x.
	10(1978)54p, 303 58s, 383 67s, 625 128p,	Smid, L. J.	NAVW 374 23(1975)86s.
	631 129p, 499 150s, 647 211p, 648 211p, 651 211p, 659 213p, 673 284p, 677* 284p,	Smiley, M. F. Smit, I. H.	AMM 6095 85(1978)59s. NAvW 511 26(1978)351p.
	682 286p, 685 287p; 701* 11(1979)35p,		NYSMTJ 76 28(1978)531p. NYSMTJ 76 28(1978)52p, 76 154s.
	373 49s, 788 301p. PME 342 6(1975)105p,	Smith, D. Hammo	(/ 1 /
	357 179p; 370 6(1976)227p, 379 308p; 388		CMB P236 19(1976)124s.
	6(1977)365p, 370 378s, 403 418p, 379 427s;	Smith, David A.	MM 1024 50(1977)211p.
	388 6(1978)488s.	Smith, Dianne	MSJ 406 22(1975/1)6s.
Silverman, Joseph	AMM E2758 87(1980)405s, E2766 406s.	Smith, Emily	ISMJ 14.2 14(1979/2)7s; 14.7
	MM 895 48(1975)118s; 942 49(1976)153s,		14(1979/3)3s.
	999 252p; 981 50(1977)271s; 1036	Smith, Gene	AMM 6268 86(1979)398p.
a	. 51(1978)127p. TYCMJ 19 6(1975/1)34s.		FUNCT 2.5.1 2(1978/5)20p.
Simionescu, Claud		Smith, J. Denmea	
	AMM 6113 83(1976)661p; 6113 85(1978)392s.	Smith, J. Philip	AMM 6038 84(1977)301s. SSM 3684 78(1978)354s.
Simmonds, T. C.	OSSMB G76.1-6 12(1976/1)6p.	Smith, J. Phillip	SSM 3778 80(1980)446s.
Simmonds, T. C. Simmons, G. J.	AMM E2440 82(1975)76c. SIAM 75-2	Smith, J. R.	AMM 5940 82(1975)186s.
ommons, c. v.	17(1975)167p; 75-2 18(1976)301s.	Smith, James C.	AMM E2697 86(1979)225s.
Simon, J. M.	AMM E2561 82(1975)936p.	Smith, Jerry E.	SSM 3715 79(1979)86s.
Simon, Philip	JRM 624 11(1979)150s; 715 12(1980)77s.	Smith, Karl J.	JRM 202 9(1977)54s. MATYC 80
Simonds, David R	•	,	10(1976)202s.
	NYSMTJ 63 27(1977)137s. PME 396	Smith, Kenneth W	V.
	6(1977)367p; 435 6(1978)541p.		AMM 6272 86(1979)509p; 6272
Simons, Edgar	AMM E2787 87(1980)673s.		88(1981)353s.
Simons, F. H.	AMM 5999 84(1977)62s. NAvW 385	Smith, Kirby C.	AMM E2635 84(1977)134p.
a	24(1976)81s.	Smith, Malcolm A	
Simons, William	AMM E2697 85(1978)116p.	a	CRUX 434 6(1980)59x.
Simowitz, Abe	TYCMJ 107 9(1978)40p.	Smith, Michael	AMM 6213 89(1982)279s.
Simpson, Donval I		Smith, Paul	AMM E2526* 82(1975)300p. FQ B-283
Singer, Saul	CRUX 491 6(1980)291c. AMM E2510 82(1975)73p; E2713*		13(1975)192s; B-390 17(1979)371s. MATYC 114 13(1979)70s.
omger, Saul	85(1978)384p.	Smith, Philip	SSM 3642 76(1976)527p; 3738
Singh, Sahib	AMM E2800 87(1980)825s. FQ B-344	эшин, гишр	78(1978)620p.
omgn, bannb	15(1977)377s; B-360 16(1978)474s, B-361	Smith, Robert A.	JRM 71 9(1977)138s.
	475s, B-366 563s, B-368 564s; B-371	Smith, Scott	MM 943 49(1976)212s.
	=, = 000 0000, = 000 0010, B 0.1	, , , , , , , , , , , , , , , , , , , ,	5.5 10(10.0)=1=0.

Smyth, C. J.	1975-	-1979	Sutton Jr., Robert A.
Smyth, C. J. Snow, Wolfe	AMM 5931 82(1975)86s. AMM E2465 82(1975)405s; 6004	Stenger, Allen	AMM E2483 82(1975)758s; E2518 83(1976)291s, 5984 294s, E2520 383s, E2523
	83(1976)575s.		384s; E2655 85(1978)682s, E2656 766s;
Sokolowsky, Dan	AMM 6060 82(1975)1016p. CRUX 120 2(1976)139c, 171 170p, 134 174s; 171	Stern, Ely	E2675 86(1979)58s. MATYC 110 13(1979)67s, 133 135p.
	3(1977)26s, 220 43p, 225 65p, 248 131p, 206	Stern, Frederick	FQ B-374 16(1978)88p.
	143s, 210 160s, 270 190p; 320 4(1978)36p,	Steutel, F. W.	AMM 5999 84(1977)62s. NAvW 416
	248 102c, 288 136s, 352 159p, 309 200s, 383		24(1976)204s, 422 273s; 454 25(1977)200s,
	250p; 433 5(1979)108p, 444 132p, 487 266p;	C. I	455 201s.
Solomon, Arthur F	483 6(1980)227s, 342 319x.	Stevens, Jay	JRM 583 10(1978)41p, 665-3 275p; 776 11(1979)295p.
Solomon, Intendi	AMM 6128 85(1978)688s. SSM 3766	Stevens, Richard S	\ / ·
	80(1980)266s, 3778 446s.		AMM E2584 84(1977)490s.
Solomon, Daniel	MSJ 415 22(1975/3)6s.	Stimler, Charles	CRUX 163 2(1976)135p. MSJ 438
Solomon, Marius	AMM E2663 84(1977)487p. MM 972 49(1976)95p; 1010 50(1977)99p.	Stine, Vance	24(1977/2)6s. PME 407 6(1977)419p.
Solomon, Marvin	AMM 6128 85(1978)688s.	Stock, Daniel L.	TYCMJ 39 7(1976/2)52s.
Somer, Lawrence	FQ B-386 16(1978)473p; B-408	Stolarsky, K. B.	SIAM 75-19 17(1975)686p.
	17(1979)281p, B-382 282s, B-385 283s;	Stone, David R.	CRUX 176 3(1977)30s, 217 43p, 149
a	H-285 18(1980)281s.		47c, 149 47s, 190 76s, 194 82c, 194 82s,
Somos, Michael Soni, K.	AMM E2506 83(1976)60c.		205 142s, 208 157s, 219 173s, 216 198c, 230 234c, 293 297p; 272 4(1978)86s; 430
Sorensen, Lars	NAvW 462 25(1977)439s. ISMJ J11.5 11(1976/2)9s; J11.7		6(1980)52s, 437 64c.
Sofensen, Lais	11(1976/3)3s.	Stott, P.	PARAB 335 13(1977/3)29s, 336 30s, 338
Soules, George W.	AMM 6162 86(1979)227s.	,	31s, 341 34s; 349 14(1978/1)31s, 351 32s.
Spangler, Carl	PME 436 6(1978)542p.	Straffin, Philip D.	AMM E2641 84(1977)216p. CRUX 334
Spearman, Blair	AMM E2766 87(1980)406s. TYCMJ 80		4(1978)101p, 334 285s. MM 1005 51(1978)249s.
C11 T - 1	9(1978)100s; 121 11(1980)62s.	Strauch, Oto	AMM 6038 82(1975)671p; 6090
Spellman, John Spencer, Armond l	AMM E2766 87(1980)406s.	Stradon, Oto	83(1976)385p.
Spencer, Armond	AMM E2637 84(1977)134p.	Straus, Ernst G.	AMM 6094 85(1978)57s; E2746 87(1980)64s.
Spencer, Joel A.	AMM E2522 82(1975)300p, E2465 406s.		JRM 654 12(1980)222c. NAvW 387
	CRUX 420 5(1979)48p, 428 77p; 420		23(1975)183s. PME 360 6(1975)179p; 339 6(1976)230s, 360 321s; 438 6(1979)615p; 438
C M .:	6(1980)21s.		7(1980)190s.
Spencer, Martin Spencer, Thomas	SPECT 8.1 8(1976)92s. AMM 6041 84(1977)302s.	Strauss, F. B.	AMM 5981 83(1976)209s; E2641
Spikell, Mark A.	AMM E2596* 83(1976)379p.		85(1978)496s; E2737 87(1980)305s.
Spinetto, R. D.	SIAM 76-7* 18(1976)294p.	Streif, Vince	CRUX 333 4(1978)269s.
Sprague, R.	JRM 71 9(1977)138s.	Streit, Roy Stretton, William	AMM E2726* 85(1978)593p. MATYC 83 11(1977)65s; 134 13(1979)136p.
Sprinkhuizen-Kuyp		Strikwerda, J.	SIAM 78-18 21(1979)568s.
Concern David I	NAvW 503 27(1979)137s.	Stroeker, R. J.	NAvW 446 24(1976)187p; 467 25(1977)88p,
Sprows, David J. Spruck, J.	MM 977 49(1976)96p. AMM E2801 86(1979)785p.		446 99s; 500 26(1978)234p, 500 476s; 533
	SIAM 75-17* 17(1975)685p.	Ctuomana Danda	27(1979)135p, 545 270p, 529 420s.
,	roblem Solving Group, the	Strommen, Kandy	ISMJ J11.1 11(1976/2)8s; J11.10 11(1976/3)5s.
	AMM 6054 84(1977)494s; E2803	Stromquist, Walte	
G. 11 G. 1	88(1981)149s. MM 987 51(1978)71s.	, ,	AMM E2786 86(1979)592p.
Stahl, Saul Stam, A. J.	AMM 5953 83(1976)574s. NAvW 404 24(1976)90s.	Struble, R. A.	MM 932 48(1975)115p.
,	Problem Solving Group, the	Stuart, Christophe	
Starriora Statistics	AMM 6031 84(1977)144s.		FUNCT 1.1.7 1(1977/1)30p; 1.1.7 1(1977/4)9s; 1.3.5 1(1977/5)28s; 1.2.6
Stangle, Joseph	SSM 3734 78(1978)533p.		2(1978/1)19s.
Stanley, Richard	AMM E2540 82(1975)659p, E2546 756p;		PENT 320 40(1980)43s, 321 44s.
	E2540 83(1976)659s, E2546 813s; 6154	Sturm, Jacob	AMM E2467 82(1975)407s.
	84(1977)392p; E2700 85(1978)117p, E2701 197p; E2794 87(1980)756c.	Stuyvesant High S	
Stark, J. M.	MM 1006 51(1978)306s; 1057 53(1980)113s,	Subbarao, M. V.	AMM 6238 87(1980)409s. AMM E2457 82(1975)176s.
,	1067 185s.	Sugai, Iwao	SIAM 76-4 18(1976)118p; 76-4
Starke, Emory P.	AMM E2434 82(1975)402c; E2392	5 4841, 11145	19(1977)153s.
	83(1976)380s, E984 567c, E2533 570c.	Sulek, Robert	TYCMJ 45 6(1975/3)35p; 59 7(1976/1)29p;
Staum, Richard	MM 1042 52(1979)263s. AMM 6155 86(1979)133s.	0.11.	45 7(1976/3)50s.
Steck, G. P.	AMM 5942 82(1975)768s.	Sullivan, John J.	NYSMTJ 73 27(1977)136p; 85 29(1979)86s.
Steger, A.	SIAM 79-2 21(1979)139p.	Suna, Lester	TYCMJ 45 6(1975/3)35p; 59 7(1976/1)29p; 45 7(1976/3)50s.
	MATYC 57 9(1975/1)50s.	Sunday, Joe G.	AMM E2570 83(1976)53p, E2589 284p.
Steiger, Gary	MSJ 434 23(1976/2)8p.	Sung, Chen-Han	AMM 6118 85(1978)506s.
Stein, Alan H.	AMM E2661 85(1978)685s.	Sute, Max	SSM 3577 75(1975)297p.
Steinberg, S.	SIAM 79-2 21(1979)139p.	Sutton Jr., Robert	
Steinlage, R.	AMM E2720 86(1979)707c.		TYCMJ 85 9(1978)181s; 109 10(1979)216s;
Stelman, Mike	MSJ 473 26(1979/8)2s.		132 11(1980)210s.

Svendsen, K.	19	75–1979	Trigg, Charles W.
Svendsen, K.	PARAB 394 15(1979/2)38s, 399 41s, 400 42s.	Toms, David J.	JRM 770a 12(1980)235s, 798 317s.
Swafford, Jane O.		Torbijn, P. J.	JRM 391 10(1978)137s, 426 219s.
Sweet, M.	AMM 6162 86(1979)227s.	Torchinsky, A.	AMM E2790 86(1070)502p
Takács, Lajos	AMM 6149 86(1979)61s; S1 87(1980)134s,	Totten, Jim Tougne, Pierre	AMM E2780 86(1979)503p.
, 3	6230 142s; 6262 88(1981)71s, 6271 217s.	Tracy, Philip	JRM 677 12(1980)300s.
Takizawa, Kiyoshi	AMM 6224 89(1982)704s.	Tracy, Finip	FQ B-276 13(1975)96s; H-211 16(1978)154s. MM Q626 48(1975)240p, Q626 248s.
Tamhankar, Anan	d	Trapp, G.	SIAM 76-8 18(1976)295p.
	AMM 6057 84(1977)495s.	Triesch, E.	NAvW 515 28(1980)120s; 551 29(1981)106s,
Tamura, Saburo	JRM 707 11(1979)37p.	Triesen, E.	552 107s.
Tan, Ngo Tang, C. Y.	CRUX 483 6(1980)227s. AMM 5976 83(1976)145s.	Trigg, Charles W.	CRUX 111 2(1976)95c, 93 111s, 121 113s,
Tang, U. 1. Tang, Hwa	AMM 6152 86(1979)66s.		122 115c, 133 144c, 135 153s, 136 155s,
Tannenburg, Alfre			137 156s, 145 181c, 181 193p, 182 193p,
0,	JRM 619* 10(1978)119p.		153 196s, 158 201s, 197 220p, 164 230c,
Tanny, Stephen	MM 1066 52(1979)113p.		164 230s; 203 3(1977)9p, 145 16c, 181 57s,
Taussky, Olga	AMM 6210 85(1978)389p.		228 66p, 197 108s, 199 112s, 245 130p, 197 156c, 221 200s, 223 203c, 274 226p, 241
Taverna, Anthony			265s, 292 297p; 328 4(1978)66p, 261 68c,
Taves, Henry V.	JRM 703 12(1980)68s, 792 311s.		268 78s, 268 79c, 281 113s, 345 134p, 359
Taylor, D. E. Taylor, Herbert	NAvW 501 27(1979)136s, 502 137s. AMM E2452 83(1976)568s; 6141		161p, 371 224p, 385 250p, 335 287s; 345
rayior, merbere	84(1977)221p. PME 420 6(1978)483p; 420		5(1979)25s, 426 77p, 361 88s, 381 172s,
	6(1979)629s.		391 207s, 399 237s, 401 267s, 410 296c; 437
Taylor, I. D. S.	SìAM 75-8 18(1976)493s.		6(1980)63c, 441 85c, 481 222s, 486 258s;
Taylor, Kenneth E	3.		93 10(1984)293s. FQ B-312 14(1976)287s, B-316 470s; B-322 15(1977)94s; B-348
	AMM 3887 90(1983)486s. MM Q612		16(1978)90s. JRM 365 9(1977)68s, 71 138s,
m ı r	48(1975)52p, Q612 58s.		311 304s; 382 10(1978)66s, 469 75s, 394
Taylor, Larry	AMM 6058 82(1975)942p. FQ H-277 15(1977)371p; H-307 17(1979)374p; H-277		140s, 505 156s, 443 296s; 629 11(1979)152s,
	22(1984)91s; H-307 25(1987)285s.		649 227s; 698 12(1980)50s, 760 228s.
Taylor, P. D.	AMM 6166 88(1981)296s.		MATYC 96 11(1977)63p, 93 223s, 95 224s;
te Riele, H. J. J.	JRM 81a 10(1978)131s. NAvW 466		124 12(1978)254p, 105 254s. MM 886
	25(1977)88p, 467 445s.		48(1975)58c, 929 115p, Q616 116p, Q616 122s, 943 181p, Q621 182p, Q621 186s, 882
Temme, N. M.	NAvW 464 25(1977)442s; 518		302c. MSJ 417 22(1975/1)5p. OSSMB 78-6
m 1 m	27(1979)280s.		14(1978/2)24s. PENT 272 34(1975)103p;
Temple University	Problem Solving Group, the		267 35(1975)34s, 268 36s, 270 37s; 272
	AMM E2451 82(1975)83s, E2465 405s, E2486 852s; E2527 83(1976)485s; E2561		35(1976)98s; 288 36(1976)31p, 289 31p,
	84(1977)217s.		290 31p, 280 35s; 296 36(1977)94p, 284
Templeton, J. G.	` '		96s, 286 98s; 297 37(1977)26p, 287 27s; 303 37(1978)82p, 304 82p, 292 84s, 295 87s,
	SIAM 75-8 18(1976)493s.		296 88s; 303 38(1979)81s; 318 39(1979)30p,
Thabur, Veda	OSSMB 76-8 12(1976/3)21s.		319 30p, 307 32s; 315 39(1980)107s; 317
Thelen, James M.	MATYC 73 9(1975/1)49p; 77 9(1975/2)51p; 65 9(1975/3)45s; 87 10(1976)122p.		40(1980)38s. PME 340 6(1975)104p, 352
Therneau, Terry	AMM E2526 83(1976)484s.		178p, 333 188s, 336 191s; 364 6(1976)227p,
	AMM E2440 82(1975)75s.		341 232s, 346 240s, 377 306p, 341 309c,
Thomas, H. Laver			352 312s, 354 314s; 386 6(1977)364p, 364 371s, 365 372s, 365 374c, 402 418p,
	NYSMTJ 80 29(1979)60s; 96 30(1980)170s,		381 428s; 415 6(1978)482p, 386 485s, 387
	99 172s.		486s, 391 490s, 393 492s, 425 539p; 440
Thomas, John	CRUX 35 1(1975)25p, 50 39p, 21 40s, 23		6(1979)616p; 458 7(1979)59p, 425 61s, 433
Thompson, C. C.	41s, 59 49p, 66 57p, 79 72p, 59 92s.		70s; 446 7(1980)143s, 449 191s, 451 192s,
Thompson, Gerald	FQ B-400 18(1980)187s.		455 196s, 458 199s, 459 200s. SSM 3544
r nompson, Gerare	AMM E2742 87(1980)63s.		75(1975)199s, 3545 200s, 3549 202s, 3570 204p, 3573 204p, 3551 294c, 3550 294s,
Thompson, Joseph			3574 297p, 3556 383s, 3559 384s, 3561
	JRM 676 10(1978)284p; 790 11(1979)302p.		385s, 3580 386p, 3562 474s, 3566 476s, 3586
Tierney, John A.	CRUX 119 2(1976)26p, 120 26p, 98 49s; 417		477p, 3569 564s, 3572 566s, 3573 567s, 3594
TC: 1 4 D	5(1979)47p, 417 309s.		568p, 3574 653s, 3576 655s, 3598 657p,
Tiggelaar, A. E. Tijdeman, R.	NAvW 422 24(1976)212s. NAvW 413 23(1975)176p; 386 24(1976)82s,		3581 744s, 3610 748p; 3588 76(1976)84s,
rijdeman, n.	386 84c; 500 26(1978)234p.		3591 85s, 3614 86p, 3592 170s, 3594 172s, 3618 174p, 3597 262s, 3598 262s, 3599 263s,
Tiner, John Hudso	, , , ,		3602 264s, 3624 266p, 3629 266p, 3606
,	SSM 3643 76(1976)527p.		439s, 3630 445p, 3631 445p, 3637 446p,
Tiong, Lim	SPECT 8.8 9(1977)65s.		3618 531s, 3653 622p, 3575 622c, 3576
Tiwari, Ram Rekh			623c, 3609 623c, 3613 715c, 3608 716c,
	CRUX 439* 5(1979)109p, 454* 166p.		3626 717s; 3629 77(1977)78s, 3676 264p,
To, Tony	SSM 3702 77(1977)713p.		3642 266s, 3680 353p, 3686 443p, 3650
Todd, Philip	MM 1055 53(1980)53s. FUNCT 3.2.5 3(1979/4)30s, 3.2.6 30s; 3.4.2		445s, 3693 531p, 3694 531p, 3654 533s, 3697 620p, 3660 622s, 3661 623s, 3662
romuist, stephen	4(1980/1)28s. PARAB 411 15(1979/3)36s.		624s; 3712 78(1978)82p, 3674 84s, 3714
Tomescu, Ioan	AMM E2582 83(1976)197p; 6252		170p, 3678 171s, 3685 355s, 3693 447s,
,	86(1979)131p, E2764 223p.		3733 533p, 3697 534s, 3741 621p, 3703

Trigg, Charles W. 1975-1979 Vaughan, T. 624s, **3748** 713p, **3706** 714s, **3708** 716s; **3757 NAvW 458** 25(1977)86p; **472** 26(1978)242s, van Albada, P. J. 79(1979)172p, **3717** 174s, **3722** 261s, **3723 473** 244s, **491** 468s; **523** 27(1979)132p; **537** 261s, **3768** 355p, **3776** 444p, **3734** 448s, 28(1980)129s, **544** 134s. **3782** 528p, **3743** 533s, **3787** 711p; **3755** van Benthem, J. F. A. K. 80(1980)79s, **3759** 176s, **3765** 265s, **3779** NAvW 391 23(1975)79p. 447s, **3781** 527s. **TYCMJ 90** 8(1977)177p; van Casteren, J. A 147 10(1979)293p. **NAvW 443** 25(1977)95s; **537** 27(1979)268p, Trimble, Richard W **517** 280c; **537** 28(1980)127s. **TYCMJ 52** 8(1977)45s. van de Craats, Jan AMM 6255 87(1980)679s. Tripp, John AMM S2 87(1980)134s. CRUX PS7-2 Trost, Ernst W. AMM E2621 85(1978)118s, 6138 772s; 5(1979)259p; **476** 6(1980)217s, **485** 256s, **E2766** 87(1980)406s, **E2777** 494s, **E2800 488** 261s, **496** 323s. NAvW 399 23(1975)82p, 400 82p, 410 176p, van de Lune, J. Trotter Jr., W. T. AMM 6262 86(1979)226p. **411** 176p, **412** 176p, **422** 244p, **423** 245p; **433** 24(1976)80p, **434** 80p, **410** 103s, **443** Troxel, Richard NYSMTJ 93 30(1980)55s. Trudel-Marion, Nicole 186p, **444** 187p, **454** 272p, **455** 272p, **434** CRUX 22 1(1975)40s. 284s; **464** 25(1977)88p, **465** 88p, **473** 187p, **474** 187p, **464** 442c; **498** 26(1978)233p, **499** Tschantz, Steven **MM 976** 49(1976)96p; **976** 50(1977)267s. Tsintsifas, George A 234p, **473** 244s, **510** 351p, **519** 464p, **520 AMM E2514** 82(1975)73p; **5973** 464p; **530** 27(1979)134p, **556** 410p. 83(1976)142x; **E2639** 84(1977)135p, Van der Spek, W. **E2656** 386p, **E2657*** 386p, **E2674*** 652p. JRM 711 12(1980)75s, 728 145s, 733 150s, CRUX 408 9(1983)114c. **787** 306s, **790** 310s. Tucker, Annette ISMJ 13.12 13(1978/3)7s. van der Waall, R. W. NAvW 448 24(1976)270p, 432 282s; 555 Tuegel, Dale **MSJ 406** 22(1975/1)6s. Turk, J. W. M. **NAvW 464** 25(1977)442c; **505** 27(1979)140s, 27(1979)410p. **NAvW 395** 23(1975)80p; **440** 24(1976)185p; **507** 143s. van Dulst, D. **471** 25(1977)187p. Turner Jr., Kenneth V. AMM 6083 84(1977)830s; E2743 **TYCMJ 65** 7(1976/2)50p. Van Hamme, L. $87(1980)221s,\;$ **E2796** $824s;\;$ **E2808** Turner, Barbara **MM 1086** 52(1979)317p, **1087** 317p. 88(1981)211s. MM 958 50(1977)49s. **TYCMJ 133** 10(1979)53p. Tyrrell, J. A. **AMM 6097** 85(1978)286s. van Hoorn, M. C. **NAvW 436** 24(1976)184p; **436** 25(1977)90s. van Houwelingen, J. C. Udpikar, S. G. AMM 6052 84(1977)492s. **NAvW 556** 28(1980)219s. Uhlig, Frank **AMM 6006** 82(1975)84p; **E2711 SIAM 78-18** 21(1979)567s. 85(1978)277p. van Kan, J. Ulrich, E. J. **SSM 3650** 76(1976)621p. van Lint, J. H. NAvW 375 23(1975)88s, 397 252s, 399 255s; **SSM 3617** 76(1976)86p. **386** 24(1976)83s, **413** 107s, **453** 271p, **427** Ulrich, James F. 279s; **417** 25(1977)89s, **441** 93s, **444** 95s, Underwood, Douglas MM 1086 53(1980)304s. **445** 97s, **428** 190s, **453** 199s, **466** 444s; **497** 26(1978)233p, **477** 251s, **509** 350p, Ungar, A. **SIAM 77-4** 19(1977)147p. **483** 362s, **484** 363s, **492** 470s, **499** 475s; Ungar, Peter AMM 5314 82(1975)672s, 5670 677s, **528** 27(1979)133p, **516** 278s, **519** 282s, **5405** 1017s; **E1073** 83(1976)135s; **5608 525** 415s, **529** 419s; **528** 28(1980)205s; **551** 85(1978)500s, **E2743** 823p. **MM 980** 29(1981)106s, **552** 107s. 49(1976)149p. van Meeuwen, W. H. J. H. University of British Columbia Problems Group, the AMM 6036 85(1978)830s. NAvW 544 27(1979)269p; 544 28(1980)135c. University of Hartford Problem Solving Group, the AMM E2787 87(1980)673s. MM 1072 van Nieuwkasteele, C. P. 53(1980)247s, **1078** 251s, **1085** 303s. NAvW 544 27(1979)269p; 544 28(1980)135c. University of Maine at Machias Ms 106B class, the AMM E2639 85(1978)388s. van Ouwerkerk-Dijkers, M. P. NAvW 406 24(1976)96s. University of Santa Clara Problem Solving Ring, the AMM E2738 87(1980)62c, E2756 223s, van Putten, B. NAvW 541 28(1980)131c. van Rijk, M. NAvW 435 24(1976)80p, 435 285s. E2766 406s, E2787 673s. University of South Alabama Number Theory Class, the van Tilborg, H. C. NAvW 487 25(1977)425p; 497 AMM E2621 85(1978)118s, E2627 201s. 26(1978)474s. University of South Alabama Problem Group, the AMM E2551 83(1976)816s; E2560 van Ulvenhout, M. N. 84(1977)140s, **6063** 579s; **E2666 NAvW 477** 25(1977)189p. 85(1978)824s; **6178** 86(1979)400s; **E2766** Van Wijngaarden, A 87(1980)406s, **6247** 761s. **JRM 81a** 10(1978)131s. University of Wyoming Problem Group, the Vanbrugghe, Bernard AMM E2700 86(1979)311s. CRUX 124 2(1976)41p, 125 41p, 98 49s, 100 52s, **153** 110p, **125** 121s; **184** 3(1977)70s. Unsworth, K. **MENEMUI 1.1.3** 1(1979/1)53p. Unz. Ron MSJ 465 26(1979/6)2s; 490 27(1980/3)3s. Vanden Eynden, Charles AMM E2769 87(1980)308s. Usiskin, Zalman **MSJ 460** 25(1978/7)2p; **461** 25(1978/8)2p. SSM 3489 78(1978)714s. VanDeventer, James MATYC 70 10(1976)43s. Utz, W. R. MM 1050 51(1978)245p. NAvW 447 24(1976)187p. SIAM 79-17* 21(1979)559p. Vasa, Kenneth **JRM 750** 11(1979)208p. TYCMJ 94 9(1978)300s. Vasić, P. M. **AMM 6106*** 83(1976)573p. Valdez, Eduardo **MM 1057** 53(1980)113s. Vaughan, R. J. **SIAM 75-12** 18(1976)500s.

FQ H-244 14(1976)466s.

Vaughan, T.

Valk, Gillian W.

MM 940 49(1976)152s; **1027** 52(1979)114s.

Author Index

Veldkamp, G. R.	1975	-1979	Wayne, Alan
Veldkamp, G. R.	NAvW 372 23(1975)83s, 384 181s; 401	Wang, Bella	TYCMJ 47 7(1976/4)35s.
	24(1976)84s, 414 195s, 415 198s, 424 276c;	Wang, Edward T.	Н.
	469 26(1978)237s, 481 358s, 482 359s, 490		AMM E2541 82(1975)659p, E2496
	466s, 494 471s; 512 27(1979)275s, 514 277s,		939s; E2604* 83(1976)483p; E2662*
	526 415s; 513 28(1980)119s, 513 120c, 535		84(1977)487p, E2678* 738p; 6189*
	124s, 536 125s, 545 136s, 546 209s, 547		85(1978)54p, E2708 276p, 6234* 770p;
	211s, 548 213s.		S22 86(1979)863p. MM 896 48(1975)119c;
Veldman, D. J.	NAvW 383 23(1975)180s; 402 24(1976)87s.		995 49(1976)212p, 1001 253p; Q650
Vélez, W. Y.	AMM E2468 83(1976)288c.		50(1977)266p, Q650 271s; 984 51(1978)195c,
Veness, John	CRUX 267 3(1977)190p.		1049 245p; 1061 52(1979)46p, 1064 47p,
Venetas, Hank	JRM 614 10(1978)115p; 697 11(1979)30p.		Q657 47p, Q657 55s; 1061 53(1980)116s.
Venit, S.	SIAM 76-9* 18(1976)295p.	Wang, Stuart SS	5.
Venkatachala, B. J		J	AMM E2773 87(1980)492s.
	AMM E2715 86(1979)705s.	Wannamaker, Tor	. ,
Verbakel, J. M.	JRM 570 12(1980)299s.	,	TYCMJ 62 8(1977)241s.
Verhezen, S.	JRM 710 12(1980)74s.	Wapner, Leonard	
Vermes, Robert	AMM 6033 84(1977)223s.	Ward, Michael	AMM E2708 86(1979)594s.
Vickers, G. T.	AMM E2737 87(1980)305s.	Wardlaw, William	
Vidav, Ivan	AMM 6228 85(1978)686p.	wardiaw, wiiiiaii	AMM E2696 85(1978)116p; 6251
Viel, Rosann F.	PENT 268 35(1975)35s.		
Viertel, William K		Wandara D. E.	86(1979)60p, 6284 869p.
vierter, vviiilain ix	SSM 3672 77(1977)263p.	Wardrop, R. F.	SSM 3595 75(1975)568p, 3608 747p;
X7: A	· / -		3608 76(1976)441s, 3608 716c; 3679
Vince, A.	AMM E2539* 82(1975)521p.	****	77(1977)353p, 3689 444p.
Ving, Dun Pru	PME 419 8(1984)46s.	Warndof, Joseph	
Vinnicombe, Bob	JRM 660 10(1978)274p.		AMM 6167* 84(1977)576p.
Viswanathan, B.	CMB P227 18(1975)619s.	Warner, Seth	AMM 6068 83(1976)62p.
Vlášek, Zdeněk	AMM 6279 88(1981)542s; 6279	Washburn, Phillip	o C.
	90(1983)488s.		AMM E2604 84(1977)821s.
Vogel, John W.	AMM E2791 86(1979)702p.	Washington, L.	AMM 6246 86(1979)59p.
Vogel, Julius	MM 911 48(1975)244s; 939 49(1976)152s.	Wasserstrom, E.	SIAM 75-15 17(1975)567p.
Vogt, Andrew	AMM E2537 83(1976)658s; 5790	Watatani, Yasuo	AMM 6277 86(1979)709p; 6277
	89(1982)215s.	,	88(1981)449s.
Vogt, Gerrianne	PME 378 6(1977)426s.	Waterhouse, Will	
Vojta, Paul A.	AMM E2611 85(1978)199s, E2612 199s,	, vaccinouse, vini	AMM 6082 85(1978)503s, E2653 599s;
• /	E2671 827c; E2742 87(1980)63s, 6233 408s.		6161 86(1979)136s, 6264 311p. MM 938
Von Eschen, Ellis	TYCMJ 127 11(1980)134s.		48(1975)180p; 1025 50(1977)265p.
Voorhees, B. H.	AMM 6062* 82(1975)1016p.	Waterman M C	_ ` ` / /
Voss, D. A.	SIAM 75-7* 17(1975)169p.	Waterman, M. S.	SIAM 77-1* 19(1977)146p.
Vowe, Michael	AMM E2720 86(1979)707s.	Watkins, Ann E.	TYCMJ 107 10(1979)214s.
Wachtel, M.	FQ B-391 16(1978)562p; B-410	Watson, G. L.	AMM E2745 87(1980)222s.
vvacioci, ivi.	17(1979)282p.	Watts, Wayne	OSSMB 76-17 13(1977/1)22s.
Waddington John	OSSMB 74-17 11(1975/1)21s; 77-1	Wayne, Alan	AMM E2566 84(1977)221c; E2776
waddington, John	13(1977/2)21s; 78-3 14(1978/3)18s; 79-2		86(1979)393p. CRUX 261 3(1977)189p,
	15(1979/2)18s. 14 (1970/9)16s, 19-2		281 250p; 321 4(1978)65p, 210 193c,
Wadhwa, S. S.	PARAB 372 14(1978/3)31s.		340 294s; 411 5(1979)46p, 431 107p,
Wadsworth, Adria:			471 228p, 491 291p; 431 6(1980)55s,
wadsworth, Adria.			471 196s. JRM 581 10(1978)41p, 615
W C+	AMM 6177 84(1977)744p.		116p. MM 931 48(1975)115p, Q619 117p,
Wagon, Stan	AMM E2648 85(1978)595s; E2710		Q619 122s, 945 238p, 960 294p; 925
M. H. C.	86(1979)594s, 6278 709p.		49(1976)46s; Q660 52(1979)179p, Q660
Wai, Ho Siew	MENEMUI 0.2.1 1(1979/1)54s.		184s, 1088 317p. MSJ 433 23(1976/2)8p.
Waits, Bert	MM 1085 52(1979)317p.		NYSMTJ 37 25(1975)20p, 39 20p, 30 22s;
Walbrook, Fred	JRM 463 9(1977)24p; 603 10(1978)55p.		58 27(1977)137s; 85 28(1978)151p; 88
Wald, Morris	JRM 795 12(1980)315s.		29(1979)57p, 91 57p, OBG8 84p, OBG8
Wales, Thomas C.	TYCMJ 56 8(1977)98s; 99 10(1979)56s, 112		88s, 99 145p, OBG9 146p, OBG9 150s; 95
	295s; 130 11(1980)138s.		30(1980)57s, 97 170s, 100 173s. PME 458
Walker, A. W.	AMM E2475 82(1975)662s, E2476 663x,		7(1980)199s. SSM 3568 75(1975)204p,
•	E2477 664s; E585 83(1976)134s.		3576 297p, 3554 382s, 3581 386p, 3564
Walker, G. W.	AMM E1073 82(1975)72r.		475s, 3567 476s, 3587 477p, 3593 568p,
,	AMM S11 87(1980)753s. TYCMJ 56		3600 657p, 3582 744s, 3607 747p; 3613
	8(1977)98s.		76(1976)85p, 3622 175p, 3626 266p, 3633
Walker, Larry	AMM E2517 83(1976)204s.		. , 1, 1, 1,
Walker, Patrick	MSJ 427 23(1976/1)7s, 429 7s.		445p, 3639 446p, 3645 527p, 3594 528c, 3505 528c, 3640 621p, 3622 626c, 3654
Wall, Charles	FQ B-141 13(1975)370c, H-188 370c.		3595 528c, 3649 621p, 3622 626s, 3654
			714p, 3627 718x; 3661 77(1977)77p, 3665
Wallen, L. J.	AMM 5943 82(1975)309s, 5944 310s.		78p, 3669 169p, 3673 263p, 3682 353p,
Waller, R. A.	SIAM 77-1* 19(1977)146p.		3649 444s, 3691 530p, 3654 533s, 3705
Walls, Gary L.	AMM 6222 87(1980)760s.		714p, 3669 716s; 3708 78(1978)81p, 3713
Walsh, Bertram	AMM 6085 84(1977)833s.		82p, 3716 170p, 3718 170p, 3724 354p,
Walsh, Joanna	MATYC 114 13(1979)70s.		3737 533p, 3739 620p, 3747 713p; 3750
Walsh, Robert	JRM 498 9(1977)132p, 504 134p, 512 137p;		79(1979)79p, 3755 80p, 3759 172p, 3765
	498 10(1978)149s.		259p, 3729 358s, 3780 527p, 3789 711p,
Walter, J.	SIAM 75-16 17(1975)685p.		3680 712c, 3736 712c; 3770 80(1980)352s,
Walter, Wolfgang	AMM 6198 86(1979)710s.		3775 444s, 3787 711s; 3727 81(1981)439c.
, 5 6	` '	•	, , , , , , , , , , , , , , , , , , , ,

Author Index

Wayne, Alan	1975-	-1979	Wilson, Richard
	TYCMJ 49 6(1975/4)24p; 49 7(1976/4)37s;	Wichers, J.	NAvW 373 23(1975)86c.
	88 8(1977)96p, 99 240p; 131 10(1979)52p,	Wiedemann, Doug	AMM E2795 86(1979)703p.
	142 211p.	Wiener, Joseph	AMM E2766 87(1980)406s, E2770 491s.
Webb, John	OSSMB 79-5 15(1979/2)20s.	Wijnberg, L.	SIAM 76-10 18(1976)296p; 76-10
	AMM 5999 83(1976)492s.	XX7:1 1 A11 .	19(1977)332x.
Webster, Michael Wedderburn, G.	OSSMB 75-6 11(1975/1)16p. MM 934 49(1976)254s.	Wilansky, Albert	AMM 6017 82(1975)184p; 6078
Weening, Joseph S			83(1976)205p, 6017 821s; 6203 85(1978)203p, E2712 277p. MM Q625
weening, Joseph E	MM 1065 53(1980)184s.		48(1975)240p, Q625 248s. MSJ 416
Wegman, Edward			22(1975/1)5p; 459 25(1978/7)2p.
	AMM 6146 84(1977)300p.	Wild, Pat	ISMJ 12.30 13(1978/1)10s.
Wegmann, Steven		Wild, Wayne	SSM 3648 76(1976)621p.
****	AMM 6222 87(1980)760s.	Wilke, Kenneth M	
Wehlen, Joseph A.			CRUX 190 2(1976)194p, 168 233s; 229
Weidner, August J	MM Q615 48(1975)116p, Q615 122s.		3(1977)66p, 193 81s, 246 131p, 203 138s,
Weidner, August 5	MATYC 104 12(1978)176s.		219 173s, 269 190p, 229 231s, 297 298p; 246 4(1978)22c, 249 28s, 251 42s, 261
Weinberg, Paul	MSJ 437 23(1976/4)8p.		67s, 280 111s, 285 118s, 295 162s, 297
	AMM 5952 82(1975)680s.		165s, 389 251p; 346 5(1979)26s, 452 166p,
Weinstock, Robert	AMM E2601 83(1976)482p.		390 205s; 421 6(1980)23s, 458 158s, 491
Weinstock, Ronald			290s. JRM 591 10(1978)51p. MM 882
	MSJ 477 26(1979/8)3s; 483 27(1980/2)3s.		48(1975)301c; 923 49(1976)45s; 973
Weiss, Mark	MSJ 474 26(1979/8)2s.		50(1977)215s. PENT 275 34(1975)104p,
Weiss, Martin C. Weitsman, Jonatha	FQ B-313 14(1976)288s.		276 104p, 263 107c, 266 110s, 266 111s; 277 35(1975)33p, 278 33p, 279 33p, 280 33p,
weitsman, Jonath	FQ B-399 18(1980)89s.		281 34p, 271 38s; 282 35(1976)97p, 283 97p,
Weitzenkamp, Rog	` '		284 97p, 286 98p, 274 99c, 275 100s, 276
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AMM E2392 84(1977)59c, E2605 822s.		102c; 277 36(1976)33c; 293 36(1977)93p,
Welch, Lloyd R.	AMM E2616* 83(1976)657p; E2644		295 94p; 299 37(1977)26p, 300 26p, 301
	84(1977)217p.		27p, 289 30c; 306 37(1978)83p, 292 84c,
Wellington III, Ro	*		293 85c; 310 38(1978)27p, 311 27p, 299 30c;
W I-I I C	MSJ 418 22(1975/3)7s.		310 39(1979)36s. PME 366 6(1977)374s,
Wendel, J. G.	AMM S4 87(1980)219s. AMM E2742 87(1980)63s. TYCMJ 77		375 422s; 386 6(1978)485s, 392 491s, 393 492s, 398 499s, 400 545s, 406 552s, 409
Welle, Gregory 1.	9(1978)97s; 139 10(1979)127p.		557s; 415 6(1979)624s; 455 7(1979)58p; 452
Wernick, William	AMM E2646 84(1977)217p.		7(1980)194s. TYCMJ 84 9(1978)180s, 86
Wernsing, Gary	NYSMTJ 58 26(1976)97p.		237s.
Wesselink, Brian	AMM 5965 82(1975)944s.	Wilker, J. B.	AMM E2589 84(1977)574s, 6171 660p;
West, Randy	MSJ 432 23(1976/3)8s.		6091 85(1978)55s; E2680 86(1979)128s.
Westbrook, D. R.		William In I I	CMB P236 19(1976)124s, P231 381s.
Westbury, Bruce	SPECT 10.5 11(1979)29s.	WIIKIIIS JI., J. E.	SIAM 77-6 19(1977)328p; 77-6 20(1978)396x.
Westphal, W. R. Westwick, Roy	AMM E2460 82(1975)303s. AMM S22 86(1979)863p.	Willcocks, T. H.	JRM 89 8(1976)59s.
Wetzel, John E.	AMM E2593 83(1976)378p; E2593	Willen, Carol	NYSMTJ 95 30(1980)57s.
rrecees, commen	84(1977)739s.		JRM C8* 8(1976)306p; 510* 9(1977)136p.
Wetzel, Mark	JRM 623 10(1978)127p.	Williams, Charles	R.
Wheeler, David	CRUX 265 3(1977)190p.		AMM 6167* 84(1977)576p.
Wheeler, Ferrell	CRUX 497* 5(1979)293p; 470 6(1980)194s.	Williams, David	MSJ 416 22(1975/3)6s.
	MSJ 476 26(1979/8)2s; 492 27(1980/3)3s.	Williams, John P.	AMM 5773 82(1975)943s; E2573
	OSSMB 79-12 16(1980/1)14s, 79-13	Williams, Kenneth	84(1977)299s.
	15s, 79-14 15s, 79-18 17s. PENT 313 39(1980)103s, 315 105s.	williams, Kenneti	AMM E2760 86(1979)128p, 6270
Wheeler, Jeremy	CRUX 122 2(1976)41p.		509p. CMB P249 19(1976)122p; P232
White, Albert	AMM 6021* 82(1975)307p. SSM 3619		20(1977)148s; P271 22(1979)121p, P274
•	76(1976)532s; 3664 77(1977)78p, 3671 170p,		248p, P249 251s; P271 23(1980)122s, P274
	3643 267s, 3647 357s; 3726 78(1978)443p.		249s. CRUX 133 2(1976)67p, 134 68p,
White, Brian	AMM E2579 83(1976)133p, 5978 206s.		99 69s, 149 94p, 150 94p, 154 110p, 169
White, Charles F.			136p, 131 141s, 135 154s, 138 157s, 139
White, N. R.	48(1975)293p. JRM 464 9(1977)25p.		158s, 177 171p, 180 172p, 142 175s, 189 194p, 152 196s, 153 196s, 134 222c, 154
Whitford, Anthon			226c, 164 230s; 208 3(1977)10p, 154 20c,
morora, minion	JRM 766 11(1979)215p.		176 30s, 247* 131p, 205 142s, 154 191c;
Whitlock, H. Ian	MM 968 49(1976)44p. NYSMTJ 45		295 4(1978)163s, 362 191p, 307 198s, 382*
,	25(1975)124p; 45 26(1976)19s. PME 358		250p, 395* 283p, 337 289s, 340 293s; 403
	6(1975)179p.		5(1979)15p, 440* 110p, 449 133p, 392
Whitney, R.	FQ H-254 13(1975)281p; H-271		208s, 480 229p, 395 232s; 449 6(1980)118s.
W/h:44.1 T	15(1977)89p.	Wilson D. I	PME 366 6(1977)435s.
Whittaker, James		Wilson, D. J.	SIAM 76-1 19(1977)149s. MM 917 48(1975)297s.
Whitton, Etta Ma	AMM E2787 86(1979)592p.	Wilson, James W. Wilson, Jim	SSM 3489 78(1978)714c.
THROUGH, Ella Ma	MATYC 76 9(1975/2)51p.	Wilson, Richard	PARAB 397 15(1979/2)40s, 400 42s, 404
Whitton, Jeff	MATYC 71 10(1976)44s.		44s; 406 15(1979/3)33s, 409 34s.
, -	` '	•	

Author Index

Wilson, Robert Ro	ss 1975	-1979	Zwillinger, Da
Wilson, Robert Ro	oss	Yang, L. J.	SIAM 75-19 17(1975)686p; 75-19
	AMM E2737 85(1978)764p.	J	19(1977)738s.
Wilson, Stephen E	•	Yangbo, Ye	AMM E2766 87(1980)406s.
	AMM 6182 86(1979)510s.	Yee, David K.	PENT 284 36(1977)96s; 318 40(1980)40s.
Winkel, Ralf	AMM E1243 86(1979)593c.	Yeoh, Deborah	NYSMTJ 62 27(1977)137s.
Winter, B. B.	AMM 6025 82(1975)409p.	Yeung, Imelda	MM 1076 53(1980)249s.
Winter, Harold	TYCMJ 89 9(1978)240s.	Yit, Ted	OSSMB 77-13 14(1978/1)16s, 77-14 16s,
Winterink, John A			77-17 18s; 79-7 16(1980/1)11s, 79-10 14s.
	CRUX 386 5(1979)179s; 437 6(1980)63c.	Yiu, Paul Y. H.	MM 930 49(1976)97s; 1004 51(1978)248s.
	PENT 305 37(1978)82p; 308 38(1978)27p;	Yocom, Kenneth	L.
	312 38(1979)78p; 317 39(1979)30p, 308 34s;		AMM E2490 82(1975)854s; E2566
	312 39(1980)102s.		84(1977)220s. MM 928 49(1976)48s; 1077
	PENT 292 37(1978)83s.		53(1980)250s. TYCMJ 59 8(1977)179s.
Witsenhausen, H.		Yoshigahara, Nob	ouyuki
	AMM E2741 85(1978)765p.		JRM 593 10(1978)52p; 698 11(1979)30p,
Witte, David	AMM E2694 86(1979)506s; E2776		798 303p.
	87(1980)493s.	Yothers, Manny	AMM E2457 82(1975)176s.
Wode, D.	NAvW 508 27(1979)146s.		AMM E2802 88(1981)67s. MM 1064
Wolff, Harry L.	SSM 3677 78(1978)86s; 3774 80(1980)442s.	3,	53(1980)181s.
Wong, Amy	CRUX 189 15(1989)75s.	Young, Virginia F	
Wong, Edward T.	AMM 6180 86(1979)401s; E2742		MSJ 451 25(1978/7)2s.
	87(1980)63s; S22 88(1981)348s. MM 1040	Youngquist, Mary	JRM 421* 8(1976)230p.
	52(1979)261s.	Yu, Chie Y.	AMM 5996 85(1978)283s.
Wong, Puiwing	OSSMB 76-13 13(1977/1)20s.	Yu, YT.	FUNCT 3.5.3 3(1979/5)30p.
Wong, S. F.	AMM 6025 82(1975)409p.	Zaidman, S.	AMM 6055 82(1975)942p; E2622
	AMM E2692 85(1978)48p.	Zaraman, S.	83(1976)741p. CMB P246 19(1976)121p;
Woodward, John I			P257 20(1977)147p, P260 147p, P237 149s;
	MATYC 132 14(1980)157s, 134 234s.		P246 22(1979)250s, P260 388s.
	NYSMTJ 33 27(1977)54s.	Zaidman, T.	CMB P256 19(1976)379p.
Worley, Dale	AMM E2465 82(1975)405s.	Zaks, Joseph	AMM E1075 83(1976)54s.
Wright III, Otis C		Zameeruddin, Qa	
	FUNCT 2.5.2 3(1979/2)29s, 2.5.3 30s; 3.1.3	Zamooradam, aga	MM 935 48(1975)116p.
	3(1979/3)30s. PARAB 371 14(1978/3)30s;	Zave, Derek A.	AMM E2518 82(1975)169p; E2620
**** * * * * *	406 15(1979/3)33s, 409 34s.	Zave, Bereit III	83(1976)740p.
Wright, P. L.	OSSMB 77-3 13(1977/2)22s.	Zeidman, Robert	· / -
Wu, Pei Yuan	AMM E2796 87(1980)824s.	Zeitlin, David	FQ B-277 13(1975)96s, B-297 377s; B-326
Wulczyn, Gregory	FQ H-247 13(1975)89p, B-278 96s; H-232	Zeitiini, Bavid	14(1976)93p, B-309 191s.
	14(1976)90s, H-241 285s, H-243 285s, B-339	Zetters, T. G. L.	AMM S10 87(1980)575s.
	286p, B-342 470p; H-247 15(1977)89s,	Ziegler, Michael F	
	B-355 189p, B-331 191s, B-343 376s; B-370	Ziegier, wiienaer i	MATYC 97 12(1978)79s. TYCMJ 82
	16(1978)88p, H-279 92p, H-284 188p,		9(1978)178s.
	B-383 473p, B-384 473p, B-363 476s,	Ziehms, Harald	MM 883 48(1975)55s.
	H-288 477p, B-389 562p, H-290 566p,		1 TYCMJ 53 8(1977)46s.
	H-294 567p; B-397 17(1979)90p, H-295	Zimmerman, rad. Zipperer, J. Benja	
	94p, B-402 184p, B-403 184p, H-299 189p,	Zipperer, J. Benja	
	B-409 281p, H-278 375s, H-280 377s; H-288	Zirkel, Gene	AMM E2766 87(1980)406s. MATYC 70 9(1975/1)49p, 72 49p; 108
	18(1980)282s, H-290 285s, H-294 375s,	Zirkei, Gene	
	H-295 376s; H-299 19(1981)94s. PME 316		11(1977)221p, 92 222s; 111 12(1978)78p,
	6(1975)111s, 320 118s, 325 122s, 359 179p,	Zowo Joshom	122 253p. AMM 6051* 82(1075)857p
	331 187s. SSM 3647 76(1976)528p; 3635	Zowe, Jochem Zujus, Aleksandra	AMM 6051* 82(1975)857p.
	77(1977)170s; 3700 78(1978)536s, 3701 622s;	Zujus, Aleksandra	
	3756 79(1979)172p, 3761 173p, 2928 445c,		MATYC 60 9(1975/1)52s; 83 10(1976)43p;
			00 11/1077\co. TVCN1 36 6/1075/1\co
	3740 530s; 3759 80(1980)176s, 3789 714s.		99 11(1977)63p. TYCMJ 36 6(1975/1)32p.
	3740 530s; 3759 80(1980)176s, 3789 714s. JRM 538 9(1977)214p; 538 10(1978)232s.	Zwier, Paul	AMM E2483 82(1975)758s. MM 1039
Wyatt, Harold Wyatt, J. Wendell Xanthos, Jim	3740 530s; 3759 80(1980)176s, 3789 714s.	Zwier, Paul Zwillinger, Dan	() 1

Andy, Elizabeth 1975–1979 Wyatt, Harold

PSEUDONYMS

This section lists some of the pseudonyms appearing within the problem columns. An "editorial name" refers to a house name used by a problem column editor. A "consortium" refers to a group of people writing under a pseudonym. Obvious consortiums, such as the University of South Alabama Problem Group are not listed.

 $\frac{\text{Real Name}}{\text{Clayton W. Dodge}}$ Pseudonym Elizabeth Andy Alfred Brousseau Brother U. Alfred Francis Cald Les Marvin Lewis Carroll Charles L. Dodgson Edmund Charles Les Marvin Hippolyte Charles Léo Sauvé Samuel Chort Leroy F. Meyers Jesse Croach Jr. Les Marvin Blanche Descarte W. Tutte Alovsisus Dorp Stanley Rabinowitz Harry Dweighter Jacob E. Goodman Shalosh B. Ekhad Doron Zeilberger D. O. Fantus PME editorial name Pauvre Fish PME editorial name Travis Fletcher Les Marvin P. J. Flores Les Marvin Fubine Cipriano Ferraris Garland Hopkins Les Marvin Zazou Katz Leon Bankoff Leon Bankoff Zelda Katz Nosmo King Les Marvin Nosmo King PME editorial name Susan Laird Les Marvin Harry Nelson Henry Larson

Cyril P. Lewis Les Marvin Ray Lipman Les Marvin O. P. Lossers consortium O. P. Lossers Jr. consortium Magister Ludorum Les Marvin U. I. Lydna Andy Liu Benedict Marukian Les Marvin Diophantus McLeod Les Marvin D. C. Morley Paul Morphy IV Les Marvin Les Marvin L. P. Mullooly Les Marvin K. S. Murray Murray S. Klamkin Alfred E. Neuman Les Marvin Sherry Nolan Harry Nelson David R. Orndoff Les Marvin Peter Ørno consortium Edith Orr Léo Sauvé Archimedes O'Toole Les Marvin Alvin Owen Les Marvin Emil Prochaska Les Marvin Vance Revennaugh Les Marvin Victor Reyes Les Marvin Azriel Rosenfeld Les Marvin Gali Salvatore Léo Sauvé Vincent J. Seally Les Marvin Leon Bankoff Barbara Seville K. M. Seymour Murray S. Klamkin David L. Silverman Les Marvin Fred Walbrook Les Marvin Robert Walsh Les Marvin Mark Wetzel C. F. White Les Marvin Les Marvin N. R. White Les Marvin Marshall Willheit Les Marvin CRUX editorial name N. Withheld Harold Wyatt Les Marvin

TITLE INDEX

Use this section to

- locate a problem from a keyword that appears in the title of the problem
- · peruse the titles of problems that appear in this index.

Many journal problem columns assign a title to a published problem or solution. In this section, we present a keyword in context (KWIC) permuted index to these titles. Each title appears multiple times, once for each major word in the title. The entire title is given to provide contextual information to aid you in locating the desired item. A bullet (•) appears between the end of the title and the beginning of the title in the cyclic permutation.

For example: the title "Axiomatic Characterization of Distance" could appear in the title index three times, listed once for "Axiomatic", once for "Characterization" and once for "Distance". The three references would appear as follows:

MM 1126	Axiomatic Characterization of Distance
MM 1126	Characterization of Distance • Axiomatic
MM 1126	Distance • Axiomatic Characterization of

The title entries are alphabetized. Mathematical expressions beginning with a roman letter appear next to other words beginning with that letter. Other mathematical expressions appear at the beginning of the list.

Preceding each title is a reference to the problem that title is associated with. This reference consists of the journal abbreviation followed by the problem number. In the example above, "MM 1126" refers to problem 1126 from Mathematics Magazine. The list of journal abbreviations can be found on page 17.

All titles for problems that appeared in the years 1975–1979 in one of the problem columns covered by this index are listed (if the title appeared with a contribution that was published prior to 1992). All titles accompanying solutions and comments published in the years 1975–1979 are also given.

The journals that regularly assign titles to their problems are:

<u>abbreviation</u>	<u>journal</u>
AMM	The American Mathematical Monthly
FQ	The Fibonacci Quarterly
JRM	Journal of Recreational Mathematics
MATYC	The MATYC Journal
MM	Mathematics Magazine
SIAM	SIAM Review
TYCMJ	The Two-Year College Mathematics Journal

Consult page 17 for a more complete list of journal abbreviations.

Once you have located a problem that you are interested in, you can click the problem number to look up references to that problem in the Chronology section of this index (page 282).

Entries beginning with uninteresting words have been suppressed from the listing. The words suppressed are:

а	at	from	into	of	the	٧
am	be	i	iv	on	there	was
an	but	ii	is	or	this	which
and	by	iii	it	than	those	with
as	for	in	ite	that	to	

See also:

the keyword index

to look for problems containing a given word in the statement of the problem

the subject index

to look for problems related to a given topic

$(0,1)\cap Q\simeq [0,$	$1]\cap Q$	1975–1979	Additio
AMM 6282	$(0,1)\cap Q\simeq [0,1]\cap Q$	AMM 5983	π • Rational Approximations to $\sqrt{2}$ and
AMM E2678	(0, 1)-Matrices	AMM E2773	$\prod (x - a_i) \equiv 0$ • The Polynomial Congruence
AMM E2662	(0, 1)-Matrices • A Maximization Problem for		$x^k \equiv x$,
AMM E2794	(0, 1)-matrices with Prescribed Row- and	AMM E2529	$\psi(x) \bullet \text{An Application of}$
	Column-Sums	AMM 5955	$\mathbb{Q} \to \mathbb{Q}$ Differentiable Functions • On
AMM 6042	$[0,1] \bullet C^{\infty}$ Functions Vanishing Outside	AMM 6105	$\Sigma(-1)^{\lfloor n\alpha/\sqrt{2}\rfloor}n^{-1}$
AMM E2788	[0, 1] • Dense Sequences in	AMM 6107	$\sigma(n+1)/\sigma(n)$ • The Closure of
AMM E2733	[0,1] With the Same Non-zero Length and	AMM E2543	$\sigma(n+1)/\sigma(n)$ The closure of $\sigma(n)/n$ versus $\tau(n)$
	Small Pairwise Intersections • Infinitely	AMM E2493	$\sigma(n) = 2^n$
**** 50704	Many Subsets of	AMM 5949	$\sigma(n) = 2$ $\sigma(n)/n \bullet \text{ Density of}$
AMM E2784	$(0,\infty)$ • Uniform Convergence on		
AMM E2372	0-1 Matrix • Diagonals in a	AMM 5962	σ -compact • A Separable Hausdorff Space not
JRM 640	1 • Doubly True –	AMM 6083	$\Sigma_r p/r(p+r), \Sigma_r(-1)^{r-1} \binom{p}{r}/r \bullet \text{ The Function}$
MM 1066	1 • The last	AMM 6243	$\sum (-1)^n n^{-1} \log n \bullet \text{The Classical Series}$
AMM E2758	-1's • A Sum of 1's and	AMM 6247	
AMM E2758	1's and −1's • A Sum of		$\sum_{k} \alpha^{k} \begin{bmatrix} \sqrt[m]{k} \end{bmatrix}$ • Sum of the Form
TYCMJ 144	$1 + \varepsilon \bullet \text{H\"older Condition of Order}$	AMM 6035	$\sum \mu(n) \log n/n \bullet A$ Subseries of
ГҮСМJ 106	1/x • Functional Equation for	AMM 6127	$\sum \zeta(n)x^n$ for x rational
MM 998	120° Triangle • A	AMM E2791	$\sum a_n, \sum a_n^3 \bullet \text{ The Series}$
JRM 164	13 Knights • The		$\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} a_n$ in the period
IRM 641	2 • Doubly True −	AMM E2791	$\sum a_n^3 \bullet \text{ The Series } \sum a_n,$
Q B-286	2 • Golden Powers of	AMM E2780	$\sum d(k), k \leq n \bullet \text{Sum of Number of Divisors}$
AMM 6257	$2 \bullet \text{Sets}$ of Functions of Length Less Than	AMM 5952	$\sum \frac{1}{n^3 \sin(n\pi\theta)}$ and $\Gamma\left(\frac{8}{9}\right)$
AMM E2798	$2 \text{or} b$ is a kth Power mod $q \bullet k = (q-1)/p$, an	ıd / / / / / / / / / / / / / / / / / / /	$\sum_{n=0}^{\infty} n^3 \sin(n\pi\theta)$ and $\Gamma(9)$
AMM 5983	$\sqrt{2}$ and $\pi \bullet$ Rational Approximations to	AMM E2782	$\sum_{n=1}^{\infty} k^{-2} \bullet \text{ Bounds for}$
AMM E2584	2-complex in 3-space • Infinite	AMM E2543	$\overline{\tau(n)} \bullet \sigma(n)/n \text{ versus}$
AMM 6225	2-Sphere • Mapping the 3-Sphere onto the	AMM 6108	$\tau(n) \bullet \text{Multiplicative Identities for}$
AMM S9	24 • Characterizing the Divisors of	JRM 474	θ Function Again • The Euler
Q B-331	24 • Some Fibonacci Squares Mod	TYCMJ 108	△-Biangle • Sinusoidal Slide of a
MM 1075	2500th Digit out of 35,660	AMM E2704	$\mathbb{Z}/n\mathbb{Z}$ • Idempotent Elements in
AMM E2805	$2^k - 1$ • Distinct Prime Divisors of	AMM E2503	$\zeta(4) \bullet A$ Geometric Characterization of
			ζ^k • Triangles with Vertices at Roots of Unity
AMM E2468	$2^m - 2^n$ divides $3^m - 3^n \bullet$ When	AMM E2789	$a + b \bullet$ Divisibility of $a^{2m} + b^{2m}$ by
AMM 6128	$2^{\omega} \leftrightarrow N^{\omega} \bullet \text{Bijection}$	AMM E2772	$a + b \bullet Divisionity of a + b + b$ — A Tough Nut has been Cracked \bullet Miquel
AMM E2786	$2x^2 - 1$, $2x^2$ • The Two Consecutive Integers	3 AMM E585	
FQ B-378	3 • Congruence Mod	TVCM L 124	Point $(a+b+c)/3$ and $(abc)^{1/3}$ • Interpolating
FQ B-274	3 Symbol Golden Mean	TYCMJ 134	
AMM E2584	3-space • Infinite 2-complex in		$((ab+bc+ca)/3)^{1/2}$ Between
JRM 475	3-D Quadraphage	TYCMJ 107	a+b-c of Pythagorean Triplets • The Diamet
AMM 6225	3-Sphere onto the 2-Sphere • Mapping the	AMM 6007	a.e. • Arc Length when $f' = 0$
MM 1075	35,660 • 2500th Digit out of	AMM E2440	A.PFree Permutations
AMM E2468	$3^m - 3^n \bullet \text{When } 2^m - 2^n \text{ divides}$	FQ B-328	A. P. • Sum of Squares as
Q B-379	5 • Congruence Mod	FQ B-309	$a^n = aF_n + F_{n-1} \bullet \text{An Analogue Of}$
AMM E2673	$6n+1 \bullet n$ -Residues Modulo a Prime	MM 1017	$A_{2}^{p}=I$
AMM S10	8 or More in a Row	AMM E2772	$a^{2m} + b^{2m}$ by $a + b \bullet$ Divisibility of
MATYC 109	& Groups • Loops	AMM 6251	AB = C Imply $BA = D$? • When Does
MATYC 108	& Irrational • Rational	TYCMJ 154	$AB \bullet $ Inequality for Triangles and for Trace
FQ H-294	Δ Dawn _	TYCMJ 134	$((ab + bc + ca)/3)^{1/2}$ Between $(a + b + c)/3$ ar
AMM E2525	$\det(I + A\overline{A}) \ge 0$		$(abc)^{1/3} \bullet \text{Interpolating}$
AMM 6067	$\Gamma(z)$ • Negative Values of	->/	
AMM 5952	$\Gamma\left(\frac{8}{9}\right) \bullet \sum \frac{1}{n^3 \sin(n\pi\theta)}$ and	TYCMJ 134	$(abc)^{1/3}$ • Interpolating $((ab+bc+ca)/3)^{1/2}$
AMM 6269			Between $(a+b+c)/3$ and
	Γ Function • Inequality Involving the	AMM 6011	Abelian Group • Equal Sum Partitions in an
MM 5997	Γ -function Inequality • A	MM 1045	Absolute Perfect Squares
MM 6091	Γ^n to $\mathbb{C}^m \bullet \text{Mapping from}$	MM 953	Absolute Primes
MM 5878	$\Gamma_{-}^{(n)}(1)$	AMM E2718	Absolute Primes • A Subclass of the
AMM 6002	$\int_0^x (x-t)^{p-1} \ln \Gamma(t) dt$	AMM 6138	Abundant Numbers of the Form
	$\int_{0}^{x} (x) dx = \int_{0}^{xy} (x) dx = 0$		$p_i p_{i+1} p_{i+2} \dots p_{i+n}$
TYCMJ 151	$\int_{1}^{x} g(t)dt = \int_{y}^{xy} g(t)dt \bullet \text{The } g \text{ That Solves}$	AMM E2535	Acceleration with Constant Direction
AMM E2670	$\left(xe^{-x}-ye^{-y}\right)/\left(e^{-x}-e^{-y}\right)$ • An Inequali	tv JRM 773	Accent Accident • An
	for	JRM 773	Accident • An Accent
AMM E2491	for $\left[\sqrt{n}\right]$ a Divisor of n ? • When is	SIAM 75-8	Accident Probability
		AMM 6094	"Acquainted" Primes
MM 5871	$\partial f/\partial x = \partial f/\partial y$ • The Equation	FQ B-398	Added Ingredient • The
MM 6070	$\phi(n)/n = a/b \bullet \text{ Counting } b \text{ for which}$	AMM E2549	Adding Edges to Get an Euler Path
AMM E2783	$\phi(z^2) = \phi(z)^2 \bullet \text{ The Functional Equation}$	JRM 359	Addition • A Lo-o-ong
AMM 6090	φ-Convergence	MATYC 113	Addition • Carrying in
AMM 6160	$\phi(m) \bullet \text{Divisors of}$	JRM 776	Addition • Even More Simple
AMM S3	$\pi(n) \bullet \text{Asymptotic to}$	JRM 775	Addition • More Simple
AMM 6044	$\Pi = 83^3$	JRM 774	Addition • Simple
		I	
	$\Pi \neq 833$	1 4 (1/1 / 1/2 /	
AMM 6044	$\Pi \neq 83^3$	TYCMJ 88	Addition • Volcanic
AMM 6044 AMM 6019 IRM 589	$\Pi \neq 83^3$ $\pi \bullet$ Algebraic Inequalities for $\pi \bullet$ Approximating	TYCMJ 88 TYCMJ 120 TYCMJ 71	Addition Laws • Trigonometric Addition Laws Property

Addition	1975	-1979	Another
AMM 6092	Addition of 'Student' Random Variables	JRM 455	Alphametics \bullet Definitely Non-Canadian
AMM 5948	Additive Sequences • Relatively Prime	JRM 454	Alphametics • Definitely Non-Canadian
AMM 6256	Additive Set Functions of Bounded Variation	JRM 400	Alphametics • Doubly True
AMM S16	Additive Subsemigroups • Closed Complex	JRM 398	Alphametics • Doubly True
JRM 635	Address • Presidential	JRM 399	Alphametics • Doubly True
AMM 6222	Adjoint • Relations Between a Matrix and Its Adjusted Pascal • An	JRM 525 JRM 526	Alphametics • Two Doubly True
FQ H-213 JRM 777	Adjusted Fascal • All Affair • International	JRM 485	Alphametics • Two Doubly True Alphametics • Two More True
AMM E2736	Affine Plane • A Recurring Sequence of Points	JRM 486	Alphametics • Two More True
AIVIIVI E2750	in the	JRM 433	Alphametics • Two True
AMM 5790	Affine Spaces • Collinearity Preserving Maps in	JRM 432	Alphametics • Two True
AMM E2658	Again • Legendre Polynomials	JRM 364	Alphametics Again • One of Those True
JRM 364	Again • One of Those True Alphametics	JRM 402	Alphametics Composer • Rewards For
MM 1071	Again • Roll the Dice	JRM 401	Alphametics Composer • Rewards For
JRM 474	Again • The Euler θ Function	JRM 415	Alphametics In Two Languages • Two True
MATYC 81	— Again • When Wrong is Right	JRM 414	Alphametics In Two Languages ◆ Two True
MATYC 81	Again • When Wrong is Right —	JRM 749	Alphametic $-1 \bullet$ Arithmetic
JRM 794	Age • Grandfather's	JRM 750	Alphametic – 2 • Arithmetic
JRM 393	Age Problem • Still Another	JRM 297	Also Doubly True
JRM 352	Age Problem! • Another Confounded	JRM 334	Also True
FQ H-306 JRM 659	Aged • Middle	AMM E2646	Alternating Sum of Certain Chords
MATYC 107	Ages • The Children's Ain't Necessarily So • It	TYCMJ 61 FQ B-371	Altitudes • Sum of a Series of Always • No, No, Not
MATYC 74	Ain't Necessarily So! • It	JRM 491	Always Appreciated • Not
FQ H-246	Al • Fib, Luc, Et	FQ B-358	Always Composite • Almost
AMM 5124	Algebra • A Banach	JRM 434	Amazing Chess Alphametic • An
AMM 6097	Algebra Generated by Symmetric Functions •	AMM E2537	Ambiguous Functional Equation • An
	Polynomial	JRM 484	American High Hopes Society • The
AMM 5982	Algebra Generators	AMM E2752	$[an] + [bn] = [cn] + [dn] \bullet$ The Equation
AMM 6019	Algebraic Inequalities for π	JRM 384	Anableps • The
AMM E2616	Algebraic Integers • Approximation by	JRM 687	Analog
AMM 5931	Algebraic Integers • The Conjugates of	FQ B-309	Analogue Of $a^n = aF_n + F_{n-1} \bullet An$
AMM 6169	Algebras • Injective Lie	FQ B-347	Analogue of the F 's \bullet A Third-Order
AMM 5972	all x in a Ring • Minimum n , $x^n = x$ for	AMM S1	Analogues of a Binomial Coefficient Property •
JRM 416 AMM 6014	All Along • We Knew It All Closed Subsets Countable • Uncountable	TYCMJ 19	Converse and Analogy Carried Too Far • An
AIVIIVI 0014	Sets with	JRM 170	Analysis • Retrograde
SIAM 75-14	All Roots of a Complex Polynomial •	SIAM 78-12	Analysis of a Matrix • Spectral
	Simultaneous Iteration towards	TYCMJ 119	Analysis of an Approximate Trisection • Error
JRM 383	All Sums Prime	AMM 6166	Analytic Characterization of Convexity
JRM 98	Allowed No Sums	MATYC 57	Analytic Concern • An
FQ B-358	Almost Always Composite	AMM 6045	Analytic Functions
JRM 595	Almost Congruent Triangles	AMM 5995	Analytic Functions of Bounded Operators
JRM 416	Along • We Knew It All	AMM 6071	Analytic Mappings of the Unit Disk on a
AMM E2645	Along a Row • Shuffling	FO 11 212	Convex Domain Ancient One • Another
JRM 723 JRM 460	Alphabetic Alphametic • An Alphametic • A Bicentennial	FQ H-213 MM 967	Angle Bisectors
JRM 521	Alphametic • A Cockney	JRM 509	Angler's Problem • The
JRM 357	Alphametic • A Dual	MM 913	Angles • Convergent
FQ B-316	Alphametic • A Fibonacci	TYCMJ 75	Angles That Can Be Trisected
JRM 608	Alphametic • A Fractionally True	JRM 699	Anniversary Party • The
JRM 461	Alphametic • A Hot	AMM 4052	Annulus • Bound for e^z in an
JRM 417	Alphametic • A Multiplication	AMM E2674	Another \bullet One Regular n -simplex Inscribed in
JRM 361	Alphametic • A Soupy	JRM 393	Another Age Problem • Still
JRM 409	Alphametic • A Two-True	FQ H-213	Another Ancient One
JRM 723	Alphametic • An Alphabetic	TYCMJ 123 AMM E2472	Another Arithmetic Mean Inequality Another Binomial Coefficient Summation
JRM 434	Alphametic • An Amazing Chess	MM 949	
JRM 436 JRM 418	Alphametic • An International Alphametic • Another True	JRM 217	Another Butterfly Problem Another Coin Game
FQ B-312	Alphametic • Doubly-True Fibonacci	JRM 352	Another Confounded Age Problem!
FQ B-322	Alphametic • Front Page	FQ H-265	Another Congruence
JRM 483	Alphametic • Geographical	FQ B-300	Another Convolution
JRM 670	Alphametic • High-Powered	AMM E2589	Another Determinant
JRM 487	Alphametic (Macbeth) • Shakespearean	JRM 710	Another Grazing Problem
JRM 481	Alphametic — Old Math • New	JRM 594	Another Imposter
JRM 430	Alphametic Chess	FQ B-345	Another Limit
JRM 707	Alphametic Patterns	FQ B-278	Another Lucas-Fibonacci Congruence
JRM 482	Alphametic Really So Easy? • Is This	JRM 643	Another Repeater
JRM 437	Alphametic With A Twist • A Doubly True	AMM E2481	Another Solution in Rationals
JRM 363	Alphametic! • This is 'Sum'	JRM 550	Another Tongue Twister
JRM 459	Alphametics • Arithmetically Correct	AMM E2517	Another True Alphametic
JRM 458	Alphametics • Arithmetically Correct	JRM 418	Another True Alphametic

Answer	1975-	-1979	Balancing
FQ H-296	Answer • Bracket Your	AMM E2790	Areas • Filling an Open Set with Squares of
JRM 716	Answered • Question		Specified
AMM 6220	Antichains • Chains and	TYCMJ 109	Areas of Cocyclic Triangles
MM 902	Antigens	JRM 395	Arena • The
AMM E2499	Appearance • A Problem of Pappus — Final	AMM E2556	Argument • A Rank
AMM E2460	Appearance of Integers in Pythagorean Triples	AMM 6053	Arguments of Powers of Gaussian Integers •
JRM 669	Appearances are Deceiving		Density of
AMM 6031	Application • A Random Walk	JRM 744	Aria Area • To The
FQ B-392	Application of $(E^2 - E - 1)^2 \bullet \text{Half-Way}$	MM 961	Arithmetic • Geometric and
AMM E2529	Application of $\psi(x) \bullet An$	JRM 768	Arithmetic • Matrix
AMM E2587	Application of Brouwer's Fixed Point Theorem	JRM 749	Arithmetic Alphametic – 1
= ====	• An	JRM 750	Arithmetic Alphametic – 2
AMM E2592	Application of Cayley's Theorem • An	SIAM 76-5	Arithmetic Conjecture • An
AMM E2642	Application of Gaussian Integers • An	JRM 719	Arithmetic Lesson
TYCMJ 35	Application of Lucas' Theorem • An	TYCMJ 123	Arithmetic Mean Inequality • Another
AMM E2643	Application of Quadratic Reciprocity • An	JRM 627	Arithmetic Progression • Primes in
FQ B-298	Application of the Binet Formulas • An	AMM E2766	Arithmetic Progression • Primes in an
TYCMJ 87	Application of the Method of Deficient Means	AMM E2628	Arithmetic Progression • Roots in
TYCMJ 84	Application of Wilson's Theorem	FQ B-389	Arithmetic Progression • Transformed
AMM E2624	Applied • Chinese Remainder Theorem	AMM E2684	Arithmetic Progression • Units of $Z/(n)$ in
TYCMJ 116	Applied to Occupancy • Inclusion and	JRM 712	Arithmetic Progression II • Primes in
=0 B 000	Exclusion	AMM E2730	Arithmetic Progressions • Finite Sets and
FQ B-360	Applying Quaternion Norms	AMM E2522	Arithmetic Progressions in Sequences with
JRM 491	Appreciated • Not Always	A N 4 N 4 F 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2	Bounded Gaps
JRM 630	Apprentices • The Three	AMM E2725	Arithmetic Sequence • Bounded Prime Factors
JRM 556	Approach • The Closest	1014 450	for Terms in an
AMM S4	Approaching Equal Folds	JRM 459	Arithmetically Correct Alphametics
JRM 698	Appropriate Sentiment Requested	JRM 458	Arithmetically Correct Alphametics
SIAM 78-1	Approximate Invariance of Disc Averages	FQ H-229	Array • A Triangular
TYCMJ 119	Approximate Trisection • Error Analysis of an	JRM 495	Artful Numbers
AMM 6165	Approximated by Their Mean Values •	JRM 581	Artist • Signed by the
IDM EOO	Functions	JRM 770b	Artistry
JRM 589	Approximating π	JRM 347	Assistant • The Metalworker's
AMM E2459	Approximating Pi with Series-Parallel Circuits Approximation • An Average Relative Speed	SIAM 78-20	Associated Simplexes • A Volume Inequality for a Pair of
SIAM 76-13		AMM E1822	Associated with Two Segments • A Locus
AMM E2616	Approximation by Algebraic Integers Approximation by Terms of a Null Sequence	AMM 6238	Associated with Two Segments • A Locus Associativity • Verifying
AMM 6240 AMM 6125	Approximation by Terms of a Num Sequence Approximation for a Matrix • Best Rank-k	AMM 6263	Associativity • Vernying Associativity in a Ring
FQ B-283	Approximation of $\cos \pi/6$ and $\sin \pi/6$ •	FQ H-217	Assumption • Prime
I Q D-203	Rational	JRM 407	Astrologers • For The
TYCMJ 70	Approximation of $n! \bullet \text{Rational Number}$	JRM 580	Astrologers • For The Astronaut's Dream • An
AMM E2693	Approximation to Arctan • A Rational	SIAM 79-5	Asymptotic Behavior of a Sequence
SIAM 74-19	Approximation to Special Functions •	AMM 6271	Asymptotic Behavior of Sequences Involving e^n
31AW 74-13	One-sided	AIVIIVI 0271	and $n!$
FQ B-404	Approximations • Golden	AMM S3	Asymptotic to $\pi(n)$
FQ B-405	Approximations • Good Rational	SIAM 74-20	Attraction • Gravitational
AMM 5983	Approximations to $\sqrt{2}$ and $\pi \bullet$ Rational	JRM 560	Auctions • Long
AMM E2467	Approximations to Exponential Functions •	AMM 6026	Automorphism • Number of Elements in a
	Polynomial	7	Group Inverted by an
FQ B-391	Approximations to Root Five	AMM 6277	Automorphisms • Commuting
JRM 494	APT Numbers	AMM 5943	Automorphisms • Transitive
SIAM 77-4	Arbitrary Functions • Solutions to Linear	AMM 5938	Automorphisms in a Field • On
	Partial Differential Equations Involving		Order-Preserving
AMM E2489	Arc Length and Functional Composition	TYCMJ 46	Average Characterization of Linear Functions •
AMM 6007	Arc Length when $f' = 0$ a.e.		An
MM 981	Arc of a Circle • An	SIAM 75-12	Average Distance • An
AMM 6074	Arc of a Monotonic Function • Length of	AMM E2629	Average Distance between Two Points in a Box
AMM E2693	Arctan • A Rational Approximation to	SIAM 78-8	Average Distance in a Unit Cube
JRM 669	are Deceiving • Appearances	SIAM 76-13	Average Relative Speed Approximation • An
FQ H-310	Are the Greatest Integers • Fibonacci and	AMM E2585	Average Vertex-Degree for Triangulated
	Lucas		Surfaces
MATYC 126	Area • Perimeter and	SIAM 78-1	Averages • Approximate Invariance of Disc
JRM 744	Area • To The Aria	FQ B-344	Averaging Gives G. P.'s
AMM E2456	Area Enclosed by a Jordan Curve	AMM 5941	Avoiding the Axiom of Choice
TYCMJ 79	Area of a Cevian Triangle	AMM 5941	Axiom of Choice • Avoiding the
AMM E2514	Area of a Convex Polygon	AMM 6139	Axiomatizable Properties in a First-Order
AMM E2576	Area of a Projection of an Ellipsoid		Predicate Calculus • Finitely
AIVIIVI E2310	Area of a Solid • Volume and Surface	AMM E2289	Axioms • Equivalent Sets of
	rica of a polici • volume and purface		
AMM E2563 JRM 464	Area Problem • A Maximum	JRM 686	Aye-Aye, Bertie
AMM E2563		JRM 686 AMM 6251	Aye-Aye, Bertie $BA = D$? • When Does $AB = C$ Imply
AMM E2563 JRM 464	Area Problem • A Maximum		

Balls	1975-	-1979	Both
AMM 5427	Balls and an Intersecting Line • Three	TYCMJ 42	Bichromatic Hexagons • Complete
AMM 6224	Balls by Weighings • Determining Heavy and	FQ H-298	Big Six • The
	Light	AMM E2542	Bigger Group Does the Job • A
AMM E2724	Balls of Three Colors • An Urn With	AMM 6128	Bijection $2^{\omega} \leftrightarrow N^{\omega}$
AMM E2722	Balls of Two Colors • An Urn with	FQ B-333	Bijection in $Z^+ \times Z^+$
AMM 5124	Banach Algebra • A	AMM 6100	Bijections on \mathbb{R} • Continuous
AMM 6283	Banach Space • Star-Shaped Subsets of	JRM 660	Bill of Fare
AMM 6203	Banach Spaces • Ranges in	JRM 120	Billiard Table • The Circular
AMM 5937	Barreled Space • Norms in a	JRM 121	Billiard Table Revisited • The Circular
JRM 727	Base • Trace the	JRM 348	Billiard Table Theme • A New Wrinkle on the
JRM 517	Base Nine • A Pair in		Old
JRM 516	Base Nine • A Pair in	TYCMJ 43	Binary Operation • A Noncommutative
JRM 498	Baseball • Geodesics on a	AMM E2579	Binary Operation in the Plane • A
JRM 441	Baseball Probability	TYCMJ 81	Binary Operations on Rational Numbers
JRM 573	Baseball Problem • A	AMM E2671	Binary Trees • Labelings of
AMM E2806	Bases • Disjoint Neighborhoods and Countable	FQ B-298	Binet Formulas • An Application of the
	Local	MATYC 70	Bingo
AMM 6274	Bases • Disjoint Neighborhoods and Countable	MATYC 70	Bingo – But Not Too Often
	Local	TYCMJ 24	Binomial Coefficient Identity • A
AMM 6184	Bases for Piecewise Continuous Functions	AMM S1	Binomial Coefficient Property • Converse and
AMM 6268	Bases in Towers of Fields • Relative Integral	7	Analogues of a
JRM 440	Basic Misunderstanding • A	AMM E2384	Binomial Coefficient Summation • A Difficult
JRM 584	Basics	AMM E2472	Binomial Coefficient Summation • Another
JRM C1	Basics • Down to the	AMM E2685	Binomial Coefficients • A Congruence for a
MM 984	Basis • Orthogonal	7	Sum of
AMM 6278	Basis • Translation Invariance Hamel	AMM E2681	Binomial Coefficients • An Identity with
SIAM 78-2	Basis Polynomials • Two Recurrence Relations	AMM E2686	Binomial Coefficients • LCM of
	for Hermite	AMM E2640	Binomial Coefficients • Powers of Two and
JRM 298	Bath • The Mud	FQ B-310	Binomial Coefficients • Special
JRM 770a	Batman	FQ B-394	Binomial Coefficients • Triple Products and
JRM 326	Beans! • Just	FQ B-380	Binomial Convolution
AMM S15	Beckenbach's Monotonic Integral Functional	MM 1055	Binomial Distribution
FQ B-304	Bee It • So	AMM 6170	Binomial Expansion Modulo a Prime • The
AMM E585	been Cracked • Miquel Point — A Tough Nut	7	Number of Terms in a
	has	FQ B-338	Binomial Expansions • Difference of
SIAM 79-5	Behavior of a Sequence • Asymptotic	MM 912	Binomial Identities
AMM E2675	Behavior Of A Series	AMM E2601	Binomial Sum and Legendre Polynomials
AMM 6271	Behavior of Sequences Involving e^n and $n! \bullet$	AMM E2565	Bipartite Graph • Regularizing a
	Asymptotic	AMM 6079	Bipartite Graphs
AMM E2599	Behavior of the Totient Function • Erratic	AMM E2795	Bipartite Graphs • Properties of Regular
MM 1024	Behind • Percentage vs. Games	AMM E2003	Birds • Watched
AMM E2568	Bernoulli Differential Equation • A	JRM 650	Birds on a Wire
AMM 5575	Bernstein-type Operators • Some	MATYC 135	Birthday, Miss Cohen • Happy
JRM 686	Bertie • Aye-Aye,	MM 967	Bisectors • Angle
MATYC 98	Bertrand's Paradox	JRM 718	Blackpool Zoo • From
AMM 5794	Bessel Equation • Solution to	JRM 729	Blind Man's Keys • The
SIAM 77-20	Bessel Function Equal to its Derivative? •	JRM 96	Blind Penney-Ante
CIANA 7C 10	When is the Modified	AMM E2762	Block Matrix Equal to a Kronecker Product •
SIAM 76-10	Bessel Function Series • A		A
SIAM 76-11	Bessel Function Summation • A	AMM E2762	Block Matrix Not Equal to a Kronecker
SIAM 79-18	Bessel Functions • A Sum of		Product • A
JRM 502	Best • No Sequence is	FQ B-363	Blocks • Overlapping Palindromic
MM 986	Best Constant? • The Best Fibonacci Number • The	AMM 5992	Blocks in a Hermitian Matrix ● Sum of
TYCMJ 48 JRM 456	Best Friend • Man's	TYCMJ 93	Blocks of Digits
AMM 6125	Best Rank-k Approximation for a Matrix	JRM 412	Blowing Our Own Horn
JRM 504	Best Vantage Point • The	SIAM 78-9	Board of Directors Problem • A Variant of
JRM 92	Better Sequence • A		Silverman's
TYCMJ 134	Between $(a + b + c)/3$ and $(abc)^{1/3}$ •	JRM C4	Board of Directors' Problem • The
I YCIVIJ 134	Between $(a + b + c)/3$ and $(abc)^{-7}$	JRM 724	Bodies • Heavenly
4444 5000	Interpolating $((ab + bc + ca)/3)^{1/2}$	AMM E2714	Bodies • Intersection of Moving Convex
AMM 6222	Between a Matrix and Its Adjoint • Relations	AMM 6098	Bodies • Maximally Symmetric Convex
AMM E2769	Between Lines in \mathbb{R}^3 • Distance	AMM 6089	Bodies in <i>n</i> -space • Convex
AMM 6063	Between the Centers of Two Spheres •	AMM E2617	Body • Three Parallel Sections of a Convex
A NANA E0000	Distance	SIAM 77-3	Bohr • A Definite Integral of N.
AMM E2629	between Two Points in a Box • Average	JRM 423	Bold vs. Cautious
IDN4 244	Distance	MM 1052	Boolean Rings • Isomorphic
JRM 344	Bibliopegist's Puzzle • The	AMM E2536	Boolean Rings • When $x^m = x$ Defines
JRM 378	Bicentennial • A Tribute to the Coming United	AMM 6023	Borel Sets in a Product Space
IDN4 460	States	AMM 6023	Borel Subsets of a Product Space
JRM 460	Bicentennial Alphametic • A	AMM 6023	Borel Subsets of a Product Space
JRM 397	Bicentennial Coming!	AMM E2448	Both Positive Semi-definite • A Matrix and its
FQ B-340	Bicentennial Sequence	I	Matrix of Reciprocals

Bound	1975-	-1979	Characterization
MM 952	Bound ◆ A Constant	AMM 6221	Cardinal Numbers \bullet Groups and
AMM 4052	Bound for e^z in an Annulus	AMM E2666	Cardinality of a Set of Subsets • An Estimate
AMM E2622	Bound for an Integral • An Upper		for the
AMM 6237	Bound on Zeros of a Polynomial	JRM 757	Cards • Equi-Spaced
AMM 6025	Boundary of a Set • Distance to the	MM 1022	Cards • Ordering
TYCMJ 148 AMM E2522	Boundary of a Triangle • Centroid of the	AMM E2515 JRM C7	Careless File Clerk • The Carlo Problem • A Monte
AIVIIVI E2322	Bounded Gaps • Arithmetic Progressions in Sequences with	JRM 480	Carlo Problem • A Monte Carlo Problem • A Monte
AMM 5995	Bounded Operators • Analytic Functions of	TYCMJ 19	Carried Too Far • An Analogy
AMM E2725	Bounded Prime Factors for Terms in an	MATYC 113	Carrying in Addition
, <u></u>	Arithmetic Sequence	AMM E2647	Case of the Jordan Curve Theorem • An
AMM 6256	Bounded Variation • Additive Set Functions of	7	Elementary
SIAM 77-7	Boundedness Condition • A	JRM 639	Castle Mate
AMM E2782	Bounds for $\sum_{n=0}^{\infty} k^{-2}$	MM 1049	Catalan Numbers
AMM E2447	Bounds for \overline{k} -Satisfactory Sequences	AMM E2799	Catalan Numbers • Superfactorials and
SIAM 74-9	Bounds for the Zero of a Polynomial	AMM 6272	Categorical Theories • Complete
AMM E2629	Box • Average Distance between Two Points in	JRM 346	Caterer • The Numiphobic
	a	AMM 6164	Cauchy Random Variables
AMM E2555	Box ● Indefinite Quadratic Form on a	JRM 423	Cautious • Bold vs.
TYCMJ 86	Box Construction • Integer Calculus	AMM E2592	Cayley's Theorem • An Application of
JRM 390	Box Nesting • Two-Way	AMM 6096	Cells of a Chessboard • Connected
AMM E1255	Brachistochrone Paths • Broken-Line	AMM E2793	Center • Inversion of the Incenter,
FQ B-417	Bracket Function • Not a	MM 900	Circumcenter, Nine-points Centerfold • Not a
MM 915 FQ H-296	Bracket Function Equality Bracket Your Answer	AMM 3887	Centeriold • Not a Centers • Circles with Collinear
JRM 358	"Bread" for the Sweets	AMM 3887	Centers • Three Circles with Collinear
AMM E2524	Brick Packing Problem • A	MM 898	Centers in a Triangle • Five
TYCMJ 100	Brickery Trickery	AMM 6063	Centers of Two Spheres • Distance Between
JRM 211	Bricks • Tricks With		the
MM 944	Bridge Problem • An Old	AMM 6039	Central Idempotents in a Power Series Ring
AMM E1255	Broken-Line Brachistochrone Paths	AMM E2723	Central Limit Theorem • An Insensitive
AMM E2587	Brouwer's Fixed Point Theorem • An	AMM 5976	Centralizer Groups • Trivial
	Application of	AMM E2470	Centroid • A Simplex Equality Characterizing
FQ H-152	Brush the Dust Off		the
JRM C8	Brute Force Problem? • A	TYCMJ 117	Centroid • Least Squares Property of the
JRM 477	Brute Force Program • A	AMM E2715	Centroid • Triangle
JRM 609	Buffs • For Computer	TYCMJ 148	Centroid of the Boundary of a Triangle
SIAM 78-17 MM 949	Bunyan's Washline • Paul Butterfly Problem • Another	AMM E2646 AMM 5872	Certain Chords • Alternating Sum of Certain Convex Polytope • Volume of a
AMM 6091	$\mathbb{C}^m \bullet \text{Mapping from } \Gamma^n \text{ to}$	AMM E2560	Certain Sums • Non-congruence of
AMM 6042	C^{∞} Functions Vanishing Outside [0, 1]	AMM E2453	Certain Trigonometric Values • The Linear
JRM 527	Cab on a Continuum		Dependence of
JRM 728	Calculations • Fibonacci	JRM 492	Certainly True
AMM E2509	Calculator Efficiently • Using a	TYCMJ 79	Cevian Triangle • Area of a
JRM 420	Calculator Sums	AMM 6134	Chain Conditions In Rings
AMM 6139	Calculus • Finitely Axiomatizable Properties in	AMM 5540	Chains • Dense
	a First-Order Predicate	JRM 702	Chains • Power
MM 1067	Calculus • Shortest Chord sans	JRM 566	Chains • Prime
AMM 5988	Calculus • Zeros in the Fractional	AMM 6220	Chains and Antichains
TYCMJ 86 JRM 759	Calculus Box Construction • Integer Calendar • The Four-Cube	JRM 679 JRM 339	Chains and Prime Circles • Prime Challenge • A
JRM 313	Calendar Girl Revisited • The	FQ B-296	Challenging Problem • A Most
JRM 419	Calendar Problem • A	JRM 447	Change • A Dollar's Worth of
JRM 634	Call • Port of	JRM 667	Change • Small
FUNCT 3.5.2	Camera • Manikato and the TV	JRM 666	Change • Small
JRM 553	Camp Correspondence	FQ B-401	Change of Pace for F.Q.
JRM 552	Camp Correspondence	AMM E2765	Change of Variable Formula for Definite
JRM 551	Camp Correspondence		Integrals
JRM 375	Can • Cruise of the Sidewinder, or How to	MM 1019	Characteristic of a Ring
	Tack in a Tin	AMM E2711	Characteristic Polynomial • Irreducible
AMM E2572	Can a Derivative be Differentiable at a Limit	AMM E2635	Characteristic Polynomial of a Matrix
TVC14:	Point of its Discontinuities?	MM 1005	Characterization • A Popular
TYCMJ 55	Can a Number be Equal to its Logarithm?	AMM 6173	Characterization of $\sin x \cdot A$
TYCMJ 75	Can Be Trisected • Angles That	AMM E2503	Characterization of $\zeta(4) \bullet A$ Geometric
JRM 646	Cans • Packing Grapefruits and Grapefruit	AMM E2731	Characterization of a Polynomial
AAAA 6212	Juice Center Set • Subsets of the	AMM 6166	Characterization of Convexity • Analytic
AMM 6213 JRM 548	Cantor Set • Subsets of the Caped Crusaders	AMM 6200	Characterization of Integers That Differ by Two • A
JI/IVI J40		A NANA 6161	Characterization of Irrationals by Distribution
IRM 421	Carbon Carbonate Collation • Comprehensive		
JRM 421 JRM 421	Carbon Carbonate Collation • Comprehensive Carbonate Collation • Comprehensive Carbon	AMM 6161	
JRM 421 JRM 421 TYCMJ 89	Carbon Carbonate Collation • Comprehensive Carbonate Collation • Comprehensive Carbon Card • Magic	AMM E2661	of Residues • A Characterization of Least Common Multiples •

Characterizatio	on 1975	1975–1979	
TYCMJ 46	Characterization of Linear Functions • An Average	AMM E2512	Circumcircles • Intersecting Triangles and Their
AMM E2611	Characterization of Primes • A	JRM 466	Circumscribing with a Square
TYCMJ 32	Characterization of the Parabola • Diameter	AMM E2641	Class of Convex Polygons • A
AMM E2583	Characterizing Solutions of a Functional Equation	AMM 5944	Class of Operators • Weak Sequential Closure of a
AMM E2470	Characterizing the Centroid ◆ A Simplex Equality	AMM 6113	Class of Stieltjes-Riemann Integrable Functions \bullet A
AMM S9	Characterizing the Divisors of 24	AMM E2781	Classes mod $n \bullet \text{Distinct Sums of the Residue}$
MM 943	Charlemagne's Magic Squares	AMM 6199	Classes Under a Parabola • Permuted Residue
JRM 166	Chase • The Circular	AMM E2691	Classical Inequalities
AMM E2796	Chebyshev Interpolation	AMM 6243	Classical Series $\sum (-1)^n n^{-1} \log n \bullet \text{The}$
AMM E2580	Chebyshev Polynomials	JRM 582	Clean-Up • Parisian
JRM 446	Check Perpetual	AMM E2515	Clerk • The Careless File
JRM 184	Checker Problem • A Minimum-Move	AMM E2638	Clique • Leaders of a Maximal
AMM E2612	Checkerboard • Diamond Packing of a Chinese	JRM 471	Clock Puzzle • The
TYCMJ 145	Checkerboard • Euler Line on a	MATYC 80	Close • Let's Get
AMM E2508	Checkerboard with Dominoes • Tiling a	FQ B-341	Close Factoring
AMM E2665	Checkerboards • Partial	FQ H-283 MATYC 125	Close Ranks! Closed • Not
TYCMJ 78	Checkerboards with Trominos • Tiling	AMM S16	Closed Complex Additive Subsemigroups
JRM 430	Chess • Alphametic	MM 1006	Closed Curve • A Simple
JRM 493	Chess • Straightjacket	AMM 6129	Closed Curve • Distance from a Simple
JRM 434	Chess Alphametic • An Amazing	AMM 6080	Closed Disk • Power Series in a
JRM 561 JRM 758	Chess Mystery Chess Mystery II	FQ B-343	Closed Form
JRM 185	Chess Problem • A Minimum-Move	AMM 6255	Closed Graph Theorem
AMM 6211	Chessboard • Coloring a	AMM 6014	Closed Subsets Countable • Uncountable Sets
AMM 6096	Chessboard • Connected Cells of a		with All
AMM E2605	Chessboard • Labels on a	JRM 556	Closest Approach • The
AMM E2732	Chessboard Squares • Labeling	MM 1079	Closure is R
JRM 534	Chick? • Which	AMM 6107	Closure of $\sigma(n+1)/\sigma(n)$ • The
JRM 659	Children's Ages ◆ The	MM 982	Closure of $\{f(n+1)/f(n)\}$
JRM 647	Chili Poker	AMM 5944	Closure of a Class of Operators • Weak
AMM E2612	Chinese Checkerboard • Diamond Packing of a	AMM 6260	Sequential Closure, Interior, and Union • Sets Formed by
AMM E2624	Chinese Remainder Theorem Applied	AIVIIVI 0200	Iterated
AMM 5941	Choice • Avoiding the Axiom of	MM 1034	Cloverleaves
JRM 431	Choice • Take Your	JRM 523	Coast • Coast to
JRM 428	Choice of Games	JRM 522	Coast • Coast to
AMM E2710	Choice Sets • Outer Measures of	JRM 522	Coast to Coast
MM 1067	Chord sans Calculus • Shortest	JRM 523	Coast to Coast
AMM E2646	Chords • Alternating Sum of Certain	JRM 521	Cockney Alphametic • A
TYCMJ 33 MM 880	Chords • Irrational Chords • Semicircular	TYCMJ 109	Cocyclic Triangles • Areas of
JRM 370	Christmas Tree Problem • The	MATYC 115	Coefficient • Spearman
AMM E2697	Circle • A Dense Subset of the Unit	TYCMJ 24	Coefficient Identity • A Binomial
MM 981	Circle • An Arc of a	AMM S1	Coefficient Property • Converse and Analogues
SIAM 78-13	Circle • Expected Values for Random Regions	AMM E2384	of a Binomial Coefficient Summation • A Difficult Binomial
	of a	AMM E2472	Coefficient Summation • A Difficult Binomial
TYCMJ 53	Circle • Lattice Points on a	AMM E2685	Coefficients • A Congruence for a Sum of
JRM 535	Circle • Points on a	AMM L2003	Binomial
JRM 394	Circle • Polygons in a	AMM E2681	Coefficients • An Identity with Binomial
MM 920	Circle • Radius of Nine-Point	MM 1087	Coefficients • Irrational
MATYC 93	Circle • The Largest	AMM E2686	Coefficients • LCM of Binomial
JRM 679	Circles • Prime Chains and Prime	MM 978	Coefficients • Positive
TYCMJ 22	Circles • Rational	AMM E2640	Coefficients • Powers of Two and Binomial
AMM E2746	Circles for a Convex Polygon	FQ B-310	Coefficients • Special Binomial
JRM 382	Circles in a Square	FQ B-394	Coefficients • Triple Products and Binomial
JRM 354	Circles in a Triangle	SIAM 74-22	Coefficients of a Function Involving Elliptic
AMM E2475	Circles Kissing Precisely • Tritangent	*****	Integrals of the First Kind • Fourier
AMM 3887 AMM 3887	Circles with Collinear Centers Circles with Collinear Centers • Three	AMM 6084	Coefficients of Tchebychef Polynomials •
		MATVC 125	Majorizing Properties of
AMM E2459	Circuits • Approximating Pi with Series-Parallel	MATYC 135	Cohen • Happy Birthday, Miss Coin • The Unbiased
AMM 5966	Circuits in Maximal Planar Graphs •	MM 643 JRM 311	Coin Conundrum • A Complicated
CIVILAI 2300	Hamiltonian	JRM 463	Coin Game • A
JRM 120	Circular Billiard Table • The	JRM 217	Coin Game • Another
JRM 121	Circular Billiard Table Revisited • The	SIAM 77-11	Coin Tossing Problem • A
JRM 166	Circular Chase • The	JRM 618	Coins • Efficiency of Sets of
JIZIMI TOO			
AMM E2793	Circumcenter, Nine-points Center • Inversion	JRM 448	Coins More
	Circumcenter, Nine-points Center • Inversion of the Incenter,	JRM 448 JRM 421	Coins • More Collation • Comprehensive Carbon Carbonate

Collection	1975-	-1979	Congruei
AMM 6022	Collection of Sets • Minimal Intersection in a	SIAM 75-14	Complex Polynomial • Simultaneous Iteration
MM 3887	Collinear Centers • Circles with		towards All Roots of a
MM 3887	Collinear Centers • Three Circles with	MATYC 68	Complex Problem • A
MM 5790	Collinearity Preserving Maps in Affine Spaces	JRM 251	Complex Rationals
MM 6267	Collineations of Projective Spaces	MATYC 88	Complex Route to Real Solution
MM 6236	Collineations of Projective Spaces	JRM 311	Complicated Coin Conundrum • A
MM 6211	Coloring a Chessboard	JRM 401	Composer • Rewards For Alphametics
MM 6215	Coloring Maps • Linear Systems for	JRM 402	Composer • Rewards For Alphametics
MM 6034	Coloring the Edges of a Graph	FQ B-358	Composite • Almost Always
MM E2724	Colors • An Urn With Balls of Three	FQ B-302	Composite Fibonacci Neighbors
MM E2722	Colors • An Urn with Balls of Two	JRM 319	Composite Generator • A
MM E2794	Column-Sums \bullet (0, 1)-matrices with Prescribed	AMM E2679 AMM E2800	Composite Number • A
SIAM 79-9	Row- and Combination of Jacobian Elliptic Functions •	AMM 6208	Composite Numbers • A Test for Composite of Polynomials • Condition for a
1AIVI 19-9	Fourier Series for a	AMM E2489	Composition • Arc Length and Functional
AMM 6118	Combinations of Entire Functions without	AMM 6244	Composition of Functions
101101 0110	Zeros • Linear	AMM 6117	Compositions of Two Entire Functions • Linea
SIAM 75-4	Combinatorial Identity • A	JRM 421	Comprehensive Carbon Carbonate Collation
AMM E2454	Combinatorial Identity • A	AMM E2588	Computation of a Determinant
AMM E2602	Combinatorial Identity • A	MM 1029	Computer • Erdős and the
AMM 6010	Combinatorial Identity • A	JRM 609	Computer Buffs • For
SIAM 79-13	Combinatorial Identity • A	AMM E2650	Computing a Galois Group
SIAM 78-6	Combinatorial Identity • A	FQ H-308	Con-Vergent
SIAM 79-13	Combinatorial identity • A	JRM 596	Concatenation Problem • A
SIAM 75-10	Combinatorial Problem • A	AMM 6261	Concentrated Sets of Reals
Q B-292	Combinatorial Problem • A	MATYC 57	Concern • An Analytic
AMM 6252	Combinatorial Sum • Limit of a	FQ H-264	Conclusion • Sum-ary
AMM 6060	Combinatorics in Finite Sets	MM 1028	Concurrent Perpendiculars
MATYC 79	Coming and Going	TYCMJ 132	Concurrent Planes
RM 378	Coming United States Bicentennial • A Tribute	SIAM 77-7	Condition • A Boundedness
	to the	MM 1032	Condition • A Muntz-like
IRM 397	Coming! • Bicentennial	MM 951	Condition • A Trace
IRM 439	Coming, Ready or Not • It's	AMM E2631	Condition • Prime Satisfying Mirimanoff's
IRM 638	Commentary • Political	AMM 6266	Condition $f(x,y) \leq g(x)g(y)$ • The
JRM 688	Commentary – 1	AMM 6033	Condition for $ f(z) < 1, z < 1$
JRM 689	Commentary – 2	AMM 6208	Condition for a Composite of Polynomials
MATYC 102	Common • Something in	AMM 5880	Condition for a Quadratic
AMM 6086	Common Divisors and Square Free Integers	AMM E435	Condition for Primeness • A Necessary but no
AMM E2570	Common Multiple • Lattice Points and Least		Sufficient
AMM 5413	Common Multiple of Consecutive Terms in a	TYCMJ 144	Condition of Order $1 + \varepsilon \bullet$ Hölder
	Sequence • Least	AMM 6279	Condition on Entire Functions • A
AMM E2661	Common Multiples • Functional	AMM 6167	Condition to Be Constant
	Characterization of Least	AMM 6264	Conditions for Unique Factorization
AMM 5940	Commutative Rings • Ideals in	AMM 6134	Conditions In Rings • Chain
ΓYCMJ 40	Commutativity Problem • A	MM 971	Conduits • Efficient
AMM 5969	Commutators • The Subring of	AMM E2593	Configuration • Counting Points in a
AMM 6277	Commuting Automorphisms	JRM 198	Configurations • Some
AMM E2742	Commuting Matrices • Rarely	AMM 6047	Conformal Maps of Ellipses onto Ellipses
AMM 6122	Compact Set • The Nearest Point in a	JRM 352	Confounded Age Problem! • Another
AMM E2614	Compact Set • Union of an Open and a	MM 1044	Congruence • A
AMM 5959	Compact Topological Groups • Locally	AMM E2497	Congruence • A Fibonacci-type
RM 554	Company Problem • The Fire	FQ B-277	Congruence • A Lucas-Fibonacci
MM 6046	Comparing Decompositions of Polynomials	FQ H-265	Congruence • Another
TYCMJ 63	Comparison of Series	FQ B-278	Congruence • Another Lucas-Fibonacci
RM 505	Compass • Watson's Rusty	FQ B-324	Congruence • Fibonacci
Q B-376	Complementary Primes	FQ B-366	Congruence • Lucas
AMM 6188	Complementary Subsets of the Irrationals	FQ B-403	Congruence • Lucas
AMM E2700	Complemented Finite Lattices	FQ H-221	Congruence for F_n and L_n
MM 5965	Complements of Kernels	AMM E2685	Congruence for a Sum of Binomial Coefficient
TYCMJ 42	Complete Bichromatic Hexagons	EO D 270	• A
MM 6272	Complete Categorical Theories	FQ B-378	Congruence Mod 3
AMM E2672	Complete Graphs • Orientation and	FQ B-379	Congruence Mod 5
	Vertex-Coloring of	AMM E2461	Congruence Modulo n! • A
MM 5773	Complete Linear Spaces	AMM E2763	Congruence with Nine Solutions • A Third
MM 948	Complete Residue Systems	EO D 360	Degree
	Complete Subgraph of a Random Graph •	FQ B-368	Congruences • Convoluting for
AMM 5933	Infinite	AMM E2773	Congruences $x^k \equiv x$, $\prod (x - a_i) \equiv 0 \bullet \text{ The}$
		i .	Dolamoniol
AMM 5933 AMM 5957	Completeness Criterion of Orthonormal		Polynomial
AMM 5957	Completeness Criterion of Orthonormal Systems in L^2	AMM E570	Congruent Conics • Six
AMM 5957 MM 1036	Completeness Criterion of Orthonormal Systems in L^2 Complex $ullet$ Real Not	AMM 6210	Congruent Conics \bullet Six Congruent to I \bullet Integral Matrices
AMM 5957	Completeness Criterion of Orthonormal Systems in L^2		Congruent Conics • Six

AMM E2751 Conic • A Prologonal Triad Meeting a AMM E276 Conics • A Property of Conics • A Prologonal Triad Meeting a AMM E276 Conics • A Prologonal Meeting a Conics • A Prologonal Meeting a Min State of Conjecture • A Peatomino Conjecture • A Triangle SIM 360 Conjecture • A Triangle SIM 377 Conjecture • A Triangle SIM 378 Conjecture • The Lifetorgeneous Tiling SIM 379 Conjecture on Determinants • ∆ SIM 377-1 Conjecture for Easing Infinite Series • ∆ SIM 377-1 Conjecture for Easing Infinite Series • ∆ SIM 377-1 Conjecture for Easing Infinite Series • ∆ SIM 377-1 Conjecture for Easing Infinite Series • ∆ SIM 377-1 Conjecture for Easing Infinite Series • ∆ SIM 377-1 Conjecture for Easing Infinite Series • ∆ SIM 377-1 Conjecture for Easing Infinite Series • ∆ Min 391 Connected Cells of a Chessboard Min 392 Connected Sets of Connected Sets of a Chessboard Min 392 Connected Sets of Connected Sets of Connected Cells of a Chessboard Min 392 Connected Sets of Sim 3 A Si	Conic	1975	-1979	Cotangents
AMM 5262 Contine - S. Congreent Conjecture - A. Space Conjecture - A. Marcination JRM 452 Conjecture - A. Marcination JRM 455 JRM 516 SIAM 76-5 SIAM 76-16 SIAM 76-16 SIAM 76-16 SIAM 77-12 Conjecture on a Finite and an Infinite Product Conjecture on Incertains an	AMM E2751	Conic • Orthogonal Triad Meeting a	JRM 527	Continuum • Cab on a
AMM 5770 JRM 500 Comiscuture • A Pentomino Completure • A Pentomino JRM 306 JRM 306 JRM 306 JRM 307 Comiscuture • A Pentomino Comiscuture • A Pentomino Comiscuture • A Pentomino Comiscuture • A Triangle JRM 307 Comiscuture • A Triangle JRM 308 Comiscuture • A Triangle JRM 308 Comiscuture • A Triangle Comiscuture • A Triangle Comiscuture • A Triangle JRM 307 Comiscuture • A Triangle JRM 308 Comiscuture • A Triangle Comiscuture • A Triangle JRM 307 Comiscuture • A Triangle JRM 307 Comiscuture • A Triangle Comiscuture Comiscuture on a Finthe and an Infinite Product Comiscuture on a Finthe and an Infinite Product Completure • A Completure • A Triangle JRM 512 SIAM 77-15 SIAM 77-15 SIAM 77-15 SIAM 77-15 SIAM 77-15 SIAM 77-17 SIAM 522 Comiscuture Integers Commercial Cells of a Cheesboard Commercial Cells of a Cheesboard Commercial State of Algebraic Integers Commercial State of Commercial State				
JRM 900 Conjecture • A Pentonino (Conjecture • A Pentonino (Conjecture • A Topological (Conjecture • A Tritingel (Conjecture • A Tritingel (Conjecture • A Tritingel (Conjecture • A Topological (Con	AMM E570		AMM 5986	•
JRM 391 Conjecture • A Pentomino Conjecture • A Tripopological JRM 396 Conjecture • A Tripopological JRM 396 Conjecture • A Tripopological JRM 398 Conjecture • The Heterogeneous Tiling Conjecture • The Heterogeneous Tiling Conjecture • The Heterogeneous Tiling Conjecture • The Loadrichateral JRM 512 Convergence of (sr., n²) SIAM 75-15 SIAM 77-15 SIAM 77-16 SIAM 79-14 S	JRM 262	Conjecture • N -Space	JRM 337	Contradiction • A
JRM 365 SIAM 76-5 SIAM 76-5 SIAM 76-5 SIAM 76-6 SIAM 76-6 SIAM 76-7 SIAM 76-7 SIAM 77-1 SIAM 76-1 SIAM 77-1 SIAM 77-	JRM 600	Conjecture • A Pentomino	JRM 408	Contradiction • No
JRM 366 JRM 387 JRM 387 JRM 388 JRM 388 JRM 388 JRM 389 JRM 380 JRM 380 JRM 381 JRM 381 JRM 381 JRM 382 JRM 382 JRM 382 JRM 382 JRM 382 JRM 383 JRM 384 JRM 385 JRM 386 JRM 386 JRM 386 JRM 386 JRM 386 JRM 386 JRM 387 JRM 3	JRM 391	Conjecture • A Pentomino	JRM 311	Conundrum • A Complicated Coin
SIAM 76-5 ISM 388 SIAM 76-16 SIAM 77-12 SIAM 77-12 SIAM 77-12 SIAM 79-14 SIA	JRM 445	Conjecture • A Topological	JRM 751	Conundrum • Culinary
JRM 388 Conjecture • The fleetrogeneous Tiling SIAM 77-1 SIAM 76-16 Conjecture on a Finite and an Infinite Product Conjecture on Determinants • A MATE 250 Conjecture on Determinants • A MATE 250 Conjecture on Conjecture Regarding the Harmonic Series • A Conjecture Regarding the Harmonic Series • A Conjecture on Conjecture Regarding the Harmonic Series • A Conjecture on Enternation of Conjecture Regarding the Harmonic Series • A Conjecture Regarding the Harmonic Series • A Conjecture Regarding the Harmonic Series • A Conjectured Requalities • A Conjectured Repeated Functions • A Admit 250 Admit	JRM 306	Conjecture • A Triangle	JRM 622	Convergence Inquiry • A
JRM 497 SIAM 7-16 SIAM 7-18 SIAM 7-17 SIAM 7-17 SIAM 7-17 SIAM 7-18 SIAM 7-18 SIAM 7-18 SIAM 7-18 SIAM 7-19 SIAM 7-	SIAM 76-5			
SIAM 76-16 SIAM 78-31 JRM 512 SIAM 77-12 SIAM 77-12 SIAM 77-12 SIAM 77-12 SIAM 77-13 SIAM 77-12 SIAM 77-14 SIAM 77-14 SIAM 77-15 SIAM 77-15 SIAM 77-15 SIAM 77-16 SIAM 77-16 SIAM 77-16 SIAM 77-16 SIAM 77-17 SIAM 77-17 SIAM 77-17 SIAM 77-17 SIAM 77-17 SIAM 77-18 SIAM 77-18 SIAM 77-18 SIAM 77-18 SIAM 77-18 SIAM 77-19 SIAM 78-19 SIAM 78-10 SI	JRM 388		AMM E2784	
SIAM 77-15 SIAM 77-15 Conjecture (Increasing Infinite Series • A SIAM 77-15 SIAM 77-15 Conjectured Increasing Infinite Series • A SIAM 79-18 SIAM 79-18 Conjectured Increasing Infinite Series • A SIAM 79-18 SIAM 79-18 Conjectured Minimum Valuation Tree • A SIAM 79-18 SIAM 79-18 Conjectured Minimum Valuation Tree • A SIAM 931 AMM 8931 AMM 8931 AMM 8931 Conjectured Minimum Valuation Tree • A SIAM 79-18 SIAM 79-18 AMM 893 AMM 893 AMM 893 AMM 893 AMM 894 Consecutive Integers • Sets of n Consecutive Integers 2x² − 1, 2x² − 7 the Two Consecutive Integers 2x² − 1, 2x² − 7 the Two Consecutive Integers 2x² − 1, 2x² − 7 the Two Consecutive Undergite Series Consecutive Terms in a Sequence • Least Common Multiple of Consecutive Terms in a Sequence • Least Common Multiple of Consecutive Terms in a Sequence • Least Common Multiple of Consecutive Consecutive Of Volctenholme's Theorem • A AMM 6280 Consecutive Terms in a Sequence • Least Common Multiple of Consecutive Terms in a Sequence • Least Common Multiple of Consecutive Terms in a Sequence • Least Common Multiple of Consecutive Terms in a Sequence • Least Common Multiple of Consecutive Integers 2x² − 1, 2x² − 7 the Two Consecutive Quadratic Nonresidues Conse	JRM 497		SIAM 77-14	
JRM 512 Conjecture Regarding the Harmonic Series • A SIAM 77-12 Conjectured Inequalities SiAM 77-15 SIAM 79-14 Conjectured Inequalities Conjectured Property of Legendre Punctions • A Conjectured Inequalities Conjectured Property of Legendre Punctions • A Conjectured Property of Legendre Punctions • A Conjectured Inequalities Conjectured Property of Legendre Punctions • A Conjectured Inequalities Conjectured Property of Legendre Punctions • A MM 5276 Connected Sets Conjectured Property of Legendre Punctions • A Conjecture Punction Punctions • A Conjectured Property of Legendre Punctions • A Conjectured Pr				
SIAM 77-15 SIAM 77-16 SIAM 77-16 SIAM 77-16 SIAM 77-16 SIAM 77-17 SIAM 79-18 AMM 5931 AMM 5931 Conjectured Minimum Valuation Tree • A SIAM 79-18 AMM 5931 Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Minimum Valuation Tree • A Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Minimum Valuation Tree • A Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Minimum Valuation Tree • A Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Minimum Valuation Tree • A Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Minimum Valuation Tree • A Conjectured Property of Leaguedre Functions • A AMM 5931 Conjectured Minimum Valuation Tree • A Conjectured Property of Leaguedre Functions • A AMM 5931 Consecutive Integers Sets of n Consecutive Integers Sets o	SIAM 78-3			
SIAM 77-12 Conjectured Inequalities SIAM 77-12 Conjectured Inimum Valuation Tree • A SIAM 79-14 Conjectured Property of Legendre Functions • A AMM 5931 AMM 5931 Connected Cells of a Chessboard Connected Cells of a Chessboard Consecutive Integers • Sets of n Consecutive Undersate Nonresidnes Consecutive Terms in a Sequence • Least Connon Multiple of Consecutive Terms in a Sequence • Least Consolative Terms in Sequence • Leas				
SIAM 77-15 Conjectured Minimum Valuation Tree • Λ SIAM 79-18 Conjectured Property of Legendre Functions • Λ AMM 5931 AMM 6096 AMM 932 Consecutive Integers • The Consecutive Integers • Sets of n Consecutive Primes Consecutive Firms in a Sequence • Least AMM 517 Consecutive Firms in a Sequence • Least AMM 6180 AMM 1025 Consecutive Guidratic Nonresidues AMM 517 Consecutive Firms in a Sequence • Least AMM 518 Consecutive Firms in a Sequence • Least AMM 519 Consecutive Guidratic Nonresidues AMM 519 Consecutive Firms in a Sequence • Least AMM 519 Consecutive Guidratic Nonresidues AMM 519 Constant Sequence Constant Sequence AMM 527 Constant Subrer's Constant Volume C				
SIAM 79-14 AMM 5931 AMM 5931 Conjectured Property of Legender Runctions • A AMM 5931 Conjectured Cells of a Chesboard Connected Cells of a Chesboard Connected Cells of a Chesboard Consecutive Integers • Sets of π AMM 513 Consecutive Integers • Sets of π Consecutive Integers • Sets of π AMM 6167 Consecutive Integers • Sets of π Consecutive Integers • Sets of π AMM 6174 Consecutive Integers • Sets of π AMM 6174 Consecutive Integers • A Theorem But Not Its Converse Integer Converse and Annalist Converse Integer Converse and Annalist Converse Integer Converse and Annalist Converse Integer and Vive Mere on Converse and Annalist Converse Integer and Vive Mere on Converse and Annalist Converse Integer and Vive Mere on Converse and Annalist Converse Integer and Vive Mere on Converse and Annalist Converse Integer and Vive Mere on Converse and Annalist Annalist Annalist Converse Integer and				
AMM 5931 AMM 6996 AMM 6996 AMM 6996 AMM 6276 Connected Cells of a Chessboard Consecutive Integers • Sets of n				
AMM 5931 Conjugates of Algebraic Integers • The Commetced Cells of a Chesboard Connected Cells of a Chesboard Connected Cells of a Chesboard Consecutive Integers 2 − 1, 2x² • The Two Consecutive Integers 2 − 1, 2x² • The Two Consecutive Integers 2 − 1, 2x² • The Two Consecutive Integers 2 − 1, 2x² • The Two Consecutive Primes Consec	SIAM 79-14			•
AMM 6096 MM 932 Connected Cells of a Chessboard MM 932 NR 767 Consecutive Integers Sets of n Consecutive Integers Sets of n Consecutive Integers Sets of n Consecutive Primes Consecutive Primes Consecutive Primes Consecutive Terms in a Sequence • Least Common Multiple of Consecutive Terms in a Sequence • Least Common Multiple of Consecutive Terms in a Sequence • Least Common Multiple of Consecutive Terms in a Sequence • Least Common Multiple of Consequence of Jensen's Inequality • A Consideration • Series Consequence of Jensen's Inequality • A Consideration • Series Constant Condition to Be Constant • Condition to Be Constant & Condition to Be Constant & Condition to Be Constant Study C				
MM 932 Connected Sets Consecutive Integers x Consecutive Integers x Consecutive Integers x 2x 0. The Two Consecutive Undergers x 2x 0. The Two Consecutive Undergers x 2x 0. The Two Consecutive Primes Consecutive Primes Consecutive Primes Consecutive Primes Consecutive Primes Consecutive Terms in a Sequence of Least Common Multiple of Consecutive Terms in a Sequence of Least Common Multiple of Consequence of Wolstenholme's Theorem • A MM 6017				
JRM 767				0 0
TYCMJ 21 AMM 2276 AMM 543 AMM 543 AMM 543 Consecutive Primes Consecutive Terms in a Sequence • Least Common Multiple of Consequence of Jensen's Inequality • A Consequence of Wolstenholme's Theorem • A AMM 6174 Constant Condition to Be Constant Condition to Be Constant Condition to Be Constant Euler's Constant Euler's Constant Bound • A AMM 5276 Constant Sequence Constant Sum • A Constant Sequence Constant Sum • A Constant Sequence Constant Wolume Constant For The Best Constant Gunification • A Difficult Construction • A Difficult Construction • Trimagle Constru				
JRM 654 Consecutive Primes AMM 6917 Consecutive Quadratic Nonresidues AMM 5413 Consecutive Terms in a Sequence e Least Common Multiple of AMM E2480 Consequence of Jensen's Inequality • A AMM E2480 Consideration • Series AMM 692 Constant Condition to Be Constant Condition to Be Constant Condition of Be Constant Euler's AMM 692 Constant & Euler's Constant Bound • A Constant Sequence AMM 893 Constant Sequence AMM 5255 Constant Sequence AMM 992 Constant Sequence AMM 994 Constant Volume AMM 996 Constant's Pribe Best Constant Olume AMM 997 Construction • A Difficult FYCM 198 Construction • A Difficult FY			AMM S1	_
JRM 654 Consecutive Primes AMM 6917 Consecutive Quadratic Nonresidues AMM 5413 Consecutive Terms in a Sequence e Least Common Multiple of AMM E2480 Consequence of Jensen's Inequality • A AMM E2480 Consideration • Series AMM 692 Constant Condition to Be Constant Condition to Be Constant Condition of Be Constant Euler's AMM 692 Constant & Euler's Constant Bound • A Constant Sequence AMM 893 Constant Sequence AMM 5255 Constant Sequence AMM 992 Constant Sequence AMM 994 Constant Volume AMM 996 Constant's Pribe Best Constant Olume AMM 997 Construction • A Difficult FYCM 198 Construction • A Difficult FY		Consecutive Integers • Sets of n		
AMM 6058 AMM 52180 Consecutive Quadratic Nonresidues Common Multiple of Common Multiple of Comsequence of Jensen's Inequality • A Consequence of Wolstenholme's Theorem • A Consequence of Wolstenholme's Theorem • A Consequence of Wolstenholme's Theorem • A Constant Condition to Be Constant Condition to Be Constant Euler's Constant Bound • A Constant Sequence Constant Wolume Constant Volume Constant Wolume Constant Wolume Constant Volume Constant Wolume Constant Wolume Constant Wolume Constant Volume Constant Wolume Construction • A Difficult Construction • Note Relation Construction • Note Relation MM 1054 Construction • Navel Construction • Integer Calculus Box Construction • Integer Calculus Box Construction • Navel Continued Fraction for €1/² Continued Fr				
AMM 5413 Consecutive Terms in a Sequence • Least Common Multiple of AMM E2480 Consequence of Jensen's Inequality • A AMM 6983 AMM 2530 Consideration • Series Constant • Condition to Be Constant • Condition to Be Constant • Condition to Be Constant • Duller's Convex Domain • Analytic Mappings of the Unit Disk on a AMM 6071 Convex Domain • Analytic Mappings of the Unit Disk on a AMM 6271 Convex Domain • Analytic Mappings of the Unit Disk on a AMM 6271 Convex Polygon • Circles for a AMM 6273 Constant • Duller • Convex Polygon • Area of a AMM 6274 Convex Polygon • Circles for a AMM 5287 Constant Sum • A Amm 5287 Constant Sum • A Amm 5297 Convexity of a Polyhedron Convexity of a Pol				
AMM E2480 Consequence of Welstenholme's Theorem • A Consideration • Series Constant • Condition to Be Constant • Condition • Acceleration with Constant • Condition • Acceleration with AMM 983 Constant • Condition • Acceleration with Constant • Condition • Acceleration with Constant • Condition • Acceleration with AMM 983 Constant • Condition • Acceleration with Constant • Condition • Acceleration with AMM 983 Constant • Condition • Acceleration with Constant • Condition • Acceleration with AMM 983 Constant • Condition • Acceleration with Constant • Condition • Constant • Convex Dolygone • A Class of AMM 627 Constant • Convex Dolygone • A Class of Convex Dolygone • A Class of AMM 627 Convex Dolygone • A Class of Convex Dolygone • A Class of Convex Under Multiplication • Preservation of FQ B-386 Convolution • Friangular Convolution • Friangular Convolution • Friangular Conv		<u> </u>	1	_
AMM E2480 Consequence of Jensen's Inequality • A AMM E2617 Convex Body • Three Parallel Sections of a AMM 6067 AGM F 2480 Consideration • Series AMM 6067 Convex Logication • Containt • Condition to Be AMM 27418 Constant • Duller's Constant • Duller's MM 1062 Convex Hexagon • Ellipse and AMM 2535 Constant Bound • A AMM E251 Constant Sequence AMM E251 Convex Polygon • Area of a AMM 7572 Constant Sum • A AMM E2541 Convex Polygon • Area of a AMM E2541 AMM 5986 Constant's The Best AMM 6166 Convex Polygon • Area of a AMM 6167 Constant's The Best Constant's The Best Convex Polygon • Area of a AMM 5985 Constant's The Best Convex Polygon • Area of a AMM 6166 Convex Polygon • Area of a AMM 5978 Constant's The Best Convex Polygon • Area of a AMM 6166 Convex Polygon • Area of a AMM 6167 AMM 6166 Convex Polygon • Circles for a AMM 6168 Constant's The Best Convexity Order • Volume of a Certain Convexity of Polygon • Volume of a Certain Convexity Order • Volume of a Certain Convexity of a Polyhedr	AMM 5413	•		ů ů
AMM 6167 FQ H-289 AMM 6167 TYCM 122 Constant • Condition to Be Constant Bound • A AMM 6167 Constant Bound • A Constant Bound • A Constant Bound • A AMM E2535 MM 883 MM 983 Constant Sequence Constant Sum • A Constant Gequence Constant Volume Constant • Chalers Constant Gequence AMM 5935 Constant Gequence Constant Volume Constrained Equality • A Constrained Equality • A Constrained Equality • A Constrained Spilificult Construction • A Difficult Construction • A Difficult Construction • The Eact Construction • The Condition • Preservation AMTY C99 AMM 1056 Construction • The Eact Construction • The Condition • The Conditio	A B 4 B 4 E 2 4 C C			
FQ H-289 Consideration • Series CAMM 6171 Constant • Condition to Be Constant • Condition • Constant • Constant • Condition • Constant • Consta				
AMM 6167 Constant • Condition to Be TYCMJ 122 Constant • Euler's Constant Euler's AMM 22748 Convex Polygon • Area of a Convex Polygon • Circles for a AMM 22746 Convex Polygon • Circles for a AMM 5807 Convex Polygon • Circles for a				
TYCMJ 122 Constant • Duler's AMM E2748 Constant Lound • A Constant Bound • A Constant Bound • A Constant Bound • A Constant Sequence Constant Sequence Constant Sequence MM 962 Constant Sum • A Constant Sequence Constant Sum • A Constant Volume MM 963 Constant Volume Constant • Duler's MM 964 Constant Volume MM 965 Constant Volume Constrained Equality • A Constrained Equality • A Constrained Minimization of an Integral Functions Functional AMM 6017 JRM 562 Constrained Minimization of an Integral Function • A Difficult Construction • A Difficult TYCMJ 169 Construction • Triangle Construction • Navel Construction • Navel Construction • Navel Contemplation • Navel Continued Fraction Derivative of a MATYC 89 MATYC 89 MATYC 103 AMM 5897 AMM 5897 Continued Fraction For e ^{1/2} AMM 5897 Continuous Functions with Partial Derivative AMM 6100 AMM 6101 AMM 6102 Continuous Bipections on ℝ Continuous Bipections on ℝ AMM 6104 AMM 6105 AMM 6105 AMM 6106 AMM 6107 Continuous Bipections on B Continuous Bipections on B AMM 6108 AMM 61091 Continuous Map • Iteration of an Integral TYCMJ 128 Continuous Map • Iteration of an Integral TYCMJ 128 Continuous Map • Iteration of an Integral AMM 6107 AMM 61081 AMM 61081 AMM 61081 AMM 61080 Continuous Map • Iteration of an Integral AMM 61081 AMM 61081 AMM 61081 AMM 61081 AMM 61080 Continuous Mapping R → R • One-One AMM 61081 Continuous Quasi-continuous Functions • TYCMJ 128 Continuous Succionationuous Functions of the continuous of th			AIVIIVI 0071	
AMM E2748 Constant as a Limit • Euler's AMM E254 Convex Polygon • Area of a MM 982 Constant Bound • A AMM E2641 Convex Polygon • Circles for a AMM 883 Constant Sequence AMM E2641 Convex Polygon • A Class of MM 983 Constant Sequence AMM E2641 Convex Polygon • A Class of MM 986 Constant Sum • A AMM E2641 Convex Polygon • A Class of MM 987 Constant Sum • A AMM 5872 Convex Polygon • A Class of AMM 5978 Constant Volume AMM 6166 Convex Polygon • A Class of Construction • Construction • Construction • Construction • Construction • The Best AMM 6160 Convex Polygon • A Class of AMM 5935 Construction • Construction • The Best AMM 6160 Convex Polygon • A Class of AMM 5936 Construction • The Best AMM 6160 Convex Polygon • A Class of AMM 5937 Construction • The Best AMM 6161 Convex Polygon • A Class of AMM 594 Construction • The Best AMM 593 AMM 593 AMM 6166 Construction • The Best AMM 5260 Convolution • Another			NANA 1062	
MM 952 Constant Bound • A AMM E2535 Constant Direction • Acceleration with AMM E2641 Convex Polygon • Circles for a AMM 873 Constant Sum • A AMM 5872 Convex Polygon • Circles for a AMM 5872 MM 942 Constant Sum • A AMM 963 Convex Polytope • Volume of a Certain MM 996 Constant Volume AMM 6166 Convex Polytope • Volume of a Certain AMM 957 Constraction Sum • A AMM 6166 Convex Polytope • Volume of a Certain AMM 960 Construction • Treat AMM 6166 Convexity • Analytic Characterization of AMM 5978 Construction • Trained Equality • A AMM E2694 Convexity of (x + 1/x) ^α Convexity of (x + 1/x) ^α AMM 607 Construction • Smaller' Norms FQ B-390 Convolution • Preservation AMM 5080 Construction • Triangle FQ B-308 Convoluting for Congruences Contruction • Triangle FQ B-308 Convolution • Rore onvolution • Rore onvolution • Prinanglar MM 1054 Construction • Two Euclidean FQ B-336 Convolution • Small • A Convolution • Trianglar AMM 1254 Continued Fraction • Derivative of a FQ B-299 Continued Fraction • Derivative of a RM 529 <th></th> <th></th> <th></th> <th></th>				
AMM E2535 Constant Direction • Acceleration with MM 883 Constant Sequence Constant Sequence Constant Sum • A Constant Sum • A Constant Sum • A Constant Volume Constant Volume A MM 963 Constant Volume Constant Volume Constant Volume A MM 963 Constant Volume Constant Volume Constant Volume Constant Volume Constant Volume A MM 963 Constant Volume Constant Volume Constant Volume A MM 6166 TYCMJ 149 Convexity • Analytic Characterization of Convexity of $(x + 1/x)^{\infty}$ Constrained Equality • A Constrained Equality • A Constrained Equality • A MM E2694 Convexity of a Polyhope volume of a Certain Convexity of $(x + 1/x)^{\infty}$ Convexity of a Polyhope volume of a Certain Convexity of $(x + 1/x)^{\infty}$ Convexity of a Polyhope volume of a Certain Convexity of $(x + 1/x)^{\infty}$ Convexity of a Polyhope volume of a Certain Convexity of a Polyhope volume of a Certain Convexity of $(x + 1/x)^{\infty}$ Convexity of a Polyhope volume of a Certain Convexity of $(x + 1/x)^{\infty}$ Convexity of a Polyhope volume of a Certain Convexity of $(x + 1/x)^{\infty}$ Convexity of a Polyhope volume of a Certain Convexity of $(x + 1/x)^{\infty}$ Convexity of a Polyhope volume of a Certain Convexity of a Polyhope volume of a Cervation of Convexity of a Polyhope volume of a Cervation of Convexity of a Polyhope volume of a Cenvexity of a Polyhope volume of a Cenvexity of a Polyhope volume of a Convexity of a Polyhope volume of a Polyhope volume of a Polyhope volume of a Convexity of a Polyhope volume of a Convexity of a Polyhope volume of a Polyho				
MM 883 MM 942 MM 942 MM 960 AMM 950 SIAM 74-18Constant Volume Constant Volume Constant Volume AMM 9535 SIAM 74-18AMM 960 Constant Volume Constant Volume Constant Volume Constant Volume AMM 9535 Constrained Equality • A Constrained Minimization of an Integral Functional Constructing 'Smaller' Norms Construction • A Difficult TYCMJ 86 Construction • A Difficult Construction • Triangle Construction • Two Euclidean FQ B-346 Construction • Triangla FQ B-380 Convolution • Triangular Convolution • Triangular Convolution • Triangular FQ B-295 Convolution • Triangular Convolution • Triangular FQ B-295 Convolution • Triangular Convolution • Triangular FQ B-295 Convolution • Triangular Convolution • Triangular Convolution • Triangular Convolution • Triangular Convolution • Triangular FQ B-295 Convolution of Null Sequences AMM 5984 Convolution • Triangular Convolution • Triangular				
MM 942 Constant Sulm • A AMM 966 Constant Volume AMM 616 Convexity • Convexity • Analytic Characterization of Convexity of (x + 1/x)° MM 986 Constant? • The Best TYCMJ 149 Convexity of (x + 1/x)° Convexity of x Polyhedron SIAM 74-18 Constrained Equality • A AMM 6297 AMM 5297 Convexity of a Polyhedron AMM 6017 Construction • Toncitinal FQ B-300 Convoluting for Congruences FVMATYC 99 Construction • Integer Calculus Box FQ B-300 Convoluting for Congruences AMM 1080 Construction or Inangle FQ B-300 Convolution • Another AMM 1084 Construction for Ideals • A FQ B-346 Convolution • Fraingular MM 1054 Construction • Navel AMM 5984 FQ B-299 Convolution of Null Sequences AMM 5241 Continued Fraction of Previative of a MATYC 103 AMM 5984 FQ B-295 Convolution of Null Sequences MATYC 103 Continued Fraction for e½² MM 6163 MM 916 Convolution of Products on Functions N → C MATYC 103 Continued Fraction for e½² MM 618 MM 916 Convolution of Products on Functions N → C MATYC 103 Continuou Functions • Man 600			1	
MM 986		•		v 1
MM 986 AMM 5935 SIAM 74-18 AMM 5935 SIAM 74-18 Vertical Signature of Partial Amm 5935 Obstrained Equality • A Constrained Equality • A Constrained Equality • A Constrained Minimization of an Integral FunctionalTYCMJ 149 AMM E2694 Construction • Preservation FQ B-308 FQ B-300 Convolution • Integer Calculus Box Construction • Integer Calculus Box FQ B-300 FQ B-300 FQ B-300 Convolution • Another FQ B-330 Convolution • Sunction FQ B-346 Convolution • Francipal FQ AMM 6185 Continued Fraction • Derivative of a MATYC 103 Continued Fraction Derivative AMM 5897 Continuity • A False Criterion for TYCMJ 92 Continuity • A False Criterion for Continuity • A False Criterion for Derivatives Derivatives AMM 6100 Continuous Functions with Partial Derivatives AMM 6100 Continuous Functions • Separately AMM 6100 Continuous Functions • Separately AMM 6184 Continuous Functions • Separately AMM 6193 Continuous Functions • Separately AMM 6193 AMM 6193 Continuous Functions • Separately AMM 6193 Continuous Functions • Separately AMM 6193 Continuous Mapping $\mathbb{R} \rightarrow \mathbb{R}$ • One-One TYCMJ 143 Continuous Function • Integer Calculus Box TYCMJ 145 Continuous Functions • Tycchia FQ B-293 Continuous Functions • Tycchia FQ B-293 Continuous Functions • Tycchia FQ B-273 Cont				
AMM 5935 SIAM 74-18Constrained Equality • A Construction and Functional FunctionalAMM 5297 Convexity Under Multiplication • Preservation Convexity Under Multiplication • Preservation Of Convexity Under Multiplication • Preservation Of Convexity Under Multiplication • Preservation Of Convexity Under Multiplication • Preservation Convexity Under Multiplication • Preservation Of Convexity Under Multiplication • Preservation Oncolution • Preservation Of Convolution • Convoluting for CongruencesTYCMJ 86 MATYC 99 Construction • Integer Calculus Box MATYC 99 Construction • Tinagle Construction • Tinagle Construction • Tinagle Construction • Tinagle Construction • Navel Continuation of − − + − + − + · · · FQ B-298 Continued Fraction • Derivative AMM 5297 Continued Fraction for e½/z AMM 6273 TYCMJ 92 AMM 6273 Continuity • Infectious AMM 5880 Continuity • Infectious AMM 6100 Continuous Function • Smoothing a AMM 6102 Continuous Function • Derivatives of AMM 6104 Continuous Function • Derivatives of AMM 6105 Continuous Functions • Derivatives of AMM 6106 Continuous Functions • Separately AMM 6107 AMM 6108 Continuous Mapp • Iteration of a AMM 6108 Continuous Mapp • Iteration of a AMM 6108 Continuous Mapp • Iteration of a AMM 6108 Continuous Mapp • Iteration of a Continuous Functions • Separately AMM 6106 Continuous Mapping ℝ → ℝ • One-One TYCM 1128 Continuous Continuous Functions • TYCM 1143 Cosines • Sum of a Progression of TYCM 1143 Cosines • Sum of a Prog				
SIAM 74-18 Constrained Minimization of an Integral Functional			1	
Functional AMM 6017 Constructing 'Smaller' Norms JRM 562 Construction • A Difficult TYCMJ 86 Construction • Integer Calculus Box MATYC 99 Construction • Triangle AMM 6180 Construction • Triangle MM 1054 Constructions • Two Euclidean MM 1055 Continuation of $++\cdots$ FQ B-346 Convolution • Binomial AMM 6180 Constructions • Two Euclidean MM 1068 Continuation of $++\cdots$ FQ B-346 Convolution • Triangular FQ B-346 Convolution • Triangular FQ B-346 Convolution • Triangular FQ B-346 Convolution of Triangular AMM 598-295 Convolution of Null Sequences AMM 598-295 Convolution of Null Sequences AMM 6145 Convolution of Poulted Sum AMM 6145 Convolution of Products on Functions $N \to C$ JRM 673 Coolinued Fraction for $e^{1/z}$ AMM 916 Coordinates e^{z} Trilinear AMM 962 Coplanar Points AMM 962 Corners e^{z} Trilinear AMM 207 Continuous e^{z} Nontinuous e^{z} Amm 6100 Continuous e^{z} Nontinuous Functions e^{z} Amm 6100 Continuous Function e^{z} Amm 6100 Continuous Function e^{z} Amm 6100 Continuous Functions e^{z} Bases for Piecewise AMM 6100 Continuous Functions e^{z} Separately AMM 6100 Continuous Functions e^{z} Separately AMM 6100 Continuous Map e^{z} Presceibles AMM 6101 Continuous Map e^{z} Presceibles AMM 6102 Continuous Map e^{z} Presceibles AMM 6103 Continuous Map e^{z} Presceibles AMM 6104 Continuous Map e^{z} Presceibles AMM 6105 Continuous Map e^{z} Presceibles AMM 6106 Continuous Map e^{z} Presceibles AMM 6100 Continuous M				v v
AMM 6017 Constructing 'Smaller' Norms JRM 562 Construction • A Difficult FQ B-300 Convoluting for Congruences TYCMJ 86 Construction • Integer Calculus Box FQ B-300 Convolution • Another FQ B-300 Convolution • Dinomial FQ B-300 Convolution • Dinomial FQ B-300 Convolution • Triangular FQ B-300 Convolution • Triangular FQ B-300 Convolution of Null Sequences FQ B-299 Convolution of Double Sum FQ B-299 Convolution of Null Sequences FQ B-299 Convolution of Double Sum FQ B-299 Convolution of Drivative FQ B-299 Convolution of Prigative FQ B-299 Convolution of Prigative FQ B-299 Convolution				
JRM 562 Construction • A Difficult FQ B-368 Convoluting for Congruences TYCMJ 86 Construction • Integer Calculus Box FQ B-380 Convolution • Another MATYC 99 Construction • Triangle FQ B-380 Convolution • Sinomial AMM 1054 Constructions • Two Euclidean FQ B-346 Convolution • Triangular MM 1056 Contemplation • Navel AMM 5984 Convolution of Null Sequences AMM 2541 Continued AMM 5984 Convolution or Double Sum AMM 52541 Continued Fraction of − − + − − + · · · FQ B-295 Convolution or Double Sum AMTYC 80 Continued Fraction Derivative AMM 6145 Convolution Products on Functions N → C MATYC 103 Continued Fraction Derivative MM 916 Coordinates • Trilinear AMM 5897 Continuity • A False Criterion for JRM 453 Corners • Turning TYCMJ 92 Continuity • Infectious AMM E2452 Corners • Turning AMM 5888 Continuity • Infections with Partial Derivatives JRM 458 Correct Alphametics • Arithmetically MM 907 Continuous Functions • Smoothing a JRM 551 Correspondence • Camp AMM 6100 Con	AMM 6017		FQ B-290	Convoluted F_{2n}
TYCMJ 86	JRM 562		1	Convoluting for Congruences
MATYC 99Construction • TriangleFQ B-380Convolution • BinomialAMM 6180Constructions • Two EuclideanFQ B-299Convolution • TriangularMM 1054Constructions • Two EuclideanFQ B-299Convolution formula • AMM 1068Contemplation • NavelAMM 5984Convolution of Null SequencesAMM E2541ContinueContinueFQ B-295Convolution or Double SumFQ H-278ContinueAMM 6145Convolution Products on Functions N → CMATYC 89Continued Fraction DerivativeAMM 6145Coordinates • TrilinearAMM 5897Continued Fraction for e ^{1/2} MM 916Coordinates • TrilinearAMM 6273Continuity • A False Criterion forJRM 242Corners • TurningTYCMJ 92Continuity • InfectiousAMM 622Corners • TurningAMM 5888Continuous • Infections with Partial DerivativesJRM 458Correct Alphametics • ArithmeticallyMM 907Continuous • NowhereFQ H-225Corrected Oldie • AAMM 6100Continuous Function • Smoothing aJRM 551Correspondence • CampAMM 6000Continuous Functions • Bases for PiecewiseFQ B-283cos π/6 and sin π/6 • Rational Approximation ofAMM 6184Continuous Functions • SeparatelyFQ B-373Cosine • GoldenAMM 6185Continuous Function of aTYCMJ 147Cosines • Sum of a Progression ofAMM 6180Continuous Mapping R → R • One-OneTYCMJ 128Cosines • Sum of a Progression ofAMM 6081Continuous Mapping R → R • One-OneTYCMJ 14	TYCMJ 86	Construction • Integer Calculus Box	1	
AMM 6180 Construction for Ideals • A MM 1054 Constructions • Two Euclidean FQ B-299 Convolution • Ornal • A Constructions • Two Euclidean FQ B-299 Convolution of Null Sequences Convolution of Null Sequences Convolution of Derivative of a Continued Fraction • Derivative of a Continued Fraction Derivative MM 5897 Continued Fraction Derivative MM 5897 Continued Fraction for $e^{1/z}$ MM 962 Continuity • A False Criterion for TYCMJ 92 Continuity • A False Criterion for TYCMJ 92 Continuity • Functions with Partial Derivatives MM 5888 Continuity • Functions with Partial Derivatives MM 6100 Continuous Function • Smoothing a AMM 6000 Continuous Functions • Bases for Piecewise AMM 6140 Continuous Functions • Bases for Piecewise AMM 6093 Continuous Functions • Separately AMM 6093 Continuous Map • Iteration of A AMM 6081 Continuous Mapping $\mathbb{R} \rightarrow \mathbb{R}$ • One-One AMM 6081 Continuous Quasi-continuous Functions • Two Euclidean FQ B-299 Convolution Formula • A Convolution of Null Sequences Convolution of Drival • Convolution or Double Sum AMM 5984 Convolution Products on Functions • Tunk 500 Convolution Products on Functions • Tunk 500 Convolution or Double Sum AMM 6145 Convolution Products on Functions N → C Convolution Product Formula for Convolution P	MATYC 99		FQ B-380	Convolution • Binomial
MM 1068 Contemplation • Navel AMM E2541 Continuation of $++\cdots$ FQ H-278 Continue MATYC 89 Continued Fraction • Derivative of a MATYC 103 Continued Fraction Derivative AMM 5897 Continued Fraction for $e^{1/z}$ AMM 6273 Continuity • A False Criterion for TYCMJ 92 Continuity • Infectious AMM 5888 Continuity of Functions with Partial Derivatives MM 907 Continuous • Nowhere AMM 6100 Continuous Bijections on \mathbb{R} AMM 6027 Continuous Function • Smoothing a AMM 6027 Continuous Function • Bases for Piecewise AMM 6140 Continuous Functions • Derivatives of AMM 6140 Continuous Functions • Derivatives of AMM 6150 Continuous Functions • Separately AMM 6161 Continuous Map • Iteration of a AMM 6178 Continuous Mapping $\mathbb{R} \to \mathbb{R} \bullet$ One-One AMM 6081 Continuous, Quasi-continuous Functions • AMM 6081 Continuous Quasi-continuous Functions • AMM 6081 Continuous Quasi-continuous Functions • AMM 6081 Continuous Function • Navel AMM 6081 Continuous Functions • Navel AMM 6081 Conti	AMM 6180			Convolution • Triangular
AMM E2541 Continue FQ H-278	MM 1054	Constructions • Two Euclidean	FQ B-299	Convolution Formula • A
FQ H-278 Continue MATYC 89 Continued Fraction • Derivative of a MATYC 103 Continued Fraction Derivative AMM 5807 Continued Fraction for $e^{1/z}$ AMM 6273 Continuity • A False Criterion for TYCMJ 92 Continuity • Infectious AMM 5888 Continuity of Functions with Partial Derivatives MM 907 Continuous • Nowhere AMM 6100 Continuous Bijections on \mathbb{R} AMM 6007 Continuous Function • Smoothing a AMM 6184 Continuous Functions • Bases for Piecewise AMM 6184 Continuous Functions • Derivatives of AMM 6185 Continuous Functions • Derivatives of AMM 6186 Continuous Map • Iteration of a AMM 6133 Continuous Mapping $\mathbb{R} \to \mathbb{R}$ • One-One AMM 6081 Continuous, Quasi-continuous Functions • TYCMJ 143 Cotangent • Inner Product Formula for	MM 1068	Contemplation • Navel	AMM 5984	Convolution of Null Sequences
MATYC 89 Continued Fraction • Derivative of a MATYC 103 Continued Fraction Derivative AMM 5897 Continued Fraction for $e^{1/z}$ MM 916 Coordinates • Trilinear Coplanar Points AMM 6273 Continuity • A False Criterion for TYCMJ 92 Continuity • Infectious AMM 5888 Continuity of Functions with Partial Derivatives Derivatives Derivatives JRM 459 Correct Alphametics • Arithmetically FQ H-225 Corrected Oldie • A JRM 597 Continuous Function • Smoothing a AMM 6007 Continuous Function • Smoothing a AMM 6184 Continuous Functions • Bases for Piecewise AMM 6140 Continuous Functions • Derivatives of AMM 6140 Continuous Functions • Derivatives of AMM 6133 Continuous Map • Iteration of a AMM 6133 Continuous Mapping $\mathbb{R} \to \mathbb{R}$ • One-One AMM 6081 Continuous, Quasi-continuous Functions • TYCMJ 143 Cotangent • Inner Product Formula for	AMM E2541	Continuation of $++\cdots$	FQ B-295	Convolution or Double Sum
MATYC 103 Continued Fraction Derivative AMM 5897 Continued Fraction for $e^{1/z}$ AMM 6273 Continuity • A False Criterion for TYCMJ 92 Continuity • Infectious AMM 5888 Continuity of Functions with Partial Derivatives MM 907 Continuous • Nowhere AMM 6100 Continuous Bijections on $\mathbb R$ AMM 6007 Continuous Function • Smoothing a AMM 6007 Continuous Functions • Bases for Piecewise AMM 6184 Continuous Functions • Derivatives of AMM 6140 Continuous Functions • Derivatives of AMM 6140 Continuous Functions • Derivatives of AMM 6153 Continuous Map • Iteration of a AMM 6133 Continuous Map • Iteration of a AMM 6081 Continuous, Quasi-continuous Functions • MM 916 Coordinates • Trilinear MM 962 Coplanar Points Coplanar Points MM 962 Corners • Turning AMM 962 Corners • Turning AMM 962 Corners • Turning AMM 6245 Corners is not so Easy • Cutting Correct Alphametics • Arithmetically FQ H-225 Correct Oldie • A JRM 551 Correspondence • Camp JRM 552 Correspondence • Camp Correspondence • Camp FQ B-283 Cosine • Golden TYCMJ 47 Cosines • A Law of Sines and TYCMJ 47 Cosines • A Law of Sines and TYCMJ 128 Cosines • Sum of a Progression of TYCMJ 128 Cosines • Sum of a Progression of TYCMJ 143 Cotangent • Inner Product Formula for	FQ H-278	Continue	AMM 6145	Convolution Products on Functions $N \to C$
AMM 5897 Continued Fraction for $e^{1/z}$ AMM 6273 Continuity • A False Criterion for Continuity • Infectious Continuity • Infectious AMM 5888 Continuity of Functions with Partial Derivatives Derivatives Derivatives JRM 459 Correct Alphametics • Arithmetically JRM 459 Correct Alphametics • Arithmetically Derivatives Derivatives JRM 551 Correct Oldie • A JRM 551 Correspondence • Camp AMM 6007 Continuous Function • Smoothing a AMM 6007 Continuous Functions • Bases for Piecewise AMM 6140 Continuous Functions • Derivatives of AMM 6140 Continuous Functions • Derivatives of AMM 6133 Continuous Functions • Separately AMM 6093 Continuous Functions • Separately AMM 6133 Continuous Map • Iteration of a AMM 5978 Continuous, Quasi-continuous Functions • TYCMJ 128 Cosines • Signs and Cotangent • Inner Product Formula for	MATYC 89	Continued Fraction • Derivative of a	JRM 673	Coolest Sequence • The
AMM 6273 Continuity • A False Criterion for TYCMJ 92 Continuity • Infectious AMM 5888 Continuity • Infectious AMM 907 Continuous • Nowhere AMM 6100 Continuous Function • Smoothing a AMM 6027 AMM 6000 Continuous Functions • Bases for Piecewise AMM 6140 Continuous Functions • Derivatives of AMM 6140 Continuous Functions • Derivatives of AMM 6140 Continuous Functions • Separately AMM 6133 Continuous Functions • Separately AMM 6133 Continuous Map • Iteration of a AMM 6134 Continuous Map • Iteration of a AMM 6135 Continuous Map • Iteration of a AMM 6136 Continuous, Quasi-continuous Functions • AMM 6137 Continuous Functions • TYCMJ 128 Cotangent • Inner Product Formula for	MATYC 103			Coordinates \bullet Trilinear
TYCMJ 92 Continuity • Infectious AMM 5888 Continuity of Functions with Partial Derivatives MM 907 Continuous • Nowhere AMM 6100 Continuous Bijections on \mathbb{R} AMM 6007 Continuous Function • Smoothing a AMM 6008 Continuous Functions • Derivatives of AMM 6140 Continuous Functions • Derivatives of AMM 6193 Continuous Map • Iteration of a AMM 6133 Continuous Mapping $\mathbb{R} \to \mathbb{R}$ • One-One AMM 6081 Continuous, Quasi-continuous Functions • Continuous				•
AMM 5888 Continuity of Functions with Partial Derivatives MM 907 Continuous \bullet Nowhere AMM 6100 Continuous Bijections on $\mathbb R$ AMM 6027 Continuous Function \bullet Smoothing a AMM 6000 Continuous Functional \bullet A AMM 6184 Continuous Functions \bullet Bases for Piecewise AMM 6140 Continuous Functions \bullet Derivatives of AMM E2610 Continuous Functions \bullet Separately AMM 6093 Continuous Functionals AMM 6133 Continuous Mapping $\mathbb R \to \mathbb R$ \bullet One-One AMM 5978 Continuous, Quasi-continuous Functions \bullet Continuous Functions \bullet Conti	AMM 6273	Continuity • A False Criterion for	JRM 242	Corners • Turning
Derivatives MM 907 Continuous • Nowhere AMM 6100 Continuous Bijections on \mathbb{R} AMM 6027 Continuous Function • Smoothing a AMM 6000 Continuous Functional • A AMM 6184 Continuous Functions • Bases for Piecewise AMM 6140 Continuous Functions • Derivatives of AMM E2610 AMM 627 Continuous Functions • Separately AMM 6184 Continuous Functions • Separately AMM 6193 Continuous Functionals AMM 6133 Continuous Map • Iteration of a AMM 5978 Continuous, Quasi-continuous Functions • Continuous, Quasi-continuous Functions • TYCMJ 128 Correct Alphametics • Arithmetically FQ H-225 Corrected Oldie • A Correspondence • Camp JRM 552 JRM 553 Correspondence • Camp Correct Alphametics • Arithmetically FQ B-283 Corrected Oldie • A Correspondence • Camp FQ B-283 Correspondence • Camp Correspondence • Camp Correct Alphametics • Arithmetically FQ H-225 Correspondence • Camp FQ B-283 Correspondence • Camp Correspondence • Camp	TYCMJ 92		AMM E2452	Corners is not so Easy • Cutting
MM 907 Continuous • Nowhere AMM 6100 Continuous Bijections on \mathbb{R} AMM 6027 Continuous Function • Smoothing a AMM 6000 Continuous Functional • A AMM 6184 Continuous Functions • Bases for Piecewise AMM 6140 Continuous Functions • Derivatives of AMM E2610 Continuous Functions • Separately AMM 6093 Continuous Functions • Separately AMM 6133 Continuous Map • Iteration of a AMM 5978 Continuous Ampling $\mathbb{R} \to \mathbb{R}$ • One-One AMM 6081 Continuous, Quasi-continuous Functions • Continuous Functions • FQ H-225 Corrected Oldie • A Correspondence • Camp FQ B-283 cos $\pi/6$ and $\sin \pi/6$ • Rational Approximation of TYCMJ 47 Cosines • A Law of Sines and cosines • Signs and TYCMJ 128 Cosines • Sum of a Progression of TYCMJ 143 Cotangent • Inner Product Formula for	AMM 5888			
AMM 6100 Continuous Bijections on $\mathbb R$ AMM 6027 Continuous Function \bullet Smoothing a AMM 6000 Continuous Functional \bullet A AMM 6184 Continuous Functions \bullet Bases for Piecewise AMM 6140 Continuous Functions \bullet Derivatives of AMM E2610 Continuous Functions \bullet Separately AMM 6093 Continuous Functions \bullet Separately AMM 6133 Continuous Map \bullet Iteration of a AMM 5978 Continuous Mapping $\mathbb R \to \mathbb R \bullet$ One-One AMM 6081 Continuous, Quasi-continuous Functions \bullet TYCMJ 128 Costangent \bullet Inner Product Formula for				-
AMM 6027 Continuous Function \bullet Smoothing a AMM 6000 Continuous Functional \bullet A Continuous Functions \bullet Bases for Piecewise AMM 6140 Continuous Functions \bullet Derivatives of AMM 62610 Continuous Functions \bullet Separately AMM 6093 Continuous Functionals Continuous Map \bullet Iteration of a AMM 6178 Continuous Map \bullet Iteration of a Continuous Map \bullet Reational Approximation of AMM 6081 Continuous Functions \bullet TYCMJ 47 Cosines \bullet A Law of Sines and Cosines \bullet Signs and TYCMJ 128 Cosines \bullet Sum of a Progression of TYCMJ 143 Cotangent \bullet Inner Product Formula for			· ·	
AMM 6000 Continuous Functional • A AMM 6184 Continuous Functions • Bases for Piecewise AMM 6140 Continuous Functions • Derivatives of AMM E2610 Continuous Functions • Separately AMM 6093 Continuous Linear Functionals AMM 6133 Continuous Map • Iteration of a AMM 5978 Continuous Mapping $\mathbb{R} \to \mathbb{R}$ • One-One AMM 6081 Continuous, Quasi-continuous Functions • AMM 6081 Continuous Functional • A AMM 5084 Continuous Functional • A AMM 5086 Continuous Functions • AMM 5087 Continuous Functions • AMM 5088 Continuous Functions • AMM 5088 Continuous Functions • AMM 5089 Continuous Functions • AMM 5080 Continuous F		v		
AMM 6184 Continuous Functions • Bases for Piecewise AMM 6140 Continuous Functions • Derivatives of AMM E2610 Continuous Functions • Separately AMM 6093 Continuous Linear Functionals Continuous Map • Iteration of a AMM 5978 Continuous Mapping $\mathbb{R} \to \mathbb{R}$ • One-One AMM 6081 Continuous, Quasi-continuous Functions • TYCMJ 143 Cotangent • Inner Product Formula for		9		
AMM 6140 Continuous Functions $ullet$ Derivatives of AMM E2610 Continuous Functions $ullet$ Separately Continuous Linear Functionals Continuous Map $ullet$ Iteration of a AMM 6133 Continuous Mapping $\mathbb{R} \to \mathbb{R} ullet$ One-One AMM 6081 Continuous, Quasi-continuous Functions $ullet$ TYCMJ 143 Cotangent $ullet$ Cosines $ullet$ Cosines $ullet$ Cosines $ullet$ Cosines $ullet$ Cotangent $ullet$ Inner Product Formula for				
AMM E2610 Continuous Functions • Separately AMM 6093 Continuous Linear Functionals AMM 6133 Continuous Map • Iteration of a AMM 5978 Continuous Mapping ℝ → ℝ • One-One AMM 6081 Continuous, Quasi-continuous Functions • FQ B-373 Cosine • Golden TYCMJ 47 Cosines • A Law of Sines and Cosines • Signs and TYCMJ 128 Cosines • Sum of a Progression of TYCMJ 143 Cotangent • Inner Product Formula for			FQ B-283	
AMM 6093 Continuous Linear Functionals AMM 6133 Continuous Map $ullet$ Iteration of a AMM 5978 Continuous Mapping $\mathbb{R} \to \mathbb{R} ullet$ One-One AMM 6081 Continuous, Quasi-continuous Functions $ullet$ TYCMJ 143 Cosines $ullet$ A Law of Sines and cosines $ullet$ Signs and TYCMJ 128 Cosines $ullet$ Sum of a Progression of TYCMJ 143 Cotangent $ullet$ Inner Product Formula for				
AMM 6133 Continuous Map $ullet$ Iteration of a AMM 5978 Continuous Mapping $\mathbb{R} \to \mathbb{R} ullet$ One-One AMM 6081 Continuous, Quasi-continuous Functions $ullet$ MM 1033 cosines $ullet$ Signs and TYCMJ 128 Cosines $ullet$ Sum of a Progression of TYCMJ 143 Cotangent $ullet$ Inner Product Formula for		1 0		
AMM 5978 Continuous Mapping $\mathbb{R} \to \mathbb{R} \bullet$ One-One AMM 6081 Continuous, Quasi-continuous Functions \bullet TYCMJ 128 Cosines \bullet Sum of a Progression of TYCMJ 143 Cotangent \bullet Inner Product Formula for				
AMM 6081 Continuous, Quasi-continuous Functions ● TYCMJ 143 Cotangent ● Inner Product Formula for				
		11 0		-
Nownere MM 928 Cotangents • Limit of	AMIM PORT	· •		
		nowhere	IVIIVI 928	Cotangents • Limit of

Count	1975	–1979	Definit
FQ B-357	Count • Golden Ratio Inequality	AMM 6179	Cubes with Integral Vertices
AMM 6014	Countable • Uncountable Sets with All Closed	MM 1074	Cubic • Smallest Root of a
	Subsets	MM 905	Cubic • Tangent Lines to a
AMM 6274	Countable Local Bases • Disjoint	FQ B-355	Cubic Identity
A N A N A E 2006	Neighborhoods and	SIAM 74-3	Cubic Interpolation • Davidon's
AMM E2806	Countable Local Bases • Disjoint	TYCMJ 97	Cubic Quandary
AMM 6168	Neighborhoods and	AMM 5895	Cubic Trees
AMM E2797	Counterexample Counterexample • An Easy	AMM 5979 JRM 751	Cubics on $ z < 1 \bullet Schlicht$ Culinary Conundrum
MATYC 94	Counterexample • Palindromic	AMM E2636	Culture • Microbe
JRM 740	Countermeasures • Cryptological	JRM 668	Current Events
AMM E2546	Counting • Hilbert Function and	MM 1006	Curve • A Simple Closed
AMM 6070	Counting b for which $\phi(n)/n = a/b$	AMM E2456	Curve • Area Enclosed by a Jordan
MM 924	Counting n -Tuples	AMM 6129	Curve • Distance from a Simple Closed
FQ B-413	Counting Equilateral Triangles	MM 884	Curve • Frequency of a Sine
MM 939	Counting in Cubes	AMM E2647	Curve Theorem • An Elementary Case of the
FQ B-377	Counting Lattice Points		Jordan
AMM E2593	Counting Points in a Configuration	AMM 6223	Curves • Isoptic
JRM 294	Counting Problem • A	MATYC 114	Curves • Orthogonal
TYCMJ 54	Counting Problem • A	JRM 351	Curves and Four Problems • Two
MM 1077	Counting Pythagorean Triangles	TYCMJ 17	Cut by a Parabola • Line Segments
FQ B-385	Counting Some Triangluar Numbers	JRM 247	Cutie Pie • A
MM 960	Counting Squares and Cubes	JRM 783	Cutting • Cube
JRM 406	Couple • The Odd	AMM E2452	Cutting Corners is not so Easy
JRM 405	Couple ◆ The Odd	JRM 787	Cutting Cubes into Tori
AMM 6114	Covariance Distribution • The	MM 1059	Cyclic Extrema
AMM E2654	Cover of a Finite Set • Minimum Subcover of a	AMM 6205	Cyclic Groups • Torsion-Free Finite Extension
MM 969	Covering • Cube		of
AMM E2785	Covering $V - \{0\}$ with Hyperplanes in F_q	AMM 4603	Cyclic Inequality • Shapiro's
AMM 5998	Covering a Set of Integers	AMM E2683	Cyclic Matrix • Determinant of a
AMM E2564	Covering Vertices of Four-valent Graphs	AMM S6	Cyclic Power Inequality • A
AMM E585	Cracked • Miquel Point — A Tough Nut has	AMM E2557	Cyclic Quadrilaterals • 'Perfect'
	been	AMM E2660	Cyclic Quadrilaterals of Given Perimeter •
JRM 246	Craps • Game Theoretic	4444 6050	Integral
SIAM 79-10	Credibility Functions	AMM 6059	Cyclic Sylow Subgroups of Metacyclic Groups
AMM E2582	Crisscrossing Partitions of a Finite Set	JRM 629	Cylinder • The Sphere in the
AMM 6273	Criterion for Continuity • A False	AMM E2728	Cylinders • Mutually Tangent
AMM 5957	Criterion of Orthonormal Systems in L^2 •	AMM E2465	$d(A+B) = 1 \bullet d(A) = d(B) = 0$, yet
IDM 670	Completeness	AMM E2465	d(A) = d(B) = 0, yet $d(A+B) = 1$
JRM 678	Cross-Number	AMM E2466 AMM E2466	d(A) = d(B) = 0, yet $d(AB) = 1$
JRM 349 AMM E1298	Cross-Number Puzzle		$d(AB) = 1 \bullet d(A) = d(B) = 0, \text{ yet}$
	Cross-Section of a Tetrahedron • Largest Crossnumber • Decimal-Octal	AMM 5968	$D^k f(0) \bullet$ The Set of Zeros of Entire Functions
JRM 704 JRM 798		TVCNAL 147	with Integral
JRM 473	Crossnumber • Square Crossnumber Puzzle • A	TYCMJ 147	Dance • Square
JRM 664	Crowd Pleaser	JRM 597	Dangerous Hand • The
JRM 375	Cruise of the Sidewinder, or How to Tack in a	AMM 6132	"Darboux Property" • A Function with the
JICIVI 373	Tin Can	SIAM 74-3 FQ H-294	Davidon's Cubic Interpolation $Dawn \bullet \Delta$
JRM 438	Cruising Down The River	FQ H-211	Dead • Return from the
JRM 548	Crusaders • Caped		
MM 894	Cryptarithm • A	JRM 300 JRM 669	Dear Watson" • "My Deceiving • Appearances are
MATYC 64	Cryptarithm • A Unique	MATYC 87	Decimal • Repeating
MM 903	Cryptarithm • Unique	TYCMJ 29	Decimal Digit Shifting
JRM 740	Cryptological Countermeasures	MM 1046	Decimal Divisibility
SIAM 74-8	Crystal Growth • An Integral Equation for	JRM 704	Decimal-Octal Crossnumber
SIAM 78-8	Cube • Average Distance in a Unit	JRM 761	Declaration Signers
SIAM 79-16	Cube • Resistances in an n -Dimensional	AMM E2768	Decomposing an Interval into Homeomorphic
JRM 733	Cube and Spheres	7	Subsets
MM 969	Cube Covering	TYCMJ 82	Decomposition • Partial Fractions
JRM 783	Cube Cutting	AMM 6015	Decomposition of Integers • Prime
JRM 764	Cube Endings	AMM 6046	Decompositions of Polynomials • Comparing
AMM E2349	Cube in a Tetrahedron • Fitting a	AMM 5963	Decreasing Joint Densities • Expectations in
JRM 628	Cube Pattern Puzzle • A	JRM 296	Deep Water • In
JRM C2	Cube Roots • Square Roots and	TYCMJ 87	Deficient Means • Application of the Method
AMM E2446	Cube Roots Modulo $m \bullet \text{Unique}$	AMM 5967	Deficient Odd Numbers • Density of
MM 939	Cubes • Counting in	AMM E2716	Defined by a Point Interior to a Triangle • Six
MM 960	Cubes • Counting Squares and		Segments
FQ B-342	Cubes • Perfect	AMM E2536	Defines Boolean Rings • When $x^m = x$
FQ H-291	Cubes • Square Your	AMM 6072	Definite Hermitian Matrix • Positive
TYCMJ 80	Cubes • Sum of	SIAM 78-19	Definite Integral • A
			_
FQ B-350	Cubes and Triple Sums of Squares	SIAM 77-8	Definite Integral • A

Definite	1975-	-1979	Din
AMM E2765	Definite Integrals • Change of Variable Formula for	TYCMJ 107	Diameter $a+b-c$ of Pythagorean Triplets • The
AMM 6095	Definite Matrices • Positive	TYCMJ 32	Diameter Characterization of the Parabola
JRM 454	Definitely Non-Canadian Alphametics	AMM E2612	Diamond Packing of a Chinese Checkerboard
JRM 455	Definitely Non-Canadian Alphametics	MM 1071	Dice • A Problem with
AMM E2763	Degree Congruence with Nine Solutions • A Third	JRM 588	Dice • Loaded
AMM 6043	Degrees of Irreducible Polynomials over a Field	MM 1071 MM 1011	Dice Again • Roll the Dice Problem • An Old
JRM 632	Deluge • A Diophantine	AMM 6146	Did Bacon Write Shakespeare's Plays?
SIAM 76-19	Demagnetizing Fields • A Double Integral from	MATYC 122	Did You Expect It
AMM 5540	Dense Chains	MM 911	Die • Vertices of a
AMM E2598	Dense Rational Set with Irrational Distances	AMM 6200	Differ by Two ● A Characterization of Integers
AMM E2788	Dense Sequences in $[0,1]$		That
AMM 6131	Dense Set in $L^1(-\infty,\infty) \bullet A$	JRM 645	Difference • A Limiting
AMM E2697	Dense Subset of the Unit Circle • A	FQ H-301	Difference • Sum
AMM 5963 TYCMJ 111	Densities • Expectations in Decreasing Joint Densities of Subsets of the Natural Numbers	TYCMJ 56 FQ B-370	Difference Equation Difference Equation • Nonhomogeneous
AMM 5949	Density of $\sigma(n)/n$	TYCMJ 77	Difference Equation • Polynomial Solution of a
AMM 6053	Density of Arguments of Powers of Gaussian	AMM E2609	Difference Equation in Two Variables • A
	Integers	FQ B-338	Difference of Binomial Expansions
AMM 5967	Density of Deficient Odd Numbers	TYCMJ 37	Difference of Squares • A
AMM 5735	Density of Pairs with Same Prime Factors	MATYC 76	Difference Way To Do It • A
AMM 6065	Density of the Sum of Divisors Function • The	SIAM 74-4	Difference-Differential Equations • A System of
MATYC 112	Denumerable vs Divergent	MM 1041	Differences • Divisible
AMM 6021	Dependence in $l^p \bullet \text{Linear}$	AMM S5	Differences • Intersecting Sets of
AMM E2453	Dependence of Certain Trigonometric Values • The Linear	AMM E2506 AMM 6137	Differences of Square Roots • Limits of Differences of the Partition Function • The
AMM 6234	Derangement Number to Ménage Number •	MM 983	Different Number of Prime Divisors
AIVIIVI 0254	Ratio of	MM 1085	Different Zeros • Four
MATYC 83	Derivative • An Nth Order	AMM E2572	Differentiable at a Limit Point of its
MATYC 103	Derivative • Continued Fraction		Discontinuities? • Can a Derivative be
AMM E2572	Derivative be Differentiable at a Limit Point of	AMM 5955	Differentiable Functions \bullet On $\mathbb{Q} \to \mathbb{Q}$
	its Discontinuities? • Can a	AMM 6018	Differentiable functions in \mathbb{R}^2
MATYC 89	Derivative of a Continued Fraction	MM 1050	Differential Equation
AMM 6185	Derivative of a Function \bullet Inequality of L_p	SIAM 79-20	Differential Equation • A
SIAM 77-20	Norms of a Derivative? • When is the Modified Bessel	AMM E2568	Differential Equation • A Bernoulli
31AW 11-20	Function Equal to its	SIAM 77-16	Differential Equation • A First Order Nonlinear
AMM E2767	Derivatives • A Determinant Involving	SIAM 79-11	Differential Equation • A Non-Linear
AMM 5888	Derivatives • Continuity of Functions with	SIAM 79-11	Differential Equation • A Nonlinear
	Partial	SIAM 76-6	Differential Equation \bullet An n th Order Linear
AMM E2550	Derivatives • Signs of Successive	FQ H-235	Differential Equation! • Sum
AMM E2756	Derivatives • Zeros of Successive	SIAM 77-17	Differential Equations • A System of Second
AMM E2755 AMM 6140	Derivatives of a Fading Function • Zeros of Derivatives of Continuous Functions		Order
JRM 163	Desperate Straits	SIAM 76-12	Differential Equations • An Infinite System of
AMM E2729	Det $[C_i^{im+j-1}]$	SIAM 77-4	Nonlinear Differential Equations Involving Arbitrary
	- j	SIAWI 11-4	Differential Equations Involving Arbitrary Functions • Solutions to Linear Partial
JRM 610 SIAM 79-3	Detective Work Determinant • A	FQ B-279	Differentiating Fibonacci Generating Function
SIAM 74-14	Determinant • A Generalization of the	AMM 5961	Differentiation Operator • The Twice
SIAW 14 14	Vandermonde	AMM E2384	Difficult Binomial Coefficient Summation • A
AMM E2589	Determinant • Another	JRM 562	Difficult Construction ● A
AMM E2588	Determinant • Computation of a	AMM E2504	Difficult Triangle Inequality • A
AMM E2703	Determinant • Evaluation of a	FQ B-382	Digit • Lucky L Units
SIAM 78-14	Determinant • Evaluation of a	JRM 786	Digit Distribution
AMM E2709	Determinant • Hankel	MM 1075	Digit out of 35,660 • 2500th
MM 1020	Determinant Equation	TYCMJ 29 JRM 677	Digit Shifting • Decimal Digit Sums
AMM E2767 AMM E2683	Determinant Involving Derivatives • A Determinant of a Cyclic Matrix	TYCMJ 93	Digits • Blocks of
AMM E2747	Determinant of a Cyclic Matrix Determinant with Reciprocal Factorials • A	JRM 756	Digits • Identical
SIAM 78-3	Determinants • A Conjecture on	FQ B-364	Digits • Incontiguous Zero
FQ B-411	Determinants • Tridiagonal	MM 908	Digits • Interchanged
SIAM 78-15	Determinants • Two Equal	MATYC 56	Digits • Repetitive
AMM 6057	Determinants of Matrices	JRM 676	Digits • Sums of Repeated
FQ H-302	Determined	FQ B-280	Digits • The Editor's
AMM 6224		AMM 6077	Digits in $K^n \bullet Sum$ of the
	Determining Heavy and Light Balls by		
	Weighings	AMM E2667	Digits in a Dyadic Expansion
AMM E2741	Weighings Diagonal of a Matrix • Similarity and the	AMM E2667 AMM E2738	Digits in a Dyadic Expansion Digits of a Real Number • Permuting the
AMM E2741 FQ B-388	Weighings Diagonal of a Matrix • Similarity and the Diagonals • Partitioning Squares Near the	AMM E2667 AMM E2738 TYCMJ 50	Digits in a Dyadic Expansion Digits of a Real Number • Permuting the Digits of Squares
AMM E2741	Weighings Diagonal of a Matrix • Similarity and the	AMM E2667 AMM E2738	Digits in a Dyadic Expansion Digits of a Real Number • Permuting the

Diophantine	1975-	-1979	Doubly
JRM 632	Diophantine Deluge ● A	AMM E2744	Divergent Partial Sum • A
JRM 496	Diophantine Equation • A	TYCMJ 44	Divergent Series • A
JRM 81a	Diophantine Equations • A Pair of	TYCMJ 23	Divergent Series • An Unusual
AMM E2664	Diophantine Equations • Minimal Solution of a	AMM E2626	Divergent Series • Convergent and
	System of	AMM S21	Divided by LCM • Product
AMM E2532	Diophantine Equations • Simple	AMM E2468	divides $3^m - 3^n \bullet \text{When } 2^m - 2^n$
AMM E2464	Diophantine Equations • Two Serendipitous	AMM 6143	Dividing the Pie Fairly
AMM E2511	Diophantine Equations $x^2 + 1 = 2^r 5^s \bullet \text{ The}$	TYCMJ 31	Divisibility
JRM 591	Diophantine Search • A	MM 1046	Divisibility • Decimal
JRM 315	Diophantine Triangles	MATYC 101	Divisibility • Double
AMM E2562	Directed Monochromatic Paths	TYCMJ 135	Divisibility • Probability of
AMM E2535	Direction • Acceleration with Constant	AMM E2772	Divisibility of $a^{2m} + b^{2m}$ by $a + b$
SIAM 78-9	Directors Problem • A Variant of Silverman's	JRM 467	Divisibility Problem • A
	Board of	MATYC 78	Divisibility Problem • A
JRM C4	Directors' Problem • The Board of	TYCMJ 25	Divisibility Problem • A
AMM E2457	Dirichlet-Like Product • A	TYCMJ 67	Divisibility Test • A
SIAM 78-1	Disc Averages • Approximate Invariance of	MM 1041	Divisible Differences
AMM 6142	Discontinuities • Functions with Prescribed	TYCMJ 36	Division Problem • A
AMM E2572	Discontinuities? • Can a Derivative be	FQ B-409	Divisor • Exact
	Differentiable at a Limit Point of its	FQ B-317	Divisor • Lucas
AMM E2632	Discrepancy • Minimizing	AMM 6064	Divisor Function • An Iterated
SIAM 74-21	Discrete Probability Distributions •	AMM E2491	Divisor of n ? • When is $ \sqrt{n} $ a
	Two-Dimensional	MM 983	Divisors • Different Number of Prime
AMM E2539	Disguise • A Known Unsolved Problem in	AMM 5964	Divisors • Mean Powers of Prime
AMM E2606	Disguise • Pell's Equation in	FQ B-326	Divisors • On the Sum of
JRM 457	Disguise • Satan in	AMM E2780	Divisors $\sum d(k)$, $k \le n \bullet$ Sum of Number of
JRM 503	Disharmonic Series • A	AMM 6086	Divisors and Square Free Integers • Common
AMM 6274	Disjoint Neighborhoods and Countable Local	AMM 6069	Divisors and Units in a Group Ring • Zero
	Bases	AMM 6065	Divisors Function • The Density of the Sum of
AMM E2806	Disjoint Neighborhoods and Countable Local	TYCMJ 65	Divisors in Finite Rings • Zero
	Bases	AMM E2805	Divisors of $2^k - 1 \bullet \text{Distinct Prime}$
AMM 6198	Disk ● Harmonic in the Unit	AMM 6160	Divisors of $\phi(m)$
AMM E2469	Disk • Hide and Seek in the Unit	MM 964	Divisors of $n!$
AMM S19	Disk • Isoperimetric Problem in a	AMM S9	Divisors of n : Divisors of $24 \bullet$ Characterizing the
AMM 6080	Disk • Power Series in a Closed	MATYC 76	Do It • A Difference Way To
AMM 6071	Disk on a Convex Domain • Analytic Mappings	JRM 385	Do Pentacles Exist?
	of the Unit	AMM 6149	Dodecahedron • Walk on the Edges of a
TYCMJ 115	Disparity in a Vibrating System	AMM 6251	Does $AB = C$ Imply $BA = D$? • When
SIAM 75-12	Distance • An Average	AMM E2542	Does the Job • A Bigger Group
AMM E2392	Distance • The Knight's	MM 1051	Does X or Y know (x, y) ?
AMM E2769	Distance Between Lines in \mathbb{R}^3	JRM 447	Dollar's Worth of Change • A
AMM 6063	Distance Between the Centers of Two Spheres	AMM 6071	Domain • Analytic Mappings of the Unit Disk
AMM E2629	Distance between Two Points in a Box •	7111111 0011	on a Convex
	Average	AMM 6177	Domain • Noetherian Integral
AMM 6129	Distance from a Simple Closed Curve	AMM 6116	Domains • Principal Ideal
SIAM 78-8	Distance in a Unit Cube • Average	SIAM 71-19	Dominoes • Falling
AMM 6025	Distance to the Boundary of a Set	AMM E2508	Dominoes • Tiling a Checkerboard with
AMM E2598	Distances • Dense Rational Set with Irrational	JRM 472	Door • The Garage
MM 966	Distances • Seven Integral	MATYC 101	Double Divisibility
TYCMJ 155	Distinct Elements with Equal Means	SIAM 76-19	Double Integral from Demagnetizing Fields • A
AMM S20	Distinct Posets • Same Enumerator for	JRM 615	Double Play
AMM E2805	Distinct Prime Divisors of $2^k - 1$	AMM E2743	Double Series
AMM E2781	Distinct Sums of the Residue Classes mod n	FQ B-295	Double Sum • Convolution or
AMM 6030	Distributed Random Variables • Identically	JRM 117	Double Torus • Packing a
MM 1055	Distribution • Binomial	FQ H-255	Double Your Fun
JRM 786	Distribution • Digit	JRM 626	Double-Angle Triangles
TYCMJ 136	Distribution • Mean of the Geometric	AMM E2648	Doubled Primes • Nearly
SIAM 77-1	Distribution • Percentiles for the Gamma	JRM 725	Doublement Vrai
JRM 442	Distribution • Suit	JRM 470	Doublets • Pentomino
AMM 6114	Distribution • The Covariance	JRM 665-1	Doubly True
AMM 6024	Distribution • Uniform	JRM 665-3	Doubly True
AMM 6207	Distribution of Inner Product of Two Random	JRM 665-2	Doubly True
	Vectors	JRM 544	Doubly True
AMM 6161	Distribution of Residues • A Characterization	JRM 543	Doubly True
-	of Irrationals by	JRM 331	Doubly True
AMM 5942	Distributions • Independent Normal	JRM 335	Doubly True
SIAM 74-21	Distributions • Two-Dimensional Discrete	JRM 726	Doubly True
	Probability	JRM 297	Doubly True • Also
AMM 6115	Distributions with Given Marginals •	JRM 640	Doubly True – 1
	n-Dimensional	JRM 641	Doubly True – 2
AMM 6032	Distributive Lattices	JRM 693	Doubly True – Dutch
MATYC 112	Divergent • Denumerable vs	JRM 691	Doubly True – English
			J

Doubly	1975-	-1979	Equation
JRM 611	Doubly True – English	AMM 6026	Elements in a Group Inverted by an
JRM 613	Doubly True – Greek		Automorphism • Number of
JRM 692	Doubly True – Latin	AMM 6162	Elements of the Inverse of a Matrix • The Sum
JRM 612 JRM 437	Doubly True Alpharastic With A Twist 2 A	TYCMJ 155	of the Elements with Equal Means \bullet Distinct
JRM 399	Doubly True Alphametic With A Twist • A Doubly True Alphametics	JRM 50	Elevator Problem • An
JRM 400	Doubly True Alphametics Doubly True Alphametics	JRM 593	Eleven Match Problem • The
JRM 398	Doubly True Alphametics	AMM E2682	Ellipse • Integer Points on an
JRM 526	Doubly True Alphametics • Two	FQ B-337	Ellipse • Rational Points on an
JRM 525	Doubly True Alphametics • Two	MM 1062	Ellipse and Convex Hexagon
JRM 583	Doubly True and Ideal, Too	AMM 6047	Ellipses • Conformal Maps of Ellipses onto
FQ B-312	Doubly-True Fibonacci Alphametic	AMM 6047 AMM E2576	Ellipses onto Ellipses • Conformal Maps of
FQ B-367	Down • Rounding	SIAM 78-10	Ellipsoid • Area of a Projection of an Elliptic Function • An Integral of an
JRM 438 JRM C1	Down The River • Cruising Down to the Basics	SIAM 79-9	Elliptic Functions • Fourier Series for a
JRM 690	Drag Racer's Lament		Combination of Jacobian
AMM E2696	Draws • Expected Number of	SIAM 74-22	Elliptic Integrals of the First Kind • Fourier
JRM 580	Dream • An Astronaut's		Coefficients of a Function Involving
JRM 341	Drop Me a Line	FQ B-386	Elusive Generalization
JRM 357	Dual Alphametic • A	MATYC 138	'em Up • Line
AMM E2692	Duplication Formula • A Transcendental	AMM E2456	Enclosed by a Jordan Curve • Area
	Function Satisfying a	MATYC 77 JRM 424	Encore! Endgame
FQ H-152	Dust Off • Brush the	AMM E2486	Ending in Ones • Squares
JRM 693	Dutch • Doubly True –	FQ B-314	Ending in Three • Lucas Numbers
AMM E2667 FQ H-240	Dyadic Expansion ● Digits in a E-Gad	JRM 764	Endings • Cube
FQ B-392	$(E^2 - E - 1)^2$ • Half-Way Application of	JRM 691	English • Doubly True –
AMM 6003	$e^A e^{A^*}$ • The Spectral Radius of	JRM 611	English • Doubly True –
AMM 6271	e^n and $n! \bullet$ Asymptotic Behavior of Sequences	JRM 656	English • Integers in
AWW 0271	Involving	JRM 330	Enigma • Still an
AMM 4052	e^z in an Annulus • Bound for	AMM 6279	Entire Functions • A Condition on
AMM 5897	$e^{1/z}$ • Continued Fraction for	AMM 6117	Entire Functions • Linear Compositions of Two Entire Functions with Integral $D^k f(0)$ • The
JRM C9	Easter Problem • The	AMM 5968	Set of Zeros of
AMM E2452	Easy • Cutting Corners is not so	AMM 6118	Entire Functions without Zeros • Linear
JRM 299	Easy • Not Too		Combinations of
AMM E2797	Easy Counterexample • An	AMM S13	Entries • Matrix with Non-negative
JRM 542 JRM 435	Easy for Some Easy One For the Lazy Ones • An	FQ H-226	Enumeration
MATYC 117	Easy Statistics	JRM 511	Enumeration Problem • An
FQ B-352	Easy To See \bullet C Is	AMM S20	Enumerator for Distinct Posets • Same
JRM 482	Easy? • Is This Alphametic Really So	MATYC 134 SIAM 78-15	Equal Areas Equal Determinants • Two
JRM 490	Eden? • A Paradisaic Triptych — Even in	AMM S4	Equal Folds • Approaching
AMM E2513	Edge • A View of an	TYCMJ 155	Equal Means • Distinct Elements with
JRM 796	Edge • The Racer's	AMM 6011	Equal Sum Partitions in an Abelian Group
SIAM 78-11	Edge Three-Coloring of Tournaments	AMM E2749	Equal Sums of Powers of Primes
MM 919 AMM 6159	Edges • A Simplex with Orthogonal Edges in a Graph Without Triangles • The	AMM E2762	Equal to a Kronecker Product • A Block
AIVIIVI 0139	Maximum Number of	4444 50760	Matrix
AMM 6149	Edges of a Dodecahedron • Walk on the	AMM E2762	Equal to a Kronecker Product • A Block
AMM 6034	Edges of a Graph • Coloring the	SIAM 77-20	Matrix Not Equal to its Derivative? • When is the
AMM E2549	Edges to Get an Euler Path • Adding	3.7.1.7.7.20	Modified Bessel Function
FQ B-280	Editor's Digits • The	TYCMJ 55	Equal to its Logarithm? • Can a Number be
JRM 742	Effects • Special	AMM E2548	Equal Volumes • Simplices of
JRM 618	Efficiency of Sets of Coins	AMM 5935	Equality • A Constrained
MM 971	Efficient Conduits Efficiently a Using a Calculator	TYCMJ 72	Equality • A Triangle
AMM E2509 JRM 746	Efficiently • Using a Calculator Eggs-actly Right!	MM 915	Equality • Bracket Function
AMM E2689	Egyptian Fractions	AMM E2470	Equality Characterizing the Centroid • A Simplex
SIAM 79-2	Eigenvalue Problem • A Matrix	AMM 6242	Equality of Measures
SIAM 75-15	Eigenvalue Problem • An	MM 1061	Equals Maxmin • Minmax
AMM E2490	Eigenvalues of a Matrix • The	AMM E2568	Equation • A Bernoulli Differential
SIAM 76-20	Eigenvalues of an $n \times n$ Matrix • On the	SIAM 79-20	Equation • A Differential
	Extreme	JRM 496	Equation • A Diophantine
JRM 576	"Eighty Three" Problem • The	SIAM 77-16	Equation • A First Order Nonlinear
JRM 520	Elementary	A N 4 N 4 F 2 C 2 T	Differential
JRM 519 AMM E2647	Elementary Elementary Case of the Jordan Curve Theorem	AMM E2607	Equation • A Functional
- IVIIVI EZU41		AMM 6106 SIAM 79-6	Equation • A Functional Equation • A Functional
==•	• An		
	• An Elementary Set Theory		
MATYC 86 AMM 6052	• An Elementary Set Theory Elements • Torsion Groups Generated by Two	AMM 6226 SIAM 79-11	Equation • A Functional Equation • A Non-Linear Differential

Equation	1975–	1979	Extending
SIAM 75-18	Equation • A Nonlinear Integral	MM 921	Euler's Phi
SIAM 75-9	Equation • A Singular Integral	AMM E2703	Evaluation of a Determinant
MATYC 120	Equation • A Trig	SIAM 78-14	Evaluation of a Determinant
SIAM 76-6 AMM E2537	Equation • An nth Order Linear Differential	AMM 5608	Evaluation of an Integral
AMM E2583	Equation • An Ambiguous Functional Equation • Characterizing Solutions of a	SIAM 78-5 AMM 6241	Evaluation of Weierstrass Zeta Functions Evaluations of Trigonometric Series
7111111 E2000	Functional	AMM E2771	Even Exponents • Fermat's Last Theorem for
MM 1020	Equation • Determinant	JRM 490	— Even in Eden? • A Paradisaic Triptych
TYCMJ 56	Equation • Difference	JRM 490	Even in Eden? • A Paradisaic Triptych —
MM 1050	Equation • Differential	JRM 776	Even More Simple Addition
FQ B-325 FQ B-370	Equation • Impossible Functional Equation • Nonhomogeneous Difference	AMM 6036	Even Perfect Numbers
TYCMJ 77	Equation • Polynomial Solution of a Difference	JRM 668 TYCMJ 152	Events • Current Events • Probability of Simultaneously
AMM 5794	Equation • Solution to Bessel	I I CIVIJ 132	Occurring
JRM 343	Equation • The Universal	AMM E2578	Every Prime • Polynomials Reducible Modulo
AMM 6193	Equation • Totient	JRM 403	EVE/DID = .TALKTALKTALK • A Sequel to
MATYC 106	Equation • Triangle	FQ B-409	Exact Divisor
TYCMJ 125 AMM E2752	Equation • Trigonometric Equation $[an] + [bn] = [cn] + [dn]$ • The	MM 938	Example • A Convergent
AMM 5871	Equation $\partial f/\partial x = \partial f/\partial y \bullet \text{The}$	TYCMJ 124	Example of Finite Integration
AMM E2783	Equation $\phi(z^2) = \phi(z)^2$ • The Functional	MM 992 JRM 779	Exceptional Hexagons Exchange • Monetary
AMM 6088	Equation $f^{-1} = f' \bullet \text{The}$	TYCMJ 116	Exclusion Applied to Occupancy • Inclusion
TYCMJ 106	Equation for $1/x \bullet \text{Functional}$		and
SIAM 74-8	Equation for Crystal Growth • An Integral	MATYC 60	Exercise • An Irrational
AMM E2606	Equation in Disguise • Pell's	AMM E2663	Exercise • An Old
AMM E2609 AMM E2479	Equation in Two Variables • A Difference Equation with only Obvious Solutions • A	MATYC 119	Exercise • Trig
AIVIIVI LZ479	Functional	JRM 261 JRM 555	Exercises • Isometric Exercises • Some Prime
TYCMJ 114	Equation with Unique Solution	JRM 385	Exist? • Do Pentacles
FQ H-235	Equation! • Sum Differential	FQ H-248	Existence • The Very
JRM 81a	Equations • A Pair of Diophantine	SIAM 75-6	Existence of a Transition Solution
MM 930 SIAM 74-4	Equations • A System of Equations • A System of Difference-Differential	AMM 6253	$\exp[i\cos(\theta - \theta_j)] \bullet \text{Linear Independence of}$
SIAM 77-17	Equations • A System of Difference-Differential Equations • A System of Second Order	CIANA 7E 2	Functions
	Differential	SIAM 75-3 AMM E2667	Expansion • A Power Series Expansion • Digits in a Dyadic
SIAM 76-12	Equations \bullet An Infinite System of Nonlinear Differential	AMM 6001	Expansion • The Remainder Term in Maclaurin's
AMM E2664	Equations • Minimal Solution of a System of Diophantine	AMM 6170	Expansion Modulo a Prime • The Number of Terms in a Binomial
AMM E2532 AMM E2464	Equations • Simple Diophantine Equations • Two Serendipitous Diophantine	FQ B-338	Expansions • Difference of Binomial
AMM E2511	Equations \mathbf{v}^{1} wo serendificous Diophantine Equations $x^{2} + 1 = 2^{r}5^{s}$ • The Diophantine	AMM 5958	Expansions and Function Values • Truncated
SIAM 77-4	Equations Involving Arbitrary Functions •	MATYC 122	Taylor Expect It • Did You
	Solutions to Linear Partial Differential	AMM 6195	Expectation Expectation
JRM 757	Equi-Spaced Cards	AMM 6155	Expectation of the Width of a Set
AMM E2498 FQ B-413	Equiareal Faces • Tetrahedron with Three Equilateral Triangles • Counting	AMM 5963	Expectations in Decreasing Joint Densities
AMM E2516	Equivalence • Permutation	MM 946	Expected Length
AMM E2727	Equivalence of Triangles	AMM E2696	Expected Number of Draws
AMM E2727	Equivalence of Two Triangles	AMM E2705 AMM 6230	Expected Number of Trials Expected Perimeter Length
AMM 5932	Equivalence Relation in the Symmetric Group	AMM 6245	Expected Value • A Formula for
MM 1039 AMM E2289	Equivalent • Tangentially Equivalent Sets of Axioms	AMM 6187	Expected Value • A Known
MM 1029	Erdős and the Computer	SIAM 78-13	Expected Values for Random Regions of a
AMM S23	Erdős-Mordell Geometric Inequality • Variation	AMM 6282	Circle Explicit Map $(0,1) \cap Q \simeq [0,1] \cap Q \bullet \text{An}$
A N A N A F D A C D	on the	TYCMJ 91	Exponent Parity \bullet Partition by
AMM E2462 SIAM 77-13	Erdős-Mordell Inequality • The Extended Erlang Function • A Property of the First	SIAM 74-5	Exponential • On the Norm of a Matrix
FQ H-280	Ern • Mod	AMM E2467	Exponential Functions • Polynomial
AMM E2599	Erratic Behavior of the Totient Function		Approximations to
TYCMJ 119	Error Analysis of an Approximate Trisection	AMM E2734	Exponential Solution 2 An
AMM 6163	Escaping from an Infinite Maze	MATYC 61 MATYC 110	Exponential Solution • An Exponential Solution • An
AMM E2666	Estimate for the Cardinality of a Set of Subsets • An	AMM 6056	Exponential-type Series • Truncated
FQ H-246	Et Al • Fib, Luc,	FQ B-313	Exponentiating Lucas Into Fibonacci
MM 1054	Euclidean Constructions • Two	TYCMJ 41	Exponentiation • Repetitious
JRM 474	Euler θ Function Again • The	AMM E2771	Exponents • Fermat's Last Theorem for Even
TYCMJ 145	Euler Line on a Checkerboard	MM 989	Expression • A Stirling
AMM E2553 AMM E2549	Euler Lines • Simson and Euler Path • Adding Edges to Get an	AMM 6121 AMM E2462	Expression • An Integer Extended Erdős-Mordell Inequality • The
TYCMJ 122	Euler's Constant	AMM E2505	Extended Erdos-Morden mequanty • The Extended Medians of a Triangle
AMM E2748	Euler's Constant as a Limit	AMM 6051	Extending a Sublinear Map

Extensions	1975	-1979	First
AMM 6205	Extensions of Cyclic Groups • Torsion-Free	FQ B-324	Fibonacci Congruence
	Finite	FQ B-279	Fibonacci Generating Function •
MM 1059	Extrema • Cyclic		Differentiating
SIAM 76-20	Extreme Eigenvalues of an $n \times n$ Matrix • On	MM 1013	Fibonacci Holes
A N A N A 6 2 6 6	the	FQ B-374	Fibonacci in Trigonometric Form
AMM 6266 FQ B-347	$f(x,y) \le g(x)g(y)$ • The Condition F's • A Third-Order Analogue of the	FQ B-302	Fibonacci Neighbors • Composite
MM 982	$\{f(n+1)/f(n)\}$ • Closure of	TYCMJ 48 AMM E2581	Fibonacci Number • The Best
AMM 6206	$f(t) = t + \tan t \bullet \text{ Function}$	FQ B-375	Fibonacci Numbers • A Property of Fibonacci or Nil
FQ B-401	F.Q. • Change of Pace for	JRM 738	Fibonacci Primes
FQ B-384	F_{2n+1}^4 • A Recursion for F_{2n}^4 or	JRM 112	Fibonacci Primes
FQ B-384	$2n+1$ $2n$ F^4 or F^4 • A Recursion for	JRM 766	Fibonacci Sequence • Generalized
	F_{2n}^4 or F_{2n+1}^4 • A Recursion for	JRM 674	Fibonacci Series • A Reciprocal
AMM 6088	$f^{-1} = f' \bullet \text{ The Equation}$	MM 1037	Fibonacci Sets
AMM 6007	f' = 0 a.e. • Arc Length when	JRM 567	Fibonacci Split • The
AMM 6038 FQ H-221	f'(r) > 0 • Power Series for which	FQ B-318	Fibonacci Square
AMM E2785	F_n and $L_n \bullet$ Congruence for $F_q \bullet$ Covering $V - \{0\}$ with Hyperplanes in	FQ B-331	Fibonacci Squares Mod 24 • Some
FQ B-290	F_{2n} • Convoluted	FQ B-293	Fibonacci Terms • The First Six
MM 917	Faces \bullet Rotating	FQ H-305	Fibonacci-like Sum • Like
AMM E2498	Faces • Tetrahedron with Three Equiareal	FQ B-335	Fibonacci-Lucas Sum
SIAM 76-7	Facility Location Problem • A	AMM E2497 AMM E2544	Fibonacci-type Congruence • A
FQ B-354	Factor • A Vanishing	SIAM 75-1	Fibonaccian Juxtaposition Fibre Mode Conversion • Idealized Optical
AMM 6016	Factorial • A Large Modified	AMM 6043	Field • Degrees of Irreducible Polynomials over
MM 999	Factorial Factors	7 3043	a
TYCMJ 137	Factorial Fantasy	AMM 5861	Field • Increasing Polynomials in an Ordered
JRM 762	Factorial Series • Reciprocal	AMM 5861	Field • Increasing Polynomials on an Ordered
AMM E2747 AMM E2520	Factorials • A Determinant with Reciprocal Factorials • Odd	AMM 5938	Field • On Order-Preserving Automorphisms in
FQ B-393	Factorials • Odd Factorials • Triangle of Triangular		a
JRM 321	Factorian Fractions	AMM E2540	Field • Sums of Reciprocals in a Finite
JRM 320	Factorian Numbers	SIAM 76-19	Fields • A Double Integral from Demagnetizing
JRM 598	Factorian Numbers • More on	AMM 6201	Fields • Power Sums in Finite
FQ B-341	Factoring • Close	AMM 6268	Fields • Relative Integral Bases in Towers of
AMM 6264	Factorization • Conditions for Unique	AMM 6101	Fields with Rolle's Theorem • Sums of Squares in
AMM 5735	Factors • Density of Pairs with Same Prime	AMM 5993	Fields, the Sum of Two Proper Subfields
MM 999	Factors • Factorial	AMM E2515	File Clerk • The Careless
AMM E2725	Factors for Terms in an Arithmetic Sequence •	AMM E2790	Filling an Open Set with Squares of Specified
JRM 722	Bounded Prime Facts of Life • The		Areas
AMM E2755	Fading Function • Zeros of Derivatives of a	AMM E2499	— Final Appearance • A Problem of Pappus
AMM 6143	Fairly • Dividing the Pie	AMM E2499	Final Appearance • A Problem of Pappus —
SIAM 71-19	Falling Dominoes	JRM 644	Final Reward
AMM 6273	False Criterion for Continuity • A	JRM 568	Finalists • The
JRM 792	Falsehood • Truth and	JRM 653	Find the X-ponent
AMM 6109	Families • Sylvester Series and Normal	FQ B-330	Finding a G. C. D.
AMM 6085	Families of Uniformly Integrable Functions •	FQ B-327 SIAM 76-16	Finishing Touches on a Lucas Identity Finite and an Infinite Product • Conjecture on
NANA 10CA	Majorants for	31AW 70-10	a conjecture on
MM 1064 JRM 547	Famous Formula Fantastica	AMM 6205	Finite Extensions of Cyclic Groups •
TYCMJ 137	Fantasy • Factorial		Torsion-Free
JRM 752	Fantasy • Peter Pan	AMM E2540	Finite Field • Sums of Reciprocals in a
TYCMJ 19	Far • An Analogy Carried Too	AMM 6201	Finite Fields • Power Sums in
JRM 660	Fare • Bill of	AMM 6202	Finite Groups • Inequality for
JRM 614	Farewell • Looney Tunes	TYCMJ 124	Finite Integration • Example of
JRM 633	Fashion Forecast	AMM E2700	Finite Lattices • Complemented
MM 1004	Fastest and Slowest Trip	AMM 6284	Finite Rings • Structure of
JRM 212	Felix vs Rover	TYCMJ 65	Finite Rings • Zero Divisors in
AMM E2455	Fermat Numbers, a Result of Legendre, and	AMM E2582 AMM E2654	Finite Set • Crisscrossing Partitions of a Finite Set • Minimum Subcover of a Cover of a
TVCM 121	Two Identities Fermat Primes Puzzler	AMM 6060	Finite Sets • Combinatorics in
TYCMJ 121 FQ H-239	Fermat's Inequality	AMM 6151	Finite Sets • Combinatorics in Finite Sets • Partitions of
AMM 6066	Fermat's Last Theorem • A Strong	AMM E2730	Finite Sets and Arithmetic Progressions
AMM E2771	Fermat's Last Theorem for Even Exponents	AMM 6139	Finitely Axiomatizable Properties in a
JRM 350	Ferry and the Launch • The		First-Order Predicate Calculus
MATYC 92	Fewer Than You Want • Sometimes It's	AMM 5946	Finitely Generated Groups • Intersection of
FQ H-246	Fib, Luc, Et Al	JRM 554	Fire Company Problem • The
FQ B-313	Fibonacci • Exponentiating Lucas Into	SIAM 77-13	First Erlang Function • A Property of the
FQ H-247	Fibonacci • Unity With	SIAM 74-22	First Kind • Fourier Coefficients of a Function
FQ B-316	Fibonacci Alphametic • A		Involving Elliptic Integrals of the
FQ B-312	Fibonacci Alphametic • Doubly-True	SIAM 77-16	First Order Nonlinear Differential Equation •
FQ H-310	Fibonacci and Lucas Are the Greatest Integers	EO B 202	A First Sir Fibonoggi Torms • The
JRM 728	Fibonacci Calculations	FQ B-293	First Six Fibonacci Terms • The

First	1975	–1979	Function
FQ B-406	First Term as GCD	AMM 6055	Fourier Transform in $\mathbb{R}^n \bullet A$
AMM 6139	First-Order Predicate Calculus • Finitely	MATYC 89	Fraction • Derivative of a Continued
TYCNAL 104	Axiomatizable Properties in a	MATYC 103	Fraction Derivative • Continued
TYCMJ 104 AMM E2349	Fiscal Folly Fitting a Cube in a Tetrahedron	AMM 5897	Fraction for $e^{1/z} \bullet \text{Continued}$
FQ B-391	Five • Approximations to Root	AMM 5988 JRM 681	Fractional Calculus • Zeros in the Fractional Parts
FQ H-285	Five • One or	JRM 608	Fractionally True Alphametic • A
MM 898	Five Centers in a Triangle	AMM E2689	Fractions • Egyptian
JRM 427	Five-Circle Packing Problem • The	JRM 321	Fractions • Factorian
AMM E2587	Fixed Point Theorem • An Application of Brouwer's	AMM E2623	Fractions • Integrality of Some
AMM S14	Fixed Points \bullet Permutations with f	FQ B-297	Fractions • Partial
MM 993	Fixed Points of Iterates	TYCMJ 73 TYCMJ 82	Fractions • Unit Fractions Decomposition • Partial
AMM 6262	Fixed Points of Trees	JRM 586	Fractured Representation • A Square
AMM S22	Fixed Scalar Multiple • Linear Transformation	JRM 356	Franciscan Order
JRM 260 JRM 697	Flip Function • The FORTRAN Flower Power	AMM 6086	Free Integers \bullet Common Divisors and Square
AMM S4	Folds • Approaching Equal	JRM 227	French Matrix • The
FQ H-249	Folk-Laurin	MM 884 JRM 456	Frequency of a Sine Curve Friend • Man's Best
TYCMJ 104	Folly • Fiscal	AMM 6020	Friendly Integers
JRM C8	Force Problem? • A Brute	FQ B-322	Front Page Alphametic
JRM 477 AMM E2659	Force Program • A Brute Forcing a Quasigroup to Be a Group	FQ H-255	Fun • Double Your
JRM 633	Forecast • Fashion	MATYC 65	Fun • Number
SIAM 75-5	Form • A Nonnegative	AMM E2604	Function • A Formula for a
FQ B-343	Form • Closed	AMM E2575 SIAM 77-13	Function • A Non-symmetric Function • A Property of the First Erlang
FQ B-374	Form • Fibonacci in Trigonometric	FQ B-361	Function • A Property of the First Enang Function • A Rational
FQ B-397	Form • Semi-Closed $\sum_{k \in \mathcal{M}} k \left[\frac{m}{m} \right] = 0$	JRM 705	Function • A Recursive
AMM 6247	Form $\sum \alpha^k \begin{bmatrix} \sqrt[m]{k} \end{bmatrix} \bullet \text{Sum of the}$	AMM E2458	Function • An n -ary Sheffer
AMM 6138	Form $p_i p_{i+1} p_{i+2} \dots p_{i+n} \bullet \text{Abundant}$ Numbers of the	MATYC 97	Function • An Increasing
AMM E2555	Form on a Box • Indefinite Quadratic	MATYC 133	Function • An Increasing
FQ H-211	Form To The Right	AMM E2677 SIAM 78-10	Function • An Integer-Valued Function • An Integral of an Elliptic
AMM 6260	Formed by Iterated Closure, Interior, and	AMM E984	Function • An Integral of an Emptic Function • An Iterated
EO D 200	Union • Sets	AMM 6064	Function • An Iterated Divisor
FQ B-299 AMM E2692	Formula • A Convolution Formula • A Transcendental Function	FQ B-279	Function • Differentiating Fibonacci
AIVIIVI E2032	Satisfying a Duplication		Generating
AMM 5974	Formula • An n -tuple Integral	AMM E2599	Function • Erratic Behavior of the Totient
MM 1064	Formula • Famous	FQ B-381 SIAM 75-11	Function • Generating Function • Inequalities for the Gamma
MM 927	Formula • Pick's Formula • Sufficiency of Newton's	AMM 6269	Function • Inequality Involving the Γ
TYCMJ 94 AMM E2604	Formula for a Function • A	AMM 6185	Function • Inequality of L_p Norms of a
TYCMJ 143	Formula for Cotangent • Inner Product		Derivative of a
AMM E2765	Formula for Definite Integrals • Change of	AMM 5960	Function • Integrals of the Rademacher
A	Variable	AMM 6074 MM 1060	Function • Length of Arc of a Monotonic Function • No Such
AMM 6245 TYCMJ 99	Formula for Expected Value • A Formula Integers • Quadratic	FQ B-417	Function • Not a Bracket
AMM E2770	Formula Involving $S_k = \sum m^k \bullet A$	TYCMJ 28	Function • Real Zeros of a Monotone
FQ B-294	Formula Symmetric in k and $n \bullet A$	AMM 6027	Function • Smoothing a Continuous
FQ B-298	Formulas • An Application of the Binet	AMM 6235	Function • Sum of Sums of the Möbius
JRM 410	Forth And Multiply • Go	AMM 6065 AMM 6137	Function • The Density of the Sum of Divisors Function • The Differences of the Partition
JRM 260	FORTRAN Flip Function • The	JRM 260	Function • The FORTRAN Flip
TYCMJ 102 MM 1085	Found • Functions Four Different Zeros	JRM 732	Function • The Poly-Power
JRM 782	Four Hearts	JRM 513	Function • The Survivor
JRM 351	Four Problems • Two Curves and	AMM E2755	Function • Zeros of Derivatives of a Fading
JRM 323	Four Theoretical Triangles	AMM 6206	Function $f(t) = t + \tan t$
AMM E2527	Four-Color Theorem for Touching Pennies •	JRM 474 AMM E2546	Function Again • The Euler θ Function and Counting • Hilbert
JRM 759	The Four-Cube Calendar The	SIAM 77-20	Function Equal to its Derivative? • When is
JRM 620	Four-Point Problem • The		the Modified Bessel
AMM E2564	Four-valent Graphs • Covering Vertices of	MM 915	Function Equality • Bracket
AMM 6111	Fourier and Probability Integral • A	SIAM 77-2	Function Identity • A Gaussian
SIAM 74-22	Fourier Coefficients of a Function Involving	TYCM I 60	Hypergeometric Function Identity • Greatest Integer
SIAM 79-9	Elliptic Integrals of the First Kind Fourier Series for a Combination of Jacobian	TYCMJ 69 AMM 5936	Function in $ z < 1$ • Range of a Holomorphic
SIANI 15-3	Elliptic Functions	FQ B-303	Function Inequality • A Sigma
AMM 6075	Fourier Transform • Integrable Functions with	SIAM 74-22	Function Involving Elliptic Integrals of the
	Positive		First Kind • Fourier Coefficients of a
AMM 5643	Fourier Transform • Representing the Square	AMM E2473	Function of a Polynomial • Rational Function
	Root of a	1	of a Rational

Function	1975-	-1979	Generated
AMM E2473	Function of a Rational Function of a	AMM 6073	Functions • Singular Monotonic
	Polynomial • Rational	SIAM 77-4	Functions • Solutions to Linear Partial
AMM E2554	Function Restricted to Rationals • Polynomial		Differential Equations Involving Arbitrary
AMM E2692	Function Satisfying a Duplication Formula • A	AMM E2487	Functions • Symmetric
CIAM 76 10	Transcendental	AMM 6253	Functions $\exp[i\cos(\theta - \theta_j)] \bullet \text{Linear}$ Independence of
SIAM 76-10 AMM 6082	Function Series • A Bessel Function Solutions of $x^n - y^2 = 1$ • Rational	A N 4 N 4 C 0 0 2	
SIAM 76-11	Function Solutions of $x^* - y^* = 1 \bullet \text{Rational}$ Function Summation \bullet A Bessel	AMM 6083	Functions $\Sigma_r p/r(p+r)$, $\Sigma_r (-1)^{r-1} \binom{p}{r}/r \bullet$ The
AMM 5958	Function Values • Truncated Taylor	AMM 6145	Functions $N \to C \bullet Convolution Products on$
AMM 3330	Expansions and	AMM 6165	Functions Approximated by Their Mean Values
AMM 6132	Function with the "Darboux Property" • A	TYCMJ 102 AMM 6018	Functions Found functions in \mathbb{R}^2 • Differentiable
AMM 6000	Functional • A Continuous	AMM 5995	Functions of Bounded Operators • Analytic
AMM S15	Functional • Beckenbach's Monotonic Integral	AMM 6256	Functions of Bounded Variation • Additive Set
SIAM 74-18	Functional • Constrained Minimization of an	AMM 6257	Functions of Length Less Than 2 • Sets of
	Integral	AMM 6042	Functions Vanishing Outside $[0,1] \bullet C^{\infty}$
AMM E2661	Functional Characterization of Least Common	AMM 5968	Functions with Integral $D^k f(0) \bullet$ The Set of
	Multiples		Zeros of Entire
AMM E2489	Functional Composition • Arc Length and	AMM 5888	Functions with Partial Derivatives • Continuity
AMM 6226	Functional Equation • A		of
AMM 6106	Functional Equation • A	AMM 6075	Functions with Positive Fourier Transform \bullet
SIAM 79-6 AMM E2607	Functional Equation • A Functional Equation • A		Integrable
AMM E2537	Functional Equation • An Ambiguous	AMM 6142	Functions with Prescribed Discontinuities
AMM E2583	Functional Equation • Characterizing Solutions	AMM 6118	Functions without Zeros • Linear Combinations
7	of a	EO B 220	of Entire
FQ B-325	Functional Equation • Impossible	FQ B-330 FQ B-365	G. C. D. • Finding a G. P. • Congruent to a
AMM E2783	Functional Equation $\phi(z^2) = \phi(z)^2 \bullet \text{ The}$	FQ B-344	G. P.'s • Averaging Gives
TYCMJ 106	Functional Equation for $1/x$	AMM E2650	Galois Group Computing a
AMM E2479	Functional Equation with only Obvious	JRM 463	Game • A Coin
	Solutions • A	JRM 217	Game • Another Coin
MATYC 72	Functional Identity • A	JRM 658	$\operatorname{Game} \bullet \operatorname{GCD}$
AMM E2720	Functional Inequality • A	JRM 499	Game • Recursive
AMM 5934 AMM 6093	Functional Inequality • A Functionals • Continuous Linear	JRM 214	Game • The Game of the
AMM 6078	Functionals in Normed Spaces • Linear	JRM 558	Game • The Prime
AMM 6113	Functions • A Class of Stieltjes-Riemann	JRM 675	Game • The St. Petersburg
7111111 0115	Integrable	JRM 288 SIAM 76-1	Game • The Switching Game of Slash • The
AMM 6279	Functions • A Condition on Entire	JRM 214	Game of the Game • The
SIAM 79-14	Functions • A Conjectured Property of	JRM 246	Game Theoretic Craps
	Legendre	JRM 428	Games • Choice of
SIAM 75-17	Functions • A Series of Hypergeometric	MM 1024	Games Behind • Percentage vs.
AMM 5945	Functions • A Subgroup of Multiplicative	SIAM 77-1	Gamma Distribution • Percentiles for the
SIAM 79-18	Functions • A Sum of Bessel	SIAM 75-11	Gamma Function • Inequalities for the
TYCMJ 46	Functions • An Average Characterization of Linear	JRM 563	Gandalf's Problem
AMM 6045	Functions • Analytic	AMM E2522	Gaps • Arithmetic Progressions in Sequences
AMM 6184	Functions • Bases for Piecewise Continuous	JRM 472	with Bounded
AMM 6244	Functions • Composition of	FQ B-308	Garage Door • The Garbled Hint • A
SIAM 79-10	Functions • Credibility	SIAM 77-2	Gaussian Hypergeometric Function Identity •
AMM 6140	Functions • Derivatives of Continuous		A
SIAM 78-5	Functions • Evaluation of Weierstrass Zeta	AMM E2642	Gaussian Integers • An Application of
SIAM 79-9	Functions • Fourier Series for a Combination of	AMM 6053	Gaussian Integers • Density of Arguments of
A N 4 N 4 C C C C C	Jacobian Elliptic		Powers of
AMM 6218	Functions • Images of Monotone	FQ B-406	GCD • First Term as
AMM E2573 AMM 6013	Functions • Inequalities for Symmetric Functions • Integrals of Haar	JRM 658	GCD Game
AMM 6280	Functions • Integrals of Harmonic	FQ B-412 FQ H-233	GCD Not LCM General-ize
AMM E2803	Functions • Integrals of Trigonometric	FQ B-386	Generalization • Elusive
AMM 6117	Functions • Linear Compositions of Two Entire	TYCMJ 140	Generalization of a Property of the Symmedian
AMM 6085	Functions • Majorants for Families of	1 1 6 1 1 1 0	Point
	Uniformly Integrable	SIAM 74-14	Generalization of the Vandermonde
AMM 6081	Functions • Nowhere Continuous,		Determinant • A
	Quasi-continuous	MATYC 111	— Generalized • Pascal's Triangle
AMM 5955	Functions • On $\mathbb{Q} \to \mathbb{Q}$ Differentiable	MATYC 111	Generalized • Pascal's Triangle —
SIAM 74-19	Functions • One-sided Approximation to	JRM 766	Generalized Fibonacci Sequence
A N 4 N 4 C C C C C	Special	SIAM 73-2	Generalized Inverse of a Matrix • Integral
AMM 6097	Functions • Polynomial Algebra Generated by	NANA 1040	Representation for the Moore–Penrose
A NANA E 2467	Symmetric Eventions • Polymomial Approximations to	MM 1040	Generalized Inverses
AMM E2467	Functions • Polynomial Approximations to Exponential	AMM E2708	Generated by n-Cycles • Groups Congreted by Screw Motions • Croups
AMM E2610	Functions • Separately Continuous	AMM 6276 AMM 6097	Generated by Screw Motions • Groups Generated by Symmetric Functions •
AMM E2478	Functions • Similar	7.1.71111 3031	Polynomial Algebra
=23		•	· v · · · · · · · · · · · · · · · · · ·

Generated	1975	–1979	Harmonic
AMM 6052	Generated by Two Elements • Torsion Groups	AMM 5966	Graphs • Hamiltonian Circuits in Maximal
AMM E2802	Generated from a Triangle • A Parallelogram	A NANA E 2672	Planar
AMM 5946 FQ B-390	Generated Groups • Intersection of Finitely Generating Diagonals of Pascal's Triangle	AMM E2672	Graphs • Orientation and Vertex-Coloring of Complete
FQ B-381	Generating Function	AMM E2795	Graphs • Properties of Regular Bipartite
FQ B-279	Generating Function • Differentiating	AMM 6182	Graphs • Rectangular
	Fibonacci	SIAM 74-20	Gravitational Attraction
JRM 737	Generating Integers	JRM 476	Grazing Problem • A
AMM 5670	Generating Subsets of the Plane Generating Twins	JRM 710 TYCMJ 69	Grazing Problem • Another Greatest Integer Function Identity
FQ B-349 JRM 319	Generating Twins Generator • A Composite	FQ B-301	Greatest Integer Identity Greatest Integer Identity
FQ H-232	Generator • Using Your	MM 994	Greatest Integer Integral • A
FQ B-407	Generator of Pascal Triangle	FQ H-310	Greatest Integers • Fibonacci and Lucas Are
AMM 5982	Generators \bullet Algebra	IDM 612	the
AMM 6052	Generators • Torsion Group with Two	JRM 613 JRM 717	Greek • Doubly True – Green • Goin'
AMM 6099	Generators for some Non-Abelian Groups	JRM 210	Grid
JRM 498 JRM 483	Geodesics on a Baseball Geographical Alphametic	JRM 637	Ground • On Solid
JRM 579	Geography Lesson	AMM E2650	Group • Computing a Galois
MM 961	Geometric and Arithmetic	AMM 6011	Group • Equal Sum Partitions in an Abelian
AMM E2503	Geometric Characterization of $\zeta(4)$ • A	AMM 5932	Group • Equivalence Relation in the
ГҮСМЈ 136	Geometric Distribution \bullet Mean of the	AMM E2659	Symmetric Group • Forcing a Quasigroup to Be a
MM 959	Geometric Inequality • A	AMM 6049	Group • Subgroups of the Symmetric
AMM S23	Geometric Inequality • Variation on the	AMM E2753	Group $Z_p \bullet$ Multiplicative
JRM 739	Erdős-Mordell Geometric Mean • The	AMM E2542	Group Does the Job
TYCMJ 52	Geometric Mean Value Theorem • A	AMM 6246	Group Homomorphism ● A
SIAM 76-4	Geometric Probability	AMM 6026	Group Inverted by an Automorphism •
TYCMJ 133	Geometric Progressions • Paired	NANA 1006	Number of Elements in a
AMM E2549	Get an Euler Path • Adding Edges to	MM 1086 AMM E2574	Group of Transformations Group Operation on Natural Numbers • A
MATYC 80	Get Close • Let's	AIVIIVI E2314	Special Special
JRM 631	Get Richer • The Rich	JRM 578	Group Project
FQ H-292 FQ H-125	Get the Point Ghost from the Past	AMM 6069	Group Ring • Zero Divisors and Units in a
JRM 313	Girl Revisited • The Calendar	AMM 6052	Group with Two Generators • Torsion
AMM 6115	Given Marginals • n-Dimensional Distributions	AMM 6059	Groups • Cyclic Sylow Subgroups of Metacyclic
	with	AMM 6099 AMM 6202	Groups • Generators for some Non-Abelian Groups • Inequality for Finite
AMM E2660	Given Perimeter • Integral Cyclic	AMM 5946	Groups • Intersection of Finitely Generated
FO D 244	Quadrilaterals of	AMM 6275	Groups • Isometry
FQ B-344 JRM 410	Gives G. P.'s • Averaging Go Forth And Multiply	AMM 5959	Groups • Locally Compact Topological
MATYC 118	Go to the Principal, Please	MATYC 109	Groups • Loops &
JRM 717	Goin' Green	AMM 5990	Groups • Substitution
MATYC 79	Going • Coming and	AMM 5977 AMM 6205	Groups • Topological Groups • Torsion-Free Finite Extensions of
FQ B-404	Golden Approximations	Alviivi 0203	Cyclic
FQ B-373	Golden Cosine	AMM 5976	Groups • Trivial Centralizer
FQ B-410 FQ B-274	Golden Limit	AMM 6221	Groups and Cardinal Numbers
FQ B-274 FQ B-395	Golden Mean • 3 Symbol Golden Powers • Reciprocals of	AMM E2708	Groups Generated by n-Cycles
FQ B-286	Golden Powers of 2	AMM 6276 AMM 6052	Groups Generated by Screw Motions Groups Generated by Two Elements • Torsion
FQ B-357	Golden Ratio Inequality Count	AMM 6176	Groups of Square Order • Simple
FQ B-405	Good Rational Approximations	SIAM 74-8	Growth • An Integral Equation for Crystal
AMM E2651	Grötsch • A Theorem of	AMM 6239	Growth of $x^y - y^x$
JRM 794	Grandfather's Age	FQ H-250	Growth Rate
JRM 646	Grapefruit Juice Cans • Packing Grapefruits and	TYCMJ 144	Hölder Condition of Order $1 + \varepsilon$
JRM 646	Grapefruits and Grapefruit Juice Cans • Packing	AMM 6013 AMM E2761	Haar Functions • Integrals of Half Planes • Polynomial with Zeros in Upper and Lower
JRM 616	Grapes • Sour	TYCMJ 131	Half the Inradius of an Isosceles Triangle
AMM 5385	Graph • A Planar	1 1 CIVIS 151	Prime? • When is
AMM 6034	Graph • Coloring the Edges of a	FQ B-392	Half-Way Application of $(E^2 - E - 1)^2$
AMM 6037	Graph • Imbedding of a	TYCMJ 18	Halves and Square Roots
AMM 5933	Graph • Infinite Complete Subgraph of a Random	AMM 6278 AMM 5966	Hamel Basis • Translation Invariance Hamiltonian Circuits in Maximal Planar
AMM E2565	Graph • Regularizing a Bipartite	IDM FO7	Graphs
AMM 5953 AMM 6255	Graph • Sum of Valencies for a Plane Graph Theorem • Closed	JRM 597 AMM E2709	Hand • The Dangerous Hankel Determinant
AMM 6159	Graph Without Triangles • The Maximum	MATYC 135	Happy Birthday, Miss Cohen
0133	Number of Edges in a	JRM 387	Hard vs. Soft
AMM 6079	Graphs • Bipartite	FQ H-241	Harmonic
AMM E2564	Graphs \bullet Covering Vertices of Four-valent	AMM 6280	Harmonic Functions \bullet Integrals of

Harmonic	1975-	-1979	Increasing
AMM 6198	Harmonic in the Unit Disk	AMM 6180	Ideals \bullet A Construction for
AMM E2484	Harmonic Limit • A	AMM 6152	Ideals • Products of
SIAM 75-21	Harmonic Motion \bullet <i>n</i> -dimensional Simple	AMM 5970	Ideals • Spanning
AMM 6048	Harmonic Numbers	AMM 5940	Ideals in Commutative Rings
JRM 512	Harmonic Series • A Conjecture Regarding the	AMM E2676	Ideals in Matrix Rings
AMM 5989	Harmonic Series • An Integer Sequence from	AMM E2528	Ideals of a Matrix Ring
A B 4 B 4 E E C E	the	TYCMJ 139	Idempotent • Spectrum of a Proper
AMM E585	has been Cracked • Miquel Point — A Tough	AMM E2704	Idempotent Elements in $\mathbb{Z}/n\mathbb{Z}$
A N A N A E O G O	Nut	AMM 6183	Idempotents • The Number of
AMM 5962	Hausdorff Space not σ -compact • A Separable	AMM 6039	Idempotents in a Power Series Ring • Central
JRM 291	Head-On Poker Variants	FQ H-290	Identical Divita
JRM 745 JRM 782	Hear The Mikado • To Hearts • Four	JRM 756 AMM 6030	Identical Digits Identically Distributed Random Variables
JRM 702 JRM 724	Heavenly Bodies	AMM 6196	· ·
AMM 6224	Heavy and Light Balls by Weighings •	FQ H-266	Identified • Limits Identify!
AIVIIVI UZZ4	Determining	MM 912	Identities • Binomial
JRM 462	Heck • Mental	AMM E2455	Identities • Fermat Numbers, a Result of
AMM E2533	Helping Professor Umbugio	AIVIIVI LZ433	Legendre, and Two
JRM 338	Here • No Slimming	FQ H-295	Identities • More
FQ H-293	Hermite • The Old	FQ H-288	Identities • More
SIAM 78-2	Hermite Basis Polynomials • Two Recurrence	AMM 6150	Identities • Near
JIAWI 10-2	Relations for	SIAM 74-12	Identities • The Rogers-Ramanujan
AMM 6072	Hermitian Matrix • Positive Definite	AMM 6108	Identities of the regers rumand and Identities for $\tau(n)$ of Multiplicative
AMM 5992	Hermitian Matrix • Sum of Blocks in a	AMM E2735	Identities for Matrices • Jacobi's
TYCMJ 130	Heron's Inequality • Sharpening of	TYCMJ 24	Identity • A Binomial Coefficient
JRM 731	Heterodoxy • The Temple of	SIAM 79-13	identity • A Combinatorial
JRM 388	Heterogeneous Tiling Conjecture • The	SIAM 79-13	Identity • A Combinatorial
MM 1084	Hex • Kriegspiel	SIAM 78-6	Identity • A Combinatorial
MM 1062	Hexagon • Ellipse and Convex	SIAM 75-4	Identity • A Combinatorial
MATYC 121	Hexagon • Radius of an Inscribed	AMM E2454	Identity • A Combinatorial
AMM E2531	Hexagon Theorem • A	AMM E2602	Identity • A Combinatorial
TYCMJ 42	Hexagons • Complete Bichromatic	AMM 6010	Identity • A Combinatorial
MM 992	Hexagons • Exceptional	MATYC 72	Identity • A Functional
MM 975	Hexagons • Number of	SIAM 77-2	Identity • A Gaussian Hypergeometric
MM 1057	Heximating a Pentagon		Function
AMM E2469	Hide and Seek in the Unit Disk	SIAM 79-8	Identity • A Hyperbolic Series
JRM 489	Hiding • A Paradisaic Triptych — The Snake is	MM 965	Identity • A Polynomial
JRM 754	High Hopes	AMM E2652	Identity • A Simple
JRM 484	High Hopes Society • The American	MATYC 67	Identity • A Triangular
JRM 328	High Tension	MATYC 132	Identity • A Trig
JRM 670	High-Powered Alphametic	SIAM 79-15	Identity • An
JRM 741	High-Powered Problem • A	FQ B-355	Identity • Cubic
AMM E2546	Hilbert Function and Counting	FQ B-327	Identity • Finishing Touches on a Lucas
FQ B-308	Hint • A Garbled	FQ B-301	Identity • Greatest Integer
MM 1013	Holes • Fibonacci	TYCMJ 69	Identity • Greatest Integer Function
AMM 5936	Holomorphic Function in $ z < 1$ • Range of a	FQ B-339	Identity • Operational
AMM E2768	Homeomorphic Subsets • Decomposing an	FQ H-245	Identity • Productive
A B 4 B 4 C 2 4 C	Interval into	FQ B-329	Identity • Unveiling an
AMM 6246	Homomorphism • A Group	MM 991	Identity in a Ring • An
JRM 754 JRM 484	Hopes • High Hopes Society • The American High	AMM E2681 MATYC 95	Identity with Binomial Coefficients • An If Only
JRM 464 JRM 412	Horn • Blowing Our Own	AMM 6218	Images of Monotone Functions
AMM 6041	Horse Race • A Random	AMM 6037	Imbedding of a Graph
JRM 461	Hot Alphametic • A	JRM 605	Immodesty
JRM 720	House • Specialty of the	JRM 303	Imperfect Information • Two Levels of
JRM 735	Housespouse's Dilemma • The	AMM 6251	Imply $BA = D$? • When Does $AB = C$
JRM 375	How to Tack in a Tin Can • Cruise of the	FQ B-325	Impossible Functional Equation
	Sidewinder, or	AMM E2613	Impossible Partition • An
JRM 332	Hungry? • Who's	AMM E2687	Impossible Triangle • An
AMM 5939	Hurwitz Polynomials • On	JRM 594	Imposter • Another
JRM 529	Hyper-resistance	JRM 316	Imposter • The
AMM E2680	Hyperbolic Plane • A Quadrilateral in the	JRM 374	Ina's Repeater
SIAM 79-8	Hyperbolic Series Identity • A	AMM E2793	Incenter, Circumcenter, Nine-points Center •
SIAM 77-2	Hypergeometric Function Identity • A		Inversion of the
	Gaussian	AMM E2690	Incidence Matrix • An Invertible
		JRM 366	Incident at Sea
SIAM 75-17	Hypergeometric Functions • A Series of		
	Hypergeometric Functions • A Series of Hypergeometric Series • A Well-Poised	TYCMJ 116	Inclusion and Exclusion Applied to Occupancy
SIAM 75-17 AMM 5950 AMM E2785		TYCMJ 116 TYCMJ 126	Inclusion and Exclusion Applied to Occupancy Inconsistent Quadratic System
AMM 5950 AMM E2785	Hypergeometric Series • A Well-Poised		
AMM 5950	Hypergeometric Series • A Well-Poised Hyperplanes in F_q • Covering $V - \{0\}$ with	TYCMJ 126	Inconsistent Quadratic System
AMM 5950 AMM E2785 TYCMJ 64	Hypergeometric Series • A Well-Poised Hyperplanes in F_q • Covering $V - \{0\}$ with Hypotenuse • The Inscribed Square On the	TYCMJ 126 FQ B-364	Inconsistent Quadratic System Incontiguous Zero Digits

Increasing	1975	-1979	Integer-Valued
SIAM 77-5	Increasing Infinite Series • A Conjectured	AMM S23	Inequality • Variation on the Erdős-Mordell
AMM 5861	Increasing Polynomials in an Ordered Field	4444 50007	Geometric
AMM 5861 JRM 336	Increasing Polynomials on an Ordered Field	AMM E2807 FQ B-357	Inequality $(n+a)^k \le rn^k$ Inequality Count • Golden Ratio
AMM E2555	Indeed! • "Mania," Indefinite Quadratic Form on a Box	AMM E2670	Inequality for $(xe^{-x} - ye^{-y})/(e^{-x} - e^{-y})$
AMM E2699	Independence Modulo Zero Sequences • Linear	AIVIIVI L2070	An $(xe^{-ge^{-g}})/(e^{-e^{-g}})$
AMM 6253	Independence of Functions $\exp[i\cos(\theta-\theta_j)]$ • Linear	SIAM 78-20	Inequality for a Pair of Associated Simplexes • A Volume
AMM 5942	Independent Normal Distributions	AMM 6202	Inequality for Finite Groups
AMM 5884	Independent Random Variables • Sequences of	AMM E2656	Inequality for Positive Real Numbers • An
AMM E2474	Independent Random Variables • The	TYCMJ 85	Inequality for the Radii of a Triangle
AMM 6103	Maximum of Independent Random Variables in a Vector	MM 936 TYCMJ 154	Inequality for Triangles \bullet An Inequality for Triangles and for Trace AB
AIVIIVI 0103	Space • Sequences of	MM 1043	Inequality for Two Triangles
AMM E2545	Indices of Subgroups of $SL_n(Z)$	AMM 6269	Inequality Involving the Γ Function
FQ H-276	Indifferent	AMM 6185	Inequality of L_p Norms of a Derivative of a
AMM 6054	Induced by a Permutation • Mapping		Function
AMM E2597	Induced in a Symmetric Power • Transformation	AMM 6254	Inequality of Products • An
AMM E2691	Inequalities • Classical	AMM E2428 AMM E2483	Inequality of Statistical Interest • An Inequality with Many Verifications • An
SIAM 77-12	Inequalities • Conjectured	AMM E2707	inf • The sup of an
TYCMJ 98	Inequalities • Triangle	TYCMJ 92	Infectious Continuity
SIAM 77-19	Inequalities • Two	AMM E2518	Infimum for Polynomials • An
AMM E2471	Inequalities • Two New Triangle	AMM E2584	Infinite 2-complex in 3-space
AMM 6019	Inequalities for $\pi \bullet \text{Algebraic}$	AMM 5933	Infinite Complete Subgraph of a Random Graph
MM 910 AMM E2649	Inequalities for a Triangle Inequalities for Non-obtuse Triangles	AMM 6163	Infinite Maze • Escaping from an
AMM E2573	Inequalities for Symmetric Functions	SIAM 76-16	Infinite Product • Conjecture on a Finite and
SIAM 75-11	Inequalities for the Gamma Function		an
AMM 5997	Inequality \bullet A Γ -function	AMM 6233	Infinite Product • Irrationality of an
AMM E2480	Inequality • A Consequence of Jensen's	AMM 6012	Infinite Product over a Set of Primes
AMM S6	Inequality • A Cyclic Power	SIAM 77-5 MATYC 66	Infinite Series • A Conjectured Increasing Infinite Sum • An
AMM E2504 AMM 5934	Inequality • A Difficult Triangle Inequality • A Functional	SIAM 76-2	Infinite Sum • An
AMM E2720	Inequality • A Functional	SIAM 77-18	Infinite Summation • An
MM 959	Inequality • A Geometric	SIAM 79-12	Infinite Sums ● Two
SIAM 76-8	Inequality • A Matrix	SIAM 76-12	Infinite System of Nonlinear Differential
TYCMJ 39	Inequality • A Mean	AMM E2733	Equations • An Infinitely Many Subsets of [0, 1] With the
AMM E2519 AMM E2655	Inequality • A Polynomial Inequality • A Polynomial	7	Same Non-zero Length and Small Pairwise
SIAM 75-19	Inequality • A Polynomial		Intersections
MM 937	Inequality • A Popular	FQ B-387	Infinitude ● One's Own
SIAM 74-13	Inequality • A Probabilistic	JRM 303 FQ B-398	Information • Two Levels of Imperfect Ingredient • The Added
SIAM 78-16	Inequality • A Probabilistic	AMM 6169	Injective Lie Algebras
MM 897	Inequality • A Relative	AMM 6004	Injective Map of $R \times R \bullet An$
FQ B-303 AMM E2603	Inequality • A Sigma Function Inequality • A Symmetric Sum	TYCMJ 143	Inner Product Formula for Cotangent
TYCMJ 45	Inequality • A Symmetrical	AMM 6207	Inner Product of Two Random Vectors •
TYCMJ 30	Inequality • A Triangle	JRM 622	Distribution of Inquiry • A Convergence
SIAM 79-19	Inequality • A Triangle	TYCMJ 131	Inradius of an Isosceles Triangle Prime? •
SIAM 77-9	Inequality • A Triangle		When is Half the
AMM E2634 MM 1082	Inequality • A Triangle Inequality • A Trigonometric	MM 1076	Inscribed n -gons
SIAM 77-10	Inequality • A Two Point Triangle	MATYC 121	Inscribed Hexagon • Radius of an
AMM E2695	Inequality • An	AMM E2674 MM 925	Inscribed in Another • One Regular <i>n</i> -simplex Inscribed Octagons
AMM E2547	Inequality • An	TYCMJ 64	Inscribed Square On the Hypotenuse • The
TYCMJ 20	Inequality • An	TYCMJ 118	Inscribed Triangles • Perimeters of
SIAM 79-1	Inequality • An	AMM E2723	Insensitive Central Limit Theorem • An
SIAM 74-10	Inequality • An Integral Inequality • An Integral	JRM 564	Instant Replay
SIAM 78-18 SIAM 75-16	Inequality • An Integral	MM 1080 TYCMJ 68	Int and sgn Integer • The Least Triangular Multiple of an
SIAM 77-6	Inequality • An Integral	TYCMJ 86	Integer Calculus Box Construction
TYCMJ 123	Inequality • Another Arithmetic Mean	AMM 6121	Integer Expression • An
AMM E2517	Inequality • Another Triangle	TYCMJ 69	Integer Function Identity • Greatest
FQ H-239	Inequality • Fermat's	FQ B-301	Integer Identity • Greatest
AMM 6227 AMM 4603	Inequality • Legendre Polynomial Integral Inequality • Shapiro's Cyclic	MM 994	Integer Integral • A Greatest
TYCMJ 130	Inequality • Sharpening of Heron's	AMM E2682 AMM 5989	Integer Points on an Ellipse Integer Sequence from the Harmonic Series •
AMM S12	Inequality • Tetrahedron	AMINI Jaua	An
AMM E2462	Inequality \bullet The Extended Erdős-Mordell	TYCMJ 58	Integer Zeros of a Polynomial
AMM E2739	Inequality • Trigonometric	AMM E2677	Integer-Valued Function • An

Integers	1975-	-1979	Invitation
AMM E966	Integers • A Representation for	AMM 5314	Integral of $\sin x/x \bullet A$ Multiple
MM 934	Integers • A Subset of	AMM 6040	Integral of a Jacobian
AMM E2642	Integers • An Application of Gaussian	SIAM 78-10	Integral of an Elliptic Function • An
AMM E2616 AMM 6086	Integers • Approximation by Algebraic Integers • Common Divisors and Square Free	SIAM 77-3	Integral of N. Bohr • A Definite
JRM 767	Integers • Consecutive	AMM E2726 MATYC 82	Integral Parts of $na + b \bullet$ Sequence of Integral Relation \bullet An
AMM 5998	Integers • Covering a Set of	SIAM 73-2	Integral Representation for the Moore–Penrose
AMM 6053	Integers • Density of Arguments of Powers of		Generalized Inverse of a Matrix
	Gaussian	MATYC 71	Integral Solution • An
FQ H-310	Integers • Fibonacci and Lucas Are the	AMM 6179	Integral Vertices • Cubes with
AMM 6020	Greatest Integers • Friendly	AMM E2623	Integrality of Some Fractions
JRM 737	Integers • Generating	AMM E2765	Integrals • Change of Variable Formula for Definite
MM 1063	Integers • Matrix of	AMM 5951	Integrals • Some Trigonometric
AMM E2621	Integers • No Solutions in Positive	AMM 6013	Integrals of Haar Functions
JRM 651	Integers • Partitioning the Positive	AMM 6280	Integrals of Harmonic Functions
AMM E2510	Integers • Power to the	SIAM 74-22	Integrals of the First Kind • Fourier
AMM 6015 TYCMJ 99	Integers • Prime Decomposition of Integers • Quadratic Formula	A NANA E060	Coefficients of a Function Involving Elliptic
TYCMJ 21	Integers • Sets of n Consecutive	AMM 5960 AMM E2803	Integrals of the Rademacher Function Integrals of Trigonometric Functions
AMM 5931	Integers • The Conjugates of Algebraic	TYCMJ 124	Integration • Example of Finite
AMM E2485	Integers • Triangles from Random	AMM 5994	Integration by Parts
TYCMJ 113	Integers • Tricolored Sets of Integers $2x^2 - 1$, $2x^2$ • The Two Consecutive	TYCMJ 83	Integration of a Series
AMM E2786 JRM 656	Integers $2x^2 - 1$, $2x^2 \bullet$ The Two Consecutive Integers in English	AMM 6154	Integrations • Iterating Reflections and
AMM E2460	Integers in English Integers in Pythagorean Triples • Appearance	AMM 5589	Interchange of Limits
== .00	of	MM 908 AMM E2428	Interchanged Digits Interest • An Inequality of Statistical
AMM E2777	Integers Relatively Prime to b in $[nb/a]$	AMM E2716	Interior to a Triangle • Six Segments Defined
AMM 6200	Integers That Differ by Two • A	7111111 22110	by a Point
AMM 6174	Characterization of	AMM 6260	Interior, and Union • Sets Formed by Iterated
AMM 6113	Integrability • More on Converses to Uniform Integrable Functions • A Class of		Closure,
7111111 0113	Stieltjes-Riemann	MM 1053 JRM 777	Intermediate Value Properties • Mean and International Affair
AMM 6085	Integrable Functions • Majorants for Families	JRM 436	International Alphametic • An
	of Uniformly	TYCMJ 134	Interpolating $((ab + bc + ca)/3)^{1/2}$ Between
AMM 6075	Integrable Functions with Positive Fourier Transform		$(a+b+c)/3$ and $(abc)^{1/3}$
SIAM 78-19	Integral • A Definite	AMM E2796	Interpolation • Chebyshev
SIAM 77-8	Integral • A Definite	SIAM 74-3	Interpolation • Davidon's Cubic
AMM 6111	Integral • A Fourier and Probability	AMM 5427	Intersecting Line • Three Balls and an
MM 994	Integral • A Greatest Integer	AMM S5	Intersecting Sets of Differences
AMM E2523 AMM 5687	Integral • A Logarithmic Integral • A Probability	AMM E2512 AMM 6022	Intersecting Triangles and Their Circumcircles Intersection in a Collection of Sets • Minimal
AMM 6008	Integral • A Vanishing	AMM 5946	Intersection of Finitely Generated Groups
MM 895	Integral • An	AMM E2754	Intersection of Lines • Pattern of
AMM E2706	Integral • An Unbounded	AMM E2714	Intersection of Moving Convex Bodies
AMM E2622	Integral • An Upper Bound for an	AMM E2733	Intersections • Infinitely Many Subsets of [0, 1]
AMM 5608 SIAM 75-20	Integral • Evaluation of an		With the Same Non-zero Length and Small Pairwise
SIAM 78-4	Integral • Limit of an Integral • Minimizing an	AMM E2764	Intersections and Unions of Subsets
AMM 5968	Integral $D^k f(0) \bullet$ The Set of Zeros of Entire	AMM E2792	Intersections of Point Sets • Odd
	Functions with	AMM E2768	Interval into Homeomorphic Subsets \bullet
AMM 6153	Integral $n/\pi(n)$	4 4 4 4 6 6 7 6	Decomposing an
AMM 6268	Integral Bases in Towers of Fields • Relative	AMM 6278 SIAM 78-1	Invariance Hamel Basis • Translation Invariance of Disc Averages • Approximate
AMM E2660	Integral Cyclic Quadrilaterals of Given Perimeter	JRM 778	Invasion of Privacy
MM 966	Integral Distances • Seven	JRM 604	Inventory Numbers
AMM 6177	Integral Domain • Noetherian	MATYC 100	Inverse • Polynomial
SIAM 75-18	Integral Equation • A Nonlinear	SIAM 76-3	Inverse Laplace Transforms • Three
SIAM 75-9	Integral Equation • A Singular	SIAM 73-2	Inverse of a Matrix • Integral Representation
SIAM 74-8	Integral Equation for Crystal Growth • An	AMM 6162	for the Moore–Penrose Generalized Inverse of a Matrix • The Sum of the Elements
AMM 5974 SIAM 76-19	Integral Formula • An <i>n</i> -tuple Integral from Demagnetizing Fields • A Double	ANNI 0102	of the
AMM S15	Integral Functional • Beckenbach's Monotonic	MM 1040	Inverses • Generalized
SIAM 74-18	Integral Functional • Constrained Minimization	AMM E2793	Inversion of the Incenter, Circumcenter,
	of an	****	Nine-points Center
SIAM 74-10	Integral Inequality • An	AMM 6026	Inverted by an Automorphism • Number of
SIAM 77-6 SIAM 75-16	Integral Inequality • An Integral Inequality • An	TYCMJ 150	Elements in a Group Invertibility of Matrices in $\mathbb{Q}[M]$
SIAM 78-18	Integral Inequality • An Integral Inequality • An	AMM E2690	Invertible Incidence Matrix • An
AMM 6227	Integral Inequality • Legendre Polynomial	AMM 6259	Invertible Laurent Polynomials
AMM 6210	Integral Matrices Congruent to I	JRM 743	Invitation • An

Involving	1975	–1979	Lattice
AMM 6271	Involving e^n and $n! \bullet$ Asymptotic Behavior of	AMM E2544	Juxtaposition • Fibonaccian
00	Sequences k A F	AMM E2798	k = (q-1)/p, and 20rb is a kth Power mod q
AMM E2770	Involving $S_k = \sum_{i} m^k \cdot A$ Formula Involving Arbitrary Functions \cdot Solutions to	AMM E2780 AMM E2447	$k \le n \bullet \text{ Sum of Number of Divisors } \sum_{k \text{-Satisfactory Sequences } \bullet \text{ Bounds for }} d(k),$
SIAM 77-4		AMM E2798	kth Power mod $q \bullet k = (q-1)/p$, and $2 \text{ or } b$ is a
AMM E2767	Linear Partial Differential Equations	AMM 6077	$K^n \bullet \text{Sum of the Digits in}$
SIAM 74-22	Involving Derivatives • A Determinant Involving Elliptic Integrals of the First Kind •	AMM 5965	Kernels • Complements of
JIAIVI 14-22	Fourier Coefficients of a Function	JRM 729	Keys • The Blind Man's
AMM 6269	Involving the Γ Function • Inequality	JRM 536	Kibitzer • The
MM 1048	Irrational	SIAM 74-22	Kind • Fourier Coefficients of a Function
MATYC 108	Irrational • Rational &	SIAW 14 22	Involving Elliptic Integrals of the First
TYCMJ 33	Irrational Chords	JRM 404	King • Salute To The
MM 1087	Irrational Coefficients	AMM E2476	Kissing Precisely • Tetratangent Spheres
AMM E2598	Irrational Distances • Dense Rational Set with	AMM E2475	Kissing Precisely • Tritangent Circles
MATYC 60	Irrational Exercise • An	JRM 416	Knew It All Along • We
MM 901	Irrational Sides	JRM 540	Knight • Rook vs.
AMM 6233	Irrationality of an Infinite Product	AMM E2392	Knight's Distance • The
AMM 6188	Irrationals • Complementary Subsets of the	JRM 216	Knight-life
AMM 6161	Irrationals by Distribution of Residues • A	JRM 164	Knights • The 13
	Characterization of	MM 1051	know (x, y) ? • Does X or Y
AMM E2711	Irreducible Characteristic Polynomial	AMM 6187	Known Expected Value • A
AMM 6043	Irreducible Polynomials over a Field • Degrees	AMM E2539	Known Unsolved Problem in Disguise • A
	of	JRM 788	Koolest Sequence • The
JRM 708	Isolated Primes	MM 1084	Kriegspiel Hex
JRM 261	Isometric Exercises	JRM 465	Kriegspiel Tic-Tac-Toe
AMM 6009	Isometry • A Non-Linear	AMM E2762	Kronecker Product • A Block Matrix Equal to
AMM 6275	Isometry Groups		a
MM 1052	Isomorphic Boolean Rings	AMM E2762	Kronecker Product • A Block Matrix Not
AMM 6076	Isoperimetric Problem • An		Equal to a
AMM S19	Isoperimetric Problem in a Disk	AMM 5996	Kuratowski Sets
AMM 6223	Isoptic Curves	JRM 324	L-Shaped Properties • The
TYCMJ 131	Isosceles Triangle Prime? • When is Half the	AMM 6131	$L^1(-\infty,\infty)$ • A Dense Set in
ID14 400	Inradius of an	AMM 5957	L^2 • Completeness Criterion of Orthonormal
JRM 429	Issue of JRM • Madachy's Last		Systems in
JRM 439	It's Coming, Ready or Not	AMM 6021	l^p • Linear Dependence in
MATYC 92	It's Fewer Than You Want • Sometimes	FQ H-221	$L_n \bullet \text{Congruence for } F_n \text{ and }$
MATYC 90 JRM 318	It's Not • A Power of 2	AMM 6185	L_p Norms of a Derivative of a Function \bullet
AMM 6260	It? • Why Prolong Iterated Closure, Interior, and Union • Sets	50 5 600	Inequality of
AIVIIVI 0200	Formed by	FQ B-289	$L_{2n+1} \bullet A$ Multiple of
AMM 6064	Iterated Divisor Function • An	FQ B-288	$L_{2n} \bullet A$ Multiple of
AMM E984	Iterated Function • An	AMM E2732	Labeling Chessboard Squares
AMM E2451	Iterated Sine • The	AMM 6192	Labeling Lattice Points
MM 1069	Iterates	AMM E2671 AMM E2605	Labelings of Binary Trees Labels on a Chessboard
AMM 6112	Iterates • A Series of	JRM 530	
MM 993	Iterates • Fixed Points of	MM 1083	Labor • The Thirteenth Lacing a Lattice
AMM 5405	Iterates of the Zeta-function	JRM 793	Ladders • The Two
AMM 6154	Iterating Reflections and Integrations	JRM 690	Lament • Drag Racer's
AMM 6133	Iteration of a Continuous Map	JRM 753	Lament • Napoleon's
SIAM 75-14	Iteration towards All Roots of a Complex	JRM 662	Lament • Non-Smoker's
	Polynomial • Simultaneous	JRM 661	Lament • Non-Smoker's
AMM E2808	Iterations Converging to a Root	JRM 415	Languages • Two True Alphametics In Two
FQ H-270	Its's a Sinh	JRM 414	Languages • Two True Alphametics In Two
MM 940	Itself • Time Repeats	SIAM 76-3	Laplace Transforms • Three Inverse
AMM E2534	$\binom{j+k}{k} + \binom{j+k-1}{k-1}$	AMM 6016	Large Modified Factorial • A
AMM E2735	Jacobi's Identities for Matrices	MATYC 93	Largest Circle • The
AMM 6040	Jacobian • Integral of a	AMM E1298	Largest Cross-Section of a Tetrahedron
SIAM 79-9	Jacobian Elliptic Functions • Fourier Series for	FQ H-215	Last ● At
	a Combination of	MM 1066	last $1 \bullet \text{The}$
AMM 6068	Jacobson Radicals • On the	JRM 429	Last Issue of JRM ● Madachy's
JRM 325	Jam Session	AMM 6066	Last Theorem • A Strong Fermat's
AMM E2480	Jensen's Inequality • A Consequence of	AMM E2771	Last Theorem for Even Exponents • Fermat's
AMM E2542	Job • A Bigger Group Does the	MATYC 123	Late for Supper
AMM 5963	Joint Densities • Expectations in Decreasing	JRM 692	Latin • Doubly True –
AMM E2456	Jordan Curve • Area Enclosed by a	MM 1083	Lattice • Lacing a
AMM E2647	Jordan Curve Theorem • An Elementary Case	TYCMJ 129	Lattice Point Principle
	of the	FQ B-377	Lattice Points • Counting
JRM 429	JRM • Madachy's Last Issue of	AMM 6192	Lattice Points • Labeling
JRM 648	JRM Nim	AMM E2633	Lattice Points • Permutable Sets of
JRM 646	Juice Cans • Packing Grapefruits and	AMM E2653	Lattice Points • Visible
	Grapefruit	AMM E2570	Lattice Points and Least Common Multiple
JRM 326	Just Beans!	TYCMJ 53	Edition I office and Editor Common Manupic

Lattices	1975-	-1979	Lots
AMM E2700 AMM 6032 JRM 350 AMM 6259 TYCMJ 47 TYCMJ 120 TYCMJ 71	Lattices • Complemented Finite Lattices • Distributive Launch • The Ferry and the Laurent Polynomials • Invertible Law of Sines and Cosines • A Laws • Trigonometric Addition Laws Property • Addition	AMM E2723 JRM 645 AMM 5589 AMM 6196 AMM E2506 JRM 341 AMM 5427	Limit Theorem • An Insensitive Central Limiting Difference • A Limits • Interchange of Limits Identified Limits of Differences of Square Roots Line • Drop Me a Line • Three Balls and an Intersecting
JRM 435 FQ B-412 AMM S21 AMM E2686 AMM E2638 JRM 478	Lazy Ones • An Easy One For the LCM • GCD Not LCM • Product Divided by LCM of Binomial Coefficients Leaders of a Maximal Clique Learning Program • A	MATYC 138 TYCMJ 145 TYCMJ 96 TYCMJ 17 AMM 6118	Line 'em Up Line on a Checkerboard • Euler Line Segment • Random Points on a Line Segments Cut by a Parabola Linear Combinations of Entire Functions without Zeros
TYCMJ 146 AMM E2570 AMM 5413	Least Area Property of Medial n-gons Least Common Multiple • Lattice Points and Least Common Multiple of Consecutive Terms in a Sequence	AMM 6117 AMM 6021 AMM E2453	Linear Compositions of Two Entire Functions Linear Dependence in l^p Linear Dependence of Certain Trigonometric Values • The
AMM E2661 TYCMJ 117 TYCMJ 68	Least Common Multiples • Functional Characterization of Least Squares Property of the Centroid Least Triangular Multiple of an Integer • The	SIAM 76-6 AMM 6093 AMM 6078 TYCMJ 46	Linear Differential Equation • An nth Order Linear Functionals • Continuous Linear Functionals in Normed Spaces Linear Functions • An Average
MATYC 124 FQ H-227 SIAM 79-14	Leg • Is a Side a Legendre • Sum Legendre Functions • A Conjectured Property of	AMM E2699 AMM 6253	Characterization of Linear Independence Modulo Zero Sequences Linear Independence of Functions $\exp[i\cos(\theta - \theta_j)]$
MM 941 AMM 6227 AMM E2601 AMM E2658 AMM E2760 AMM E2455 MM 946	Legendre Polynomial Legendre Polynomial Integral Inequality Legendre Polynomials • Binomial Sum and Legendre Polynomials Again Legendre Symbols • A Sum of Legendre, and Two Identities • Fermat Numbers, a Result of Length • Expected	TYCMJ 38 AMM 5723 AMM 5773 AMM 6215 AMM S22 AMM S7	Linear Partial Differential Equations Involving Arbitrary Functions • Solutions to Linear Polynomials Linear Programming with Random Selections Linear Spaces • Complete Linear Systems for Coloring Maps Linear Transformation Fixed Scalar Multiple Linearization of Product of q-Appell
AMM 6230 AMM E2489 AMM E2733	Length • Expected Perimeter Length and Functional Composition • Arc Length and Small Pairwise Intersections • Infinitely Many Subsets of [0, 1] With the Same Non-zero	AMM E2608 AMM E2754 AMM E2553 AMM E2639	Polynomials Linearly Ordered Sets • Traversing Lines • Pattern of Intersection of Lines • Simson and Euler Lines • Two Perpendicular
AMM 6257 AMM 6074 AMM 6007 AMM 6257 JRM 719 JRM 579 MATYC 80	Length Less Than $2 \bullet$ Sets of Functions of Length of Arc of a Monotonic Function Length when $f' = 0$ a.e. \bullet Arc Less Than $2 \bullet$ Sets of Functions of Length Lesson \bullet Arithmetic Lesson \bullet Geography Let's Get Close	AMM E2769 MM 905 JRM 367 JRM 695 JRM 663 JRM 359 JRM 588	Lines in ℝ ³ • Distance Between Lines to a Cubic • Tangent Lining • Look For the Silver Liquid Libation Literary Topper Lo-o-ong Addition • A Loaded Dice
JRM 303 JRM 392 JRM 695 AMM 6169 JRM 722	Levels of Imperfect Information • Two Liar Problem • A Variation on the Libation • Liquid Lie Algebras • Injective Life • The Facts of	AMM 6274 AMM E2806 AMM 5959	Local Bases • Disjoint Neighborhoods and Countable Local Bases • Disjoint Neighborhoods and Countable Locally Compact Topological Groups
JRM 730 AMM 6224 AMM S17	Light • The Traffic Light Balls by Weighings • Determining Heavy and Light Switches • Switching the Stairway Libe Fibersoni libe Sum	MM 1008 AMM 6191 SIAM 76-7 JRM 701	Locating Perfect Squares Location of a Zero of a Complex Polynomial Location Problem • A Facility Locus • A Scottian Locus Associated with Two Segments • A
FQ H-305 AMM E2484 SIAM 75-13 TYCMJ 26 FQ B-345 AMM E2748	Like Fibonacci-like Sum Limit • A Harmonic Limit • A Matrix Limit • A Popular Limit • Another Limit • Euler's Constant as a	AMM E1822 TYCMJ 55 JRM 785 AMM E2523 MATYC 139 MM 931	Logarithm? • Can a Number be Equal to its Logarithmetic Logarithmic Integral • A Logarithmic Solution Logically Speaking
FQ B-410 FQ H-297 AMM E2495 AMM E2125 MM 933 MM 974	Limit • Golden Limit • The Limit • This is the Limit • Variations on a Well-known Limit is e • The Limit is One • The	JRM 560 AMM E2344 AMM E1075 JRM 333 FQ B-369 MM 926	Long Auctions Long Lost Problem • A Long Products • Squares in Longer One • No Longer Unsolved • No Longest Swim • The
AMM 6252 SIAM 75-20 MM 928 AMM 6209 AMM E2572	Limit of a Combinatorial Sum Limit of an Integral Limit of Cotangents Limit of Matrices • A Limit Point of its Discontinuities? • Can a Derivative be Differentiable at a	JRM 367 FQ H-251 JRM 614 MATYC 109 AMM E2344 JRM 500	Look For the Silver Lining Look-Series Looney Tunes Farewell Loops & Groups Lost Problem • A Long Lots of Sons

Lott's	1975	–1979	Maximum
MM 997	Lott's Problem	AMM 6057	Matrices • Determinants of
AMM E2761	Lower Half Planes • Polynomial with Zeros in	AMM E2735	Matrices • Jacobi's Identities for
	Upper and	AMM 6095	Matrices • Positive Definite
AMM 6087	Loxodromes on a Torus	MM 995	Matrices • R-Symmetric
FQ H-246	Luc, Et Al • Fib,	AMM E2742	Matrices • Rarely Commuting
FQ H-273	Lucas • A Ray of	AMM 6006	Matrices • Relatively Prime
FQ H-310	Lucas Are the Greatest Integers • Fibonacci	AMM 6057	Matrices • Singular
EO D 402	and	AMM 6171	Matrices • Trace of a Product of
FQ B-403 FQ B-366	Lucas Congruence Lucas Congruence	AMM 6210	Matrices Congruent to $I \bullet Integral$
FQ B-317	Lucas Divisor	TYCMJ 150	Matrices in $\mathbb{Q}[M]$ • Invertibility of
FQ B-327	Lucas Identity • Finishing Touches on a	AMM E2496 AMM E2559	Matrix • A Nonsingular
FQ B-313	Lucas Into Fibonacci • Exponentiating	FQ H-274	Matrix • A Nonsingular Matrix • A Soft
FQ B-314	Lucas Numbers Ending in Three	AMM E2690	Matrix • An Invertible Incidence
FQ B-282	Lucas Right Triangles	AMM 6125	Matrix • Best Rank- k Approximation for a
FQ H-263	Lucas the Square is Now Mod!	AMM E2635	Matrix • Characteristic Polynomial of a
TYCMJ 35	Lucas' Theorem • An Application of	AMM E2683	Matrix • Determinant of a Cyclic
FQ B-277	Lucas-Fibonacci Congruence • A	AMM E2372	Matrix • Diagonals in a 0-1
FQ B-278	Lucas-Fibonacci Congruence • Another	AMM E2734	Matrix • Exponential of a
FQ B-382	Lucky L Units Digit	SIAM 73-2	Matrix • Integral Representation for the
AMM 6235	Möbius Function • Sum of Sums of the		Moore–Penrose Generalized Inverse of a
AMM 6234	Ménage Number • Ratio of Derangement	AMM 6249	Matrix • Norm of a
A N A N A F 2 F 7 7	Number to	SIAM 76-20	Matrix \bullet On the Extreme Eigenvalues of an
AMM E2577 JRM 487	Ménage Numbers • Restricted		$n \times n$
AMM 6001	(Macbeth) • Shakespearean Alphametic Maclaurin's Expansion • The Remainder Term	AMM 6072	Matrix • Positive Definite Hermitian
AWWW 0001	in	AMM E2741	Matrix • Similarity and the Diagonal of a
JRM 429	Madachy's Last Issue of JRM	SIAM 78-12	Matrix • Spectral Analysis of a
TYCMJ 89	Magic Card	AMM 5992	Matrix • Sum of Blocks in a Hermitian
MM 882	Magic Square • A Prime	AMM E2490	Matrix • The Eigenvalues of a
MM 943	Magic Squares • Charlemagne's	JRM 227	Matrix • The French
JRM 569	Magic Talisman Squares	SIAM 75-7 AMM 6162	Matrix • The Spectral Radius of a Matrix • The Sum of the Elements of the
AMM 6085	Majorants for Families of Uniformly Integrable	AIVIIVI 0102	Inverse of a
	Functions	AMM 6222	Matrix and Its Adjoint • Relations Between a
AMM 6084	Majorizing Properties of Coefficients of	AMM E2448	Matrix and its Matrix of Reciprocals Both
1D14 456	Tchebychef Polynomials		Positive Semi-definite • A
JRM 456	Man's Best Friend Man's Keys a The Plind	JRM 768	Matrix Arithmetic
JRM 729 JRM 336	Man's Keys • The Blind	SIAM 77-14	Matrix Convergence Problem • A
FUNCT 3.5.2	"Mania," Indeed! Manikato and the TV Camera	SIAM 79-2	Matrix Eigenvalue Problem • A
AMM E2733	Many Subsets of [0, 1] With the Same Non-zero	AMM E2762	Matrix Equal to a Kronecker Product \bullet A
7	Length and Small Pairwise Intersections •		Block
	Infinitely	SIAM 74-5	Matrix Exponential • On the Norm of a
MM 1023	Many Superheros	SIAM 76-8	Matrix Inequality • A
AMM E2483	Many Verifications • An Inequality with	SIAM 75-13	Matrix Limit • A
AMM E2712	Map • A Multiplicative	AMM E2762	Matrix Not Equal to a Kronecker Product • A
AMM 6051	Map • Extending a Sublinear	MM 1063	Block Matrix of Integers
AMM 6133	Map • Iteration of a Continuous	AMM E2448	Matrix of Integers Matrix of Reciprocals Both Positive
AMM 6282	Map $(0,1) \cap Q \simeq [0,1] \cap Q \bullet$ An Explicit	AIVIIVI EZ440	Semi-definite • A Matrix and its
AMM 6004	Map of $R \times R \bullet$ An Injective Mapping $\mathbb{R} \to \mathbb{R} \bullet$ One-One Continuous	SIAM 74-16	Matrix Problem • A
AMM 5978 AMM 6091	Mapping from Γ^n to \mathbb{C}^m	MATYC 91	Matrix Property • A
AMM 6054	Mapping Induced by a Permutation	MATYC 58	Matrix Property • A
AMM 6225	Mapping the 3-Sphere onto the 2-Sphere	AMM E2528	Matrix Ring • Ideals of a
AMM 6071	Mappings of the Unit Disk on a Convex	AMM E2676	Matrix Rings • Ideals in
	Domain • Analytic	AMM E2586	Matrix Squared \bullet A
AMM 6215	Maps • Linear Systems for Coloring	SIAM 76-9	Matrix Stability Problem • A
AMM 5986	Maps • Triangle Contractive Self	AMM S13	Matrix with Non-negative Entries
AMM S8	Maps ● Weak Contraction	JRM 545	Matter • What's the
AMM 5790	Maps in Affine Spaces • Collinearity Preserving	JRM 380	Matter of Squares • A
AMM 6047	Maps of Ellipses onto Ellipses • Conformal	FQ B-307	Maverick • Modularly Moving
AMM 6115	Marginals \bullet <i>n</i> -Dimensional Distributions with	AMM E2638	Maximal Clique • Leaders of a
IDM 527	Given	AMM 5966	Maximal Planar Graphs • Hamiltonian Circuits in
JRM 537	Marvin Sequence • The Mastermind	MM 935	Maximal Subgroups
JRM 772 JRM 593	Match Problem • The Eleven	AMM 6098	Maximal Subgroups Maximally Symmetric Convex Bodies
JRM 621	Matching Socks	AMM E2662	Maximization Problem for (0,1)-Matrices • A
JRM 639	Mate • Castle	TYCMJ 51	Maximum • Sum and
JRM 481	Math • New Alphametic — Old	JRM 464	Maximum Area Problem • A
AMM 6061	Matrices • A Convex Collection of $n \times n$	MM 955	Maximum Area Triangle
AMM 6209	Matrices • A Limit of	AMM 6050	Maximum in Random Samples • The
SIAM 79-4	Matrices • A Maximum Number of	SIAM 76-22	Maximum Multiplicity • A Zero of

Maximum	1975-	-1979	Multinomial
AMM 6159	Maximum Number of Edges in a Graph	AMM E2798	$\mod q \bullet k = (q-1)/p$, and $2 \text{or} b$ is a $k \text{th Power}$
C1444 70 4	Without Triangles • The	AMM E2482	mod $2 \bullet x^n + x + 1$ is Usually Reducible
SIAM 79-4 JRM 89	Maximum Number of Matrices • A Maximum Number of Moves • The	FQ B-331	Mod 24 • Some Fibonacci Squares
AMM E2474	Maximum of Independent Random Variables •	FQ B-378 FQ B-379	Mod 3 • Congruence Mod 5 • Congruence
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	The	AMM E2781	mod $n \bullet \text{Distinct Sums of the Residue Classes}$
AMM E2538	Maximum Problem for the Triangle • A	FQ H-280	Mod Ern
MM 1061	Maxmin • Minmax Equals	AMM 6148	$\pmod{n} \bullet \text{Sum of Squares}$
AMM 6163	Maze • Escaping from an Infinite	AMM E2488	mod p Relatively Prime to $p-1 \bullet$ Primitive
JRM 341 FQ B-274	Me a Line • Drop Mean • 3 Symbol Golden	EO H 363	Roots Mod a Lucas the Savara is Now
JRM 739	Mean • The Geometric	FQ H-263 AMM 6265	Mod! • Lucas the Square is Now Mode • Mean, Median, and
MM 1053	Mean and Intermediate Value Properties	SIAM 75-1	Mode Conversion • Idealized Optical Fibre
TYCMJ 39	Mean Inequality • A	AMM E2630	Models • Polyhedral
TYCMJ 123	Mean Inequality • Another Arithmetic	FQ H-262	Modern Mod
TYCMJ 136	Mean of the Geometric Distribution	SIAM 77-20	Modified Bessel Function Equal to its
AMM 5964 MM 899	Mean Powers of Prime Divisors Mean Triangular Twins	AMM 6016	Derivative? • When is the Modified Factorial • A Large
MM 987	Mean Value • A	FQ B-307	Modularly Moving Maverick
TYCMJ 52	Mean Value Theorem • A Geometric	AMM E2552	modulo 2 • Reducing
TYCMJ 101	Mean Value Theorem • Quadratic	AMM E2446	Modulo $m \bullet \text{Unique Cube Roots}$
AMM 6165	Mean Values ● Functions Approximated by	AMM E2461	Modulo $n! \bullet A$ Congruence
A N 4 N 4 C O C F	Their	AMM E2488	Modulo $p \bullet Primitive Roots$
AMM 6265 TYCMJ 87	Mean, Median, and Mode Means • Application of the Method of Deficient	AMM 6170	Modulo a Prime • The Number of Terms in a Binomial Expansion
TYCMJ 175	Means • Distinct Elements with Equal	AMM E2775	Modulo a Prime • The Pascal Triangle
MM 1056	Measure • Measure for	AMM E2673	Modulo a Prime $6n + 1 \bullet n$ -Residues
MM 1056	Measure for Measure	AMM E2578	Modulo Every Prime • Polynomials Reducible
AMM 5999	Measure in $\mathbb{R}^n \bullet A$	AMM E2699	Modulo Zero Sequences • Linear Independence
AMM 6242	Measures • Equality of	AMM E2600	Modulus for a Polynomial • Minimum
AMM E2710 TYCMJ 146	Measures of Choice Sets • Outer Medial n-gons • Least Area Property of	SIAM 76-18 JRM 779	Moments • A Monotonicity Property for Monetary Exchange
AMM 6265	Median, and Mode • Mean,	AMM E2562	Monochromatic Paths • Directed
AMM E2505	Medians of a Triangle • Extended	TYCMJ 28	Monotone Function • Real Zeros of a
AMM E2751	Meeting a Conic • Orthogonal Triad	AMM 6218	Monotone Functions ● Images of
FQ H-275	Mell • Pell	SIAM 76-15	Monotone Submatrices
JRM 462 AMM 6059	Mental Heck Metacyclic Groups • Cyclic Sylow Subgroups of	AMM 6074 AMM 6073	Monotonic Function • Length of Arc of a Monotonic Functions • Singular
JRM 347	Metalworker's Assistant • The	AMM S15	Monotonic Integral Functional • Beckenbach's
TYCMJ 87	Method of Deficient Means • Application of the	SIAM 76-18	Monotonicity Property for Moments • A
AMM E2636	Microbe Culture	JRM 480	Monte Carlo Problem • A
FQ H-306	Middle Aged	JRM C7	Monte Carlo Problem • A
JRM 745	Mikado • To Hear The	SIAM 73-2	Moore–Penrose Generalized Inverse of a Matrix
MM 1000 SIAM 79-17	Milliquery Min-Max Problem • A	JRM 448	• Integral Representation for the More Coins
JRM 601	Mini-Concentration	FQ H-288	More Identities
AMM E2507	Minima • Summing	FQ H-295	More Identities
AMM 6022	Minimal Intersection in a Collection of Sets	AMM S10	More in a Row • 8 or
AMM E2664	Minimal Solution of a System of Diophantine	AMM 6174	More on Converses to Uniform Integrability
SIAM 74-18	Equations Minimization of an Integral Functional •	JRM 598 JRM 775	More on Factorian Numbers More Simple Addition
5.7.1.VI 1-7-10	Constrained	JRM 776	More Simple Addition Even
SIAM 78-4	Minimizing an Integral	MATYC 85	More Than One Way
AMM E2632	Minimizing Discrepancy	JRM 486	More True Alphametics • Two
AMM 5972	Minimum $n, x^n = x$ for all x in a Ring Minimum Modulus for a Polynomial	JRM 485	More True Alphametics • Two
AMM E2600 MM 947	Minimum Modulus for a Polynomial Minimum Perimeter	AMM E1030 JRM 706	Morley Polygons Morley's Theorem
AMM E2654	Minimum Subcover of a Cover of a Finite Set	FQ B-296	Most Challenging Problem • A
SIAM 77-15	Minimum Valuation Tree • A Conjectured	SIAM 75-21	Motion • n-dimensional Simple Harmonic
JRM 184	Minimum-Move Checker Problem • A	AMM 6276	Motions • Groups Generated by Screw
JRM 185	Minimum-Move Chess Problem • A	JRM 524	Motto • A Worthwhile
MM 1061	Minmax Equals Maxmin Miguel Beint A Tough Nut has been	JRM 574	Motto • A Worthy Movey • The Maximum Number of
AMM E585	Miquel Point — A Tough Nut has been Cracked	JRM 89 AMM E2714	Moves • The Maximum Number of Moving Convex Bodies • Intersection of
AMM E2631	Mirimanoff's Condition • Prime Satisfying	FQ B-307	Moving Maverick • Modularly
MATYC 135	Miss Cohen • Happy Birthday,	MM 977	Mr. P. and Ms. S
JRM 440	Misunderstanding • A Basic	MM 977	Ms. S • Mr. P. and
JRM 345	Mixing Spares and Strikes	MATYC 104	Much, Really • Not
FQ H-279	Mixture • A Rare	JRM 298	Mud Bath • The
FQ H-262 FQ H-286	Mod • Modern Mod • Power	JRM 371 TYCMJ 34	Multidivisible Numbers Multimodularity
MATYC 116	Mod • Power Mod • Winning is	MM 1070	Multinodularity Multinomial Trials

Multiple	1975-	-1979	Nonlinear
AMM E2570	Multiple • Lattice Points and Least Common	MATYC 107	Necessarily So • It Ain't
AMM S22	Multiple • Linear Transformation Fixed Scalar	MATYC 74	Necessarily So! • It Ain't
AMM 5314	Multiple Integral of $\sin x/x \bullet A$	AMM E435	Necessary but not Sufficient Condition for
FQ B-289	Multiple of $L_{2n+1} \bullet A$		Primeness \bullet A
FQ B-288	Multiple of $L_{2n} \bullet A$	AMM 6067	Negative Values of $\Gamma(z)$
TYCMJ 68	Multiple of an Integer • The Least Triangular	AMM 6274	Neighborhoods and Countable Local Bases \bullet
AMM 5413	Multiple of Consecutive Terms in a Sequence •		Disjoint
CLANA 7C 14	Least Common	AMM E2806	Neighborhoods and Countable Local Bases •
SIAM 76-14	Multiple Summations • Three		Disjoint
AMM E2661	Multiples • Functional Characterization of	FQ B-302	Neighbors • Composite Fibonacci
FO B 400	Least Common	FQ H-223	Nest of Subsets • A
FQ B-400	Multiples of Some Triangular Numbers	JRM 390	Nesting • Two-Way Box
FQ B-396	Multiplies of Ten	AMM 6062	Nesting Regular n-gons
AMM 5297	Multiplication • Preservation of Convexity Under	AMM E2620	Networks with One-Ohm Resistors •
JRM 417	Multiplication Alphametic • A	1014 404	Symmetrical
JRM 369	Multiplication Test	JRM 481	New Alphametic — Old Math
AMM 5945	Multiplication Test Multiplicative Functions • A Subgroup of	AMM E2477	New Perspective • A
AMM E2753	Multiplicative Group Z_p	AMM E2471	New Triangle Inequalities • Two
AMM 6108	Multiplicative Identities for $\tau(n)$	JRM 353	New Variations on the Old "True" Theme
AMM E2712	Multiplicative Map • A	JRM 348	New Wrinkle on the Old Billiard Table Theme
SIAM 76-22	Multiplicity • A Zero of Maximum		• A
JRM 410	Multiply • Go Forth And	TYCMJ 94	Newton's Formula • Sufficiency of
MM 1032	Muntz-like Condition • A	JRM 703	Nightmare • The Typesetter's
AMM E2728	Mutually Tangent Cylinders	FQ B-375	Nil • Fibonacci or
JRM 300	"My Dear Watson"	JRM 648	$Nim \bullet JRM$
JRM 561	Mystery • Chess	AMM S18	Nim • Triangle from Wythoff's
JRM 758	Mystery II • Chess	JRM 372	Nim I • Spite
AMM E2807	$(n+a)^k \le rn^k \bullet \text{Inequality}$	JRM 373	Nim II • Spite
AMM 6061	$n \times n$ Matrices • A Convex Collection of	JRM 533	Nimbi
SIAM 76-20	$n \times n$ Matrix • On the Extreme Eigenvalues of	JRM 517	Nine • A Pair in Base
51AW 10 20	an	JRM 516	Nine • A Pair in Base
AMM E2461	$n! \bullet A$ Congruence Modulo	AMM E2763	Nine Solutions • A Third Degree Congruence
AMM 6271	n! • Asymptotic Behavior of Sequences		with
0211	Involving e^n and	MM 920	Nine-Point Circle • Radius of
MM 964	n! • Divisors of	AMM E2793	Nine-points Center • Inversion of the Incenter,
TYCMJ 70	n! • Rational Number Approximation of		Circumcenter,
AMM 5972	$n, x^n = x$ for all x in a Ring \bullet Minimum	FQ B-372	No ● Still
AMM E2458	n-ary Sheffer Function • An	JRM 408	No Contradiction
AMM E2708	n-Cycles • Groups Generated by	JRM 333	No Longer One
SIAM 79-16	n-Dimensional Cube • Resistances in an	FQ B-369	No Longer Unsolved
AMM 6115	n-Dimensional Distributions with Given	MM 990	No Polynomials
	Marginals	JRM 502	No Sequence is Best
SIAM 75-21	n-dimensional Simple Harmonic Motion	JRM 338	No Slimming Here
MM 1076	n-gons • Inscribed	AMM E2621	No Solutions in Positive Integers
TYCMJ 146	n-gons • Least Area Property of Medial	MM 1060	No Such Function
AMM 6062	n-gons • Nesting Regular	JRM 98	No Sums Allowed
AMM E2698	n -Queens Problem \bullet Toroidal	FQ B-371	No, No, Not Always
AMM E2673	n-Residues Modulo a Prime $6n + 1$	FQ B-371	No, Not Always • No,
AMM E2674	n -simplex Inscribed in Another \bullet One Regular	AMM 6177	Noetherian Integral Domain
AMM 6089	n-space • Convex Bodies in	AMM 6099	Non-Abelian Groups • Generators for some
JRM 262	N-Space Conjecture	JRM 455	Non-Canadian Alphametics • Definitely
SIAM 76-6	n th Order Linear Differential Equation \bullet An	JRM 454	Non-Canadian Alphametics • Definitely
AMM 5974	n -tuple Integral Formula \bullet An	AMM E2560	Non-congruence of Certain Sums
MM 924	n-Tuples • Counting	JRM 422	Non-Factors • Prime
AMM E2491	$n? \bullet \text{ When is } \left[\sqrt{n}\right] \text{ a Divisor of }$	FQ B-351	Non-Fibonacci Primes
MATYC 83	Nth Order Derivative • An	AMM E2668	Non-isosceles Triangles • Special
SIAM 77-3	N. Bohr • A Definite Integral of	SIAM 79-11	Non-Linear Differential Equation \bullet A
AMM 6153	$n/\pi(n)$ • Integral	AMM 6009	Non-Linear Isometry • A
AMM E2776	$n^e \equiv n \pmod{b}$	AMM S13	Non-negative Entries • Matrix with
MM 973	$N^{-1} \bullet \text{The Period of}$	AMM E2649	Non-obtuse Triangles • Inequalities for
AMM E2726	$na + b \bullet$ Sequence of Integral Parts of	JRM 662	Non-Smoker's Lament
JRM 753	Napoleon's Lament	JRM 661	Non-Smoker's Lament
AMM E2574	Natural Numbers • A Special Group Operation	AMM E2575	Non-symmetric Function • A
	on	AMM E2733	Non-zero Length and Small Pairwise
TYCMJ 111	Natural Numbers • Densities of Subsets of the		Intersections • Infinitely Many Subsets of
MM 1068	Navel Contemplation		[0,1] With the Same
AMM E2777	$[nb/a] \bullet $ Integers Relatively Prime to b in	TYCMJ 141	Nonarithmetic Sequences
AMM 6150	Near Identities	TYCMJ 43	Noncommutative Binary Operation • A
FQ B-388	Near the Diagonals • Partitioning Squares	FQ B-370	Nonhomogeneous Difference Equation
	Near the Diagonals • Partitioning Squares Nearest Point in a Compact Set • The	FQ B-311	Nonhomogeneous Recurrence • A Nonlinear Differential Equation • A

Nonlinear	1975-	-1979	Off
SIAM 77-16	Nonlinear Differential Equation • A First	MM 979	Number of Permutations • The
SIAM 76-12	Order Nonlinear Differential Equations • An Infinite System of	MM 983 AMM 6170	Number of Prime Divisors • Different Number of Terms in a Binomial Expansion Modulo a Prime • The
SIAM 75-18	Nonlinear Integral Equation • A	AMM E2705	Number of Trials • Expected
SIAM 75-5	Nonnegative Form • A	AMM E2500	Number Puzzle • A Perfect
AMM 6219 AMM E2745	Nonnormal Numbers Nonoverlapping Pennies	FQ B-362 MATYC 75	Number Residues • Triangular Number Theory
AMM 6058	Nonresidues • Consecutive Quadratic	MATYC 131	Number Theory Number Theory
AMM E2559	Nonsingular Matrix • A	MATYC 62	Number Theory Revisited
AMM E2496	Nonsingular Matrix • A	MATYC 73	Number Theory Revisited
AMM 6249	Norm of a Matrix	AMM 6234	Number to Ménage Number • Ratio of
SIAM 74-5 AMM 6104	Norm of a Matrix Exponential \bullet On the Normal \bullet The Random Variable X/Y , X , Y	AMM E2581	Derangement Numbers • A Property of Fibonacci
AMM 5942	Normal Distributions • Independent	AMM E2574	Numbers • A Special Group Operation on
AMM 6109	Normal Families • Sylvester Series and		Natural
AMM 6147	Normal, Separable Space • Subspaces of a	AMM E2800	Numbers • A Test for Composite
AMM 6078 FQ B-360	Normed Spaces • Linear Functionals in Norms • Applying Quaternion	AMM E2656 JRM 494	Numbers • An Inequality for Positive Real Numbers • APT
AMM 6017	Norms • Constructing 'Smaller'	JRM 495	Numbers • Artful
AMM 5937	Norms in a Barreled Space	TYCMJ 81	Numbers • Binary Operations on Rational
AMM 6185	Norms of a Derivative of a Function ●	MM 1049	Numbers • Catalan
MATYC 90	Inequality of L_p	FQ B-385	Numbers • Counting Some Triangluar Numbers • Densities of Subsets of the Natural
JRM 439	Not • A Power of 2 It's Not • It's Coming, Ready or	TYCMJ 111 AMM 5967	Numbers • Densities of Subsets of the Natural Numbers • Density of Deficient Odd
AMM 5962	not σ -compact • A Separable Hausdorff Space	AMM 6036	Numbers • Even Perfect
FQ B-417	Not a Bracket Function	JRM 320	Numbers \bullet Factorian
MM 900	Not a Centerfold Not Always • No, No,	AMM 6221	Numbers • Groups and Cardinal Numbers • Harmonic
FQ B-371 JRM 491	Not Always • No, No, Not Always Appreciated	AMM 6048 JRM 604	Numbers • Harmonic Numbers • Inventory
MATYC 125	Not Closed	JRM 598	Numbers • More on Factorian
MM 1036	Not Complex • Real	JRM 371	Numbers \bullet Multidivisible
AMM E2762	Not Equal to a Kronecker Product • A Block Matrix	FQ B-400	Numbers • Multiples of Some Triangular
MATYC 137	Not Its Converse • A Theorem But	AMM 6219 JRM 571	Numbers • Nonnormal Numbers • Pandigital
FQ B-412	Not LCM \bullet GCD	JRM 791	Numbers • Perfect
MATYC 104	Not Much, Really	AMM E2571	Numbers • Perfect-plus-two
FQ B-399 AMM E2452	Not Quite Tribonacci not so Easy • Cutting Corners is	AMM E2577 AMM E2590	Numbers • Restricted Ménage Numbers • Subadditive and Superadditive
JRM 450	Not So Tasty	MM 954	Numbers • Sum of Perfect
AMM E435	not Sufficient Condition for Primeness • A	AMM E2799	Numbers \bullet Superfactorials and Catalan
JRM 299	Necessary but	AMM E2618 JRM 657	Numbers • Triangular-Square-Pentagonal
MATYC 70	Not Too Easy Not Too Often • Bingo – But	FQ B-314	Numbers • Two-Digit Reflective Numbers Ending in Three • Lucas
FQ H-263	Now Mod! • Lucas the Square is	JRM 760	Numbers II • Reflective
MM 907	Nowhere Continuous	AMM 6138	Numbers of the Form $p_i p_{i+1} p_{i+2} \dots p_{i+n} \bullet$
AMM 6081	Nowhere Continuous, Quasi-continuous Functions	AMM E2455	Abundant Numbers, a Result of Legendre, and Two
TYCMJ 62	Null Sequence	AIVIIVI E2433	Identities • Fermat
AMM 6240	Null Sequence • Approximation by Terms of a	JRM 755	Numerals • Roman
AMM 5984	Null Sequences • Convolution of	JRM 346	Numiphobic Caterer • The
AMM E2591 AMM E2679	Null Sequences and Convergent Series Number • A Composite	AMM E585	Nut has been Cracked • Miquel Point — A Tough
AMM E2738	Number • Permuting the Digits of a Real	AMM 6145	$N \to C \bullet Convolution Products on Functions$
AMM 6234	Number • Ratio of Derangement Number to	AMM E2566	Obtuse Pythagorean Triplets
A NANA E2779	Ménage	AMM E2479	Obvious Solutions • A Functional Equation
AMM E2778 TYCMJ 48	Number • Sums of Powers of a Number • The Best Fibonacci	TYCMJ 116	with only Occupancy • Inclusion and Exclusion Applied
AMM E1243	Number and its Reverse • Product of a		to
TYCMJ 70	Number Approximation of $n! \bullet \text{Rational}$	TYCMJ 152	Occurring Events • Probability of
TYCMJ 55	Number be Equal to its Logarithm? • Can a	MM 925	Simultaneously
MATYC 65 AMM E2780	Number Fun Number of Divisors $\sum d(k)$, $k < n \bullet$ Sum of	MM 929	Octagons • Inscribed Octahedrons • Two
AMM E2696	Number of Divisors $\sum_{\bullet} d(k), k \leq n \bullet \text{Sum of}$ Number of Draws \bullet Expected	JRM 406	Odd Couple • The
AMM 6159	Number of Edges in a Graph Without	JRM 405	Odd Couple • The
ANANA GOOG	Triangles • The Maximum Number of Florents in a Croup Inverted by an	AMM E2520	Odd Intersections of Point Sets
AMM 6026	Number of Elements in a Group Inverted by an Automorphism	AMM E2792 AMM 5967	Odd Intersections of Point Sets Odd Numbers • Density of Deficient
MM 975	Number of Hexagons	TYCMJ 105	Odd-gons • Rational Vertices of Regular
AMM 6183	Number of Idempotents • The	JRM 317	Odometers • The Two
SIAM 79-4	Number of Matrices • A Maximum	JRM 671	Odometers • Two
JRM 89	Number of Moves • The Maximum	FQ H-152	Off • Brush the Dust

Often	1975-	-1979	Parabola
MATYC 70	Often • Bingo – But Not Too	SIAM 77-16	Order Nonlinear Differential Equation \bullet A
JRM 353 JRM 348	Old "True" Theme • New Variations on the Old Billiard Table Theme • A New Wrinkle on the	AMM 5938	First Order-Preserving Automorphisms in a Field On
MM 944	Old Bridge Problem • An	AMM 5861	Ordered Field • Increasing Polynomials in an
MM 1011	Old Dice Problem • An	AMM 5861	Ordered Field • Increasing Polynomials on an
AMM E2663	Old Exercise • An	AMM E2608 MM 1022	Ordered Sets • Traversing Linearly Ordering Cards
FQ H-293 JRM 481	Old Hermite • The — Old Math • New Alphametic	AMM 5975	Ordinal Types Thick and Thin
JRM 481	Old Math • New Alphametic —	AMM E2672	Orientation and Vertex-Coloring of Complete
AMM E2637	Old Result • An		Graphs
FQ B-323	Old Theme • Variations on an	TYCMJ 110	Ortho-incentric Triangles
FQ H-277	Old Timer	MM 1035 MM 984	Orthogonal • Really Orthogonal Basis
FQ H-91 FQ H-225	Old-Timer • An Oldie • A Corrected	MATYC 114	Orthogonal Curves
FQ H-256	Oldie! • An	MM 919	Orthogonal Edges • A Simplex with
FQ H-213	One • Another Ancient	MM 988	Orthogonal Projection
MM 1021	One • Converges to	AMM E2751 AMM 5957	Orthogonal Triad Meeting a Conic Orthonormal Systems in L^2 • Completeness
MM 972 JRM 333	One • Converges to	Alvilvi 3331	Criterion of
MM 974	One • No Longer One • The Limit is	AMM E2551	Oscillation of Partial Sums
FQ B-275	One • Two in	JRM 412	Our Own Horn • Blowing
MATYC 96	One and Only	FQ B-334	Out • The Primes Peter
JRM 435	One For the Lazy Ones • An Easy	MM 1075 AMM E2710	out of 35,660 • 2500th Digit Outer Measures of Choice Sets
JRM 364	One of Those True Alphametics Again	AMM 6042	Outside $[0,1] \bullet C^{\infty}$ Functions Vanishing
FQ H-285 JRM 683	One or Five One Point in a Square	AMM E2669	Oval of Rademacher • Roundest
AMM E2674	One Regular n -simplex Inscribed in Another	AMM 6043	over a Field • Degrees of Irreducible
FQ B-332	One Single and One Triple Part	AMM 6012	Polynomials over a Set of Primes • Infinite Product
FQ B-332	One Triple Part • One Single and	FQ B-363	Overlapping Palindromic Blocks
MATYC 85 FQ B-387	One Way • More Than One's Own Infinitude	JRM 412	Own Horn • Blowing Our
AMM E2620	One-Ohm Resistors • Symmetrical Networks	FQ B-387	Own Infinitude • One's
	with	AMM E2488	$p-1 \bullet \text{Primitive Roots mod } p \text{ Relatively Prime to}$
AMM 5978	One-One Continuous Mapping $\mathbb{R} \to \mathbb{R}$	TYCMJ 95	$p^x + 1 = y^p \bullet \text{Solution of}$
SIAM 74-19 JRM 435	One-sided Approximation to Special Functions Ones • An Easy One For the Lazy	AMM 6138	$p_i p_{i+1} p_{i+2} \dots p_{i+n} \bullet \text{Abundant Numbers of}$
AMM E2486	Ones • Squares Ending in	FO D 401	the Form
MM 1065	Ones • Zero and	FQ B-401 JRM 309	Pace for F.Q. • Change of Packing • Pentagon
FQ B-281	Ones for Tee	JRM 117	Packing a Double Torus
AMM E2615	Only • A System with Trivial Solutions	JRM 646	Packing Grapefruits and Grapefruit Juice Cans
MATYC 95 MATYC 96	Only • If Only • One and	AMM E2612	Packing of a Chinese Checkerboard • Diamond
AMM E2479	only Obvious Solutions • A Functional	AMM E2524 JRM 427	Packing Problem • A Brick Packing Problem • The Five-Circle
	Equation with	FQ B-322	Page Alphametic • Front
FQ B-276	Only Two Solutions	JRM 517	Pair in Base Nine • A
AMM 6047 AMM 6225	onto Ellipses • Conformal Maps of Ellipses onto the 2-Sphere • Mapping the 3-Sphere	JRM 516	Pair in Base Nine • A
AMM E2614	Open and a Compact Set • Union of an	SIAM 78-20	Pair of Associated Simplexes • A Volume Inequality for a
AMM E2790	Open Set with Squares of Specified Areas •	JRM 81a	Pair of Diophantine Equations • A
	Filling an	FQ H-269	Pair of Sum Sequences • A
TYCMJ 43 AMM E2579	Operation • A Noncommutative Binary Operation in the Plane • A Binary	TYCMJ 133	Paired Geometric Progressions
AMM E2574	Operation on Natural Numbers • A Special	JRM 249 AMM 5735	Pairing • Polynomial Pairs with Same Prime Factors • Density of
	Group	AMM E2733	Pairwise Intersections • Infinitely Many
FQ B-339	Operational Identity		Subsets of [0, 1] With the Same Non-zero
TYCMJ 81	Operations on Rational Numbers • Binary Operator • The Twice Differentiation	FO D 262	Length and Small
AMM 5961 AMM 5995	Operators • Analytic Functions of Bounded	FQ B-363 MATYC 94	Palindromic Blocks • Overlapping Palindromic Counterexample
AMM 5575	Operators • Some Bernstein-type	MM 1026	Palindromic Sums
AMM 5944	Operators • Weak Sequential Closure of a Class	JRM 752	Pan Fantasy • Peter
SIANA 7F 1	of Optical Fibra Mode Conversion • Idealized	AMM E2569	Pancakes • Stack of
SIAM 75-1 SIAM 63-9	Optical Fibre Mode Conversion • Idealized Optimal Search • An	JRM 571 JRM 649	Pandigital Numbers Pandigital Primes
JRM 356	Order • Franciscan	JRM 769	Panel • Stump the
AMM 6176	Order • Simple Groups of Square	JRM 314	Papaya Pies • Partitioning
TYCMJ 144	Order $1 + \varepsilon \bullet$ Hölder Condition of	JRM 538	Paper Stretcher • The
MATYC 83 SIAM 77-17	Order Derivative \bullet An N th Order Differential Equations \bullet A System of	AMM E2499 TYCMJ 32	Pappus — Final Appearance • A Problem of Parabola • Diameter Characterization of the
2141 11-11	Second Second	TYCMJ 32	Parabola • Line Segments Cut by a
SIAM 76-6	Order Linear Differential Equation \bullet An n -th	AMM 6199	Parabola • Permuted Residue Classes Under a

Paradisaic	1975-	-1979	Plane
JRM 490	Paradisaic Triptych — Even in Eden? • A	MM 1057	Pentagon • Heximating a
JRM 488	Paradisaic Triptych — Revenge • A	JRM 309	Pentagon Packing
JRM 489	Paradisaic Triptych — The Snake is Hiding • A	JRM 175	Pentagon Problem • A
JRM 177	Paradox • A Penny-Ante	FQ B-348	Pentagon Ratio
MATYC 98	Paradox • Bertrand's	JRM 600	Pentomino Conjecture • A
AMM E2617 MM 950	Parallel Sections of a Convex Body • Three Parallel Tangents	JRM 391 JRM 470	Pentomino Conjecture • A Pentomino Doublets
TYCMJ 153	Parallelogram • Squaring a	JRM 426	Pentomino Query • A
AMM E2802	Parallelogram Generated from a Triangle • A	MM 1024	Percentage vs. Games Behind
MM 1001	Parallelograms	SIAM 77-1	Percentiles for the Gamma Distribution
JRM 582	Parisian Clean-Up	FQ B-342	Perfect Cubes
TYCMJ 91	Parity • Partition by Exponent	AMM E2500	Perfect Number Puzzle • A
FQ B-332	Part • One Single and One Triple	JRM 791	Perfect Numbers
AMM E2665	Partial Checkerboards	AMM 6036	Perfect Numbers • Even
AMM 5888	Partial Derivatives • Continuity of Functions	MM 954	Perfect Numbers • Sum of
SIAM 77-4	with Partial Differential Equations Involving	MATYC 63 MM 1045	Perfect Squares
SIAWI 11-4	Arbitrary Functions • Solutions to Linear	MM 1008	Perfect Squares • Absolute Perfect Squares • Locating
FQ B-297	Partial Fractions	AMM E2557	'Perfect' Cyclic Quadrilaterals
TYCMJ 82	Partial Fractions Decomposition	AMM E2571	Perfect-plus-two Numbers
AMM E2744	Partial Sum • A Divergent	AMM E2660	Perimeter • Integral Cyclic Quadrilaterals of
AMM E2551	Partial Sums • Oscillation of		Given
AMM E2613	Partition • An Impossible	MM 947	Perimeter • Minimum
TYCMJ 91	Partition by Exponent Parity	MATYC 126	Perimeter and Area
AMM 6137	Partition Function • The Differences of the	AMM 6230	Perimeter Length • Expected
AMM 6130	Partition of the Rational Points of the Plane •	JRM 565	Perimeter Problem • The
JRM 71	A Partition Problem • A	TYCMJ 118 MM 973	Perimeters of Inscribed Triangles Period of $N^{-1} \bullet$ The
AMM 5971	Partitioning R_+	MM 958	Periodic • Convergent and
JRM 314	Partitioning Papaya Pies	AMM E2719	Periodic Patterns of Signs
FQ B-388	Partitioning Squares Near the Diagonals	AMM E2567	Periodic Recurrence • A
MM 957	Partitioning the Plane	AMM E2633	Permutable Sets of Lattice Points
JRM 651	Partitioning the Positive Integers	AMM 6054	Permutation • Mapping Induced by a
JRM 711	Partitions Partitions in an Abelian Crown a Fauel Sum	AMM E2516	Permutation Equivalence
AMM 6011 AMM E2582	Partitions in an Abelian Group • Equal Sum Partitions of a Finite Set • Crisscrossing	MM 1002 JRM 625	Permutation Preserving Sum Permutation? • Is It a
AMM 6151	Partitions of Finite Sets	JRM 734	Permutations
JRM 681	Parts • Fractional	MM 885	Permutations • A Sum of
AMM 5994	Parts • Integration by	AMM E2440	Permutations • A.PFree
AMM E2726	Parts of $na + b \bullet$ Sequence of Integral	MM 979	Permutations • The Number of
JRM 699	Party • The Anniversary	AMM S14	Permutations with f Fixed Points
FQ H-213 FQ H-218	Pascal • An Adjusted Pascal • Staggering	AMM 6199	Permuted Residue Classes Under a Parabola Permuting the Digits of a Real Number
FQ B-407	Pascal Triangle • Generator of	AMM E2738 AMM E2639	Perpendicular Lines • Two
AMM E2775	Pascal Triangle Modulo a Prime • The	MM 1028	Perpendiculars • Concurrent
FQ B-390	Pascal's Triangle • Generating Diagonals of	JRM 446	Perpetual Check
MATYC 111	Pascal's Triangle — Generalized	TYCMJ 138	Persistent Powers
FQ H-307	Past • A Wind From the	AMM E2477	Perspective • A New
FQ H-125	Past • Ghost from the	FQ B-334	Peter Out • The Primes
JRM 514	Pastoral Puzzle • A	JRM 752	Peter Pan Fantasy
AMM E2549 AMM E1255	Path • Adding Edges to Get an Euler Paths • Broken-Line Brachistochrone	JRM 675 MM 921	Petersburg Game The St. Phi Euler's
AMM E2562	Paths • Directed Monochromatic	JRM 396	Philatelist's Problem • A
AMM E2754	Pattern of Intersection of Lines	AMM E2459	Pi with Series-Parallel Circuits •
JRM 322	Pattern Problem • A		Approximating
JRM 628	Pattern Puzzle • A Cube	MM 927	Pick's Formula
JRM C6	Pattern Recognition Problem • A	JRM 247	Pie • A Cutie
JRM 479	Pattern Recognition Program • A	AMM 6143	Pie Fairly • Dividing the
JRM 707 AMM E2719	Patterns • Alphametic Patterns of Signs • Periodic	AMM 6184 JRM 355	Piecewise Continuous Functions • Bases for Pierre Vindicated?
SIAM 78-17	Paul Bunyan's Washline	JRM 314	Pies • Partitioning Papaya
JRM 603	Pedestrian • The Unwilling	JRM 180	Pillow Problem • The
FQ H-275	Pell Mell	AMM 5385	Planar Graph ● A
FQ B-336	Pell Squares	AMM 5966	Planar Graphs • Hamiltonian Circuits in
AMM E2606	Pell's Equation in Disguise		Maximal
FQ H-243	Pell-Mell	AMM E2579	Plane • A Binary Operation in the
JRM 96 AMM E2745	Penney-Ante • Blind Pennies • Nonoverlapping	AMM 6130	Plane • A Partition of the Rational Points of the
	Pennies • The Four-Color Theorem for	AMM E2680	Plane • A Quadrilateral in the Hyperbolic
AMM E2527		======	
AMM E2527	Touching	AMM E2736	Plane • A Recurring Sequence of Points in the
JRM 177 JRM 385		AMM E2736	Plane • A Recurring Sequence of Points in the Affine Plane • Generating Subsets of the

Plane	1975	-1979	Popula
MM 957	Plane • Partitioning the	AMM E1030	Polygons • Morley
AMM 5985	Plane ◆ Subsets of the	AMM E2401	Polygons • Sequence of
AMM 6250	Plane ◆ Triods in the	JRM 394	Polygons in a Circle
AMM 5953	Plane Graph • Sum of Valencies for a	AMM E2630	Polyhedral Models
TYCMJ 132	Planes • Concurrent	AMM E2740	Polyhedron • A Square in a
AMM E2761	Planes • Polynomial with Zeros in Upper and	AMM E2694	Polyhedron • Convexity of a
	Lower Half	MM 1072	Polynomial • A Tailored
TYCMJ 90	Plateau Squares	AMM 6237	Polynomial • Bound on Zeros of a
JRM 528	Platonic Solids • Tagging the	SIAM 74-9	Polynomial • Bounds for the Zero of a
JRM 615	Play • Double	AMM E2731	Polynomial • Characterization of a
JRM 232	Play • Three-Point	TYCMJ 58	Polynomial • Integer Zeros of a
FQ H-253	Play • Triple	AMM E2711	Polynomial • Irreducible Characteristic
FQ H-238	Play • Triple	MM 941	Polynomial • Legendre
FQ H-261	Player Rep • A	AMM 6191	Polynomial • Location of a Zero of a Complex
AMM 6146	Plays? • Did Bacon Write Shakespeare's	AMM E2600	Polynomial • Minimum Modulus for a
MATYC 118	Please • Go to the Principal,	SIAM 76-21	Polynomial • On the Zeros of a
JRM 365	Please Ponder This Puzzle	AMM E2473	Polynomial • Rational Function of a Rational
JRM 664	Pleaser • Crowd		Function of a
TYCMJ 140	Point • Generalization of a Property of the	SIAM 75-14	Polynomial • Simultaneous Iteration towards
	Symmedian		All Roots of a Complex
FQ H-292	Point • Get the	AMM 6097	Polynomial Algebra Generated by Symmetric
JRM 504	Point • The Best Vantage		Functions
AMM E585	Point — A Tough Nut has been Cracked ●	AMM E2467	Polynomial Approximations to Exponential
	Miquel		Functions
AMM 6122	Point in a Compact Set • The Nearest	AMM E2773	Polynomial Congruences $x^k \equiv x$, $\prod (x - a_i) \equiv$
AMM E1073	Point in a Spiral • A		• The
JRM 683	Point in a Square • One	AMM E2554	Polynomial Function Restricted to Rationals
AMM E2716	Point Interior to a Triangle • Six Segments	MM 965	Polynomial Identity • A
	Defined by a	AMM E2519	Polynomial Inequality • A
AMM E2572	Point of its Discontinuities? • Can a Derivative	AMM E2655	Polynomial Inequality • A
	be Differentiable at a Limit	SIAM 75-19	Polynomial Inequality • A
TYCMJ 129	Point Principle • Lattice	AMM 6227	Polynomial Integral Inequality • Legendre
AMM E2792	Point Sets • Odd Intersections of	MATYC 100	Polynomial Inverse
AMM E2587	Point Theorem • An Application of Brouwer's	AMM E2635	Polynomial of a Matrix • Characteristic
	Fixed	JRM 249	Polynomial Pairing
SIAM 77-10	Point Triangle Inequality • A Two	AMM E2450	Polynomial Quotients
JRM 201	Point-Placement Problem • A	TYCMJ 77	Polynomial Solution of a Difference Equation
JRM 258	Pointless Problem • A	AMM E2761	Polynomial with Zeros in Upper and Lower
MM 962	Points • Coplanar		Half Planes
FQ B-377	Points • Counting Lattice	AMM E2518	Polynomials • An Infimum for
AMM 6192	Points • Labeling Lattice	AMM E2601	Polynomials • Binomial Sum and Legendre
AMM E2633	Points • Permutable Sets of Lattice	AMM E2580	Polynomials • Chebyshev
AMM S14	Points • Permutations with f Fixed	AMM 6046	Polynomials • Comparing Decompositions of
JRM 765	Points • Rational	AMM 6208	Polynomials • Condition for a Composite of
MM 968	Points • Rational	AMM 6259	Polynomials • Invertible Laurent
AMM E2653	Points • Visible Lattice	TYCMJ 38	Polynomials • Linear
AMM E2570	Points and Least Common Multiple • Lattice	AMM S7	Polynomials • Linearization of Product of
AMM E2629	Points in a Box • Average Distance between	A N 4 N 4 C 0 0 A	q-Appell
A N 4 N 4 F 2 F 0 2	Two	AMM 6084	Polynomials • Majorizing Properties of
AMM E2593	Points in a Configuration • Counting	NANA 000	Coefficients of Tchebychef
AMM E2736	Points in the Affine Plane • A Recurring	MM 990	Polynomials • No
MM 002	Sequence of	AMM 5939	Polynomials • On Hurwitz
MM 993	Points of Iterates • Fixed	TYCMJ 59	Polynomials • Positive
AMM 6130	Points of the Plane • A Partition of the Rational	AMM 6175	Polynomials • Random
A NANA 6262		AMM E2737	Polynomials • Sequence of
AMM 6262 JRM 535	Points of Trees • Fixed Points on a Circle	SIAM 78-2	Polynomials • Two Recurrence Relations for Hermite Basis
		ANANA E26E0	
TYCMJ 53	Points on a Circle • Lattice	AMM E2658	Polynomials Again • Legendre
TYCMJ 96	Points on a Line Segment • Random	AMM 5861	Polynomials in an Ordered Field • Increasing
AMM E2682	Points on an Ellipse • Integer	AMM 6136	Polynomials in Two Variables
FQ B-337	Points on an Ellipse • Rational	AMM 5861	Polynomials on an Ordered Field • Increasing
SIAM 78-7	Poisson Process • On a Poker • Chili	AMM 6043	Polynomials over a Field • Degrees of
JRM 647		ANANA ESEZO	Irreducible Polynomials Reducible Module Every Prime
JRM 291	Poker Variants • Head-On	AMM E2578	Polynomials Reducible Modulo Every Prime
JRM 638	Political Commentary	AMM E2701	Polytope • Volume of a Contain Convey
JRM 362	Political Problem • A	AMM 5872	Polytope • Volume of a Certain Convex
JRM 732	Poly-Power Function • The	JRM 585	Pompom • A Problem with a
AMM E2644	Polya • A Theorem of	JRM 365	Ponder This Puzzle • Please
AMM E2514	Polygon • Area of a Convex	MM 1005	Popular Characterization • A
AMM E2746	Polygon • Circles for a Convex	MM 937	Popular Inequality • A
	Delegan - Detetion -		
MM 1018 AMM E2641	Polygon • Rotating a Polygons • A Class of Convex	TYCMJ 26 MM 896	Popular Limit • A Popular Pythagorean Problem • A

Population	1975	-1979	Probability
JRM 655	Population Problem • A	AMM 6015	Prime Decomposition of Integers
JRM 634	Port of Call	MM 983	Prime Divisors • Different Number of
AMM S20	Posets • Same Enumerator for Distinct	AMM 5964	Prime Divisors • Mean Powers of
MM 978	Positive Coefficients	AMM E2805	Prime Divisors of $2^k - 1 \bullet Distinct$
AMM 6072	Positive Definite Hermitian Matrix	JRM 555	Prime Exercises • Some
AMM 6095 AMM 6075	Positive Definite Matrices	AMM 5735 AMM E2725	Prime Factors • Density of Pairs with Same
AIVIIVI 0073	Positive Fourier Transform • Integrable Functions with	AIVIIVI E2123	Prime Factors for Terms in an Arithmetic Sequence • Bounded
AMM E2621	Positive Integers • No Solutions in	JRM 558	Prime Game • The
JRM 651	Positive Integers • Partitioning the	MM 882	Prime Magic Square • A
TYCMJ 59	Positive Polynomials	AMM 6006	Prime Matrices • Relatively
AMM E2656	Positive Real Numbers • An Inequality for	JRM 422	Prime Non-Factors
AMM E2448	Positive Semi-definite • A Matrix and its	JRM 672	Prime Residue Systems
	Matrix of Reciprocals Both	AMM E2631	Prime Satisfying Mirimanoff's Condition
FQ H-259	Positively!	JRM 75	Prime Sums
JRM 748	Post-Election	AMM E2777	Prime to b in $\lfloor nb/a \rfloor$ • Integers Relatively
JRM 697	Power • Flower	AMM E2488	Prime to $p-1$ • Primitive Roots mod p
AMM E2597	Power • Transformation Induced in a	AMM E2561	Relatively Prime Triplets
MATYC 69	Symmetric Power • Uncountable	TYCMJ 131	Prime? • When is Half the Inradius of an
JRM 702	Power Chains	I I CIVIS 151	Isosceles Triangle
AMM S6	Power Inequality • A Cyclic	AMM E435	Primeness • A Necessary but not Sufficient
FQ H-286	Power Mod		Condition for
AMM E2798	Power mod $q \bullet k = (q-1)/p$, and $2 \text{or} b$ is a kth	AMM 6094	Primes • "Acquainted"
MATYC 90	Power of 2 It's Not • A	AMM E2611	Primes • A Characterization of
MM 1016	Power of Ten	AMM E2718	Primes • A Subclass of the Absolute
SIAM 75-3	Power Series Expansion • A	MM 953	Primes • Absolute
AMM 6038	Power Series for which $f'(r) > 0$	FQ B-376	Primes • Complementary
AMM 6080	Power Series in a Closed Disk	JRM 654 AMM E2749	Primes • Consecutive
AMM 6039 AMM 6201	Power Series Ring • Central Idempotents in a Power Sums in Finite Fields	JRM 112	Primes • Equal Sums of Powers of Primes • Fibonacci
AMM E2510	Power to the Integers	JRM 738	Primes • Fibonacci
JRM 577	Power-Packed	AMM 6012	Primes • Infinite Product over a Set of
TYCMJ 138	Powers • Persistent	JRM 708	Primes • Isolated
FQ B-395	Powers • Reciprocals of Golden	AMM E2648	Primes • Nearly Doubled
FQ B-286	Powers of $2 \bullet Golden$	FQ B-351	Primes • Non-Fibonacci
AMM E2778	Powers of a Number • Sums of	JRM 649	Primes • Pandigital
AMM E2434	Powers of a Weighted Sequential Sum	MM 956	Primes • Product of
AMM 6053	Powers of Gaussian Integers • Density of Arguments of	JRM 700 AMM E2750	Primes • Reversible Primes • Sum of Powers of
AMM 5964	Powers of Prime Divisors • Mean	JRM 797	Primes • Twin
AMM E2749	Powers of Primes • Equal Sums of	AMM E2766	Primes in an Arithmetic Progression
AMM E2750	Powers of Primes • Sum of	JRM 627	Primes in Arithmetic Progression
MM 923	Powers of Roots	JRM 712	Primes in Arithmetic Progression II
AMM 5947	Powers of Roots • Sums of	FQ B-334	Primes Peter Out • The
AMM E2640	Powers of Two and Binomial Coefficients	TYCMJ 121	Primes Puzzler • Fermat
JRM 747	Pre-Election	JRM 531	Priming the Telephone Dial
AMM E2476 AMM E2475	Precisely • Tetratangent Spheres Kissing Precisely • Tritangent Circles Kissing	AMM E2488	Primitive Roots mod p Relatively Prime to $p-1$
AMM 6139	Predicate Calculus • Finitely Axiomatizable	AMM E2488	p-1 Primitive Roots Modulo p
7 0200	Properties in a First-Order	AMM 6116	Principal Ideal Domains
AMM 6142	Prescribed Discontinuities • Functions with	MATYC 118	Principal, Please • Go to the
AMM E2794	Prescribed Row- and Column-Sums \bullet	TYCMJ 129	Principle • Lattice Point
	(0,1)-matrices with	JRM 778	Privacy • Invasion of
AMM 6231	Prescribed Set • Squares with Vertices in a	SIAM 74-13	Probabilistic Inequality • A
AMM 5297	Preservation of Convexity Under Multiplication	SIAM 78-16	Probabilistic Inequality • A
AMM 5790 MM 1002	Preserving Maps in Affine Spaces • Collinearity Preserving Sum • Permutation	JRM 43 SIAM 75-8	Probability • A Problem in
JRM 635	Presidential Address	JRM 441	Probability • Accident Probability • Baseball
FQ B-285	Previous Problem • Very Slight Variation on a	SIAM 76-4	Probability • Geometric
JRM 383	Prime • All Sums	SIAM 74-21	Probability Distributions • Two-Dimensional
AMM E2578	Prime • Polynomials Reducible Modulo Every		Discrete
MM 909	Prime • Relatively	AMM 5687	Probability Integral • A
AMM 6170	Prime • The Number of Terms in a Binomial	AMM 6111	Probability Integral • A Fourier and
A	Expansion Modulo a	AMM 6248	Probability of k Runs
AMM E2775	Prime • The Pascal Triangle Modulo a	TYCMJ 135	Probability of Divisibility
AMM E2673 AMM 5948	Prime $6n + 1 \bullet n$ -Residues Modulo a Prime Additive Sequences \bullet Relatively	TYCMJ 57 TYCMJ 152	Probability of Quasi-inverses Probability of Simultaneously Occurring Events
FQ H-217	Prime Additive Sequences • Relatively Prime Assumption	MM 970	Probability of Simultaneously Occurring Events Probability of Sums
JRM 566	Prime Chains	JRM 592	Probability Problem • A
JRM 679	Prime Chains and Prime Circles	JRM C3	Probability Problem • A
JRM 679	Prime Circles • Prime Chains and	JRM 559	Probability Problem • A
			•

Problem	1975–	1979	Progression
JRM 573	Problem • A Baseball	JRM 593	Problem • The Eleven Match
AMM E2524	Problem • A Brick Packing	JRM 554	Problem • The Fire Company
JRM 419	Problem • A Calendar	JRM 427	Problem • The Five-Circle Packing
SIAM 77-11 FQ B-292	Problem • A Coin Tossing Problem • A Combinatorial	JRM 620 JRM 565	Problem • The Four-Point Problem • The Perimeter
SIAM 75-10	Problem • A Combinatorial	JRM 180	Problem • The Pillow
TYCMJ 40	Problem • A Commutativity	JRM 685	Problem • The Silverbeard
MATYC 68	Problem • A Complex	JRM 381	Problem • The Stonemason's
JRM 596	Problem • A Concatenation	JRM 443	Problem • The Three Suit
JRM 294 TYCMJ 54	Problem • A Counting Problem • A Counting	CRUX 140 AMM E2698	Problem • The Veness Problem • Toroidal n-Queens
JRM 467	Problem • A Divisibility	FQ B-285	Problem • Very Slight Variation on a Previous
MATYC 78	Problem • A Divisibility	AMM E2662	Problem for (0, 1)-Matrices • A Maximization
TYCMJ 25	Problem • A Divisibility	AMM E2538	Problem for the Triangle • A Maximum
TYCMJ 36	Problem • A Division	AMM S19	Problem in a Disk • Isoperimetric
SIAM 76-7 JRM 476	Problem • A Facility Location Problem • A Grazing	AMM E2539 JRM 43	Problem in Disguise • A Known Unsolved Problem in Probability • A
JRM 741	Problem • A High-Powered	AMM E2499	Problem of Pappus — Final Appearance • A
AMM E2344	Problem • A Long Lost	SIAM 75-2	Problem Revisited • The Regiment
SIAM 74-16	Problem • A Matrix	JRM 585	Problem with a Pompom • A
SIAM 77-14	Problem • A Matrix Convergence	MM 1071	Problem with Dice • A
SIAM 79-2 SIAM 76-9	Problem • A Matrix Eigenvalue Problem • A Matrix Stability	JRM 352 JRM C8	Problem! • Another Confounded Age Problem? • A Brute Force
JRM 464	Problem • A Maximum Area	JRM 351	Problems • Two Curves and Four
SIAM 79-17	Problem • A Min-Max	SIAM 78-7	Process • On a Poisson
JRM 184	Problem • A Minimum-Move Checker	MM 906	Product • A
JRM 185	Problem • A Minimum-Move Chess	AMM E2762	Product • A Block Matrix Equal to a
JRM 480 JRM C7	Problem • A Monte Carlo Problem • A Monte Carlo	AMM E2762	Kronecker Product • A Block Matrix Not Equal to a
FQ B-296	Problem • A Most Challenging	AIVIIVI E2702	Kronecker
JRM 71	Problem • A Partition	AMM E2457	Product • A Dirichlet-Like
JRM 322	Problem • A Pattern	AMM 5987	Product • A Trigonometric
JRM C6	Problem • A Pattern Recognition	SIAM 76-16	Product • Conjecture on a Finite and an
JRM 175 JRM 396	Problem • A Pentagon Problem • A Philatelist's	AMM 6233	Infinite Product • Irrationality of an Infinite
JRM 201	Problem • A Point-Placement	TYCMJ 76	Product • Riemann
JRM 258	Problem • A Pointless	FQ H-252	Product • Sub
JRM 362	Problem • A Political	AMM S21	Product Divided by LCM
MM 896	Problem • A Popular Pythagorean	TYCMJ 143	Product Formula for Cotangent • Inner
JRM 655 JRM C3	Problem • A Population Problem • A Probability	AMM S7	Product of q-Appell Polynomials • Linearization of
JRM 559	Problem • A Probability	AMM E1243	Product of a Number and its Reverse
JRM 592	Problem • A Probability	AMM 6171	Product of Matrices • Trace of a
JRM C5	Problem • A Pursuit	MM 956	Product of Primes
JRM 532	Problem • A Pyramid	AMM 6207	Product of Two Random Vectors • Distribution
JRM 623 JRM 624	Problem • A Sampling Problem • A Scoring	AMM 6012	of Inner Product over a Set of Primes • Infinite
JRM 570	Problem • A Search	AMM 6023	Product Space • Borel Sets in a
JRM 377	Problem • A Sequence	AMM 6023	Product Space • Borel Subsets of a
SIAM 74-17	Problem • A Stability	AMM 6023	Product Space • Borel Subsets of a
MM 1031	Problem • A Standing	FQ H-236	Product! • Sum
JRM 386 SIAM 78-9	Problem • A Tromino Search Problem • A Variant of Silverman's Board of	FQ H-245 JRM 636	Productive Identity Productivity
5	Directors	AMM 6254	Products • An Inequality of
JRM 392	Problem • A Variation on the Liar	AMM E1075	Products • Squares in Long
MATYC 127	Problem • A Weighty	FQ B-394	Products and Binomial Coefficients • Triple
SIAM 75-15	Problem • An Eigenvalue	AMM 6152	Products of Ideals
JRM 50 JRM 511	Problem • An Elevator Problem • An Enumeration	AMM 6145 AMM E2533	Products on Functions $N \to C \bullet$ Convolution Professor Umbugio \bullet Helping
AMM 6076	Problem • An Isoperimetric	JRM 477	Program • A Brute Force
MM 944	Problem • An Old Bridge	JRM 478	Program • A Learning
MM 1011	Problem • An Old Dice	JRM 479	Program • A Pattern Recognition
MM 949 JRM 710	Problem • Another Butterfly Problem • Another Grazing	JRM 202 AMM 5723	Programming Puzzle • A Programming with Random Selections • Linear
JRM 563	Problem • Gandalf's	AMM E2766	Progression • Primes in an Arithmetic
MM 997	Problem • Lott's	JRM 627	Progression • Primes in Arithmetic
JRM 393	Problem • Still Another Age	MM 1010	Progression • Roots in
JRM 576	Problem • The "Eighty Three"	AMM E2628	Progression • Roots in Arithmetic
JRM 509 JRM C4	Problem • The Angler's Problem • The Board of Directors'	FQ B-389 AMM E2684	Progression • Transformed Arithmetic Progression • Units of $Z/(n)$ in Arithmetic
JRM 370	Problem • The Board of Directors Problem • The Christmas Tree	JRM 712	Progression II • Primes in Arithmetic
JRM C9	Problem • The Easter	TYCMJ 128	Progression of Cosines • Sum of a

Progression	1975-	-1979	Random
MATYC 128	Progression of Zeros • A	AMM E2643	Quadratic Reciprocity • An Application of
AMM E2730	Progressions • Finite Sets and Arithmetic	AMM 6156	Quadratic Residues
TYCMJ 133	Progressions • Paired Geometric	AMM E2627	Quadratic Residues and Squares
AMM E2522	Progressions in Sequences with Bounded Gaps	TYCMJ 126	Quadratic System • Inconsistent
JRM 578	• Arithmetic Project • Group	JRM 497 AMM E2680	Quadrilateral Conjecture • The Quadrilateral in the Hyperbolic Plane • A
MM 988	Projection • Orthogonal	AMM E2557	Quadrilaterals • 'Perfect' Cyclic
AMM E2576	Projection of an Ellipsoid • Area of a	MM 963	Quadrilaterals • Convex
AMM 6228	Projections • Supremum of	AMM E2660	Quadrilaterals of Given Perimeter • Integral
AMM 6267	Projective Spaces • Collineations of		Cyclic
AMM 6236	Projective Spaces • Collineations of	TYCMJ 97	Quandary • Cubic
JRM 318	Prolong It? • Why	TYCMJ 142	Quartet Uncoupled
TYCMJ 139	Proper Idempotent • Spectrum of a	AMM 6081	Quasi-continuous Functions • Nowhere
AMM 5993	Proper Subfields • Fields, the Sum of Two		Continuous,
MM 1053	Properties • Mean and Intermediate Value	TYCMJ 57	Quasi-inverses • Probability of
JRM 324	Properties • The L-Shaped	AMM E2659	Quasigroup to Be a Group • Forcing a
AMM 6139	Properties in a First-Order Predicate Calculus • Finitely Axiomatizable	FQ B-360 JRM 426	Quaternion Norms • Applying Query • A Pentomino
AMM 6084	Properties of Coefficients of Tchebychef	JRM 716	Question Answered
AIVIIVI 0004	Polynomials • Majorizing	FQ B-399	Quite Tribonacci • Not
AMM E2795	Properties of Regular Bipartite Graphs	JRM 642	Quite Unique
MATYC 58	Property • A Matrix	AMM E2450	Quotients • Polynomial
MATYC 91	Property • A Matrix	MM 1079	R • Closure is
TYCMJ 71	Property • Addition Laws	AMM 5978	$\mathbb{R} \to \mathbb{R}$ • One-One Continuous Mapping
AMM S1	Property • Converse and Analogues of a	AMM 6004	$R \times R \bullet $ An Injective Map of
	Binomial Coefficient	AMM 6100	R ● Continuous Bijections on
SIAM 76-18	Property for Moments • A Monotonicity	MM 995	R-Symmetric Matrices
AMM E2625	Property of Conics • A	AMM 6120	\mathbb{R}^2 • A Uniqueness Theorem in \mathbb{R}^2 • Differentiable functions in
AMM E2581 SIAM 79-14	Property of Fibonacci Numbers • A	AMM 6018 AMM E2769	\mathbb{R}^3 • Distance Between Lines in
SIAIVI 19-14	Property of Legendre Functions • A Conjectured	AMM 6102	\mathbb{R}^3 • Some Rotations of
TYCMJ 146	Property of Medial n -gons • Least Area	AMM 6055	\mathbb{R}^n • A Fourier Transform in
TYCMJ 117	Property of the Centroid • Least Squares	AMM 5999	$\mathbb{R}^n \bullet A$ Measure in
SIAM 77-13	Property of the First Erlang Function • A	AMM 5981	\mathbb{R}^n • Separating Spheres in
TYCMJ 140	Property of the Symmedian Point \bullet	AMM 5971	$R_+ \bullet \text{Partitioning}$
	Generalization of a	AMM 6041	Race • A Random Horse
AMM 6132	Property" • A Function with the "Darboux	JRM 796	Racer's Edge • The
JRM 507 JRM 606	Prott • The Riss and the Proverb • A	JRM 690 AMM E2669	Racer's Lament • Drag Rademacher • Roundest Oval of
JRM C5	Pursuit Problem • A	AMM 5960	Rademacher Function • Integrals of the
JRM 473	Puzzle • A Crossnumber	TYCMJ 112	Radical Ratios
JRM 628	Puzzle • A Cube Pattern	AMM 6068	Radicals • On the Jacobson
JRM 514	Puzzle • A Pastoral	TYCMJ 49	Radii • A Ratio of
AMM E2500	Puzzle • A Perfect Number	TYCMJ 85	Radii of a Triangle • Inequality for the
JRM 202	Puzzle • A Programming	AMM 6003	Radius of $e^A e^{A^*}$ • The Spectral
JRM 349	Puzzle • Cross-Number	SIAM 75-7	Radius of a Matrix \bullet The Spectral
JRM 365	Puzzle • Please Ponder This	MATYC 121	Radius of an Inscribed Hexagon
JRM 344	Puzzle • The Bibliopegist's	MM 920	Radius of Nine-Point Circle
JRM 471 TYCMJ 121	Puzzle • The Clock Puzzler • Fermat Primes	AMM 5933	Random Graph • Infinite Complete Subgraph of a
JRM 532	Pyramid Problem • A	AMM 6041	Random Horse Race • A
MM 896	Pythagorean Problem • A Popular	AMM E2485	Random Integers • Triangles from
JRM 789	Pythagorean Spiral • The	TYCMJ 96	Random Points on a Line Segment
MM 1088	Pythagorean Triangles	AMM 6175	Random Polynomials
MM 1077	Pythagorean Triangles • Counting	JRM 713	Random Rectangles
FQ B-402	Pythagorean Triple	SIAM 78-13	Random Regions of a Circle • Expected Values
AMM E2460	Pythagorean Triples • Appearance of Integers		for
IDM 705	in Dethermore Triples - Periodes -	AMM 6050	Random Samples • The Maximum in
JRM 795 AMM E2566	Pythagorean Triples • Reciprocal Pythagorean Triplets • Obtuse	AMM 5723	Random Selections • Linear Programming with
TYCMJ 107	Pythagorean Triplets • The Diameter $a + b - c$	JRM 425 AMM 6104	Random Springers \bullet The Random Variable X/Y , X , Y Normal \bullet The
5.015 101	of of	AMM 6092	Random Variables • Addition of 'Student'
FQ H-220	Q • On	AMM 6164	Random Variables • Cauchy
AMM S7	q-Appell Polynomials • Linearization of	AMM 6030	Random Variables • Identically Distributed
	Product of	AMM 5884	Random Variables • Sequences of Independent
TYCMJ 150	$\mathbb{Q}[M]$ • Invertibility of Matrices in	AMM E2474	Random Variables • The Maximum of
JRM 475	Quadraphage • 3-D		Independent
AMM 5880	Quadratic • Condition for a	AMM 6103	Random Variables in a Vector Space •
AMM E2555	Quadratic Form on a Box • Indefinite	A NANA 6207	Sequences of Independent
TYCMJ 99 TYCMJ 101	Quadratic Formula Integers Quadratic Mean Value Theorem	AMM 6207	Random Vectors • Distribution of Inner Product of Two
AMM 6058	Quadratic Mean Value Theorem Quadratic Nonresidues • Consecutive	AMM 6031	Random Walk Application • A
	a marata rom ostatos - comocutivo		

Random	1975	-1979	Representation
JRM 736	Random Warehouse • The	TYCMJ 27	Rectangle • On The Circumcircle of a
AMM 5936	Range of a Holomorphic Function in $ z < 1$	AMM 6178	Rectangle with Squares • Tiling a
AMM 6203	Ranges in Banach Spaces	JRM 713	Rectangles • Random
AMM E2556	Rank Argument • A	AMM 6182	Rectangular Graphs
AMM 6125	Rank- k Approximation for a Matrix \bullet Best	FQ B-311	Recurrence • A Nonhomogeneous
FQ H-283	Ranks! • Close	AMM E2567	Recurrence • A Periodic
FQ H-279	Rare Mixture • A	MM 918	Recurrence Relation • A
AMM E2742	Rarely Commuting Matrices	SIAM 78-2	Recurrence Relations for Hermite Basis
FQ H-250	Rate • Growth	E0.11.001	Polynomials • Two
FQ B-348	Ratio • Pentagon	FQ H-231	Recurrent Theme
FQ B-357 AMM 6234	Ratio Inequality Count • Golden Ratio of Derangement Number to Ménage	AMM E2736	Recurring Sequence of Points in the Affine
AIVIIVI UZJ4	Number	EO P 201	Plane • A
TYCMJ 49	Ratio of Radii • A	FQ B-291 FQ B-384	Recursion \bullet Translated Recursion for F_{2n}^4 or F_{2n+1}^4 \bullet A
AMM E2657	Ratio of Some Simplices • Similarity		Recursion for F_{2n} of $F_{2n+1} \bullet A$
AMM 6127	rational $\bullet \sum \zeta(n)x^n$ for x	JRM 705	Recursive Function • A
MM 985	rational $\bullet \sum_{n} \zeta(n) x^n$ for x Rational \bullet Transcendental or	JRM 499	Recursive Game
MATYC 108	Rational & Irrational	AMM E2721	Recursive Real Sequence • A
FQ B-283	Rational Approximation of $\cos \pi/6$ and $\sin \pi/6$	AMM E2619	Recursive Sequence • Squares in a Recursive Sequences
AMM E2693	Rational Approximation to Arctan • A	JRM 784	Recursive Sums
FQ B-405	Rational Approximations • Good	FQ B-353 AMM E2482	
AMM 5983	Rational Approximations to $\sqrt{2}$ and π	AMM E2578	Reducible mod $2 \bullet x^n + x + 1$ is Usually Reducible Modulo Every Prime \bullet Polynomials
TYCMJ 22	Rational Circles	AMM E2552	Reducing modulo 2
FQ B-361	Rational Function • A	MM 1003	Reflections
AMM E2473	Rational Function of a Polynomial • Rational	AMM 6154	Reflections and Integrations • Iterating
	Function of a	JRM 657	Reflective Numbers • Two-Digit
AMM E2473	Rational Function of a Rational Function of a	JRM 760	Reflective Numbers II
	Polynomial	JRM 512	Regarding the Harmonic Series • A Conjectur
AMM 6082	Rational Function Solutions of $x^n - y^2 = 1$	SIAM 75-2	Regiment Problem Revisited • The
TYCMJ 70	Rational Number Approximation of $n!$	SIAM 78-13	Regions of a Circle • Expected Values for
TYCMJ 81	Rational Numbers • Binary Operations on	0.7.11.10 13	Random
MM 968	Rational Points	AMM 6062	Regular <i>n</i> -gons • Nesting
JRM 765	Rational Points	AMM E2674	Regular n -simplex Inscribed in Another \bullet One
AMM 6130	Rational Points of the Plane • A Partition of	AMM E2795	Regular Bipartite Graphs • Properties of
FO D 227	the	TYCMJ 105	Regular Odd-gons • Rational Vertices of
FQ B-337	Rational Points on an Ellipse	AMM E2565	Regularizing a Bipartite Graph
AMM E2598 TYCMJ 127	Rational Set with Irrational Distances • Dense Rational Solutions of $y^x = xy$	FQ B-321	Related Sum • A
AMM 5499	Rational Triangles $y = xy$	MM 918	Relation • A Recurrence
TYCMJ 105	Rational Vertices of Regular Odd-gons	MATYC 82	Relation • An Integral
AMM E2481	Rationals • Another Solution in	AMM 5932	Relation in the Symmetric Group •
JRM 251	Rationals • Complex		Equivalence
AMM E2554	Rationals • Polynomial Function Restricted to	AMM 6222	Relations Between a Matrix and Its Adjoint
TYCMJ 112	Ratios • Radical	SIAM 78-2	Relations for Hermite Basis Polynomials • Tv
FQ H-273	Ray of Lucas • A		Recurrence
JRM 439	Ready or Not • It's Coming,	MM 897	Relative Inequality • A
MATYC 105	Real 'Rithmatic	AMM 6268	Relative Integral Bases in Towers of Fields
MM 1036	Real Not Complex	SIAM 76-13	Relative Speed Approximation • An Average
AMM E2738	Real Number • Permuting the Digits of a	MM 909	Relatively Prime
AMM E2656	Real Numbers • An Inequality for Positive	AMM 5948	Relatively Prime Additive Sequences
AMM E2721	Real Sequence • A Recursive	AMM 6006	Relatively Prime Matrices
MATYC 88	Real Solution • Complex Route to	AMM E2777	Relatively Prime to b in $\lfloor nb/a \rfloor$ • Integers
TYCMJ 28	Real Zeros of a Monotone Function	AMM E2488	Relatively Prime to $p-1 \bullet \text{Primitive Roots}$
MATYC 104	Really • Not Much,	1014 510	$\operatorname{mod} p$
MM 1035	Really Orthogonal	JRM 518	Relativity • Theory of
JRM 482	Really So Easy? • Is This Alphametic	AMM 6001	Remainder Term in Maclaurin's Expansion •
JRM 694	Really Sum-Thing!	4444 50004	The
AMM 6261	Reals • Concentrated Sets of	AMM E2624	Remainder Theorem Applied • Chinese
FQ B-383	Reappearance	FQ H-261	Rep • A Player
JRM 762	Reciprocal Factorial Series	JRM 676	Repeated Digits • Sums of
AMM E2747	Reciprocal Factorials • A Determinant with	JRM 643	Repeater • Another
JRM 674	Reciprocal Fibonacci Series • A	JRM 374	Repeater • Ina's
JRM 795	Reciprocal Pythagorean Triples	MATYC 87	Repeating Decimal
FQ H-237	Reciprocal! • Sum	MM 940	Repeats Itself • Time
AMM 6194	Reciprocals • Sums of	TYCMJ 41	Repetitious Exponentiation
AMM E2448	Reciprocals Both Positive Semi-definite • A	MATYC 56	Repetitive Digits
A B 4 B 4 E 5 E 5 C	Matrix and its Matrix of	JRM 564	Replay • Instant
AMM E2540	Reciprocals in a Finite Field • Sums of	JRM 329	Report • Weather
FQ B-395	Reciprocals of Golden Powers	JRM 586	Representation • A Square Fractured
AMM E2643	Reciprocity • An Application of Quadratic	AMM E966	Representation for Integers • A
	Recognition Problem • A Pattern	SIAM 73-2	Representation for the Moore–Penrose
JRM C6 JRM 479	Recognition Program • A Pattern	0	Generalized Inverse of a Matrix • Integral

Representing	1975-	-1979	Secon
AMM 5643	Representing the Square Root of a Fourier Transform	AMM 6101	Rolle's Theorem • Sums of Squares in Fields with
JRM 652	Representing Unity with Semiprimes	JRM 755	Roman Numerals
JRM 698	Requested • Appropriate Sentiment	JRM 540	Rook vs. Knight
Q B-319	Rerun	AMM E2808	Root • Iterations Converging to a
AMM E2781	Residue Classes mod $n \bullet \text{Distinct Sums of the}$	JRM 696	Root • Skeleton Square
AMM 6199	Residue Classes Under a Parabola • Permuted	FQ B-391	Root Five • Approximations to
MM 948	Residue Systems • Complete	MM 1074 AMM 5643	Root of a Cubic • Smallest
JRM 672	Residue Systems • Prime	AIVIIVI 3043	Root of a Fourier Transform • Representing the Square
AMM 6161	Residues • A Characterization of Irrationals by	MM 881	Root Series • A
AMM 6156	Distribution of Residues • Quadratic	TYCMJ 18	Roots • Halves and Square
FQ B-362	Residues • Quadratic Residues • Triangular Number	AMM E2506	Roots • Limits of Differences of Square
AMM E2627	Residues and Squares • Quadratic	MM 923	Roots • Powers of
SIAM 79-16	Resistances in an <i>n</i> -Dimensional Cube	JRM C2	Roots • Square Roots and Cube
AMM E2620	Resistors • Symmetrical Networks with	AMM 5947	Roots • Sums of Powers of
	One-Ohm	AMM E2488	Roots mod p Relatively Prime to $p-1 \bullet$
AMM E2577	Restricted Ménage Numbers		Primitive
AMM E2554	Restricted to Rationals • Polynomial Function	JRM C2	Roots and Cube Roots • Square
MM 1009	Result • A True	AMM E2628	Roots in Arithmetic Progression
AMM E2637	Result • An Old	MM 1010	Roots in Progression
AMM E2455	Result of Legendre, and Two Identities \bullet	AMM E2446	Roots Modulo $m \bullet $ Unique Cube
	Fermat Numbers, a	AMM E2488	Roots Modulo $p \bullet Primitive$
JRM 170	Retrograde Analysis	SIAM 75-14	Roots of a Complex Polynomial • Simultaneou Iteration towards All
JRM 599	Retrograde Tic-Tac-Toe	AMM E2789	Roots of Unity ζ^k • Triangles with Vertices at
FQ H-211	Return from the Dead	JRM 541	Rope Trick • The
JRM 488	— Revenge • A Paradisaic Triptych	MM 1018	Rotating a Polygon
JRM 488	Revenge • A Paradisaic Triptych —	MM 917	Rotating Faces
AMM E1243	Reverse • Product of a Number and its	TYCMJ 74	Rotations in a Trirectangular Tetrahedron
SIAM 76-17	Reverse Card Shuffle • A	AMM 6102	Rotations of \mathbb{R}^3 • Some
JRM 700	Reversible Primes	JRM 715	Round-Robin Soccer
MATYC 73 MATYC 62	Revisited • Number Theory Revisited • Number Theory	AMM E2669	Roundest Oval of Rademacher
JRM 313	Revisited • The Calendar Girl	FQ B-367	Rounding Down
JRM 121	Revisited • The Carcular Billiard Table	MATYC 88	Route to Real Solution • Complex
SIAM 75-2	Revisited • The Regiment Problem	JRM 212	Rover • Felix vs
JRM 379	Revisited • The Wit-Man Sampler	AMM S10	Row • 8 or More in a
JRM 644	Reward • Final	AMM E2645	Row • Shuffling Along a
JRM 402	Rewards For Alphametics Composer	AMM E2794	Row- and Column-Sums \bullet (0, 1)-matrices with Prescribed
JRM 401	Rewards For Alphametics Composer	JRM 444	Rubber Wrapper • The
JRM 631	Rich Get Richer ● The	AMM 6248	Runs • Probability of k
JRM 631	Richer • The Rich Get	JRM 505	Rusty Compass • Watson's
TYCMJ 76	Riemann Product	AMM E2770	
FQ H-211	Right • Form To The	JRM 411	$S_k = \sum_{i} m^k \bullet A$ Formula Involving Sad Story \bullet A
MATYC 59	Right • When Wrong is	JRM 404	Salute To The King
MATYC 81	Right — Again • When Wrong is	AMM S20	Same Enumerator for Distinct Posets
MM 980	Right Track • The	AMM E2733	Same Non-zero Length and Small Pairwise
AMM E2501	Right Triangle • A Right Triangle in a		Intersections • Infinitely Many Subsets of
AMM E2501	Right Triangle in a Right Triangle • A		[0,1] With the
FQ B-282	Right Triangles • Lucas	AMM 5735	Same Prime Factors • Density of Pairs with
JRM 746 MM 991	Right! • Eggs-actly Ring • An Identity in a	JRM 379	Sampler Revisited • The Wit-Man
AMM 6263	Ring • An Identity in a Ring • Associativity in a	AMM 6050	Samples • The Maximum in Random
AMM 6039	Ring • Central Idempotents in a Power Series	JRM 623	Sampling Problem • A
MM 1019	Ring • Characteristic of a	MM 1067	sans Calculus • Shortest Chord
AMM E2528	Ring • Ideals of a Matrix	JRM 457	Satan in Disguise Satisfying a Duplication Formula • A
AMM 5972	Ring • Minimum $n, x^n = x$ for all x in a	AMM E2692	Transcendental Function
AMM 6069	Ring • Zero Divisors and Units in a Group	AMM E2631	Satisfying Mirimanoff's Condition • Prime
AMM 6134	Rings • Chain Conditions In	AMM S22	Scalar Multiple • Linear Transformation Fixed
AMM 5940	Rings • Ideals in Commutative	AMM 5979	Schlicht Cubics on $ z < 1$
AMM E2676	Rings • Ideals in Matrix	JRM 624	Scoring Problem • A
MM 1052	Rings • Isomorphic Boolean	JRM 701	Scottian Locus • A
AMM 6284	Rings • Structure of Finite	JRM 557	Scottian Sets
AMM E2536	Rings • When $x^m = x$ Defines Boolean	AMM 6276	Screw Motions • Groups Generated by
TYCMJ 65	Rings • Zero Divisors in Finite	JRM 366	Sea • Incident at
JRM 507	Riss and the Prott • The	JRM 591	Search • A Diophantine
MATYC 105	'Rithmatic \bullet Real	SIAM 63-9	Search • An Optimal
JRM 438	River • Cruising Down The	JRM 570	Search Problem • A
	Dood of Chartest	JRM 386	Search Problem • A Tromino
	Road \bullet Shortest	31(10) 300	
MM 976 SIAM 74-12 MM 1071	Road • Shortest Rogers-Ramanujan Identities • The Roll the Dice Again	SIAM 77-17	Second Order Differential Equations • A

Secret	1975–1979			
JRM 469	Secret Word ◆ The	AMM 5944	Sequential Closure of a Class of Operators •	
AMM E2617	Sections of a Convex Body • Three Parallel	A	Weak	
FQ B-352	See \bullet C Is Easy To Seek in the Unit Disk \bullet Hide and	AMM E2434 AMM E2464	Sequential Sum • Powers of a Weighted Serendipitous Diophantine Equations • Two	
AMM E2469 TYCMJ 96	Segment • Random Points on a Line	SIAM 76-10	Series • A Bessel Function	
AMM E1822	Segments • A Locus Associated with Two	JRM 512	Series • A Conjecture Regarding the Harmonic	
TYCMJ 17	Segments Cut by a Parabola • Line	SIAM 77-5	Series • A Conjectured Increasing Infinite	
AMM E2716	Segments Defined by a Point Interior to a	JRM 503	Series • A Disharmonic	
	Triangle • Six	TYCMJ 44	Series • A Divergent	
AMM 5723	Selections • Linear Programming with Random	JRM 674 MM 881	Series • A Reciprocal Fibonacci Series • A Root	
AMM 5986 FQ B-397	Self Maps • Triangle Contractive Semi-Closed Form	AMM 5950	Series • A Well-Poised Hypergeometric	
AMM E2448	Semi-closed rorm Semi-definite • A Matrix and its Matrix of	AMM 5989	Series • An Integer Sequence from the	
7111111 22110	Reciprocals Both Positive		Harmonic	
MM 880	Semicircular Chords	TYCMJ 23	Series • An Unusual Divergent	
JRM 652	Semiprimes • Representing Unity with	AMM E2675	Series • Behavior Of A	
JRM 413	Sentiment • Yuletide	TYCMJ 63 AMM E2626	Series • Comparison of Series • Convergent and Divergent	
JRM 698	Sentiment Requested • Appropriate	AMM E2743	Series • Double	
AMM 5962 AMM 6147	Separable Hausdorff Space not σ-compact • A Separable Space • Subspaces of a Normal,	AMM 6241	Series • Evaluations of Trigonometric	
AMM E2610	Separately Continuous Functions	TYCMJ 83	Series • Integration of a	
AMM 5981	Separating Spheres in \mathbb{R}^n	AMM E2591	Series • Null Sequences and Convergent	
JRM 771	Separation Without Trial	JRM 762	Series • Reciprocal Factorial	
JRM 403	Sequel to $EVE/DID = .TALKTALKTALK \bullet A$	FQ H-282 AMM 6056	Series • Speedy Series • Truncated Exponential-type	
JRM 92	Sequence • A Better	AMM 6243	Series $\sum_{n=0}^{\infty} (-1)^n n^{-1} \log n \bullet \text{ The Classical}$	
AMM E2721	Sequence • A Recursive Real	AMM E2791	Series $\sum a_n, \sum a_n^3 \bullet \text{ The}$	
AMM 6240 SIAM 79-5	Sequence • Approximation by Terms of a Null Sequence • Asymptotic Behavior of a	AMM 6109	Series and Normal Families • Sylvester	
FQ B-340	Sequence • Bicentennial	FQ H-289	Series Consideration	
AMM E2725	Sequence • Bounded Prime Factors for Terms	MM 922	Series Converges • The	
	in an Arithmetic	SIAM 75-3 SIAM 79-9	Series Expansion • A Power Series for a Combination of Jacobian Elliptic	
MM 883	Sequence • Constant	SIAIVI 19-9	Functions • Fourier	
JRM 766 AMM 5413	Sequence • Generalized Fibonacci Sequence • Least Common Multiple of	AMM 6038	Series for which $f'(r) > 0 \bullet \text{Power}$	
AIVIIVI 3413	Consecutive Terms in a	SIAM 79-8	Series Identity • A Hyperbolic	
TYCMJ 62	Sequence • Null	AMM 6080	Series in a Closed Disk • Power	
AMM E2619	Sequence • Squares in a Recursive	TYCMJ 61 SIAM 75-17	Series of Altitudes • Sum of a Series of Hypergeometric Functions • A	
FQ H-216	Sequence • Sum	AMM 6112	Series of Itypergeometric Functions • A Series of Iterates • A	
JRM 673	Sequence • The Coolest	AMM 6039	Series Ring • Central Idempotents in a Power	
JRM 788 JRM 537	Sequence • The Koolest Sequence • The Marvin	AMM E2459	Series-Parallel Circuits • Approximating Pi	
JRM 602	Sequence • The Tail	IDM 225	with	
JRM 790	Sequence • The Thompson	JRM 325 AMM E2582	Session • Jam Set • Crisscrossing Partitions of a Finite	
FQ B-359	Sequence • Tribonacci	AMM 6025	Set • Distance to the Boundary of a	
AMM 5989	Sequence from the Harmonic Series • An	AMM 6155	Set • Expectation of the Width of a	
JRM 502	Integer Sequence is Best • No	AMM E2654	Set • Minimum Subcover of a Cover of a Finite	
AMM E2726	Sequence of Integral Parts of $na + b$	AMM 6231	Set • Squares with Vertices in a Prescribed	
AMM E2736	Sequence of Points in the Affine Plane • A	AMM 6213 AMM 6122	Set • Subsets of the Cantor Set • The Nearest Point in a Compact	
	Recurring	AMM E2614	Set • Union of an Open and a Compact	
AMM E2401	Sequence of Polygons	AMM 6256	Set Functions of Bounded Variation • Additive	
AMM E2737	Sequence of Polynomials	AMM 6131	Set in $L^1(-\infty,\infty)$ • A Dense	
MM 1047 JRM 377	Sequence of Sequences Sequence Problem • A	AMM 5998	Set of Integers • Covering a	
FQ H-269	Sequences • A Pair of Sum	AMM 6012 AMM E2666	Set of Primes • Infinite Product over a Set of Subsets • An Estimate for the	
AMM E2447	Sequences • Bounds for k-Satisfactory	AIVIIVI LZ000	Cardinality of a	
AMM 5984	Sequences • Convolution of Null	AMM 5968	Set of Zeros of Entire Functions with Integral	
AMM E2699	Sequences • Linear Independence Modulo Zero		$D^k f(0) \bullet \text{The}$	
TYCMJ 141	Sequences • Nonarithmetic	MATYC 86	Set Theory • Elementary	
JRM 784 AMM 5948	Sequences • Recursive Sequences • Relatively Prime Additive	AMM E2598	Set with Irrational Distances • Dense Rational	
MM 1047	Sequences • Sequence of	AMM E2790	Set with Squares of Specified Areas • Filling an	
AMM E2591	Sequences and Convergent Series • Null	AMM 6060	Open Sets • Combinatorics in Finite	
AMM E2788	Sequences in $[0,1] \bullet Dense$	MM 932	Sets • Connected	
AMM 6271	Sequences Involving e^n and $n! \bullet$ Asymptotic	MM 1037	Sets • Fibonacci	
	Behavior of	AMM 5996	Sets • Kuratowski	
AMM 5884	Sequences of Independent Random Variables	AMM 6022	Sets • Minimal Intersection in a Collection of	
AMM 6103	Sequences of Independent Random Variables in a Vector Space	AMM E2792 AMM E2710	Sets • Odd Intersections of Point Sets • Outer Measures of Choice	
AMM E2522	Sequences with Bounded Gaps • Arithmetic	AMM 6151	Sets • Partitions of Finite	
	Progressions in	JRM 557	Sets • Scottian	

Sets	1975	-1979	Solution
AMM E2526	Sets • Sum-Distinct	TYCMJ 152	Simultaneously Occurring Events • Probability
AMM E2608 AMM E2730	Sets • Traversing Linearly Ordered	FQ B-283	of $\sin \pi/6 \bullet \text{Rational Approximation of } \cos \pi/6$
AMM 6260	Sets and Arithmetic Progressions • Finite Sets Formed by Iterated Closure, Interior, and	T Q D-203	and
	Union	AMM 6173	$\sin x \bullet A$ Characterization of
AMM 6023	Sets in a Product Space • Borel	AMM 5314	$\sin x/x \bullet A$ Multiple Integral of
TYCMJ 21	Sets of n Consecutive Integers	AMM E2451	Sine • The Iterated
AMM E2289 JRM 618	Sets of Axioms • Equivalent Sets of Coins • Efficiency of	MM 884 AMM E2502	Sine Curve • Frequency of a Sines • A Sum of
AMM S5	Sets of Differences • Intersecting	TYCMJ 47	Sines and Cosines • A Law of
AMM 6257	Sets of Functions of Length Less Than 2	FQ B-332	Single and One Triple Part • One
TYCMJ 113	Sets of Integers • Tricolored	SIAM 75-9	Singular Integral Equation • A
AMM E2633	Sets of Lattice Points • Permutable	AMM 6057	Singular Matrices
AMM 6261	Sets of Reals • Concentrated	AMM 6073	Singular Monotonic Functions
AMM 6126 AMM 6014	Sets of Zero Dimension • Union of Sets with All Closed Subsets Countable •	JRM 342 FQ H-270	Singularly Symmetric Surface • A Sinh • Its's a
AIVIIVI 0014	Uncountable	TYCMJ 108	Sinusoidal Slide of a \triangle -Biangle
JRM 617	Seven • The Solitary	FQ H-298	Six • The Big
MM 966	Seven Integral Distances	AMM E570	Six Congruent Conics
MM 1080	$sgn \bullet Int and$	FQ B-293	Six Fibonacci Terms • The First
AMM 6146	Shakespeare's Plays? • Did Bacon Write	AMM E2716	Six Segments Defined by a Point Interior to a
JRM 487 AMM 4603	Shakespearean Alphametic (Macbeth) Shapiro's Cyclic Inequality	JRM 780	Triangle Sixteen $-1 \bullet$ Sweet
JRM 340	Shapiro's Cyclic Inequality Shared Taxicab • The	JRM 281	Sixteen – 1 • Sweet Sixteen – 2 • Sweet
TYCMJ 130	Sharpening of Heron's Inequality	JRM 696	Skeleton Square Root
AMM E2458	Sheffer Function • An <i>n</i> -ary	AMM E2545	$SL_n(Z)$ • Indices of Subgroups of
TYCMJ 29	Shifting • Decimal Digit	SIAM 76-1	Slash • The Game of
MM 1067	Shortest Chord sans Calculus	TYCMJ 108	Slide of a △-Biangle • Sinusoidal
MM 976	Shortest Road	FQ B-285 JRM 338	Slight Variation on a Previous Problem • Very Slimming Here • No
SIAM 76-17 AMM E2645	Shuffle • A Reverse Card Shuffling Along a Row	MM 1004	Slowest Trip • Fastest and
MATYC 124	Side a Leg • Is a	JRM 666	Small Change
MM 901	Sides • Irrational	JRM 667	Small Change
JRM 375	Sidewinder, or How to Tack in a Tin Can •	AMM E2733	Small Pairwise Intersections • Infinitely Many
EO D 202	Cruise of the		Subsets of [0, 1] With the Same Non-zero
FQ B-303 FQ H-258	Sigma Function Inequality ◆ A Sigma Strain ◆ The	AMM 6017	Length and 'Smaller' Norms • Constructing
JRM 581	Signed by the Artist	MM 1074	Smallest Root of a Cubic
JRM 761	Signers • Declaration	AMM 6027	Smoothing a Continuous Function
AMM E2719	Signs • Periodic Patterns of	JRM 489	Snake is Hiding • A Paradisaic Triptych — The
MM 1033	Signs and cosines	MATYC 107	So • It Ain't Necessarily
AMM E2550 JRM 367	Signs of Successive Derivatives Silver Lining • Look For the	FQ B-304 AMM E2452	So Bee It so Easy • Cutting Corners is not
JRM 685	Silverbeard Problem • The	JRM 482	So Easy? • Is This Alphametic Really
SIAM 78-9	Silverman's Board of Directors Problem • A	JRM 450	So Tasty • Not
	Variant of	MATYC 74	So! • It Ain't Necessarily
AMM E2478	Similar Functions	JRM 715	Soccer • Round-Robin
MM 1058	Similarity • A True	JRM 484	Society • The American High Hopes Socks • Matching
AMM E2741 AMM E2657	Similarity and the Diagonal of a Matrix Similarity Ratio of Some Simplices	JRM 621 JRM 387	Soft • Hard vs.
JRM 774	Simple Addition	FQ H-274	Soft Matrix • A
JRM 776	Simple Addition • Even More	JRM 575	Solicitation
JRM 775	Simple Addition • More	AMM E2563	Solid \bullet Volume and Surface Area of a
MM 1006	Simple Closed Curve • A	JRM 637	Solid Ground • On
AMM 6129	Simple Closed Curve • Distance from a	JRM 528 JRM 617	Solids • Tagging the Platonic Solitary Seven • The
AMM E2532 AMM 6176	Simple Diophantine Equations Simple Groups of Square Order	MATYC 110	Solution • An Exponential
SIAM 75-21	Simple Harmonic Motion • n-dimensional	MATYC 61	Solution • An Exponential
AMM E2652	Simple Identity • A	MATYC 71	Solution • An Integral
JRM 368	Simple Sum • A	MATYC 88	Solution • Complex Route to Real
AMM E2470	Simplex Equality Characterizing the Centroid •	TYCMJ 114	Solution • Equation with Unique
MM 919	A Simplex with Orthogonal Edges • A	SIAM 75-6 MATYC 139	Solution • Existence of a Transition Solution • Logarithmic
SIAM 78-20	Simplex with Orthogonal Edges • A Simplexes • A Volume Inequality for a Pair of	FQ H-267	Solution • Logarithmic Solution • Sum
51AW 10-20	Associated	AMM S2	Solution • Wordless
AMM E2657	Simplices • Similarity Ratio of Some	AMM E2481	Solution in Rationals • Another
AMM E2548	Simplices of Equal Volumes	TYCMJ 95	Solution of $p^x + 1 = y^p$
FQ B-287	Simplified	TYCMJ 77	Solution of a Difference Equation • Polynomial
AMM E2553	Simson and Euler Lines	AMM E2664	Solution of a System of Diophantine Equations
SIAM 75-14	Simultaneous Iteration towards All Roots of a Complex Polynomial	AMM 5794	• Minimal Solution to Bessel Equation
	Complex 1 orynomiai	United 7124	poration to pessel Equation

Solutions	1975-	-1979	Squares
AMM E2479	Solutions • A Functional Equation with only	AMM E2790	Specified Areas • Filling an Open Set with
AMM E2763	Obvious Solutions • A Third Degree Congruence with	SIAM 78-12	Squares of Spectral Analysis of a Matrix
AIVIIVI EZ703	Nine	AMM 6003	Spectral Radius of $e^A e^{A^*}$ • The
FQ B-276	Solutions • Only Two	SIAM 75-7	Spectral Radius of a Matrix • The
FQ B-356	Solutions • Some	TYCMJ 139	Spectrum of a Proper Idempotent
MM 1078	Solutions • Symmetric	SIAM 76-13	Speed Approximation • An Average Relative
MM 1030	Solutions • Three	FQ H-282	Speedy Series
MM 1012	Solutions • Three	JRM 629	Sphere in the Cylinder • The
MM 1081	Solutions • Two	JRM 733	Spheres • Cube and
AMM E2621	Solutions in Positive Integers • No	AMM 6063	Spheres • Distance Between the Centers of
AMM E2787	Solutions of $x = (\log x)^k$	4444 5001	Two
AMM 6082	Solutions of $x^n - y^2 = 1$ • Rational Function	AMM 5981	Spheres in \mathbb{R}^n • Separating
TYCMJ 127	Solutions of $y^x = xy \bullet \text{Rational}$	AMM E2476 AMM E1073	Spheres Kissing Precisely • Tetratangent
AMM E2583	Solutions of a Functional Equation •	JRM 789	Spiral • A Point in a Spiral • The Pythagorean
ANANA E261E	Characterizing	JRM 372	Spite Nim I
AMM E2615 SIAM 77-4	Solutions Only • A System with Trivial Solutions to Linear Partial Differential	JRM 373	Spite Nim II
31AW 11-4	Equations Involving Arbitrary Functions	JRM 567	Split • The Fibonacci
TVCM1 151	Equations involving Arbitrary Functions $C_{x} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} $	JRM 425	Springers • The Random
TYCMJ 151	Solves $\int_{1}^{x} g(t)dt = \int_{y}^{xy} g(t)dt$ • The g That	MM 882	Square • A Prime Magic
JRM 542	Some • Easy for	JRM 382	Square • Circles in a
AMM 5575	Some Bernstein-type Operators	JRM 466	Square • Circumscribing with a
JRM 198	Some Configurations	FQ B-318	Square • Fibonacci
FQ B-331	Some Fibonacci Squares Mod 24	JRM 683	Square • One Point in a
AMM E2623	Some Fractions • Integrality of	FQ H-230	Square • Some
AMM 6099 JRM 555	some Non-Abelian Groups • Generators for Some Prime Exercises	JRM 798	Square Crossnumber
AMM 6102	Some Rotations of \mathbb{R}^3	TYCMJ 147	Square Dance
AMM E2657	Some Simplices • Similarity Ratio of	JRM 586	Square Fractured Representation • A
FQ B-356	Some Solutions	AMM 6086	Square Free Integers • Common Divisors and
FQ H-230	Some Square	AMM E2740 MM 945	Square in a Polyhedron • A
FQ H-219	Some Sum	FQ H-263	Square in a Triangle Square is Now Mod! • Lucas the
AMM E2492	Some Sum	TYCMJ 64	Square On the Hypotenuse • The Inscribed
FQ B-385	Some Triangluar Numbers • Counting	AMM 6176	Square Order • Simple Groups of
FQ B-400	Some Triangular Numbers • Multiples of	JRM 696	Square Root • Skeleton
AMM 5951	Some Trigonometric Integrals	AMM 5643	Square Root of a Fourier Transform •
MATYC 102	Something in Common		Representing the
FQ B-306	Something Special	TYCMJ 18	Square Roots • Halves and
MATYC 92	Sometimes It's Fewer Than You Want	AMM E2506	Square Roots • Limits of Differences of
JRM 500	Sons • Lots of	JRM C2	Square Roots and Cube Roots
JRM 361 JRM 616	Soupy Alphametic • A Sour Grapes	FQ H-291	Square Your Cubes
AMM 6023	Space • Borel Sets in a Product	AMM E2586	Squared • A Matrix
AMM 6023	Space • Borel Subsets of a Product	TYCMJ 37 JRM 380	Squares • A Difference of
AMM 6023	Space • Borel Subsets of a Product	MM 1045	Squares • A Matter of Squares • Absolute Perfect
AMM 5937	Space • Norms in a Barreled	MM 943	Squares • Charlemagne's Magic
AMM 6103	Space • Sequences of Independent Random	FQ B-350	Squares • Cubes and Triple Sums of
	Variables in a Vector	TYCMJ 50	Squares • Digits of
AMM 6283	Space • Star-Shaped Subsets of Banach	AMM E2732	Squares • Labeling Chessboard
AMM 6147	Space • Subspaces of a Normal, Separable	MM 1008	Squares • Locating Perfect
AMM 5962	Space not σ -compact \bullet A Separable Hausdorff	JRM 569	Squares • Magic Talisman
AMM 5790	Spaces • Collinearity Preserving Maps in Affine	FQ B-336	Squares • Pell
AMM 6236	Spaces • Collineations of Projective	MATYC 63	Squares • Perfect
AMM 6267	Spaces • Collineations of Projective	TYCMJ 90	Squares • Plateau
AMM 5773	Spaces • Complete Linear	AMM E2627	Squares • Quadratic Residues and
AMM 6078	Spaces • Linear Functionals in Normed	MM 1042	Squares • Sum of Two
AMM 6203 JRM 612	Spaces • Ranges in Banach Spanish • Doubly True –	JRM 590	Squares • Sums of
AMM 5970	Spanning Ideals	AMM 6178 AMM 6148	Squares \bullet Tiling a Rectangle with Squares (mod n) \bullet Sum of
JRM 345	Spares and Strikes • Mixing	MM 960	Squares and Cubes • Counting
MM 931	Speaking • Logically	FQ B-328	Squares as A. P. • Sum of
MATYC 115	Spearman Coefficient	AMM E2486	Squares Ending in Ones
FQ B-306	Special • Something	AMM E2619	Squares in a Recursive Sequence
FQ B-310	Special Binomial Coefficients	AMM 6101	Squares in Fields with Rolle's Theorem • Sums
JRM 742	Special Effects		of
SIAM 74-19	Special Functions • One-sided Approximation	AMM E1075	Squares in Long Products
	to	FQ B-331	Squares Mod 24 • Some Fibonacci
AMM E2574	Special Group Operation on Natural Numbers	FQ B-388	Squares Near the Diagonals • Partitioning
	• A	AMM E2790	Squares of Specified Areas • Filling an Open
			1 1
AMM E2668 JRM 720	Special Non-isosceles Triangles	TYCMJ 117	Set with Squares Property of the Centroid • Least

Squares	1975-	-1979	Sum
AMM 6231	Squares with Vertices in a Prescribed Set	AMM 6213	Subsets of the Cantor Set
TYCMJ 153	Squaring a Parallelogram	AMM 6188	Subsets of the Irrationals • Complementary
JRM 675	St. Petersburg Game • The	TYCMJ 111	Subsets of the Natural Numbers • Densities of
SIAM 74-17 SIAM 76-9	Stability Problem • A Stability Problem • A Matrix	AMM 5985 AMM 5670	Subsets of the Plane Subsets of the Plane • Generating
AMM E2569	Stack of Pancakes	AMM 6147	Subspaces of a Normal, Separable Space
FQ H-218	Staggering Pascal	AMM 5990	Substitution Groups
FQ H-257	Staggering Sum	TYCMJ 103	Successful Toss • The Superfluous
AMM S17	Stairway Light Switches • Switching the	AMM E2550	Successive Derivatives • Signs of
MM 1031	Standing Problem • A	AMM E2756 MM 1060	Successive Derivatives • Zeros of Such Function • No
AMM 6283 JRM 378	Star-Shaped Subsets of Banach Space States Bicentennial • A Tribute to the Coming	TYCMJ 94	Sufficiency of Newton's Formula
JINIVI 370	United United	AMM E435	Sufficient Condition for Primeness • A
JRM 607	Station • Station to		Necessary but not
JRM 607	Station to Station	JRM 442	Suit Distribution
AMM E2428	Statistical Interest • An Inequality of	JRM 443	Suit Problem • The Three
MATYC 117 AMM 6113	Statistics • Easy Stieltjes-Riemann Integrable Functions • A	JRM 682 FQ B-320	Sulucrus Sum • A
AIVIIVI 0113	Class of	MM 942	Sum • A Constant
JRM 330	Still an Enigma	AMM E2744	Sum • A Divergent Partial
JRM 393	Still Another Age Problem	FQ B-321	Sum • A Related
FQ B-372	Still No	JRM 368	Sum • A Simple
MM 989	Stirling Expression • A	FQ B-305	Sum • A Telescoping
JRM 381 JRM 411	Stonemason's Problem • The Story • A Sad	SIAM 76-2 MATYC 66	Sum • An Infinite Sum • An Infinite
JRM 493	Straightjacket Chess	FQ B-295	Sum • Convolution or Double
FQ H-258	Strain • The Sigma	FQ B-335	Sum • Fibonacci-Lucas
JRM 163	Straits • Desperate	FQ H-305	Sum • Like Fibonacci-like
JRM 538	Stretcher • The Paper	AMM 6252	Sum • Limit of a Combinatorial
MM 1027	Strictly Increasing	MM 1002 AMM E2434	Sum • Permutation Preserving Sum • Powers of a Weighted Sequential
JRM 345 AMM 5973	Strikes • Mixing Spares and Strip • The	AMM E2492	Sum • Some
AMM 6066	Strong Fermat's Last Theorem • A	FQ H-219	Sum • Some
AMM 6284	Structure of Finite Rings	FQ H-257	Sum • Staggering
AMM 6092	'Student' Random Variables • Addition of	FQ H-272	Sum • Symmetric
JRM 769	Stump the Panel	AMM E2601 TYCMJ 51	Sum and Legendre Polynomials • Binomial Sum and Maximum
FQ H-252 AMM E2590	Sub Product Subadditive and Superadditive Numbers	FQ H-301	Sum Difference
AMM E2718	Subclass of the Absolute Primes • A	FQ H-235	Sum Differential Equation!
AMM E2654	Subcover of a Cover of a Finite Set • Minimum	AMM E2603	Sum Inequality • A Symmetric
AMM 5993	Subfields • Fields, the Sum of Two Proper	FQ H-227	Sum Legendre
AMM 5933	Subgraph of a Random Graph • Infinite Complete	AMM E2758 TYCMJ 128	Sum of 1's and -1 's \bullet A Sum of a Progression of Cosines
AMM 5945	Subgroup of Multiplicative Functions • A	TYCMJ 61	Sum of a Series of Altitudes
MM 935	Subgroups • Maximal	SIAM 79-18	Sum of Bessel Functions • A
AMM E2545	Subgroups of $SL_n(Z)$ • Indices of	AMM E2685	Sum of Binomial Coefficients • A Congruence
AMM E2331	Subgroups of $Z(p^n) \oplus Z(p^n)$	A NANA E002	for a
AMM 6059	Subgroups of Metacyclic Groups • Cyclic Sylow	AMM 5992 AMM E2646	Sum of Blocks in a Hermitian Matrix Sum of Certain Chords • Alternating
AMM 6049 AMM 6051	Subgroups of the Symmetric Group Sublinear Map • Extending a	TYCMJ 80	Sum of Cubes
SIAM 76-15	Submatrices • Monotone	FQ B-326	Sum of Divisors • On the
AMM 5969	Subring of Commutators • The	AMM 6065	Sum of Divisors Function • The Density of the
AMM S16	Subsemigroups • Closed Complex Additive	AMM E2760	Sum of Legendre Symbols • A
AMM 5437	Subsequences • Undersequences versus	AMM E2780 MM 954	Sum of Number of Divisors $\sum d(k)$, $k \leq n$ Sum of Perfect Numbers
MM 1025 AMM 6035	Subseries • Convergent Subseries of $\sum \mu(n) \log n/n$ • A	MM 885	Sum of Permutations • A
MM 934	Subset of Integers • A	AMM E2750	Sum of Powers of Primes
AMM E2697	Subset of the Unit Circle • A Dense	AMM E2502	Sum of Sines • A
FQ H-223	Subsets • A Nest of	AMM 6148	Sum of Squares \pmod{n}
AMM E2666	Subsets • An Estimate for the Cardinality of a	FQ B-328 AMM 6235	Sum of Squares as A. P. Sum of Sums of the Möbius Function
AMM E2768	Set of Subsets • Decomposing an Interval into	AMM 6077	Sum of the Digits in K^n Sum of the Elements of the Inverse of a Matrix
AMM E2764	Homeomorphic Subsets • Intersections and Unions of	AMM 6162	• The
AMM 6014	Subsets Countable \bullet Uncountable Sets with All	AMM 6247	Sum of the Form $\sum \alpha^k \begin{bmatrix} m \\ \sqrt{k} \end{bmatrix}$
A NAINA E2722	Closed Subsets of [0, 1] With the Same Non-gore	AMM 5993	Sum of Two Proper Subfields • Fields, the
AMM E2733	Subsets of [0, 1] With the Same Non-zero Length and Small Pairwise Intersections •	MM 1042 AMM 5953	Sum of Two Squares Sum of Valencies for a Plane Graph
	Infinitely Many	AMM 6011	Sum Partitions in an Abelian Group • Equal
AMM 6023	Subsets of a Product Space • Borel	FQ H-236	Sum Product!
AMM 6023	Subsets of a Product Space • Borel	FQ H-237	Sum Reciprocal!
AMM 6283	Subsets of Banach Space • Star-Shaped	FQ H-216	Sum Sequence

Sum	1975	-1979	Tetrahedron
FQ H-269	Sum Sequences • A Pair of	FQ B-294	Symmetric in k and $n \bullet A$ Formula
FQ H-267	Sum Solution	AMM E2597	Symmetric Power • Transformation Induced in
JRM 363	'Sum' Alphametic! • This is		a
FQ H-264	Sum-ary Conclusion	MM 1078	Symmetric Solutions
AMM E2526	Sum-Distinct Sets	FQ H-272	Symmetric Sum
JRM 694 TYCMJ 66	Sum-Thing! • Really Summation	AMM E2603 JRM 342	Symmetric Sum Inequality • A Symmetric Surface • A Singularly
SIAM 76-11	Summation • A Bessel Function	TYCMJ 45	Symmetrical Inequality • A
AMM E2384	Summation • A Difficult Binomial Coefficient	AMM E2620	Symmetrical Networks with One-Ohm
SIAM 77-18	Summation • An Infinite	7111111 22020	Resistors
AMM E2472	Summation • Another Binomial Coefficient	TYCMJ 115	System • Disparity in a Vibrating
SIAM 76-14	Summations • Three Multiple	TYCMJ 126	System • Inconsistent Quadratic
AMM E2507	Summing Minima	SIAM 74-4	System of Difference-Differential Equations • A
JRM 515	Summitry	AMM E2664	System of Diophantine Equations • Minimal
JRM 420	Sums • Calculator		Solution of a
JRM 677	Sums • Digit	MM 930	System of Equations • A
AMM E2560	Sums • Non-congruence of Certain	SIAM 76-12	System of Nonlinear Differential Equations •
AMM E2551	Sums • Oscillation of Partial	SIAM 77-17	An Infinite
MM 1026 JRM 75	Sums • Palindromic	SIAIVI 11-11	System of Second Order Differential Equations • A
MM 970	Sums • Prime Sums • Probability of	AMM E2615	System with Trivial Solutions Only • A
FQ B-353	Sums • Recursive	FQ H-244	Systematic Work
SIAM 79-12	Sums • Two Infinite	MM 948	Systematic Work Systems • Complete Residue
JRM 98	Sums Allowed • No	JRM 672	Systems • Prime Residue
AMM 6201	Sums in Finite Fields • Power	AMM 6215	Systems for Coloring Maps • Linear
AMM E2778	Sums of Powers of a Number	AMM 5957	Systems in $L^2 \bullet$ Completeness Criterion of
AMM E2749	Sums of Powers of Primes • Equal		Orthonormal
AMM 5947	Sums of Powers of Roots	JRM 120	Table • The Circular Billiard
AMM 6194	Sums of Reciprocals	JRM 121	Table Revisited • The Circular Billiard
AMM E2540	Sums of Reciprocals in a Finite Field	JRM 348	Table Theme • A New Wrinkle on the Old
JRM 676	Sums of Repeated Digits	IDNA 275	Billiard
JRM 590	Sums of Squares	JRM 375	Tack in a Tin Can • Cruise of the Sidewinder, or How to
FQ B-350 AMM 6101	Sums of Squares • Cubes and Triple Sums of Squares in Fields with Rolle's	JRM 528	Tagging the Platonic Solids
AIVIIVI 0101	Theorem	JRM 602	Tail Sequence • The
AMM 6235	Sums of the Möbius Function • Sum of	MM 1072	Tailored Polynomial • A
AMM E2781	Sums of the Residue Classes mod $n \bullet \text{Distinct}$	JRM 431	Take Your Choice
JRM 383	Sums Prime • All	JRM 569	Talisman Squares • Magic
AMM E2707	sup of an inf • The	MATYC 84	Tangent • On a
SIAM 79-7	Super-Controllability	AMM E2728	Tangent Cylinders • Mutually
AMM E2590	Superadditive Numbers • Subadditive and	MM 905	Tangent Lines to a Cubic
AMM E2799	Superfactorials and Catalan Numbers	MM 1039	Tangentially Equivalent
TYCMJ 103	Superfluous Successful Toss • The	MM 950 JRM 450	Tangents • Parallel
MM 1023 MATYC 123	Superheros • Many Supper • Late for	JRM 340	Tasty • Not So Taxicab • The Shared
AMM 6228	Supper • Late for Supremum of Projections	AMM 5958	Taylor Expansions and Function Values •
JRM 342	Surface • A Singularly Symmetric	Alviivi 3930	Truncated
AMM E2563	Surface Area of a Solid • Volume and	AMM 6084	Tchebychef Polynomials • Majorizing
AMM E2585	Surfaces • Average Vertex-Degree for		Properties of Coefficients of
	Triangulated	FQ B-281	Tee • Ones for
JRM 513	Survivor Function • The	JRM 531	Telephone Dial • Priming the
JRM 780	Sweet Sixteen – 1	FQ B-305	Telescoping Sum • A
JRM 281	Sweet Sixteen – 2	AMM S11	Temperatures • Tetrahedron
JRM 358	Sweets • "Bread" for the	JRM 731	Temple of Heterodoxy • The
MM 926	Swim • The Longest	FQ B-396	Ten • Multiples of
AMM S17 JRM 288	Switches • Switching the Stairway Light Switching Game • The	MM 1016 JRM 328	Ten • Power of Tension • High
AMM S17	Switching Game • The Switching the Stairway Light Switches	FQ B-406	Term as GCD • First
AMM 6059	Sylow Subgroups of Metacyclic Groups • Cyclic	AMM 6001	Term in Maclaurin's Expansion • The
AMM 6109	Sylvester Series and Normal Families		Remainder
FQ B-274	Symbol Golden Mean • 3	FQ B-293	Terms • The First Six Fibonacci
AMM E2760	Symbols • A Sum of Legendre	AMM 6170	Terms in a Binomial Expansion Modulo a
TYCMJ 140	Symmedian Point \bullet Generalization of a	1	Prime • The Number of
	Property of the	AMM 5413	Terms in a Sequence • Least Common Multiple
AMM 6098	Symmetric Convex Bodies • Maximally	A	of Consecutive
AMM E2487	Symmetric Functions	AMM E2725	Terms in an Arithmetic Sequence • Bounded
AMM E2573	Symmetric Functions • Inequalities for	A NAINA 6240	Prime Factors for
AMM 6097	Symmetric Functions • Polynomial Algebra Generated by	AMM 6240 TYCMJ 67	Terms of a Null Sequence • Approximation by
AMM 5932	Symmetric Group • Equivalence Relation in	JRM 369	Test • A Divisibility Test • Multiplication
AIVIIVI J9J2	the	AMM E2800	Test for Composite Numbers • A
AMM 6049	Symmetric Group • Subgroups of the	AMM E2349	Tetrahedron • Fitting a Cube in a
			9

Tetrahedron	1975-	-1979	Tree
AMM E1298	Tetrahedron • Largest Cross-Section of a	JRM 232	Three-Point Play
TYCMJ 74	Tetrahedron • Rotations in a Trirectangular	MM 996	Thumbtacks
AMM S12	Tetrahedron Inequality	JRM 389	Tic-Tac-Incognito
AMM S11	Tetrahedron Temperatures	JRM 465	Tic-Tac-Toe Kriegspiel
AMM E2498	Tetrahedron with Three Equiareal Faces	JRM 599	Tic-Tac-Toe • Retrograde
AMM E2476	Tetratangent Spheres Kissing Precisely	AMM E2508	Tiling a Checkerboard with Dominoes
JRM 489	— The Snake is Hiding • A Paradisaic Triptych	AMM 6178	Tiling a Rectangle with Squares
AMM E2512	Their Circumcircles • Intersecting Triangles	AMM E2595	Tiling by Trominoes
	and	TYCMJ 78	Tiling Checkerboards with Trominos
AMM 6165	Their Mean Values • Functions Approximated	JRM 388	Tiling Conjecture • The Heterogeneous
IDNA 240	by	MM 940	Time Repeats Itself
JRM 348	Theme • A New Wrinkle on the Old Billiard Table	FQ H-277 JRM 375	Timer • Old
JRM 353	Theme • New Variations on the Old "True"	JKW 3/5	Tin Can • Cruise of the Sidewinder, or How to Tack in a
FQ H-231	Theme • Recurrent	JRM 546	Tintinnabulation
FQ B-323	Theme • Variations on an Old	JRM 549	Tongue Twister • A
AMM E2463	Theorem • A Consequence of Wolstenholme's	JRM 550	Tongue Twister • Another
TYCMJ 52	Theorem • A Geometric Mean Value	JRM 583	Too • Doubly True and Ideal,
AMM E2531	Theorem • A Hexagon	JRM 299	Too Easy • Not
AMM 6066	Theorem • A Strong Fermat's Last	TYCMJ 19	Too Far • An Analogy Carried
AMM E2587	Theorem • An Application of Brouwer's Fixed	MATYC 70	Too Often • Bingo – But Not
AIVIIVI L2301	Point	JRM 445	Topological Conjecture • A
AMM E2592	Theorem • An Application of Cayley's	AMM 5977	Topological Groups
TYCMJ 35	Theorem • An Application of Lucas'	AMM 5959	Topological Groups • Locally Compact
AMM E2647	Theorem • An Elementary Case of the Jordan	JRM 663	Topper • Literary
AIVIIVI EZOTI	Curve	JRM 787	Tori • Cutting Cubes into
AMM E2723	Theorem • An Insensitive Central Limit	AMM E2698	Toroidal n-Queens Problem
TYCMJ 84	Theorem • Application of Wilson's	AMM 6052	Torsion Group with Two Generators
AMM 6255	Theorem • Closed Graph	AMM 6052	Torsion Groups Generated by Two Elements
JRM 706	Theorem • Morley's	AMM 6205	Torsion-Free Finite Extensions of Cyclic
TYCMJ 101	Theorem • Quadratic Mean Value	7 0200	Groups
AMM 6101	Theorem • Sums of Squares in Fields with	AMM 6087	Torus • Loxodromes on a
	Rolle's	JRM 117	Torus • Packing a Double
AMM E2624	Theorem Applied • Chinese Remainder	TYCMJ 103	Toss The Superfluous Successful
MATYC 137	Theorem But Not Its Converse • A	SIAM 77-11	Tossing Problem • A Coin
AMM E2771	Theorem for Even Exponents • Fermat's Last	AMM 6193	Totient Equation
AMM E2527	Theorem for Touching Pennies • The	AMM E2599	Totient Function • Erratic Behavior of the
	Four-Color	FQ B-327	Touches on a Lucas Identity • Finishing
AMM 6120	Theorem in $\mathbb{R}^2 \bullet A$ Uniqueness	AMM E2527	Touching Pennies • The Four-Color Theorem
AMM E2558	Theorem of Dini • A		for
AMM E2651	Theorem of Grötsch • A	AMM E585	Tough Nut has been Cracked • Miquel Point —
AMM E2644	Theorem of Polya • A		A A
JRM 246	Theoretic Craps • Game	SIAM 78-11	Tournaments • Edge Three-Coloring of
JRM 323	Theoretical Triangles • Four	SIAM 75-14	towards All Roots of a Complex Polynomial •
AMM 6272	Theories • Complete Categorical	A N 4 N 4 C O C O	Simultaneous Iteration
MATYC 86	Theory • Elementary Set	AMM 6268	Towers of Fields • Relative Integral Bases in
MATYC 75 MATYC 131	Theory • Number	TYCMJ 154	Trace $AB \bullet$ Inequality for Triangles and for
	Theory of Polativity	MM 951	Trace Condition • A
JRM 518 MATYC 73	Theory of Relativity Theory Revisited • Number	AMM 6171 JRM 727	Trace of a Product of Matrices Trace the Base
MATYC 62	Theory Revisited • Number Theory Revisited • Number	MM 1038	Traces Traces
AMM 5975	Thick and Thin • Ordinal Types	MM 980	Track • The Right
AMM 5975	Thin • Ordinal Types Thin • Ordinal Types Thick and	JRM 730	Traffic Light • The
AMM E2763	Third Degree Congruence with Nine Solutions	AMM E2692	Transcendental Function Satisfying a
/31VIIVI E2103	A A Solutions	AWIN LZU9Z	Duplication Formula • A
FQ B-347	Third-Order Analogue of the F 's \bullet A	MM 985	Transcendental or Rational
JRM 530	Thirteenth Labor • The	AMM 6075	Transform • Integrable Functions with Positive
JRM 790	Thompson Sequence • The	7	Fourier
FQ B-314	Three • Lucas Numbers Ending in	AMM 5643	Transform • Representing the Square Root of a
JRM 630	Three Apprentices • The		Fourier
AMM 5427	Three Balls and an Intersecting Line	AMM 6055	Transform in $\mathbb{R}^n \bullet A$ Fourier
AMM 3887	Three Circles with Collinear Centers	AMM S22	Transformation Fixed Scalar Multiple • Linear
AMM E2724	Three Colors • An Urn With Balls of	AMM E2597	Transformation Induced in a Symmetric Power
AMM E2498	Three Equiareal Faces • Tetrahedron with	MM 1086	Transformations • Group of
SIAM 76-3	Three Inverse Laplace Transforms	FQ B-389	Transformed Arithmetic Progression
SIAM 76-14	Three Multiple Summations	SIAM 76-3	Transforms • Three Inverse Laplace
AMM E2617	Three Parallel Sections of a Convex Body	SIAM 75-6	Transition Solution • Existence of a
MM 1012	Three Solutions	AMM 5943	Transitive Automorphisms
MM 1030	Three Solutions	FQ B-291	Translated Recursion
JRM 443	Three Suit Problem • The	AMM 6278	Translation Invariance Hamel Basis
JRM 576	Three" Problem • The "Eighty	AMM E2608	Traversing Linearly Ordered Sets
SIAM 78-11	Three-Coloring of Tournaments • Edge	SIAM 77-15	Tree • A Conjectured Minimum Valuation

Tree	1975–	1979	True
JRM 370	Tree Problem • The Christmas	AMM E2512	Triangles and Their Circumcircles ●
AMM 5895	Trees • Cubic		Intersecting
AMM 6262	Trees • Fixed Points of	AMM E2485	Triangles from Random Integers
AMM E2671	Trees • Labelings of Binary	AMM E2789	Triangles with Vertices at Roots of Unity ζ^k
JRM 709	Tri-N	FQ B-385	Triangluar Numbers • Counting Some
AMM E2751	Triad Meeting a Conic • Orthogonal	FQ H-229	Triangular Array • A
JRM 771	Trial • Separation Without	FQ B-346	Triangular Convolution
AMM E2705 MM 1070	Trials • Expected Number of Trials • Multinomial	FQ B-393 MATYC 67	Triangular Factorials • Triangle of Triangular Identity • A
MM 998	Triangle • A 120°	TYCMJ 68	Triangular Multiple of an Integer • The Least
AMM E2538	Triangle • A Maximum Problem for the	FQ B-362	Triangular Number Residues
AMM E2802	Triangle • A Parallelogram Generated from a	FQ B-400	Triangular Numbers • Multiples of Some
AMM E2501	Triangle • A Right Triangle in a Right	MM 899	Triangular Twins • Mean
AMM E2687	Triangle • An Impossible	AMM E2618	Triangular-Square-Pentagonal Numbers
TYCMJ 79	Triangle • Area of a Cevian	AMM E2585	Triangulated Surfaces • Average Vertex-Degree
TYCMJ 148	Triangle • Centroid of the Boundary of a		for
JRM 354	Triangle • Circles in a	FQ B-399	Tribonacci • Not Quite
AMM E2505	Triangle • Extended Medians of a	FQ B-359	Tribonacci Sequence
MM 898	Triangle • Five Centers in a	JRM 378	Tribute to the Coming United States
FQ B-390	Triangle • Generating Diagonals of Pascal's		Bicentennial • A
FQ B-407	Triangle • Generator of Pascal	JRM 541	Trick • The Rope
MM 910	Triangle • Inequalities for a	TYCMJ 100	Trickery • Brickery
TYCMJ 85	Triangle • Inequality for the Radii of a	JRM 211	Tricks With Bricks
MM 955	Triangle • Maximum Area	TYCMJ 113	Tricolored Sets of Integers Tridiagonal Determinants
AMM E2716	Triangle • Six Segments Defined by a Point	FQ B-411 MATYC 120	Trig Equation • A
1414 045	Interior to a	MATYC 119	Trig Exercise
MM 945	Triangle • Square in a	MATYC 132	Trig Identity • A
MATYC 111	Triangle — Generalized • Pascal's	TYCMJ 120	Trigonometric Addition Laws
AMM E2715	Triangle Centroid Triangle Conjecture • A	TYCMJ 125	Trigonometric Equation
JRM 306 MATYC 99	Triangle Construction	FQ B-374	Trigonometric Form • Fibonacci in
AMM 5986	Triangle Contractive Self Maps	AMM E2803	Trigonometric Functions • Integrals of
TYCMJ 72	Triangle Equality • A	AMM E2739	Trigonometric Inequality
MATYC 106	Triangle Equation	MM 1082	Trigonometric Inequality \bullet A
AMM S18	Triangle from Wythoff's Nim	AMM 5951	Trigonometric Integrals • Some
AMM E2501	Triangle in a Right Triangle • A Right	AMM 5987	Trigonometric Product • A
TYCMJ 98	Triangle Inequalities	AMM 6241	Trigonometric Series • Evaluations of
AMM E2471	Triangle Inequalities • Two New	AMM E2453	Trigonometric Values • The Linear Dependence of Certain
AMM E2634	Triangle Inequality • A	MM 916	Trilinear Coordinates
SIAM 79-19	Triangle Inequality • A	AMM 6250	Triods in the Plane
TYCMJ 30	Triangle Inequality • A	MM 1004	Trip • Fastest and Slowest
SIAM 77-9	Triangle Inequality • A	FQ B-402	Triple • Pythagorean
AMM E2504	Triangle Inequality • A Difficult	FQ B-332	Triple Part • One Single and One
SIAM 77-10	Triangle Inequality • A Two Point	FQ H-253	Triple Play
AMM E2517	Triangle Inequality • Another	FQ H-238	Triple Play
AMM E2775	Triangle Modulo a Prime • The Pascal Triangle of Triangular Factorials	FQ B-394	Triple Products and Binomial Coefficients
FQ B-393 TYCMJ 131	Triangle Of Triangular Factorials Triangle Prime? • When is Half the Inradius of	FQ B-350	Triple Sums of Squares • Cubes and
I I CIVIS 131	an Isosceles	AMM E2460	Triples • Appearance of Integers in
JRM 595	Triangles • Almost Congruent	IDM 705	Pythagorean
MM 936	Triangles • An Inequality for	JRM 795 AMM E2566	Triples • Reciprocal Pythagorean Triplets • Obtuse Pythagorean
TYCMJ 109	Triangles • Areas of Cocyclic	AMM E2561	Triplets • Prime
FQ B-413	Triangles • Counting Equilateral	TYCMJ 107	Triplets • Thine Triplets • The Diameter $a+b-c$ of Pythagorean
MM 1077	Triangles • Counting Pythagorean	JRM 490	Triptych — Even in Eden? • A Paradisaic
JRM 315	Triangles • Diophantine	JRM 488	Triptych — Revenge • A Paradisaic
JRM 626	Triangles • Double-Angle	JRM 489	Triptych — The Snake is Hiding • A Paradisaic
AMM E2727	Triangles • Equivalence of	TYCMJ 74	Trirectangular Tetrahedron • Rotations in a
AMM E2727	Triangles • Equivalence of Two	TYCMJ 75	Trisected • Angles That Can Be
JRM 323	Triangles • Four Theoretical	TYCMJ 119	Trisection • Error Analysis of an Approximate
AMM E2649	Triangles • Inequalities for Non-obtuse	AMM E2475	Tritangent Circles Kissing Precisely
MM 1043	Triangles • Inequality for Two	AMM 5976	Trivial Centralizer Groups
FQ B-282	Triangles • Lucas Right	AMM E2615	Trivial Solutions Only • A System with
TYCMJ 110 TYCMJ 118	Triangles • Ortho-incentric	JRM 386	Tromino Search Problem • A
MM 1088	Triangles • Perimeters of Inscribed Triangles • Pythagorean	AMM E2595	Trominoes • Tiling by Trominoes • Tiling Checkerboards with
AMM 5499	Triangles • Pytnagorean Triangles • Rational	TYCMJ 78 JRM 334	Trominos • Tiling Checkerboards with True • Also
AMM E2668	Triangles • National Triangles • Special Non-isosceles	JRM 297	True • Also True • Also Doubly
AMM 6159	Triangles • The Maximum Number of Edges in	JRM 492	True • Certainly
	a Graph Without	JRM 665-3	True • Doubly
MM 1014	Triangles • Two	JRM 726	True • Doubly
TYCMJ 154	Triangles and for Trace $AB \bullet$ Inequality for	JRM 543	True • Doubly

True	1975-	-1979	Unit
JRM 665-1	True • Doubly	MM 929	Two Octahedrons
JRM 665-2	True • Doubly	JRM 671	Two Odometers
JRM 335	True • Doubly	JRM 317	Two Odometers • The
JRM 544 JRM 331	True • Doubly True • Doubly	AMM E2639 SIAM 77-10	Two Perpendicular Lines Two Point Triangle Inequality • A
JRM 640	True - 1 • Doubly	AMM E2629	Two Points in a Box • Average Distance
JRM 641	True – 2 • Doubly	7	between
JRM 693	True – Dutch • Doubly	AMM 5993	Two Proper Subfields • Fields, the Sum of
JRM 691	True – English • Doubly	AMM 6207	Two Random Vectors • Distribution of Inner
JRM 611	True – English • Doubly	CIANA 70.0	Product of
JRM 613 JRM 692	True – Greek • Doubly True – Latin • Doubly	SIAM 78-2	Two Recurrence Relations for Hermite Basis Polynomials
JRM 612	True – Spanish • Doubly	AMM E1822	Two Segments • A Locus Associated with
JRM 608	True Alphametic • A Fractionally	AMM E2464	Two Serendipitous Diophantine Equations
JRM 418	True Alphametic • Another	MM 1081	Two Solutions
JRM 437	True Alphametic With A Twist • A Doubly	FQ B-276	Two Solutions • Only
JRM 400	True Alphametics • Doubly	AMM 6063	Two Spheres • Distance Between the Centers
JRM 398 JRM 399	True Alphametics • Doubly True Alphametics • Doubly	MM 1042	of Two Squares • Sum of
JRM 432	True Alphametics • Two	MM 1014	Two Triangles
JRM 433	True Alphametics • Two	AMM E2727	Two Triangles • Equivalence of
JRM 526	True Alphametics • Two Doubly	MM 1043	Two Triangles • Inequality for
JRM 525	True Alphametics • Two Doubly	JRM 432	Two True Alphametics
JRM 485	True Alphametics • Two More True Alphametics • Two More	JRM 433 JRM 414	Two True Alphametics Two True Alphametics In Two Languages
JRM 486 JRM 364	True Alphametics Again • One of Those	JRM 414 JRM 415	Two True Alphametics In Two Languages Two True Alphametics In Two Languages
JRM 415	True Alphametics In Two Languages • Two	JRM 452	Two U.S.A.'s
JRM 414	True Alphametics In Two Languages • Two	JRM 451	Two U.S.A.'s
JRM 583	True and Ideal, Too • Doubly	AMM E2609	Two Variables • A Difference Equation in
MM 1009	True Result • A	AMM 6136	Two Variables • Polynomials in
MM 1058 JRM 353	True Similarity • A "True" Theme • New Variations on the Old	JRM 657 SIAM 74-21	Two-Digit Reflective Numbers Two-Dimensional Discrete Probability
AMM 6056	Truncated Exponential-type Series	SIAW 14 21	Distributions
AMM 5958	Truncated Taylor Expansions and Function	JRM 409	Two-True Alphametic • A
	Values	JRM 390	Two-Way Box Nesting
JRM 792	Truth and Falsehood	AMM 5975 JRM 703	Types Thick and Thin • Ordinal
JRM 614 JRM 242	Tunes Farewell • Looney Turning Corners	JRM 452	Typesetter's Nightmare • The U.S.A.'s • Two
FUNCT 3.5.2	TV Camera • Manikato and the	JRM 451	U.S.A.'s • Two
AMM 5961	Twice Differentiation Operator \bullet The	FQ H-284	Umbral-a
JRM 797	Twin Primes	FQ H-268	Umbral-ah • Use Your
FQ B-349 MM 899	Twins • Generating Twins • Mean Triangular	AMM E2533 MM 643	Umbugio • Helping Professor Unbiased Coin • The
JRM 437	Twist • A Doubly True Alphametic With A	AMM E2706	Unbounded Integral • An
JRM 549	Twister • A Tongue	MATYC 69	Uncountable Power
JRM 550	Twister • Another Tongue	AMM 6014	Uncountable Sets with All Closed Subsets
AMM 6200	Two • A Characterization of Integers That	TYCNAL 142	Countable
AMM E2640	Differ by Two and Binomial Coefficients • Powers of	TYCMJ 142 AMM 6199	Uncoupled • Quartet Under a Parabola • Permuted Residue Classes
AMM E2722	Two Colors • An Urn with Balls of	AMM 5297	Under Multiplication • Preservation of
AMM E2786	Two Consecutive Integers $2x^2 - 1$, $2x^2 \bullet$ The		Convexity
JRM 351	Two Curves and Four Problems	AMM 5437	Undersequences versus Subsequences
JRM 526	Two Doubly True Alphametics	AMM E2784 AMM 6024	Uniform Convergence on $(0, \infty)$ Uniform Distribution
JRM 525 AMM 6052	Two Doubly True Alphametics Two Elements • Torsion Groups Generated by	AMM 6174	Uniform Integrability • More on Converses to
AMM 6117	Two Entire Functions • Linear Compositions of	AMM 6085	Uniformly Integrable Functions • Majorants for
SIAM 78-15	Two Equal Determinants		Families of
MM 1054	Two Euclidean Constructions	AMM 6260	Union • Sets Formed by Iterated Closure,
AMM 6052 AMM E2455	Two Generators • Torsion Group with Two Identities • Fermat Numbers, a Result of	AMM E2614	Interior, and Union of an Open and a Compact Set
AIVIIVI L24JJ	Legendre, and	AMM 6126	Union of Sets of Zero Dimension
FQ B-275	Two in One	AMM E2764	Unions of Subsets • Intersections and
SIAM 77-19	Two Inequalities	JRM 642	Unique • Quite
SIAM 79-12	Two Infinite Sums	MATYC 136	Unique • Two Is
MATYC 136	Two Is Unique	MM 903	Unique Cryptarithm
JRM 793 JRM 415	Two Ladders • The Two Languages • Two True Alphametics In	MATYC 64 AMM E2446	Unique Cryptarithm \bullet A Unique Cube Roots Modulo m
JRM 415 JRM 414	Two Languages • Two True Alphametics In	AMM 6264	Unique Factorization \bullet Conditions for
JRM 303	Two Levels of Imperfect Information	TYCMJ 114	Unique Solution • Equation with
JRM 485	Two More True Alphametics	AMM 6120	Uniqueness Theorem in $\mathbb{R}^2 \bullet A$
JRM 486	Two More True Alphametics	AMM E2697	Unit Circle • A Dense Subset of the
AMM E2471	Two New Triangle Inequalities	SIAM 78-8	Unit Cube • Average Distance in a

Unit	1975-	-1979	Welcome
AMM 6198	Unit Disk ● Harmonic in the	AMM S23	Variation on the Erdős-Mordell Geometric
AMM E2469	Unit Disk • Hide and Seek in the	IDN 4 202	Inequality
AMM 6071	Unit Disk on a Convex Domain • Analytic Mappings of the	JRM 392 AMM E2125	Variation on the Liar Problem • A Variations on a Well-known Limit
TYCMJ 73	Unit Fractions	FQ B-323	Variations on an Old Theme
JRM 378	United States Bicentennial \bullet A Tribute to the	JRM 353	Variations on the Old "True" Theme • New
50 5 300	Coming	AMM 6103	Vector Space • Sequences of Independent
FQ B-382 AMM 6069	Units Digit \bullet Lucky L Units in a Group Ring \bullet Zero Divisors and	AMM 6207	Random Variables in a Vectors • Distribution of Inner Product of Two
AMM E2684	Units of $Z/(n)$ in Arithmetic Progression	AIVIIVI 0201	Random
AMM E2789	Unity ζ^k • Triangles with Vertices at Roots of	CRUX 140	Veness Problem • The
FQ H-247	Unity With Fibonacci	AMM E2483	Verifications • An Inequality with Many
JRM 652	Unity with Semiprimes • Representing	AMM 6238	Verifying Associativity
JRM 343	Universal Equation • The	AMM E2543 AMM 5437	versus $\tau(n) \bullet \sigma(n)/n$ versus Subsequences \bullet Undersequences
FQ B-369 AMM E2539	Unsolved • No Longer Unsolved Problem in Disguise • A Known	AMM E2672	Vertex-Coloring of Complete Graphs •
TYCMJ 23	Unusual Divergent Series • An		Orientation and
FQ B-329	Unveiling an Identity	AMM E2585	Vertex-Degree for Triangulated Surfaces •
JRM 603	Unwilling Pedestrian • The	AMM 6179	Average Vertices • Cubes with Integral
MATYC 138 AMM E2761	Up • Line 'em Upper and Lower Half Planes • Polynomial	AMM E2789	Vertices at Roots of Unity ζ^k • Triangles with
AIVIIVI E2701	with Zeros in	AMM 6231	Vertices in a Prescribed Set • Squares with
AMM E2622	Upper Bound for an Integral • An	MM 911	Vertices of a Die
AMM E2724	Urn With Balls of Three Colors • An	AMM E2564	Vertices of Four-valent Graphs • Covering
AMM E2722	Urn with Balls of Two Colors • An	TYCMJ 105	Vertices of Regular Odd-gons • Rational
FQ H-268 AMM E2509	Use Your Umbral-ah Using a Calculator Efficiently	FQ H-248 FQ B-285	Very Existence • The Very Slight Variation on a Previous Problem
FQ H-232	Using Your Generator	TYCMJ 115	Vibrating System • Disparity in a
AMM E2482	Usually Reducible mod $2 \bullet x^n + x + 1$ is	AMM E2513	View of an Edge • A
AMM E2785	$V - \{0\}$ with Hyperplanes in $F_q \bullet$ Covering	JRM 355	Vindicated? • Pierre
AMM 5953 SIAM 77-15	Valencies for a Plane Graph • Sum of Valuation Tree • A Conjectured Minimum	AMM E2653 TYCMJ 88	Visible Lattice Points Volcanic Addition
AMM 6245	Value • A Formula for Expected	MATYC 129	Volume • Constant
AMM 6187	Value • A Known Expected	AMM E2563	Volume and Surface Area of a Solid
MM 987	Value • A Mean	SIAM 78-20	Volume Inequality for a Pair of Associated
MM 1053 TYCMJ 52	Value Properties • Mean and Intermediate Value Theorem • A Geometric Mean	AMM 5872	Simplexes • A Volume of a Certain Convex Polytope
TYCMJ 101	Value Theorem • Quadratic Mean	AMM E2701	Volume of a Polytope
AMM 6165	Values • Functions Approximated by Their	AMM E2548	Volumes • Simplices of Equal
=0	Mean	JRM 725	Vrai • Doublement
AMM E2453	Values • The Linear Dependence of Certain Trigonometric	MATYC 112 JRM 212	vs Divergent • Denumerable vs Rover • Felix
AMM 5958	Values • Truncated Taylor Expansions and	JRM 423	vs. Cautious • Bold
	Function	MM 1024	vs. Games Behind • Percentage
SIAM 78-13	Values for Random Regions of a Circle •	JRM 540	vs. Knight • Rook
AMM 6067	Expected Values of $\Gamma(z) \bullet \text{Negative}$	JRM 387 AMM 6031	vs. Soft • Hard Walk Application • A Random
FQ H-299	Vandermonde	AMM 6149	Walk on the Edges of a Dodecahedron
SIAM 74-14	Vandermonde Determinant • A Generalization	MATYC 92	Want • Sometimes It's Fewer Than You
50 D 054	of the	JRM 736	Warehouse • The Random
FQ B-354 AMM 6008	Vanishing Factor • A Vanishing Integral • A	JRM 449 JRM 327	Warm Welcome • A Warned! • Be
AMM 6042	Vanishing Outside $[0,1] \bullet C^{\infty}$ Functions	JRM 453	Warning
JRM 504	Vantage Point • The Best	SIAM 78-17	Washline • Paul Bunyan's
AMM 6104	Variable X/Y , X , Y Normal • The Random	AMM E2003	Watched Birds
AMM E2765	Variable Formula for Definite Integrals • Change of	JRM 296 JRM 300	Water • In Deep Watson" • "My Dear
AMM E2609	Variables • A Difference Equation in Two	JRM 505	Watson's Rusty Compass
AMM 6092	Variables • Addition of 'Student' Random	MATYC 85	Way • More Than One
AMM 6164	Variables • Cauchy Random	MATYC 76	Way To Do It ◆ A Difference
AMM 6030 AMM 6136	Variables • Identically Distributed Random Variables • Polynomials in Two	JRM 416 AMM S8	We Knew It All Along Weak Contraction Maps
AMM 5884	Variables • Sequences of Independent Random	AMM 5944	Weak Sequential Closure of a Class of
AMM E2474	Variables • The Maximum of Independent		Operators
A B A B A C 4 C C	Random	JRM 329	Weather Report
AMM 6103	Variables in a Vector Space • Sequences of Independent Random	SIAM 78-5 AMM 6224	Weierstrass Zeta Functions • Evaluation of Weighings • Determining Heavy and Light
SIAM 78-9	Variant of Silverman's Board of Directors	AIVIIVI UZZ4	Balls by
	Problem • A	AMM E2434	Weighted Sequential Sum • Powers of a
JRM 291	Variants • Head-On Poker	MM 914	Weights • Balancing
AMM 6256	Variation • Additive Set Functions of Bounded	MATYC 127	Weighty Problem • A
FQ B-285	Variation on a Previous Problem • Very Slight	JRM 449	Welcome • A Warm

Well-known	1975–	1979	z < 1
AMM E2125	Well-known Limit • Variations on a	AMM E2536	$x^m = x$ Defines Boolean Rings • When
AMM 5950	Well-Poised Hypergeometric Series • A	AMM E2482	$x^n + x + 1$ is Usually Reducible mod 2
FQ H-234	WFFLE!	AMM 6082	$x^n - y^2 = 1$ • Rational Function Solutions of
JRM 545	What's the Matter	AMM 5972	$x^n = x$ for all x in a Ring \bullet Minimum n ,
AMM E2468 AMM 6007	When $2^m - 2^n$ divides $3^m - 3^n$ when $f' = 0$ a.e. \bullet Arc Length	AMM 6239	$x^y - y^x \bullet \text{Growth of}$
AMM E2536	When $x^m = x$ Defines Boolean Rings	TYCMJ 60 MM 1051	$(x_n/n^{\varepsilon}) \bullet \text{Convergence of}$ Y know (x,y) ? • Does X or
AMM 6251	When Does $AB = C$ Imply $BA = D$?	TYCMJ 127	$y^x = xy \bullet \text{Rational Solutions of}$
AMM E2491	When is $\lceil \sqrt{n} \rceil$ a Divisor of n ?	JRM 501	Yashima
		AMM E2465	yet $d(A + B) = 1 \bullet d(A) = d(B) = 0$,
TYCMJ 131	When is Half the Inradius of an Isosceles Triangle Prime?	AMM E2466	yet $d(AB) = 1 \bullet d(A) = d(B) = 0$,
SIAM 77-20	When is the Modified Bessel Function Equal to	MATYC 122	You Expect It • Did
31AW 11-20	its Derivative?	MATYC 92	You Want • Sometimes It's Fewer Than
MATYC 59	When Wrong is Right	FQ H-296	Your Answer • Bracket
MATYC 81	When Wrong is Right — Again	JRM 431	Your Choice • Take
JRM 332	Who's Hungry?	FQ H-291	Your Cubes • Square
FQ H-281	Who's Who?	FQ H-255	Your Fun • Double
FQ H-281	Who? • Who's	FQ H-232	Your Generator • Using
JRM 318	Why Prolong It?	FQ H-268 JRM 413	Your Umbral-ah • Use Yuletide Sentiment
AMM 6155	Width of a Set • Expectation of the	AMM E2331	$Z(p^n) \oplus Z(p^n) ullet$ Subgroups of
TYCMJ 84	Wilson's Theorem • Application of	AMM E2684	$Z(p^*) \oplus Z(p^*) \bullet$ Subgroups of $Z/(n)$ in Arithmetic Progression \bullet Units of
FQ H-307	Wind From the Past • A	FQ B-333	$Z^+ \times Z^+ \bullet$ Bijection in
MATYC 116	Winning is Mod	AMM E2753	$Z_p \bullet \text{Multiplicative Group}$
JRM 650	Wire • Birds on a	MM 1065	Zero and Ones
JRM 379	Wit-Man Sampler Revisited • The	FQ B-364	Zero Digits • Incontiguous
JRM 360 JRM 771	Witch? • Which	AMM 6126	Zero Dimension • Union of Sets of
AMM 6159	Without Trial • Separation Without Triangles • The Maximum Number of	AMM 6069	Zero Divisors and Units in a Group Ring
AIVIIVI 0133	Edges in a Graph	TYCMJ 65	Zero Divisors in Finite Rings
AMM 6118	without Zeros • Linear Combinations of Entire	AMM 6191	Zero of a Complex Polynomial • Location of a
7111111 0110	Functions	SIAM 74-9	Zero of a Polynomial • Bounds for the
AMM E2463	Wolstenholme's Theorem • A Consequence of	SIAM 76-22	Zero of Maximum Multiplicity • A
JRM 469	Word • The Secret	AMM E2699	Zero Sequences • Linear Independence Modulo
AMM S2	Wordless Solution	MATYC 128 MM 1085	Zeros • A Progression of Zeros • Four Different
JRM 610	Work • Detective	AMM 6118	Zeros • Linear Combinations of Entire
FQ H-244	Work • Systematic	AIVIIVI 0110	Functions without
JRM 447	Worth of Change • A Dollar's	AMM 5988	Zeros in the Fractional Calculus
JRM 524	Worthwhile Motto • A	AMM E2761	Zeros in Upper and Lower Half Planes •
JRM 574	Worthy Motto • A		Polynomial with
JRM 444	Wrapper • The Rubber	TYCMJ 28	Zeros of a Monotone Function • Real
JRM 348	Wrinkle on the Old Billiard Table Theme • A New	AMM 6237	Zeros of a Polynomial • Bound on
AMM 6146	Write Shakespeare's Plays? • Did Bacon	TYCMJ 58	Zeros of a Polynomial • Integer
MATYC 59	Wrong is Right • When	SIAM 76-21	Zeros of a Polynomial • On the
MATYC 81	Wrong is Right — Again • When	AMM E2755	Zeros of Derivatives of a Fading Function
AMM S18	Wythoff's Nim • Triangle from	AMM 5968	Zeros of Entire Functions with Integral $D^k f(0)$
AMM E2787	$x = (\log x)^k \bullet \text{ Solutions of }$	AMM E2756	• The Set of
MM 1051	X or Y know (x, y) ? • Does	FQ H-303	Zeros of Successive Derivatives Zeta
AMM 6104	$X, Y \text{ Normal} \bullet \text{ The Random Variable } X/Y,$	SIAM 78-5	Zeta Functions • Evaluation of Weierstrass
TYCMJ 149	$(x+1/x)^{\alpha}$ • Convexity of	AMM 5405	Zeta-function • Iterates of the
MM 1051	(x,y)? • Does X or Y know	JRM 718	Zoo • From Blackpool
JRM 653	X-ponent • Find the	JRM 721	Zugzwang
AMM 6104	X/Y, X , Y Normal • The Random Variable	AMM 6033	$ f(z) < 1, z < 1 \bullet \text{Condition for}$
AMM E2511	$x^2 + 1 = 2^r 5^s \bullet $ The Diophantine Equations	AMM 6033	$ z < 1 \bullet \text{ Condition for } f(z) < 1,$
AMM E2773	$x^k \equiv x, \prod (x - a_i) \equiv 0 \bullet \text{ The Polynomial}$	AMM 5936	z < 1 • Range of a Holomorphic Function in
	Congruences	AMM 5979	$ z < 1 \bullet \text{Schlicht Cubics on}$

JOURNAL ISSUE CHECKLIST

Use this section to

- determine which journals are being indexed in this book
- · determine which problem columns in those journals have been indexed
- find the name of the problem column editor during the years 1975–1979
- · find the name of the publisher of the journal
- · obtain the page numbers and issue numbers where the problem column appeared
- find out which problems were proposed in each issue

This issue checklist lists all the mathematical journals that contained problem columns (1975–1979) that have been indexed in this volume.

Each entry begins with a bullet and the abbreviation of the journal that is used in this index. For example, the abbreviation "AMM" is used to represent "The American Mathematical Monthly". Abbreviations were chosen to be about 2 to 6 characters in length and to be mnemonic for the journal in question. These abbreviations are used when forming the name of a problem. For example, "AMM 6048" refers to problem 6048 from the American Mathematical Monthly.

To the right of the abbreviation for the journal is the ISSN number for the journal. This is the International Standard Serial Number, assigned to most journals in the world. The ISSN given is the ISSN that the journal had during the years covered by this index (i.e. 1975–1979) and could be different from the current ISSN if the journal has changed name or publisher since 1979. For the current ISSN number (if different) consult the Journal Information section of Volume 1, which begins on page 435 of that volume. In that section, you will find all the information about current issues of this journal (i.e. the current publisher and current subscription information). In this checklist, you will only find information about the journal at the time the problems covered by this index were published.

On the line following the abbreviation is the full name of the journal. After that is the name of the publisher (for the period covered by this index). See the Journal Information section for the name of the current publisher (if different).

If the problem column has many editors or associate editors, they are all listed next. This list represents the names of the editors during the period covered by this index. For the name of the current problem column editor, see the Journal Information section (page 435, Volume 1). If there was only one editor for the problem column (the usual case), then his name is listed to the right of the name of the problem column.

Next follows detailed information about each issue of the journal that contains a problem column. If a journal contains more than one problem column, then each problem column is listed. If the problem column does not have a formal name, it is listed merely as "problem column". To the right of the name of the problem column is the name of the problem column editor. Following the name of the problem column is a listing of each issue of the journal published in the years 1975–1979. For each issue, we give the page numbers of the problem column from that issue. We also give the date, volume number, and issue number for that issue. Thus, this checklist lets you confirm which journals and problem columns have been indexed. We also give the problem numbers of the new problems proposed in each issue. In a few cases, we have chosen to give the checklist for a journal's problem column, but have not indexed the problems therein. In that case, the notation "problem column not indexed" is given. This is usually because the majority of the problems in that column are research-level problems or are otherwise dissimilar from the majority of the problems covered by this index. In general, physics problems, chess problems, puzzles, and non-mathematical problems have not been indexed. Also, some journals publish a lot of problems and/or short notes that are not part of any formal problem column. In that case, the problems have not been included in this index. In general, a problem column is a regular feature that has consecutively numbered problems spanning across many issues of the journal and contains solutions submitted by readers. If you are not sure if a particular column in a journal has been included in this index, consult this checklist.

If the name of the problem editor changed during the year, then the list of editors is given along with their terms of editorship.

If a journal normally has a problem column, but no problems or solutions were published in the years 1975-1979, then that journal will not be listed in this checklist.

Following the list of issues and problem columns are notes about standard columns that run in the specified journal but which have not been indexed. A statement of the form "column not indexed" means that we have no intention of indexing this column. If the journal has changed name since 1979, this is also noted. Additional notes of interest may also be given.

Problems from articles in these journals are not normally indexed. An article that reports about the problems given in a national or international mathematical competition or olympiad might have these problems indexed if the competition was held in 1975–1979 (not that the article about it appeared during these years). The Citation Index (page 423) lists those articles that reference problems covered by this index.

Although only problems published in the years 1975-1979 have been indexed, solutions to the problems proposed in these years (or earlier) are indexed if these solutions were published in 1975 or later. We have attempted to check all issues through August 1992 to find solutions to problems originally published in 1979 or earlier. In those cases, the solution has been indexed, in the sense that the names of the original featured solvers are listed in the Author Index (page 316) and the dates and page numbers where the solutions can be found are given in the Problem Chronology (page 282).

Journal Issue Checklist

• AMM	ISSN 0002-9890
The American Mathematical Mon	thly
Publisher:	. Taylor & Francis, Ltd.

Overall Problem Column Editors:

 1975 - 1978.
 Emory P. Starke

 1979.
 A. P. Hillman

Associate and Collaborating Editors: Joshua Barlaz, Eric S. Langford, Leonard Carlitz, Gulbank D. Chakerian, Haskell Cohen, S. Ashby Foote, Israel N. Herstein, Murray S. Klamkin, Daniel J. Kleitman, Roger C. Lyndon, Marvin Marcus, Christoph Neugebauer, W. C. Waterhouse, Albert Wilansky, and University of Maine Problems Group: Earl M. L. Beard, George S. Cunningham, Clayton W. Dodge, Oskar Feichtinger, William R. Geiger, Ramesh Gupta, Philip M. Locke, John C. Mairhuber, Curtis S. Morse, Grattan P. Murphy, Edward S. Northam and William L. Soule, Jr.

Δ Problems dedicated to Emory P. Starke

<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>
Jan	1979	86	1	54-55	S1-S3
Feb	1979	86	2	127	S4-S5
Mar	1979	86	3	222	S6-S8
Apr	1979	86	4	306	S9-S10
May	1979	86	5	392	S11-S13
Jun/Jul	1979	86	6	503	S14-S15
Aug/Sep	1979	86	7	591-592	S16-S18
Oct	1979	86	8	702	S19-S20
Nov	1979	86	9	784	S21
Dec	1979	86	10	863	S22-S23

E. P. Starke Problem Column Editor:

1979. A. P. Hillman

٨	FI	lem	en	tarv	Pro	h	lem	10
Δ		CII		lai v	Γ I C	וטי		ıo

A Elementary i repleme										
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>					
Jan	1975	82	1	72-83	E2510-2515					
Feb	1975	82	2	168-182	E2516-2521					
Mar	1975	82	3	299-307	E2522-2527					
Apr	1975	82	4	399-409	E2528-2533					
May	1975	82	5	520-528	E2534-2539					
Jun/Jul	1975	82	6	659-671	E2540-2545					
Aug/Sep	1975	82	7	755-765	E2546-2551					
Oct	1975	82	8	851-856	E2552-2557					
Nov	1975	82	9	936-941	E2558-2563					
Dec	1975	82	10	1009-1015	E2564-2569					
Jan	1976	83	1	53-61	E2570-2574					
Feb	1976	83	2	132-140	E2575-2580					
Mar	1976	83	3	197-204	E2581-2586					
Apr	1976	83	4	284-292	E2587-2592					
May	1976	83	5	378-385	E2593-2598					
Jun/Jul	1976	83	6	482-489	E2599-2604					
Aug/Sep	1976	83	7	566-572	E2605-2610					
Oct	1976	83	8	656-661	E2611-2616					
Nov	1976	83	9	740-747	E2617-2622					
Dec	1976	83	10	812-817	E2623-2628					
Jan	1977	84	1	57-61	E2629-2634					

Feb	1977	84	2	134-140	E2635-2640
Mar	1977	84	3	216-221	E2641-2646
Apr	1977	84	4	294-299	E2647-2652
May	1977	84	5	386-391	E2653-2658
Jun/Jul	1977	84	6	486-490	E2659-2664
Aug/Sep	1977	84	7	567-574	E2665-2670
Oct	1977	84	8	651-659	E2671-2676
Nov	1977	84	9	738-743	E2677-2682
Dec	1977	84	10	820-828	E2683-2688
Jan	1978	85	1	47-53	E2689-2694
Feb	1978	85	2	116-121	E2695-2700
Mar	1978	85	3	197-202	E2701-2706
Apr	1978	85	4	276-282	E2707-2712
May	1978	85	5	383-388	E2713-2718
Jun/Jul	1978	85	6	495-499	E2719-2724
Aug/Sep	1978	85	7	593-599	E2725-2730
Oct	1978	85	8	681-686	E2731-2736
Nov	1978	85	9	764-769	E2737-2742
Dec	1978	85	10	823-827	E2743-2748
Jan	1979	86	1	55-59	E2749-2754
Feb	1979	86	2	127-131	E2755-2760
Mar	1979	86	3	222-225	E2761-2766
Apr	1979	86	4	307-311	E2767-2772
May	1979	86	5	393-398	E2773-2778
Jun/Jul	1979	86	6	503-509	E2779-2784
Aug/Sep	1979	86	7	592-596	E2785-2790
Oct	1979	86	8	702-709	E2791-2796
Nov	1979	86	9	784-793	E2797-2802
Dec	1979	86	10	864-869	E2803-2808

Elementary Problem Column Editors:

Jan - Feb 1975. U. of Maine Problems Group Feb 1975 - Jul 1978. U. of Waterloo Problems Group after Jul 1978. J. L. Brenner

Δ Advanced Problems

<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>
Jan	1975	82	1	84-89	6006-6011
Feb	1975	82	2	183-187	6012-6017
Mar	1975	82	3	307-310	6018-6023
Apr	1975	82	4	409-416	6024-6029
May	1975	82	5	528-538	6030-6035
Jun/Jul	1975	82	6	671-681	6036-6041
Aug/Sep	1975	82	7	766-770	6042-6047
Oct	1975	82	8	856-862	6048-6053
Nov	1975	82	9	941-945	6054-6059
Dec	1975	82	10	1016-1021	6060-6065
Jan	1976	83	1	62-67	6066-6071
Feb	1976	83	2	140-145	6072-6077
Mar	1976	83	3	205-210	6078-6083
Apr	1976	83	4	292-297	6084-6089
May	1976	83	5	385-390	6090-6095
Jun/Jul	1976	83	6	489-494	6096-6101
Aug/Sep	1976	83	7	572-576	6102-6107
Oct	1976	83	8	661-667	6108-6113
Nov	1976	83	9	748-753	6114-6119
Dec	1976	83	10	817-821	6120-6125
Jan	1977	84	1	61-67	6126-6131

Journal Issue Checklist											
Feb	1977	84	2	140-144	6132-6137	Mar	1978	21	1	none	none
Mar	1977	84	3	221-226	6138-6143	Jun	1978	21	2	none	none
Apr	1977	84	4	299-304	6144-6149		1978	21	3	none	none
May	1977		5	391-397	6150-6155		1978	21	4	none	none
Jun/Jul	1977	84	6	491-496	6156-6161		1979	22	1	121-125	P270-272
Aug/Sep	1977		7	575-580	6162-6167		1979	22	2	247-253	P273-276
Oct	1977		8	659-663	6168-6173		1979	22	3	385-389	P277-280
Nov	1977		9	743-748	6174-6179	Dec	1979	22	4	519-522	P281
Dec	1977		10	828-834	6180-6185		0.1				
Jan -	1978	85	1	53-59	6186-6191		Column				5 O M
Feb	1978		2	121-126	6192-6197						E.C. Milner
Mar	1978		3	203-210	6198-6203	VOI 22					. E.J. Barbeau
Apr	1978	85	4	282-291	6204-6209	NI. I					
May	1978	85	5	389-393	6210-6215	Notes:			6	050 +- 05	:
Jun/Jul	1978	85	6	499-506	6216-6221				oea tro	m 252 to 25	55 in Volume 19,
Aug/Sep	1978	85	7	599-604	6222-6227	_	nbers 2 a			50	
Oct	1978	85	8	686-690	6228-6233				and 2	58 were rep	eated in Volume
Nov	1978	85	9	770-774	6234-6239	,	number				00
Dec	1978		10	828-834	6240-6245						20, number 2,
Jan	1979	86	1	59-66	6246-6251	proi	olem nun	ibers P	262 a	nd P263 wer	е ѕкірреа.
Feb	1979	86	2	131-136	6252-6257						
Mar	1979	86	3	226-232	6258-6263						
Apr	1979	86	4	311-315	6264-6266	0.01	137				
May	1979	86	5	398-401	6267-6269	· CRU				IS	SSN 0705-0348
Jun/Jul	1979	86	6	509-511	6270-6272	Crux Ma	athemat	icorum	1		
Aug/Sep	1979	86	7	596-598	6273-6275	Publishe	r:			Α	Igonquin College
Oct	1979	86	8	709-711	6276-6278						
Nov	1979 1979	86 86	9	793-796	6279-6281		ms - Pro				Léo Sauvé
Dec	1979	00	10	869-871	6282-6284	<u>Date</u>	<u>Yea</u>		<u>l Issu</u>		
Advanced	Droblom	Cal	umn E	Editors:		Mar	197				3-4 1-10
					J. Barlaz	Apr	197				7-8 11-20
					oger C. Lyndon	May	197			3 11-	
aitei oui i	370				oger O. Lyridon	Jun	197			4 25-	
Notes:						Jul	197			5 38-	
•Research	h nrohler	ne na	nt inde	vod		Aug	197			6 48-	
	•			not indexed		Sep	197			7 56-	
OHSOIVE	a i iobici	11 00	iuiiiiii	iot indexed		Oct	197		-	8 71-	
						Nov	197		-	9 84-	
						Dec	197				
						Jan	197				17 101-110
· CMB				ISS	SN 0008-4395	Feb	197			2 25-	
Canadiar	n Mathe	mati	cal B	ulletin		Mar	197			3 41- 4 67-	
Publisher:			C	anadian Mathe	matical Society	Apr May	1970 1970				
						Jun/Jul	1970				
Δ Problem	ns and So	olutio	ns			Aug/Sep				6 109-1 7 135-1	
<u>Date</u> Y	<u>'ear V</u>	ol Is	sue	<u>Pages</u>	<u>Proposals</u>	Oct	197			8 170-1	
		18	1	none	none	Nov	197			9 193-2	
		18	2	none	none	Dec	197			9 193-2 0 219-2	
		18	3	none	none	Jan	197				30 201-210
		18	4	615-620	P241-245	Feb	197			1 9- 2 42-	
		19	1	121-125	P246-249	Mar	197			2 4 2- 3 65-	
		19	2	249-253	P250-252	Apr	197			4 104-1	
•		19	3	379-382	P255-258	May	197			5 130-1	
		19	4	none	none	Jun/Jul	197			6 154-1	
		20	1	147-150	P257-261	Aug/Sep				7 189-2	
Jun 1	977 2	20	2	273-276	P264-266	Oct	107			7 109-2 8 226-2	

Oct

Nov

Dec

P253,267-269

none

3

3

3

8

9

10

226-240

250-269

297-299

271-280

281-290

291-300

1977

1977

1977

Sep

Dec

1977

1977

20

20

3

4

517-525

none

					Journal Issu	e Checklist
Jan Feb Mar Apr May Jun/Jul Aug/Sep Oct Nov Dec Jan Feb Mar Apr May Jun/Jul Aug/Sep Oct Nov	1978 1978 1978 1978 1978 1978 1978 1978	4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9	11-30 35-60 65-89 100-120 133-150 159-180 191-210 224-240 250-270 282-300 14-30 46-60 76-90 107-120 131-150 166-180 199-212 228-244 264-278	301-310 311-320 321-330 331-340 341-350 351-360 361-370 371-380 381-390 391-400 401-410 411-420 421-430 431-440 441-450 451-460 461-470 471-480 481-490	e Checklist FQ The Fib Publishe Δ Eleme Date Feb Apr Oct Dec Feb Apr Oct Nov Dec Feb Apr Oct Nov Dec Feb Apr Oct Dec Feb Apr Oct Dec
Dec	1979	5	10	291-310	491-500	Feb Apr

Δ Olympiad	Corner			Murra	ay S. Klamkin
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>
Jan	1979	5	1	12-14	PS1-1 to 3-1
Feb	1979	5	2	44-46	PS4-1 to 4-3
Mar	1979	5	3	62-69	PS5-1 to 5-3
Apr	1979	5	4	102-107	PS6-1 to 6-3
May	1979	5	5	128-131	none
Jun/Jul	1979	5	6	160-165	none
Aug/Sep	1979	5	7	193-199	none
Oct	1979	5	8	220-228	none
Nov	1979	5	9	259-264	PS7-1 to 7-3
Dec	1979	5	10	288-291	PS8-1 to 8-3

Columns are numbered through 60.

Notes:

- •Puzzle Corner not indexed.
- •Only the Practice Sets from the Olympiad Corner are indexed. These are given the prefix "PS". The Olympiad Corner has many problems that are not indexed.
- •The Olympiad Corner contains problems and solutions from many competitions. See the contest list in the citation index for these references.

• DELTA

ISSN 0011-801X

Delta

Publisher: Waukesha Mathematical Society

Δ Prob	lems and	d Solut		R. S. Luthar	
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>
Spr	1975	5	1	45-48	5.1.1-3
Fall	1975	5	2	94-96	5.2.1-3
Spr	1976	6	1	43-45	6.1.1-4
Fall	1976	6	2	92-94	6.2.1-3

• FQ ISSN 0015-0517

The Fibonacci Quarterly

Publisher:			itony	The Fibonacci Association		
Δ Elem	entary F	robler	ns		A. P. Hillman	
<u>Date</u>	Year	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>	
Feb	1975	13	1	94-96	B298-303	
Apr	1975	13	2	190-192	B304-309	
Oct	1975	13	3	285-288	B310-314	
Dec	1975	13	4	373-377	B316-321	
Feb	1976	14	1	93-96	B322-327	
Apr	1976	14	2	188-192	B328-333	
Oct	1976	14	3	286-288	B334-339	
Nov	1976	14	4	none	none	
Dec	1976	14	5	470-473	B340-345	
Feb	1977	15	1	93-96	B346-351	
Apr	1977	15	2	189-192	B352-357	
Oct	1977	15	3	285-288	B358-363	
Dec	1977	15	4	375-377	B364-369	
Feb	1978	16	1	88-91	B370-375	
Apr	1978	16	2	184-187	B376-381	
Jun	1978	16	3	none	none	
Aug	1978	16	4	none	none	
Oct	1978	16	5	473-476	B382-387	
Dec	1978	16	6	562-565	B388-393	
Feb	1979	17	1	90-93	B394-399	
Apr	1979	17	2	184-188	B400-405	
Oct	1979	17	3	281-285	B406-411	
Dec	1979	17	4	369-373	B412-417	

Notes:

•There is no problem numbered B–315.

Δ Advanced Problems			s	Ra	Raymond E. Whitner		
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>		
Feb	1975	13	1	89-93	H245-248		
Apr	1975	13	2	185-189	H249-251		
Oct	1975	13	3	281-284	H252-254		
Dec	1975	13	4	369-372	H255-257		
Feb	1976	14	1	88-92	H258-260		
Apr	1976	14	2	182-187	H261-263		
Oct	1976	14	3	282-285	H264-266		
Nov	1976	14	4	none	none		
Dec	1976	14	5	466-469	H267-268		
Feb	1977	15	1	89-92	H269-271		
Apr	1977	15	2	185-188	H272-273		
Oct	1977	15	3	281-284	H274-275		
Dec	1977	15	4	371-374	H276-277		
Feb	1978	16	1	92-96	H278-280		
Apr	1978	16	2	188-192	H281-284		
Jun	1978	16	3	none	none		
Aug	1978	16	4	none	none		
Oct	1978	16	5	477-480	H285-289		
Dec	1978	16	6	566-569	H290-294		
Feb	1979	17	1	94-96	H295-298		
Apr	1979	17	2	189-192	H299-301		
Oct	1979	17	3	286-288	H302-306		
Dec	1979	17	4	374-377	H307-310		

Journal Issue Checklist

					Journal Issi	ue Checklis	st				
• EII	NCT			IQQNI	0313-6825	Δ Prol	olems				
				ISSIN	0313-0023	Date	Year	<u>Vol</u>	Issue	<u>Pages</u>	Proposals
Funct						Sep	1976	12	1	<u>1 ages</u> 4-7	12.1-10
Publis	her:			Monas	sh University	Nov	1976	12	2	5-12	12.11-18
						Feb	1977	12	3	4-8	12.19-27
	lem Sect			_	_		1977	12	4	5-8	12.28-32
<u>Date</u>	<u>Year</u>			<u>Pages</u>	<u>Proposals</u>	Apr	1977	13	1	8-11	13.1-8
Feb	1977	1	1	23,29-31	1.1.1-10	Sep Dec	1977	13		6-11 4-8	13.9-18
Apr	1977	1	2	23,29-31	1.2.1-7				2		
Jun	1977	1	3	6,25,27-30	1.3.1-7	Feb	1978	13	3	5-8 5-0	13.19-23
Aug	1977	1	4	8-9,11-16,	1.4.1-5	May	1978	13	4	5-8	13.24-28
				22,31-32		Sep	1978	14	1	6-7	14.1-5
Oct	1977	1	5	27-32	1.5.1-4	Dec	1978	14	2	5-8	14.6-14
Feb	1978	2	1	19-22,28-29,32	2.1.1-4	Feb	1979	14	3	2-8	14.15-19
Apr	1978	2	2	7,27	2.2.1-4	Apr	1979	14	4	1-4	14.20-24
Jun	1978	2	3	11,25,29-32	2.3.1-5						
Aug	1978	2	4	31-32	2.4.1-4						
Oct	1978	2	5	20,28-32	2.5.1-4	• JR	М			ISS	SN 0022-412X
Feb	1979	3	1	28-31	3.1.1-6			croatio	nal Mati	hematics	
Apr	1979	3	2	29-32	3.2.1-8	Publis		Cicalio			Company, Inc.
Jun	1979	3	3	27-32	3.3.1-5	Fublis	nen.		Баумо	ou Fublishing	Company, inc.
Aug	1979	3	4	27-32	3.4.1-3	A Drol	olems an	d Cania	oturoo		
Oct	1979	3	5	26-30	3.5.1-4					Doggo	Droposolo
						Year		l Issue		<u>Pages</u> 46-73	Proposals
						1975-		3 1			370-381
	л.					1975-		3 2 3 3		42,145-158	382-396
· ISI	_					1975-				229-232	419-427
Indiar	na Scho	ol Ma	themati	cs Journal		1975-		3 4		311-314	440-448
						1976-		9 1		24-29,32-79	462-476
	olems - J		Section			1976-		9 2		35,138-150	81a, 493-507
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>		<u>Proposals</u>	1976-		9 3 9 4		208-232	527-541
Aug	1974	10	1		J10.1-5	1976-				294-320	554-568
Dec	1974	10	2		J10.6-10	1977-				51-80	591-604
Feb	1975	10	3		J10.11-15	1977-				127-160	623-632
Apr	1975	10	4		J10.16-17	1977-				210-240	645-659
Sep	1975	11	1		J11.1-5	1977-				283-320	671-685
Dec	1975	11	2		J11.6-10	1978-	_			34-39,47-80	699-715
Feb	1976	11	3		J11.11-15	1978-				31,145-160	728-741
May	1976	11	4	4-8	J11.16-20	1978-				235,238-240	755-770
						1978-	79 1 ⁻	1 4	•	299-320	782-798
∆ Prob	olems - C	-	ection			Proble	m Colum	n Edito	r:		
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>	vol 8/	- vol 10	/1		Dav	vid L. Silverman
Aug	1974	10	1	5-8	10.1-5						H. Kierstead Jr.
Dec	1974	10	2	2 4-8	10.6-10						
Feb	1975	10	3		10.11-15	Assoc	iate Edito	ors:			
Apr	1975	10	4		10.16-17					H	arvey J. Hinden
Sep	1975	11	1		11.1-5						Romae Cormier
Dec	1975	11	2	2 6-12	11.6-10						
Feb	1976	11	3	3 2-8	11.11-15						
May	1976	11	1	l 4-8	11 16-20						

May

1976 1976

11

4

4-8

11.16-20

Journal	l Issue	Checklist

Δ Computer Challenge Corner				
<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	Proposals
1975-76	8	3	233-234	1-4
1975-76	8	4	305-307	5-9
1976-77	9	1	30-31	477-480
1976-77	9	2	136-137	508-513
1976-77	9	3	233-240	none
1976-77	9	4	286-293	569-573
1977-78	10	1	45-50	586-590
1977-78	10	2	119-126	618-622
1977-78	10	3	none	none
1977-78	10	4	279-282	none
1978-79	11	1	43-46	none
1978-79	11	2	132-144	none

Problem Column Editor:

vol 8 - vol 9	David L. Silverman
vol 10 - vol 11	. Friend H. Kierstead Jr.

Δ Alphametics

<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>
1975-76	8	1	44-45	364-369
1975-76	8	2	143-144	397-408
1975-76	8	3	227-228	409-418
1975-76	8	4	308-310	428-439
1976-77	9	1	21-23	449-461
1976-77	9	2	125-126	481-492
1976-77	9	3	206-207	514-526
1976-77	9	4	280-285	542-553
1977-78	10	1	40-44	574-585
1977-78	10	2	114-118	605-617
1977-78	10	3	204-209	633-644
1977-78	10	4	274-278	660-670
1978-79	11	1	28-33	686-698
1978-79	11	2	122-126	716-727
1978-79	11	3	207-211	742-754
1978-79	11	4	294-298	770-780

Problem Column Editor:

vol 8	David L. Silverman
vol 9 - vol 11	Steven Kahan

Notes:

- •Hinden was first spelled with an "in", then changed to an "en".
- •Problem number 81+ was changed to 81a for consistency.
- •There were two problems numbered 770. The suffixes "a" and "b" were attached to distinguish them.

• MATYC

ISSN 0300-7650

Т	he	MA	TYC	Jol	ırnal

∆ Probler	n Depart	ment.		Ma	artin J. Brown
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>
Winter	1975	9	1	49-53	70-73
Spring	1975	9	2	51-53	74-77
Fall	1975	9	3	45-50	78-81
Winter	1976	10	1	43-46	82-85
Spring	1976	10	2	122-124	86-90
Fall	1976	10	3	200-203	91-95
Winter	1977	11	1	63-68	96-100
Spring	1977	11	2	142-145	101-104
Fall	1977	11	3	221-225	105-109
Winter	1978	12	1	78-80	110-114
Spring	1978	12	2	173-176	115-119
Fall	1978	12	3	253-256	120-124
Winter	1979	13	1	64-70	125-129
Spring	1979	13	2	135-139	130-134
Fall	1979	13	3	214-219	135-139

MENEMUI

ISSN 0126-9003

Menemui Matematik

Δ Problems and Solutions

<u>Date</u>	<u>Year</u>	Vol Is	<u>ssue</u>	<u>Pages</u>	<u>Proposals</u>
	1979	1	1	52-59	1.1.1-3
	1979	1	2	46-49	1.2.1-2
	1979	1	3	56-60	1.3.1-3

		OI	
Journa	ussue	Checklist	

	aga								317,323	Q663-664
and S			Taylo	& Francis, Ltd.	*Assoc	ciate Edi	tor: J	. S. Fran	ne. Assistant	: Editors: Dor
uiiu v	Solut	ions		Dan Eustice	Bonar,	William	McWo	rter Jr., a	and L. F. Meye	rs.
		<u>Issue</u>	<u>Pages</u>	Proposals	*Starti	ng with t	he Se	p., 1975	issue, (Volum	ne 48, numbei
5	48	1	50-58	922-928	4), Ler	oy F. Me	yers b	ecomes	Associate Edite	or.
5	48	2	115-122	929-936						
5	48	3	180-186	937-944						
5	48	4	238-247	945-953						
5	48	5	293-302	954-962	· MS	J			ISS	SN 0095-7089
6	49	1	43-48	963-969	The M	lathema	tics S	tudent (Reston)	
6	49	2	95-101	970-977	Publish			(. 1001011)	NCTM
6	49	3	149-154	978-987						
6	49	4	211-218	988-995	Λ Prob	lem Sect	ion			
6	49	5	252-258	996-1002	Date	Year		<u>Issue</u>	<u>Pages</u>	Proposals
7	50	1	46-53	1003-1007	Oct	1974	22	1	<u>- agoo</u> 5-7	416-420
7	50	2	99-104	1008-1012	Dec	1974	22	2	5-7	421-425
7	50	3	163-169	1013-1020	Feb	1975	22	3	5-7	426-430
7	50	4	211-216	1021-1024	Apr	1975	22	4	5-7	none
7	50	5	265-271	1025-1028	Oct	1975	23	1	6-8	431-432
8	51	1	69-72	1029-1032	Dec	1975	23	2	8	433-434
8	51	2	127-132	1033-1038	Feb	1976	23	3	8	435-436
8	51	3	193-201	1039-1047	Apr	1976	23	4	8	437-438
8	51	4	245-249	1048-1053	Oct	1976	24	1	4	439-440
8	51	5	305-308	1054-1057	Dec	1976	24	2	5-6	441-442
9	52	1	46-55	1058-1065	Feb	1977	24	3	5	443-444
9	52	2	113-118	1066-1071	Apr	1977	24	4	2-3	445-446
9	52	3	179-184	1072-1073	Oct	1977	25	1	2-3 4	447-448
9	52	4	258-265	1074-1079	Nov	1977	25	2	4	449-450
9	52	5	316-323	1080-1088	Dec	1977	25	3	4	451-452
9	32	J	310-323	1000-1000	Jan	1978	25	4	4	453-454
					Feb	1978	25	5	4	455-456
					Mar	1978	25	6	4	457-458
<u>ır</u>	Vol	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>	Apr	1978	25	7	2	459-460
5	48	1	52,58	Q608-613	May	1978	25	8	2	461-462
5	48		16-117,122	Q614-619	iviay	1370	20	Ü	_	401 402
5	48		81-182,186	Q620-624	A Com	petition (:orner			
5	48	4	240,248	Q625-627	Oct	1978	26	1	2-3	463-467
5	48		295,302-303	Q628-630	Nov	1978	26	2	2-3	468-472
6	49	1	44,48	Q631-632	Dec	1978	26	3	2-4	473-477
6	49	2	96,101	Q633-634	Jan	1979	26	4	2-3	478-482
6	49	3	150,154	Q635-637	Feb	1979	26	5	2	483-487
6	49	4	212,218	Q638-639	Mar	1979	26	6	2-3	488-492
6	49	5	253,258	Q640-642	Apr	1979	26	7	2-3	493-497
7	50	1	47,53	Q643-644	May	1979	26	8	2-3	498-502
7	50	2	none	none	iviay	1070	20	Ŭ	20	100 002
7	50	3	164,169	Q645-648	Proble	m Colum	n Fdit	or.		
7	50	4	none	none					Ste	even R. Conrac
					1 .5. 20.					5.30 D0120011y
		3		Q653-654						
		3								
7 8 8 8 8 8 8 9 9		50 51 51 51 51 51 52 52 52	51 1 51 2 51 3 51 4 51 5 52 1 52 2	51 1 none 51 2 128,132 51 3 194,201 51 4 246,249 51 5 none 52 1 47,55 52 2 114,118	51 1 none none 51 2 128,132 Q651-652 51 3 194,201 Q653-654 51 4 246,249 Q655 51 5 none none 52 1 47,55 Q656-657 52 2 114,118 Q658-659	50 5 266,271 Q649-650 vol 26. 51 1 none none 51 2 128,132 Q651-652 51 3 194,201 Q653-654 51 4 246,249 Q655 51 5 none none 52 1 47,55 Q656-657 52 2 114,118 Q658-659	50 5 266,271 Q649-650 Vol 26 51 1 none none 51 2 128,132 Q651-652 51 3 194,201 Q653-654 51 4 246,249 Q655 51 5 none none 52 1 47,55 Q656-657 52 2 114,118 Q658-659	50 5 266,271 Q649-650 vol 26. 51 1 none none 51 2 128,132 Q651-652 51 3 194,201 Q653-654 51 4 246,249 Q655 51 5 none none 52 1 47,55 Q656-657 52 2 114,118 Q658-659	50 5 266,271 Q649-650 vol 26. 51 1 none none 51 2 128,132 Q651-652 51 3 194,201 Q653-654 51 4 246,249 Q655 51 5 none none 52 1 47,55 Q656-657 52 2 114,118 Q658-659	50 5 266,271 Q649-650 vol 26. Ge 51 1 none none 51 2 128,132 Q651-652 51 3 194,201 Q653-654 51 4 246,249 Q655 51 5 none none 52 1 47,55 Q656-657 52 2 114,118 Q658-659

• NAvW ISSN 0028-9825 Nieuw Archief voor Wiskunde (3rd series)

Publisher: Dutch Mathematical Society

Δ Probl	lem Sec	tion			J. H. Van Lint
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>
Mar	1975	23	1	79-94	391-400
Jul	1975	23	2	173-194	401-413
Nov	1975	23	3	242-257	414-423
Mar	1976	24	1	77-107	424-435
Jul	1976	24	2	184-214	436-447
Nov	1976	24	3	270-286	448-457
Mar	1977	25	1	86-101	458-467
Jul	1977	25	2	186-204	468-477
Nov	1977	25	3	423-446	478-487
Mar	1978	26	1	231-253	488-500
Jul	1978	26	2	348-366	501-511
Nov	1978	26	3	462-478	512-522
Mar	1979	27	1	132-152	523-533
Jul	1979	27	2	267-285	534-545
Nov	1979	27	3	407-424	546-558

NYSMTJ

ISSN 0545-6584

New York State Mathematics Teachers' Journal
Publisher: Association of Mathematics
Teachers of New York State

Problem Column Editor:

vol 25 - vol 27/2	David E. Bock
vol 27/3 - vol 29	Sidney Penner

Δ Problems and Solutions							
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>		
Jan	1975	25	1	20-22	37-40		
Apr	1975	25	2	55-57	41-44		
Jun	1975	25	3	124-127	45-47		
Oct	1975	25	4	170-173	48-51		
	1976	26	1				
Jan	1976	26	2	18-19	52-54		
	1976	26	3				
May	1976	26	4	96-101	55-58		
	1976	26	5				
Sep	1976	26	6	150-152	59-61		
Win	1977	27	1	50-54	62-65		
Spr	1977	27	2	98-103	66-70		
Fall	1977	27	3	136-138	71-73		
Win	1977/78	28	1	52-58	74-77		
Spr/Sum	1978	28	2	77-85	78-82		
Fall	1978	28	3	150-158	83-86		
Win	1978/79	29	1	56-62	87-91		
Spr	1979	29	2	83-89	92-95		

• OMG

ISSN 0030-3011

Ontario Mathematics Gazette

Publisher: Ontario Association for Mathematics Education

Δ Prob	lems				Arn Harris
<u>Date</u>	<u>Year</u>	<u>Vol I</u>	<u>ssue</u>	<u>Pages</u>	Proposals
Mar	1976	14	3	44	14.3.1-3
Sep	1976	15	1	51-52	15.1.1-3
Dec	1976	15	2	66	15.2.1-3
Mar	1977	15	3	59-61	15.3.1-10
Sep	1977	16	1	64-65	16.1.1-10
Dec	1977	16	2	51-53	16.2.1-7
Mar	1978	16	3	none	none
Sep	1978	17	1	58-59	17.1.1-9
Dec	1978	17	2	58	17.2.1-9
Mar	1979	17	3	58-61	17.3.1-9
Sep	1979	18	1	55-57,60-61	18.1.1-9
Dec	1979	18	2	61-63,66-67	18.2.1-9
Mar	1980	18	3	65,67-68	18.3.1-9

^{*}Assistant Editor: (for problems) Tom Griffiths

OSSMB

ISSN 0380-6235

Ontario Secondary School Mathematics Bulletin Publisher: University of Waterloo

Δ Prob	lems Se	ction			K.D. Fryer
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>
May	1975	11	1	16-24	75.1-6
Sep	1976	12	2	19-24	76.7-12
May	1978	14	1	15-19	78.1-6
Sep	1978	14	2	22-25	78.3-5,78.7-9
Dec	1978	14	3	17-21	78.10-15
May	1979	15	1	20-23	79.1-6
Sep	1979	15	2	17-21	79.7-12
Dec	1979	15	3	23	79.13-18

^{*}Problems editor: R.A. Honsberger

Notes

•We were unable to locate v.11 nos. 2 and 3, v.12 nos. 1 and 3, and all of v.13. As a result, those issues are not indexed in this volume.

^{*}McKay and McKnight wrote the problems in Volume 17, numbers 1 and 2, and Volume 18, numbers 1, 2, and 3. *Starting with Volume 18, number 1, the editor changes to R.S. Smith. (Assistant editor: Walker Schofield)

^{*}Starting with Volume 14, number 1, the Problems editor changes to: Professor E.M. Moskal

Journal Issue Checklist

PARAB

Parabola Publisher:

University of New South Wales

Δ Problem S	Section				R.K. James
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>
Feb/Mar	1975	11	1	18-25	261-272
May/Jun	1975	11	2	25-34	273-284
Aug/Sep	1975	11	3	18-26	285-296
Feb/Mar	1976	12	1	22-33	297-308
May/Jun	1976	12	2	26-36	309-320
Aug/Sep	1976	12	3	23-32	321-332
Feb/Mar	1977	13	1	24-36	333-344
May/Jun	1977	13	2	34-36	345-356
Aug/Sep	1977	13	3	25-36	357-368
Term 1	1978	14	1	28-36	369-380
Term 2	1978	14	2	30-40	381-392
Term 3	1978	14	3	28-36	393-404
1st Term	1979	15	1	26-36	405-416
2nd Term	1979	15	2	36-44	417-428
3rd Term	1979	15	3	31-40	429-440

Notes:

- •Problem editor: Mr. C.D. Cox
- •Volume 14, numbers 1-3, the editor changes to M. Hirschhorn.
- •Volume 15, numbers 1-3, the editor is J.H. Loxton.

• PENT	ISSN 0031-4870

The Pentagon

Publisher: Kappa Mu Epsilon

∆ The Pro	blem C	orner		Kenneth M. Wilke		
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>	
Spring	1975	34	2	103-111	272-276	
Fall	1975	35	1	33-39	277-281	
Spring	1976	35	2	97-103	282-286	
Fall	1976	36	1	31-35	287-290	
Spring	1977	36	2	93-98	292-296	
Fall	1977	37	1	26-34	297-301	
Spring	1978	37	2	82-88	302-306	
Fall	1978	38	1	26-32	307-311	
Spring	1979	38	2	78-83	312-316	
Fall	1979	39	1	30-39	317-321	

Notes:

- •Volume numbers for Spring/Fall 1979 have been corrected from those printed in the journal.
- •There are two problems numbered 289. (Fall 1976)

• PME ISSN 0031-952X

Pi Mu Epsilon Journal Publisher:

Pi Mu Epsilon Fraternity

Δ Prob	lem Dep	artmen	t		Leon Bankoff
<u>Date</u>	<u>Year</u>	Vol	<u>lssue</u>	<u>Pages</u>	<u>Proposals</u>
Spr	1975	6	2	104-122	338-349
Fall	1975	6	3	177-193	350-361
Spr	1976	6	4	226-244	362-373
Fall	1976	6	5	306-324	374-385
Spr	1977	6	6	364-381	386-398
Fall	1977	6	7	417-437	399-411
Spr	1978	6	8	481-501	412-424
Fall	1978	6	9	539-559	425-437
Spr	1979	6	10	615-633	438-448
Fall	1979	7	1	57-76	449-461

• SIAM

ISSN 0036-1445

SIAM Review Publisher:

Society for Industrial and Applied Mathematics

Δ Proble	ems and	d Solu	tions	Murray S. Klamkin		
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>	
Jan	1975	17	1	167-175	75-1 to 75-7	
Apr	1975	17	2	none	none	
Jul	1975	17	3	565-567	75-8 to 75a-15	
Oct	1975	17	4	685-695	75-16 to 75-21	
Jan	1976	18	1	117-130	76-1 to 76-6	
Apr	1976	18	2	294-306	76-7 to 76-12	
Jul	1976	18	3	489-503	76-13 to 76-17	
Oct	1976	18	4	762-773	76-18 to 76-22	
Jan	1977	19	1	146-155	77-1 to 77-5	
Apr	1977	19	2	328-335	77-6 to 77-10	
Jul	1977	19	3	563-568	77-11 to 77-15	
Oct	1977	19	4	736-744	77-16 to 77-20	
Jan	1978	20	1	181-190	78-1 to 78-5	
Apr	1978	20	2	394-400	78-6 to 78-9	
Jul	1978	20	3	593-604	78-10 to 78-15	
Oct	1978	20	4	855-863	78-16 to 78-20	
Jan	1979	21	1	139-146	79-1 to 79-5	
Apr	1979	21	2	256-263	79-6 to 79-10	
Jul	1979	21	3	395-401	79-11 to 79-15	
Oct	1979	21	4	559-569	79-16 to 79-20	

Journal Issue Checklist

• SPECT ISSN 0025-5653

Mathematical Spectrum
Publisher: Applied Probability Trust

 Δ Problems and Solutions David W. Sharpe <u>Vol</u> **Proposals** <u>Issue</u> **Pages** 1974/75 7 31 7.1-3 1 1974/75 7 2 67-70 7.4-6 1974/75 7 3 102-103 7.7-9 1975/76 8 1 33-34 8.1-3 1975/76 8 2 64-65 8.4-6 1975/76 8 3 91-95 8.7-9 1976/77 9 1 32-34 9.1-3 1976/77 9 2 64-65 9.4-6 1976/77 9 3 97-99 9.7-9 1977/78 10 1 31-34 10.1-3 1977/78 10 2 63-65 10.4-6 1977/78 10 3 97-99 10.7-9 1978/79 11 1 28-29 11.1-3 1978/79 11 2 61-65 11.4-6 1978/79 11 3 100-101 11.7-9

• SSM ISSN 0036-6803

School Science and Mathematics

Publisher: Wiley Blackwell Publishers

Problem Column Editors:

Jan 1975 to Jun 1976 Margaret F. Willerding
Oct 1976 to Dec 1979 N. J. Kuenzi
and Bob Prielipp

∆ Problem Department

<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>
Jan	1975	75	1	none	none
Feb	1975	75	2	199-204	3568-3573
Mar	1975	75	3	293-298	3574-3579
Apr	1975	75	4	381-387	3580-3585
May/Ju	n1975	75	5	473-478	3586-3591
Oct	1975	75	6	563-568	3592-3596
Nov	1975	75	7	653-658	3597-3603
Dec	1975	75	8	743-748	3606-3611
Jan	1976	76	1	82-86	3612-3617
Feb	1976	76	2	170-175	3618-3623
Mar	1976	76	3	261-266	3624-3629
Apr	1976	76	4	none	none
May/Ju	n1976	76	5	439-446	3630-3641
Oct	1976	76	6	527-534	3642-3647
Nov	1976	76	7	621-627	3648-3653
Dec	1976	76	8	714-718	3654-3659
Jan	1977	77	1	77-82	3660-3665
Feb	1977	77	2	169-174	3666-3671
Mar	1977	77	3	263-268	3672-3677
Apr	1977	77	4	353-358	3678-3683
May/Ju	n1977	77	5	443-449	3684-3689
Oct	1977	77	6	530-536	3690-3695
Nov	1977	77	7	620-627	3696-3701
Dec	1977	77	8	712-717	3702-3707
Jan	1978	78	1	81-87	3708-3713
Feb	1978	78	2	170-177	3714-3719
Mar	1978	78	3	none	none
Apr	1978	78	4	353-358	3720-3725
May/Ju		78	5	443-449	3726-3731
Oct	1978	78	6	532-537	3732-3737
Nov	1978	78	7	620-627	3738-3743
Dec	1978	78	8	712-718	3744-3749
Jan	1979	79	1	79-87	3750-3755
Feb	1979	79	2	172-176	3756-3761
Mar	1979	79	3	259-264	3762-3767
Apr	1979	79	4	355-361	3768-3773
May/Ju	n1979	79	5	444-450	3774-3779
Oct	1979	79	6	527-534	3780-3785
Nov	1979	79	7	none	none
Dec	1979	79	8	711-717	3786-3791

Notes:

[•]There were no problems numbered 3604 or 3605.

• TYCMJ

ISSN 0049-4925

The Two Year College Mathematics Journal

Publisher:..... Taylor & Francis, Ltd.
Problem column editor: Erwin Just
Associate editor: Samuel A. Greenspan
Assistant editor: Stanley Friedlander

Δ Problems and Solutions Erwin Just						
<u>Date</u>	<u>Year</u>	<u>Vol</u>	<u>Issue</u>	<u>Pages</u>	<u>Proposals</u>	
Feb	1975	6	1	32-34	33-36	
May	1975	6	2	31-35	37-41	
Sep	1975	6	3	34-37	42-46	
Dec	1975	6	4	24-28	47-53	
Feb	1976	7	1	28-32	54-60	
May	1976	7	2	49-53	61-66	
Sep	1976	7	3	47-50	67-72	
Dec	1976	7	4	33-37	73-78	
Jan	1977	8	1	42-46	79-83	
Mar	1977	8	2	95-100	84-89	
Jun	1977	8	3	177-181	90-95	
Sep	1977	8	4	240-243	96-100	
Nov	1977	8	5	292-295	101-105	
Jan	1978	9	1	40-45	106-110	
Mar	1978	9	2	95-100	111-115	
Jun	1978	9	3	176-181	116-120	
Sep	1978	9	4	236-242	121-125	
Nov	1978	9	5	297-302	126-130	
Jan	1979	10	1	52-57	131-135	
Mar	1979	10	2	127-131	136-140	
Jun	1979	10	3	210-217	141-145	
Sep	1979	10	4	293-299	146-150	
Nov	1979	10	5	359-367	151-155	

Notes:

[·]Associate Editor: Samuel A. Greenspan

[•]Added Stanley Friedlander as the Assistant Editor starting with the Jan., 1978 issue, (Volume 9, number 1).

UNSOLVED PROBLEMS

Use this section to

- · locate problems that are still unsolved
- · determine the names of proposers who have submitted unsolved problems.

This section lists those problems that were proposed during the years 1975–1979 in one of the journals covered by this index but whose complete solution has not been published as of May 1992.

An index of the proposers of these unsolved problems follows the statements of the problems (see page 422).

A problem is not listed as unsolved if

- · the journal ceased publication before the solution could be printed
- · the problem column indicates that it is a practice problem whose solution they do not intend to publish
- the problem was withdrawn
- the solution to the problem has appeared in an article listed in the citation index.

If the original problem consisted of several parts, only those parts that remain unsolved are listed.

Readers making progress on these problems should correspond with the problem column editor of the problem column in which the problem appeared. Do **not** send comments to the editors or publisher of this index. The names and addresses of the current problem column editors can be found in the Current Journal Information section of this index. If the solution to one of these problems appears as a journal article that you think we might miss when we prepare the citation index for our next volume, then MathPro Press would be pleased to receive a reference to the paper containing a solution or partial solution.

If the Problem Chronology in this index shows a problem to be unsolved but it is not listed in this section, then you should also consult the Citation Index (beginning on page 423) to see if an article has been published that contains the solution to that problem.

AMM 6016 1975–1979 AMM 6158

AMM 6016.

by C. J. Moreno AMM 6119.

by M. J. Pelling

Let $D(n) = \prod p$, where the product runs over those primes p such that p-1 divides 2n. Find an asymptotic formula for

$$\sum_{n \le x} D(n).$$

AMM 6020.

by C. W. Anderson and Dean Hickerson

A pair of distinct numbers (k, m) is called a friendly pair (k is a friend of m) if $\Sigma(k) = \Sigma(m)$, where $\Sigma(n) = \sigma(n)/n$, where $\sigma(n)$ is the sum of the divisors of n. Show that the density of solitary numbers (numbers without friends) is zero.

AMM 6028. by F. D. Hammer

Is there a polynomial in two variables with integral coefficients which is a bijection from $\mathbb{Z} \times \mathbb{Z}$ onto \mathbb{Z} ? If so, how many such polynomials are there?

AMM 6029. by P. P. Carreras

Let E[t] be a linear space provided with a separated locally convex topology t. Show that E[t] is bornological if and only if every absolutely convex bornivorous and algebraically closed subset of E[t] is a t-neighborhood of the origin.

AMM 6048. by H. M. Edgar

A positive integer n is said to be harmonic if the ratio

$$\frac{n\tau(n)}{\sigma(n)}$$

is again integral.

- (a) Are there any harmonic numbers other than 1 that are perfect squares?
 - (b) Do there exist infinitely many harmonic numbers?

AMM 6051. by Jochem Zowe

Let X be a real vector space, Y an ordered vector space and p a sublinear map of X into Y, i.e., $p(\lambda x) = \lambda p(x)$ and $p(x+x') \leq p(x) + p(x')$ for all $x, x' \in X$ and all real nonnegative λ . Does there always exist a linear map T of X into Y such that $Tx \leq p(x)$ for all $x \in X$?

AMM 6060. by Daniel Sokolowsky

For fixed $k \geq 2$, A_i , B_i (i = 1, 2, ..., k) are 2k subsets of a finite set S. What is the largest possible value of n = |S| such that the following three conditions can hold simultaneously for i = 1, 2, ..., k?

- (i) $A_i \cap B_i = \emptyset$
- $(ii) |A_i \cup B_i| = n 1$
- (iii) For each $x \in S$, $\{x\}$ is the intersection of an appropriate subcollection of the 2k sets A_i, B_i (i = 1, 2, ..., k).

AMM 6089. by E. Ehrhart

Let K be a convex body in \mathbb{R}^n of Jordan content

$$V(K) > \frac{(n+1)^n}{n!}$$

with n > 2 and with centroid at the origin. Does $K \cup (-K)$ contain a convex body C, symmetric in the origin, for which $V(C) > 2^n$?

AMM 6110. by David M. Battany

Let p and q be primes; not both even. Let m, n and v be integers; $m,n\geq 2; v\geq 0$. For each value of v, prove that there exists at most one pair of powers (p^m,q^n) such that $p^m-q^n=2^v$.

AMM 6216. by M. J. Pelling
Are there any algebraic number fields A with the prop-

Are there any algebraic number fields A with the property that $A = A_1 + A_2$ (qua abelian groups), where A_1 , A_2 are proper subfields of A?

AMM 6123. by E. G. Kundert

Let s be any integer larger than 1 and let ε_i be the following function defined on the integers:

$$\varepsilon_{i} = \begin{cases} 0 & \text{if } i \equiv 0, 6\\ 1 & \text{if } i \equiv 2, 4, 7, 11\\ -1 & \text{if } i \equiv 1, 5, 8, 10\\ 2 & \text{if } i \equiv 9\\ -2 & \text{if } i \equiv 3 \end{cases} \pmod{12}$$

Show that the following identity holds:

$$\sum_{1 \leq i, j \leq s} \varepsilon_i \varepsilon_j \binom{j+1}{s-i} \binom{s+1}{j+1} 3^{\lfloor i/2 \rfloor + \lfloor j/2 \rfloor - \lfloor (s-2)/2 \rfloor} = -3\varepsilon_s.$$

AMM 6124. by Thomas E. Elsner

Let Y be a compactification of a completely regular space X. Is there a base B for Y such that the smallest algebra of sets containing B has no element in Y - X?

AMM 6135. by Paul Erdős

Denote by P(n) the greatest prime factor of n and put

$$A(x,y) = \prod_{1 \le i \le y-x} (x+i).$$

An integer n is called exceptional if for some $x \leq n \leq y$, $(P(A(x,y)))^2$ divides A(x,y).

Prove that the density of exceptional numbers is 0 and estimate the number E(x) not exceeding x as well as you can.

AMM 6141. by Dennis Johnson and Herbert Taylor

Can the Borromean Rings be drawn without crossing on a surface of genus 2?

AMM 6144. by Carl Pomerance

If n is a natural number, denote by A(n) the arithmetic mean of the divisors of n.

- (a) Prove that the asymptotic density of the set of n, for which A(n) is an integer, is 1.
- (b) Show that for any N there is an integer m such that A(n) = m has at least N solutions.
- (c) If it exists, find the asymptotic density of the set of integers m for which A(n) = m has a solution.

AMM 6157. by C. C. Chen and D. E. Daykin

- (a) Find integers Δ , p with the following property: Whenever the lines of the complete graph K_p are colored so that every vertex is on at most Δ lines of each color, there is a triangle whose lines have different colors.
- (b) Find integers δ , p, n with the following property: Whenever the lines of a complete graph K_p are colored with n colors so that every vertex is on at least δ lines of each color, there is a triangle whose lines have different colors.

AMM 6158. by M. J. Pelling

Prove that if R is a bounded convex region of the plane of area 1 then there is a d>0 independent of R such that R is equivalent under an area preserving affine transformation to a region of diameter at most d. What is the best possible value of d?

AMM 6172 1975–1979 AMM 6281

AMM 6172. by Doug Hensley

Give an example, if possible, of two planar lattices of unit determinant that do not possess a common bounded measurable fundamental domain. Do any two distinct lattices possess a common fundamental domain?

AMM 6181. by J. M. Arnaudies

Let n be an integer with $n \geq 3$, and let A_0, A_1, \ldots, A_n be n single-valued real functions defined and continuous on a given topological Hausdorff space T. Suppose that for all $t \in T$, the 2-form

$$A_0x^n + A_1x^{n-1}y + \ldots + A_ny^n$$

(where the A_i take their values for t) defines n real distinct lines in the 2-dimensional real projective space.

Characterize spaces T such that, for any choice of the A_i , there exists a system of continuous functions $(P_1, Q_1, P_2, Q_2, \ldots, P_n, Q_n)$, real-valued, defined on T, satisfying the formal equality,

$$A_0 x^n + A_1 x^{n-1} y + \dots + A_n y^n$$

= $(P_1 x + Q_1 y)(P_2 x + Q_2 y) \dots (P_n x + Q_n y).$

AMM 6186. by Ronald Evans

Let $r, k \in \mathbb{N}$, where r is fixed. Fix $\beta > 1$. Let

$$F_r(k) = \sum (j_1 j_2 \cdots j_r)^{\beta - 1},$$

where the sum is over all vectors $(j_1, j_2, ..., j_r) \in \mathbb{N}^r$ for which $j_1 + j_2 + \cdots + j_r = k$. Prove that

$$F_r(k) \sim \frac{\Gamma^r(\beta)}{\Gamma(r\beta)} k^{\beta r - 1}$$
 as $k \to \infty$.

AMM 6189. by Edward T. H. Wang

Prove or disprove that for each natural number $n \geq 2$, one can arrange the numbers $1, 2, \ldots, n$ in a sequence such that the sum of any two adjacent terms is a prime.

AMM 6190. by D. E. Daykin and D. J. Kleitman

Let n be a square free integer that is not prime. Let F be a set of divisors of n such that neither the product of two elements of F nor n^2 divided by such a product is in F. What is the maximal proportion of the divisors of n that may lie in F?

AMM 6197. by Manuel Scarowsky

Let p be a prime; a and b positive integers; and let (x_0, y_0) be a solution of ax + by = p in positive integers with x_0 minimal, if such exists (otherwise take $x_0 = 0$). Find an estimate for $\sum_{a,b} x_0$.

AMM 6204. by F. David Hammer

- (a) If all proper subgroups of an infinite abelian group are free (as abelian groups), then the group is free.
 - (b) Find a weaker hypothesis for (a).
 - (c) Delete abelian in (a).

AMM 6211. by Alvin J. Paullay and Sidney Penner

Suppose that each square of an $n \times n$ chessboard is colored either black or white. A square, formed by the horizontal and vertical lines of the board, will be called chromatic if its four distinct corner squares are all of the same color.

Find the smallest n such that, with any such coloring, every $n \times n$ board must contain a chromatic square.

AMM 6212.

by A. A. Mullin

Prove that $\lfloor \pi^n \rfloor$ is prime for only finitely many positive integers n.

AMM 6214. by Leonard Carlitz

Let k and t be fixed integers, $k \geq 2$, $t \geq 0$ and let $A_k(kn+t)$ denote the number of permutations of

$$Z_{kn+t} = \{1, 2, 3, \dots, kn + t\}$$

such that

$$a_{kj+1} < a_{kj+2} < \dots < a_{kj+k},$$

 $a_{kj+k} > a_{kj+k+1} \quad (j = 0, 1, \dots, n-1)$

$$a_{kn+1} < a_{kn+2} < \dots < a_{kn+t}.$$

It has recently been proved as a corollary of a general result that $A_4(2n+1) = 2^{-n}A_2(2n+1)$. Prove this identity by a direct combinatorial argument.

AMM 6217. by M. J. Pelling

Let B be a subset of the nonnegative integers having positive density. Is it always true that there is an infinite subset X of B and an infinite sequence $k_1 < k_2 < \cdots$ of integers such that all the translates $X + k_i \subseteq B$?

AMM 6229. by David W. Erbach

Suppose that the plane is tiled with regular hexagons in the customary manner. Color each black or white independently with probability 1/2. What is the expected size of a connected monochromatic component? What is the probability that there is an infinite component?

AMM 6232. by Allan Wm. Johnson, Jr.

Prove or disprove: Given any integer G > 13, there exist distinct integers $x_i > 0$ such that

$$G^3 = \sum_{i=1}^{5} x_i^3.$$

AMM 6258. by John S. Lew

Let $X=(x_{jk})$ be an $m\times n$ matrix, where 1< m< n and the x_{jk} are algebraically independent indeterminates over the field $\mathbb C$ of complex numbers. Let X' be the transpose of X. Prove that $\det(XX')$ is an irreducible polynomial over $\mathbb C$.

AMM 6270. by Kenneth S. Williams

Let p be a prime congruent to 1 modulo 8. Let ε_{2p} denote the fundamental unit of the real quadratic field $Q\left(\sqrt{2p}\right)$ and let h(-2p) denote the class number of the imaginary quadratic field $Q\left(\sqrt{-2p}\right)$. Prove that if the norm of ε_{2p} is -1, then

$$h(-2p) \equiv \begin{cases} 0 \pmod{8}, & \text{if } p \equiv 1 \pmod{16} \\ 4 \pmod{8}, & \text{if } p \equiv 9 \pmod{16}. \end{cases}$$

AMM 6281. by Clark Kimberling

If $A = (1, a_1, a_2, ...)$ is a sequence of 1's and 2's, let $B = (1, b_1, b_2, ...)$ where b_n is the length of the nth maximal string of identical symbols in A. If B = A, then A must be (1, 2, 2, 1, 1, 2, 1, 2, 2, 1, ...). By a run is meant a finite subsequence of consecutive terms of A. Its complement is obtained by interchanging all 1's and 2's.

Prove or disprove:

- (a) The complement of every run is also a run;
- (b) Every run occurs infinitely many times.

AMM E2521 1975–1979 AMM E2774

AMM E2521.

by John A. Cross

An instructor has a file of p questions of equal diagnostic value in testing students on a certain topic. He gives q-question tests repeatedly (q < p). How many test forms can he compose if any n-size subset, $1 \le n < q$, of the p questions may appear on at most two tests, and no subset of size m > n may appear on more than one test? Determine an algorithm for composing the set of possible tests, for any allowable p, q, n.

AMM E2530. by F. Loupekine

- (a) Show that it is possible to partition the natural numbers into three classes so that if (x, y, z) is a primitive Pythagorean triple, then x, y, z are in different classes.
- (b) Can such a partition be made if the above is to hold for all Pythagorean triples, not just primitive ones?

AMM E2539. by A. Vince

Let F_n denote the nth Fibonacci number. Prove or disprove: If $m^2 \mid F_n$, then $m \mid n$.

AMM E2569. by Harry Dweighter

The chef in our place is sloppy, and when he prepares a stack of pancakes they come out all different sizes. Therefore, when I deliver them to a customer, on the way to the table I rearrange them (so that the smallest winds up on top, and so on, down to the largest on the bottom) by grabbing several from the top and flipping them over, repeating this (varying the number I flip) as many times as necessary. If there are n pancakes, what is the maximum number of flips (as a function of n) that I will ever have to use to rearrange them?

AMM E2571. by Sidney Kravitz

Find all numbers n for which $\sigma(n) = 2n - 2$.

AMM E2594. by David P. Robbins

Suppose that $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ are vectors corresponding to the edges of an oriented regular polygon. Since their sum is 0, an object undergoing displacements by each of these vectors in some order traces out a closed polygon. If this order is chosen at random, what is the probability that the polygon does not intersect itself?

AMM E2596. by Mark A. Spikell

Suppose one is supplied with a collection of Cuisenaire rods having dimension $1 \times 1 \times a$, where the length a belongs to a finite set A of positive integers and the number of rods of length $a \in A$ may be supposed to be unlimited. For which s can one build a $1 \times s \times s$ square from one's collection?

AMM E2688. by David Jackson

Let $\{f_i\}$ and $\{g_i\}$ $(i=0,1,2,\ldots)$ be the solutions of the recurrence equation

$$u_{m+1} = -u_m - m(m+1)xu_{m-1}$$

satisfying the initial conditions $f_0 = 0$, $f_1 = 1$ and $g_0 = 1$, $g_1 = -1$, respectively. Show that the coefficient of x^{n-1} in the Maclaurin expansion of $-f_n/g_n$ is t_{2n-1} where

$$\tan x = \sum_{n>1} t_{2n-1} \frac{x^{2n-1}}{(2n-1)!} .$$

AMM E2702.

by David Jackson

Let $a=(a_1,a_2,\ldots,a_{2m})$ be a non-decreasing sequence of positive integers. Let S denote the set of sequences obtained from a by permuting its terms. Let A, B, C be the subsets of S consisting of those sequences $s=(s_1,s_2,\ldots,s_{2m})$ that satisfy

$$s_1 < s_2 \ge s_3 < s_4 \ge \dots \ge s_{2m-1} < s_{2m}$$

$$\prod_{i=1}^{2m} (s_i - a_i) > 0, \qquad \prod_{i=1}^{2m} (s_i - a_i) < 0,$$

respectively. Show that |A| is equal to the absolute value of |B| - |C|.

AMM E2713. by Saul Singer

A stack of x rings is given, decreasing in size from the bottom up. In addition, y empty stacks are provided ($y \ge 2$). Let N(x,y) be the minimum number of moves necessary to transfer the rings to one of the empty stacks subject to the following two rules:

- (1) Move just one ring at a time,
- (2) at no time can a larger ring be placed atop a smaller one.

It is conjectured that

$$N(x,y) = \sum_{k=1}^{m} 2^{k-1} \binom{k+y-3}{y-2} + 2^{m} \left[x - \binom{m+y-2}{y-1} \right],$$

where m is the largest integer such that the expression in the brackets is nonnegative.

AMM E2717. by E. Ehrhart

Find the number of symmetric 4×4 matrices whose entries are all the integers from 1 to 10 and whose row-sums are all equal.

AMM E2722. by Clark Kimberling

A ball is drawn from an urn containing one red ball and one green ball. If it is red it is returned to the urn with one additional red ball and one additional green ball, but if it is green no balls are put into the urn. After the first drawing, subsequent drawings take place following the same rules. Find the probability that the urn contains at least one green ball at all times.

AMM E2740. by Victor Pambuccian

Show that if P is a convex polyhedron, one can find a square all of whose vertices are on four different faces of P.

AMM E2757. by Harry D. Ruderman

Let a, b, c be three lines in \mathbb{R}^3 . Find points A, B, C on a, b, c, respectively, such that AB+BC+CA is a minimum.

AMM E2759. by Hugh L. Montgomery

Suppose that $a^{-1} \le f''(x) \le 2a^{-1}$ for $0 \le x \le a$, where $a \ge 8$. Prove that there exists a lattice point (m, n) such that $0 \le m \le a$ and $|f(m) - n| \le 2a^{-1/2}$.

AMM E2774. by James Propp

Prove or disprove that, given a convex two-dimensional figure S, six translates of S can fit inside a homothetic figure three times as large as S in linear dimensions.

1975-1979 AMM E2779 **CRUX 443**

AMM E2779.

CRUX 250.

by Gilbert W. Kessler For integers m and n, if $|3^m - 2^n| \neq 1$, is there always

M E2779. by H. Schwerdtfeger (a) Let $A = \left(a^{(1)}a^{(2)}\dots a^{(n)}\right)$ be a non-singular ma-

trix, over a field F, whose columns $a^{(j)}$ represent points in the n-dimensional affine space S_n . Let π be the hyperplane passing through the points $a^{(1)}, \ldots, a^{(n)}$. Let $b \in S_n, b \neq 0$, and B be the matrix $(b \ b \dots b)$. Show that the determinant |A-B|=0 if and only if $b\in\pi$.

- (b) Generalize statement (a) to a more general matrix of rank one, namely $B = (\gamma_1 b \dot{\gamma}_2 b \dots \dot{\gamma}_n b), \ \dot{\gamma}_1 \dot{\gamma}_2 \dots \dot{\gamma}_n \neq 0,$
- (c) If A is singular and Σ is the subspace of S_n generated by the columns of A, show that there is no b in Σ such that $|A - B| \neq 0$, with $B = (b \ b \dots b)$.

AMM E2794. by Robert A. Leslie

Let m, n, r, and c be positive integers with rm = cn. How many $m \times n$ matrices are there with each entry either 0 or 1 and where every row sum is r and every column sum is c?

AMM E2804. by Harry D. Ruderman

Let k be a positive integer and S_k be the set of integers j expressible in the form

$$j = k|ab| + a + b,$$

where a, b, run through the nonzero integers. Find the cardinality of the set of positive integers not in S_k .

AMM S21.

by Paul Erdős

Let

$$A(n,k) = (n+1)(n+2)\cdots(n+k),$$

$$B(n,k) = \text{lcm}[n+1, n+2, \dots, n+k],$$

and

$$\alpha(n,k) = \frac{A(n,k)}{B(n,k)} .$$

Do m, n, and k exist with m > n + k - 1 and $\alpha(m, k) =$ $\alpha(n,k)$?

CMB P268. by P. Erdős and E. C. Milner

A graph G = (V, E) is said to be realized if there is a family of sets $\{A_x : x \in V\}$ associated with the vertices of G such that $A_x \subset \{0, 1, 2...\}$ and such that $\{x, y\}$ is an edge of G if and only if $A_x \cap A_y = \emptyset$. Is it true that any bipartite graph on 2^{\aleph_0} vertices is realizable?

CMB P277. by Allan M. Krall and D. J. Allwright

Let R(z) be a rational function of the complex variable z, and let Γ be the locus of R(ix) for x real. Prove that Γ partitions the plane into finitely many regions.

CRUX 133. submitted by Kenneth S. Williams

Let f be the operation that takes a positive integer nto n/2 (if n even) and to 3n+1 (if n odd). Prove or disprove that any positive integer can be reduced to 1 by successively applying f to it.

CRUX 154. by Kenneth S. Williams

Let p_n denote the *n*th prime. Prove or disprove that the following method finds p_{n+1} given p_1, p_2, \ldots, p_n .

In a row list the integers from 1 to $p_n - 1$. Corresponding to each r $(1 \le r \le p_n - 1)$ in this list, say $r = p_1^{a_1} \dots p_{n-1}^{a_{n-1}}$, put $p_2^{a_1} \dots p_n^{a_{n-1}}$ in a second row. Let l be the smallest odd integer not appearing in the second row. The claim is that $l = p_{n+1}$.

a prime between 3^m and 2^n ? CRUX 266. by Daniel Rokhsar

Let d_n be the first digit in the decimal representation of n!. Find expressions for d_n and $\sum_{i=0}^n d_i$.

CRUX 339. by Steven R. Conrad

Is $\binom{37}{2} = 666$ the only binomial coefficient $\binom{n}{r}$ whose decimal representation consists of a single digit repeated ktimes with $k \geq 3$?

CRUX 342. by James Gary Propp

For fixed even n with n > 2, the set of all positive integers is partitioned into the (disjoint) subsets S_1, S_2, \ldots, S_n as follows: for each positive integer m, we have $m \in S_k$ if and only if k is the largest integer such that m can be written as the sum of k distinct elements from one of the nsubsets

Prove that $m \in S_n$ for all sufficiently large m.

by Steven R. Conrad

It is known that the greatest integer function satisfies the functional equation

$$f(nx) = \sum_{k=0}^{n-1} f\left(x + \frac{k}{n}\right)$$

for all real x and positive intrgers n. Are there other functions which satisfy this equation? Find as many as possible.

CRUX 355. by James Gary Propp

Given a finite sequence $A = (a_n)$ of positive integers, we define the family of sequences

$$A_0 = A;$$
 $A_i = (b_r),$ $i = 1, 2, 3, \dots,$

where b_r is the number of times that the rth lowest term of A_{i-1} occurs in A_{i-1} .

For example, if $A = A_0 = (2, 4, 2, 2, 4, 5)$, then $A_1 =$ $(3,2,1), A_2 = (1,1,1), A_3 = (3), \text{ and } A_4 = (1) = A_5 = (3)$

The degree of a sequence A is the smallest i such that

Let A(d) be the length of the shortest sequence of degree d. Find a formula, recurrence relation, or asymptotic approximation for A(d).

Given sequences A and B, define C as the concatenation of A and B. Find sharp upper and lower bounds on the degree of C in terms of the degrees of A and B.

CRUX 410. by James Gary Propp

Are there only finitely many powers of 2 that have no zeros in their decimal expansions?

by Harold N. Shapiro

It is known that all the solutions in positive integers x, y, m, n of the equation

$$(m!)^x = (n!)^y$$

are given by m = n = 1; and m = n, x = y.

Prove this result without using Bertrand's Postulate or equivalent results from number theory.

CRUX 443. by Allan Wm. Johnson Jr.

Does there exist a set of more than seven consecutive squares with the property that each has its decimal digits summing to a square?

CRUX 473 1975-1979 MENEMUI 1.1.1

FQ H-271.

CRUX 473.

by A. Liu

Define the binary dual, D, as follows:

by R. Whitney

The set of all positive integers is partitioned into the disjoint subsets T_1, T_2, T_3, \ldots as follows: for each positive integer m, we have $m \in T_k$ if and only if k is the largest integer such that m can be written as the sum of k distinct elements from one of the subsets. Prove that each T_k is finite.

$$D = \left\{ t \mid t = \prod_{i=0}^{n} (a_i + 2i); \quad a_i \in \{0, 1\}; \quad n \ge 0 \right\}$$

CRUX 490. by Michael W. Ecker Let \bar{D} denote the complement of D, with respect to the set of positive integers. Form a sequence, $\{S_n\}_{n=1}^{\infty}$, by arranging D in increasing order. Find a formula for S_n .

Are there infinitely many palindromic primes?

FQ H-296. by C. Kimberling Suppose x and y are positive real numbers with y > 1. Find the least positive integer n for which

by R. C. Lyness Let A, B, C be the angles of a triangle. It is known that there are positive x, y, z, each less than $\frac{1}{2}$, simultaneously satisfying

$$\left| \frac{x}{n+y} \right| = \left\lfloor \frac{x}{n} \right\rfloor.$$

$$y^{2} \cot \frac{B}{2} + 2yz + z^{2} \cot \frac{C}{2} = \sin A,$$

 $z^{2} \cot \frac{C}{2} + 2zx + x^{2} \cot \frac{A}{2} = \sin B,$

FQ H-300. by James L. Murphy Given two relatively prime positive integers A and B,

 $x^2 \cot \frac{A}{2} + 2xy + y^2 \cot \frac{B}{2} = \sin C.$

form a multiplicative Fibonacci sequence $\{A_i\}$ with $A_1 = A$, $A_2 = B$, and $A_{i+2} = A \times A_{i+1}$. Now form the sequence of partial sums $\{S_n\}$ where

In fact, $\frac{1}{2}$ may be replaced by a smaller k > 0.4. What is the least value of k?

$$S_n = \sum_{i=1}^n A_i.$$

CRUX 494. by Rufus Isaacs

 $\{S_n\}$ is a subsequence of the arithmetic sequence $\{Y_n\}$ where $T_n = A + nB$, and by Dirichlet's theorem we know that infinitely many of the T_n are prime. The question is: Does such a sparse subsequence $\{S_n\}$ of the arithmetic sequence A + nB also contain infinitely many primes?

Let r_j , j = 1, ..., k, be the roots of a polynomial with integral coefficients and leading coefficient 1.

> FQ H-304. by V. E. Hoggatt, Jr.

Prove or disprove: for any positive integer n,

(a) Show that there is a unique partition of the positive integers, \mathbb{N} , into two sets, A_1 and A_2 , such that

$$n \; \Big| \; \sum_j \Bigl(\sum_{d \mid n} r_j^d \mu(n/d) \Bigr),$$

$$A_1 \cup A_2 = \mathbb{N}, \quad A_1 \cap A_2 = \emptyset,$$

where μ is the Möbius function.

and no two distinct elements from the same set add up to a Lucas number.

FQ B-408. by Lawrence Somer Let $d \in \{2,3,\ldots\}$ and $G_n = F_{dn}/F_n$. Let p be an odd prime and z = z(p) be the least positive integer n with $F_n \equiv 0 \pmod{p}$. For d = 2 and z(p) an even integer 2k, it

(b) Show that every positive integer, M, which is not a Lucas number is the sum of two distinct elements of the same set.

 $F_{n+1}G_{n+k} \equiv F_nG_{n+k+1} \pmod{p}$.

FQ H-305. by Martin Schechter

Establish a generalization for $d \geq 2$.

For fixed positive integers, m, n, define a Fibonaccilike sequence as follows:

$$S_1 = 1, \ S_2 = m, \ S_k = \left\{ \begin{matrix} mS_{k-1} + S_{k-2} & \text{if k is even} \\ nS_{k-1} + S_{k-2} & \text{if k is odd} \end{matrix} \right.$$

Let F_n be the Fibonacci sequence (defined for all integers n). Prove that every positive integer m has at least one representation of the form

Show that the sequence obtained when [m = 1, n =4] and when [m = 1, n = 8], respectively, have only the element 1 in common.

$$m = \sum_{j=-N}^{N} \alpha_j F_j,$$

FQ H-309. by David Singmaster

with each α_i in $\{0,1\}$ and $\alpha_i = 0$ when j is an integral multiple of 3.

Let f be a permutation of $\{1, 2, ..., m-1\}$ such that the terms i + f(i) are all distinct (mod m). Characterize and/or enumerate such f.

FQ H-254.

is known that

MENEMUI 1.1.1.

by T. N. T. Goodman For $n = 1, 2, 3, \ldots$, show that

Evaluate

 $\sum F_{\binom{n}{k}}.$

 $\sum_{n=1}^{n} \int_{0}^{\pi} \left\{ \cos \theta(u-\pi) \sec \theta\pi - 1 \right\} \csc \frac{u}{2} du = 2n \log n.$

where

by R. Whitney

FQ H-260. by H. Edgar Are there infinitely many subscripts, n, for which F_n or L_n are prime?

$$\theta = \frac{1}{2} - \frac{2j-1}{2n}.$$

418

MENEMUI 1.3.3 1975-1979 SIAM 76-7

MENEMUI 1.3.3.

SIAM 75-13. by S. L. Lee

by M. Golberg

If f is continuously differentiable up to derivatives of 4th order and f(-1) = f(1) = 0, find the least constant A such that

 $\left| \int_{-\sqrt{3}}^{\sqrt{3}} f(x) \, dx \right| \le A.$

MM 1007. by Thomas E. Elsner

It is known that given a nonnegative integer n, there is a positive integer k, such that k occurs in exactly n distinct Pythagorean triples (x, y, z), x < y < z, $x^2 + y^2 = z^2$. For each n, determine $m_n = \min\{k : k \text{ occurs in exactly } n\}$ Pythagorean triples}.

MM 1015. by Allan W. Johnson, Jr.

Show that for $n \geq 5$ there are 2n+1 distinct, positive, odd, square-free integers whose reciprocals add to one.

MM 1021. by Peter Ørno

Prove or disprove that a countably infinite set of positive real numbers with a finite nonzero cluster point can be arranged in a sequence, $\{a_n\}$, so that $\{(a_n)^{1/n}\}$ is conver-

MM 1068. by James Propp

Given a simple closed curve S, let the "navel" of Sdenote the envelope of the family of lines that bisect the

If S is arbitrary (or bounds a convex set), find a sharp upper bound for the ratio of the area within the navel of Sto the area within S.

MM 1073. by James Propp

Let A and B be the unique nondecreasing sequences of odd integers and even integers, respectively, such that for all n > 1, the number of integers i satisfying $A_i = 2n - 1$ is A_n and the number of integers i satisfying $B_i = 2n$ is B_n . That is, A = (1, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 9, 9, ...) and B = (2, 2, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, ...). Is the difference $|A_n - B_n|$ bounded?

MM 1088. by Alan Wayne

For each positive integer m, how many triangles with integer sides are there that have an area equal to m times the perimeter?

PME 389. by Paul Erdős

Find a sequence of positive integers $1 \le a_1 < a_2 < \cdots$ that omits infinitely many integers from every arithmetic progression (in fact it has density 0) but which contains all but a finite number of terms of every geometric progression. Prove also that there is a set S of real numbers which omits infinitely many terms of any arithmetic progression but contains every geometric progression (disregarding a finite number of terms).

SIAM 75-6.

by P. C. T. de Boer and G. S. S. Ludford

Show that there exists a continuous solution of

$$y'' = (2y^{\alpha} - x)y, \qquad \alpha > 0,$$

for $-\infty < x < \infty$ such that

$$y \sim (x/2)^{1/\alpha} \left[1 + (1 - \alpha)/\alpha^3 x^3 + \cdots \right]$$

as $x \to +\infty$; and that, for some $k(\alpha)$, $y \sim k \operatorname{Ai}(-x)$ as

Let P denote an $n \times n$ primitive stochastic matrix and let R denote a diagonal matrix with diagonal (r_1, r_2, \ldots, r_n) , where $0 \le r_i \le 1$. Determine

$$\lim_{N \to \infty} \frac{1}{N} \left\{ \sum_{k=1}^{N} \frac{(P+R)^k}{\left(1 + \sum_{i=1}^{n} \frac{r_i}{n}\right)^k} \right\}.$$

SIAM 75-14.

by M. W. Green, A. J. Korsak, and M. C. Pease

It has been found in practice that the following very simple (but very effective) procedure always converges for any n starting trial roots:

$$x'_{i} = \frac{x_{i} - P(x_{i})}{\prod_{j \neq i} (x_{i} - x_{j})}, \quad i = 1, 2, \dots, n,$$

where P(x) is an arbitrary (complex coefficient) monic polynomial in x of degree n. In fact, even when P(x) has multiple roots, the above procedure still converges, but only linearly (as opposed to quadratically in the distinct root case). Show that this procedure is globally convergent outside of a set of measure zero in the starting space and describe this set for n > 2.

SIAM 76-3. by S. A. Rice

Determine the inverse Laplace transforms, or at least asymptotic formulas for large time t, of the following three functions:

$$\frac{I_v(x)}{I_v(y)},$$

$$\frac{I_v(x)I_v(z)K_v(y)}{I_v(y)},$$

$$I_v(z)K_v(x).$$

Here $I_v(x)$ and $K_v(x)$ are modified Bessel's functions of the first and second kind, respectively, and $v = \sqrt{as}$, where s is the Laplace transform parameter, a is a constant, and $x \neq y \neq z$.

SIAM 76-7. by R. D. Spinetto

Suppose a company wants to locate k service centers that will service n communities and suppose that the company wants to locate these k centers in k of the communities so that the total population distance traveled by the people in the n-k communities without service centers to those communities with service centers is minimized. This problem can be set up as a 0-1 integer programming problem as follows. Let

$$x_{jj} = \begin{cases} 1 & \text{if community } j \text{ gets a service center,} \\ 0 & \text{otherwise,} \end{cases}$$

and let

$$x_{ij} = \begin{cases} 1 & \text{if community } i \text{ is to be serviced by a center} \\ & \text{in community } j, \\ 0 & \text{otherwise.} \end{cases}$$

Let p_i be the population of community i and let d_{ij} be the distance from community i to community j. The problem then is to minimize

$$\sum_{i=1}^{n} \sum_{j=1}^{n} p_i d_{ij} x_{ij},$$

subject to constraints

$$\sum_{j=1}^{n} x_{ij} = 1 \quad \text{for } i = 1, 2, 3, \dots, n;$$

SIAM 76-10 1975-1979 SIAM 77-14

$$x_{ij}-x_{jj} \leq 0$$
 for $i=1,2,3,\ldots,n,$ and for $j=1,2,3,\ldots,n;$
$$\sum_{j=1}^n x_{jj}=k,$$

and with the added condition that each of the variables x_{ii} and x_{ij} takes on only the values of 0 or 1.

If one ignores this last 0-1 condition and solves the problem as though it were a linear programming problem, then one will find that very often (but not always) an optimal extreme point solution to this linear programming problem will in fact be a 0-1 extreme point. Perhaps this is due to the fact that most of the extreme points of the polyhedron determined by the constraints shown above are in fact 0-1 extreme points, but it cannot be proven. This, in turn, suggests the following problems:

- (a) What are the smallest n and k for which there exists a linear programming problem of the above form which will have only non-0-1 optimal extreme point solutions?
- (b) Can the non-0-1 extreme points of polyhedrons determined by the constraints shown above be characterized in any set theoretic way that would be useful in developing more efficient algorithms for solving this facility location problem?
- SIAM 76-10. by L. Wijnberg and M. L. Glasser If $\alpha > 1$, $v \ge 0$, and

$$S_v(x) \equiv \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} {m+n \choose m} (2\alpha)^m J_{v+m+2n+1}(x),$$

it is known that

$$S_v(x) = \frac{1}{2} \left\{ \frac{e^{\alpha x} \left[(1 + \alpha^2)^{1/2} - \alpha \right]^v}{(1 + \alpha^2)^{1/2} - G_v(\alpha, x)} \right\},\,$$

where

$$G_v(\alpha, x) = \sum_{k=0}^{\infty} \alpha^{-k-1} J_v^{(k)}(x).$$

Can a similar result be found for $0 < \alpha < 1$? Also, is there a closed form for $G_v(\alpha, x)$?

by A. S. Perelson and C. Delisi The following system of nonlinear differential equations

$$\frac{dx_n}{dt} = 2k \sum_{m=1}^{n-1} x_{n-m} y_m - 2x_n (kS + k'n) + k' \sum_{m=n}^{\infty} (2x_m + y_m), \qquad n = 1, 2, \dots,$$

$$\frac{dy_n}{dt} = 4k \sum_{m=1}^{n} z_{n-m} x_m + k \sum_{m=1}^{n-1} y_{n-m} y_m - y_n \left[k(S+L) + (2n-1)k' \right] + 2k' \left[\sum_{m=n+1}^{\infty} x_m + \sum_{m=n+1}^{\infty} y_n + \sum_{m=n}^{\infty} z_m \right],$$

$$\frac{dz_n}{dt} = 2k \sum_{m=1}^{n} z_{n-m} y_m - 2z_n (kL + k'n) + k' \sum_{m=n+1}^{\infty} (2z_m + y_m), \qquad n = 0, 1, 2, \dots,$$

where

$$S = \sum_{m=1}^{\infty} y_m + 2\sum_{m=0}^{\infty} z_m$$

and

$$L = \sum_{m=1}^{\infty} \left(y_m + 2x_m \right),\,$$

subject to the initial conditions $x_1(0) = a$, $x_n(0) = 0$ (n = 2, 3, ...), $y_n(0) = 0 = z_n(0)$ (n = 1, 2, ...), $z_0 = b$, with k and k' being nonnegative constants, can be solved by a combinatorial method.

The problem we pose is to generate the combinatoric solution via direct methods applied to equations one through three.

by L. Carlitz SIAM 76-14. The following formulas appear in an earlier paper:

$$\sum_{i=0}^{m} \sum_{j=0}^{n} (-1)^{i+j} \frac{\binom{m}{i}^2 \binom{n}{j}^2}{\binom{m+n}{i+j}} = \delta_{mn},$$

$$\sum_{r=0}^{\min(i,j,k)} \frac{\binom{i}{r} \binom{j}{r} \binom{k}{r}}{\binom{i+j+k}{r}} = \frac{(j+k)!(k+i)!(i+j)!}{i!j!k!(i+j+k)!} .$$

Simpler proofs of these would be desirable

SIAM 76-21. by P. Barrucand Define the polynomials $\{p_n(x, m, \gamma)\}$ by the generating

$$\sum p_n(x, m, \gamma)t^n = \frac{\exp(xt)}{[\Gamma(1+\gamma+t)]^m} ,$$

m positive integer, $\gamma > -1$.

Prove that for every n, all the zeros of $p_n(x)$ are real and give an asymptotic formula for the lesser-in-modulus (i.e., the greater) negative zeros.

SIAM 77-5. by M. L. Glasser

$$S(r) = \sum_{k=1}^{\infty} (-1)^{k+1} \sinh y \operatorname{csch} ky \left(y = \cosh^{-1} r \right).$$

Prove whether or not S(r) is monotone between $S(1) = \log 2$ and $S(\infty) = 1$.

SIAM 77-14. by G. K. Kristianse Let $P = \{p_{rs}\}$ be a symmetric matrix having (1) $p_{rs} = 0$ for |r - s| > 1 and $p_{rs} > 0$ otherwise, (2) spectral radius 1, and (3) $p_{s-1,s} + p_{s+1,s} \le 1$ for all s. Denote by e^T the $1 \times n$ matrix with all entries 1, and let by G. K. Kristiansen

$$I = \{\delta_{rs}\}$$

be the $n \times n$ unit matrix. Let c be a nonnegative $n \times 1$ matrix with $e^T c = 1$. Prove or disprove that the matrix

$$F = \left(I - ce^T\right)P$$

has spectral radius at most equal to 1. If a counterexample is found, try to minimize the order n.

SIAM 78-1 1975–1979 SIAM 79-17

SIAM 78-1.

by J. S. Lew

Let (x, y) be an arbitrary point of the Euclidean unit disc D, let a(p; x, y) denote the average l^p distance to a random disc point (u, v), and let b(p; r) denote the rotational average of this function a(p; x, y):

$$D = \{(x, y) : x^2 + y^2 \le 1\},$$

$$a(p; x, y) = \int \int_D \{|x - u|^p + |y - v|^p\}^{1/p} du dv/\pi,$$

$$b(p; r) = \int_0^{2\pi} a(p; r\cos\theta, r\sin\theta) d\theta/(2\pi).$$

To measure the deviation from this average, we introduce the ratio of these quantities and we consider its extrema on the disc:

$$\begin{split} c(p;x,y) &= a(p;x,y)/\left[b\left(p;\sqrt{x^2+y^2}\ \right)\right],\\ \lambda(p) &= \inf\left\{c(p;x,y): (x,y) \in D\right\},\\ \mu(p) &= \sup\left\{c(p;x,y): (x,y) \in D\right\}. \end{split}$$

Conjecture: $\lambda(p)\uparrow 1$ and $\mu(p)\downarrow 1$ as either $p\uparrow 2$ or $p\downarrow 2.$

SIAM 78-4. by C. L. Mallows

Find the symmetric cumulative distribution function G(x) satisfying $dG(0) = \alpha, \ 0 < \alpha < 1$ that minimizes the integral

$$I_f = \int_{-\infty}^{\infty} \frac{\left(f'(x)\right)^2}{f(x)} \, dx,$$

where f(x) is the convolution

$$f(x) = \int_{-\infty}^{\infty} \phi(x - u) dG(u),$$

with $\phi(u)$ the standard Gaussian density

$$\phi(u) = (2\pi)^{-1/2} \exp\left[-\frac{1}{2}u^2\right].$$

It is believed that G is a step function, so that

$$f(x) = \sum p_j \phi \left(x - g_j \right),\,$$

with $g_{-j} = -g_j$, $p_{-j} = p_j > 0$, $p_0 = \alpha$.

SIAM 78-9. by W. Aiello and T. V. Narayana

Suppose we assign positive integer weights to the vote of each member of a board of directors that consists of n members so that the following conditions apply:

- (1) Different subsets of the board always have different total weights so that there are no ties in voting (tie-avoiding).
- (2) Any subset of size k will always have more weight than any subset of size k-1 ($k=1,\ldots,n$) so that any majority carries the vote, abstentions allowed (nondistorting).

A solution is given in Table 1 below for $n=1,\ldots,7$ that can be extended very easily from any n to n+1. It is conjectured that this is a minimal dominance solution. Here, an increasing sequence (y_1,\ldots,y_n) is said to dominate another increasing sequence (x_1,\ldots,x_n) if $y_i \geq x_i$ $(i=1,\ldots,n)$. So a solution (x_1,\ldots,x_n) is minimal dominant if no other solution (y_1,\ldots,y_n) exists such that $x_i \geq y_i$ $(i=1,\ldots,n)$. The underlined values along the diagonal of vector elements are the I_n values, where:

$$I_1 = I_2 = 1$$
 and $I_{2n+1} = 2I_n$,
$$I_{2n+2} = 2I_{2n+1} - I_n$$
.

SIAM 78-13.

by T. D. Rogers

Given n points distributed uniformly in the unit circle, with n > 2, associate with each such point the region in the circle whose points are closer to it than the remaining n-1 a priori given points. If $A_1 \leq A_2 \leq \cdots \leq A_n$ is the ordered enumeration of the areas of these regions, what are the expected values of the A_i 's?

SIAM 79-1.

by I. Lux

Let V be an arbitrary three-dimensional spatial region. Let $P=(\mathbf{r},\omega)$, a six-dimensional phase space point, where $\mathbf{r}\in V$ and ω is a directional unit vector. Define a function $M_{\lambda}(P)$ through the following integral equation

$$M_{\lambda}(P) = 1 - e^{-D} + \frac{\lambda}{4\pi} \int_{0}^{D} e^{-\lambda x} dx \int M_{\lambda} (P') d\omega'$$

where $P' = (\mathbf{r} + x\omega, \omega')$, λ is an arbitrary but positive parameter, D is the distance between the point \mathbf{r} and the boundary of V along the direction ω and the integral over $d\omega'$ is a double integral over the surface of a unit sphere. Prove or disprove that

$$\frac{d}{d\lambda}M_{\lambda}(P)\Big]_{\lambda=1} \ge 0.$$

SIAM 79-4.

by K. L. McAvanev

For positive integer n, maximize the number of $n \times n$ matrices each containing all of $1, 2, \ldots, n^2$ such that any two entries appear simultaneously in at most one row of all the matrices.

SIAM 79-6.

by L. B. Klebanov

Let f(x), g(x) be two probability densities on \mathbb{R}^1 with g(x) > 0. Suppose that the condition

$$\int_{-\infty}^{\infty} (u - c) \prod_{j=1}^{n} f(x_j - u) g(u) du = 0$$

holds for all x_1,x_2,\ldots,x_n such that $\sum_{j=1}^n x_j=0$ where $n\geq 3$ and c is some constant. Prove that

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-a)^2}{2\sigma^2}\right\}.$$

SIAM 79-16.

by D. Singmaster

Determine the resistances R(n,i) between two nodes a distance i apart in an n-cubical network if all of the edges are of unit resistance.

SIAM 79-17.

by W. R. Utz

Determine an algorithm, better than complete enumeration, for the following problem: Given a nonnegative integer matrix, permute the entries in each column independently so as to minimize the largest row sum.

1975-1979 Aiello, W. Zowe, Jochem

AUTHOR INDEX TO UNSOLVED PROBLEMS

D	II
Proposer W. A. II	Unsolved Problems Proposed
W. Aiello	SIAM 78–9
D. J. Allwright	CMB P277
C. W. Anderson	AMM 6020
J. M. Arnaudies	AMM 6181
P. Barrucand	SIAM 76-21
David M. Battany	AMM 6110
Leonard Carlitz	AMM 6214, SIAM 76–14
P. P. Carreras	AMM 6029
C. C. Chen	AMM 6157
Steven R. Conrad	CRUX 339, CRUX 343
John A. Cross	AMM E2521
D. E. Daykin	AMM 6157, AMM 6190
C. Delisi	SIAM 76–12
P. C. T. de Boer	SIAM 75–6
Harry Dweighter	AMM E2569
Michael W. Ecker	CRUX 490
H. M. Edgar	AMM 6048, FQ H–260
E. Ehrhart	AMM 6089, AMM E2717
Thomas E. Elsner	AMM 6124, MM 1007
David W. Erbach	AMM 6229
Paul Erdős	AMM 6135, AMM S21,
	CMB P268, PME 389
Ronald Evans	AMM 6186
M. L. Glasser	SIAM 76–10, SIAM 77–5
M. Golberg	SIAM 75–13
T. N. T. Goodman	MENEMUI 1.1.1
M. W. Green	SIAM 75–14
F. David Hammer	AMM 6204, AMM 6028
Doug Hensley	AMM 6172
Dean Hickerson	AMM 6020
V. E. Hoggatt, Jr.	FQ B-416, FQ H-304
Rufus Isaacs	CRUX 494
David Jackson	AMM E2688, AMM E2702
Gene Jakubowski	FQ B-416
Allan Wm. Johnson, Jr.	
1111011 ((1111 0011110011, 011	MM 1015
Dennis Johnson	AMM 6141
Gilbert W. Kessler	CRUX 250
Clark Kimberling	AMM 6281, AMM E2722,
G	FQ H-296
L. B. Klebanov	SIAM 79–6
D. J. Kleitman	AMM 6190
A. J. Korsak	SIAM 75–14
Allan M. Krall	CMB P277
Sidney Kravitz	AMM E2571
G. K. Kristiansen	SIAM 77–14
E. G. Kundert	AMM 6123
S. L. Lee	MENEMUI 1.3.3

```
Robert A. Leslie
                      AMM E2794
John S. Lew
                      AMM 6258, SIAM 78-1
A. Liu
                      CRUX 473
F. Loupekine
                      AMM E2530
G. S. S. Ludford
                      SIAM 75–6
I. Lux
                      SIAM 79-1
R. C. Lyness
                      CRUX 493
C. L. Mallows
                      SIAM 78-4
K. L. McAvaney
                      SIAM 79-4
E. C. Milner
                      CMB P268
Hugh L. Montgomery
                      AMM E2759
C. J. Moreno
                      AMM 6016
A. A. Mullin
                      AMM 6212
James L. Murphy
                      FQ H-300
T. V. Narayana
                      SIAM 78-9
Peter Ørno
                      MM 1021
Victor Pambuccian
                      AMM E2740
Alvin J. Paullay
                      AMM 6211
M. C. Pease
                      SIAM 75-14
M. J. Pelling
                      AMM 6119, AMM 6158,
                      AMM 6217
Sidney Penner
                      AMM 6211
A. S. Perelson
                      SIAM 76–12
Carl Pomerance
                      AMM 6144
James Gary Propp
                      AMM E2774, CRUX 342,
                      CRUX 355, CRUX 410,
                      MM 1068, MM 1073
S. A. Rice
                      SIAM 76-3
David P. Robbins
                      AMM E2594
T. D. Rogers
                      SIAM 78-13
Daniel Rokhsar
                      CRUX 266
Harry D. Ruderman
                      AMM E2757, AMM E2804
Manuel Scarowsky
                      AMM 6197
Martin Schechter
                      FQ H-305
                      \dot{\text{AMM}} E2779
H. Schwerdtfeger
Harold N. Shapiro
                      CRUX 434
Saul Singer
                      AMM E2713
                      FQ H-309, SIAM 79-16
David Singmaster
Dan Sokolowsky
                      AMM\ 6060
                      FQ B-408
Lawrence Somer
Mark A. Spikell
                      AMM E2596
R. D. Spinetto
                      SIAM 76-7
Herbert Taylor
                      AMM 6141
W. R. Utz
                      SIAM 79-17
A. Vince
                      AMM E2539
Edward T. H. Wang
                      AMM 6189
Alan Wayne
                      \mathrm{MM}\ 1088
R. Whitney
                      FQ H-254, FQ H-271
L. Wijnberg
                      SIAM 76–10
Kenneth S. Williams
                      AMM 6270, CRUX 133,
                      CRUX 154
Jochem Zowe
                      AMM 6051
```

CITATION INDEX

Use this section to

- · find articles in journals that reference a specific problem that you are interested in
- locate problems that reference or generalize a specific problem
- · find articles about specific mathematical competitions or problems from such competitions
- · find information about and reviews of problem books

We have scanned the 1975–1979 issues of many journals looking for articles that refer to problems in their list of references. We have also examined the many problems and solutions in the problem columns covered by this index looking for references to other problems. In this way, you can find those articles and problems that refer to a problem you are interested in.

The citation index lists those problems that have been referred to during the years 1975–1979. They are sorted by journal abbreviation followed by problem number. Since articles may reference problems from journals that ceased publication prior to 1975 or they may reference problems from journals not indexed elsewhere in this book, the list of referenced journal abbreviations is given on the following page and is larger than the list given on the inside back cover of this book.

Citations are of two types:

ABBREV number refers to a problem from a contest or journal problem column [REF year] refers to a book or journal article listed in the bibliography.

A reference enclosed in square brackets is a bibliographic reference and refers to a book or journal article. See the bibliography (beginning on page 431) for the complete reference. The reference consists of a reference word (typically the last name of the author of the article) followed by the year of publication, as in "[Johnson 1984]". The date may be followed by an additional letter, a, b, c, etc., if more than one work assigned a given reference word appeared in the same year, for example: "[Trigg 1983b]".

A reference not enclosed in square brackets is a reference to a contest problem or a problem from a journal problem column. It consists of the abbreviation for the contest or journal name followed by the problem number. For example: "AMM E1071" refers to problem E1071 from the American Mathematical Monthly. Contest problems give the year of the contest preceding the problem number and separated from it by a slash. Thus, "USA 1982/3" refers to problem 3 from the 1982 USA Mathematical Olympiad.

A given problem may be cited by more than one reference. In that case, the references are separated by commas.

There are five sections to this citation index, occurring in the following order:

References to Problems
 Contest References
 gives citations to specific problems from a journal or contest
 gives citations to specific contests

Biographical Notes gives citations to biographical notes (including obituaries)

Problem Indexes
 Beviews of Problem Books
 gives citations to indexes of problem collections
 gives citations for reviews of problem books

The journals that were scanned for citations are:

AMM, CRUX, FQ, FUNCT, JRM, MATYC, MM, NAVW, PARAB, PENT, PME, SIAM, SPECT, SSM, and TYCMJ.

ABBREVIATIONS USED IN THE CITATION INDEX

Abbreviation Journal or Contest Name

AHSME American High School Mathematics

Examination

AHSPE Alberta High School Prize Examina-

tion

AMC Australian Mathematics Competition
AMM The American Mathematical Monthly

AMP Arch. Math. Phys.

ATRML Atlantic Region Mathematics

Competition

BIBLIOGRAPHIES A Bibliography of Mathemati-

cal Competitions

BRITAIN British Mathematical Olympiad CANADA Canadian Mathematics Olympiad CARLETON Carleton University Mathematics

Competition for high school students

CMB Canadian Mathematical Bulletin COLLOQ Colloquium Mathematicum

CRUX Crux Mathematicorum

CZECH Czechoslovakian Mathematics Olym-

piad

DC The Descartes Competition

EC The Euclid Contest
EDUC The Educational Times
ELEM Elemente der Mathematik

EOTVOS Eötvös Mathematical Competition

(Hungary)

FQ The Fibonacci Quarterly

FUNCT Function

FUND Fundamenta Mathematica GAZ The Mathematical Gazette

GDIARY Gentleman's Diary

GMNYMF The Greater Metropolitan New York

Math Fair

HUNGARY
IM L'Intermédiaire des Mathématiciens
IMO International Mathematical Olympiad
JDMV Jahresbericht der Deutschen Mathe-

matiker-Vereinigung

JIMS Journal of the Indian Mathematical

Society

JMC Junior Mathematics Contest

JRM Journal of Recreational Mathematics

KVANT Kvant

MATYC The MATYC Journal

MJHSSMC MATYC Journal High School Student

Mathematics Contest

MM Mathematics Magazine

<u>Abbreviation</u> <u>Journal or Contest Name</u>

MS Mathematics Student (Reston)
MSJ The Mathematics Student Journal
NAM Nouvelles Annales de Mathématique

NAvW Nieuw Archief voor Wiskunde NCIML Nassau County Interscholastic

Mathematics League Contest

NSTYCML National Student Two-Year College

Mathematics League

NSW New South Wales Mathematical

Olympiad

NSWSMC New South Wales School

Mathematics Competition

NTvW Nieuw Tijdschrift voor Wiskunde

NYCIML New York City Interscholastic Mathe-

matics League

NYCSIML New York City Senior Interscholastic

Mathematics League

NYSML New York State Mathematics League

NYSMTJ The New York State Mathematics

Teachers' Journal

OSSMB Ontario Secondary School

Mathematics Bulletin

PARAB Parabola
PENT The Pentagon

PME The Pi Mu Epsilon Journal

PMMC Peking Municipality Mathematical

Competitions

PRAXIS Praxis der Mathematik

PUTNAM William Lowell Putnam Mathematical

Competition (USA)

SCAND Mathematica Scandinavica

SIAM SIAM Review

SKFMC Special K Freshman Mathematics

Contest

SPECT Mathematical Spectrum

SPHINX Sphinx

SSM School Science and Mathematics STANFORD Stanford University Competitive

Examination in Mathematics

TECH Technology Review

THESIS Mathesis

TIMES Mathematical Questions and

Solutions from the Educational Times

TYCMJ The Two-Year College Mathematics

Journal

USA USA Mathematical Olympiad

WO Wiskundige Opgaven

AHSME 1978/16	197	5–1979	AMM E122
Referen	ices to Problems	AMM 6007	[Pelling 1977], AMM 6074
Mereren	ices to Fiobleins	AMM 6010	AMM E2597
B 11	Civ. 11	AMM 6054	[Ecker 1979]
Problem	Cited by	AMM 6074	[Pelling 1977], AMM 6073
AHSME 1978/16	[Corner 3]	AMM 6085	AMM 6174
AMM AL-370	[Shrader-Frechette 1978]	AMM 6107	MM 982
AMM AL-453	[Wadhwa 1975]	AMM 6142	[Ecker 1979]
AMM CA-57	[Sandell 1977]	AMM 6144	[Bateman 1981]
AMM DA 77	[Arkin 1979]	AMM 6204	[Lew 1981]
AMM OF 106	SSM 3599 CRUY 100	AMM 6258	[Lew 1980]
AMM GE-196 AMM GE-310	CRUX 199 AMM E2499, CRUX 379	AMM E15	CRUX 365
AMM GE-370	[Oakley 1978]	AMM E46	AMM E2484
AMM GE-431	[Oakley 1978]	AMM E106	MM 940
AMM 3024	[Oakley 1978]	AMM E188	CRUX 188
AMM 3053	CRUX 194	AMM E300	[Hoggatt 1976a]
AMM 3108	[Gould 1978a]	AMM E305	[Trigg 1976a], CRUX 365
AMM 3173	[Fraenkel 1977]	AMM E350	[Trigg 1976a]
AMM 3242	[Shima 1978]	AMM E339	[Trigg 1976a]
AMM 3417	CRUX 127	AMM E387	PME 401
AMM 3417 AMM 3497	[Hoggatt 1976a]	AMM E444	CRUX 250, CRUX 252
AMM 3520	AMM E2499, CRUX 379	AMM E491	[Brenner 1979]
AMM 3528	MM Q662	AMM E571	[Sauvé 1976a]
AMM 3573	PME 401	AMM E613	[Trigg 1976a]
AMM 3766	AMM 5878	AMM E651	[Manvel 1977], [Meyers 1978b],
AMM 3810	CRUX 188		[Schwartz 1978]
AMM 3942	PME 401	AMM E704	AMM E2719
AMM 4203	[Manvel 1977]	AMM E712	[Manvel 1977]
AMM 4226	[Eggleton 1976]	AMM E716	[Dodge 1977a]
AMM 4277	[Stanley 1975]	AMM E724	[Guy 1975]
AMM 4477	[Trigg 1978a]	AMM E750	[Cormier 1976]
AMM 4512	[Barbeau 1977a]	AMM E751	CRUX 261
AMM 4590	[Suryanarayana 1977]	AMM E766	[Dodge 1977a]
AMM 4694	[Snipes 1975]	AMM E773	[Paul 1978]
AMM 4695	AMM E2553	AMM E776	MM 977
AMM 4723	CRUX 90	AMM E801	MM 944
AMM 4797	[Richards 1975]	AMM E832	CRUX 109
AMM 5006	AMM E1298	AMM E834	[Bergum 1978b]
AMM 5029	AMM 6007, AMM 6074	AMM E853	CRUX 194
AMM 5080	[Robbins 1978]	AMM E863	[Trigg 1976a]
AMM 5126	AMM 6014	AMM E911	[Dodge 1977a]
AMM 5327	AMM 6099	AMM E912	[Dodge 1977a]
AMM 5328	[Eggleton 1975], [Niven 1978]	AMM E913	[Dodge 1977a], CRUX 134
AMM 5333	AMM E2480	AMM E925	MM 1011
AMM 5346	AMM 5989, AMM E2484	AMM E927	[Conrad 1977]
AMM 5499	[Fine 1976]	AMM E961	[Dodge 1977a]
AMM 5524	[Lew 1978]	AMM E1008	MM 947
AMM 5555	AMM 5942	AMM E1016	[Trigg 1978f]
AMM 5704	AMM 6014	AMM E1023	CRUX 173
AMM 5712	[Rosenfeld 1979]	AMM E1030	[Callahan 1977], [Kleven 1978],
AMM 5849	AMM 5983		[Oakley 1978]
AMM 5865	[Knuth 1978]	AMM E1111	[Dodge 1977a]
AMM 5875	AMM E2663	AMM E1117	PME 435
AMM 5883	AMM 6022	AMM E1118	[Brenner 1977]
AMM 5894	AMM 6115	AMM E1123	JRM 820
AMM 5898	AMM 5968	AMM E1125	[Gould 1978b]
AMM 5913	AMM 5986	AMM E1126	MM 977
AMM 5924	[Sonn 1976]	AMM E1156	MM 977
AMM 5929	[Stern 1978]	AMM E1161	[Dodge 1977a], [Trigg 1977a]
AMM 5955	[Rudin 1977]	AMM E1168	[Francis 1975], AMM E2557
AMM 5960	NAvW 409	AMM E1172	[Hoggatt 1976a]
AMM 5972	[Chinburg 1976], AMM E2536, MM	AMM E1186	CRUX 78
	1019	AMM E1192	[Dodge 1977a]
AMM 5974	[Carlitz 1976a]	AMM E1211	SSM 3665

AMM E1225	1975	–1979	CRUX 16
AMM E1225	CRUX 244	AMM E2484	AMM 5989
AMM E1249	SSM 3599	AMM E2487	[Hoggatt 1977], CRUX 143
AMM E1288	CRUX 90	AMM E2488	[Hausman 1976]
AMM E1304	[Oakley 1978]	AMM E2491	SSM 3687
AMM E1318	CRUX 78	AMM E2493	MATYC 73
AMM E1396	[Stone 1975], [Gould 1976]	AMM E2497	[Wall 1979]
AMM E1409	MM 944	AMM E2499	CRUX 379
AMM E1413	[Gibbs 1977]	AMM E2506	CRUX 202
AMM E1424	[Lord 1979]	AMM E2508	PME 358
AMM E1426	[Dodge 1977a]	AMM E2532	AMM E2464
AMM E1427	PME 322	AMM E2533	[Dodge 1977a]
AMM E1445	AMM E2571	AMM E2538	CRUX 110
AMM E1461	CRUX 261	AMM E2561	CRUX 399
AMM E1474	CRUX 188, JRM 496	AMM E2562	AMM E2672
AMM E1477	CRUX 142	AMM E2569	[Gyori 1978], [Gates 1979]
AMM E1487	TYCMJ 73	AMM E2578 AMM E2581	[Golomb 1978] [Hoggatt 1978a]
AMM E1492	CRUX 249	AMM E2606	SSM 3646
AMM E1531	[Trigg 1976b]	AMM E2624	SSM 3685
AMM E1571 AMM E1584	MM 940 CRUX 244	AMM E2629	SIAM 78-8
AMM E1637	[Vaidya 1975]	AMM E2630	[Trigg 1979a]
AMM E1637 AMM E1641	CRUX 112	AMM E2675	CRUX 377
AMM E1653	CRUX 78	AMM E2687	[Singmaster 1979]
AMM E1695	[Oakley 1978]	AMM E2695	[Boas 1979b]
AMM E1699	[Guy 1979]	AMM E2698	[Guy 1979]
AMM E1752	AMM 6149	AMM E2720	[Boas 1979b]
AMM E1794	AMM E2446	AMM E2738	[Ecker 1979]
AMM E1802	[Gould 1978a]	AMM E2746	[Corner 4]
AMM E1837	[Gould 1978a]	AMM E2801	[Nirenberg 1979]
AMM E1869	[Wetzel 1976], [Alexanderson 1977]	AMP 542	[Stolarsky 1975]
AMM E1897	AMM 6149	AMP 552	[Klee 1979]
AMM E1910	[Andrews 1975]	Problem	Cited by
AMM E1979	[Dodge 1977a]	CANADA 1976/6	[Corner 3]
AMM E1986	NAvW 394	COLLOQ 225	[Cormier 1976]
AMM $E2060$	PME 421	CMB P71	[Gould 1978a]
AMM E2081	[Dodge 1977a]	CMB 220	AMM E2526
AMM $E2105$	[Nelson 1977], AMM 6088	CMB 229	CRUX 187
AMM E2119	PME 313	CMB 245	AMM E2615
AMM $E2204$	[Baillie 1979]	CRUX 6	CRUX 43
AMM E2211	CRUX 79	CRUX 38	CRUX 39
AMM E2214	PME 335	CRUX 46	CRUX 56
AMM $E2222$	[Trigg 1979c]	CRUX 74	CRUX 106
AMM E2225	[Andrushkiw 1976], MATYC 90	CRUX 75	[Meyers 1976], CRUX 110
AMM E2258	AMM 6035	CRUX 91	[Sauvé 1976c]
AMM E2262	AMM E2447, CRUX 153, CRUX 172	CRUX 93	CRUX 121
AMM E2265	CRUX 145	CRUX 96	PENT 299
AMM E2282	CRUX 260	CRUX 103	CRUX 132
AMM E2307	AMM E2544	CRUX 110	[Sokolowsky 1976a], CRUX 75
AMM E2314	[Grünbaum 1975]	CRUX 115	CRUX 167, CRUX 303, CRUX 304
AMM E2327	[Barbeau 1977a]	CRUX 120	[Sokolowsky 1976b]
AMM E2359	[Alexanderson 1977], [Wetzel 1978]	CRUX 121	CRUX 93
AMM E2362	AMM E2733	CRUX 132	CRUX 103
AMM E2374 AMM E2394	CRUX 52 AMM E2470	CRUX 133	[Coxeter 1977], [Lagarias 1985]
AMM E2394 AMM E2395	[Carlitz 1976b]	CRUX 134 CRUX 135	[Coxeter 1977], CRUX 255 CRUX 276
AMM E2408	[Carntz 1970b] [Guaraldo 1978a], [Guaraldo 1978b]	CRUX 138	CRUX 276 CRUX 254
AMM E2414	[Henrici 1975]	CRUX 138 CRUX 139	[Sauvé 1976d], [Sokolowsky 1976b]
AMM E2420	AMM E2557	CRUX 139 CRUX 141	[Sauvé 1976d], [Sokolowsky 1976b]
AMM E2420 AMM E2422	[Yao 1975]	CRUX 141 CRUX 142	[Sauve 1970e] [Dodge 1977b], PME 393
	[Barbeau 1977a]	CRUX 153	CRUX 172, CRUX 307
AMM E2427	[2010/004 10110]	I .	
AMM E2427 AMM E2447	CRUX 153	T UBUA 193	Coxeler 1977
AMM E2447	CRUX 153 [Buckle 1979]	CRUX 163 CRUX 165	[Coxeter 1977] CRUX 173
	CRUX 153 [Ruckle 1979] MM 936	CRUX 163 CRUX 165 CRUX 166	CRUX 173 CRUX 343

CRUX 177	CRUX 171	1975	5–1979	JRM 153
CRUN 172	CRUX 171	[Sokolowsky 1976b]	FQ B-289	[Wall 1979]
CRUX 170	CRUX 172	•		
CRUN 180	CRUX 177	[Meyers 1978a]	FQ B-295	FQ B-299
CRUX 185	CRUX 179	CRUX 275	FQ B-299	FQ B-300
CRUX 195			FQ B-303	FQ B-326
CRUX 200 CRUX 256 FQ B-365 FQ B-365 FQ B-366		,		•
CRUX 200				
CRUX 210 CRUX 399 CRUX 230 FQ B-371 FQ B-372 FQ B-396 CRUX 220 CRUX 225 FQ B-408 FQ B-408 CRUX 226 CRUX 342 FQ B-404 FQ B-408 CRUX 229 PENT 293 FQ B-408 FQ B-408 CRUX 220 JRM 767 FQ B-408 FQ B-368 CRUX 250 JRM 767 FQ B-108 FQ B-368 CRUX 250 CRUX 485 FQ H-10 Begrum 1978a, AMM E2581 CRUX 278 CRUX 485 FQ H-83 [Gould 1977a] CRUX 301 CRUX 251 FQ H-88 [Layman 1977a] CRUX 301 CRUX 251 FQ H-131 PF 161-131 PF 161-131 PF 161-151 PF 161-131 PF 161-13			1	•
CRUX 219				
CRUX 229			1	
CRUX 226				
CRUX 229 PENT 293 FQ B-408 FQ B-386 CRUX 247 CRUX 295 CRUX 362 CRUX 305 FQ H-54 [Hoggatt 1978a], AMM E2581 CRUX 275 CRUX 485 FQ H-70 [Bergant 1978a], AMM E2581 CRUX 278 CRUX 485 FQ H-88 [Layman 1977] CRUX 301 CRUX 291 FQ H-88 [Layman 1977] CRUX 302 [Peden 1976], PENT 307 FQ H-125 [Webb 1976] CRUX 303 CRUX 488 FQ H-135 [Gould 1977a] CRUX 320 [Peden 1976], PENT 307 FQ H-135 [Gould 1977a] CRUX 320 [Peden 1976], PENT 307 FQ H-135 [Gould 1977a] FQ B-285 CRUX 320 CRUX 478 FQ H-135 [Gould 1977a] FQ B-285 CRUX 321 CRUX 435 FQ H-135 [Gould 1977a] FQ B-285 CRUX 335 CRUX 435 FQ H-137 [Berchell-Johnson 1979] FQ H-135 FQ H-236 FQ H-236 CRUX 336 CRUX 445 FQ H-137 FQ H-236 FQ H-250 FQ H-236 FQ H-250 FQ H-250 FQ H				-
CRUX 247 CRUX 295			1	•
CRUX 250				
CRUX 257 CRUX 485 FQ H-33 Gould 1977a CRUX 282 CRUX 429 FQ H-83 Gould 1977a CRUX 301 CRUX 301 FQ H-125 Webb 1975 CRUX 302 FQ H-83 Layman 1977 CRUX 303 CRUX 478 FQ H-135 Gould 1977a CRUX 304 FQ H-135 FP H-135 Gould 1977a CRUX 305 CRUX 478 FQ H-135 Gould 1977a CRUX 306 CRUX 478 FQ H-137 FQ H-137 FQ H-137 CRUX 307 CRUX 478 FQ H-137 FQ H-137 FQ H-137 CRUX 308 CRUX 473 FQ H-146 Bicknell-Johnson 1979 CRUX 305 CRUX 305 FQ H-172 Gould 1977a CRUX 308 Crorer 9 FQ H-183 Smith 1977 CRUX 390 Crorer 9 FQ H-183 Smith 1977 CRUX 390 Crorer 10 FQ H-236 FQ H-236 CRUX 483 Crorer 10 FQ H-236 FQ H-245 CRUX 483 Crorer 10 FQ H-236 FQ H-245 CRUX 484 Crorer 10 FQ H-236 FQ H-245 CRUX 485 Crorer 10 FQ H-236 FQ H-245 CRUX 480 Crorer 10 FQ H-236 FQ H-245 CRUX 481 Crorer 10 FQ H-237 FQ H-245 CRUX 482 Crorer 10 FQ H-237 FQ H-273 ELEM 709 CRUX 155 FQ H-281 Hoggatt 1970a ELEM 101 Klee 1979 FUNCT 1.1.4 FUNCT 1.2.5 ELEM 101 Klee 1979 FUNCT 1.1.4 FUNCT 1.2.5 ELEM 101 Klee 1979 FUNCT 1.1.4 FUNCT 1.2.5 ELEM 102 Klee 1979 FUNCT 1.1.4 FUNCT 1.2.5 ELEM 103 Klee 1979 FUNCT 1.1.4 FUNCT 1.2.5 ELEM 104 Klee 1979 FUNCT 1.1.4 FUNCT 1.2.5 ELEM 105 Klee 1979 FUNCT 1.1.4 FUNCT 1.2.5 ELEM 106 Klee 1979 FUNCT 1.1.4 FUNCT 1.2.5 ELEM 107 Klee 1979 FUNCT 1.1.4 FUNCT 1.2.5 ELEM 108 Klee 1979 F	CRUX 250	JRM 767		-
CRUX 278 CRUX 485 FQ H-85 Goold 1977a CRUX 282 CRUX 429 FQ H-85 Layman 1977 CRUX 301 CRUX 301 CRUX 301 CRUX 303 CRUX 304 FQ H-131 Priest 1970 CRUX 320 [Pedoe 1979], PENT 307 FQ H-135 Goold 1977a], FQ B-285 CRUX 320 CRUX 473 FQ H-135 Goold 1977a CRUX 320 CRUX 473 FQ H-135 Goold 1977a CRUX 342 CRUX 473 FQ H-135 Goold 1977a CRUX 342 CRUX 391 FQ H-146 Bicknell-Johnson 1979 CRUX 351 CRUX 391 FQ H-167 Goold 1977a CRUX 356 CRUX 435 FQ H-183 Smith 1977 CRUX 389 [Corner 9] FQ H-193 FQ H-236 CRUX 389 [Corner 9] FQ H-193 FQ H-236 CRUX 389 [Corner 10] FQ H-236 FQ H-230 CRUX 483 [Corner 10] FQ H-236 FQ H-245 CRUX 483 [Corner 10] FQ H-236 FQ H-245 CRUX 483 [Corner 10] FQ H-236 FQ H-245 CRUX 484 [Corner 10] FQ H-236 FQ H-245 CRUX 485 [Corner 10] FQ H-236 FQ H-245 CRUX 486 FQ H-245 FQ H-237 FQ H-245 CRUX 487 [Could 1977b], Begram 1976b], Begram 1977b], Begram	CRUX 257	CRUX 338		
CRUX 301 CRUX 261 FQ H-125 Mebb 1975 CRUX 303 CRUX 304 FQ H-131 FQ H-131 FP H-181 FQ H-131 FP H-181 FQ H-131 FP H-181 FQ H-131 FP H-181 FQ H-137 FQ H-138 FQ H-248 FQ H-138 FQ H-248 FQ H-138 FQ H-258 FQ H-25	CRUX 278	CRUX 485		
CRIN 303 CRUX 304 FQ H-135 [Could 1977a], FQ B-285 CRIX 320 [Pede 1979], PENT 307 FQ H-135 [Gould 1977a], FQ B-285 CRIX 330 CRUX 473 FQ H-135 [Bicknell-Johnson 1979] CRUX 351 CRUX 391 FQ H-146 [Bicknell-Johnson 1979] CRUX 351 CRUX 355 FQ H-172 [Gould 1977a] CRUX 389 [Corner 9] FQ H-183 [Smith 1977] CRUX 389 [Corner 10] FQ H-236 FQ H-236 CRIX 483 [Corner 10] FQ H-236 FQ H-237 CZECH 1963-64/1A-1 CRUX 392 FQ H-236 FQ H-237 Bruck 254 AMM 22480 FQ H-281 [Hoggatt 1976b], [Hoggatt 1976b], [Hoggatt 1976b], [Hoggatt 1979a] ELEM 773 AMM E2418 FQ H-281 [Hoggatt 1979a] ELEM 773 AMM E2718 FQ H-283 CRUX 366 ELEM V11 [Klee 1979] FUNCT 1.5.4 FUNCT 1.5.4 FUNCT 1.5.4 ELEM V11 [Klee 1979] FUNCT 1.5.4 FUNCT 1.5.4 FUNCT 1.5.4 FUNCT 1.5.4 FUNCT 1.5.4 FUNCT 1.5.4			FQ H-88	[Layman 1977]
CRUX 320 [Pedeo 1979], PENT 307 FQ H-135 [Could 1977a], FQ B-285 CRUX 332 CRUX 473 FQ H-146 [Bicknell-Johnson 1979] CRUX 351 CRUX 391 FQ H-146 [Bicknell-Johnson 1979] CRUX 356 CRUX 435 FQ H-183 [Smith 1977] CRUX 389 [Sauvé 1979] FQ H-193 FQ H-256 CRUX 399 [Sauvé 1979] FQ H-236 FQ H-230 CRUX 483 [Corner 10] FQ H-236 FQ H-247 CRUX 483 [Corner 10] FQ H-236 FQ H-248 CRUX 483 [Corner 10] FQ H-236 FQ H-249 CRUX 483 [Corner 10] FQ H-236 FQ H-247 CRUX 483 [Corner 10] FQ H-236 FQ H-247 ELEM 254 AMM E2480 FQ H-237 [Bergum 1979] ELEM 709 CRUX 155 FQ H-281 [Hoggatt 1976c], [Gould 1977b], ELEM 713 [Klee 1979] FQ H-282 [Rux 366 ELEM W11 [Klee 1979] FUNCT 1.14 FUNCT 1.24 FUNCT 1.25 ELEM U14 <td< td=""><td></td><td></td><td>FQ H-125</td><td>[Webb 1975]</td></td<>			FQ H-125	[Webb 1975]
CRUX 330 CRUX 478 FQ H-137 [Bergum 1978a] CRUX 351 CRUX 391 FQ H-146 [Bicknel]-Johnson 1979] CRUX 351 CRUX 391 FQ H-172 [Gold 1977a] CRUX 356 CRUX 435 FQ H-183 [Smith 1977] CRUX 389 [Corner 10] FQ H-193 FQ H-236 CRUX 483 [Corner 10] FQ H-237 [Bruckman 1976], [Hoggatt 1976b], CZECH 1963-64/1A-1 CRUX 392 FQ H-237 [Bruckman 1976], [Hoggatt 1976b], Poblem Cited by [Bergum 1979] [Bergum 1979] ELEM 254 AMM E2480 FQ H-237 [Bruckman 1976], [Hoggatt 1976b], ELEM 709 CRUX 155 FQ H-283 [CRUX 366 ELEM 73 AMM E2718 FQ H-283 [CRUX 366 ELEM 73 [Klee 1979] FUNCT 1.1.4 [Hoggatt 1978b] ELEM U1 [Rice 1979] FUNCT 1.5.4 [Johnson 1979] ELEM U14 [Bohigan 1979] FUND 38 [Klee 1979] ELEM U24 [Klee 1979] FUND 38 [Klee 1979] ELEM U36 <td></td> <td></td> <td>FQ H-131</td> <td>[Priest 1976]</td>			FQ H-131	[Priest 1976]
CRUX 342 CRUX 473 FQ H-146 Bicknell Johnson 1979 CRUX 356 CRUX 435 FQ H-183 [Smith 1977] CRUX 356 CRUX 435 FQ H-183 [Smith 1977] CRUX 389 [Sauvé 1979] FQ H-193 FQ H-236 CRUX 483 [Corner 10] FQ H-236 FQ H-230 CRUX 483 [Corner 10] FQ H-236 FQ H-245 CRUX 483 [Corner 10] FQ H-236 FQ H-247 CRUX 483 [Corner 10] FQ H-236 FQ H-247 CRUX 483 [Cited by [Bergum 1976], [Hoggatt 1976b], [Hoggatt 1976b], [Hoggatt 1976b], [Hoggatt 1977b], [Hoggatt 1977b] ELEM 769 CRUX 155 FQ H-287 FQ H-273 ELEM 773 AMM E2718 FQ H-283 CRUX 366 ELEM 778 AMM E2719 FQ H-283 CRUX 366 ELEM U11 [Klee 1979] FUNCT 1.1.4 FUNCT 1.5.4 Johnson 1979 ELEM U14 [Bohigian 1979] FUND 38 [Klee 1979] ELEM U24 [Klee 1979] FUND 38 [Klee 1979] ELEM U34			FQ H-135	[Gould 1977a], FQ B-285
CRUX 351 CRUX 391 FQ H-172 Gould 1977a				
CRUX 356				,
CRUX 389 Corner 9 FQ H-193 FQ H-236 FQ H-236 FQ H-230 FQ H-236 FQ H-237 Bruckman 1976], [Hoggatt 1976b], [Hoggatt 1976			1	i i
CRUX 399 Sauvé 1979 FQ H-221 FQ H-230 FQ H-245				
CRUX 483 [Corner 10] FQ IB-236 FQ IB-236 FQ IB-236 FQ IB-237 Bruckman 1976], [Hoggatt 1976b], [Hoggatt 1977b], [Bergum 1979] ELEM 254 AMM E2480 FQ IB-257 FQ IB-273 [Bergum 1979] [Bergum 1978] [Bergum 1978] <t< td=""><td></td><td></td><td></td><td>-</td></t<>				-
CZECH 1963-64/1A-1 CRUX 392 FQ H-237 Bruckman 1976], [Hoggatt 1976b], Problem Cited by Hoggatt 1976c], [Gould 1977b], ELEM 254 AMM E2480 FQ H-257 FQ H-273 Bergum 1979] ELEM 799 CRUX 155 FQ H-281 Hoggatt 1979a] ELEM 773 AMM E2718 FQ H-283 CRUX 366 CRUX 366 ELEM 780 AMM E2719 FQ H-305 Hoggatt 1978b] ELEM WILLIAM EVER 1979 FUNCT 1.1.4 FUNCT 1.2.5 ELEM WILLIAM EVER 1979 FUNCT 1.1.4 FUNCT 1.2.5 ELEM WILLIAM EVER 1979 FUNCT 1.5.4 Johnson 1979 ELEM WILLIAM EVER 1979 FUNCT 1.5.5 ELEM WILLIAM EVER 1979 ELEM WILLIAM EVER 1979 FUNCT 1.5.5 EVER 1979 ELEM WILLIAM EVER 1979 FUNCT 1.5.4 Johnson 1979 ELEM WILLIAM EVER 1979 FUNCT 1.5.5 EVER 1979 EVER 1975 E				
Problem Cited by [Hoggatt 1976c], [Gould 1977b], [Bergum 1979] EDUC 11951 [Klee 1979] [Bergum 1978] ELEM 254 AMM E2480 FQ H-257 FQ H-273 ELEM 709 CRUX 155 FQ H-281 [Hoggatt 1979a] ELEM 773 AMM E2718 FQ H-283 CRUX 366 ELEM 780 AMM E2719 FQ H-305 [Hoggatt 1978b] ELEM U3 [Klee 1979] FUNCT 1.1.4 FUNCT 1.2.5 ELEM U11 [Klee 1979] FUNCT 1.5.4 [Johnson 1979] ELEM U44 [Rlee 1979] FUND 38 [Klee 1979] ELEM U40 [Klee 1979] Problem Cited by EOTVOS 1898/3 CRUX 127 GAZ 1845 [Manvel 1977], CRUX 123 EOTVOS 1907/1 CRUX 178 GAZ 3144 AMM E2615 FQ B-3 [Wall 1979] Problem Cited by FQ B-6 [Hoggatt 1979a] IM 129 CRUX 365 FQ B-7 [Salis 1979] IM 0 1972/3 AMM 6010 FQ B-88 [Wall 1979] IM 0 1975/6 [Klamkin 1978]				
EDUC 11951	Problem	Cited by	1 Q 11-237	
ELEM 254 AMM E2480 FQ H-257 FQ H-273 ELEM 709 CRUX 155 FQ H-281 [Hoggatt 1979a] ELEM 773 AMM E2719 FQ H-283 CRUX 366 ELEM 780 AMM E2719 FQ H-305 [Hoggatt 1978b] ELEM U3 [Klee 1979] FUNCT 1.1.4 FUNCT 1.2.5 ELEM U11 [Klee 1979] FUNCT 1.5.4 [Johnson 1979] ELEM U14 [Bohigian 1979] FUND 38 [Klee 1979] ELEM U40 [Klee 1979] Problem Cited by ELEM U40 [Klee 1979] GAZ 1845 [Manvel 1977] EOTVOS 1898/3 CRUX 127 GAZ 1845 [Manvel 1977] EOTVOS 1907/1 CRUX 178 GAZ 1844 AMM E2615 FQ B-3 [Wall 1979] Problem Cited by FQ B-3 [Wall 1979] Problem Cited by FQ B-6 [Hoggatt 1979a] [Mo 1972/3 AMM 6010 FQ B-7 [Scalisi 1979] [MO 1975/6 [Klamkin 1978] FQ B-88 [Wall 1979] [MO 1977/2 [Corn				1.
ELEM 709 CRUX 155 FQ H-281 [Hoggatt 1979a]			FQ H-257	
ELEM 780 AMM E2719 FQ H-305 [Hoggatt 1978b] ELEM U3 [Klee 1979] FUNCT 1.1.4 FUNCT 1.2.5 ELEM U11 [Klee 1979] FUNCT 1.5.4 Johnson 1979] ELEM U14 [Bohigian 1979] FUND 38 [Klee 1979] ELEM U24 [Klee 1979] Problem Cited by EOTVOS 1898/3 CRUX 127 GAZ 1845 [Manvel 1977] EOTVOS 1907/1 CRUX 178 GAZ 1931 [Manvel 1977] EOTVOS 1907/1 CRUX 178 GAZ 1931 [Manvel 1977] EOTVOS 1907/1 CRUX 178 GAZ 3144 AMM 2615 FOB-3 [Wall 1979] Problem Cited by FQ B-3 [Wall 1979] Problem Cited by FQ B-1 [Wall 1979] IM 129 CRUX 365 FQ B-1 [Wall 1979] IMO 1975/6 [Klamkin 1978] FQ B-88 [Wall 1979] IMO 1976/4 CRUX 280 FQ B-97 [Scalisi 1979] IMO 1977/2 [Corner 3], [Hoggatt 1979b] FQ B-111 FQ B-31 [Wall 1979]	ELEM 709	CRUX 155		-
ELEM U3	ELEM 773	AMM E2718	FQ H-283	CRUX 366
ELEM U11 [Klee 1979] FUNCT 1.5.4 [Johnson 1979] ELEM U14 [Bohigian 1979] FUND 38 [Klee 1979] ELEM U24 [Klee 1979] Problem Cited by ELEM U40 [Klee 1979] GAZ 1845 [Manvel 1977] EOTVOS 1898/3 CRUX 127 GAZ 1931 [Manvel 1977] CRUX 123 EOTVOS 1907/1 CRUX 178 GAZ 3144 AMM E2615 Problem Cited by GDIARY 1029 [Sauvé 1976a] FQ B-3 [Wall 1979] Problem Cited by FQ B-6 [Hoggatt 1979a] IMO 1972/3 AMM 6010 FQ B-17 [Wall 1979] IMO 1975/6 [Klamkin 1978] FQ B-88 [Wall 1979] IMO 1976/4 CRUX 280 FQ B-89-7 [Scalisi 1979] IMO 1977/2 [Corner 3], [Hoggatt 1979b] FQ B-135 [Layman 1977], [Swamy 1977] Problem Cited by FQ B-180 [Hoggatt 1979a] JDMV 30 [McCarthy 1977] FQ B-203 [Wall 1979] JDMV 360 [Schrijver 1978] FQ B-26			FQ H-305	[Hoggatt 1978b]
ELEM U14 [Bohigian 1979] FUND 38 [Klee 1979] ELEM U24 [Klee 1979] Problem Cited by ELEM U40 [Klee 1979] GAZ 1845 [Manvel 1977], CRUX 127 EOTVOS 1898/3 CRUX 127 GAZ 1931 [Manvel 1977], CRUX 123 EOTVOS 1907/1 CRUX 178 GAZ 1931 [Manvel 1977], CRUX 123 EOTVOS 1907/1 CRUX 178 GAZ 1931 [Manvel 1977], CRUX 123 EOTVOS 1907/1 CRUX 178 GAZ 1931 [Manvel 1977], CRUX 123 EOTVOS 1907/1 CRUX 178 GAZ 1931 [Manvel 1977], CRUX 123 EOTVOS 1907/1 CRUX 178 GAZ 1931 [Manvel 1977], CRUX 123 EOTVOS 1907/1 CRUX 178 GAZ 1931 [Manvel 1976a] FO B-3 [Wall 1979] FOBLEM Cited by FO B-6 [Hoggatt 1979a] IMO 1972/3 AMM 6010 FO B-74 [Georgieva 1975], [Gould 1977a] IMO 1975/6 [Klamkin 1978] FO B-88 [Wall 1979] IMO 1975/6 [Klamkin 1978] FO B-97 [Scalisi 1979] IMO 1977/2 [Corner 3], [Hoggatt 1979b] FO B-111 FO B-319 IMO 1977/6 [CRUX 280 FO B-180 [Hoggatt 1979a] IMO 1977/6 [CRUX 1977b] FO B-180 [Hoggatt 1979a] JDMV 30 [McCarthy 1977] FO B-203 [Wall 1979] JDMV 30 [McCarthy 1977] FO B-203 [Wall 1979] JDMV 360 [Schrijver 1978] FO B-266 FO B-282 JIMS 260 [Berndt 1978] FO B-270 [Wall 1979] JMS 463 [Berndt 1978] FO B-270 [Wall 1979] JRM 92 [Nelson 1975] FO B-277 [Wall 1979] JRM 92 [Nelson 1975] FO B-278 [Wall 1979] JRM 96 JRM 95 FO B-284 FO B-285 [Gould 1977a] JRM 105 JRM 757 FO B-286 FO B-287 JRM 131			1	FUNCT 1.2.5
ELEM U24			1	
ELEM U40 [Klee 1979] GAZ 1845 [Manvel 1977] EOTVOS 1898/3 CRUX 127 GAZ 1931 [Manvel 1977] EOTVOS 1907/1 CRUX 178 GAZ 1931 [Manvel 1977], CRUX 123 Problem Cited by GDIARY 1029 [Sauvé 1976a] FQ B-3 [Wall 1979] Problem Cited by FQ B-6 [Hoggatt 1979a] IM 129 CRUX 365 FQ B-17 [Wall 1979] IMO 1972/3 AMM 6010 FQ B-31 [Wall 1979] IMO 1975/6 [Klamkin 1978] FQ B-88 [Wall 1979] IMO 1975/6 [Klamkin 1978] FQ B-88 [Wall 1979] IMO 1976/4 CRUX 280 FQ B-97 [Scalisi 1979] IMO 1977/2 [Corner 3], [Hoggatt 1979b] FQ B-111 FQ B-319 IMO 1977/6 [CRUX 1977b] FQ B-135 [Layman 1977], [Swamy 1977] Problem Cited by FQ B-180 [Hoggatt 1979a] JDMV 30 [McCarthy 1977] FQ B-203 [Wall 1979] JDMV 360 [Schrijver 1978] FQ B-266 FQ B-282 JIMS 265 [Berndt 1978] FQ B-270 [Wall 1979] JIMS 463 [Berndt 1978] FQ B-277 [Wall 1979] JRM 92 [Nelson 1975] FQ B-278 [Wall 1979] JRM 95 JRM 96 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 105 JRM 757			FUND 38	[Klee 1979]
EOTVOS 1898/3			<u>Problem</u>	Cited by
EOTVOS 1907/1 CRUX 178 GAZ 3144 GAZ 3144 AMM E2615 GDIARY 1029 FQ B-3 [Wall 1979] FQ B-6 [Hoggatt 1979a] FQ B-31 [Wall 1979] FQ B-31 [Wall 1979] FQ B-31 [Wall 1979] FQ B-44 [Georgieva 1975], [Gould 1977a] FQ B-88 [Wall 1979] FQ B-97 [Scalisi 1979] FQ B-111 FQ B-319 FQ B-135 [Layman 1977], [Swamy 1977] FQ B-135 [Layman 1977], [Swamy 1977] FQ B-180 [Hoggatt 1979a] FQ B-203 [Wall 1979] FQ B-260 FQ B-303, FQ B-326 FQ B-277 [Wall 1979] FQ B-277 [Wall 1979] FQ B-285 [Gould 1977a] FY GAZ 3144 AMM E2615 Sauvé 1976a] FO B-284 FQ B-36 FO B-287 FY B-blem Cited by CRUX 280 FRUX 280 FRUX 280 FRUX 280 [FO B-284 FQ B-303, FQ B-326 JDMV 30 [McCarthy 1977] FO B-276 [Berndt 1978] FO B-277 [Wall 1979] JRM 92 [Nelson 1975] FQ B-285 [Gould 1977a] FQ B-285 [Gould 1977a] JRM 96 JRM 95 JRM 95 JRM 95 FQ B-285 [Gould 1977a] FQ B-286 FQ B-287 JRM 131 [Campbell 1977]				
Problem Cited by GAZ 3144 AMM E2615 FQ B-3 [Wall 1979] GDIARY 1029 [Sauvé 1976a] FQ B-6 [Hoggatt 1979a] IM 129 CRUX 365 FQ B-17 [Wall 1979] IMO 1972/3 AMM 6010 FQ B-31 [Wall 1979] IMO 1975/6 [Klamkin 1978] FQ B-74 [Georgieva 1975], [Gould 1977a] IMO 1976/4 CRUX 280 FQ B-88 [Wall 1979] IMO 1977/2 [Corner 3], [Hoggatt 1979b] FQ B-97 [Scalisi 1979] IMO 1977/6 [CRUX 1977b] FQ B-111 FQ B-319 Problem Cited by FQ B-135 [Layman 1977], [Swamy 1977] Problem Cited by FQ B-180 [Hoggatt 1979a] JDMV 360 [Schrijver 1978] FQ B-203 [Wall 1979] JDMV 360 [Schrijver 1978] FQ B-256 FQ B-282 JIMS 260 [Berndt 1978] FQ B-260 FQ B-303, FQ B-326 JIMS 295 [Berndt 1978] FQ B-277 [Wall 1979] JRM 92 [Nelson 1975] FQ B-278 <td< td=""><td></td><td></td><td></td><td>[Manvel 1977], CRUX 123</td></td<>				[Manvel 1977], CRUX 123
FQ B-3 [Wall 1979] FQ B-6 [Hoggatt 1979a] FQ B-17 [Wall 1979] FQ B-17 [Wall 1979] FQ B-31 [Wall 1979] FQ B-31 [Wall 1979] FQ B-74 [Georgieva 1975], [Gould 1977a] FQ B-88 [Wall 1979] FQ B-97 [Scalisi 1979] FQ B-111 FQ B-319 FQ B-135 [Layman 1977], [Swamy 1977] FQ B-180 [Hoggatt 1979a] FQ B-180 [Hoggatt 1979a] FQ B-203 [Wall 1979] FQ B-203 [Wall 1979] FQ B-266 FQ B-282 FQ B-260 FQ B-303, FQ B-326 FQ B-277 [Wall 1979] FQ B-278 [Wall 1979] FQ B-278 [Wall 1979] FQ B-285 [Gould 1977a] FQ B-285 [Gould 1977a] FQ B-285 [Gould 1977a] FQ B-286 FQ B-287 FQ B-286 FQ B-287 FQ B-286 FQ B-287 FQ B-287 FQ B-286 FQ B-287 FQ B-287 FQ B-287 FY B-286 FY B-287 FY FY B-288 FY B-287 FY B-287 FY B-287 FY B-288 FY B-287 FY B-287 FY B-288 FY B	·			
FQ B-6			GDIARY 1029	[Sauvé 1976a]
FQ B-17 [Wall 1979] IM 129 CRUX 365 FQ B-31 [Wall 1979] IMO 1972/3 AMM 6010 FQ B-74 [Georgieva 1975], [Gould 1977a] IMO 1975/6 [Klamkin 1978] FQ B-88 [Wall 1979] IMO 1976/4 CRUX 280 FQ B-97 [Scalisi 1979] IMO 1977/2 [Corner 3], [Hoggatt 1979b] FQ B-111 FQ B-319 IMO 1977/6 [CRUX 1977b] FQ B-135 [Layman 1977], [Swamy 1977] Problem Cited by FQ B-180 [Hoggatt 1979a] JDMV 300 [McCarthy 1977] FQ B-203 [Wall 1979] JDMV 360 [Schrijver 1978] FQ B-266 FQ B-282 JIMS 260 [Berndt 1978] FQ B-260 FQ B-303, FQ B-326 JIMS 295 [Berndt 1978] FQ B-270 [Wall 1979] JIMS 463 [Berndt 1978] FQ B-277 [Wall 1979] JRM 92 [Nelson 1975] FQ B-278 [Wall 1979] JRM 95 JRM 96 FQ B-284 FQ B-309 JRM 96 JRM 95 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 131 [Campbell 1977]	-	t ,		Cited by
FQ B-31 [Wall 1979] IMO 1972/3 AMM 6010 FQ B-74 [Georgieva 1975], [Gould 1977a] IMO 1975/6 [Klamkin 1978] FQ B-88 [Wall 1979] IMO 1976/4 CRUX 280 FQ B-97 [Scalisi 1979] IMO 1977/2 [Corner 3], [Hoggatt 1979b] FQ B-111 FQ B-319 IMO 1977/6 [CRUX 1977b] FQ B-135 [Layman 1977], [Swamy 1977] Problem Cited by FQ B-180 [Hoggatt 1979a] JDMV 30 [McCarthy 1977] FQ B-203 [Wall 1979] JDMV 360 [Schrijver 1978] FQ B-256 FQ B-282 JIMS 260 [Berndt 1978] FQ B-260 FQ B-303, FQ B-326 JIMS 295 [Berndt 1978] FQ B-270 [Wall 1979] JIMS 463 [Berndt 1978] FQ B-277 [Wall 1979] JRM 92 [Nelson 1975] FQ B-278 [Wall 1979] JRM 95 JRM 96 FQ B-284 FQ B-309 JRM 96 JRM 95 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 131 [Campbell 1977]	-	, 66		
FQ B-74 [Georgieva 1975], [Gould 1977a]	<u> </u>		1	
FQ B-88 [Wall 1979] IMO 1976/4 CRUX 280 FQ B-97 [Scalisi 1979] IMO 1977/2 [Corner 3], [Hoggatt 1979b] FQ B-111 FQ B-319 [CRUX 1977b] FQ B-135 [Layman 1977], [Swamy 1977] Problem Cited by FQ B-180 [Hoggatt 1979a] JDMV 30 [McCarthy 1977] FQ B-203 [Wall 1979] JDMV 360 [Schrijver 1978] FQ B-256 FQ B-282 JIMS 260 [Berndt 1978] FQ B-260 FQ B-303, FQ B-326 JIMS 295 [Berndt 1978] FQ B-270 [Wall 1979] JIMS 463 [Berndt 1978] FQ B-277 [Wall 1979] JRM 92 [Nelson 1975] FQ B-278 [Wall 1979] JRM 95 JRM 96 FQ B-284 FQ B-309 JRM 96 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 131 [Campbell 1977]	=		· · · · · · · · · · · · · · · · · · ·	
FQ B-97 [Scalisi 1979] IMO 1977/6 [Corner 3], [Hoggatt 1979b] FQ B-111 FQ B-319 FQ B-135 [Layman 1977], [Swamy 1977] Problem Cited by FQ B-180 [Hoggatt 1979a] JDMV 30 [McCarthy 1977] FQ B-203 [Wall 1979] JDMV 360 [Schrijver 1978] FQ B-256 FQ B-282 JIMS 260 [Berndt 1978] FQ B-260 FQ B-303, FQ B-326 JIMS 295 [Berndt 1978] FQ B-270 [Wall 1979] JIMS 463 [Berndt 1978] FQ B-277 [Wall 1979] JRM 92 [Nelson 1975] FQ B-278 [Wall 1979] JRM 95 JRM 96 FQ B-284 FQ B-309 JRM 96 JRM 95 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 131 [Campbell 1977]	<u> </u>			
FQ B-135	-			
FQ B-180 [Hoggatt 1979a] JDMV 30 [McCarthy 1977] FQ B-203 [Wall 1979] JDMV 360 [Schrijver 1978] FQ B-256 FQ B-282 JIMS 260 [Berndt 1978] FQ B-260 FQ B-303, FQ B-326 JIMS 295 [Berndt 1978] FQ B-270 [Wall 1979] JIMS 463 [Berndt 1978] FQ B-277 [Wall 1979] JRM 92 [Nelson 1975] FQ B-278 [Wall 1979] JRM 95 JRM 96 FQ B-284 FQ B-309 JRM 96 JRM 95 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 131 [Campbell 1977]	FQ B-111	FQ B-319	· ·	·
FQ B-203 [Wall 1979] JDMV 360 [Schrijver 1978] FQ B-256 FQ B-282 JIMS 260 [Berndt 1978] FQ B-260 FQ B-303, FQ B-326 JIMS 295 [Berndt 1978] FQ B-270 [Wall 1979] JIMS 463 [Berndt 1978] FQ B-277 [Wall 1979] JRM 92 [Nelson 1975] FQ B-278 [Wall 1979] JRM 95 JRM 96 FQ B-284 FQ B-309 JRM 96 JRM 95 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 131 [Campbell 1977]	<u> </u>	[Layman 1977], [Swamy 1977]		
FQ B-256 FQ B-282 JIMS 260 [Berndt 1978] FQ B-260 FQ B-303, FQ B-326 JIMS 295 [Berndt 1978] FQ B-270 [Wall 1979] JIMS 463 [Berndt 1978] FQ B-277 [Wall 1979] JRM 92 [Nelson 1975] FQ B-278 [Wall 1979] JRM 95 JRM 96 FQ B-284 FQ B-309 JRM 96 JRM 95 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 131 [Campbell 1977]	ū			•
FQ B-260 FQ B-303, FQ B-326 JIMS 295 [Berndt 1978] FQ B-270 [Wall 1979] JIMS 463 [Berndt 1978] FQ B-277 [Wall 1979] JRM 92 [Nelson 1975] FQ B-278 [Wall 1979] JRM 95 JRM 96 FQ B-284 FQ B-309 JRM 96 JRM 95 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 131 [Campbell 1977]			1	
FQ B-270 [Wall 1979] JIMS 463 [Berndt 1978] FQ B-277 [Wall 1979] JRM 92 [Nelson 1975] FQ B-278 [Wall 1979] JRM 95 JRM 96 FQ B-284 FQ B-309 JRM 96 JRM 95 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 131 [Campbell 1977]	-			
FQ B-277 [Wall 1979] JRM 92 [Nelson 1975] FQ B-278 [Wall 1979] JRM 95 JRM 96 FQ B-284 FQ B-309 JRM 96 JRM 95 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 131 [Campbell 1977]	=		1	,
FQ B-278 [Wall 1979] JRM 95 JRM 96 FQ B-284 FQ B-309 JRM 96 JRM 95 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 131 [Campbell 1977]	-		1	,
FQ B-284 FQ B-309 JRM 96 JRM 95 FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 131 [Campbell 1977]	•		1	,
FQ B-285 [Gould 1977a] JRM 105 JRM 757 FQ B-286 FQ B-287 JRM 131 [Campbell 1977]	-			
FQ B-286 FQ B-287 JRM 131 [Campbell 1977]			1	
			1	
	-		1	

JRM 162	1975–1979			
JRM 162	JRM 376	MM 870	CRUX 203	
JRM 168	JRM 437	MM 876	CRUX 354	
JRM 182	JRM 313	MM 889	[Cormier 1976], MM 1001	
JRM 212	JRM 508	MM 899	[Hindin 1976]	
JRM 246	[Nelson 1976]	MM 926	[Klamkin 1976]	
JRM 286	JRM 818	MM 929	[Trigg 1979a]	
JRM 301	[Hindin 1975b], [Hunsucker 1975]	MM 939	CRUX 286	
JRM 320	JRM 321, JRM 598	MM 947	CRUX 119	
JRM 340 JRM 372	JRM 527 JRM 373	MM 949	CRUX 75	
JRM 374	CRUX 105	MM 953 MM 965	AMM E2718 PME 411	
JRM 382	[Kierstead 1978a]	MM 972	MM 1021	
JRM 385	[Trigg 1977d]	MM 975	MM 1021 MM 1001, SSM 3746	
JRM 391	[Meeus 1977]	MM 979	[Chamberlain 1978]	
JRM 427	[Kierstead 1978b]	MM 982	AMM 6107	
JRM 441	CRUX 366	MM 994	MM 1039	
JRM 445	JRM 684	MM 997	[Eustice 1979]	
JRM 477	JRM 586	MM 1004	[Corner 4]	
JRM 504	[Ahlburg 1978]	MM 1023	CRUX 290	
JRM 555	[Metchette 1978]	MM 1029	CRUX 378	
JRM 561	JRM 758	MM 1047	CRUX 355	
JRM 650	[Kierstead 1979a]	MM Q247	[Klamkin 1979b]	
JRM 653	[Hunter 1979], [Kierstead 1979a],	MM Q466	[Klamkin 1979a]	
IDM 655	[Rubin 1979b] [Kierstead 1979b]	MM Q472	MM Q652	
JRM 655 JRM 673	[Kierstead 1979b] [Kierstead 1978b], [Rubin 1979a]	MS 462	[Corner 4]	
JRM 677	[Kierstead 1978b]	MSJ 248	CRUX 178	
JRM 713	[Corner 4]	MSJ 388	CRUX 122	
JRM 788	[Rubin 1979a]	<u>Problem</u>	Cited by	
JRM C6	[Moser 1979]	NAM 1194	SSM 3616	
Problem	Cited by	NAvW 68	NAvW 475	
KVANT M403	CRUX 336	NAvW 350	[van Lint 1975]	
KVANT M417	CRUX 367	NAvW 359	NAvW 387	
KVANT M419	CRUX 405	NAvW 399	NAvW 400	
KVANT M453	CRUX 344	NAvW 401 NAvW 459	NAvW 404 NAvW 495	
KVANT M458	CRUX 396	NCIML 1972/21	CRUX 392	
Problem	Cited by	NSWSMC 1975/SR4	[Jay 1975]	
MATYC 40	MATYC 67	NSWSMC 1976/SR2	[Serafim 1976], [Kleeman 1977]	
MATYC 59	MATYC 81	NSWSMC 1978/SR2	[Ridout 1979]	
MATYC 88	MATYC 114	NTvW 1580	[Apostol 1977]	
MATYC 94	[Trigg 1978b], SSM 3651	NYCSIML 1975/30	CRUX 164	
MATYC 124	CRUX 460	NYCSIML 1977/2	CRUX 322	
MM 87	CRUX 140	NYSML 1976/PQ	CRUX 155	
MM 91	CRUX 210	NYSMTJ 25	CRUX 134	
MM 127	[Trigg 1977c]	Problem	Cited by	
MM 146	[Trigg 1976a]	$\overline{\text{OSSMB}}$ 75-5	CRUX 75	
MM 177 MM 224	[Hoggatt 1976a] [Trigg 1976a], CRUX 365	OSSMB 78-4	[Corner 4], OSSMB 78-5	
MM 355	[1rigg 1970a], CROX 505 AMM 6083	OSSMB 78-6	CRUX 356	
MM 434	[Boas 1979a], PME 365	OSSMB 78-11	OSSMB 78-12	
MM 485	CRUX 192	Problem	Cited by	
MM 487	CRUX 208	PARAB 256	[Reeves 1975]	
MM 508	[Schwartz 1976]	PARAB 261	[Kelley 1975]	
MM 523	SSM 3683	PARAB 297	[PARAB 1976]	
MM 611	SSM 3683	PARAB 336	PARAB 338	
MM 638	SSM 3717	PARAB 388	PARAB 389	
MM 701	PENT 289	PARAB 397	PARAB 398	
MM 741	CRUX 386	PMMC 1963/J1-2	[Bloomfield 1975], [Bennett 1976]	
MM 754	CRUX 412	PENT 6	PENT 291	
MM 807	[Boas 1977]	PENT 30	CRUX 244	
MM 821	[Page 1976]	PENT 34	[Trigg 1976a]	
MM 829	[Andrushkiw 1976]	PENT 85	CRUX 199	
MM 852	[Singmaster 1975]	PENT 264	CRUX 298	
MM 862	[Sauvé 1976b], CRUX 365	PENT 280	CRUX 241	

PENT 289	1	975–1979	WO 138
PENT 289	[Corner 4]	SSM 1588	CRUX 134
PME 65	PME 335	SSM 1642	PENT 307
PME 113	[Trigg 1977d], CRUX 145	SSM 1713	[Sauvé 1976a]
PME 125	CRUX 280	SSM 1751	CRUX 122
PME 198	PME 352	SSM 1882	CRUX 122
PME 247	[Oakley 1978]	SSM 1958	CRUX 122
PME 277	[Oakley 1978]	SSM 2141	SSM 3642
PME 283	AMM E2451	SSM 2213	CRUX 122
PME 294	MM 754	SSM 2293	[Trigg 1977c]
PME 304	PME 402	SSM 2426 SSM 2776	[Sauvé 1976a] CRUX 127
PME 365	[Boas 1979a]	SSM 2776 SSM 2944	SSM 3717
PME 366	CRUX 131	SSM 3039	SSM 3717 SSM 3683
PME 395 PME 412	[Schwartz 1979] [Corner 4]	SSM 3077	SSM 3662
PRAXIS P424	[Harborth 1978]	SSM 3197	[Trigg 1976b], SSM 3566, SSM 3693
PUTNAM 1938/11	MM 1067	SSM 3229	TYCMJ 114
PUTNAM 1950/A.5	[Barbeau 1976], [Barbeau 1977a]	SSM 3292	SSM 3575
PUTNAM 1956/A.7	CRUX 90	SSM 3312	[Trigg 1976b], [Trigg 1977b]
PUTNAM 1960/A.1	CRUX 307	SSM 3387	SSM 3572
PUTNAM 1968/A.1	CRUX 340	SSM 3467	SSM 3621
PUTNAM 1968/A.3	AMM E1075	SSM 3497	SSM 3658
PUTNAM 1969/A.3	[Gaskell 1976]	SSM 3544	CRUX 399
PUTNAM 1970/A.3	AMM E2486	SSM 3572	[Hindin 1975a]
PUTNAM 1971/A.2	PME 411	SSM 3581	SSM 3687
PUTNAM 1971/A.6	[Wilansky 1976]	SSM 3566	[Trigg 1976b]
PUTNAM 1973/B.1	[Clever 1976], AMM 6011	SSM 3586	SSM 3745
PUTNAM 1974/B.6	[Hoggatt 1976a]	SSM 3587	[Prielipp 1978]
PUTNAM 1976/A.3	CRUX 250	SSM 3608	CRUX 133
PUTNAM 1976/B.5	[Gould 1978a]	SSM 3651	[Trigg 1978b]
PUTNAM 1977/B.2	PME 420	SSM 3663	SSM 3665
$\underline{\text{Problem}}$	Cited by	SSM 3680 SSM 3682	SSM 3779 SSM 3714
SCAND 10	[Klee 1979]	SSM 3707	[Pedoe 1979], CRUX 320, PENT 307
SIAM 60-2	SIAM 75-10	SSM 3725	CRUX 298
SIAM 61-4	[Klamkin 1976]	SSM 3752	[Corner 4]
SIAM 62-6	CRUX 265	SSM G64	SSM 3642
SIAM 66-11	[Wagner 1976]	STANFORD 1949/2	AMM E2485
SIAM 69-1	[Miller 1978]	Problem	Cited by
SIAM 71-1	AMM 6088	TECH 78-NS13	PME 428
SIAM 71-14	AMM E2474	THESIS 1655	[Oakley 1978]
SIAM 72-20	[Field 1978]	TIMES 1549	[Sauvé 1976a]
SIAM 74-17	[Kallenberg 1979]	TIMES 2310	CRUX 199
SIAM 75-12	SIAM 78-8 [Barbeau 1977a]	TIMES 3158	SSM 3599
SIAM 76-5 SIAM 77-5	[Glasser 1978]	TIMES 4055	SSM 3599
SIAM 77-6	[Wilkins 1991]	TIMES 16381	[Kleven 1978], [Oakley 1978]
SIAM 77-15	[Guy 1979], AMM E2671	TIMES 17395	[Oakley 1978]
SIAM 78-1	[Lew 1978]	TIMES 18363	AMM E2624
SPECT 814	[Rennie 1977], [Sandford 1977],	TYCMJ 2	TYCMJ 47
	[Mackenzie 1979]	TYCMJ 13	TYCMJ 61
SPHINX 490	[Oakley 1978]	TYCMJ 22	CRUX 109
SSM 288	[Shima 1978]	TYCMJ 43	TYCMJ 81
SSM 485	TYCMJ 120	TYCMJ 100	[Corner 4]
SSM 528	SSM 3642	Problem	Cited by
SSM 581	[Oakley 1978]	USA 1972/4	CRUX 207
SSM 590	[Sauvé 1976a]	USA 1972/5	CRUX 232
SSM 696	SSM 3642	USA 1973/2	[Lax 1976]
SSM 1148	[Trigg 1976a], CRUX 365	USA 1974/1	CRUX 30
SSM 1264	SSM 3682	USA 1974/5	CRUX 38
SSM 1265	[Sauvé 1976a]	USA 1976/3 USA 1976/5	[Anderson 1979] FUNCT 3.2.2
SSM 1275	CRUX 244	USA 1976/5 USA 1977/5	[Corner 3]
SSM 1283	[Trigg 1976a]	,	
SSM 1357	SSM 3663	Problem WO 127	Cited by
SSM 1455	[Sauvé 1976a]	WO 137	NAvW 489
SSM 1508	CRUX 122	WO 138	NAvW 489

AHSME 1975–1979 [Schaaf 1978

Contest References

 Contest
 Cited by

 AHSME
 [Corner 3]

 AHSPE
 [Corner 3]

 AMC
 [Mack 1979]

 ATRML 1978
 [Kalfus 1979]

 BIBLIOGRAPHIES
 [Corner 8]

BRITAIN 1979 [Corner 8], [Corner 9]

CANADA 1979 [Corner 3], [Corner 6], [Corner 7]

 CARLETON 1977
 [CRUX 1977a]

 DC
 [Corner 3]

 DC 1978
 [OSSMB 1978b]

 DC 1979
 [OSSMB 1979]

 EC
 [Corner 3]

 EC 1978
 [OSSMB 1978b]

 EC 1979
 [OSSMB 1979]

MJHSSMC [MATYC 1979], [Miller 1979]

GMNYMF [MM 1975] HUNGARY [Corner 10] IMO 1975 [Durran 1976]

IMO 1976 [News 1976c], [News 1976e],

[Goldsmith 1977]

IMO 1977 [CRUX 1977b], [News 1977d], [News

1977f], [Heard 1978], [SUM 1977]

IMO 1978 [Hersee 1979], [News 1978d], [News

1978f

IMO 1979 [Corner 3], [Corner 7], [News 1979d],

[News 1979f] [Corner 3]

 JMC
 [Corner 3]

 JMC 1978
 [OSSMB 1978b]

 JMC 1979
 [OSSMB 1979]

NSTYCML 1975 [DeSanto 1975a], [DeSanto 1975b] NSTYCML 1976 [DeSanto 1976a], [DeSanto 1976b]

 NSTYCML 1977
 [DeSanto 1977]

 NSTYCML 1979
 [DeSanto 1979]

 NSW
 [Mack 1979]

 NSWSMC
 [Mack 1979]

NSWSMC 1975 [News 1975a], [News 1975b] NSWSMC 1976 [News 1976f], [News 1976g] NSWSMC 1977 [News 1977h], [News 1977i] NSWSMC 1978 [News 1978g], [News 1978h]

 NSWSMC 1979
 [News 1979g]

 NYCIML
 [News 1976b]

 OLYMPIADS
 [Turner 1978]

PUTNAM 1974 [Hillman 1975], [OSSMB 1975b] PUTNAM 1975 [Hillman 1976], [MM 1976a], [MM

1976b]

PUTNAM 1976 [Hillman 1978], [News 1977a], [News

[977b]

PUTNAM 1977 [Hillman 1979], [News 1978a], [News

. [978b]

PUTNAM 1978 [Klosinski 1979], [News 1979a], [News

1979b]

SKFMC 1974 [OSSMB 1975a] SKFMC 1977 [OSSMB 1978a]

USA 1976 [News 1976a], [News 1976d], [Announcements 1977]

USA 1977 [News 1977c], [News 1977e], [News

1977cl

USA 1978 [News 1978c], [News 1978e]

USA 1979 [Corner 3], [Corner 5], [News 1979c],

[News 1979e]

Biographical Notes

ProblemistBiographical ReferenceA. K. Austin[Contributors 1975]W. J. Blundon[Williams 1979]Martin Gardner[Renz 1979]Michael Greening[PARAB 1978]

R. Robinson Rowe [Nelson 1978], [Sauvé 1978] K. R. S. Sastry [Contributors 1976] David Silverman [Nelson 1978]

Problem Indexes

Journal Indexed by SSM [Grinstein 1975]

Reviews of Problem Books

Reviewed by Problem Book [Barbeau 1977b] [Reviews 1977] [McGinty 1978] [Berloquin 1976] [Brousseau 1972] [Trigg 1979b] [Fixx 1978] [Vignette 1979] [Fujimura 1978] [Kennedy 1979a] [Trigg 1978c] [Greitzer 1978] [Honsberger 1978] [Trigg 1979e] [Kahan 1978] [Wilke 1978] [Kennedy 1979b] [McGinty 1979] [Marder 1974] [Beck 1975] [Moses 1974] [Albers 1975] [Moses 1974] [Walker 1975] [Palmaccio 1977] [Trigg 1978d] [Polya 1974] [Trigg 1978e] [Schaaf 1978] [Trigg 1979d]

[Ahlburg 1978] 1975–1979 [Contributors 1976]

- [Ahlburg 1978] Hayo Ahlburg, "Regarding JRM, 10:2, p.155, 1977-78, Solution to Problem 504 (The Best Vantage Point)", Journal of Recreational Mathematics. 11(1978)201-206.
- [Albers 1975] Donald J. Albers and G. L. Alexanderson, "Review of 'S. Moses, The Art of Problem Solving. Transworld Student Library. London:1974'", The American Mathematical Monthly. 82(1975)188–189.
- [Alexanderson 1977] G. L. Alexanderson and John E. Wetzel, "Dissections of a Plane Oval", The American Mathematical Monthly. 84(1977)442–449.
- [Anderson 1979] David A. Anderson and Milton W. Loyer, "The Diophantine Equation $Nb^2=c^2+N+1$ ", The Fibonacci Quarterly. **17**(1979)69–70.
- [Andrews 1975] George E. Andrews, "MacMahon's Prime Numbers of Measurement", The American Mathematical Monthly. 83(1975)922–923.
- [Andrushkiw 1976] Joseph W. Andrushkiw, Roman I. Andrushkiw, and Clifton E. Corzatt, "Representations of Positive Integers as Sums of Arithmetic Progressions", Mathematics Magazine. 49(1976)245–248.
- [Announcements 1977] CRUX, "Announcement 1", Crux Mathematicorum. **3**(1977)88.
- [Apostol 1977] Tom M. Apostol, "A Property of Triangles Inscribed in Rectangles", Crux Mathematicorum. 3(1977)242–244.
- [Arkin 1979] Joseph Arkin, V. E. Hoggatt Jr., and E. G. Strauss, "On Euler's Solution of a Problem of Diophantus", The Fibonacci Quarterly. 17(1979)333–339.
- [Baillie 1979] Robert Baillie, "Sums of Reciprocals of Integers Missing a Given Digit", The American Mathematical Monthly. 86(1979)372–374.
- [Bankoff 1976] Leon Bankoff, "Reflections of a Problem Editor", Crux Mathematicorum. 2(1976)212–218.
- [Barbeau 1976] E. J. Barbeau, "Query on Prime Reciprocal Sums", Journal of Recreational Mathematics. 9(1976-77)29.
- [Barbeau 1977a] E. J. Barbeau, "Expressing One as a Sum of Distinct Reciprocals", Crux Mathematicorum. 3(1977)178–181.
- [Barbeau 1977b] E. Barbeau, M. Klamkin, and W. Moser, 1001 Problems in High School Mathematics, Book 1, Problems 1-100, Solutions 1-50 (Preliminary Edition). Canadian Math Congress. Montreal: 1977.
- [Bateman 1981] P. T. Bateman, Paul Erdős, Carl Pomerance, and E. G. Straus, "The Arithmetic Mean of the Divisors of an Integer", Analytic Number Theory Proceedings, Philadelphia 1980, (M. I. Knopp, ed.), Lecture Notes in Mathematics, Springer-Verlag. 899(1981)197-220.
- [Beck 1975] O. Oscar Beck, "Review of 'L. Marder, Problem Solvers. Crane, Russak and Company. New York:1974' ", The Pentagon. 34(1975)100.
- [Bennett 1976] Larry F. Bennett, "Another Note on Closing the Loopholes", The Two-Year College Mathematics Journal. 7(1976/3)56–58.
- [Berloquin 1976] Pierre Berloquin, 100 Numerical Games. Charles Scribner's Sons. New York: 1976.
- [Bergum 1978a] Gerald E. Bergum and Verner E. Hoggatt, Jr., "A Combinatorial Problem Involving Recursive Sequences and Tridiagonal Matrices", The Fibonacci Quarterly. 16(1978)113-118.

- [Bergum 1978b] Gerald E. Bergum and Verner E. Hoggatt, Jr., "A Family of Tridiagonal Matrices", The Fibonacci Quarterly. 16(1978)285–288.
- [Bergum 1979] Gerald E. Bergum and Verner E. Hoggatt, Jr., "Infinite Series with Fibonacci and Lucas Polynomials", The Fibonacci Quarterly. 17(1979)147–151.
- $[\mbox{Berndt 1978}] \mbox{ Bruce C. Berndt, "Ramanujan's Notebooks",} \\ \mbox{\it Mathematics Magazine.} \mbox{\bf 51} (1978) 147–164.$
- [Bicknell-Johnson 1979] Marjorie Bicknell-Johnson, "Addenda to "Pythagorean Triples Containing Fibonacci Numbers: Solutions for $F_n^2 \pm F_k^2 = K^2$ ", The Fibonacci Quarterly. **17**(1979)293.
- [Bloomfield 1975] Morton Bloomfield and Frank Lasak, "Closing the Loopholes", The Two-Year College Mathematics Journal. 6(1975/2)42-44.
- [Boas 1977] Ralph P. Boas, Jr. and Murray S. Klamkin, "Extrema of Polynomials", Mathematics Magazine. 50(1977)75–78.
- [Boas 1979a] R. P. Boas, "Generalizations of the 64/16 Problem", Journal of Recreational Mathematics. 12(1979-80)116-118.
- [Boas 1979b] Ralph P. Boas, "Inequalities for a Collection", Mathematics Magazine. 52(1979)28–31.
- [Bohigian 1979] Haig E. Bohigian, "Extensions of the W. Mnich Problem", The Fibonacci Quarterly. 17(1979)172–177.
- [Brenner 1977] J. L. Brenner and J. Riddell, "Noncanonical Factorization of a Permutation", *The American* Mathematical Monthly. **84**(1977)39–40.
- [Brenner 1979] J. L. Brenner, "Student Days—1930", The American Mathematical Monthly. **86**(1979)350–356.
- [Brousseau 1972] Brother Alfred Brousseau, *Mathematics Contest Problems*. Creative Publications, Inc.. Palo Alto, CA: 1972.
- [Bruckman 1976] P. S. Bruckman and I. J. Good, "A Generalization of a Series of DeMorgan, with Applications of Fibonacci Type", *The Fibonacci Quarterly.* **14**(1976)193–196.
- [Callahan 1977] Francis P. Callahan, "Morley Polygons", The American Mathematical Monthly. 84(1977)325–337.
- [Campbell 1977] Paul J. Campbell, "A "Practical" Approach to Egyptian Fractions", Journal of Recreational Mathematics. 10(1977-78)81–86.
- [Carlitz 1976a] L. Carlitz, "A Theorem on Differential Operators", The American Mathematical Monthly. 83(1976)351–354.
- [Carlitz 1976b] L. Carlitz, "Some Binomial Sums", The Fibonacci Quarterly. 14(1976)249–253.
- [Chamberlain 1978] Michael W. Chamberlain, "Rencontre as an Odd-Even Game", *Mathematics Magazine*. **51**(1978)240–244.
- [Chinburg 1976] Ted Chinburg and Melvin Henriksen, "Multiplicatively Periodic Rings", *The American Mathematical Monthly.* **83**(1976)547–549.
- [Clever 1976] C. C. Clever and K. L. Yocom, "A Generalization of a Putnam Problem", Mathematics Magazine. 49(1976)135–136.
- [Conrad 1977] Steven R. Conrad, "Correspondence Correspondence", Mathematics Magazine. 50(1977)221.
- [Contributors 1975] H. Burkill, "Notes on Contributors", Mathematical Spectrum. 7(1974/75)72.
- [Contributors 1976] H. Burkill, "Notes on Contributors", *Mathematical Spectrum.* **8**(1975/76)100.

[Cormier 1976] 1975—1979 [Grünbaum 1977

- [Cormier 1976] Romae J. Cormier and Roger B. Eggleton, "Counting by Correspondence", Mathematics Magazine. 49(1976)181–186.
- [Corner 3] Murray S. Klamkin, "The Olympiad Corner: 3", Crux Mathematicorum. 5(1979)62–69.
- [Corner 4] Murray S. Klamkin, "The Olympiad Corner: 4", Crux Mathematicorum. 5(1979)102–107.
- [Corner 5] Murray S. Klamkin, "The Olympiad Corner: 5", Crux Mathematicorum. 5(1979)128–131.
- [Corner 6] Murray S. Klamkin, "The Olympiad Corner: 6", Crux Mathematicorum. 5(1979)160–165.
- [Corner 7] Murray S. Klamkin, "The Olympiad Corner: 7", Crux Mathematicorum. 5(1979)193–199.
- [Corner 8] Murray S. Klamkin, "The Olympiad Corner: 8", Crux Mathematicorum. 5(1979)220–228.
- [Corner 9] Murray S. Klamkin, "The Olympiad Corner: 9", Crux Mathematicorum. 5(1979)259–264.
- [Corner 10] Murray S. Klamkin, "The Olympiad Corner: 10", Crux Mathematicorum. 5(1979)288-291.
- [Coxeter 1977] H. S. M. Coxeter, "Letter to the Editor", Crux Mathematicorum. 3(1977)40.
- [CRUX 1977a] CRUX, "The 1977 Carleton University Mathematics Competition", Crux Mathematicorum. 3(1977)6.
- [CRUX 1977b] CRUX, "The 1977 International Mathematical Olympiad", Crux Mathematicorum. 3(1977)206–208.
- [DeSanto 1975a] Carmine DeSanto, "Report of the National Student Two-Year College Mathematics League (NSTYCML)", The MATYC Journal. 9(1975/1)54-55.
- [DeSanto 1975b] Carmine DeSanto, "Report of the National Student Two-Year College Mathematics League (NSTYCML)", The MATYC Journal. 9(1975/2)55-57.
- [DeSanto 1976a] Carmine DeSanto, "Report of the National Student Two-Year College Mathematics League (NSTYCML)", The MATYC Journal. 10(1976)119–121.
- [DeSanto 1976b] Carmine DeSanto, "Report of the National Student Two-Year College Mathematics League (NSTYCML)", The MATYC Journal. 10(1976)197-199.
- [DeSanto 1977] Carmine DeSanto, "Report of the National Student Two-Year College Mathematics League (NSTYCML)", The MATYC Journal. 11(1977)137–141.
- [DeSanto 1979] Carmine DeSanto, "Report of the National Student Two-Year College Mathematics League (NSTYCML)", The MATYC Journal. 13(1979)71-73.
- [Dodge 1977a] Clayton W. Dodge, "Euclide Paracelso Bombasto Umbugio", Crux Mathematicorum. 3(1977)118–123.
- [Dodge 1977b] Clayton W. Dodge, "A Prime-Generating Trinity", Crux Mathematicorum. **3**(1977)210–212.
- [Durran 1976] J. H. Durran, "International Mathematical Olympiads, 1975", Mathematical Spectrum. 8(1975/76)37–39.
- [Ecker 1979] Michael W. Ecker, "Function Pathology", Crux Mathematicorum. 5(1979)182–188.
- [Eggleton 1975] R. B. Eggleton, "Where Do All the Triangles Go?", The American Mathematical Monthly. 82(1975)499–501.
- [Eggleton 1976] R. B. Eggleton, P. Erdős, and J. L. Selfridge, "The Powers that Be", The American Mathematical Monthly. 83(1976)801–805.

- [Eustice 1979] Dan Eustice and M. S. Klamkin, "On the Coefficients of a Partial Fraction Decomposition", The American Mathematical Monthly. 86(1979)478–480.
- [Field 1978] David A. Field, "Investigating Mathematical Models", The American Mathematical Monthly. 85(1978)196–197.
- [Fine 1976] N. J. Fine, "On Rational Triangles", The American Mathematical Monthly. 83(1976)517–521.
- [Fixx 1978] James F. Fixx, SOLVE IT!: A Perplexing Profusion of Puzzles. Doubleday & Company. Garden City, NY: 1978.
- [Fraenkel 1977] Aviezri S. Fraenkel, "Complementary Systems of Integers", The American Mathematical Monthly. 84(1977)114–115.
- [Francis 1975] Richard L. Francis, "Polygons, Both Perfect and Regular", *The Two-Year College Mathematics Journal.* **6**(1975/2)20–21.
- [Fujimura 1978] Kobon Fujimura, The Tokyo Puzzles. Charles Scribner's Sons. New York, NY: 1978.
- [Gaskell 1976] R. W. Gaskell, M. S. Klamkin, and P. Watson, "Triangulations and Pick's Theorem", Mathematics Magazine. 49(1976)35–37.
- [Gates 1979] William H. Gates and Christos H. Papadimitriou, "Bounds for Sorting by Prefix Reversal", *Discrete Mathematics*. 27(1979)47–57.
- [Georgieva 1975] N. Georgieva, "Distribution of the Zeroes of One Class of Polynomials", *The Fibonacci Quarterly*. 13(1975)312–314.
- [Gibbs 1977] Richard A. Gibbs, "A Curious Sequence", Mathematics Magazine. 50(1977)276.
- [Glasser 1978] M. L. Glasser and S. G. Davison, "A Bundling Problem", SIAM Review. 20(1978)178–180.
- [Goldsmith 1977] Colin Goldsmith, "The 18th International Mathematical Olympiad", Mathematical Spectrum. 9(1976/77)37-40.
- [Golomb 1978] Solomon W. Golomb, "Cyclotomic Polynomials and Factorization Theorems", The American Mathematical Monthly. 85(1978)734-737.
- [Gould 1976] H. W. Gould, "Letter to the Editor", *The Fibonacci Quarterly.* **14**(1976)143–146.
- [Gould 1977a] H. W. Gould, "A Fibonacci Formula of Lucas and its Subsequent Manifestations and Rediscoveries", The Fibonacci Quarterly. 15(1977)25–29.
- [Gould 1977b] H. W. Gould, "A Rearrangement of Series Based on a Partition of the Natural Numbers", The Fibonacci Quarterly. 15(1977)67–72.
- [Gould 1978a] H. W. Gould, "Euler's Formula for nth Differences of Powers", The American Mathematical Monthly. 85(1978)450–467.
- [Gould 1978b] H. W. Gould, "Evaluation of Sums of Convolved Powers Using Stirling and Eulerian Numbers", The Fibonacci Quarterly. 16(1978)488–497.
- [Greitzer 1978] Samuel L. Greitzer, International Mathematical Olympiads 1959–1977. Mathematical Association of America. Washington, DC: 1978.
- [Grinstein 1975] Louise S. Grinstein, "A Classification and Index of Mathematical Problems from SSM 1905–1973", School Science and Mathematics. 75(1975)159–166, 251–257, 331–337, 449–456, 522–528.
- [Grünbaum 1975] Branko Grünbaum, "Venn Diagrams and Independent Families of Sets", Mathematics Magazine. 48(1975)12–23.
- [Grünbaum 1977] Branko Grünbaum and Geoffrey C. Shephard, "Tilings by Regular Polygons", Mathematics Magazine. 50(1977)227–247.

[Guaraldo 1978a] 1975–1979 [Klamkin 1979b

- [Guaraldo 1978a] Rosalind Guaraldo, "On the Density of the Image Sets of Certain Arithmetic Functions – I", The Fibonacci Quarterly. 16(1978)318–326.
- [Guaraldo 1978b] Rosalind Guaraldo, "On the Density of the Image Sets of Certain Arithmetic Functions – II", The Fibonacci Quarterly. 16(1978)428–434.
- [Guy 1975] Richard K. Guy, "Monthly Research Problems 1969–1975", The American Mathematical Monthly. 82(1975)995–1004.
- [Guy 1979] Richard K. Guy, "Monthly Research Problems 1969–1979", The American Mathematical Monthly. 86(1979)847–852.
- [Gyori 1978] Ervin Gyori and Gyorgy Turan, "Stack of pancakes", Studia Scientiarum Mathematicarum Hunqarica. 13(1978)133–137.
- [Harborth 1978] Heiko Harborth, "b-adic Numbers in Pascal's Triangle Modulo b", The Fibonacci Quarterly. 16(1978)497-500.
- [Hausman 1976] Miriam Hausman, "Primitive Roots Satisfying a Coprime Condition", The American Mathematical Monthly. 83(1976)720-723.
- [Heard 1978] T. J. Heard, "The 19th International Mathematical Olympiad", Mathematical Spectrum. 10(1977/78)37–39.
- [Henrici 1975] Peter Henrici and Christian Hoffmann, "Chess Champ's Chances: An Exercise in Asymptotics", SIAM Review. 17(1975)559–564.
- [Hersee 1979] John Hersee, "The 20th International Mathematical Olympiad", Mathematical Spectrum. 11(1978/79)33-35.
- [Hillman 1975] A. P. Hillman, G. L. Alexanderson, and L. F. Klosinski, "The William Lowell Putnam Mathematical Competition", The American Mathematical Monthly. 82(1975)905-912.
- [Hillman 1976] A. P. Hillman, G. L. Alexanderson, and L. F. Klosinski, "The William Lowell Putnam Mathematical Competition", The American Mathematical Monthly. 83(1976)701–708.
- [Hillman 1978] A. P. Hillman, G. L. Alexanderson, and L. F. Klosinski, "The William Lowell Putnam Mathematical Competition", The American Mathematical Monthly. 85(1978)26–33.
- [Hillman 1979] A. P. Hillman, G. L. Alexanderson, and L. F. Klosinski, "The William Lowell Putnam Mathematical Competition", The American Mathematical Monthly. 86(1979)168-175.
- [Hindin 1975a] Harvey J. Hindin, "A Theorem on Palindromic Triangular Numbers", Journal of Recreational Mathematics. 8(1975-76)131–133.
- [Hindin 1975b] Harvey J. Hindin, "More Quick Multiplication", Journal of Recreational Mathematics. 8(1975-76)246-248.
- [Hindin 1976] Harvey J. Hindin, "Twin Primes with Polygonal Number Means", Journal of Recreational Mathematics. 9(1976-77)114-115.
- [Hoggatt 1976a] V. E. Hoggatt, Jr. and G. L. Alexanderson, "Sums of Partition Sets in Generalized Pascal Triangles", The Fibonacci Quarterly. 14(1976)117–125.
- [Hoggatt 1976b] V. E. Hoggatt, Jr. and Marjorie Bicknell, "A Primer for the Fibonacci Numbers, Part XV: Variations on Summing a Series of Reciprocals of Fibonacci Numbers", The Fibonacci Quarterly. 14(1976)272-276.
- [Hoggatt 1976c] V. E. Hoggatt, Jr. and Marjorie Bicknell, "A Reciprocal Series of Fibonacci Numbers with Subscripts 2^nk ", The Fibonacci Quarterly. **14**(1976)453–455.

- [Hoggatt 1977] V. E. Hoggatt, Jr. and Marjorie Bicknell-Johnson, "Generalized Lucas Sequences", The Fibonacci Quarterly. 15(1977)131–139.
- [Hoggatt 1978a] V. E. Hoggatt, Jr. and Marjorie Bicknell-Johnson, "A Primer for the Fibonacci Numbers XVII: Generalized Fibonacci Numbers Satisfying $u_{n+1}u_{n-1}-u_n^2=\pm 1$ ", The Fibonacci Quarterly. **16**(1978)130–137.
- [Hoggatt 1978b] V. E. Hoggatt, Jr. and Marjorie Bicknell-Johnson, "Divisibility Properties of Polynomials in Pascal's Triangle", The Fibonacci Quarterly. 16(1978)501-513.
- [Hoggatt 1979a] V. E. Hoggatt, Jr. and Marjorie Bicknell-Johnson, "Reflections Across Two and Three Glass Plates", The Fibonacci Quarterly. 17(1979)118–142.
- [Hoggatt 1979b] V. E. Hoggatt, Jr., Marjorie Bicknell-Johnson, and Richard Sarsfield, "A Generalization of Wythoff's Game", The Fibonacci Quarterly. 17(1979)198–211.
- [Honsberger 1978] Ross Honsberger, Mathematical Morsels. Mathematical Association of America. Washington, DC: 1978.
- [Hunsucker 1975] J. L. Hunsucker and Carl Pomerance, "On an Interesting Property of 112359550561797752809", The Fibonacci Quarterly. 13(1975)331–333.
- [Hunter 1979] J. A. H. Hunter, "Letter to the Editor", Journal of Recreational Mathematics. 12(1979-80)206.
- [Jay 1975] Barry Jay, "Letter to the Editor", Parabola. 11(1975/3)11.
- [Johnson 1979] C. H. J. Johnson, "Babbage and the Origins of Computers", Function. 3(1979/1)4-9.
- [Kahan 1978] Steven Kahan, The Complete Alphametic Book. Baywood Publishing Company. Farmingdale, NY:
- [Kalfus 1979] Alfred Kalfus, "The Atlantic Region Mathematics League", The MATYC Journal. 13(1979)106-111.
- [Kallenberg 1979] G. W. M. Kallenberg, "A Stability Problem for Polytopes", Nieuw Archief voor Wiskunde. 27(1979)262–266.
- [Kelley 1975] T. Kelley, "Follow Up to Pythagorean Patterns", Parabola. 11(1975/3)2–3.
- [Kennedy 1979a] Joe Kennedy, "Review of 'Kobon Fujimura, The Tokyo Puzzles. Charles Scribner's Sons. New York, NY:1978' ", School Science and Mathematics. 79(1979)364.
- [Kennedy 1979b] Joe Kennedy and Diane Thomas, A Tangle of Mathematical Yarns. . Oxford, Ohio: 1979.
- [Kierstead 1978a] Henry A. Kierstead, "Letter to the Editor", Journal of Recreational Mathematics. 11(1978-79)41.
- [Kierstead 1978b] Henry A. Kierstead, "Letter to the Editor", Journal of Recreational Mathematics. 11(1978-79)286.
- [Kierstead 1979a] Henry A. Kierstead, "Letter to the Editor", Journal of Recreational Mathematics. 12(1979-80)205.
- [Kierstead 1979b] Henry A. Kierstead, "655. A Population Problem", Journal of Recreational Mathematics. 12(1979-80)103.
- [Klamkin 1976] Murray S. Klamkin, "On Extreme Length Flight Paths", SIAM Review. 18(1976)486–488.
- [Klamkin 1978] Murray S. Klamkin, "A Polynomial Functional Equation", Crux Mathematicorum. 4(1978)32–33.
- [Klamkin 1979a] Murray S. Klamkin, "A Quicker Quickie", Mathematics Magazine. 52(1979)123–124.
- [Klamkin 1979b] Murray S. Klamkin, "A Quickie Repair Job", Mathematics Magazine. 52(1979)270.

[Klee 1979] 1975—1979 [News 1977e]

- [Klee 1979] Victor Klee, "Some Unsolved Problems in Plane Geometry", Mathematics Magazine. 52(1979)131–145.
- [Kleeman 1977] Lindsay Kleeman, "Letter to the Editor", Parabola. **13**(1977/1)16.
- [Kleven 1978] D. J. Kleven, "Morley's Theorem and a Converse", The American Mathematical Monthly. 85(1978)100-105.
- [Klosinski 1979] L. F. Klosinski, G. L. Alexanderson, and A. P. Hillman, "The William Lowell Putnam Mathematical Competition", The American Mathematical Monthly. 86(1979)749–757.
- [Knuth 1978] Donald E. Knuth and Michael S. Paterson, "Identities from Partition Involutions", The Fibonacci Quarterly. 16(1978)198–212.
- [Lagarias 1985] Jeffrey C. Lagarias, "The 3x + 1 Problem and its Generalizations", The American Mathematical Monthly. **92**(1985)3–23.
- [Lax 1976] Anneli Lax, "Linear Algebra, a Potent Tool", The Two-Year College Mathematics Journal. 7(1976/2)3-15.
- [Layman 1977] J. W. Layman, "Certain General Binomial Fibonacci Sums", The Fibonacci Quarterly. 15(1977)362–366.
- [Lew 1978] John S. Lew, James C. Frauenthal, and Nathan Keyfitz, "On the Average Distances in a Circular Disk", SIAM Review. 20(1978)584–592.
- [Lew 1980] John S. Lew, "Optimal Accelerometer Layouts for Data Recovery in Signature Verification", IBM Journal of Research and Development. 24(1980)496–511.
- [Lew 1981] John S. Lew, "Polynomials in Two Variables Taking Distinct Integer Values at Lattice Points", The American Mathematical Monthly. 88(1981)344–346.
- [Lord 1979] Graham Lord and Herve G. Morin, "Degeneracy of Transformed Complete Sequences", The Fibonacci Quarterly. 17(1979)358–361.
- [Mack 1979] John Mack and Michael Hirschhorn, "A Brief Guide to Mathematics Competitions", Parabola. 15(1979/1)20-21.
- [Mackenzie 1979] J. K. Mackenzie, "Letter to the editor: Partitions of Sets of Integers", Mathematical Spectrum. 11(1978/79)25–26.
- [Manvel 1977] Bennet Manvel, "Counterfeit Coin Problems", Mathematics Magazine. 50(1977)90–92.
- [Marder 1974] L. Marder, Problem Solvers. Crane, Russak and Company. New York: 1974.
- [MATYC 1979] MATYC, "High School Student Mathematics Contest", The MATYC Journal. 13(1979)80–81.
- [McCarthy 1977] P. J. McCarthy, "Counting Restricted Solutions of a Linear Congruence", Nieuw Archief voor Wiskunde. 25(1977)133-147.
- [McGinty 1978] Robert McGinty, "Review of 'Pierre Berloquin, 100 Numerical Games. Charles Scribner's Sons. New York:1976' ", School Science and Mathematics. 78(1978)180.
- [McGinty 1979] Robert L. McGinty, "Review of 'Joe Kennedy and Diane Thomas, A Tangle of Mathematical Yarns. . Oxford, Ohio:1979' ", School Science and Mathematics. 79(1979)364.
- [Meeus 1977] Jean Meeus and Ir. P. J. Torbijn, "The 30/36 Problem with Pentominoes/Hexiamonds", Journal of Recreational Mathematics. 10(1977-78)260-266.
- [Metchette 1978] Stewart Metchette, "Distinct-Digit Sums", Journal of Recreational Mathematics. 11(1978-79)279-283.

- [Meyers 1976] Leroy F. Meyers, "Letter to the Editor", Crux Mathematicorum. 2(1976)91.
- [Meyers 1978a] Leroy F. Meyers, "Conics and Converses", Crux Mathematicorum. 4(1978)2–5.
- [Meyers 1978b] Roy Meyers, "False Coins Again", Mathematics Magazine. 51(1978)311.
- [Miller 1978] Robert Miller, "A Game with n Numbers", The American Mathematical Monthly. $\bf 85$ (1978)183–185.
- [Miller 1979] George M. Miller, "The MATYC Journal High School Student Mathematics Contest Winners", The MATYC Journal. 13(1979)220.
- [MM 1975] MM, "The Greater Metropolitan New York Math Fair", Mathematics Magazine. 48(1975)237.
- [MM 1976a] MM, "The 1975 William Lowell Putnam Mathematical Examination", Mathematics Magazine. 49(1976)52.
- [MM 1976b] MM, "Answers and Hints for the 1975 Putnam Examination", Mathematics Magazine. 49(1976)104–106.
- [Mohanty 1978] S. P. Mohanty, "The Number of Primes is Infinite", The Fibonacci Quarterly. 16(1978)381–384.
- [Moser 1979] William O. J. Moser and Monroe Newborn, "Placing Counters to Illustrate Burnside's Lemma", Mathematics Magazine. 52(1979)305–309.
- [Moses 1974] S. Moses, *The Art of Problem Solving*. Transworld Student Library. London: 1974.
- [Nelson 1975] Harry L. Nelson, "There is a Better Sequence", Journal of Recreational Mathematics. 8(1975-76)39–43.
- [Nelson 1976] Harry L. Nelson, "Analysis of Game Theoretic Craps", Journal of Recreational Mathematics. 9(1976-77)94-100.
- [Nelson 1977] Harry L. Nelson, "Solutions to Little Problems", Journal of Recreational Mathematics. 10(1977-78)203.
- [Nelson 1978] Harry L. Nelson, "Editor's Page", Journal of Recreational Mathematics. 11(1978)1.
- [News 1975a] PARAB, "School Mathematics Competition 1975", Parabola. 11(1975/2)14–22.
- [News 1975b] PARAB, "School Mathematics Competition 1975 Examiner's Report", Parabola. 11(1975/3)15–16.
- $[{\rm News~1976a}] \ {\rm MM,~``1976~U.S.A.~Mathematical~Olympiad''}, \\ Mathematics~Magazine.~~ {\bf 49} (1976) 157-158.$
- [News 1976b] MM, "School Mathematics Competitions", Mathematics Magazine. 49(1976)222.
- [News 1976c] MM, "1976 International Mathematical Olympiad", Mathematics Magazine. 49(1976)223.
- [News 1976d] MM, "U.S.A. Olympiad Solutions", Mathematics Magazine. 49(1976)261–262.
- [News 1976e] MM, "International Olympiad Solutions", Mathematics Magazine. 49(1976)262–263.
- [News 1976f] PARAB, "School Mathematics Competition 1976", Parabola. 12(1976/2)19–23.
- [News 1976g] M. G. Greening, "School Mathematics Competition 1976 Examiner's Report", Parabola. 12(1976/3)19–23.
- [News 1977a] MM, "1976 Putnam Exam", Mathematics Magazine. 50(1977)56-57.
- [News 1977b] MM, "Solutions to the 1976 Putnam Exam", Mathematics Magazine. 50(1977)107–109.
- [News 1977c] MM, "1977 U.S.A. Mathematical Olympiad", Mathematics Magazine. 50(1977)174.
- [News 1977d] MM, "1977 International Mathematical Olympiad", Mathematics Magazine. 50(1977)222.
- [News 1977e] MM, "Solutions to the 1977 U.S.A. Mathematical Olympiad", Mathematics Magazine. 50(1977)278–279.

[News 1977f] 1975—1979 [Rubin 1979a]

- [News 1977f] MM, "Solutions to the 1977 International Mathematical Olympiad", Mathematics Magazine. 50(1977)279–280.
- [News 1977g] TYCMJ, "Two-Year College News", The Two-Year College Mathematics Journal. 8(1977)290.
- [News 1977h] PARAB, "School Mathematics Competition 1977", Parabola. 13(1977/2)23–33.
- [News 1977i] Michael Hirschhorn and Michael Greening, "School Mathematics Competition 1977 Examiner's Report", Parabola. 13(1977/3)21-24.
- [News 1978a] MM, "1977 William Lowell Putnam Mathematical Competition", Mathematics Magazine. 51(1978)77.
- [News 1978b] MM, "Solutions to the 1977 Putnam Exam", Mathematics Magazine. 51(1978)138–140.
- [News 1978c] MM, "1978 U.S.A. Mathematical Olympiad", Mathematics Magazine. 51(1978)205.
- [News 1978d] MM, "1978 International Mathematical Olympiad", Mathematics Magazine. 51(1978)254.
- [News 1978e] MM, "1978 Mathematical Olympiad Solutions", Mathematics Magazine. 51(1978)312–313.
- [News 1978f] MM, "The 1978 International Mathematical Olympiad", Mathematics Magazine. 51(1978)313–315.
- [News 1978g] PARAB, "School Mathematics Competition 1978", Parabola. 14(1978/2)21–29.
- [News 1978h] M. D. Hirschhorn, "Comments on the School Mathematics Competition 1978", Parabola. 14(1978/3)23–26.
- [News 1979a] MM, "1978 William Lowell Putnam Mathematical Competition", Mathematics Magazine. 52(1979)61.
- [News 1979b] MM, "Solutions to the 1978 Putnam Exam", Mathematics Magazine. 52(1979)125–127.
- [News 1979c] MM, "1979 U.S.A. Mathematical Olympiad", Mathematics Magazine. 52(1979)191.
- [News 1979d] MM, "1979 International Mathematical Olympiad", Mathematics Magazine. 52(1979)271.
- [News 1979e] MM, "The 1979 U.S.A. Mathematical Olympiad", Mathematics Magazine. 52(1979)327–329.
- [News 1979f] MM, "The 1979 International Mathematical Olympiad", Mathematics Magazine. **52**(1979)329–331.
- [News 1979g] PARAB, "School Mathematics Competition 1979", Parabola. 15(1979/2)26–32.
- [Nirenberg 1979] Louis Nirenberg, D. Kinderlehrer, and J. Spruck, "Regularity in Elliptic Free Boundary Problems II: Equations of Higher Order", Annali Sc. Norm. Sup. Pisa Classe di Scienze Ser. IV. 6(1979)637–683.
- [Niven 1978] Ivan Niven, "Convex Polygons that Cannot Tile the Plane", The American Mathematical Monthly. 85(1978)785–792.
- [Oakley 1978] Cletus O. Oakley and Justine C. Baker, "The Morley Trisector Theorem", *The American Mathematical Monthly.* **85**(1978)737–745 (complete bibliography also listed in Crux Mathematicorum, 3(1977)281–290; see also [Trigg 1978]).
- [OSSMB 1975a] OSSMB, "Solutions to the Special K Freshman Mathematics Contest", Ontario Secondary School Mathematics Bulletin. 11(1975/1)8-10.
- [OSSMB 1975b] OSSMB, "The Putnam Victory", Ontario Secondary School Mathematics Bulletin. 11(1975/1)15.
- [OSSMB 1978a] OSSMB, "The Special K Freshmen Mathematics Contest", Ontario Secondary School Mathematics Bulletin. 14(1978/1)23–25.

- [OSSMB 1978b] OSSMB, "Mathematics Contests: Reports and Updates", Ontario Secondary School Mathematics Bulletin. 14(1978/2)17–18.
- [OSSMB 1979] OSSMB, "Mathematics Contests: Reports and Updates", Ontario Secondary School Mathematics Bulletin. 15(1979/2)5–8.
- [Page 1976] Warren Page, "Another Compass Construction of Length \sqrt{n} ", The MATYC Journal. **10**(1976)180–181.
- [Palmaccio 1977] Richard J. Palmaccio, Problems in Calculus and Analytic Geometry. J. Weston Walsh. Portland, ME: 1977.
- [PARAB 1976] PARAB, "Measure for Measure", *Parabola*. **12**(1976/2)2–5.
- [PARAB 1978] PARAB, "Obituary: Michael Greening", Parabola. 14(1978/1)1.
- [Paul 1978] Jerome L. Paul, "Tic-Tac-Toe in n-Dimensions", Mathematics Magazine. 51(1978)45–49.
- [Pedoe 1979] Dan Pedoe, "Areas of Triangles Inscribed in a Given Triangle", Crux Mathematicorum. 5(1979)191–192.
- [Pelling 1977] M. J. Pelling, "Formulae for the Arclength of a Curve in Rⁿ", The American Mathematical Monthly. 84(1977)465–467.
- [Polya 1974] George Polya and Jeremy Kilpatrick, The Stanford Mathematics Problem Book. Teachers College Press. New York: 1974.
- [Prielipp 1978] Robert W. Prielipp, "The Area and Perimeter of a Primitive Pythagorean Triangle", School Science and Mathematics. 78(1978)124–126.
- [Priest 1976] Dean B. Priest and Stephen W. Smith, "Column Generators for Coefficients of Fibonacci and Fibonacci-Related Polynomials", The Fibonacci Quarterly. 14(1976)30–34.
- [Rabinowitz 1987] Stanley Rabinowitz, "The Seven Circles Theorem", Pi Mu Epsilon Journal. 8(1987)441–449.
- [Rabinowitz 1990] Stanley Rabinowitz, "Some Sums are not Rational Functions of R, r, and s", Crux Mathematicorum. **16**(1990)1–3.
- [Rabinowitz 1991] Stanley Rabinowitz, "Problem 1364", Mathematics Magazine. 64(1991)60.
- [Reeves 1975] John Reeves, "Letter to the Editor", Parabola. ${\bf 11}(1975/2)10$.
- [Rennie 1977] B. C. Rennie, "Letter to the editor: Partitions of Sets of Integers", *Mathematical Spectrum*. **9**(1976/77)95–96.
- [Renz 1979] Peter Renz, "Martin Gardner: Defending the Honor of the Human Mind", The Two-Year College Mathematics Journal. 10(1979)227–232.
- [Reviews 1977] MM, "Review of E. Barbeau, M. Klamkin, and W. Moser, 1001 Problems in High School Mathematics, Book 1, Problems 1-100, Solutions 1-50 (Preliminary Edition). Canadian Math Congress. Montreal:1977' ", Mathematics Magazine. 50(1977)170.
- [Richards 1975] Ian Richards, "Impossibility", Mathematics Magazine. 48(1975)249–262.
- [Ridout 1979] Alan Ridout, "The Bose-Einstein Clown", Parabola. 15(1979/2)18–19.
- [Robbins 1978] Neville Robbins, "On Fibonacci Numbers Which are Powers", The Fibonacci Quarterly. 16(1978)515–517.
- [Rosenfeld 1979] Azriel Rosenfeld, "Digital Topology", The American Mathematical Monthly. **86**(1979)621–630.
- [Rubin 1979a] Frank Rubin, "673. The Coolest Sequence", Journal of Recreational Mathematics. 12(1979-80)278-279.

[Rubin 1979b] 1975—1979 [Trigg 1978e

- [Rubin 1979b] Frank Rubin, "Letter to the Editor", Journal of Recreational Mathematics. 12(1979-80)206.
- [Ruckle 1979] William H. Ruckle, "Geometric Games of Search and Ambush", Mathematics Magazine. 52(1979)195–206.
- [Rudin 1977] Walter Rudin, "Restrictions on the Values of Derivatives", The American Mathematical Monthly. 84(1977)722-723.
- [Sandell 1977] Donn C. Sandell and F. Max Stein, "Factorization of Operators of Second Order Linear Homogeneous Ordinary Differential Equations", The Two-Year College Mathematics Journal. 8(1977)132-141.
- [Sandford 1977] M. D. Sandford, "Letter to the editor: Partitions of Sets of Integers", Mathematical Spectrum. 9(1976/77)26-27.
- [Sauvé 1976a] Léo Sauvé, "The Celebrated Butterfly Problem", Crux Mathematicorum. 2(1976)2-5.
- [Sauvé 1976b] Léo Sauvé, "The Steiner-Lehmus Theorem", Crux Mathematicorum. 2(1976)19-24.
- [Sauvé 1976c] Léo Sauvé, "Chaînes de Fractions Irréductibles", Crux Mathematicorum. 2(1976)37–40.
- [Sauvé 1976d] Léo Sauvé, "On Circumscribable Quadrilaterals", Crux Mathematicorum. 2(1976)63–67.
- [Sauvé 1976e] Léo Sauvé, "Editor's Comment", Crux Mathematicorum. **2**(1976)92–93.
- [Sauvé 1978] Léo Sauvé, "R. Robinson Rowe", Crux Mathematicorum. **4**(1978)152.
- [Sauvé 1979] Léo Sauvé, "A Note on Primes in Arithmetic Progression", Crux Mathematicorum. 5(1979)244.
- [Scalisi 1979] I. P. Scalisi and G. Sethares, "The Natural Density of the Fibonacci Numbers", Pi Mu Epsilon Journal. 6(1979)599–602.
- [Schaaf 1978] William L. Schaaf, A Bibliography of Recreational Mathematics, Volume 4. NCTM. Reston, VA: 1978.
- [Schrijver 1978] A. Schrijver, "Vertex-Critical Subgraphs of Kneser Graphs", Nieuw Archief voor Wiskunde. 26(1978)454–461.
- [Schwartz 1976] Benjamin L. Schwartz, "Polyhedral Postscript", Mathematics Magazine. 49(1976)49-50.
- [Schwartz 1978] Benjamin L. Schwartz, "Truth About False Coins", *Mathematics Magazine*. **51**(1978)254.
- [Schwartz 1979] Michael Stephen Schwartz, "An Inequality for a Markov Chain with Transition Function p(i,j) and State Space $J = \{1,2,\ldots,n\}$ ", Pi Mu Epsilon Journal. $\mathbf{6}(1979)593-595$.
- [Serafim 1976] N. G. Serafim, "Letter to the Editor", Parabola. 12(1976/3)17.
- [Shima 1978] Timothy Shima and Gali Salvatore, "Of Coconuts and Integrity", Crux Mathematicorum. 4(1978)182–185.
- [Shrader-Frechette 1978] Maurice Shrader-Frechette, "Complementary Rational Numbers", *Mathematics Magazine.* **51**(1978)90–98.
- [Singmaster 1975] David Singmaster, "Covering Deleted Chessboards with Dominoes", *Mathematics Magazine*. **48**(1975)59–66.
- [Singmaster 1979] David Singmaster, "Letter to the editor: Heronian Triangles", Mathematical Spectrum. 11(1978/79)58-59.
- [Smith 1977] Stephen W. Smith and Dean B. Priest, "Row and Rising Diagonal Sums for a Type of Pascal Triangle", The Fibonacci Quarterly. 15(1977)359–361.
- [Snipes 1975] Ray F. Snipes, "Convergence and Continuity: the Adequacy of Filterbases, the Inadequacy of Sequences, and Spaces in Which Sequences Suffice", Nieuw Archief voor Wiskunde. 23(1975)8-31.

- [Sokolowsky 1976a] Dan Sokolowsky, "Letter to the Editor", Crux Mathematicorum. 2(1976)134.
- [Sokolowsky 1976b] Dan Sokolowsky, "Extensions of Two Theorems of Grossman", Crux Mathematicorum. 2(1976)163–170.
- [Sonn 1976] Jack Sonn, "Groups that are the Union of Finitely Many Proper Subgroups", The American Mathematical Monthly. 83(1976)263–265.
- [Stanley 1975] Richard P. Stanley, "The Fibonacci Lattice", The Fibonacci Quarterly. 13(1975)215–232.
- [Stern 1978] Frederick Stern, "The Borel-Cantelli Lemma and Product-Sum Formulas", The American Mathematical Monthly. 85(1978)363–364.
- [Stolarsky 1975] Kenneth B. Stolarsky, "Generalizations of the Logarithmic Mean", Mathematics Magazine. 48(1975)87–92.
- [Stone 1975] Richard R. Stone, "General Identities for Fibonacci and Lucas Numbers with Polynomial Subscripts in Several Variables", The Fibonacci Quarterly. 13(1975)289–294.
- [SUM 1977] SUM, "The 1977 International Mathematics Olympiad", Summation. 23(1977/1)20-21.
- [Suryanarayana 1977] D. Suryanarayana, "On a Class of Sequences of Integers", The American Mathematical Monthly. 84(1977)728-730.
- [Swamy 1977] M. N. S. Swamy, "A Formula for $\sum_{1}^{n} F_k(x) y^{n-k}$ and its Generalization to r-bonacci Polynomials", The Fibonacci Quarterly. **15**(1977)73–77.
- [Trigg 1976a] Charles W. Trigg, "A Bibliography of the Steiner-Lehmus Theorem", Crux Mathematicorum. 2(1976)191–193.
- [Trigg 1976b] Charles W. Trigg, "Two Hexahedrons", Crux Mathematicorum. 2(1976)209–211.
- [Trigg 1977a] Charles W. Trigg, "Revealed at Last: The Face of E.P.B. Umbugio", Crux Mathematicorum. 3(1977)126–128.
- [Trigg 1977b] Charles W. Trigg, "The Volume of the Regular Tetrahedron", Crux Mathematicorum. 3(1977)181–183.
- [Trigg 1977c] Charles W. Trigg, "How Do I Love Thee? Let Me Count the Ways", Crux Mathematicorum. 3(1977)217-224.
- [Trigg 1977d] Charles W. Trigg, "Antimagic Pentagrams with Consecutive LIne Sums", Journal of Recreational Mathematics. 10(1977-78)169-173.
- [Trigg 1978a] Charles W. Trigg, "Supplementary List of References to the Morley Theorem (see [Oakley 1978])", Crux Mathematicorum. 4(1978)132.
- [Trigg 1978b] Charles W. Trigg, "Infinite Sequences of Palindromic Squares with 2n Digits", The MATYC Journal. 12(1978)47–48.
- [Trigg 1978c] Charles W. Trigg, "Review of 'Samuel L. Greitzer, International Mathematical Olympiads 1959–1977. Mathematical Association of America. Washington, DC:1978' ", Journal of Recreational Mathematics. 11(1978-79)292.
- [Trigg 1978d] Charles W. Trigg, "Review of 'Richard J. Palmaccio, Problems in Calculus and Analytic Geometry. J. Weston Walsh. Portland, ME:1977' ", Journal of Recreational Mathematics. 11(1978-79)293.
- [Trigg 1978e] Charles W. Trigg, "Review of 'George Polya and Jeremy Kilpatrick, The Stanford Mathematics Problem Book. Teachers College Press. New York:1974'", Journal of Recreational Mathematics. 11(1978-79)198.

[Trigg 1978f] 1975–1979 [Yao 1975

- [Trigg 1978f] Charles W. Trigg, "What is Recreational Mathematics?", Mathematics Magazine.
 51(1978)18-21.
- [Trigg 1979a] Charles W. Trigg, "The Two Octadeltahedra", Crux Mathematicorum. 5(1979)155–160.
- [Trigg 1979b] Charles W. Trigg, "Review of 'Brother Alfred Brousseau, Mathematics Contest Problems. Creative Publications, Inc.. Palo Alto, CA:1972' ", Journal of Recreational Mathematics. 12(1979-80)283.
- [Trigg 1979c] Charles W. Trigg, "Letter to the Editor", Journal of Recreational Mathematics. 12(1979-80)209-210.
- [Trigg 1979d] Charles W. Trigg, "Review of 'William L. Schaaf, A Bibliography of Recreational Mathematics, Volume 4. National Council of Teachers of Mathematics. Reston, VA:1978' ", Journal of Recreational Mathematics. 12(1979-80)122-123.
- [Trigg 1979e] Charles W. Trigg, "Review of 'Ross Honsberger, Mathematical Morsels. Mathematical Association of America. Washington, DC:1978'", Journal of Recreational Mathematics. 12(1979-80)123.
- [Turner 1978] Nura D. Turner, "A Historical Sketch of the Olympiads, National and International", The American Mathematical Monthly. 85(1978)802–807.
- [Vaidya 1975] A. M. Vaidya, "On Representing Integers as Sums of Odd Composite Integers", Mathematics Magazine. 48(1975)221–223.
- [van Lint 1975] J. H. van Lint, "A Problem on Bipartite Graphs", The American Mathematical Monthly. 82(1975)55–56.
- [Vignette 1979] Book Vignette, "Review of 'James F. Fixx, SOLVE IT!: A Perplexing Profusion of Puzzles. Doubleday & Company. Garden City, NY:1978' ", School Science and Mathematics. 79(1979)270.

- [Wadhwa 1975] A. D. Wadhwa, "An Interesting Subseries of the Harmonic Series", The American Mathematical Monthly. 82(1975)931–933.
- [Wagner 1976] Neal R. Wagner, "The Sofa Problem", The American Mathematical Monthly. 83(1976)188–189.
- [Walker 1975] N. T. Walker, "Review of 'S. Moses, The Art of Problem Solving. Transworld Student Library. London:1974' ", Mathematical Spectrum. 7(1974/75)105–106.
- [Wall 1979] Charles R. Wall, "Some Congruences Involving Generalized Fibonacci Numbers", The Fibonacci Quarterly. 17(1979)29–33.
- [Webb 1975] William Webb, "Distribution of the First Digits of Fibonacci Numbers", The Fibonacci Quarterly. 13(1975)334–336.
- [Wetzel 1976] John E. Wetzel, "Recounting Lines", Mathematics Magazine. **49**(1976)103–104.
- [Wetzel 1978] John E. Wetzel, "Dissections of a Simply Connected Plane Domain", The American Mathematical Monthly. 85(1978)660–661.
- [Wilansky 1976] A. Wilansky, "What if 2^c and 3^c are Integers?", The American Mathematical Monthly. 83(1976)473.
- [Wilke 1978] Kenneth M. Wilke, "Review of 'Steven Kahan, The Compleat Alphametic Book. Baywood Publishing Company. Farmingdale, NY:1978' ", Crux Mathematicorum. 4(1978)248-249.
- [Wilkins 1991] J. Ernest Wilkins, Jr., "An Integral Inequality", Proceedings of the American Mathematical Society. 113(1991)345–363.
- [Williams 1979] E. R. Williams, "Biography of W. J. Blundon", Crux Mathematicorum. 5(1978)64–65.
- [Yao 1975] Andrew C. C. Yao, Edward M. Reingold, and Bill Sands, "Tiling with Incomparable Rectangles", Journal of Recreational Mathematics. 8(1975-76)112-119.

Glossary

abundant number	1975-	-1979	magic square
•	tion section beginning on page 3.]	Farey sequence	The sequence obtained by arranging in numerical order all the proper fractions
abundant number	A positive integer, n , such that $\sigma(n) > 2n$.		having denominators not greater than a given integer.
alphametic	A cryptarithm in which the letters, which	Fermat number	A number of the form $2^{2^n} + 1$.
amicable numbers	represent distinct digits, form related words or meaningful phrases. Two numbers are said to be amicable if	Fibonacci number	A member of the sequence 0, 1, 1, 2, 3, 5 where each number is the sum of the previous two numbers.
ameas name of	each is equal to the sum of the proper divisors of the other.	floor function	$\lfloor x \rfloor$ denotes the largest integer less than or equal to x .
ball	A sphere together with its interior.	focal radius	A line segment from the focus of an ellipse
bijection	A one-to-one function.		to a point on the perimeter of the ellipse.
Caliban puzzle	A logic puzzle in which one is asked to infer one or more facts from a set of given facts.	geoboard	A flat board into which nails have been driven in a regular rectangular pattern. These nails represent the lattice points in the plane.
Catalan number	A member of the sequence 1, 1, 2, 5, 14, 42, 132,, where the <i>n</i> th term C_n equals $\binom{2n}{n}/(n+1)$.	Gergonne point	In a triangle, the lines from the vertices to the points of contact of the opposite sides with the inscribed circle meet in a point
ceiling function	$\lceil x \rceil$ denotes the smallest integer greater than or equal to x .		called the Gergonne point.
centroid	The center of mass of a figure. The centroid of a triangle is the intersection	gnomon magic squa	A 3×3 array in which the elements in each 2×2 corner have the same sum.
	of the medians.	golden ratio	$(1+\sqrt{5})/2.$
cevian	A line segment extending from a vertex of a triangle to the opposite side.	golden rectangle	A rectangle whose sides are in the golden ratio.
Chebyshev polynor	mials $T_n(x) = \cos(n \arccos x) \text{ and } U_n(x) = \sin[(n+1)\arccos x]/\sin(\arccos x).$	harmonic mean	The harmonic mean of two numbers a and b is $\frac{2ab}{a+b}$.
circumcenter	The circumcenter of a triangle is the center	hexagonal number	A number of the form $n(2n-1)$.
	of the circumscribed circle.	hexomino	A six-square polyomino.
circumcircle coprime	The circle circumscribed about a figure. Integers m and n are coprime if	Heronian triangle	A triangle with integer sides and integer area.
cryptarithm	gcd(m, n) = 1. A number puzzle in which an indicated	homeomorphism	A one-to-one continuous transformation that preserves open and closed sets.
	arithmetical operation has some or all of its digits replaced by letters or symbols	homomorphism	A function that preserves the operators associated with the specified structure.
	and where the restoration of the original digits is required. Each letter represents a unique digit.	incenter	The incenter of a triangle is the center of its inscribed circle.
cyclic polygon	A polygon whose vertices lie on a circle.	incircle	The circle inscribed in a given figure.
deficient number	A positive integer, n , such that $\sigma(n) < 2n$.	isogonal conjugate	Isogonal lines of a triangle are cevians that are symmetric with respect to the angle bisector. Two points are isogonal
digimetic	A cryptarithm in which digits represent other digits.		conjugates if the corresponding lines to the vertices are isogonal.
disc	A circle together with its interior.	isotomic conjugate	-
Diophantine equat	ion An equation that is to be solved in integers.		isotomic if they are equidistant from the midpoint of that side. Two points inside a triangle are isotomic conjugates if the corresponding cevians through these points
dodecahedral numl	ber A number of the form $n(27n^2 - 27n + 6)/6.$	L-tetromino	meet the opposite sides in isotomic points. A tetromino in the shape of the letter L.
domino	Two congruent squares joined along an edge.	lattice point Legendre polynomi	A point with integer coordinates. als
escribed circle	An escribed circle of a triangle is a circle	,	$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$
	tangent to one side of the triangle and to the extensions of the other sides.	Lucas number	A member of the sequence 2, 1, 3, 4, 7 where each number is the sum of the previous two numbers.
excenter	The center of an excircle.	magic square	A square array of n numbers such that the
excircle	An escribed circle of a triangle.	0 1	sum of the n numbers in any row, column,
exradius	An exadius of a triangle is the radius of an escribed circle.		or main diagonal is a constant (known as the magic sum).

Glossary

Malfatti circles	Malfatti circles 1975–1979		zeta function
Malfatti circles	Three equal circles that are mutually tangent and each tangent to two sides of a given triangle.	polyomino	A planar figure consisting of congruent squares joined edge-to-edge.
medial triangle	The triangle whose vertices are the midpoints of the sides of a given triangle.	primitive Pythagor	ean triangle A right triangle whose sides are relatively prime integers.
Mersenne number	A number of the form $2^n - 1$.	pronic number	A number of the form $n(n+1)$.
Mersenne prime	A Mersenne number that is prime.	Pythagorean trians	gle
monic polynomial	A polynomial in which the coefficient of		A right triangle whose sides are integers.
monochromatic tria	the term of highest degree is 1.	Pythagorean triple	An ordered set of three positive integers (a, b, c) such that $a^2 + b^2 = c^2$.
	A triangle whose vertices are all colored the same.	repdigit	An integer all of whose digits are the same.
Nagel point	In a triangle, the lines from the vertices to	repunit	An integer consisting only of 1's.
	the points of contact of the opposite sides with the excircles to those sides meet in a	rusty compass	A pair of compasses that are fixed open in a given position.
nine point center	point called the Nagel point. In a triangle, the circumcenter of the medial triangle is called the nine point	skeleton division	A long division in which most or all of the digits have been replaced by asterisks to form a cryptarithm.
	center.	square number	A number of the form n^2 .
nonagonal number orthic triangle	A number of the form $n(7n-5)/2$. The triangle whose vertices are the feet of the altitudes of a given triangle.	Stirling numbers	${n \choose k}$ are Stirling numbers of the second kind. ${n \brack k}$ are Stirling numbers of the first
orthocenter	The point of intersection of the altitudes of a triangle.	1.	kind. $x^{\overline{n}} = \sum_{k} {n \brack k} x^{k} \text{ and } x^{n} = \sum_{k} {n \brack k} x^{\underline{k}}.$
palindrome	A positive integer whose digits read the same forward and backwards.	symmedian	Reflection of a median of a triangle about the corresponding angle bisector.
palindromic	A positive integer is said to be palindromic with respect to a base b if its representation in base b reads the same		Function of n variables whose value given n arguments does not depend on the order of the arguments.
	forward and backwards.	tetrahedral number	A number of the form $n(n^2 + 3n + 2)/6$.
pandiagonal magic	A magic square in which all the broken diagonals as well as the main diagonals add	tetration	Multiplication is iterated addition, exponentiation is iterated multiplication, and <i>tetration</i> is iterated exponentiation.
man dinital	up to the magic constant.	tetromino	A four-square polyomino.
pandigital	A decimal integer is called pandigital if it contains each of the digits from 0 to 9.	trapezium	A quadrilateral in which no sides are parallel.
Pascal's triangle pedal triangle	A triangular array of binomial coefficients. The pedal triangle of a point P with	trapezoid	A quadrilateral in which two sides are parallel.
	respect to a triangle ABC is the triangle whose vertices are the feet of the	triangular number	A number of the form $n(n+1)/2$.
	perpendiculars dropped from P to the sides	tromino	A three-square polyomino.
Pell number	of $\triangle ABC$. The <i>n</i> th term in the sequence 0, 1, 2, 5,	unimodal	A finite sequence is unimodal if it first increases and then decreases.
	12, defined by the recurrence: $P_0 = 0$, $P_1 = 1$, and $P_n = 2P_{n-1} + P_{n-2}$.	unimodular	A square matrix is unimodular if its determinant is 1.
	A number of the form $n(3n-1)/2$.	unitary divisor	A divisor d of c is called unitary if $gcd(d, c/d) = 1$.
pentomino	A five-square polyomino. (The name pentomino is a registered trademark of	unit fraction	A fraction $1/d$ with d an integer.
	Solomon W. Golomb.)	X-pentomino	A pentomino in the shape of the letter X.
perfect number	A positive integer, n , such that $\sigma(n) = 2n$.	zeta function	$\zeta(s)$ stands for the Riemann Zeta Function: $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s.$

KEYWORD INDEX

Use this section to

- · find problems that contain a specific word or phrase
- locate problems related to a given topic.

This section lists most words and two-word phrases that appear in the problems covered by this book, and also lists all words used to classify these problems. Look up a word or phrase and then you will find the references to those problems or classifications that contain this word or phrase.

The problem references look like

JNL number

or

CONTEST year/number

where

JNL is the journal abbreviation

CONTEST is the abbreviation for the contest

year is the year of the contest

and

number is the problem number.

If several consecutive problem references are from the same journal, the journal (or contest) abbreviation is listed just once, followed by the list of problem numbers.

The classification references look like

► SUB/subject 2/subject 3 [x]

where

subject 2 is the abbreviation for the primary subject in the classification containing the keyword is the second subject in the classification containing the keyword, if such precedes

the keyword in that classification

subject 3 is the third subject in the classification containing the keyword, if such precedes

the keyword in that classification

and

[x] is the number of problems having this particular classification, when that number is

greater than one. (The case [1] is suppressed.)

To find the text for problems referenced by classification, look up the appropriate subsection in the Subject Index (beginning on page 15) pertaining to that classification. Here are the primary subject abbreviations:

AL = Algebra GT = Game Theory RM = Recreational Mathematics

AN = Analysis HA = Higher Algebra ST = Set Theory AM = Applied Mathematics LA = Linear Algebra SG = Solid Geometry

 $\begin{array}{ll} \text{C = Combinatorics} & \text{NT = Number Theory} & \text{T = Topology} \\ \text{G = Geometry} & \text{P = Probability} & \text{TR = Trigonometry} \\ \end{array}$

Each problem appearing in this book is listed just once in the subject index under its primary classification. The keyword index can help you locate a problem from a given topic when that topic is a secondary classification for the problem. Pick a keyword that is either likely to occur in the problem or accurately describes a particular aspect of that problem, and then look it up in this keyword index.

Uninteresting words such as "the", "like", "of", "that", "each", "is", etc. have been suppressed from the listing. Important mathematical words that occur more than 50 times are listed in the keyword index but the references are suppressed. For example, it would serve no purpose to list all 693 problems that contain the word "triangle". You should consult a narrower term such as "scalene triangle".

To save space, two-word phrases are usually listed only under the first word. Thus "regular pentagon" is listed under "regular" but not under "pentagon". Thus, you should look up the narrowest term first associated with a topic you are interested in. If that does not occur, then try a broader term.

See also:

the Subject Index
 to find problems concerning a given topic

the Title Index to search for keywords in the title of a problem.

0	1975	-1979	9
0	▶NT/digit problems/consecutive digits [4]	3 people	►AL/age problems/different times
0-1 matrices	►C/arrays		►AL/age problems/sum and product
	►C/sets/determinants		▶P/birthdays
	►LA/matrices		▶P/jury decisions
	►NT/determinants	3 piles	►GT/nim variants
0-1 numbers	►NT/digit problems/multiples	3 players	►P/gambler's ruin [2]
	►NT/digit problems/squares	3 points	►G/analytic geometry/ellipses
	►NT/forms of numbers/		►G/parabolas
	decimal representations		►G/triangles/circles [3]
	NT/irrational numbers	3 sets	►G/dissection problems/
0 dimensional sa	NT/palindromes	2 amb ama	partitions of the plane
0-dimensional se	T/metric spaces/Hausdorff metric	3-sphere 3 triangles	►AN/curves/simple closed curves ►G/dissection problems/right triangles
1	NT/twin primes/digit problems	3 triangles	G/triangles [9]
1-dimensional be		3 variables	►AL/exponential equations
1-dimensional bi	►GT/board games	5 variables	►AL/exponential equations ►AL/systems of equations
1 parameter	►AL/functional equations		NT/polynomials
1 person	►AL/age problems/different times [4]	3x1 trominoes	►RM/polyominoes/maxima and minima
1 pile	►GT/nim variants	JAI GOIIIIIOES	►RM/polyominoes/tiling
1 urn	C/urns	3x3 arrays	NT/arrays
1 variable	►AL/exponential equations	3x3 board	►RM/chessboard problems/probability
1 variable	►AL/polynomial divisibility [2]	3x3 magic squar	
	►AL/polynomial divisibility/degree 4	ono magne squar	►RM/magic configurations/magic squares
	►AL/polynomial divisibility/degree 5	3x3 matrices	►LA/eigenvalues/diagonal matrices
	►AL/polynomial divisibility/degree 81		►P/number theory/divisibility
2	►RM/alphametics/doubly true	4	►RM/alphametics/doubly true
2 balls	►G/billiards/rectangles	4 circles	►G/circles
	►G/billiards/triangles		►G/squares/circles
2 boxes	▶P/game theory/selection games	4 couples	►C/configurations/mutual acquaintances
2 circles	►G/analytic geometry/circles [3]	4-cube	►G/n-dimensional geometry/4-space
	►G/circles	4 cylinders	►SG/cylinders/cubes
	►G/circles/chords	4-digit numbers	►NT/base systems/digit reversals
	►G/constructions/circles	4 digits	►NT/digit problems/digit reversals
2 coins	▶P/game theory/coin tossing	4 items	►AL/weights/balance scales
2-digit numbers	►NT/arithmetic progressions/primes	4 numbers	►NT/divisibility/consecutive integers
	►NT/base systems/digit reversals [2]		►NT/greatest common divisor [2]
2-dimensional	►P/stochastic processes	4 planes	►G/combinatorial geometry/planes
2 ladders	►G/ladders	4 points	►G/points in plane/distances
2 parameters	►AL/functional equations		►G/simple closed curves/distance [3]
2 people	►AL/age problems/different times [7]		►SG/points in space/angles
2 points	►G/triangle inequalities/sides		►SG/points in space/inequalities
	►P/geometry/point spacing	4-space	►G/n-dimensional geometry
2 quarries	►AN/pursuit problems	4 squares	►NT/forms of numbers/sum of squares
2-sphere	►AN/curves/simple closed curves	4 variables	►AL/systems of equations
2 squares	►G/squares	4x4 arrays	C/arrays/symmetric arrays
2 triangles	► G/triangles	4.41.1	►RM/puzzles/sliding tile puzzles
	►G/triangles/area	4x4 board	►GT/tic-tac-toe variants
2	SG/triangles/n-dimensional geometry [3]	4x4 determinant	►LA/determinants/evaluations
2 urns 2 variables	C/urns		,
2 variables	►AL/exponential equations ►AL/polynomial divisibility	4x4 magic squar	►NT/determinants/solution of equations [2]
	► AL/polynomials/complex polynomials	4X4 magic squar	►RM/magic configurations/magic squares
	► AL/systems of equations [2]	4x4 matrices	► HA/groups/transformations
	►AN/power series	4X4 IIIdulices	NT/digit problems/matrices
	NT/Diophantine equations/degree 2 [2]	5	NT/sum of powers/divisibility
	►NT/Diophantine equations/degree 3		►RM/alphametics/doubly true
	►NT/Diophantine equations/exponential	5 items	►AL/weights/balance scales
	NT/divisibility/polynomials [4]	5 planes	►G/combinatorial geometry/planes
	NT/equations	5 points	►C/geometry/concyclic points [2]
	▶NT/polynomials	v F	►G/points in plane/distances
	►NT/sets/polynomials		►G/point spacing/distance [2]
3	▶NT/continued fractions/radicals	5 variables	►AL/systems of equations
	►NT/polygonal numbers/octagonal numbers	5x5 arrays	►C/arrays/binary arrays
3 circles	►G/analytic geometry/circles		►C/arrays/maxima and minima
	►G/circles	6 discs	►G/discs
	▶G/locus/circles	6 people	►AL/age problems/different times
	►SG/paper folding/circles	6 variables	►AL/systems of equations
3 classes	►C/configurations/mutual acquaintances	7	►NT/digit problems/digital roots
3 coins	▶P/coin tossing [2]		►RM/alphametics/doubly true
3-digit numbers	▶NT/base systems/digit reversals	7 points	►G/point spacing/distance
3 factors	►NT/factorizations	8	►NT/polygonal numbers/octagonal numbers
3 lines	►G/points in plane/parallel lines		►RM/alphametics/doubly true
	►SG/maxima and minima/lines [6]	9	►NT/composite numbers/geometric series [3]
3 parameters	►AL/functional equations		►RM/alphametics/doubly true

9 people	19	75–1979	adjacency matri
9 people	►G/cake cutting	absolute differe	
10	►RM/alphametics/doubly true		►AN/series/monotone sequences
10-digit number			►C/permutations/finite sums
	►NT/factorizations		►NT/arrays/3x3 arrays
10 numbers	►NT/divisibility/consecutive integers	absolute value	►AL [2]
0 squares	►G/tiling/squares		►AL/complex numbers/inequalities
11	►RM/alphametics/doubly true		►AL/inequalities
11-digit number			►AL/inequalities/finite sums
	►NT/factorizations		►AL/inequalities/logarithms
12	RM/alphametics/doubly true		►AN/integral inequalities/
13-gons	G/polygons	1 1 1 1	complex variables [3]
13 items	AL/weights/balance scales	absolutely	AMM 6029 E2591
13 variables	►AL/systems of equations ►G/dissection problems/angles	absorb	AMM E2636
	►G/polygons	abundant numb	
l7-gons l7 items	►AL/weights/balance scales	1	NT
17 nems 17 people	C/configurations/mutual acquaintances	accelerate	JRM 730 C5 PARAB 353
1 <i>1</i> people 18	NT/twin primes/sums	acceleration	AMM E2535 FUNCT 3.5.2 NAvW 450 468 PME 343 SPECT 8.2
20	RM/alphametics/doubly true	aggentance	PME 403
	G/triangles/isosceles triangles	acceptance accessible	
24	RM/alphametics/doubly true		AMM S4 CRUX 334 PME 382
25	NT/forms of numbers/unit fractions	accident	AMM 6146
28-digit number		accidental	CRUX 433 JRM 715
-c-argre manner	►NT/factorizations	accommodate	CRUX 282 429 PMF 460
30	►RM/alphametics/doubly true [2]	accomplished	PME 460 AMM 6021 6022 6151 6106 F2645 CPHY 16
30 degree angle		according	AMM 6031 6032 6151 6196 E2645 CRUX 16 JRM 469 554 656 C4 PARAB 292 325
o degree ungie	►G/triangles/isosceles triangles		PENT 278 300 SSM 3783
36	►AL/age problems/sum and product	account	JRM 510 703 C9
41	►RM/alphametics/doubly true	accountant	OMG 18.2.3
19	►RM/alphametics/doubly true	accuracy	AMM E2533 JRM 530 C7
50	►RM/alphametics/doubly true	accurate	MM Q627 OMG 18.3.5 PUTNAM 1975/A.2
51	►NT/sets/divisibility	ace	JRM 443 601 PARAB 427 USA 1975/5
52	►NT/sets/divisibility	achieve	FUNCT 2.2.2 JRM 389 425 680 737
56	►RM/alphametics/doubly true	Ackermann fun	
60	►RM/alphametics/doubly true [3]	7 CKC1 III GIII 1 GII	►NT/recurrences/modular arithmetic
60 degree angle	►G/constructions/angles	acoustics	►AM
0 0	►G/triangles	acquainted	AMM 6094 PARAB 278
	▶NT/triangles	acre	CRUX 1
61	►RM/alphametics/doubly true	acronym	PME 350
64	►RM/alphametics/doubly true	across	CMB P244 CRUX 193 244 JRM 473 529
70	►RM/alphametics/doubly true		704 793 MM 1086 OSSMB 75-15 PENT 314
75 numbers	▶P/bingo		TYCMJ 89
80	►RM/alphametics/doubly true	acute	CRUX 18 29 322 PS4-3 MSJ 494 NAvW 472
90	►RM/alphametics/doubly true		OSSMB 79-4 G76.1-6 G79.2-5 PME 351
100	►RM/alphametics/doubly true		SSM 3703
100 degree angle	e	acute angle	OSSMB G79.2-8
	►G/triangles/isosceles triangles	acute triangle	CRUX 270 MM $Q654$ NAvW 425 480
120 degree angle			PARAB 435 PUTNAM 1975/A.6 SSM 3669
	►G/triangles		TYCMJ 74
	►NT/triangles		►G/dissection problems/triangles [6]
777	►NT/base systems/maxima and minima		►G/triangles/altitudes
1000	►NT/forms of numbers/		►NT/triangles/60 degree angle
10001	sum of consecutive integers		►P/selection problems/points
1000!	NT/digit problems/terminal digits		►SG/plane figures/triangles
1978	NT/digit problems/terminal digits	addictive	JRM 453
1070	NT/square roots/sum of square roots	addition	AMM 6068 E2713 JRM 557 684
1979	NT/partitions/maxima and minima		MM 927 Q619 NAvW 477 OSSMB 77-1
	NT/sequences/monotone sequences		79-8 PENT 311 PME 348 402
1.4.4.4	►RM/magic configurations/magic squares		PUTNAM 1975/B.1 SSM 3575 3576 3591
1444	NT/digit problems/sum of digits		3593 3670 3691 3723 3780 3783 TYCMJ 43 81
3888 100001	NT/digit problems/terminal digits		►NT/arithmetic operations
10000!	NT/digit problems/factorials		►RM/cryptarithms/skeletons [6]
abelian group	AMM 6011 6119 6204 6216 6221 E2574	additive	AMM 6113 6256 6263 CRUX 359 ISMJ 13.9
	MM Q612	additive	MM 935 MSJ 430 PUTNAM 1975/B.1
	► HA/binary operations/inequalities	additive function	•
A bol'a +baana	► HA/groups	additive fulletic	►LA/vector spaces
Abel's theorem	NAPAR 262	address	PENT 314
absent-minded absolute	PARAB 363 AMM 6240 F2702 FO B 361 IPM 376	addressed	FUNCT 3.4.3
absolute	AMM 6249 E2702 FQ B-361 JRM 376 MM 953 1045 PUTNAM 1979/B.6	adjacency	AMM E2795
	SIAM 77-15 SSM 3737	adjacency matr	
	SIMINI 11-TO SOINI 9191	aujacency matr	IA INDAAA 941

adjacent	1975	-1979	angle
adjacent	AMM 6189 6192 E2612 E2795	almost perfect	
	AUSTRALIA 1979/3 CRUX PS3-2		►NT/sum of divisors
	IMO 1979/6 JRM 480 501 531 566 569 572 679 702 709 C3 C6 MM 952 Q654	alphabet	AMM 6146 JRM 740 PARAB 341 ►RM/cryptarithms
	NAvW 527 NYSMTJ 79 OMG 15.2.2	alphametic	[238 references]
	OSSMB 75-2 G78.2-5 PARAB 311 406		►GT/Mastermind/cryptarithms
	PME 434 SIAM 75-12 TYCMJ 147		►RM
adjacent cards	▶P/cards	1	►RM/words/anagrams
-	s ►RM/magic configurations/magic squares	alternate	CANADA 1978/5 CRUX 345 FUNCT 2.1.1 ISMJ 14.5 JRM 372 373 390 501 539 558 572
adjectives	►RM/words		648 682 709 MM 925 1051 Q647 MSJ 448
adjoin	CRUX 495 JRM 396 587 MSJ 468		NAvW 404 405 OSSMB 75-2 78-15 79-15
. 11 . 14	PARAB 431 AMM 6222 CMB P246 P272		79-17 PARAB 281 PME 342 379 438 461
adjoint	► AN/Banach spaces/	alternating	AMM 6137 FQ H-297 OMG 17.2.4
	continuous linear operators	alternating gr	SIAM 76-1
	►LA/matrices [2]	ancinating gi	►HA/groups
admissible	NAvW 509 PUTNAM 1978/B.6	alternating se	ries
admission	JRM 675		►AL/finite sums/fractions
adult	CRUX 409		NT/series
adventitious tri	angles		►NT′/series/binomial coefficients ►NT/series/divisibility
	►G/triangles		NT/series/sum of squares
affine	AMM 6098 6158 E2779		NT/series/unit fractions
affine spaces	►LA	altitude	AMM E2687 CRUX 46 192 218 394 JRM 504
affine transform			562 MM 936 MSJ 456 NAvW 424 513 525 NYSMTJ 50 92 PARAB 289 PME 351 425
	▶G		SSM 3652 3733 TYCMJ 61 74 110
Africa	►RM/alphametics/places [2]		►G/constructions/triangles
aft	JRM 375		►G/triangle inequalities
afternoon	PARAB 266		►G/triangles
age	CRUX 329 452 FUNCT 3.1.6 JRM 393 500 655 659 699 794 MATYC 135 MSJ 437		►G/triangles/30 degree angle
	OMG 17.3.4 OSSMB 78-10 PARAB 262 309		►G/triangles/isosceles triangles ►G/triangles/line segments
	332 PENT 314		SG/tetrahedra
age problems	►AL	amazed	JRM 563
	►NT/polynomials	ambiguous	MM 940
air	PARAB 295 SPECT 7.1	ambulance	SIAM 75-8
airplane	PARAB 305	America	►P/transportation ►RM/alphametics/places
alarm	JRM 770a	amidship	JRM 375
Albert	►RM/alphametics/names [4]	anagram	JRM 751
algebra	AMM 6068 6097 6124 6169 6228 6256 6277		►RM/alphametics/words
	CMB P253 NAvW 534 PENT 281 283		►RM/words
	►AN/functional analysis/Hilbert spaces	analogy	AMM 6092 CRUX 464 MM 1043 PME 448 SSM 3699
	►HA	analytic	AMM 6045 6071 6166 CRUX 60 NAvW 534
algebraic	AMM 6029 6043 6066 6119 6258 6268 E2616 CRUX 300 NAvW 435 PENT 285		OSSMB G75.2-2
algebraic extens		analytic funct	
argebraic exten	►HA/fields/extension fields		►AN/complex variables
algebraic numb	•		► AN/complex variables/inequalities ► AN/functional analysis/Banach algebras [3]
Ü	►HA/fields/subfield chains		► AN/location of zeros/complex variables
	►HA/fields/subfields	analytic geom	
algebraic numb			▶G
	►AN/functions/transcendental functions	1 1	►SG [4]
algorithm	AMM 6163 CRUX 231 355 FUNCT 3.3.3	analytical	CRUX 119 JRM 786
	JRM 513 739 MATYC 85 OSSMB 79-6 SIAM 76-7 79-17 SPECT 10.9 SSM 3700	analyze ancestors	SIAM 76-16 FQ B-304
	3703	ancestors	►NT/Fibonacci numbers
	►AL	anchored	MM 1056
	►AM/navigation/rivers	ancient	ISMJ J10.17
	►C [2]	Angkor	JRM 396
	►G/paper folding	angle	[192 references] ►AL/clock problems/time computation
	►G/triangles/circumcircles		► AN/rate problems/maxima and minima
	►HA/groups/finite groups		►G/constructions
	►NT		►G/constructions/lines [13]
	►NT/Fibonacci numbers		G/dissection problems
	▶RM/mazes		►G/locus ►C/maxima and minima
alive	JRM 655		►G/maxima and minima ►G/non-Euclidean geometry/locus
Alladi	►RM/alphametics/names [24]		►G/points in plane/triangles
11110001			

angle	1975	-1979	are
	►G/squares		►NT/digit problems/leading digits
	►G/triangle inequalities		►NT/irrational numbers
	►G/triangle inequalities/centroids		►NT/least common multiple/
	►G/triangles/special triangles		consecutive integers
	▶SG/maxima and minima		►NT/powers/radicals
	►SG/paper folding		►NT/series/digit problems
	►SG/points in space		►SG/paper folding/angles
angle between d		1	►TR
	►G/parallelograms/trigonometry	arbitrary signs	
angle bisector	AMM E2538 S23 CRUX 141 168 423 454 MM 936 998 1054 Q646 MSJ 434 PME 346	arc	AMM 6007 6074 6280 E2564 E2565 E2646 S19 CANADA 1975/5 CRUX 141
	374 421 USA 1979/2		220 225 284 386 420 428 466 FQ B-415
	►G/circles/2 circles [2]		ISMJ 13.10 J10.14 JRM 562 MATYC 134
	►G/constructions		MM 926 981 MSJ 451 NAvW 558
	▶G/constructions/triangles		OSSMB 75-5 PARAB 340 PENT 317
	►G/quadrilaterals		PME 362 SIAM 78-17 SSM 3695 3710 3724
	►G/triangles [16]		USA 1979/2
	►G/triangles/60 degree angle		►AN/measure theory
	►G/triangles/circumcircles		►AN/sets/plane sets
	►G/triangles/isosceles triangles		►C/coloring problems
	►TR/triangles/sin	1	►G/circles
angle bisectors a		arch	SSM 3695
angla bicastar -	►G/triangle inequalities	architecture	► AM/engineering
angle bisectors e	ightharpoonupcxtended $ ightharpoonup$ G/triangle inequalities	arclength	► AN/functions/monotone functions ► AN/rate problems/maxima and minima
angle measures	G G		SG/curves
angle measures	▶G/ladders	arcsin	TR/numerical evaluations/cos
	►G/paper folding/squares	arcsin and arc	
	► G/right triangles	di com di di di	►TR/calculator problems/arctan [3]
	►G/triangles		►TR/identities/
	►G/triangles/erected figures		inverse trigonometric functions
	►G/triangles/isosceles triangles	arctan	►AN/integrals/evaluations
angle relations	►G/triangles/special triangles		►TR/approximations [41]
angle trisectors			►TR/calculator problems
	►G/triangle inequalities		TR/identities/constraints
	►G/triangle inequalities [2]		TR/infinite series
angular	MM 955 MSJ 501 OSSMB G76.3-3		►TR/solution of equations
angular velocity		area	[183 references] ►AN/integrals
animal	►AM/physics/solid geometry [11] OMG 17.1.9 18.1.9		►G/analytic geometry/polar curves
aiiiiiai	►RM/alphametics		G/circles
anniversary	JRM 699		►G/circles/2 circles
annulus	AMM E2616 CRUX 130 405		►G/circles/4 circles
	►G/point spacing/containing figures		►G'/circles/arcs
	▶P/geometry/point spacing		►G/constructions/rectangles
ant	CRUX 499 SSM 3781		►G/convexity
antichain	AMM 6220		►G/convexity/inequalities
anticommutative			►G/cyclic quadrilaterals
antifreeze	ISMJ 12.7 OMG 17.3.1		►G/dissection problems/squares
antiprism	SSM 3693		►G/envelopes
Anton	NAME FOR A SPECT 10.2		► G/equilateral triangles/interior point ► G/hexagons/circumscribed decagon
apex	AMM E2694 SPECT 10.2		►G/hyperbolas/tangents
Apollonian triple	►G/analytic geometry/circles		G/inequalities
appetite	PME 382		G/isosceles right triangles/squares
appetite	CRUX 11 12 MSJ 432 PARAB 376		G/lattice points/ellipses
apple	JRM 505 737 NAvW 527		►G/maxima and minima/isosceles triangles
apprentice	JRM 630		►G/maxima and minima/line segments
approach	AMM 6053 E2585 E2692 DELTA 5.2-1 6.1-1		►G/maxima and minima/quadrilaterals
11	JRM 445 730 766 OSSMB G79.1-1		►G/maxima and minima/rectangles
approximate	CRUX 202 436 FUNCT 1.2.7 JRM 786		►G/maxima and minima/triangles
	MM 955 NAvW 425 OMG 15.3.6 16.1.2		►G/octagons/cyclic octagons
	PME 375 460 SSM 3690 TYCMJ 119		G/octagons/equiangular octagons
approximation	AMM 6125 E2693 S4 CRUX 207 355 436		►G/parallelograms
	FQ B-404 B-405 FUNCT 1.1.10 JRM 786		► G/pentagons
	PME 460 SIAM 78-17 SSM 3690		► G/point spacing/nearest point ► C/polygons/convey polygons
	► AL/metric conversions/miles and kilometers ► AL/radicals		►G/polygons/convex polygons ►G/quadrilaterals
	►AN/complex variables/polynomials		►G/quadrilaterals/diagonals
	►AN/complex variables/polynomials ►AN/sequences/convergence		►G/quadrilaterals/maxima and minima
	►G/triangles/circumcircles		G/quadrilaterals/triangles
	►LA/eigenvalues		G/rectangles
	►LA/matrices/norms		►G/regular octagons/diagonals
	▶NT [3]		►G/regular polygons/limits [2]

area	1975-	-1979	automated warehous
ui cu		I	
	►G/right triangles/erected figures ►G/simple closed curves/maxima and minima	Armstrong nun	nber ▶NT/digit problems/sum of powers
	G/squares/erected figures	army	CRUX 402
	G/squares/limits	arrange	AMM 6189 E2595 S4 CRUX 326 328
	►G/stars [4]		FUNCT 3.1.5 ISMJ 12.31 14.17 JRM 391
	►G/triangle inequalities/sides		426 427 443 513 531 533 566 593 751 768
	►G/triangles		KURSCHAK 1979/3 MM 972 999 1021 1061 MSJ 426 OMG 18.1.3 OSSMB 76-13
	►G/triangles/3 triangles ►G/triangles/escribed circles [2]		76-14 76-16 77-11 79-13 PARAB 301 339 420
	G/triangles/escribed circles [2] G/triangles/inscribed triangles		PME 434 SPECT 11.8 SSM 3630 3650
	►G/triangles/line segments [4]	arrangement	AMM S14 CRUX 328 JRM 391 421 468 769
	►G/triangles/trisected sides		C6 MM 996 MSJ 482 OSSMB 76-3 76-14
	►NT/Pythagorean triples	0,000	76-16 77-11 79-13 SSM 3662 AMM 6151 E2534 E2612 CRUX 345
	NT/triangles	array	FQ H-254 H-257 H-273 H-275
	►NT/triangles/counting problems ►SG/analytic geometry/ellipsoids		FUNCT 1.5.2 ISMJ 14.23 JRM 372 373 703
rea and perime			KURSCHAK $1979/3$ MM 1061 MSJ 430
irea ana perime	►G/maxima and minima/triangles		OSSMB 76-16 PARAB 329 SSM 3629 3632
	►G/rectangles [14]		TYCMJ 89
	►G/triangle inequalities/sides		► AN/series ►C [4]
	NT/Pythagorean triples		►C/algorithms
	►NT/triangles ►NT/triangles/isosceles triangles		►C/cards
	NT/triangles/obtuse triangles NT/triangles/obtuse triangles		►C/lattice points/labeled lattice points
	►P/geometry/rectangles		►GT/selection games
	►TR/triangles/csc and cot		►NT [34] ►NT/Fibonacci and Lucas numbers
rea equals peri			NT/Pell numbers
	NT/geometry/cyclic quadrilaterals		NT/recurrences
rone	►NT/rectangles CANADA 1979/4 JRM 395		►NT/recurrences/
arena Argand plane	►G/combinatorial geometry/		generalized Fibonacci sequences
iigana piane	equilateral triangles		▶P ▶PM
arithmetic	[54 references]	arrow	►RM ISMJ 13.18 13.23 OMG 16.1.1
rithmetic mean		arsenal	JRM 387
	NT / I	ascending	AMM 6134
	NT/divisors	assemble	TYCMJ 89
	►NT/forms of numbers/sum of two squares ►NT/recurrences/inequalities	assembly	PME 416
	NT/recurrences/limits	associative	AMM 6039 6145 6238 6263
	►NT/sets [3]	associativity	► AN/complex variables/convolutions ► HA/binary operations/finite sets
	►NT/twin primes		►HA/groups
	►TR/inequalities/sin	asterisk	CRUX 401 JRM 669
arithmetic opera	NT NT	astounded	PENT 311
arithmetic progr		astrology	►RM/alphametics/words NYSMTJ 50
	►AL/finite sums	astronaut astronomical	JRM C9
	►AL/functional equations/1 parameter	astronomy	►AM
	►AL/radicals	asymptote	OSSMB G78.3-4 G79.3-3
	►AL/sequences ►AL/theory of equations/roots [5]	asymptotic	AMM 6016 6020 6144 S3 CRUX 355
	C/sequences/binary sequences		FQ B-411 H-287 SIAM 76-3 76-21
	►G/perspective drawings/railroad tracks	asymptotic and	► AL/recurrences
	►G/triangles/special triangles		► AN/differential equations/order 2
	NT		►AN/gamma function
	NT/algorithms [2]		►AN/sequences/inequalities
	►NT/binomial coefficients ►NT/continued fractions/evaluations		►AN/sequences/recurrences
	NT/digit problems		►NT/Möbius function/series ►NT/series/primes
	►NT/digit problems/primes	asymptotic exp	, , , ,
	►NT/Diophantine equations/degree 3 [3]	day inprovie exp	NAvW 456
	►NT/forms of numbers/difference of squares		►AN/integrals
	NT/primes	athletic	MM 1024 SSM 3617
	NT/Pythagorean triples [2]	attached	CRUX 181
	►NT/rational numbers/finite sequences ►NT/series [2]	attack attendance	JRM 424 SIAM 75-8 MSJ 431 OMG 18.2.4
	NT/sets	attendance	ISMJ 11.18 SPECT 9.2
	►NT/sets/partitions [2]	auction	JRM 560 MM 944
	►NT/sets/sum of elements	auditor	OMG 18.2.3
	►RM/magic configurations/magic squares [2]	auto	OSSMB G79.1-1
	TR/triangles/tan and cot	autological	CRUX 61
arithmetical	AMM S3 NAvW 558	automated	JRM 736
armies	►AL/uniform growth	automated war	ohouse

automobile	1975-	-1979	binary relations
automobile	CRUX 354 NYSMTJ 81 OSSMB 78-6 G79.1-1	base system	►NT ►NT/digit problems
	►C/configurations/concyclic points		►NT/digit problems/squares
automorphism	AMM 6026 6037 6262 6277 NAvW 435		►NT/digit problems/sum of cubes [2]
	►C/graph theory/trees		►NT/normal numbers ►NT/series/digit problems
	►HA/fields/finite fields		►P/digit problems
	►HA/groups/finite groups		►RM/puzzles/crossnumber puzzles
*-automorphism		baseball	JRM 441 498
:1 - 1 - 1	N/functional analysis/Hilbert spaces	,	►P/sports
	►GT/chess problems/maxima and minima JRM 796	bases	AMM E2802 JRM 598 604 616 649 657 677 760 NYSMTJ 59 PME 390 SSM 3618 3743
avenue average	AMM E2585 E2636 CRUX 28 373		► AN/functional analysis
average	FUNCT 2.3.5 JRM 419 480 499 509 683		►RM/alphametics/phrases
	730 MM 1027 NAvW 410 483 OMG 18.1.2		►T/compactifications/
	SIAM 75-8 75-12 78-1 TYCMJ 46	bases and diago	completely regular spaces
1: 4	USA 1975/5	bases and diago	►G/constructions/trapezoids
average distance	►G/ellipses	basis	AMM 6268 6278 E2633 ISMJ 13.9 MM 984
	G/regular polygons/limits		NAvW 486 SIAM 78-2
awake	FUNCT 1.3.1 OMG 18.3.1	basis-independe	
axiomatizable p		basket basketball	CRUX 11 12 OMG 18.2.3
Р	AMM 6139	batman	JRM 770a
	►ST/symbolic logic	Batman	►RM/alphametics/names [2]
axis	AMM 6102 6276 E2542 E2728 CRUX 119	battle	CRUX 402 JRM 395
	129 233 374 394 FUNCT 1.2.1 JRM 564 603	beach	FUNCT 2.4.1
	729 MATYC 104 MM 947 1056 NYSMTJ 46 64 OSSMB G75.2-4 G78.1-3 G78.1-4	beads	ISMJ 12.4 JRM 740 PARAB 406 AMM E2527 E2651 PME 447
	G78.2-3 G79.1-3 G79.2-8 PARAB 374	bear beau	JRM 697
	PENT 312 SSM 3706	bed	PME 343
axis of symmetr	y	bedroom	CRUX 122
	►G/symmetry/center of symmetry	bee	FQ B-304
backward	JRM 753	beer Beiler	NYSMTJ 53 ►RM/alphametics/names
bacon	AMM 6146	Bell numbers	►NT/binomial coefficients/finite sums
bag	FUNCT 3.2.4 JRM 379 OMG 18.2.7 18.3.5	Bernoulli equat	
Bain	►RM/alphametics/names		►AN/differential equations
baker balance	PME 357 370 AMM 6224 CANADA 1976/1 CRUX 123		▶P/independent trials
Darance	JRM 448 OMG 17.1.5 TYCMJ 104	Bertrand's post	►NT/Diophantine equations/factorials
balance scales	►AL/weights	Bessel function	
balanced	OSSMB 76-15 PUTNAM 1977/B.3		►AN/differential equations
ball	AMM 6091 6224 E2722 E2724 CRUX 117		►AN/integrals/evaluations
	137 FUNCT 1.2.2 1.2.3 3.2.4 JRM 564 573	1 4	►AN/Laplace transforms
	MSJ 426 NAvW 440 475 476 OMG 17.2.1	bet betting	JRM 782 PME 350 JRM 647
	PARAB 295 307 PME 419 SSM 3648 ►RM/alphametics/phrases	betting games	▶GT
Banach algebras	, - , -	betting strategi	
Danach aigebras	►AN/functional analysis	,	▶P/gambler's ruin
Banach space	►AN	bicycle pedals bigraph	FUNCT 1.4.5 AMM 6159
•	►AN/functional analysis	bijection	AMM 6028 6098 6100 6128 6236 E2633
	▶T	bijection	E2671 FQ B-333
band	JRM 444 PARAB 313		►G/lattice points/mappings
Bangkor	JRM 396		►NT/polynomials/2 variables
bank	FUNCT 2.1.2 JRM 478 MATYC 123	bill	►ST/mappings CRUX 297 329 MSJ 459 OMG 17.1.5
	MM 976 OMG 17.1.5 18.2.3 OSSMB G75.1-5	Dill	PENT 314 PME 433
hankor	PARAB 363 427 PME 350 TYCMJ 104		►RM/alphametics/phrases
banker bankrupt	JRM 675 SPECT 7.4	billiard	CRUX 137 NAvW 475 476
bankrupt base 2	NT/digit problems/consecutive digits [3]	him - Ji-	►G [2]
base 7	NT/base systems/square roots	bimedian	CRUX 245 ►SG/regular tetrahedra
base 8	NT/base systems/palindromes	bin	JRM 736
2000	NT/base systems/pandigital numbers	binary	AMM 6099 6146 6238 E2574 E2588
	NT/base systems/squares		E2671 FQ H-271 JRM 598 NAvW 432 477
	NT/base systems/triangular numbers	1:	SIAM 75-1 77-15 TYCMJ 43 81
base 11	►NT/base systems/squares	binary arrays	►C/arrays on AMM E2667 CMB P269
base 50	►NT/base systems/cubes	binary expansion	
base and altitud	, ,	Sperage	►HA [7]
	►NT/triangles	i .	s ►ST/relations

•	AL/inequalities/radicals	bisection	ightharpoonupG/parallelograms
*			
•			►G/triangles/centroids
	AN/functions/digit problems	bisector	CRUX 148 309 379 483 PS1-2 ISMJ 11.2
inary seguences	NT/determinants/0-1 matrices		14.18 MM 967 NAvW 544 NYSMTJ 43
			OMG 18.3.4 OSSMB 78-12 79-5 G77.1-4
	·C/sequences		
	NT/sequences		PME 346 TYCMJ 110 119
	P/sequences	bishop	JRM 680
			►RM/chessboard problems/paths
	ST/mappings/bijections	bishopwise	JRM C6
	C/graph theory/trees		
	NT/sequences/trees [2]	bit	PARAB 372 SIAM 75-1
ingo ▶	·P	blackboard	CRUX 452 FUNCT $1.1.6$ OSSMB $78-10$
inomial	FQ H-261 OSSMB G78.2-2		PARAB 419
inomial coefficien	t.	blank	JRM 656
	AMM S1 CRUX 90 339 FQ B-310 B-388		
	NAvW 396 PARAB 414 SPECT 8.8	blind	JRM 729
		block	AMM 6222 CANADA 1977/7 CRUX PS3-2
_	SSM 3721		FQ B-362 MSJ 498 OMG 16.2.7 PARAB 33
	·AL/finite sums		356 361 SIAM 76-9 76-17 TYCMJ 93
•	·AL/finite sums/exponentials	1111	
•	·AL/inequalities/finite sums	block matrices	AMM $E2762$
•	·AL/recurrences [3]		►LA/determinants [3]
	AL/solution of equations		►LA/matrices
			•
	AN/Bessel functions/infinite series		►LA/matrices/0-1 matrices
	AN/limits		►LA/matrices/spectral radius
	AN/limits/elementary symmetric functions	block puzzles	►RM/puzzles
•	AN/Riemann zeta function/infinite series [2]		7 -
	AN/series	board	AMM 6211 E2612 E2665 S10
	·LA/matrix equations		CANADA 1978/5 CRUX 276 282 325 429
	NT		FUNCT 2.4.2 JRM 465 508 540 C4 C6
-			MM 952 996 1084 MSJ 477 NYSMTJ 68
	NT/determinants		77 OMG 14.2.2 15.1.3 PARAB 336 419
•	NT/Fibonacci and Lucas numbers/		PME 358 SIAM 76-1 78-9 TYCMJ 78
	finite sums [2]		USA 1976/1
•	NT/Fibonacci numbers/finite sums		,
	NT/Fibonacci numbers/identities	board games	▶GT
	NT/inequalities	boat	JRM 513 MM 1004 OMG 15.2.1
	NT/least common multiple [2]	bold versus cau	tions
	NT/least common multiple [2]	bold versus cau	
	NT/Lucas numbers		►P/gambler's ruin/betting strategies
	NT/permutations/derangements	bonus	OSSMB 78-3
•	NT/recurrences/finite sums	book	CRUX 414 OSSMB 76-11 SSM 3574
•	·NT/recurrences/	Boolean rings	►HA/rings
	generalized Fibonacci sequences		, -
_	NT/repdigits	bordered	NAvW 451
	NT/sequences	Borel sets	►AN/measure theory
	, -		►T/product spaces/unit interval
	NT/series	1	, - ,
	NT/series/arithmetic progressions	born	ISMJ J10.1 PARAB 262 PME 449
	NT/series/geometric series	bornivorous	AMM 6029
•	NT/series/Stirling numbers	bornological spa	aces
•	NT/triangular numbers/identities		AMM 6029
	NT/triangular numbers/series		
	P/Cauchy distribution	_	►T/locally convex spaces [2]
inomial expansion	, ,	Borromean ring	
monnai expansioi			►T/surfaces/embeddings
-	FQ B-339	bottle	PARAB 297
	·HA/rings/integral domains [2]		
oiology	OMG 17.1.2	bottom	AMM E2713 AUSTRALIA 1979/1
	·P		CRUX 122 400 FUNCT 2.1.1 IMO $1979/2$
ipartite	AMM 6079 E2565 CMB P268		JRM 472 MM 1086 MSJ 464 NAvW 432
ipartite graphs			OSSMB G79.1-1 PARAB 315 361
iquadratic forms	C/ Stupit dicory		SPECT 11.3 TYCMJ 89 USA $1979/3$
	ANI/Comptions/continues C	bound	AMM 6115 6138 6191 CRUX 355 JRM 376
	AN/functions/continuous functions	Dound	
irational	NAvW 482		445 C7 MM 952 1006 1063 1068 NAvW 51
oird	JRM 650		PUTNAM $1975/B.3$ SSM 3585 TYCMJ 15
irth	FUNCT 1.1.9 JRM 374 643		►AN/functions/differentiable functions
irthdate	JRM 722		►AN/integral inequalities
irthday	CRUX 195 ISMJ J10.1 MATYC 135		, -
11 011449			►AN/limits/infinite series
	OSSMB 78-10 PARAB 262 PME 449		►AN/maxima and minima
	·AL/calendar problems/day of week		►AN/sequences/tetration [4]
•	·P	1 1	, - , , , , , , , , , , , , , , , , , ,
iscuit	JRM 563	boundary	AMM 6025 6040 6080 6192 6213 6250 S19
isect	CMB P244 CRUX 270 ISMJ 10.6 JRM 370		CMB P260 JRM 445 684 MM 927 946 100
	MM 1068 Q637 NYSMTJ 74 OBG3		MSJ 444 PUTNAM $1975/A.2$ SIAM $75-21$
	OSSMB 79-16 PME 380 SPECT 7.2		79-1
			►T/Cantor set/subsets
	SSM 3685 TYCMJ 119		► I/Camor act/anacta
isected numbers		boundary and i	

boundary condit	ions 1975	5–1979	Cat Woman
boundary condit		cake cutting	▶G
	►AN/differential equations/	calculating	FUNCT 1.2.7 JRM 728
	functional equations	calculator	FUNCT 1.1.8 1.2.7 2.1.4 JRM 420 659
	►AN/differential equations/Laplacian [3]		MM 1080 NYSMTJ 55 PENT 311 SSM 3690
	►AN/integral inequalities/bounds	calculator proble	ems
bounded	AMM 6078 6113 6158 6172 6256 6277 6278		►TR
	E2522 E2563 E2712 E2714 CMB P256	calculus	AMM 6139 MM 1072 SSM 3683 3684
	P260 CRUX 58 248 374 380 495 MM 1073	calendar	FUNCT 2.3.1 JRM 419 C9 PARAB 273
	MSJ 451 NAvW 517 549 554 PME 362		SSM 3769
	SIAM 79-20 TYCMJ 148 USA 1977/5	calendar cycles	►AL/age problems/different times
bounded function		calcidar cycles	►AL/calendar problems [2]
bounded function		calendar probler	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	►AN/location of zeros/complex variables	calendar probler	►AL
bounded linear o		Caliban numba	►RM/logic puzzles
	►AN/functional analysis/Hilbert spaces	camera	FUNCT 3.5.2
bounded variation			
	►AN/functions [7]	Canada	►RM/alphametics/places
bounding	AMM S2	cancelling	PME 365
bounding radii	CRUX 436	cancellation	ISMJ 14.11 MM Q612 NYSMTJ 62
bowl	JRM 624		►HA/groups/abelian groups
box	AMM E2524 E2555 E2629 CRUX 122 375		►NT/digit problems
	FUNCT 1.4.5 IMO 1976/3 ISMJ 12.4 13.22		►NT/rational expressions [8]
	14.5 J11.4 JRM 390 444 448 499 646 735	candidate	JRM 469
	MM 1066 OMG 17.2.1 PARAB 319 PME 367	cane	MATYC 123
	SSM 3783 TYCMJ 86	canonical	AMM E2633
	►G/packing problems/bricks	Cantor set	►AN
			ightharpoons T
	►P/geometry	captain	CRUX 400
	►P/geometry/point spacing	capture	JRM 425 540 PARAB 313
	▶SG	car	AMM E2608 CRUX 31 354 479 PS8-1
	►SG/analytic geometry	Car	FUNCT 1.3.2 ISMJ J10.11 JRM 671
	►T/knots		730 MSJ 501 NAvW 450 NYSMTJ 81
boy	ISMJ 13.7 MSJ 431 PARAB 264 326 331		OMG 16.1.5 PENT 294 TYCMJ 104
	SSM 3577		AL/rate problems
bracelet	JRM 531		
brackets	AMM E2713 CRUX 320 PME 396	1	►AM/physics
braid	JRM 541	card	AMM E2645 CRUX 338 PS2-3 PS5-1
brake	JRM 730		FUNCT 2.1.1 2.4.2 JRM 443 510 536
branch	AMM S2 JRM 785 SSM 3630		601 647 757 782 C3 MM 1022 1066
bread	SSM 3577		OSSMB 77-14 PARAB 327 343 427
			SIAM 76-17 SPECT 11.3 11.6 TYCMJ 89
breadth	JRM 390		USA 1975/5
breed	FUNCT 1.1.9 JRM 410		►C .
brick	AMM E2524 ISMJ 11.1		►C/permutations
	►G/packing problems		▶P
bride	JRM 406		►RM/arrays [3]
bridge	CRUX 68 JRM 442 MM 976 MSJ 432	card games	▶GT
	OMG 18.2.3		►P/game theory
	▶GT	card shuffles	▶ C
	►RM/alphametics/phrases		▶P/cards
bridge crossings	▶P/transportation	cardboard	AMM E2630 CRUX 135 375 ISMJ 14.2 14.22
bridgekeeper	MSJ 432		SSM 3683
broken	PARAB 383	cardinal	AMM 6266 PME 457 SSM 3738
broken lines		cardinality	AMM 6036 6218 6221 6272 E2804 S5
	G/points in plane [2]		NAvW 439
brother	ISMJ 13.7 JRM 785 OMG 16.1.10		►C/sets
brown	OMG 18.2.3 PARAB 363		►C/sets/differences
Brownian motion			►HA/groups/subgroups
	►P/geometry/convex hull		
bug	AMM 6149 PME 439		ST/chains [13]
building	FUNCT 2.4.4 JRM 793 PENT 314 PME 413		ST/mappings/inequalities
bulletin	MM 996		ST/power set
bureau	JRM 376		►ST/symbolic logic
burr	JRM 785		T/Cantor set/subsets
business	CRUX PS8-1 MM 1056		T/sets/real numbers
butter	CRUX 308	carpenter square	
butter butterfly probler		carpet	CRUX 244
butterny probler		carries	►NT/arithmetic operations/addition
1	►G CDUN 200	carry	AMM $S11$ JRM 527 OSSMB $77-1$
button	CRUX 280		PARAB 266 348 SIAM 75-1
buyer	TYCMJ 104	Carter	►RM/alphametics/names
bypass	PUTNAM $1978/A.4$		►T/metric spaces
\widetilde{C}^{∞}	►AN/functions	carton	JRM 736
C^* -algebras	►HA/algebras [2]	cashier	OMG 17.1.5
cable	OMG 16.1.3	casing	OMG 17.1.3
	►RM/alphametics/places	castling	JRM 639
Cairo			JIMVI UOZ
Cairo cake	JRM 751 PARAB 381	Cat Woman	JRM 770a PARAB 362

Catalan number	rs 1975-	-1979	chord
Catalan number	rs.	characterize	AMM 6098 E2641 E2728 E2731 E2792 S16
Catalan namber	►NT/recurrences/second order	characterize	CMB P241 CRUX 110 289 334 FQ B-340
categorical	AMM 6272		H-309 JRM 657 738 764 MATYC 100
category	AMM 6081 6113 6169		MM 935 955 963 967 998 1005 1066
category theory			MSJ 419 498 NAvW 430 SIAM 76-7
catenary	SIAM 78-17		SSM 3648
cattle	OMG 18.1.9	charged	JRM 675
Cauchy distribu		chase	JRM 534
	▶P	chasm	SPECT 7.5
	►P/random vectors/polynomials [5]	Chebyshev poly	nomial
cautious	JRM 423		►AL/polynomials
Cayley cubic su	rfaces		►AN/inequalities [2]
	►SG/projective geometry/tetrahedra	checkerboard	AMM $E2612$ CANADA $1978/5$ CRUX 276
celebrate	JRM 699		MM Q624 PME 358 SSM 3640 3655
cell	AMM 6096 E2605 JRM 465 471 475		TYCMJ 78 145
	PENT 286 SSM 3629 3666	checkers	CANADA 1978/5 JRM C6
cement post	MM 1056	checkmate	JRM 434
cent	JRM 463 OMG 15.3.2 18.2.4 PARAB 322 363	cheese	JRM 416
	PME 350 SSM 3662	chef	AMM E2569
center	[109 references]	chemistry	OMG 17.1.2
	►HA/groups/finite groups	chess	JRM 434 446 493 561 639 680 703 721 758
	►HA/rings/commutative rings		OMG 14.2.2 PARAB 357 PENT 278
center of gravity		-1	RM/alphametics/words
	►AM/physics	chess moves	►RM/alphametics
center of popula		ah a 1 1	►RM/cryptarithms
	►AM/demographics	chess problems	PME 440
center of symme		chess set	PME 449
	►G/symmetry [2]	cness tournamer	nt CANADA 1976/3 OMG 17.2.5 PARAB 323 C/tournaments
centered	ISMJ 14.22 JRM 787 MM 1062 PME 338	chess tours	►RM
	408 PUTNAM 1977/A.6	chessboard	AMM 6096 6211 E2605 E2665 E2698 E2732
centimeter	MM 1056	Chessboard	CRUX 446 ISMJ 14.5 JRM 424 475 540 703
central idempot			C7 MSJ 477 NYSMTJ 68 OMG 14.2.2 15.1.3
	►HA/rings/power series		PARAB 281 283 292 336 415 USA 1976/1
centroid	AMM 6089 E2674 E2715 CMB P244	chessboard game	
	CRUX 260 313 334 383 PS5-3 ISMJ J10.4	chessboard gam	►GT/board games [9]
	MM 1028 MSJ 438 NAvW 402 436	chessboard prob	
	SIAM 78-20 TYCMJ 148	choossoura pros	▶RM
	►G/lattice points/triangles [5]	chest	CRUX 400
	► G/n-dimensional geometry/simplexes	chi-square distri	
	►G/triangle inequalities	1	SSM 3783
	►G/triangles		▶P/geometry/boxes
	G/triangles/medians	chick	JRM 534
	G/triangles/special triangles	child	AMM E2608 CRUX 11 12 329 409 ISMJ 13.7
	SG/regular tetrahedra/equilateral triangles		JRM 413 659 699 MM 1066 MSJ 431 437
century	MATYC 135 PME 342		OMG 17.3.2 18.2.4 PARAB 309 PENT 276
Ceva's theorem			314
cevian	CRUX 456 NAvW 478	chili	JRM 647
1 .	►G/triangles	chimes	►AL/clock problems
chain	AMM 6134 6220 6268 JRM 566 679 702	chip	JRM 423 631 648 682
	PARAB 267 SPECT 9.7	choice	AMM 6181 E2645 E2710 E2764 E2808
	C/configurations [2]		CRUX 165 173 280 374 JRM 373 450 493
ahain aanditiana	►ST		682 MM 1032 MSJ 487 OSSMB 76-3
chain conditions			PENT 277 SIAM 76-5
chancallar	►HA/rings/subrings [2]	, ,	►RM/alphametics/phrases
chancellor	JRM 379	choke	►RM/alphametics/phrases
change	►AL/money problems ►C/configurations/money problems	chord	AMM 6120 E2646 CRUX 63 75 110 168 180
character	C/configurations/money problems		199 220 225 270 MATYC 98 MM 949 1067
character	AMM 6202 FQ H-307 JRM 656 PENT 302		Q646 NYSMTJ 73 OSSMB 75-5 76-4 79-11
ah ana at:ti-	►HA/groups/finite groups AMM 6031 6082 6170 6177 E2578 E2635		G79.1-2 PARAB 289 PENT 321 PME 362
characteristic	CMB P253 CRUX 48 484 JRM 500		SSM 3688 3730 TYCMJ 105 USA 1979/4
	MM 1019		G/butterfly problem/inequalities
	►HA/rings		►G/circles [2] ►G/circles/2 circles
characteristic fu	, 0		G/circles/2 circles G/circles/arcs
CHARACTERISTIC IU	►P/random variables		G/circles/mixtilinear triangles
characteristic po			G/constructions [2]
citatacocitado po	AMM E2635 E2711 MATYC 91		►G/constructions [2] ►G/ellipses
	►LA/matrices		►G/parabolas
characterization	,		►G/regular hexagons/point on circumcircle
.1101 00 001 12001011	NAvW 430		► G/regular polygons/point on circumcircle [3]
	►AN/Bessel functions		G/semicircles
	► HA/binary operations		G/riangles/interior point
	NT/composite numbers		►P/geometry/circles [4]
	, , , , , , , , , , , , , , , , , , , ,	I	, 0

Christmas	1979	5–1979	closed form expressions
Christmas	►AL/calendar problems/calendar cycles	circumcenter an	
	►RM/alphametics		►G/constructions/triangles
chromatic	AMM 6211 CMB P268		►G/triangle inequalities [3]
church	FUNCT 2.4.2 OSSMB 79-1	circumcircle	AMM E2512 E2538 S23 CRUX 330 423
cipher	JRM 740		456 478 IMO 1978/4 NAvW 402 490 494
	►NT/arrays [2]		OMG 17.3.9 OSSMB G76.3-4 PME 374
circle	[287 references]		SIAM 77-9 SPECT 7.2 SSM 3678 TYCMJ 85
	►AN/pursuit problems		►G/locus/angles
	►AM/physics/rolling objects		►G/stars/area
	▶G [3]		►G/triangles
	►G/analytic geometry		►G/triangles/2 triangles
	►G/billiards		►G/triangles/angle bisectors
	►G/butterfly problem/inequalities		►G/triangles/circles
	►G/combinatorial geometry/		►G/triangles/orthocenter [3]
	counting problems		►SG/tetrahedra/faces
	►G/constructions [16]	circumcircle and	
	►G/constructions/squares		►G/triangles/relations among parts
	►G/ellipses	circumference	CANADA 1975/5 1976/4 1977/2 1977/5
	►G/ellipses/tangents		CRUX 89 FQ B-415 IMO 1975/5
	►G/grazing goat		ISMJ J10.14 JRM 394 509 535 557
	►G/hexagons		MENEMUI 1.2.1 OMG 16.2.2 16.2.5 17.1.3
	►G/hyperbolas		18.1.4 OSSMB 76-6 G76.1-6 PENT 282
	►G/lattice points		PME 338 447 453
	▶G/locus	circumference a	
	►G′/maxima and minima/convex hull		►G/circles [2]
	►G/maxima and minima/rectangles	circumradius	CRUX 248 472 MM 959 1043 NAvW 425
	►G/maxima and minima/regular polygons		OSSMB G78.1-5 PME 450 TYCMJ 109
	►G/packing problems/discs		►G/inequalities/triangles
	►G/parallelograms		►G/triangle inequalities [15]
	G/points in plane		►G/triangle inequalities/interior point
	►G/point spacing/nearest point	circumscribe	CRUX 168 189 199 248 MM Q646
	G/quadrilaterals/		NAvW 475 476 488 490 OSSMB 75-10
	circumscribed quadrilateral [2]	, , ,	PME 417 SPECT 10.9 SSM 3656
	►G/quadrilaterals/maxima and minima	circumscribed d	
	►G/right triangles [2]		►G/hexagons
	G/rolling/right circular cones	circumscribed p	
	G/simple closed curves/distance	, ,	►G/convexity/points of symmetry
	G/squares	circumscribed q	
	G/squares/limits	, ,	►G/quadrilaterals
	G/triangles	circumscribed se	
	G/triangles/altitudes		►G/trapezoids
	G/triangles/angle bisectors	circumscribed to	
	G/triangles/erected figures [2]	. ,	►G/squares
	G/triangles/isogonal conjugates	circumsphere	PME 352 SIAM 78-20
		city	CANADA 1977/7 CRUX PS8-1 JRM 770a
	►G/triangles/isosceles triangles ►P/geometry	, ,	MSJ 436 OMG 16.2.7 SIAM 75-8
	►SG/paper folding	class number	NT/quadratic fields/congruences
		classic	PARAB 266
. 1 11:	T/metric spaces/Hausdorff metric	classify	PARAB 439
circle and line	►G/locus/equal distances	classroom	PARAB 311
circuit	CRUX 182 NAvW 453 PARAB 283 308	clerk	AMM E2515 CRUX 297 PARAB 363
	C/counting problems/paths	cliff	SPECT 7.5 8.2
	►C/graph theory/directed graphs [2]	clique	AMM E2638
	►RM/chess tours	clock	FUNCT 3.3.2 ISMJ 14.24 J10.2 J10.9
circular	AMM E2728 CANADA 1977/5 1979/4		MM 940 1066 OMG 15.3.8 18.1.8 18.3.1
	CRUX 354 436 ISMJ J10.6 JRM 395 729		PENT 278
	MM 1003 1022 1056 NYSMTJ 46 50 56 81	Clock	SPECT 11.3
	OMG 16.2.5 PARAB 266 328 PENT 282		►P/game theory/card games
	SSM 3684	clock problems	►AL
circular arc	ISMJ 14.22 J10.14 MM 976 SSM 3695 3724	clockwise	PARAB 266
	►G/maxima and minima	closed	[63 references]
	►SG/space curves/principal normals	closed form exp	ressions
circular arrays	►C/algorithms/arrays		FQ B-411
	►C/arrays		►AN/power series
	►C/configurations		►AN/series
	►NT/digit problems/primes		►NT/binomial coefficients/
	▶P/arrays		generating functions
circular field	CRUX 89 MSJ 447		►NT/Fibonacci and Lucas numbers/
circular motion	►AN/rate problems		finite sums
	►AM/navigation		►NT/Fibonacci numbers/finite sums
circumcenter	AMM E2793 CRUX 260 288 388 472 478		NT/recurrences/
	PS5-3 ISMJ J10.4 OSSMB G78.1-5 G78.2-4		generalized Fibonacci sequences
	PME 442		►NT/series/binomial coefficients
	►G/triangles/orthocenter		NT/series/factorials
	►SG/regular tetrahedra/equilateral triangles		NT/series/floor function
	/ O	T.	,,

closed sets	1975	-1979	complement
closed sets	►T/graph of a function/connected sets	coloring problen	
	►T/sets/real numbers [7] ►T/sets/unit circle		►C ►C/geometry
closed system	OMG 15.3.4		C/graph theory/complete graphs
closed under pr			C/graph theory/directed graphs
crosed ander pr	▶NT/sets		P [7]
closure	AMM 6107 6260 CMB P272 MM 982 1079		►RM/chessboard problems
	►NT/sum of divisors/sets		►RM/polyominoes
closure-interior-		column	AMM 6192 E2516 E2555 E2556 E2595
	►T/composed operations		E2698 E2779 E2794 CANADA 1978/5
cloud	OSSMB 75-15		CRUX 2 43 345 399 FQ H-257 H-273
cloverleaf intere	changes ▶P/transportation		FUNCT 1.5.2 ISMJ 14.23 JRM 389 508 768
club	CRUX 263 JRM 597 OMG 18.1.1		KURSCHAK 1979/3 MATYC 113 MM 1086 NAvW 432 OMG 18.1.3 OSSMB 76-16 77-6
clubhouse	FUNCT 1.2.4		PARAB 263 301 326 339 415 PME 377 434
clue	JRM 488 489 490 704		SIAM 75-2 78-3 78-14 79-17 SSM 3632 3676
cluster	AMM 6208 MM 1021 NAvW 542		TYCMJ 89
cluster points	►AN/sequences	column blocks	►LA/determinants/block matrices
	►AN/sequences/rearrangements	column vector	MM $Q644$ NAvW 547
coat	PARAB 384	combination	AMM 6264 CRUX 409 JRM 386 447
code	CRUX 105 JRM 772		MATYC 127 SSM 3662
codebreaker	JRM 772		►AL/money problems
coefficient	AMM 6010 6259 E2518 E2688 S7 CANADA 1977/4 CRUX 90 198 372 494		ANAM COLA FO D 411 SIAM 76 10
	PS7-3 FQ H-249 H-268 H-269 H-297	combinatorial combinatorial ge	AMM 6214 FQ B-411 SIAM 76-12
	IMO 1976/5 MATYC 115 NAvW 496	Combinatoriai ge	►G
	OMG 16.2.4 OSSMB 77-17 G75.2-6 G75.3-5		►SG/polyhedra
	G77.1-6 G79.1-6 G79.2-7 PARAB 282	combine	FUNCT 1.1.5 3.1.6 ISMJ 11.16 13.17
	PUTNAM 1978/B.5 SIAM 75-14 76-22 77-4		PARAB 332 PME 454 SSM 3663
	79-9 SPECT 9.1 TYCMJ 35	committee	OMG 17.2.5 USA 1979/5
	NT/vales with /vales to		►C/configurations
	►NT/polynomials/products ►NT/series/polynomials [2]	common divisor	
cofactor	AMM 6222	,	►NT/determinants/counting problems
coin	CRUX 265 FUNCT 3.1.1 3.2.6 JRM 379	common membe	►C/configurations/committees
	447 448 463 675 OMG 15.3.2 PME 370	common tangen	, -
	SIAM $77-11$ SPECT 7.4 TYCMJ 103	common tangen	►G/analytic geometry/circles
	►AL/money problems	common vertex	G/squares/2 squares
coin tossing	▶P	community	SIAM 76-7
animaidant hami	►P/game theory	commutative	AMM 6068 6180 6183 6238 6259 E2586
coincident hand	►AL/clock problems/time computation [2]		MATYC 109 NYSMTJ 51 TYCMJ 40 81
Collatz problem	n ►NT	commutative rir	
college	CRUX 431 PENT 283	acommutativity.	► HA/rings ► AL/functions/composition of functions
collinear	CRUX 145 279 320 408 PS2-3 FUNCT 3.1.3	commutativity	► AN/complex variables/convolutions [2]
	MSJ 434 NAvW 504 OSSMB 79-8 G75.2-4	commutator sub	, , , , , , , , , , , , , , , , , , , ,
	PARAB 437 PENT 312 PUTNAM 1975/A.6	Commutator Suc	NAvW 501
11.	1979/A.4		►HA/groups/finite groups
collinear points	► G/conics ► G/lattice points [6]	commute	AMM 6222 6277 E2742 NYSMTJ 51
	G/maxima and minima	commuting	AMM 6039
collineation	AMM 6267	compact	AMM 6023 6071 6093 6098 6113 6122 6126
commeation	►G/projective geometry		6246 6274 E2613 E2806 S8 NAvW 440 554
collision	JRM 564	compact metric	
colony	JRM 761	account acts	►T/function spaces/first category ►T/Euclidean plane [4]
color	AMM 6034 6157 6211 6229 E2527	compact sets	T/function spaces/
	E2562 E2651 E2672 E2724 E2745		continuous linear functionals
	AUSTRALIA 1979/1 CANADA 1978/5		T/metric spaces/Hausdorff metric
	FQ B-415 IMO 1979/2 ISMJ 11.13 12.4 13.18 JRM 392 680 757 MM 952		T/sets/real numbers
	NYSMTJ 68 OMG 15.1.3 18.2.7	compactification	, ,
	OSSMB 79-14 PARAB 292 362 387		$ ightharpoons ext{T}$
	PUTNAM 1979/A.4 SIAM 78-11 SSM 3648	compactness	DELTA 5.2-2 6.1-2
	TYCMJ 113 USA $1976/1$	company	SIAM 76-7
colored	AMM 6034 6157 6211 E2745	compass only	G/constructions
	AUSTRALIA 1979/1 CANADA 1976/8	compasses	CRUX 125 284 288 308 420 428 ISMJ 11.11 13.24 J10.12 JRM 562 MATYC 99 MM 1054
	IMO 1979/2 ISMJ 13.18 14.5 NYSMTJ 68 OMG 15.1.3 PARAB 292		NAVW 402 432 PARAB 399 PME 412 460
	339 PUTNAM 1979/A.4 TYCMJ 113		TYCMJ 75
	USA 1976/1	competitor	OMG 17.2.5
colored pegs	►RM/puzzles/peg solitaire	complement	AMM 6025 6281 E2700 FQ H-271
coloring	AMM 6211 FQ B-415 NYSMTJ 68		NAvW 459 PENT 285
	OMG 15.1.3 PARAB 292 SIAM 78-11		►C/graph theory/isomorphic graphs
	USA 1976/1	1	►T/unit interval/homeomorphisms [2]

complementary	1975	5–1979	confocal
complementary	AMM 6188 E2662 MM 925 PENT 285 SSM 3789	composed operat	ions ▶NT
complementary			T AMM C104 FOF10 FOCTO FOCO C1
complete elliptic	►G/quadrilaterals/area	composite	AMM 6194 E2510 E2679 E2800 S1 CRUX 142 296 378 389 FQ B-302
complete emptic	► AN/elliptic integrals [2]		ISMJ 14.20 JRM 479 558 708 738 MM 1029
	►AN/integral equations/elliptic integrals		Q634 MSJ 481 NYSMTJ 93 OSSMB 75-11
complete graphs		composite number	76-15 SSM 3624
	►C/coloring problems/graphs		▶NT
1	►C/graph theory		►NT/digit problems/
complete residue	e system ►HA/quaternions		arithmetic progressions [5]
	►NT/base systems/modular arithmetic		►NT/Fibonacci numbers ►NT/forms of numbers/sum of squares
	►NT/modular arithmetic		NT/palindromes/0-1 numbers
	►NT/modular arithmetic/coprime integers		►NT/primes/forms of numbers
	►NT/permutations/modular arithmetic		►NT/primes/generators [24]
	►NT/primes [14]		►NT/series/unit fractions AMM 6244 CMB P278 JRM 392
	►NT/sets/irrational numbers	composition	NYSMTJ 51
completely regul	lar Hausdorff spaces ▶T/function spaces/		►C
	continuous linear functionals [3]	composition of fu	
completely regul			►AL/functions
F	►T/compactifications	compound	►AN/functions FUNCT 2.1.2 PME 386
complex	[55 references]	compounded	TYCMJ 104
	▶SG	computer	CRUX 390 FUNCT 1.1.8 1.1.10 1.2.7 2.1.4
complex coefficie			JRM 509 739 SIAM 78-3
	AMM 6191 E2761 E2801 CRUX PS8-2 MATYC 100 SPECT 8.9	concatenation	CRUX 355
complex conjuga		concave	►NT/sequences/binary sequences TYCMJ 151
complex conjuge	AMM 6061 E2525	concentration	MENEMUI 1.3.2
	►LA/determinants/complex numbers	Concentration	JRM 601
complex matrice	es		►GT/card games
	►AN/integrals/multiple integrals	concentric	MM 976 NYSMTJ 60 OSSMB 76-14 NYSMTJ 45 SSM 3730
complex number	AMM 6033 6047 6072 6091 6145 6253 6258 E2600 E2616 E2778 E2808 S16 CRUX 40		►G/circles/2 circles
	143 FQ H-253 MM 1036 Q659 Q662	concurrent	CRUX 132 199 206 363 370 476 MM 1028
	PME 353 SPECT 9.6		NAvW 478 NYSMTJ 47 OSSMB 79-8
	►AL		PME 354 438
	►AL/polynomials/roots and coefficients	concurrent ceviai	CRUX 485
	►AL/sum of powers	concurrent circles	
	NAN/maxima and minima		►G/triangles/circles
	►AN/sequences ►AN/series	concurrent lines	►G/conics
	►HA/fields	concurrent perpe	►G/triangles/circles
	►LA/determinants	concurrent plane	, , ,
	►NT/quadratic fields/congruences		►SG/analytic geometry/family of planes
	►NT/series/binomial coefficients [6]		SG/projective geometry/tetrahedra
complex plane	AMM 6045 6047 6109 6175 E2542 S16	concyclic points	►C/coloring problems ►C/configurations
	CRUX 237 318 JRM 556 NAvW 464		►C/configurations ►C/geometry
	PUTNAM 1975/A.2		▶G
complex polynoi	▶T/metric spaces/inequalities		►G/analytic geometry
complex polynor	►AL/polynomials		►G/combinatorial geometry
	►AN/location of zeros		►G/point spacing/distance ►P/geometry
complex-valued	AMM 6055 6250 MM 1030	conditional conve	
complex-valued			►AN/series/differentiable functions
	►AN/functions/infinite series		►AN/series/evaluations
complex variable		conditional proba	Description
	►AN ►AN/functions/polynomials		►P/independent trials/Bernoulli trials
	►AN/functions/polynomials ►AN/integral inequalities		▶P/inequalities/random variables
	► AN/integrals/improper integrals		▶P/tournaments
	►AN/integrals/multiple integrals	conditionally	AMM 6243
	►AN/location of zeros [2]	cone	CANADA 1977/5 CRUX 140 FUNCT 1.1.3 NAvW 554 NYSMTJ 56 OMG 16.2.5
component	AMM 6129 6215 6229 E2587 CRUX 467		OSSMB G79.1-1 PARAB 410
	JRM 445 684 NAvW 393 403 PME 342	conference	USA 1978/5
componentwise	AMM 6068 PUTNAM 1975/B.1	configuration	AMM 6267
componentwise			►C [2]
	►AN/functions/real-valued functions	confocal	NAvW 475 476

1975-1979 conformal mapping construction conformal mapping connected graphs ►AN/complex variables ►C/graph theory/covering problems confrontedJRM 372 373 connected sets **JRM** 530 ►T/graph of a function confusion **AMM** 6079 **CANADA** 1976/8 **ISMJ** 13.18 congruence AMM E2660 E2763 FQ B-368 H-280 H-286 connecting MM 1044 NAvW 431 TYCMJ 57 JRM 554 709 MM 976 NYSMTJ 79 **PARAB** 383 **SSM** 3743 ►C/permutations/cycles [101 references] ►NT/binomial coefficients [13] consecutive $\blacktriangleright \text{NT/determinants}$ consecutive digits ►NT/digit problems ►NT/divisibility/powers of 2 ►NT/Fibonacci and Lucas numbers consecutive even indices ►NT/Fibonacci numbers/forms ►NT/Fibonacci and Lucas numbers/ consecutive integers finite sums ightharpoonup C/counting problems/subsets►NT/Fibonacci numbers ►C/urns/1 urn ►NT/inequalities ►GT/selection games/players select integers ▶NT/Lucas numbers ►NT/composite numbers/polynomials [2] ►NT/matrices/order ►NT/digit problems/number of digits ►NT/permutations/derangements ►NT/divisibility ►NT/polygonal numbers/heptagonal numbers ►NT/factorizations ►NT/polynomials ►NT/greatest common divisor ►NT/primes ►NT/least common multiple ►NT/quadratic fields ►NT/Legendre symbol ►NT/recurrences/arrays ►NT/means [2] ►NT/recurrences/ ►NT/number of divisors generalized Fibonacci sequences ►NT/polygonal numbers ►NT/recurrences/square roots ►NT/sequences ►NT/sequences/finite sequences [2] ►NT/sequences/partitions ►NT/series ►NT/series/factorials ▶NT/series/binomial coefficients ►NT/sets/partitions ►NT/triangles ▶NT/sum of divisors/perfect numbers ►NT/triangular numbers/series ►NT/triangles/area ▶P/number theory [3] ▶P/sets/partitions ▶RM/alphametics consecutive palindromes **AMM** 6178 6210 6270 E2584 E2630 E2657 congruent ►NT/palindromes E2673 E2797 CMB P249 P274 CRUX 155 consecutive primes 182 330 363 478 FQ B-351 B-372 ISMJ 10.2 ►NT/Möbius function/series JRM 391 426 445 498 595 684 MM 969 996 ►NT/primes/sum of primes Q616 MSJ 416 NAvW 508 NYSMTJ 47 48 ►NT/sets/sum of elements **OSSMB** 75-16 **PARAB** 292 339 **PENT** 275 consecutive squares PME 435 SSM 3683 USA 1977/4 1978/4 ►NT/digit problems/squares congruent angles consecutive terms ►G/cyclic polygons ►NT/Farey sequences congruent faces ►SG/tetrahedra/faces ►NT/Pascal's triangle congruent triangles consistent **AMM** 6062 ►G/triangles/2 triangles ►AN/rate problems constant speed AMM E2751 CRUX 279 370 442 469 485 conic **AMM** E2781 JRM 372 557 **OSSMB** 78-14 constitute MATYC 114 NAvW 460 484 490 504 525 AMM 6062 6076 CRUX 358 SIAM 76-5 76-7 constraint ►AL/inequalities/exponentials ►G/analytic geometry ►AL/inequalities/polynomials ightharpoonup G/analytic geometry/curves►AL/maxima and minima ►G/constructions [12] ►AL/theory of equations [2] ►G/locus ►AN/limits/arithmetic means ►G/locus/triangles ►AN/maxima and minima ►G/triangles/altitudes ►AN/maxima and minima/radicals ►G/triangles/cevians ►G/squares/line segments ►SG/projective geometry/tetrahedra ►NT/Diophantine equations/degree 3 **AMM** 6030 6121 6235 6239 6275 E2611 conjecture ►NT/Diophantine equations/ E2695 E2713 CRUX 6 346 JRM 475 systems of equations NAvW 463 505 SIAM 75-19 76-5 76-16 77-15 ▶NT/divisibility/polynomials [2] 77-19 78-1 78-3 78-18 **SSM** 3651 ►NT/forms of numbers/sum of squares **AMM** E2616 E2793 **CRUX** 315 **NAvW** 415 ►NT/maxima and minima/products conjugate 484 506 527 $\blacktriangleright \mathrm{SG/analytic}$ geometry/maxima and minima conjugate points ▶SG/maxima and minima/tetrahedra ►G/analytic geometry/circles ►TR/identities $\mathbf{PME}\ 412$ conjugate subgroups constructible ►HA/groups/matrices **AMM** 6017 **CRUX** 110 120 158 242 415 construction ►HA/groups/subgroups 420 428 454 492 FUNCT 2.1.4 ISMJ 12.19 JRM 538 562 NAvW 402 NYSMTJ 54conjugate transpose **MM** Q644 PME 341 SIAM 78-3 TYCMJ 119 **AMM** 6096 6163 6229 6255 E2549 E2795 USA 1978/2connected CRUX 186 408 JRM 391 421 426 445 684 ►AN/Cantor set MM 932 MSJ 472 OMG 14.3.1 PARAB 308▶G PENT 282 SSM 3693 TYCMJ 42►G/circles/chords

construction	1975-	-1979	со
	►G/map problems		►AN/series/iterated logarithms
	►RM/alphametics [2]		►AN/series/monotone sequences
	►SG/paper folding/angles		►AN/series/pairs of sequences
container	PARAB 297		►AN/series/pairs of series
containing figur	es		►NT/series/digit problems
	►G/point spacing		►NT/series/inequalities [2]
contents	FUNCT 1.4.5 ISMJ 12.7 JRM 499		►NT/series/permutations
	NYSMTJ 53 OMG 18.2.7		►NT/series/primes
contest	MSJ 483		►NT/series/subseries
contestant	CANADA 1976/3 PME 355		►NT/series/unit fractions [2]
ontinued fracti			TR/infinite series/sin
onomiaca macu	►AN/derivatives [2]		TR/infinite series/sin
	NT		
	►NT/Fibonacci numbers	convergent	AMM 6090 6243 E2675 E2721 FQ H-308
ontinuity	AMM 6120 6184		FUNCT 1.5.2 ISMJ 13.1 13.2 MM 972 10
ontinuous	[90 references]		1032 NAvW 516 538 SPECT 8.3
ontinuous ontinuous bijec			►NT/continued fractions
ontinuous bijec		converse	AMM 6036 6085 6166 6174 CRUX 27 196
	T/sets/irrational numbers		309 483 PS5-3 MATYC 137 SPECT 8.1
ontinuous deriv		convex	[84 references]
	AMM 6076	convex function	MM 1027
ontinuous func			►AN/functions
	AMM 6007 6074 6076 6080 6093 6120 6181		▶P/random variables/finite moments
	6184 6188 E2537 E2607 E2622 E2626 E2706	convex function	
	E2707 E2765 CMB P278 P281 MM 993		► AN/derivatives/one-sided derivatives [10]
	NAvW 409 416 427 456 PUTNAM 1977/A.6	acousair have gon	, ,
	SIAM 75-16 75-18 TYCMJ 46	convex hexagon	
	►AN/functions	, ,,	►G/hexagons
	►AN/functions/digits	convex hull	AMM 6071 6230 JRM 427
	► AN/integrals/functions		►G/maxima and minima
	► AN/measure theory/arcs		►P/geometry
		convex octagon	PUTNAM $1978/B.1$
	AN/partial derivatives/real-valued functions	convex pentagor	n ISMJ 11.13
	► AN/power series/Abel's theorem [2]	convex polygon	AMM E2514 E2641 MATYC 126 MSJ 48
	►AN/series		PARAB 330 412 PUTNAM 1976/A.5
	►T/functions		►C/geometry/dissection problems [2]
	►T/graph of a function/connected sets		G/combinatorial geometry/
	►T/subspaces [2]		counting problems
continuous linea	ar functionals		
	►AN/Banach spaces		►G/polygons
	►AN/functions/continuous functions		►SG/paper folding [2]
	►T/function spaces	convex polyhedi	
continuous linea			AMM E2740 CRUX 93 121 336 453
	►AN/Banach spaces [6]		NAvW 451 PARAB 385
continuous map			►SG/polyhedra
continuous secon			►SG/tetrahedra/planes [6]
Ontinuous seco	►AN/series/differentiable functions	convex polytope	e AMM E2701
			►G/n-dimensional geometry/volume
continuum	AMM 6218 6266	convex quadrila	, , , , , , , , , , , , , , , , , , , ,
contour	SIAM 79-9	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AMM E2680 CANADA 1978/4 CRUX 37
contract	JRM 597		IMO 1976/1 ISMJ 12.25 JRM 620 MSJ 4
contract bridge	JRM 536 560 MM 944		443 502 NYSMTJ 52 PARAB 279 PME 3
contraction	AMM 6100 S8		PUTNAM 1977/B.2 SPECT 11.9 SSM 37
	►AN/functions/continuous functions		
	►T/metric spaces		G/quadrilaterals/determinants
onverge	AMM 6035 6080 6096 6105 6112 6196		P/geometry/squares
~	E2558 E2591 E2712 E2788 E2791 E2808		►SG/plane figures/parallelograms
	S4 CRUX 40 69 80 209 377 FQ H-282	convex set	AMM 6098 CRUX 495 MM 1068
	H-292 JRM 512 674 770a MM 922 1025		OSSMB 75-10 PARAB 440
	1032 1048 1060 1085 NAvW 423 PME 363		PUTNAM $1979/B.5$
	PUTNAM 1975/B.2 SIAM 75-14 SSM 3643		►AN/location of zeros/complex polynomia
	TYCMJ 41 44 60 62 63		►G/polygons/visibility
ontrovena	AMM 6038 6071 6080 6090 6093 6109 E2784	convexity	NAvW 452
onvergence	CRUX 8 9 194 MM 1070 PME 384		►AM/physics/equilibrium
			►G
	AN/radicals/nested radicals		G/affine transformations
	► AN/sequences		,
	►AN/sequences/complex numbers		G/lattice points
	►AN/sequences/inequalities		►G/n-dimensional geometry
	►AN/sequences/pairs of sequences [3]		►G/packing problems
	►AN/sequences/rearrangements		►G/points in plane/perpendicular bisector
	►AN/sequences/recurrences		►LA/matrices/Hermitian matrices
	►AN/sequences/tetration [2]		▶SG
	► AN/series/complex numbers	convolution	AMM 6145 SIAM 78-4
		Convolution	► AN/complex variables
	AN/series/cubes AN/series/differentiable functions		
	AN/series/differentiable functions	,	►P/distribution functions [6]
	►AN/series/divergent series	cook	JRM 751
	►AN/series/inequalities	cookie	NYSMTJ 89

coordinate	1975	-1979	counting problems
coordinate	AMM E2546 E2563 E2697 E2769 E2795		►TR/infinite products
coordinate	CRUX 109 119 186 204 480 FUNCT 1.2.1		TR/infinite series
	1.2.2 MM 947 968 MSJ 419 NAvW 481 546		TR/numerical evaluations
	547 NYSMTJ 44 45 OSSMB 77-2 G78.2-3		►TR/recurrences
	G79.1-2 PARAB 342 PUTNAM $1979/B.5$		►TR/triangles
	SSM 3706 TYCMJ 53 108		►TR/triangles/inequalities [2]
coordinate syste	em AMM E2769 NAvW 393 403 481 546		►TR/identities/tan
Ť	PENT 312	coset	AMM E2785 NAvW 497
Cootie	►P/game theory/dice games		►HA/fields/vector spaces
coplanar	AMM $E2769$ MM 976 NYSMTJ 54 75		►LA/vector spaces/subspaces
	PARAB 437 SSM 3660	cosh	►AN/integrals/evaluations
coplanar points	MM 962		►AN/series/hyperbolic functions
	►SG/points in space/angles		►TR/infinite series
	►SG/space curves/powers	cost	JRM 728
copper	JRM 379		►AN/limits/finite sums
coprime	AMM 6070 E2797		►G/triangle inequalities/angles [2]
coprime integers			►TR/numerical evaluations
	►GT/selection games/players select integers		►TR/triangles [2]
	►HA/groups/finite groups		►TR/triangles/maxima and minima
	►NT/arithmetic progressions [4]	council	JRM 554
	►NT/digit problems/juxtapositions	count	JRM 443 513 MM 1075 OSSMB 75-9
	►NT/divisors/vectors		SIAM 76-17 SSM 3700
	►NT/floor function/sequences		►C/configurations/mutual acquaintances [2]
	►NT/forms of numbers/		►NT/sequences
	sum of consecutive integers [3]		►NT/sequences/family of sequences
	►NT/limits	countable	AMM 6014 6142 6213 6220 6274 E2613
	►NT/maxima and minima		E2614 E2806 CRUX 59 129
	►NT/modular arithmetic	countable local b	pases
	►NT/rational numbers/finite sequences [2]		►T/separation properties/
	►NT/recurrences/first order		disjoint neighborhoods
	►NT/recurrences/	countable set	AMM 6266 NAvW 405
	generalized Fibonacci sequences [2]	countable subset	AMM 6261
	►NT/Riemann zeta function	countably	AMM 6139 6150 6163 6250 6256 MM 1021
	►NT/sequences/rational numbers	countdown	JRM 682
	►NT/series/floor function [2]	counter	AMM E2698 JRM 372 373 501 539
	►NT/series/inequalities		PARAB 415 PME 379 TYCMJ 57
	►NT/sets/divisibility	counterclockwise	AMM 6192 E2579 CRUX 170 SPECT 11.5
	►NT/sets/maxima and minima	counterexample	AMM E2572 JRM 512 SIAM 76-9 76-15
	►NT/sets/subsets		77-14
	►NT/sum and product [2]		►T/locally convex spaces/linear subspaces
	►NT/sum of powers/primes	counterstrategy	PME 403
copy	AMM 6023 6275 ISMJ 14.2 MM 1046 1066	counting problen	ns
	OMG 16.1.8 OSSMB 76-14 PARAB 265		►AL/word problems
cord	SIAM 78-17		▶C ′
corn	OMG 15.2.1		►C/arrays/Latin rectangles
corner	AMM 6151 6211 CANADA 1977/7		►C/cards/weights
	CRUX 244 375 427 446 DELTA 6.2-1		►C/card shuffles
	FUNCT 3.3.4 ISMJ 14.5 JRM 381 425		►C/graph theory [2]
	540 683 768 C6 C7 MM 996 MSJ 477 501		►C/permutations
	NYSMTJ 68 95 OMG 14.2.2 15.1.3 16.2.7		►C/sets/sums
	OSSMB 76-13 PARAB 281 375 PME 358		►C/urns/2 urns
	439 SSM 3629 3683 3766 TYCMJ 86 145		►GT/bridge [2]
	USA 1976/1		►G/billiards/circles
corner squares	►RM/chessboard problems/coloring problems		►G/combinatorial geometry
cornfield	PARAB 375		►G/lattice points
cornstalk	PARAB 375		►G/rectangles/diagonals [2]
corollaries	AMM 6214		►HA/groups/group presentations
Corot	►RM/alphametics/names		►LA/linear transformations/eigenvalues
corporation	JRM C4		►NT/determinants [2]
correlation	MATYC 115		►NT/digit problems
correlation coeff	ficient		►NT/factorizations/3 factors
	▶P/statistics [3]		►NT/fractions/lowest terms [2]
	NAvW 482		►NT/maxima and minima/coprime integers
correspondence	CRUX 427		►NT/Pythagorean triples
correspondence corridor			►NT/quadratic residues [2]
	SIAM 78-3		►NT/sets/subsets
corridor		1	
corridor corroborated	►AL/polynomials/Chebyshev polynomials		
corridor corroborated	► AL/polynomials/Chebyshev polynomials ► AN/integrals/evaluations		►NT/triangles
corridor corroborated	► AL/polynomials/Chebyshev polynomials ► AN/integrals/evaluations ► AN/limits/trigonometry [2]		►NT/triangles ►NT/triangular numbers [3]
corridor corroborated	► AL/polynomials/Chebyshev polynomials ► AN/integrals/evaluations ► AN/limits/trigonometry [2] ► AN/sequences/trigonometry		►NT/triangles ►NT/triangular numbers [3] ►RM/chessboard problems
corridor corroborated	► AL/polynomials/Chebyshev polynomials ► AN/integrals/evaluations ► AN/limits/trigonometry [2] ► AN/sequences/trigonometry ► AN/series/integrals		➤NT/triangles ➤NT/triangular numbers [3] ➤RM/chessboard problems ➤RM/chessboard problems/
corridor corroborated	► AL/polynomials/Chebyshev polynomials ► AN/integrals/evaluations ► AN/limits/trigonometry [2] ► AN/sequences/trigonometry ► AN/series/integrals ► TR/determinants/triangles		➤ NT/triangles ➤ NT/triangular numbers [3] ➤ RM/chessboard problems ➤ RM/chessboard problems/ distribution problems
corridor corroborated	► AL/polynomials/Chebyshev polynomials ► AN/integrals/evaluations ► AN/limits/trigonometry [2] ► AN/sequences/trigonometry ► AN/series/integrals		➤NT/triangles ➤NT/triangular numbers [3] ➤RM/chessboard problems ➤RM/chessboard problems/

countries	1975	–1979	cyclic heptagons
countries	IMO 1978/6 JRM 396 USA 1978/2		►NT/forms of numbers/sum of cubes
,	►RM/alphametics/places		►NT/geometry
couple	JRM 603 769 OMG 18.2.1 OSSMB 78-3		NT/Lucas numbers
coupon	►C/configurations [2] JRM 735		►P/geometry/point spacing ►RM/alphametics
course	CRUX 431 FQ B-307 JRM 442 545 659		►RM/puzzles/block puzzles
	PUTNAM 1975/A.1		►SG
court	JRM 379		►SG/analytic geometry [5]
covariance	AMM 6207		►SG/curves/arclength
cover	AMM E2549 E2564 E2654 E2665 E2790 CRUX 24 429 FUNCT 1.2.1 ISMJ 14.2 14.5		►SG/cylinders
	J10.6 MM 969 MSJ 477 502 NAvW 411		►SG/dissection problems
	OMG 16.1.6 16.1.8 17.2.4 OSSMB 77-2		►SG/dissection problems/cube ►SG/locus
	PARAB 328 336 SPECT 10.7 SSM 3781		►SG/locus/surface area [5]
covering proble			►SG/maxima and minima/
	C/graph theory		rectangular parallelepipeds
	►C/sets/family of subsets ►G		►SG/packing problems
	►G/dissection problems/triangles		►SG/packing problems/
	►RM/chessboard problems [5]		rectangular parallelepipeds
	►RM/polyominoes/tiling	cube root	►SG/rectangular parallelepipeds CRUX 4 JRM C2 OSSMB G79.2-3
	▶SG	Cube root	SSM 3581
cow	CRUX 1 OMG 17.1.9 PME 382		►AL/algorithms
crab	JRM 488 489 490		►AL/complex numbers [2]
crankcase craps	JRM 603 MATYC 92		►AN/maxima and minima/radicals
старь	►P/game theory/dice games		►NT/divisibility [2]
crawl	PME 439 SSM 3781		►NT/floor function/finite sums
crease	CRUX 292 422 MSJ 464 OSSMB 78-2	cubic	►NT/fractional parts/maxima and minima AMM 6179 CRUX 318 372 ISMJ J11.4
	SSM 3637 3661 3768	Cubic	MM 1072 1074 Q626 NAvW 536
create	JRM 391 561 MSJ 447		OSSMB G79.1-1 SIAM 79-16 SSM 3598
credit	FUNCT 2.1.2 ISMJ 14.11 JRM 513	cubic curve	NAvW 415 481
crew cribbage	JRM 510	cubic equation	NAvW 503 OSSMB G79.1-5
cribbage	►GT	culture	AMM E2636
cricket	PARAB 264 295	current	CRUX 193 JRM 372 529 539 631 648
criterion	JRM 373 539		PARAB 341 SPECT 11.4 ►AL/rate problems/rivers
croaks	►RM/alphametics/phrases	curvature	CRUX 417
crooked	MM 1056 CRUX 68 FUNCT 1.2.1 MM 969 MSJ 432	Car vacare	►G/analytic geometry/folium of Descartes [9]
cross	OMG 15.1.1 17.2.4 OSSMB 75-14	curve	AMM 6008 6074 6087 6129 6223 6225
	G79.1-1 G79.2-8 PARAB 283 383 395		E2647 S2 CRUX 140 367 380 FUNCT 1.2.1
	PUTNAM 1977/B.4		ISMJ 14.22 JRM 472 498 MATYC 114 126
cross ratio	NAvW 513		MM 962 981 1006 1068 NAvW 403 415 436 512 549 NYSMTJ 86 OSSMB G75.2-2
	►SG/tetrahedra/altitudes		G77.2-5 PUTNAM 1975/A.2 1977/B.4
cross section crossed	MENEMUI 1.3.2 PARAB 362 PME 413		SIAM 75-21 SPECT 10.8
crossing	AMM 6141		►AN
crossnumber pi	_		►AN/Banach spaces/function spaces
	JRM 473		►G/analytic geometry
	►RM/puzzles		►G/locus/triangles ►G/n-dimensional geometry
cruise	CRUX 31 JRM 682 MM 1004 SIAM 76-13 ISMJ 14.6 JRM 707 NYSMTJ 37 70		►SG
cryptarithm	PENT 280 SSM 3618		►SG/analytic geometry/paraboloids
	►GT/Mastermind		►SG/paper folding/right circular cones
	▶RM [2]	curve tracing	►AN/curves
cryptarithmic s		curvilinear mot	
	SSM 3607	1.	►AN/pursuit problems [2]
csc and cot	►TR/triangles	cushion	PARAB 266
cube	►TR/triangles/sin [55 references]	customer cycle	CRUX 280 FUNCT 1.4.5 AMM 6171 6192 E2708 JRM 374 419 446
cabe	► AL/complex numbers/identities	Cycle	730 MATYC 87 NAvW 543 OMG 18.3.3
	► AN/series		OSSMB 78-15 79-17 PME 366 SIAM 78-11
	►C/counting problems/geometric figures		►C/permutations
	►G/dissection problems/triangles [2]		► HA/groups/permutation groups
	►G/paper folding	cyclic	AMM 6049 6059 6205 E2514 E2557 E2635
	►NT/base systems ►NT/digit problems		E2660 E2683 CRUX 383 483 FQ H-278 JRM 479 601 MM 925 1086 NAvW 543
	►NT/digit problems NT/digit problems/terminal digits [2]		PENT 291 PME 370 SPECT 11.3
	►NT/Fibonacci and Lucas numbers/identities	cyclic groups	►HA/groups/finite groups
	►NT/forms of numbers/difference of squares		►HA/groups/subgroups
	►NT/forms of numbers/powers of 2	cyclic heptagon	
	►NT/forms of numbers/		►G/heptagons
	product of consecutive integers	1	►G/regular heptagons [2]

cyclic octagons	1975-	-1979	degree 13
cyclic octagons	►G/octagons	decomino	►RM/polyominoes/pentominoes
cyclic permutation		decompose	AMM 6046 CRUX 64
	AMM E2698 MM 1000	decomposition	AMM 6015 6046 MM 1026 NAvW 395 543
cyclic points	AMM E2553	decorate	SSM 3662
	▶G [2]	decrease	FUNCT 1.1.2
	►G/regular polygons	decreasing	AMM 6131 E2713 E2714 JRM 512
cyclic quadrilater			NAvW 399 400 422 434 OSSMB 76-16 PARAB 331 SPECT 9.9 TYCMJ 151
	CRUX 483 DELTA 5.1-2 OSSMB G75.2-3 ▶G	decree	JRM 373 379
	►G/inequalities [10]	deduction	JRM 536
	NT/geometry	defective	AMM S17
	►AL/means/inequalities	defense	JRM 572
v	►NT/digit problems	definable	JRM 464
ycloid	NAvW 438	defining	AMM 6087 PME 457
	▶G	definition	AMM 6249 FQ B-405
yclotomic polyn	omial	degenerate	MATYC 114 SIAM 77-9
	NAvW 496	degree	AMM 6043 6066 6084 6092 6202 E2519 E2549 E2564 E2565 E2668 E2693 E2761
	►NT/polynomials		E2796 E2801 CRUX 7 355 453 FQ B-309
cylinder	AMM E2617 E2728 MM 1056 NAvW 430		JRM 589 MM 997 1010 1056 1072 Q623
	NYSMTJ 46 OMG 17.1.3		OSSMB 79-18 PME 441 SIAM 75-14 78-2
	►AM/physics/cars ►SG		SSM 3715 3783 USA 1975/3
		degree 1	►AL/systems of equations/5 variables
	►SG/convexity/dissection problems ►SG/packing problems/		►NT/sets/polynomials
	rectangular parallelepipeds	degree 2	►AL/inequalities
ylindrical	AMM E2563 ISMJ 10.15 JRM 646		►AL/polynomials/roots and coefficients
ylindrical coordi			►AL/solution of equations
	►SG/analytic geometry/volume [6]		►AL/systems of equations/3 variables
laily	CRUX 356 FUNCT 2.3.1 SSM 3577		►NT/composite numbers/polynomials ►NT/Diophantine equations
lance	CRUX 387 OMG 18.2.1		►NT/Diophantine equations/
Oarboux propert			solution in rationals [2]
	►AN/functions/real-valued functions		►NT/divisibility/polynomials
lash	JRM 639 721 NYSMTJ 79		►NT/Fibonacci and Lucas numbers/
lata	JRM 440 CRUX 231 JRM 374 391 643 PME 342		divisibility
late	►GT/selection games		►NT/polynomials
	RM/alphametics/story problems		►NT/primes/polynomials
daughter	JRM 541 PARAB 356		NT/recurrences/floor function
	►AL/age problems/different times	1	NT/sets/polynomials [9]
	►AL/calendar problems	degree 3	►AL/geometry of zeros/polynomials ►AL/inequalities
De Bruijn graph	, .		►AL/systems of equations/3 variables
, , ,	►C/graph theory/maxima and minima		►AL/systems of equations/6 variables
leal	JRM 510 647 757 C3 PARAB 427		►AN/curves/curve tracing
	SPECT 11.3 11.6 SSM 3574 TYCMJ 89		►AN/infinite products/rational functions
lealer	OMG 18.1.9		►AN/integrals/area
lecagon	ISMJ 12.28		►G/analytic geometry/tangents
lecimal	[72 references]		►NT/Diophantine equations
lecimal alphame	CRUX 431 NYSMTJ 99		►NT/Diophantine equations/
lecimal digit	CRUX 431 NT3MT3 99 CRUX 430 443 470 JRM 678 MM 953		solution in rationals NT/divisibility/polynomials
iccimai digit	NYSMTJ 70 PENT 320 SSM 3576 3593 3607		►NT/floor function/sequences
	3622 TYCMJ 93		►NT/modular arithmetic/
lecimal expansio	n AMM E2738 CRUX 410 DELTA 6.1-4		solution of equations
•	MSJ 498		►NT/primes/polynomials
lecimal integer	CRUX 164 378 407 JRM 755 MM 1046		▶P/number theory/polynomials
	SSM 3639 3665	degree 4	►AL/inequalities
lecimal point	DELTA 6.1-4 MATYC 87		►AL/polynomial divisibility [3]
lecimal represent			►AL/polynomials
	►GT/selection games/players select digits		►AL/solution of equations
	►NT		►C/graph theory/covering problems [2]
	NT/forms of numbers		►NT/Diophantine equations
	►NT/powers/powers of 2 ►NT/recurrences/third order		►NT/Diophantine equations/ solution in rationals [3]
	NT/series/unit fractions		NT/divisibility/polynomials
lecimal system	AMM E2776 CRUX 385 JRM 704 MSJ 417		NT/primes/polynomials
	NYSMTJ 76 OBG9 PENT 296 297	degree 5	►AL/polynomial divisibility
	SSM 3570 3573 3586 3610 3614 3624 3691		►NT/Diophantine equations [3]
	3697 3739		►NT/divisibility/polynomials
decision	FUNCT 3.1.1 JRM 372 373		►NT/polynomials
leck	AMM E2645 JRM 782 MM 1022	degree 6	►NT/Diophantine equations
	OSSMB 77-14 PARAB 343 SIAM 76-17	degree 8	►NT/divisibility/polynomials
	TYCMJ 89 USA 1975/5	degree 9	►HA/Galois theory/equations
declare	CRUX 105 MM 1084	degree 13	►NT/divisibility/polynomials [2]

degree 20	197	5–1979	diagonal matrices
degree 20	►AL/solution of equations	derived group	AMM 6059
degree 36	►AL/inequalities/polynomials	descending	AMM 6134
degree 81	►AL/polynomial divisibility	descent	FUNCT 1.5.1
degree-measure	MSJ 452	desert	OMG 17.2.2 17.2.4 PARAB 348
degree n	►NT/Diophantine equations		
delay	JRM 730	design	MM 971 SIAM 77-11
delete	AMM 6204 6226 E2595 E2665 CRUX 276	destination	CRUX PS8-1 OMG 17.2.6 PARAB 306
delete	JRM 503 632 KURSCHAK 1979/3	destroyer	JRM 375
	NAvW 527 NYSMTJ 41 OSSMB 75-12 75-18	detective	JRM 562
	PME 358 434 TYCMJ 78	detergent	JRM 735
doloted golumn	C/arrays/distinct rows	determinant	AMM 6040 6086 6151 6172 E2545 E2588
		determinant	E2747 E2767 E2779 CRUX 324 MM 1020
deleted squares	►RM/chessboard problems [3]		SIAM 75-11 78-3 78-14 79-3 SSM 3747
	►RM/polyominoes/maxima and minima		
11.1.	►RM/polyominoes/tiling		►AL
deleted terms	►NT/harmonic series [7]		►AL/solution of equations [8]
deleted vertices	►C/graph theory/bipartite graphs		►AN/differential equations
	►C/graph theory/isomorphic graphs		►AN/gamma function
deliver	JRM 534 697		►AN/Legendre polynomials
demographic	►AM		►C/sets
denomination	JRM 396 SSM 3662		,
	►AL/money problems		►G/circles/orthogonal circles
denominator	AMM 6168 FQ B-404 ISMJ 13.2 14.11		►G/lattice points/geometry of numbers
	JRM 477 503 511 586 652 OSSMB G77.1-6		►G/quadrilaterals
	PENT 281 SSM 3636 3744		►LA
dense	AMM 6087 6113 6130 6131 6142 6213 E2598		►LA/affine spaces
	E2610 E2697 CMB P257 P280 CRUX 109		►LA/matrices/maxima and minima
	300 360 MM 957		►LA/matrices/polynomials
dense sets	► AN/functions/transcendental functions		
delise sets	► AN/measure theory/function spaces		►NT
			►NT/Fibonacci and Lucas numbers
	►AN/measure theory/Lebesgue outer measure		►NT/Fibonacci numbers
	NW/fortisets		►NT/recurrences/arrays
, ,	►NT/fractional parts/square roots		►TR
-	►T/Hilbert spaces	determination	SSM 3683
density	AMM 6020 6065 6092 6104 6114 6135 6144		
	6164 6217 FUNCT 1.5.1 NAvW 473 539	determines	AMM 6080 CRUX 120 MM 1003
	SIAM 78-4 78-8 79-6 SSM 3598 TYCMJ 111	determining	AMM 6236 6267 E2777 CRUX 242
	148		SSM 3637 3769
	►NT/divisors/arithmetic means [3]	deux	CRUX 481
	►NT/primes/greatest prime factor	devaluation	FUNCT 1.1.5
	►NT/primes/sequences		►AL/money problems
	►NT/sequences	develop	FUNCT 1.2.6 JRM 709 OMG 17.3.2
	►NT/sets [8]	develop	SIAM 76-7
	►NT/sum of divisors	Jania di an	
density function	•	deviation	SIAM 76-16 78-1 SSM 3783
,	▶P	device	ISMJ 14.22
	▶P/random variables/products	devise	AMM 6163 CRUX 158 FUNCT $2.3.3$
	▶P/random variables/quotients		JRM 478 509 510 513 C6 PENT 299
	►P/Student's t-distribution	diabetes	PENT 301
denumerable	CRUX 174 MATYC 112	diagonal	[92 references]
	CRUX 299 MM 1003 1087	anageman	►G/analytic geometry/Euclidean geometry [3]
dependent			
J 1:	PUTNAM 1976/B.3		►G/combinatorial geometry/
depending	AMM S22 MSJ 468 NAvW 472		counting problems
deposit	FUNCT 2.1.2 JRM 697 TYCMJ 104		►G/combinatorial geometry/polygons
depreciation	►AL/interest problems		►G/hexagons/convex hexagons
depression	OSSMB G79.3-2		►G/parallelograms/circles
depth	PME 426		►G/polygons/convex polygons
derangement	AMM 6234 NYSMTJ 49 OSSMB 76-5		G/quadrilaterals
	►NT/permutations [3]		
derivative	AMM 6018 6038 6097 6166 E2767		►G/quadrilaterals/area
	CRUX 176 237 MATYC 89 103		ightharpoonupG/rectangles
	MENEMUI 1.3.3 MM 926 1010 OSSMB 79-9		►G/regular octagons
	SPECT 8.9 SSM 3731 TYCMJ 122 151		►G/regular pentagons [4]
	►AL/functional equations		►G/regular polygons
	►AL/geometry of zeros		►G/trapezoids
	►AL/polynomial divisibility/degree 4		
	►AL/polynomials AL/polynomials		►LA/eigenvalues/evaluations
			►SG/analytic geometry/boxes
	NAN		►SG/cubes
	► AN/exponential function/infinite series		►SG/cylinders/cubes [6]
	►AN/location of zeros/		►SG/rectangular parallelepipeds
	complex polynomials [4]		
	►AN/maxima and minima	1	SG/skew quadrilaterals
		diagonal matri	ces AMM E2635 SIAM 75-13 75-15
	►AN/power series	diagonai matric	
	►AN/power series ►HA/algebras/polynomials	diagonal matric	►LA/eigenvalues ►LA/matrices/characteristic polynomial

diagonal sequen	nces 1975	-1979	dimension
diagonal sequen	nces		▶NT/products
	►NT/recurrences/		►NT/sets/partitions
	generalized Fibonacci sequences		►NT/sets/subsets
diagonalizable r			►NT/sum of consecutive odd integers/
	AMM 6168 6222		even integers
diagonally	►LA/eigenvalues/limits CRUX 244 446 IMO 1978/2 JRM 390 425	different times	►AL/age problems
diagonany	MSJ 501 OMG 15.2.2 PARAB 281 PME 439	differentiable	AMM 6018 6027 6040 6050 E2572 E2622
	TYCMJ 145		E2663 E2738 CMB P280 CRUX 129 174
diagonally inscr			FQ H-292 MATYC 137 MENEMUI 1.3.3 MM 987 1053 NAvW 394 474 OSSMB 79-9
	►G/rectangles		PUTNAM 1976/A.6 SIAM 75-16 77-7
diagram	JRM 382 391 537 566 587 703 798		TYCMJ 52
	MENEMUI 1.3.2 OMG 16.1.1 16.1.10 17.1.7	differentiable fu	
dialamia	17.3.7		AMM 6112 CRUX 176 MATYC 81 129
dialogue diameter	FUNCT 1.2.6 ISMJ 13.19 AMM 6158 CANADA 1976/4 CRUX 62 177		MM 950 1005 1030 SIAM 77-4
diameter	220 225 248 386 423 436 444 FUNCT 1.1.3		►AN/functions [2]
	ISMJ 10.17 11.3 JRM 646 785 MM 925		►AN/functions/real-valued functions
	1056 MSJ 502 OMG 18.1.5 OSSMB 77-2		►AN/series
	78-13 G75.3-3 G78.3-3 G79.1-1 G79.3-4	1:0"1	P/inequalities/random variables
	PARAB 279 400 401 PME 352 362 398	differential	SIAM 77-4
	SSM 3656 3688 TYCMJ 119 USA 1976/2	differential equa	MM 1050 Q631 NAvW 447
	G/circles/2 circles		PUTNAM 1975/A.5 1979/B.4 SIAM 76-6
	►G/locus/circles [2] ►G/right triangles/incircle		76-12 77-4 77-16 77-17 79-11
	G/simple closed curves/		►AN
	maxima and minima [2]		►AN/functional analysis/Hilbert spaces
diametric	TYCMJ 119	differential oper	ators
diamond	AMM E2595 E2612 JRM 443 MSJ 447		►AN
	PME 434	difficult	SIAM 76-17
	►G/combinatorial geometry/	digit	[329 references]
dice	packing problems CRUX 118 409 PS4-1 FUNCT 3.3.1 JRM 588		►AL/age problems
dice	MM 1011 1071 PME 407 SSM 3598		► AN/functions [2]
	TYCMJ 136 USA 1979/3		►NT/palindromes/primes ►NT/sequences
dice games	►P/game theory	digit frequencies	
dice problems	▶P	digit frequencies	►NT/digit problems/leading digits
die	►RM/alphametics/phrases	digit permutation	, , , , , , , , , , , , , , , , , , , ,
died	JRM 500		►NT/base systems
difference equat	▶NT		►NT/primes
difference of cor		digit problems	▶NT
	►NT/forms of numbers		NT/arithmetic progressions/primes
difference of pov			NT/Fibonacci numbers [4]
	►NT/forms of numbers		►NT/Lucas numbers ►NT/Pythagorean triples
	►NT/greatest common divisor [2]		NT/sequences/law of formation
	►NT/polynomials/roots ►NT/primes/powers [3]		NT/series
difference of say	uare roots		►NT/triangular numbers/counting problems
difference of squ	►NT/approximations/forms of numbers		►NT/twin primes
difference of squ			▶P
	►NT/divisibility		►RM/cryptarithms/powers
	►NT/forms of numbers		►RM/magic configurations/magic squares [2]
	►NT/forms of numbers/		►RM/puzzles/crossnumber puzzles
	sum of consecutive cubes [4]	digit reversals	►NT/arithmetic progressions/primes
	►NT/recurrences/ generalized Fibonacci sequences		►NT/base systems [2]
	NT/series/unit fractions		►NT/digit problems
difference of tri	angular numbers		►NT/primes [7]
difference of the	►NT/triangular numbers/forms of numbers	digital	JRM 746 PENT 302 SIAM 78-3
differences	FQ H-275 H-291 H-301 MSJ 435 SSM 3571	digital displays	C/configurations
	3748	1: ::::::::::::::::::::::::::::::::::::	►NT/digit problems/counting problems [2]
	►AN/functions/C-infinity	digital root	CRUX 203 SSM 3674 3779
	► AN/sequences/monotone sequences	digraph	►NT/digit problems NAvW 453 487 SIAM 78-11
	►C/sets ►NT/arrays/nxn arrays	digraph dihedral angle	CANADA 1979/2 MM Q621 NAvW 513
	NI/arrays/nxn arrays NT/digit problems/squares [5]	dinicular angle	PME 460 USA 1978/4
	►NT/digit problems/squares [5] ►NT/fractional parts/maxima and minima		►SG/regular tetrahedra
	►NT/fractional parts/square roots		►SG/tetrahedra
	►NT/greatest common divisor		►SG/tetrahedra/altitudes
		dimension	AMM 6103 E2555 E2596 E2774 E2785
	►NT/polygonal numbers/formulas	difficusion	
	►NT/polygonal numbers/pentagonal numbers	difficusion	CRUX 394 IMO 1976/3 ISMJ J11.4 JRM 381
		difficusion	

dimensional	1975	-1979	divergent series
dimensional	AMM 6009 6115 6175 6207 6215 E2620 E2779 CMB P244 CRUX 224 ISMJ 12.20 12.22 JRM 475 528 NAvW 497 PARAB 374 SIAM 75-21	dissection probl	ems
Diophantine eq	uation	distance	SG/convexity [104 references]
	► HA/fields/rational functions ► NT	distance	►AL/measuring problems
diphage	AMM E2636		► AL/rate problems ► AN/integrals/improper double integrals [2]
dipyramid	MM Q616		C/geometry/concyclic points
direct sums	►HA/rings/finite rings		►C/geometry/points in plane
directed	AMM E2514 CRUX 485 MM 1066 NAvW 437 487 PARAB 308 SIAM 78-11		►C/geometry/points in space ►G/analytic geometry/curves
directed area	AMM E2531		G/circles/inscribed rectangles
	►G/points in plane/triangles		G/concyclic points/unit circle
directed distance			►G/ellipses ►G/equilateral triangles/exterior point
dimented amount	P/selection problems/points [2]		►G/equilateral triangles/interior point
directed graph	►C/graph theory AMM E2562 E2672		G/locus/circles
directed perpen			►G/points in plane ►G/points in plane/circles [2]
	AMM E2694		►G/point spacing
director	JRM $C4$ SIAM $78-9$		►G/polygons/convex polygons
directrix	NYSMTJ 94		► G/rectangles/interior point ► G/simple closed curves [2]
disadvantage	CRUX 409 JRM 424		G/triangles/interior point
disc	AMM 6080 6203 6250 S19 CMB P276 CRUX 60 196 FUNCT 1.5.1 ISMJ J10.6		P/geometry/point spacing
	MENEMUI 1.2.1 MM 1003 OSSMB 77-2		►P/selection problems/points ►P/selection problems/sets
	PARAB 328 PUTNAM 1975/A.2 SIAM 78-1		SG/points in space/inequalities
	►AN/power series/Abel's theorem [2]	1: 4	SG/spherical geometry/paths on Earth
	►G ►G/covering problems	distant distinct digits	CRUX 257 ►NT/arithmetic progressions/primes
	►G/packing problems [10]	ansomer angres	►NT/digit problems
	►G/point spacing/containing figures		►NT/digit problems/primes
	►G/rolling		►NT/series/digit problems ►RM/puzzles/crossnumber puzzles
	►P/geometry	distinct factors	►NT/factorizations/maxima and minima
discard	JRM 782	distinct rows	C/arrays
disclosed disconnect	PME 388 AMM E2630	distinct sums distinguish	►NT/sets/sum of elements JRM 621 PARAB 307
discontinuities	► AN/functions/differentiable functions	distribution	AMM 6030 6031 6050 6092 6164 6175 6207
discontinuous	CMB P280 CRUX 174		E2629 E2696 S11 CRUX 11 117 280 345 JRM 434 442 786 MM 1066 1070 NAvW 480
discover	AMM E2636 CRUX 16 JRM 391 395 591 599 643 PARAB 363 384 SSM 3769 USA 1978/5		OSSMB 77-9 PARAB 437 PME 373 402 403 PUTNAM 1979/B.5 SIAM 76-16 78-13
discrepancy	AMM E2632 CRUX 495 JRM 588	1:-t-:1t: C	SSM 3598 3670 3783 USA 1975/5
discrete	AMM 6147 6208 6276	distribution fun	SIAM 78-4
discrete sequeno	►AN/functions/polynomials		▶P
discrete subspac		distribution mo	dulo 1 ►NT/fractional parts
	►T/subspaces		NT/sequences/floor function
discrete subsyst	SPECT 10.7	distribution of s	
discriminant	PME 414	distribution pro	►GT/bridge
	►AL	distribution pro	►C
	►AN/functions/continuous functions		►P
discussion	FUNCT 1.2.1		►P/selection problems ►RM/chessboard problems [2]
disjoint	AMM 6274 E2564 E2733 E2806 CMB P279 CRUX 59 155 PS2-3 MM 1037	distributive distributive latt	AMM 6032 MM Q619 NAvW 477 ices
disjoint neighbo	►T/separation properties	1:-4-:14:	►HA/lattices
disjoint sets	AMM 6143 CRUX 3 226 280 342 473 IMO 1978/3 JRM 567 651 OSSMB 78-14	distributive pro	►AL/numerical calculations ►HA/binary operations/rational numbers
dismiss	►RM/alphametics/phrases [6]		► HA/binary operations/real numbers [67]
displaced	JRM C5	distributor	NT/arithmetic operations NYSMTJ 89
displacement display	AMM E2594 JRM 569 759 PARAB 308 PENT 302	diverge	AMM 6035 6112 E2591 E2788 JRM 503
disposal	AMM 6178		MATYC 112 MM 938 1032 1060 NAvW 411
disprove	[86 references]	divergence	SPECT 9.6 SSM 3643 TYCMJ 133 PME 384
dissect	CRUX 200 256 MM 1057 NAvW 544	divergent series	AMM E2558 MM 1032
	PARAB 330 334 339		►AN/series

divide	1975-	-1979	dual space
divide	[88 references]		►NT
dividing	AMM 6026 6059 E2514 PENT 299 PME 349		►NT/Euler totient
direidin m limaa	SSM 3608 3635		►NT/sequences/density
dividing lines divine	►RM/polyominoes/dominoes CRUX 95		NT/series/logarithms
divisibility	►AL/polynomials/integer coefficients	doctor dodecahedral g	OSSMB 77-9
411101011103	►HA/fields/polynomials	dodecanedrai g	roup AMM 6099
	►NT	dodecahedral n	
	►NT/arithmetic progressions/primes	dodecancarari	►NT/polyhedral numbers/
	NT/arrays/recurrences		tetrahedral numbers
	►NT/base systems ►NT/binomial coefficients	dodecahedron	AMM 6149
	►NT/binomial coefficients/finite sums		▶P/geometry/polyhedra
	NT/digit problems	dog	CANADA $1979/4$ JRM 670
	►NT/digit problems/digital roots	dollar	FUNCT 1.1.5 JRM 447 499 675 782 C8
	►NT/digit problems/distinct digits		OMG 17.1.9 PARAB 363 PENT 290
	►NT/digit problems/juxtapositions	J	PME 388
	►NT/digit problems/missing digits	domain	AMM 6045 6069 6071 6116 6170 6172 6177 6180 6226 6264 CMB P246 MM 943
	►NT/digit problems/permutations		PME 372 SIAM 77-4 TYCMJ 106
	►NT/Diophantine equations/degree 3 ►NT/factorials	domino	AMM E2665 CRUX 328 ISMJ 12.31 14.5
	NT/factorials/fractions		PME 358
	NT/Fibonacci and Lucas numbers		►RM/chessboard problems/
	NT/Fibonacci numbers		covering problems [26]
	►NT/Fibonacci numbers/Euler totient		►RM/polyominoes
	►NT/Fibonacci numbers/finite sums		►RM/polyominoes/tiling
	►NT/Fibonacci numbers/forms	done	JRM 505 MM 1083 NYSMTJ 99
	►NT/forms of numbers/		OMG 17.2.4 17.3.1 PARAB 376 SSM 3730
	sum of consecutive cubes	door	ISMJ J11.15 JRM 472 PARAB 362
	NT/Lucas numbers	doorstep	JRM 697
	►NT/palindromes ►NT/polynomials/degree 2	dormouse	PARAB 266
	NT/primes/arithmetic progressions	dot	ISMJ 12.3 JRM 709
	►NT/primes/generators	Dots and Pairs	
	NT/primes/pi function	double integral	s N/functions/real-valued functions
	►NT/Pythagorean triples		►AN/hypergeometric functions/integrals
	►NT/Pythagorean triples/primes	double series	► AN/series/closed form expressions
	►NT/recurrences/		NT/generating functions
	generalized Fibonacci sequences		NT/series/binomial coefficients
	NT/repdigits	dauble aumoneed	►NT/series/unit fractions
	►NT/repdigits/finite sums ►NT/sequences	double summat	►AL/inequalities/finite sums
	►NT/sequences/binomial coefficients		► AN/limits/binomial coefficients
	►NT/sequences/sum of consecutive terms		►NT/Fibonacci and Lucas numbers/
	►NT/series		finite sums
	►NT/series/powers		►NT/triangular numbers/series
	►NT/series/powers of 2	doubles	PME 350
	►NT/series/unit fractions	doubloon	JRM 685
	NT/sets	doubly true	FQ B-312 SSM 3618
	NT/sets/partitions		►RM/alphametics
	►NT/sum of divisors ►NT/sum of powers		▶RM/alphametics/simultaneous alphametics
	NT/sum of powers/primes	doubt	JRM 392
	NT/triangular numbers/sum of squares	douze	CRUX 481
	NT/twin primes/sums	downhill	MSJ 445
	►P/dice problems/n-sided dice	downstairs	AMM S17
	►P/number theory	downstream	CRUX 193
	►SG/polyhedra/combinatorial geometry	downward	TYCMJ 151
divisible	[109 references]	dozen	JRM 563 697
division	JRM 391 567 MATYC 101 NYSMTJ 47	draw	[90 references]
	OMG 14.1.1 17.1.9 OSSMB G78.1-2	drill	JRM 787 OMG 16.1.9
	SSM 3645 3654 3743 ►NT/arithmetic operations	drink	ISMJ 10.15
	NT/digit problems	,.	►RM/alphametics/multiplication
	►RM/alphametics	drive	JRM 603 OSSMB 75-3 78-6 PME 343
	►RM/cryptarithms/skeletons	driver	CRUX 31 JRM 730
divisor	AMM 6020 6036 6064 6065 6069 6086	drop	AMM 6009 6208 E2694 FUNCT 2.4.4
	6107 6144 6160 6190 6193 E2540 E2644		JRM 534 MATYC 123 NYSMTJ 53 PARAB 413 PME 461
	E2780 CMB P264 P267 CRUX 243 465	drove	OMG 18.1.9
	467 FQ B-317 B-330 B-406 B-412 JRM 502	dry	PME 426
	MATYC 73 77 MM 964 982 983 Q614 Q635 NAvW 473 483 499 524 538 PME 360	dryer	JRM 621
	SSM 3623 TYCMJ 34 65 107	dual	CRUX 414 FQ H-271 SSM 3617
	0020 I I OIII 01 00 101	1	

duck	1975-	-1979	equal leading terms
duck	►RM/alphametics/animals		►G/quadrilaterals/circumscribed quadrilatera
duodecimal rej			►G/regular pentagons
•	JRM 440		►G/triangles
	►NT/base systems/products		►G/triangles/medians [3]
duplicate	PARAB 314 SSM 3776		►SG/cylinders
duty	MM 1084 SIAM 75-8	ellipsoid	AMM E2576 MM 1062
e	►AL/complex numbers/exponential equations		►SG/analytic geometry
	►AN/sequences/monotone sequences	elliptic integral	NAvW 479 SIAM 75-9 78-10
	►NT/inequalities/exponential		►AN
early	AMM 6115 CRUX 333 JRM 437 625		►AN/integral equations
	MATYC 123 MM 943 1024 OMG 18.3.3	emanate	JRM 421
	PARAB 341	embedded	JRM 557
earned	TYCMJ 104	embedding	►T/surfaces [2]
ears	JRM 686	emerge	JRM 631
Earth	CRUX 373 FUNCT 2.3.2 OMG 16.1.2 17.2.6	emergency	JRM 562
	PME 343	emperor	MM 943
	►RM/alphametics/phrases	employ	OSSMB 78-3 PME 403
east	CRUX 356 JRM 597 PARAB 305 PME 343	empty	AMM E2713 CRUX 328 ISMJ 10.15 12.7
	401		JRM 424 499 736 MM 952 1066 MSJ 426
_	►RM/alphametics/multiplication		NYSMTJ 53 PARAB 297 376 SPECT 11.3
Easter	►AL/calendar problems/calendar cycles	empty set	OSSMB 75-9
	►AL/calendar problems/significant dates	encipher	JRM 740
eat	JRM 563 OMG 15.2.1 PME 382	encircle	MATYC 126
eccentric	CRUX 132 PENT 286	enclose	AMM 6008 FUNCT 2.5.3 ISMJ 13.6
eccentricity	AMM 6047 PME 447		JRM 509 MATYC 126 MM 1006 PME 344
economical	CRUX 394 420 428		346
$_{ m edge}$	[83 references]	enclosure	FUNCT 1.1.9
	►C/graph theory/maxima and minima	encounter	PENT 281
	►G/polygons/visibility	encrypted messa	
edge-disjoint	AMM E2549	J F	►RM/cryptarithms
edge-sum	PME 402	encyclopedia	OMG 16.1.6
eel	SSM 3654	end	►RM/alphametics/phrases
efficiency	JRM 736	endgame	JRM 424
efficient	JRM 598 739 SIAM 76-7	ending	ISMJ 14.15 JRM 434 SSM 3674 TYCMJ 119
eigenvalue	AMM 6006 6008 6168 6210 6222 6236	endomorphism	AMM 6236
	CMB P251 NAvW 547 SIAM 75-15 76-20	endpoint	AMM 6279 S19 CRUX 270 MM 955
	79-2	enapoint	MSJ 472 NAvW 424 NYSMTJ 43
	►LA		PUTNAM 1979/A.4 SIAM 77-15 78-17
	►LA/linear transformations	enemy	PARAB 439
	►LA/matrices/adjoints	engine	JRM 603 NAvW 430
	►LA/matrices/polynomials	clighte	►AM/physics/cars
	►NT/matrices/order	engineering	► AM
eigenvector	AMM 6168 CMB P251	entire	AMM 6117 6118 6279 E2568 CRUX 354
eight-digit	OMG 14.1.1	entire	JRM 373 423 782 MSJ 502 NAvW 450 464
elastic	JRM 564		498 520 NYSMTJ 81 SPECT 10.8
Elba	►RM/alphametics/phrases [2]	ontire functions	►AN/functions
electrical netwo	vorks	entire functions	► AN/location of zeros
	►AM _.	entrant	CRUX 195 PARAB 323
	►SG/pentahedra		AMM E2735 E2794 FUNCT 1.5.2 JRM C6
elementary syr	mmetric functions	entry	SIAM 79-2
	►AN/limits	enumerate	FQ H-309
	►AN/maxima and minima/polynomials	enumerate	JRM 511 SIAM 78-13 79-17
elements	►RM/alphametics	enumeration	NT/rational numbers
elevation	OSSMB G75.1-5 G76.3-3	omenals	,
elevator	SSM 3601	envelope	FUNCT 3.4.3 MM 1068 SSM 3662
	▶P/distribution problems [11]		►G IDM 276
eliminate	CRUX 438 JRM 513 631 769 NYSMTJ 44	environment	JRM 376
elimination to		epimorphism	AMM 6116
	►C/tournaments	equal angles	G/ellipses/tangents [3]
ellipse	AMM 6047 6223 E2682 CRUX 132 180		►G/triangles
	189 278 318 325 419 PS2-1 FQ B-337	equal areas	►G/dissection problems/
	MENEMUI 1.2.1 MM 1062 Q660 NAvW 475		isosceles right triangles
	476 490 NYSMTJ 46 60 OSSMB 78-11		►G/dissection problems/right triangles
	G76.2-2 G77.2-5 G78.3-3 G79.3-4 PME 447		►G/dissection problems/triangles
	PUTNAM $1976/B.4$ SSM 3777		►G/polygons/interior point
	►AN/complex variables/conformal mappings		►G/triangles [5]
	▶G	equal distances	►G/constructions/parallel lines
	►G/analytic geometry		►G/locus
	►G/billiards		►SG/locus/cube
	▶G'/conics	equal edges	►SG/pyramids
	► G/Collics		
	G/constructions/conics	equal-facial-sum	JRM 528
		equal-facial-sum equal leading te	
	►G/constructions/conics		

equal sides	197	5–1979	every second persor
equal sides	►G/heptagons/cyclic heptagons	Erlang function	►AN/maxima and minima/limits
•	►G/triangles/similar triangles	error	AMM 6178 E2529 MM Q627 NAvW 425
equal volumes	►SG/dissection problems/hemispheres [2]		TYCMJ 119
equation	[179 references]	escape	AMM 6163 CRUX 28 PENT 286
•	►AL/absolute value	escribed	CRUX 370 445 OSSMB G76.1-6
	►AL/recurrences/polynomials [3]	escribed circle	OSSMB G77.2-3 PME 437
	►G/analytic geometry/triangles		►G/triangles
	►HA/Galois theory	estimate	AMM 6096 6105 6135 6197 E2529 JRM 376
	►HA/rings/finite rings		480 510 MSJ 467 OSSMB 76-11 SIAM 76-20
	NT		77-13
	►RM/alphametics		▶P/statistics
equator	JRM 504 OMG 16.1.2	Euclidean 4-space	ce
equiangular octa			►AM/physics/force fields
1 0	►G/octagons	Euclidean geome	
equiangular poly	ygons	- · · ·	►G/analytic geometry
	►G/cyclic polygons	Euclidean n-spa	
equidistant	ISMJ 12.10 14.19 OSSMB G76.1-2		T/connected sets
	PENT 307 USA 1979/2	17. 11. 1	►T/sets
equidistant curv	ve AMM S2	Euclidean plane	
equifacial	NAvW 460	Euler line	►G/triangles
equilateral	[69 references]	Euler paths	►C/graph theory/maxima and minima
equilateral poly		Euler totient	►AN/sequences/convergence
	►G/polygons [2]		►HA/groups/finite groups
equilateral trian			►NT
	AMM 6062 CRUX 39 256 422 463 492 PS5-3		►NT/Fibonacci numbers
	DELTA 5.2-2 6.1-2 FQ B-413 FUNCT 3.2.8		►NT/sum of divisors/density
	IMO 1977/1 ISMJ 10.4 J10.14 JRM 706 709 MATYC 98 MM 988 Q616 Q632	Euler's constant	►AN/limits/finite sums [5]
	NYSMTJ 54 OBG6 OSSMB 75-7 78-2		►NT/Riemann zeta function/coprime integers
	G77.2-6 G78.2-5 PARAB 330 398 399	Euler's formula	►SG/polyhedra/combinatorial geometry
	PME 352 354 387 SPECT 11.5 SSM 3682	evaluated	AMM 6097 SIAM 79-9
	3700 3714 3766 3772	evaluations	►AL/logarithms
	▶G	evaracions	►AN/hypergeometric functions [2]
	►G/combinatorial geometry [15]		► AN/integrals
	►G/constructions		►AN/series
	►G/constructions/rusty compass		►HA/binary operations/real numbers [14]
	►G/dissection problems		, , , , , , , , , , , , , , , , , , , ,
	►G/hexagons/circles		LA/determinants
	►G/lattice points		LA/eigenvalues
	►G/limiting figures		NT/continued fractions
	►G/locus		►NT/Fibonacci numbers/finite sums
	►G/maxima and minima		►NT/infinite products
	►G/paper folding		►NT/polynomials
	►G/regular polygons/limits		►NT/series/alternating series
	G/squares/erected figures		►NT/series/factorials
	G/triangles/angle trisectors		►NT/series/floor function
	G/triangles/angle trisectors G/triangles/erected figures		►NT/series/unit fractions
	, - ,		▶NT/sum of divisors
	P/geometry/circles	evasion	JRM C5
	SG/octahedra	even digits	►NT/harmonic series/deleted terms
	SG/polyhedra/spheres	even functions	►AN/functions/differentiable functions
	SG/regular tetrahedra	even integers	▶NT/sum of consecutive odd integers
.1.7	TR/triangles/cos	even order	►HA/groups/finite groups
equilibrium	►AM/physics [2]	even perfect nur	, ,
equinox	JRM C9	Periodi Ilui	►NT/number representations/
equipped	NAvW 443		perfect numbers
equivalence	AMM E2727 JRM 656 NAvW 439 527		►NT/perfect numbers [10]
equivalent sente			►NT/sum of divisors/perfect numbers
	►ST/symbolic logic		►NT/triangles/scalene triangles
equivalently	NAvW 476	even quadratic r	, ,
erase	JRM 501 PARAB 419	a con quadratte i	►NT/quadratic residues
erect	CRUX 141 PME 387	evening	MATYC 70 PARAB 362
erected	PME 408 422	event	AMM 6174 CRUX 484 JRM 463 573
erected figures	►G/quadrilaterals	0.0110	MM 1070 PUTNAM 1976/B.3 SIAM 77-11
	►G/right triangles [3]		TYCMJ 103 152
		I .	
	►G/squares	every second per	rson

examinations	1975	–1979	factoria
examinations	▶P		►NT/maxima and minima
	▶P/statistics		►NT/products
	►RM/logic puzzles/Caliban puzzles		►NT/rational expressions/cancellation
excenter	NAvW 436	exponential equa	ations
exchange	JRM 463		►AL
exchequer	JRM 379		►AL/complex numbers
execution	FUNCT 1.3.7		►AL/solution of equations
executioner	OMG 17.2.1	exponential fund	ction
exhaust	PME 439		►AN
exit	AMM 6163 SSM 3601		►AN/power series
exotic	JRM 392		►AN/series
expansion	AMM 6170 E2688 E2738 CRUX 90 198		►LA/matrices/power series
	346 FQ B-313 H-268 H-269 ISMJ 13.4	exponential grov	
	NAvW 449 OSSMB G75.3-5 G79.1-6		►AL/rate problems
	G79.2-7 SIAM 78-3	expressing	JRM 555
	►G/point spacing/nearest point	extended comple	
expected distar			►HA/groups/transformations
	►P/geometry/point spacing	extending	AMM E2584 JRM 504 793
	▶P/geometry/squares	extension	AMM 6043 6046 E2738 CMB P252 P253
	h ▶P/geometry/convex hull		NAvW 501
expected numb		extension fields	
	►RM/chessboard problems/probability	exterior	AMM E2513 FUNCT $2.5.3$ MATYC 93
expected numb			MM 925 NYSMTJ 43 73 OSSMB G79.2-8
	►P/geometry/concyclic points		SSM 3714
expected numb		exterior line seg	
	▶P/independent trials/runs		►G/triangles/isosceles triangles [7]
expected relati		exterior point	►G/constructions/chords
	▶P/relative motion/random directions		►G/equilateral triangles
expected sum of	of distances		►G/maxima and minima/solid geometry
	▶P/selection problems/points [11]		►G/regular polygons
expected value	AMM 6195 JRM 510 573 NAvW 489 556	external	ISMJ 14.18
	►AL/money problems/denominations	extra	JRM 573
	►P/biology/population problems	extrema	MM 1072 SIAM 78-1
	▶P/cards	extremity	JRM 464 PME 402
	▶P/cards/card shuffles	eye	CRUX 333 OMG 18.2.7
	▶P/coin tossing	f(xy) = f(x) +	
	▶P/coloring problems		►AL/functional equations/2 parameters
	►P/game theory/dice games	face	AMM 6215 E2657 E2674 E2694 E2740
	▶P/selection problems/sets		AUSTRALIA $1979/1$ CMB $P244$
	►P/selection problems/socks		CRUX 73 181 224 291 330 367 453 478
	▶P/selection problems/sum of squares		497 IMO 1979/2 ISMJ 12.21 J10.13
	▶P/selection problems/sums		JRM 444 506 528 588 601 733 759
	▶P/selection problems/unit interval [2]		763 KURSCHAK 1979/1 MM 927 929
	▶P/selection problems/urns		Q616 Q621 NAvW 469 491 526 536 546
	▶P/sequences/first occurrence		ÖSSMB 75-8 76-14 PARAB 296 327 385
	▶P/transportation/ambulances [9]		PME 352 413 SSM 3598 3719 USA 1979/3
expected winni			►SG/tetrahedra
.	▶P/game theory/selection games	face-down	JRM 757 782
	▶P/game theory/TV game shows	face-up	JRM 757
experiment	AMM E2705 JRM 379 MM 1070 PME 395	facility	SIAM 76-7
exponent	AMM 6031 6135 6152 E2797 SSM 3568	factor	AMM 6059 6264 CANADA 1976/7
exponential	CRUX 293 373 JRM 739 SPECT 9.1		CRUX 64 298 IMO 1977/3 ISMJ 11.4 14.20
	►AL/finite sums		JRM 371 422 473 559 570 604 643 712
	►AL/inequalities		MENEMUI 1.3.2 MM 1032 1072 MSJ 486
	►AL/monotone functions		NAvW 392 502 PARAB 366 PENT 281
	► AL/systems of equations/2 variables		288 PME 446 SPECT 10.5 SSM 3578
	► AL/systems of equations/2 variables		USA 1976/5
	► AN/complex variables/number theory	factored	CRUX 298 PARAB 366
	► AN/functions	factorial	JRM 737 MSJ 478 PARAB 432
	► AN/inequalities [25]	iactoriar	►AL/recurrences/binomial coefficients
	► AN/integrals/multiple integrals		► AN/limits
	► AN/limits		►AN/power series/closed form expressions
	► AN/limits AN/limits/finite sums		NT
	► AN/Inmits/Infite sums ► AN/series/evaluations		NT/base systems [2]
	►G/analytic geometry		NT/determinants
			NT/determinants/identities
	NT/Diophantine equations		
	►NT/Diophantine equations/factorials		NT/digit problems
	NT/divisibility		NT/digit problems/leading digits [2]
	NT/factorials/inequalities		NT/digit problems/terminal digits
	►NT/Fibonacci and Lucas numbers/		►NT/Diophantine equations
	congruences		►NT/divisibility
	►NT/Fibonacci and Lucas numbers/identities	I	►NT/floor function/inequalities
	►NT/floor function ►NT/inequalities		►NT/forms of numbers/sum of divisors [2] ►NT/inequalities/logarithms

factorial	1975-	-1979	finite sum
	►NT/inequalities/powers	Fermat-Torricell	
	NT/least common multiple	Formatic Last T	►G/triangles/interior point
	►NT/number of divisors ►NT/permutations/derangements	Fermat's Last T	▶NT
	NT/recurrences/arrays	Fermat's Little	-
	►NT/series	T22 . 1.T	►NT
	►NT/series/binomial coefficients ►NT/series/polynomials	Fibonacci and L	NT NT
factorial-floor-re			►NT/Pythagorean triples
	►NT/composed operations	Fibonacci numb	per
factorian repres			►AL/inequalities/logarithms
factorization	JRM 598 AMM 6152 6264 CMB P253 CRUX 390		►NT ►NT/arrays/triangular arrays
lactorization	NAvW 392 PARAB 321 PME 446		►NT/difference equations/linear
	SPECT 11.1		►NT/number representations
	► HA/rings/ideals	Gotion	NT/sets/partitions
	►NT [6] ►NT/factorials	fiction field	►RM/alphametics/phrases AMM 6046 6082 6101 6119 6169 6171 6177
	►NT/least common multiple/	11014	6201 6216 6222 6251 6258 6268 6270 6284
	consecutive integers		E2540 E2578 E2635 E2711 E2762 E2779
	NT/repdigits		E2785 S22 CMB P252 P253 P274 CRUX 89 DELTA 6.2-1 JRM 395 533 MSJ 447
	►NT/sets/closed under product ►NT/sets/divisibility		NAvW 393 403 435 437 486 497 PARAB 375
fail	AMM 6017 6150 6266 JRM 445 699		PUTNAM 1979/B.3
	MM 1008		►HA
failure	PME 395	fifth noward	►NT/modular arithmetic ►NT/Fermat numbers/Fermat primes
fair division fair games	►AL ►P/game theory/coin tossing	fifth powers fight	JRM 395
fallacy	FUNCT 2.3.4 MATYC 72	file	AMM E2515 E2521 JRM 680
J	►AL/functional equations [2]	filing	▶P/distribution problems
	▶G	finance	TYCMJ 104
	►G/regular pentagons [16] ►NT/Diophantine equations/mediants	finish finite	AMM 6041 JRM 562 MM 926 [83 references]
	TR	finite differences	
falling bodies	►AM/physics		►NT/partitions/number of partitions
family	AMM 6006 6085 6087 6174 6220 E2614	finite-dimension	al subspace NAvW 395
	E2654 CMB P268 P279 CRUX 355 445 ISMJ 13.7 JRM 376 591 659 MM 932 1047		► AN/Banach spaces/subspaces
	1068 NAvW 475 PARAB 309 362 PENT 314	finite families	►AN/measure theory/probability measures
	SSM 3630	0.1. 0.11	►NT/sets/family of sets
family of lines	►G ►G/analytic geometry	finite fields finite graphs	►HA/fields ►C/graph theory/directed graphs
family of open	, , , , , , , , , , , , , , , , , , , ,	Innite graphs	C/graph theory/isomorphic graphs [5]
-	ightharpoonupT/sets/Euclidean n -space		►C/graph theory/map problems
family of planes	s ►SG/analytic geometry	finite groups	►HA/groups
family of seque	►SG/covering problems	finite lattices finite moments	►HA/lattices ►P/random variables [3]
ranning of seque	►NT/sequences	finite products	►AL
family of sets			►AL/inequalities
C :1 C 1	▶NT/sets		AN/designations
family of subset	ts ▶C/sets		►AN/derivatives ►AN/limits [4]
	►ST/subsets		NT
family of tetrah		finite rings	►HA/rings
formiles tunna	SG/tetrahedra	finite sequences	AL/inequalities/exponentials
family trees fan	►C/graph theory JRM 686 MM 1024		►AL/sequences ►NT/rational numbers
fantastica	►RM/alphametics/phrases [3]		►NT/sequences
fares	►AL/fair division		►NT/sequences/law of formation
Farey sequence	NT JRM 395 534 710 PARAB 375 PENT 282	finite sets finite sums	►HA/binary operations [18] ►AL
farmer farthing	ISMJ 11.16	illitte sums	►AL/complex numbers/inequalities
fashion	JRM 539 SIAM 76-1		►AL/functional equations/1 parameter
fast	FQ H-282 ISMJ J10.11 JRM 534 770a		►AL/inequalities
father	OSSMB G79.1-1 PENT 294 FUNCT 3.1.6 JRM 794 MSJ 431 PARAB 332		►AL/inequalities/degree 2 ►AL/inequalities/finite products
fathom	PME 343		► AL/inequalities/fractions
fee	JRM 675		►AL/maxima and minima
female	AMM E2636 FQ B-304 MSJ 431		►AL/sequences
fence	CRUX 71 ISMJ 13.6 JRM 395 PME 382		AN/derivatives
Fermat number	NT [20] NT/repunits		►AN/Haar functions ►AN/integrals/trigonometry
Fermat point	►G/triangles/erected figures		►AN/limits
Fermat primes	►NT/Fermat numbers		►AN/maxima and minima/constraints

finite sums	1975	-1979	Fourier series
	►C/permutations	floor function	►AL
	►C/sequences		►AL/functional equations/1 parameter
	► HA/fields/finite fields		►AN/limits
	►NT/binomial coefficients ►NT/Fibonacci and Lucas numbers		►G/analytic geometry [3] ►NT
	►NT/Fibonacci numbers ►NT/Fibonacci numbers		►NT/binomial coefficients/divisibility
	►NT/Fibonacci numbers/identities		►NT/digit problems/fractions
	►NT/Fibonacci numbers/triangular numbers		►NT/divisibility
	NT/floor function [2]		NT/divisibility/cube roots
	►NT/floor function/identities ►NT/floor function/inequalities [2]		►NT/Fibonacci and Lucas numbers/ golden ratio
	NT/forms of numbers/unit fractions		►NT/Fibonacci numbers/identities
	►NT/greatest common divisor/quotients		►NT/fractional parts/distribution modulo 1
	NT/inequalities/fractional parts [2]		NT/recurrences [3]
	►NT/Legendre symbol ►NT/Lucas numbers/binomial coefficients		►NT/recurrences/first order ►NT/sequences
	NT/multinomial coefficients/		►NT/sequences/binary sequences
	trinomial coefficients [2]		►NT/series
	NT/number of divisors		►NT/series/binomial coefficients [2]
	►NT/permutations/derangements ►NT/recurrences		►NT/series/inequalities ►NT/series/unit fractions
	►NT/recurrences/arrays [2]	flow problems	►AL/rate problems
	►NT/recurrences/	flower	PARAB 340
	generalized Fibonacci sequences	fluid	►AM/physics
	►NT/recurrences/ multiplicative Fibonacci sequences	fly focal	FUNCT 2.2.1 NAvW 415
	►NT/recurrences/second order	foci	AMM 6047 CRUX 242 279 318 353 419
	►NT/repdigits		NAvW 415 NYSMTJ 94 OSSMB $G77.2-5$
	NT/sequences/finite sequences		G78.3-3 G78.3-4 G79.3-4 PME 447
	►NT/sequences/monotone sequences ►NT/series/unit fractions	fog	PUTNAM 1976/B.4 SSM 3777 JRM 478
	►NT/sets/unit fractions [2]	fold	AMM 6134 E2630 S4 CRUX 292 350 375
	►P/number theory		422 PS2-3 ISMJ J10.13 JRM 628 MSJ 464
finite system	SPECT 10.7 AMM 6113 6139 6212 6239 E2738		PARAB 399 PME 460 SIAM 75-12 SSM 3637 3661
finitely	CMB P277 P279 CRUX 410 DELTA 5.1-3	folium of Desca	
	PARAB 387		CRUX 417
fire	JRM 554 SPECT 7.1 7.5 8.2	6.11	►G/analytic geometry
fire alarm	PARAB 384 ►T/function spaces [2]	folks food	►RM/alphametics/phrases ►RM/alphametics
	T/metric spaces [2] T/metric spaces	football	FUNCT 3.5.1 JRM 624 MENEMUI 1.1.3
first nonzero digi	t		NYSMTJ 57
0 .	►NT/digit problems/products		►AL/sports
	►P/coin tossing/expected value [10] ►P/dice problems/independent trials	force	AMM S10 NAvW 393 403 437 461 ►AM/physics/particles [7]
	►P/game theory/dice games	force fields	► AM/physics
	▶P/selection problems/sum of squares	Ford	►RM/alphametics/names
	►P/selection problems/sums	fore	JRM 375
first-order	►P/sequences AMM 6139 6272 NAvW 391	forinth formation	AMM 6260 CRUX 16 MM 961 OMG 14.1.2
	►AN/differential equations	lormation	PARAB 326 329
	►NT/recurrences	forms	►NT/Fibonacci numbers
	►ST/symbolic logic	forms of number	ers ▶NT
fish five-digit number	FUNCT 1.3.1 JRM 376 MATYC 123 OMG 14.1.1 SSM 3639		NT/approximations
U	►AL/polynomials		►NT/digit problems/digital roots
-	►AL/recurrences/polynomials		►NT/least common multiple/
	N/functions/continuous functions		greatest common divisor
	►C/arrays/transformations ►C/graph theory/trees		►NT/Lucas numbers/binomial coefficients [2] ►NT/primes
	C/permutations [7]		►NT/Pythagorean triples/primes
	►NT/Euler totient/solution of equations		►NT/sequences/monotone sequences
	NT/permutations	C1-	NT/triangular numbers
flaps	►T/metric spaces/contractions SSM 3683	formula	[72 references] ►C/compositions
flat	AMM E2527 E2630 E2651 E2785		► C/counting problems/subsets
	FUNCT $1.4.1$ ISMJ $J10.13$ MSJ 445		►NT/permutations/derangements [2]
g t	PARAB 315 387 SSM 3598 3661	formar-1- t-	NT/polygonal numbers
fleet flexible	OMG 17.2.6 SIAM 78-17	formulate fort	CRÙX 367 MM 943
flight	SPECT 7.1	fortune	JRM 423
flip	FUNCT 3.1.1 TYCMJ 103	forward	JRM 753 PARAB 331
floor	CRUX 244 ISMJ 13.21 JRM 737 NAvW 450	four-term	SSM 3697 ► AN
	OMG 18.2.1	Fourier series	►AN

1975-1979 Fourier transform generalized Fibonacci sequences Fourier transform friends and strangers ►AN/integral inequalities ►C/graph theory fourth-order **CRUX** 482 **AUSTRALIA** 1979/3 **IMO** 1979/6 frog ▶NT/base systems/maxima and minima frosting PARAB 381 fourth powers FUNCT 1.1.3 NYSMTJ 56►NT/digit problems/powers frustum ▶NT/Fibonacci and Lucas numbers/identities ▶SG/right circular cones ►NT/Fibonacci numbers/identities fun **JRM** 780 fox **OMG** 15.2.1function [223 references] **AMM** E2692 E2777 **CRUX** 91 92 346 ► AL fraction 349 430 447 FQ H-278 H-308 ISMJ 13.1 **►**AN 13.2 13.4 13.28 14.11 J10.16 J11.9 ► AN/integrals J11.16 **JRM** 374 643 652 **MATYC** 89 103 ►AN/limits $\textbf{MSJ} \ 498 \ \textbf{NYSMTJ} \ 50 \ 62 \ \textbf{OSSMB} \ G79.2\text{-}7$ ightharpoons TPARAB 271 272 393 429 PENT 277 function spaces ►AN/Banach spaces PME 365 371 SSM 3636 3744 ►AN/measure theory ►AL/age problems/different times [2] ►AL/finite sums AMM 6078 6093 6166 6173 S15 CRUX 299 functional ►AL/identities [3] ►AL/inequalities functional analysis ►AL/inequalities/exponentials ►AL/inequalities/finite sums functional equation ►AL/infinite series [2] **AMM** 6106 E2575 E2607 S3 **CRUX** 343 ►AL/means/inequalities **FQ** H-287 **ISMJ** 13.13 ►AL/numerical calculations ►AL/solution of equations/linear ightharpoonup AN/differential equations ►AN/Bessel functions/infinite series ►NT [2] ►AN/infinite products functional inequalities ►AL/inequalities ►AN/integrals/evaluations ►AN/limits ►AN/integrals/improper integrals functionally **CRUX** 299 ►AN/limits/factorials [2] fundamental AMM 6172 6270 CMB P274 NAvW 546 $\blacktriangleright {\rm AN/limits/finite~sums}$ fundamental domain ►C/graph theory/family trees ►G/lattice points/geometry of numbers ▶NT fundamental unit ►NT/decimal representations [4] ►NT/modular arithmetic/fields ▶NT/digit problems **AMM** 6260 E2789 **CMB** P253 **FQ** H-308 further ►NT/digit problems/squares JRM 591 770a PUTNAM 1976/B.3 ►NT/digit problems/terminal digits AMM E2795 FQ H-248 MSJ 417 NAvW 536furthermore ►NT/Euler totient PARAB 283 ►NT/factorials furthest MATYC 119 PARAB 295►NT/floor function/finite sums gain **CANADA** 1976/3 ►NT/floor function/iterated functions gallon ISMJ 12.7 NYSMTJ 96►NT/floor function/maxima and minima Galois theory ►HA [2] ►NT/floor function/solution of equations gambit **OMG** 17.2.5 ►NT/least common multiple/ **AMM** 6041 **JRM** 423 **SPECT** 7.4 gambler consecutive integers gambler's ruin ▶P ►NT/maxima and minima game [83 references] ►NT/multiplication tables [2] game theory ►NT/number representations gamma function ►NT/recurrences **AMM** 6199 **CRUX** 269 **JRM** 681 C2 fractional part ►AN/Bessel functions/infinite series ►AN/functions/monotone functions ►NT/harmonic series/partial sums ►AN/hypergeometric functions ▶NT/inequalities [2] ►AN/integrals **NAvW** 468 503 frame ►AN/integrals/limits OMG 17.1.3 OSSMB G78.1-4►AN/series/hyperbolic functions AMM 6204free group **AMM** E2522 **JRM** 680 gap ►HA/groups/subgroups ►NT/primes freedom **AMM** 6092 **SSM** 3783 gasoline CRUX 354 NYSMTJ 81 freeze ►RM/alphametics/phrases [2] **PARAB** 439 gather French ►RM/alphametics/phrases Gauss ▶RM/alphametics/names [2] JRM 588 NAvW 455 frequency Gaussian integers frequently JRM 680 OMG 18.1.2 frictionless **PME** 343 generalization AMM S10 CRUX 363 FQ B-408 SSM 3690 ightharpoonup NT/Fermat's little theorem Friday the 13th ►AL/calendar problems AMM 6020 CRUX 263 FUNCT 2.1.2friend generalized binomial theorem 3.2.3 3.2.6 JRM 643 MM 1056 MSJ 437 ►AL PARAB 297 306 314 439 PENT 278 generalized Fibonacci sequences **AMM** 6020 **JRM** 395 friendly ►NT/recurrences [37]

generating func	tions 1975	-1979	guest
generating func	tions	golfer	FUNCT 1.2.4
	►AN/gamma function	goose	OMG 15.2.1
	►C/counting problems/ordered pairs	gossip	PARAB 372
	▶NT	governorship	JRM 392
	►NT/binomial coefficients	grab	PARAB 384
	►NT/Fibonacci numbers	grade	CANADA 1976/3 OMG 18.3.2
	►NT/Pell numbers/arrays	gradients	►AN/derivatives
	►NT/sequences/floor function	graduate assista	
	▶P/geometry/polyhedra	Staddate applica	►C/configurations/people
generation	FQ B-304 JRM 737	grandfather	JRM 794
generator	AMM 6202 CRUX 140 NAvW 491 513	graph	AMM 6034 6037 6079 6157 6159 6255
	PUTNAM 1975/B.1	graph	E2549 E2562 E2565 E2620 E2672 E2795
	►HA/groups/subgroups		CANADA 1978/6 CMB P268 CRUX 374 380
	►HA/groups/transformations		417 JRM 501 NAvW 453 459 487 495 527
	►NT/primes		NYSMTJ 67 PME 441 PUTNAM 1975/A.2
	►NT/Pythagorean triples		1977/A.1 1979/B.1 SSM 3756 TYCMJ 151
genus	AMM 6141		C/coloring problems
geography	►AM	graph of a funct	, 91
geometric	AMM E2632 CANADA $1975/4$ $1976/1$	graph of a func	▶T
	1979/1 CRUX 77 110 213 242 332	graph theory	▶C
	395 FQ B-382 ISMJ 10.15 11.7 12.18	graph theory	
	JRM 739 MATYC 85 MM 961 1062		►C/sequences/binary sequences CRUX 1 JRM 488 489 490
	Q615 OSSMB G78.1-3 G79.1-5 PME 454	grass	
	SPECT 7.2 8.8 9.7 10.9 SSM 3585 3613 3713	10	►RM/alphametics/phrases
	3747 3755		eld AMM E2535 SIAM 78-17
geometric figure	es	gravity	ISMJ 10.15 NAvW 450 468 NYSMTJ 53
	►C/counting problems		PARAB 392 PME 343 SPECT 8.2
geometric mean	►G/regular polygons/exterior point		►AM/physics [2]
	►NT/algorithms	grazing	►AL/uniform growth
	►NT/recurrences/inequalities	grazing goat	CRUX 1 89 JRM 395 476 PENT 282
geometric progr			PME 382
	►AL/finite sums/arithmetic progressions		▶G
	►AL/theory of equations/roots	great circles	►SG/dissection problems/spheres [3]
	►G/triangles/interior point		►SG/spherical geometry/spherical triangles
	►NT/arithmetic progressions	greatest commo	
	►NT/binomial coefficients/		►HA/fields/number fields
	arithmetic progressions		►NT
	►NT/decimal representations		►NT/Fibonacci numbers
	►NT/sets/arithmetic progressions		►NT/floor function/finite sums [2]
	►NT/triangles		►NT/Gaussian integers
geometric series	NT/composite numbers		►NT/least common multiple
	►NT/series		►NT/Lucas numbers/sequences
geometry	CRUX 291 MSJ 456 OSSMB G75.2-2		►NT/maxima and minima/sequences
	►AN/measure theory		►NT/primes/generators
	►C ► NET		►NT/Pythagorean triples/inradius [2]
	NT NT / I : : : I : I : I		►NT/recurrences/
	►NT/divisibility		generalized Fibonacci sequences
	►P		►NT/sequences/consecutive integers
geometry of con		greatest prime f	factor
	►AN/complex variables/rational functions		►NT/primes [2]
geometry of zer		greed	►RM/alphametics/phrases
Corgonno noint	►AL ►G/triangle inequalities	green	AMM $E2722$ AUSTRALIA $1979/1$
Gergonne point German	►RM/alphametics/doubly true [5]		IMO 1979/2 JRM 416 623 730 OMG 17.2.1
girl	CANADA 1978/5 ISMJ J10.1 MSJ 431	grid	JRM 391 426 572
8111	PENT 314	ground	CRUX 122 FUNCT 2.4.4 JRM 782 MM 1004
aloca	NYSMTJ 56		OMG 17.2.2 PARAB 263 PME 413
glass	►RM/alphametics/phrases		►RM/alphametics/phrases
gnomon magic s	, . , .	group	[55 references]
gnomon magic s	SSM 3629		►HA [3]
	►RM/magic configurations		► HA/binary operations/inequalities
Go Moku	GT/tic-tac-toe variants		►HA/loops
goal	FUNCT 3.5.1 OMG 18.2.6 PME 373		►HA/rings/integral domains
goat	CRUX 89 JRM 395 PENT 282		►NT/modular arithmetic
goblet	FUNCT 2.2.3		►T/metric spaces/isometries
gold coin	JRM 379	group presentat	· · · · · · · · · · · · · · · · · · ·
golden ratio	FUNCT 3.2.5 PME 435		►HA/groups
0514011 14010	►AL/functional equations/1 parameter	groupoid	AMM 6150
	G/regular pentagons/diagonals		►HA
	G/semicircles/inscribed squares	grow	SSM 3585
	NT/Fibonacci and Lucas numbers	growth	JRM 376
	NT/Fibonacci numbers/identities	guarantee	AMM 6191 MM 1051 NAvW 443 PENT 313
	NT/Gaussian integers/powers	guess	CRUX 417 FUNCT 2.5.2 JRM 379 469 512
	NT/sequences/binary sequences [9]	54355	769 785 NYSMTJ 72
	NT/series/infinite series	gueet	PARAB 278
	F 111/001100/1111111100 001100	guest	

Haar functions	1975	5–1979	husband
Haar functions	►AN		▶G/tiling
hair	JRM 541		►RM/magic configurations
half angles	►G/triangle inequalities		►RM/polyominoes/tiling
half-domino	ISMJ 14.5	hexagonal	CRUX 155 JRM 533 SSM 3621
half-plane	AMM E2761 E2801 S2	hexagonal arrays	
half-year	FUNCT 2.1.2		►GT/selection games/arrays
Hamel bases	►LA/vector spaces	hexagonal number	er
Hamiltonian gra	Description		PME 359 415 SSM 3609 3621
hand codes	RM/cryptarithms		►NT/base systems/polygonal numbers [2]
hand sizes	►GT/bridge/maxima and minima		►NT/polygonal numbers
handle	JRM 729		►NT/polygonal numbers/consecutive integers
hands	►AL/clock problems	, , ,	►NT/polygonal numbers/pentagonal numbers
	►AL/clock problems/time computation	hexahedron	MM Q616
Hankel function		hidden	►SG/tetrahedra/inscribed spheres AMM 6146
	S NT/determinants/binomial coefficients	I	►GT/board games
hard hare	CRUX 434 JRM 387 MM 1056 PARAB 266		►GT/board games ►GT/tic-tac-toe variants
harmonic	AMM 6048 6165 6198 6280 CRUX 77	higher	AMM E2555 JRM 528 739 MATYC 117
nai monic	395 JRM 503 NAvW 514 OSSMB 75-12	inglier	MM 960 1071 PME 403 SIAM 75-11
	PME 354 SIAM 75-21 SSM 3613 3652 3713	higher derivative	
	3759		►AN/derivatives
harmonic functi		highest	ISMJ 11.4 JRM 658 MM 1071 PME 349 403
	►AN (a)	highway	CRUX 31 OSSMB 75-3
	►AN/complex variables [2] ►AN/integrals/multiple integrals	hike	JRM 603 MSJ 445
harmania maan	►AN/integrals/multiple integrals ►G/squares/circumscribed triangle	hilarious	CRUX 333
narmonic mean	NT/means [2]	1	►AN/functional analysis
harmonic oscilla			►T [3]
	SIAM 79-7	hill	OSSMB G79.3-2
harmonic series	►AN/functions/monotone functions	hinged history	JRM 472
1	NT	hitting	JRM C5 PARAB 335 MENEMUI 1.3.2 SIAM 75-8
harmonic tetral	►SG/tetrahedra/family of tetrahedra	hockey	OMG 17.1.1 PME 373
harmonical	NAvW 436	nockey	▶P/sports
hat	CRUX 471 MATYC 123 MSJ 426	holdings	JRM 463 631
	SPECT 11.4	hole	AMM E2612 JRM 391 426 445 787
Hausdorff metri			MM 1013 OMG 16.1.9
1 1 .	T/metric spaces		►RM/polyominoes/pentominoes
headquarters heart	OMG 17.2.6 JRM 443 782 SIAM 75-8		►SG/spheres
heat	OMG 17.2.2	holiday	FUNCT 2.4.1
heaven	JRM 644		►RM/alphametics/names
heavier	PARAB 307	homeomorphic	AMM 6188 E2768
heaviest	CANADA 1976/1	homeomorphism	
heavy	AMM 6224 JRM 448	homogeneous	►T/unit interval [6] CRUX 424 FQ B-411 NAvW 547
heifer	PME 382	nomogeneous	OSSMB G79.1-6 PUTNAM 1979/B.4
height	CANADA 1977/5 CRUX 24 375 FUNCT 1.1.3 JRM 646 NYSMTJ 56	homomorphism	AMM 6246
	OMG 16.1.2 16.2.5 OSSMB G78.3-5	1	►T/topological groups
	PENT 302 PME 413 SSM 3783	homothetic figure	
help	CRUX 34 JRM 482 MM 1056 1072		►G/packing problems/convexity
hemisphere	SSM 3672	homotopically	AMM 6225
1	►SG/dissection problems	hoop	FUNCT 1.5.1
heptagon	DELTA 6.2-3 PARAB 422 ►G	horizon	CRUX 356
heptagonal num		horizontal	AMM 6182 6211 CRUX 427 436
neptagonar nun	PME 340 SSM 3764		FUNCT 1.2.1 JRM 533 572 678 NAvW 450 NYSMTJ 68 OMG 15.1.3 PARAB 283 410
	►NT/polygonal numbers		SPECT 8.2 SSM 3598 USA 1976/1
	►NT/twin primes/arithmetic means	horizontally	PARAB 295 TYCMJ 147
herd	OMG 17.1.9	horse	FUNCT 3.1.4 3.5.2
Hermite interpo		horse race	AMM 6041
Hermitian matr	►AN/numerical analysis		▶P/selection problems
Hermitian mati	►LA/matrices	hospital	SIAM 75-8
Hermitian opera		host	JRM 699
-	►T/Hilbert spaces	house	CRUX 95 122 ISMJ J11.15 MSJ 432 437 OMG 18.3.3 PARAB 362 PENT 278
hex	MM 1084	housespouse	JRM 735
hexagon	AMM 6229 E2595 E2612 CRUX 155 ISMJ 12.28 MATYC 107 121 MM 975	hull	JRM 375
	NYSMTJ 79 PARAB 265 340 PME 434 438	human	CRUX 373 JRM 655
	SSM 3677 3746	Hunter and Trigg	
	►C/coloring problems		►RM/alphametics/names
	▶G	husband	JRM 769 MSJ 431 OSSMB 78-3

Huygens	1975	5–1979	income tax
Huygens	►TR/inequalities		►HA/groups/subgroups
hymn	FUNCT 2.4.2		►LA/determinants
hyperbola	CRUX 15 OSSMB G77.2-5 G78.3-4 G79.3-3		►LA/determinants/recurrences
	►G ► C / - Nim man		►LA/matrices/stochastic matrices
hyperbolic	►G/ellipses AMM E2680 S2 NAvW 526		►LA/matrix equations/binomial coefficients ►NT/binomial coefficients/finite sums
hyperbolic fund			►NT/continued fractions [2]
hyperbone run	►AN/series		►NT/determinants
hyperboloid	NAvW 491 513		►NT/determinants/binomial coefficients
J F	►SG/projective geometry/tetrahedra		►NT/Fibonacci and Lucas numbers
	►SG/tetrahedra/altitudes		►NT/Fibonacci and Lucas numbers/
hypercenter	NAvW 501		finite sums
hypercube	MM 996		►NT/Fibonacci numbers
hypercycle	AMM S2		►NT/Fibonacci numbers/finite sums
hypergeometric			►NT/floor function [6]
	SIAM 76-19		NT/infinite products
hyperplane	►AN [5] AMM E2548 E2779 CRUX 224		►NT/series ►NT/series/binomial coefficients
пурегріапе	►G/n-dimensional geometry/simplexes		►NT/series/infinite series
	LA/affine spaces		►NT/triangular numbers
hypotenuse	CRUX 33 218 437 FUNCT 2.2.4 2.5.3		►NT/triangular numbers/series
J F	ISMJ 10.17 J11.6 MSJ 480 OMG 18.1.5		►TR
	PARAB 400 PENT 298 PME 431 461	identity function	n
	SSM 3592 3633 3771 TYCMJ 64		►AL/inequalities/functional inequalities [3]
	►NT/Pythagorean triples	identity matrix	►LA/matrices
hypothesis	AMM 6080 6204 6266 E2680 SSM 3719		►LA/matrices/powers
icosahedron	SSM 3693		►LA/matrices/similar matrices [5]
idea	AMM 6163 MSJ 447	ignition sequence	
ideal	AMM 6116 6134 6152 6180 E2528 E2676	ignore	AMM 6173 PARAB 295
	CMB P258 DELTA 5.1-3 NAvW 541 SSM 3666	illegible illustrate	OMG 18.3.9 PME 446
	►HA/rings	image	AMM 6250 E2548 MATYC 80 MM 980
	►HA/rings/matrices	illiage	NAvW 549
idempotent	AMM 6039 6150 6183 MM 1052 TYCMJ 139	imaginary	AMM 6270 E2542 CMB P252 CRUX 128 396
idempotent ma			NAvW 444 503 TYCMJ 35
•	►LA/matrices/identity matrix	imbedded	CRUX 286 MM 939
identical	AMM 6281 E2544 CRUX 354 JRM 733	immediate	JRM 621 MATYC 87 123 OSSMB 76-3
	756 KURSCHAK 1979/3 NYSMTJ 81		PENT 314 SIAM 76-1
	OMG 17.2.1 18.2.7 18.3.5 PARAB 291 307	immortal	PARAB 332
: .1 + : 11	PME 382 USA 1979/3 1979/5	immortal ant	SSM 3781
identically	AMM 6117 6120 6145 6263 FQ B-309 MM 1030 NAvW 532 OSSMB 79-9	impact improper doubl	NAvW 450
	PUTNAM 1977/A.6 1979/B.4 USA 1979/3	improper doubl	►AN/integrals
identically dist		improper integr	
	AMM 6030 6031 6103 6114 SIAM 78-7	improper meegi	►AN/integrals
identified	CRUX 263 JRM 539		►AN/integrals/evaluations
identifying	AMM E2698	incenter	AMM S23 CRUX 260 288 386 388 397
identity	AMM 6083 6102 6116 6123 6134 6150		472 478 483 PS5-3 PS7-2 NAvW 402 436
	6214 6226 6238 6263 E2525 E2676 E2742		OSSMB G78.1-5 PME 417 442 SSM 3678
	FQ B-339 B-384 B-411 H-245 H-251 H-266		TYCMJ 110
	H-288 H-295 FUNCT 3.2.2 MM 951 990		►G/cyclic quadrilaterals
	1018 1058 MSJ 469 NAvW 534 NYSMTJ 51 OMG 18.1.6 PENT 273 PUTNAM 1975/A.4		►G/inequalities/triangles ►G/triangle inequalities/
	1977/B.6 SIAM 76-9 77-2 SPECT 7.8		angle bisectors extended [5]
	TYCMJ 139		►G/triangles/altitudes
	►AL [2]		►SG/regular tetrahedra/equilateral triangles
	►AL/complex numbers		►SG/tetrahedra
	►AL/determinants		►TR/triangles/sin
	►AL/finite sums/binomial coefficients [2]	incidence	NAvW 475 476
	►AL/finite sums/fractions	incircle	CRUX 330 397 415 450 IMO 1978/4
	►AL/infinite series/fractions		OSSMB $G77.2-3$ PARAB 400 PME 417
	►AL/logarithms		SSM 3772
	►AN		►G/inequalities/triangles
	► AN/Bessel functions/infinite series [2]		►G/regular polygons/limits [10]
	► AN/derivatives/higher derivatives AN/functions/differentiable functions		► G/right triangles ► C/triangle inequalities/radii
	► AN/functions/differentiable functions ► AN/hypergeometric functions/		►G/triangle inequalities/radii ►G/triangles/escribed circles
	gamma function		SG/tetrahedra/faces
	► AN/integrals/functions	inclination	MENEMUI 1.3.2 OSSMB G79.3-2
	► AN/Legendre polynomials [3]	111011111001011	SPECT 8.2
	►AN/power series	inclined	OSSMB G75.2-2 SSM 3754
	►AN/series/binomial coefficients	inclined plane	FUNCT 1.5.1
	►AN/series/exponential function [3]	inclusion map	►T/Hilbert spaces/dense subspaces
	►C/permutations/counting problems	income tax	PENT 279

incomplete game	e 1975-	-1979	infinite serie
incomplete game			►LA/linear transformations [2]
. 1	GT/tic-tac-toe variants		LA/matrices/Hermitian matrices
incomplete infor			►LA/matrices/norms [2]
	►C/tournaments		►LA/vector spaces/subspaces
	NAMA FORSO		NT [2]
incongruent	AMM E2789		►NT/binomial coefficients/
incorrect	DELTA 6.2-3 FUNCT 1.1.6 NYSMTJ 62		number representations
	PME 414 SSM 3725		►NT/composite numbers/characterizations
incorrect method			►NT/Euler totient
	►AL/solution of equations/degree 2		►NT/factorials
increased	CRUX 470 FUNCT 1.1.2 ISMJ J11.4		►NT/factorizations
	SPECT 8.2 SSM 3577 3611		►NT/Fibonacci numbers [7]
increasing seque			►NT/floor function
. 1	►AN/functions/C-infinity [2]		►NT/geometry/lattice points
indecomposable	,		►NT/geometry/right triangles
indefinite	CRUX 88		►NT/harmonic series
independent	[54 references]		►NT/least common multiple
independent ever			►NT/limits/maxima and minima
	▶P/coin tossing		►NT/means
	▶P/inequalities		►NT/permutations [21]
independent tria	ls		►NT/polynomials
	▶P		►NT/powers/tetration
	▶P/dice problems		►NT/primes/products
indeterminate	AMM 6039 6170 6258		►NT/Pythagorean triples
index	AMM 6023 6205 E2545 E2592 E2735		►NT/recurrences
	JRM 592 MM 1000 1059 NAvW 448		NT/recurrences/
indicated	JRM 434		generalized Fibonacci sequences
	►NT/digit problems/number of digits		NT/sequences
	e AMM 6224 CRUX 117 ISMJ 14.24 MM 940		►NT/series
indistinguishable			►NT/sum of divisors/iterated functions
maismiguisnable	►AL/clock problems/hands [27]		
indictinguichable	, - , , , , , , , , , , , , , , , , , ,		►NT/sum of divisors/number of divisors
indistinguishable	► P/selection problems/urns		▶P
individual makel			►P/permutations
individual match			▶P/random variables/uniform integrability
. 1 1	►GT/chess problems		▶P/selection problems/unit interval
induced metric	AMM 6063		►ST/mappings
induced subgrap			►ST/subsets/family of subsets
induction	JRM 728		►SG/analytic geometry/boxes
inductive	CRUX 416 NAvW 477 PME 376 TYCMJ 133		►SG/points in space
inequality	AMM 6227 E2551 E2582 S12 CRUX 17 115		►SG/polyhedra/convex polyhedra
	304 306 362 395 458 KURSCHAK 1979/2		►SG/rectangular parallelepipeds/
	MM 936 1043 Q615 MSJ 421 NAvW 458		relations among parts
	488 PARAB 368 SIAM 76-5 77-10 77-12		►SG/tetrahedra/opposite edges
	TYCMJ 144		►T/metric spaces
	►AL		►T/metric spaces/Hausdorff metric [2]
	►AL/complex numbers		▶TR
	►AL/means		►TR/triangles [2]
	►AL/recurrences	infinite 3-dime	
	►AL/theory of equations		►GT/board games/chessboard games
	►AN	infinite board	►RM/chessboard problems/
	►AN/complex variables		coloring problems [3]
	►AN/complex variables/harmonic functions	infinite-dimens	sional
	►AN/curves		NAvW 395
	►AN derivatives	infinite order	►HA/groups/group presentations
	►AN/functions/differentiable functions	infinite produc	
	►AN/gamma function	· •	►NT
	►AN/gamma function/determinants		▶TR
	►AN/intervals	infinite series	►AL
	►AN/limits/finite products	IIIIIIIII BELLEB	►AL/determinants/identities
	►AN/limits/logarithms		►AN/Bessel functions
	►AN/measure theory/integrals		►AN/complex variables/number theory
	►AN/measure theory/probability measures		►AN/exponential function
	►AN/power series/exponential function		, -
	►AN/sequences		► AN/functions ► AN/functions/digit problems
	No. Colombia		► AN/functions/entire functions
	C/arrays		►AN/gamma function
	►C/compositions		►AN/hypergeometric functions
	►C/sets/partitions		►AN/inequalities
	▶G		►AN/limits
	►G/butterfly problem		►AN/Riemann zeta function
	►G/convexity [2]		►NT/Fibonacci and Lucas numbers
	►G/n-dimensional geometry		►NT/Fibonacci numbers
	►G/triangles/relations among parts		►NT /infinite products/identities
	►HA/binary operations		►NT/series [10]
			the state of the s

infinite series	197	5–1979	integral inequalities
	►NT/series/binomial coefficients	inscribed triangl	e
	▶P/independent trials/runs		►G/triangles
	TR	inseparable	NAvW 435
	TR/inequalities/cos	insert	CRUX 26 182 ISMJ 11.8 MM Q642
infinite sets	NT/composite numbers/polynomials		PARAB 327
minine sees	NT/Fibonacci numbers/	instance	AMM 6238 JRM 740 PME 451 SSM 3727
	greatest common divisor	instant	FUNCT 2.1.2 MM 940 OMG 17.3.3 PME 40
	►NT/greatest common divisor	instantaneous	OMG 17.2.6
	NT/sets/density	instrument	PARAB 291
	NT/sets/prime divisors		
	ST/subsets/family of subsets	integer	[1064 references]
: C : 4 1	, , ,		►HA/groups/abelian groups
infinitely	[55 references]		►NT/powers
infinitude	PME 359 SSM 3670		►T/topological groups/homomorphisms [2]
infinity	AMM 6056 E2585 CRUX 442 DELTA 5.2-1	integer coefficien	
	6.1-1 JRM 765 766 NAvW 460 SPECT 7.3		AMM E2554 CANADA 1977/4 CRUX 254
inflection point	MM 1072 NAvW 403		FQ B-309 FUNCT 2.5.4 JRM 589 MSJ 475
	►AN/curves [5]		OMG 16.2.4 OSSMB 78-10 PME 360
influence	NAvW 450 461		PUTNAM 1975/A.4 1976/A.2 TYCMJ 115
information	FUNCT 1.3.7 JRM 536 699 MSJ 437		►AL/polynomials
	PENT 314 USA 1978/3		►AL/theory of equations/inequalities
inhabitant	CRUX 28		►AL/theory of equations/roots
initial value pro			►TR/systems of equations [2]
	►AN/differential equations	integer programi	ming
injections	►NT/polynomials		►AM/operations research/linear programming
injective	AMM 6169	integer roots	►AL/theory of equations
inner product	►LA/matrices/Hermitian matrices		►TR/solution of equations/arctan
	▶P/random vectors/		►TR/solution of equations/sin and cos
	variance-covariance matrices	integer-sided	TYCMJ 64 75
inning	JRM 573	integrable	AMM 6030 6085 6113 6174 E2738 MM Q622
input	JRM 478	Integrable	NAvW 412 SIAM 78-18
inradius	AMM E2632 CRUX 450 MM 1043	integral	[95 references]
TITI GGT GB	OSSMB G78.1-5 PME 410 450	integral	
	►G/inequalities/triangles		►AL/functional equations [2]
	►G/triangle inequalities/interior point		►AN
	►G/triangles/altitudes		►AN/Bessel functions
	►G/triangles/medians		►AN/functions/continuous functions
	►NT/Pythagorean triples		►AN/functions/differentiable functions
inscribe			►AN/functions/monotone functions
	[85 references]		►AN/gamma function
inscribed circle	AMM E2634 CRUX 46 126 144 NAvW 472		►AN/Hankel function [8]
	OSSMB G78.1-5 PME 368 SSM 3695 3766		►AN/hypergeometric functions
	TYCMJ 85		►AN/identities
	G/circles/isosceles right triangles [3]		►AN/Jacobians
	►G/quadrilaterals		►AN/Legendre polynomials
	►G/regular octagons		►AN/limits
	ightharpoonup G/squares [3]		►AN/limits/exponential
	►G/triangles		, -
	►SG/packing problems/spheres		NAN/limits/sequences
inscribed ellipse	CRUX 318		►AN/maxima and minima [2]
inscribed octahe			►AN/maxima and minima/constraints
	►SG/spheres/inscribed polyhedra		►AN/measure theory [2]
inscribed polygo			►AN/series
	►G/regular polygons		►NT/floor function
	►P/geometry/concyclic points [3]		▶P/density functions
inscribed polyhe	edra		▶P/distribution functions/convolutions
	►SG/spheres	integral area	MM 1023
inscribed prisms	5	integral coefficies	nts
•	►SG/spheres/inscribed polyhedra		AMM 6028 E2693 CRUX 30 452 494
inscribed quadri	ilaterals		ISMJ 13.1 MM Q623 PME 397
•	►NT/geometry/semicircles	integral coordina	-
inscribed rectan	, ,	integral coordina	CRUX 495
	►G/analytic geometry/circles	integral divisor	AMM E2753 E2780 FQ B-329 B-356
	►G/circles	111008141 4111501	PUTNAM 1976/B.6
	►G/ellipses/maxima and minima [2]	integral domains	,
inscribed sphere	, , ,	integral delitatils	►HA/rings
mserioca spiicre	►SG/tetrahedra	integral equation	, -
inscribed square	,	integral equation	IS ▶AN
mocrined square		internal income 1:	
	C/geometry/concyclic points	integral inequali	
	G/maxima and minima/isosceles triangles		NAN /P
	►G/maxima and minima/triangles [2]		►AN/Bessel functions [29]
	►G/semicircles		►AN/functions/continuous functions
	►NT/Pythagorean triples [3]	1	►AN/functions/differentiable functions

integral transforms 1975-		5–1979 isosceles	
integral transfo			PUTNAM $1975/A.5$ SIAM $75-16$ $77-4$ $78-7$
	►AN/integrals/functions		SSM 3698 3756 TYCMJ 46
integration	SIAM 79-9		►AN
intercept	CRUX 488 PS1-2 OSSMB G75.2-2 G76.2-2		►G/combinatorial geometry
	SSM 3730 TYCMJ 132	invariant	AMM 6009 6267 FQ H-276
interchange	AMM 6281 E2645 CRUX 273 JRM 736	inventory	JRM 604
	MM 952 995 1034 1086 NAvW 439	inverse	AMM 6026 E2793 CMB P278 CRUX 448
interchanged di	gits		MM 1063 NYSMTJ 67 SIAM 76-3 76-15
	►AL/money problems		78-17
	►NT/digit problems/primes	inverse function	n CRUX 283 SIAM 77-7
interest	FUNCT 2.1.2 JRM 413 MM 1056 PME 343		►AN/functions/differentiable functions
	SIAM 76-16 TYCMJ 104		►AN/integral inequalities/bounds
interest problem		inverse matrice	es LA/matrices/identity matrix
	►AL		▶NT/matrices [2]
interesting	AMM E2630 OSSMB 79-8 SSM 3685	inverse trigono	metric functions
interior	AMM 6038 6047 6098 6260 E2513 E2517	inverse trigono	►TR/identities
interior	E2682 E2716 CANADA 1977/2 CRUX 39	invertible	AMM 6228 6259 E2545 E2762 MM 1040
	155 224 DELTA 5.2-2 6.1-2 ISMJ 13.16	III VEI GIDIE	TYCMJ 139
	JRM 554 MATYC 93 MM 925 927 959	invertible matr	
	960 966 1003 1006 MSJ 422 451 489 494	invertible matr	
	502 NYSMTJ 74 95 OBG3 OMG 16.2.2		►LA/matrices/identity matrix [2]
		invoice	OMG 18.3.9
	OSSMB 75-15 79-14 G77.1-4 PME 405 410	involve	ISMJ 13.21 PUTNAM 1976/A.4 SPECT 11.1
	448 PUTNAM 1976/A.1 1977/A.6 SSM 3660	Ireland	►RM/alphametics/places
	3682 TYCMJ 140	irradiate	AMM E2636
nterior point	►G/circles	irrational	AMM 6024 6161 6188 6233 E2598
	►G/equilateral triangles		CMB P243 CRUX 104 109 186 FQ B-405
	►G/inequalities/rectangles		MM 1048 NAvW 530 551 PARAB 287
	►G/inequalities/triangles		PME 360 414 452 PUTNAM 1977/B.3
	►G/maxima and minima/angles	irrational numl	ber DELTA 6.1-4 FQ B-404 MM 1087
	►G/maxima and minima/triangles		►AL/algorithms
	►G/n-dimensional geometry/simplexes		►AL/radicals [5]
	▶G/polygons		►AN/infinite products
	►G/polygons/convex polygons		►GT/selection games/players select digits
	G/rectangles		NT
	► G/simple closed curves		►NT/floor function/finite sums
	►G/squares		NT/series/infinite series
	►G/triangle inequalities		►NT/series/least common multiple
	►G/triangles		▶NT/sets
	►G/triangles/isosceles triangles		►NT/square roots/sum and difference [2]
	►P/geometry/squares		►T/connected sets/plane sets
	►RM/mazes		►T/sets
intermediate	AMM 6268 JRM 737 SSM 3653		►TR/recurrences/cos
internal	AMM E2538 S23 CRUX 379 423 454 483	irreducible	AMM 6046 6202 E2711 CRUX 91 92 447
	MM 967 998 PME 346 421 TYCMJ 110		PUTNAM 1976/A.4 1979/B.3
internally	IMO $1978/4$ JRM 733 MATYC 93 PME 408	irreducible poly	
v	447		AMM 6046 6258 PUTNAM 1979/B.3
international	IMO 1978/6 USA 1978/5		►AL/polynomials/integer coefficients
interpolation	SIAM 78-2		►HA/fields/polynomials [2]
interpolation	►AL/polynomials		►LA/determinants/complex numbers
	►AN/functions/polynomials		►LA/matrices/characteristic polynomial
intorprot	AMM 6146 JRM 471 MM 1062 NAvW 497	irregular polyg	, , ,
nterpret	SSM 3568 3691	poryg	►G/constructions/rulers
ntownwotation		island	CRUX 400 JRM 392 OMG 15.1.1
nterpretation	JRM 471	isodynamic	NAvW 514
ntersect	[68 references]		
ntersection	AMM 6060 6130 E2634 E2754 E2793 S23	isogonal conjug	
	AUSTRALIA $1979/2$ CANADA $1977/7$		AMM E2793 NAvW 415 436 535
	CRUX 136 145 374 386 436 FQ B-348		►G/locus/triangles
	FUNCT 3.1.3 3.3.4 IMO 1979/3 JRM 538	. , .	►G/triangles
	730 MM 992 NAvW 415 490 501	isolate	AMM 6081 JRM 708
	NYSMTJ 38 43 46 OBG5 OMG 15.3.1	isometry	AMM 6009 6275
	15.3.10 16.2.7 OSSMB G78.2-5 G78.3-4		►T/metric spaces
	G79.1-1 PARAB 412 PENT 312 PME 436		►T/topological vector spaces
	437 SSM 3684 TYCMJ 74 117 119	isomorphic	AMM 6037 6099 6116 6275 CMB P252 P253
	USA $1976/2$	_	JRM 479 NAvW 459 495 527
	►AN/curves/unit square	isomorphic gra	phs
	►G/analytic geometry/lines		►C/graph theory
	►P/inequalities	isomorphism	AMM 6043
	►ST/subsets/family of subsets [5]	1	►HA/groups/group presentations
interval	AMM 6038 6050 6080 6161 6184 6188 6242		► HA/rings/Boolean rings
110C1 val	E2551 E2561 E2700 E2733 CMB P278		T/metric spaces/isometries
		isosceles	CRUX 33 141 181 271 330 363 476 JRM 370
	P279 P280 CRUX 48 59 283 347 JRM 586	isosceies	
	708 713 786 MATYC 122 NAvW 446		706 OMG 17.3.7 PENT 308 PME 416 SSM 3649 3700
	452 458 493 PARAB 272 284 PME 429		

isosceles right triangles G(c) G(c	0 PENT 286 arrays 1 446 475 541 597 13 356 420 427 JNCT 2.2.3 2.2 PARAB 420
► G/circles	0 PENT 286 arrays 1 446 475 541 597 13 356 420 427 JNCT 2.2.3 2.2 PARAB 420
G/constructions/triangles 2	Arrays 1 446 475 541 597 13 356 420 427 JNCT 2.2.3 2.2 PARAB 420
G/dissection problems Keg Kernel AMM 6145	Arrays 1 446 475 541 597 13 356 420 427 JNCT 2.2.3 2.2 PARAB 420
Scaceles trapezoid CRUX 394 Exemple SSM 3690 SSM 3690 C/configurations/circular SSM 3690 SSM 76 SSM 3690 SSM 3600 SSM 3600 SSM 3600 SSM 3600	Arrays 1 446 475 541 597 13 356 420 427 JNCT 2.2.3 2.2 PARAB 420
isosceles trapezoid CRUX 394 isosceles triangle AMM E2584 E2802 CRUX 134 144 175 200 263 633 376 ISM1 12.32 J11.17 MSJ 434 456 NYSMTJ 48 85 OSSMB 79-5 PENT 284 SSM 393 3700 3703 3733 3767 TYCMJ 131 PG/analytic geometry/Euclidean geometry PG/dissection problems/equilateral triangles PG/dissection problems/equilateral triangles PG/driangles/erceted figures PG/triangles/counting problems PG/gramalytic geometry/triangles PG/triangles/counting problems PG/gramalytic geometry/triangles PG/triangles/counting problems PF/geometry/triangles/counting problems PF/geometry/triangles/counting problems PF/geometry/triangles/counting problems PF/geometry/triangles [2] PSG/complexes NNT/triangles/counting problems PF/geometry/triangles [2] PSG/complexes NAW 415 436 460 Item CRUX 297 Iterate AMM 6133 6260 E2808 MM 993 1069 NAWW 499 Iterated functions PAL AL/functional equations/1 parameter PAL/inequalities PAN/functions/differentiable functions PAN/series PAN/series PAN/series/differentiable functions PAN/series PAN/series/differentiable functions PNT/mmber of divisors Iterated logarithms PAN/series/logarithms SSM 3690 PC/configurations/circular JRM 536 PENT 309 RM/fchess tours/circuits Ringdom Ritingdom	Arrays 1 446 475 541 597 13 356 420 427 JNCT 2.2.3 2.2 PARAB 420
Sesseeles triangle	Arrays 1 446 475 541 597 13 356 420 427 JNCT 2.2.3 2.2 PARAB 420
> C/configurations/circular JRM 536 NYSMT J4 85 OSSM 593 3700 3703 3733 376 TYCMJ 131	JNCT 2.2.3 2.2 PARAB 420
456 NYSMT1 48 85 OSSMB 79.5 PENT 284 SSM 3693 3700 3703 3733 3736 TYCMJ 131	JNCT 2.2.3 2.2 PARAB 420
SSM 3693 3700 3703 3733 3767 TYCMJ 131	JNCT 2.2.3 2.2 PARAB 420
Ganalytic geometry/Euclidean geometry G/dissection problems/equilateral triangles G/dissection problems/equilateral triangles G/quilateral triangles FUNCT 1.3.3 PRM 438 33 RM/dchess tours / G/UX 208 RM/ CRUX 208 Knife CRUX 208 Knife CRUX 207 MAW 415 436 460 MAW 415 436 460 MAW 436 446 MAW 436 436 460 MAW 436 460 MAW 436 460 MAW 436 460 MAW 436	JNCT 2.2.3 2.2 PARAB 420
G/dissection problems/equilateral triangles G/dissection problems/triangles G/dissection problems/triangles G/dissection problems/triangles G/dissection problems/triangles G/dissection problems/triangles G/dissection problems/ed/dispersor G/maxima and minima G/triangles G/disagnes	JNCT 2.2.3 2.2 PARAB 420
G/dissection problems/triangles G/qualteral triangles G/quaxima and minima G/quaxima G	2.2 PARAB 420
G/equilateral triangles G/maxima and minima Kite CRUX PS7-2	2.2 PARAB 420
CG/maxima and minima CRWA F97-2	2.2 PARAB 420
►G/triangles 2 ►G/triangles/erected figures ►NT/triangles NT/triangles ►NT/triangles NT/triangles ►NT/triangles NT/triangles ►NT/triangles NT/triangles NT/triangles ►NT/triangles ►NT/triangles NT/triangles ►NT/triangles NT/triangles ►NT/triangles	2.2 PARAB 420
NT/triangles / counting problems	2.2 PARAB 420
NT/triangles NT/triangles/counting problems P/geometry/triangles [2] SG/complexes isotropic issue AMM E2538 ISMJ 12.4 JRM C4 PME 351 italic AMM 6146 italic AMM 6146 item CRUX 297 iterate AMM 6133 6260 E2808 MM 993 1069 NAvW 499 iterated functions AL AL/functional equations/1 parameter PAL/inequalities NAN/functions/Ontinuous functions [2] NAN/functions/AN/secries/differentiable functions NT/Roor function NT/Roor function NT/Roor function NT/Sum of divisors iterated logarithms NAN/series NT/senigalations/1 NT/sum of divisors iterated logarithms NAN/series NT/senigalations/1 NT/sum of divisors iterated logarithms NAN/series NT/senigalations/1 NT/sum of divisors iterated logarithms NAN/series NT/senigalations/1 NAN/series NT/senigalations/1 NAN/series NT/senigalations/1 NAN/series NT/senigalations/1 NT/sum of divisors iterated logarithms NAN/series NT/senigalations/1 NT/sum of divisors iterated logarithms NT/senigalations/1 NRM 375 300 650 MS 144 Nnockout Nnock	
NT/triangles/counting problems	
P/geometry/triangles [2]	
SG/complexes NAWW 415 436 460 issue AMM E2538 ISMJ 12.4 JRM C4 PME 351 iterate AMM 6146 CRUX 297 iterate AMM 6133 6260 E2808 MM 993 1069 NAWW 499 iterated functions AAL AL/functional equations/1 parameter AL/inequalities AN/functions AN/functions/continuous functions AN/functions/continuous functions AN/sequences/recurrences AN/series AN/seri	probability
isotropic issue AMM 2538 ISMJ 12.4 JRM C4 PME 351 italic AMM 61258 ISMJ 12.4 JRM C4 PME 351 italic AMM 6133 6260 E2808 MM 993 1069	probability
issue AMM E2538 ISMJ 12.4 JRM C4 PME 351 AMM 6146 CRUX 297 AMM 6133 6260 E2808 MM 993 1069 NAWW 499 iterated functions AL AL/solution of equations/1 parameter AL/inequalities AN/functions/differentiable functions AN/sequences/recurrences AN/series/differentiable functions AN/series/differentiable functions NT/floor function NT/number of divisors [3] NT/floor functions AN/series/logarithms AN/series	
italic item CRUX 297 iterate AMM 6133 6260 E2808 MM 993 1069 NAVW 499 iterated functions AL AL/functional equations/1 parameter AL/inequalities AN/functions/continuous functions AN/functions/continuous functions AN/series/liferentiable functions AN/series AN/serie	
iterate	
NAvW 499 iterated functions	
Lagrange interpolation Lagrange interpola	
► AL AL/functional equations/1 parameter AL/inequalities AN/functions AN/functions/differentiable functions AN/sequences/recurrences AN/series AN/series AN/series AN/series AN/series AN/sum of divisors iterated logarithms ► AN/series NT/series/logarithms iterative SSM 3690 Jacobi symbols Jacobian AMM 6068 Jacobson radical Jacobson	leterminants
►AL/functional equations/1 parameter ►AL/inequalities ►AN/functions	2732
AL/inequalities AN/functions AN/functions/continuous functions [2] AN/functions/differentiable functions AN/sequences/recurrences AN/series AN/series/differentiable functions NT/floor function NT/sum of divisors [3] AN/series NT/series/logarithms Errated logarithms SSM 3690 JRM 601 PARAB 427 Jacobian DAN Jacobson radical jailer FUNCT 1.3.7 PENT 286 PAM/alphametics/names FYCMJ 119 labeled boxes RM/logic puzzles labeled lattice points [3] CRUX 122 JRM 77-15 JRM 530 CRUX 122 JRM 793 PME AL/finite sums/fractions Lagrange interpolation AL/finite sums/fractions La	
AN/functions AN/functions/continuous functions [2] AN/functions/differentiable functions AN/sequences/recurrences AN/series AN/series AN/serie	5 SPECT 11.3
AN/functions/continuous functions [2] AN/functions/differentiable functions AN/sequences/recurrences AN/series AN/series AN/series/differentiable functions NT/floor function NT/number of divisors [3] AN/series iterated logarithms AN/series NT/series/logarithms iterative jacks JRM 601 PARAB 427 Jacobian ANM 6068 FUNCT 1.3.7 PENT 286 AN/series ANM differential equations AN/series An/seri	
► AN/functions/differentiable functions	
AN/sequences/recurrences AN/series AN/series/differentiable functions NT/floor function NT/number of divisors [3] NT/sum of divisors iterated logarithms AN/series AN/series NT/series/logarithms AN/series NT/series/logarithms AN/series NT/series/logarithms Iterative SSM 3690 JRM 697 Lagrange interpolation AL/finite sums/fractions lake CRUX 193 JRM 376 lamb OMG 17.1.9 land JRM 387 500 650 MSJ 445 SPECT 8.2 Jacobi symbols Jacobi symbols NT/quadratic reciprocity [2] Jacobson radical AMM 6068 FUNCT 1.3.7 PENT 286 Jeeves RM/alphametics/names JRM 379 Iabeling JRM 528 SIAM 77-15 Iabor CRUX 122 JRM 793 PME CRUX 193 JRM 697 Lagrange interpolation NAL/finite sums/fractions Iake CRUX 193 JRM 376 Iamb OMG 17.1.9 Iand-locked JRM 387 500 650 MSJ 445 SPECT 8.2 Iand-locked JRM 376 CRUX 356 Ianguage NAvW 391 PARAB 341 US ST/symbolic logic Laplace transform AN Jeeves RM/alphametics/names JRM 379	
AN/series AN/series/differentiable functions NT/floor function NT/number of divisors [3] NT/sum of divisors iterated logarithms AN/series NT/series/logarithms AN/series NT/series/logarithms AN/series NT/series/logarithms AN/series NT/series/logarithms Iake CRUX 193 JRM 376 Iamb OMG 17.1.9 Iand JRM 387 500 650 MSJ 445 SSM 3690 SPECT 8.2 Jacobi symbols NT/quadratic reciprocity [2] Jacobi symbols NT/quadratic reciprocity [2] Jacobian AN Jacobson radical JAM 6068 ST/symbolic logic Laplace transform Jeeves RM/alphametics/names JRM 379 Iabor CRUX 122 JRM 793 PME CRUX 193 JRM 697 Lagrange interpolation AL/finite sums/fractions Iake CRUX 193 JRM 376 Lagrange interpolation Alfinite sums/fractions Iake CRUX 193 JRM 376 Landmark CRUX 356 Ianguage NAvW 391 PARAB 341 US ST/symbolic logic Laplace transform AN Laplacian AN AN/differential equations	
AN/series AN/series/differentiable functions NT/floor function NT/number of divisors [3] NT/sum of divisors iterated logarithms AN/series NT/series/logarithms NT/series/logarithms iterative SSM 3690 Jacobi symbols NT/quadratic reciprocity [2] Jacobson radical jailer FUNCT 1.3.7 PENT 286 JRM 379 Iadder CRUX 122 JRM 793 PME A GRUX 122 JRM 793 PME CRUX 122 JRM 793 PME A GRUX 122 JRM 793 PME CRUX 122 JRM 793 PME A GRUX 122 JRM 793 PME A Lagrange interpolation AL/finite sums/fractions Iade CRUX 193 JRM 376 Lagrange interpolation AL/finite sums/fractions AL/finite sums/fractions Iade CRUX 193 JRM 376 Lagrange interpolation AL/finite sums/fractions Iade CRUX 193 JRM 376 Lagrange interpolation AL/finite sums/fractions	
►AN/series/differentiable functions ►NT/floor function ►NT/number of divisors [3] ►NT/sum of divisors iterated logarithms ►AN/series ►NT/series/logarithms iterative SSM 3690 jacks JRM 601 PARAB 427 Jacobian ►AN Jacobson radical JAMM 6068 FUNCT 1.3.7 PENT 286 JRM 379 Lagrange interpolation ►AL/finite sums/fractions lake CRUX 193 JRM 376 Lagrange interpolation ►AL/finite sums/fractions lake CRUX 193 JRM 376 lamb OMG 17.1.9 land JRM 387 500 650 MSJ 445 SPECT 8.2 JRM 376 land-locked JRM 376 landmark CRUX 356 landmark CRUX 356 landmark CRUX 356 Laplace transform ►AN Jeeves ►RM/alphametics/names jester JRM 379 Laplacian ►AN/differential equations	413
NT/number of divisors [3] NT/sum of divisors iterated logarithms NT/series/logarithms NT/series/logarithms NT/series/logarithms iterative SSM 3690 Jacobi symbols Jacobi symbols Jacobson radical Jacob	
NT/sum of divisors iterated logarithms AN/series NT/series/logarithms iterative SSM 3690 Jacobian NT/quadratic reciprocity [2] Jacobian Jacobson radical jailer FUNCT 1.3.7 PENT 286 JRM 379 Laplacian NAV/differential equations	
iterated logarithms AN/series NT/series/logarithms iterative SSM 3690 jacks JRM 601 PARAB 427 Jacobian NAV Jacobson radical jailer FUNCT 1.3.7 PENT 286 JRM 379 Laplacian ANN ANN ANN Laplacian	
►AN/series ►NT/series/logarithms iterative jacks JRM 601 PARAB 427 Jacobian Jacobson radical jailer FUNCT 1.3.7 PENT 286 Jewes JRM 379 ►AN Laplacian ►AN Laplacian ■AN/differential equations	
NT/series/logarithms iterative jacks jacks JRM 601 PARAB 427 Jacobi symbols Jacobian Jacobson radical jailer Jeeves Jews JRM 379 Iand JRM 387 500 650 MSJ 448 SPECT 8.2 JRM 376 Landmark CRUX 356 Iandmark CRUX 356 Ianguage NAvW 391 PARAB 341 US ST/symbolic logic Laplace transform AN Laplacian AN Laplacian AN/differential equations	
iterative SSM 3690 SPECT 8.2 jacks JRM 601 PARAB 427 land-locked JRM 376 Jacobian NAVW 391 PARAB 341 US Jacobson radical jailer FUNCT 1.3.7 PENT 286 Jeeves PRM/alphametics/names JRM 379 SPECT 8.2 land-locked JRM 376 Landmark CRUX 356 language NAvW 391 PARAB 341 US ST/symbolic logic Laplace transform AN Laplacian NAVM 379	OMC 1400
jacks JRM 601 PARAB 427 Jacobi symbols NT/quadratic reciprocity [2] land-locked landmark CRUX 356 Jacobian NAVW 391 PARAB 341 US Jacobson radical jailer FUNCT 1.3.7 PENT 286 Jeeves NAM Alphametics/names JRM 379 Laplacian NAVW 391 PARAB 341 US ST/symbolic logic Laplace transform AN Laplacian NAVW 391 PARAB 341 US ST/symbolic logic Laplace transform AN AN AN AN AN AN AN AN AN A	OMG 14.2.2
Jacobi symbols NT/quadratic reciprocity [2] landmark CRUX 356 Jacobian NAvW 391 PARAB 341 US Jacobson radical jailer FUNCT 1.3.7 PENT 286 ST/symbolic logic Jeeves NRM/alphametics/names NAvW 391 PARAB 341 US Jeeves NAVW 391 PARAB 341 US Laplace transform NAV Laplacian NAV/differential equations	
Jacobian►ANlanguageNAvW 391 PARAB 341 USJacobson radical jailerFUNCT 1.3.7 PENT 286►ST/symbolic logicJeeves►RM/alphametics/namesLaplace transformjesterJRM 379Laplacian►AN / Alphametical equations	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Δ 1978/5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A 1010/0
Jeeves JRM/alphametics/names jester JRM 379 Laplacian →AN →AN/differential equations	
jester JRM 379 Laplacian ▶AN/differential equations	
jetty JRM 392 largest summand	
job JRM 444 562 OMG 18.2.3 ▶NT/partitions/number of	summands [2]
iog CRIX 356 late OMG 18.3.3	
ioint distribution lateral KURSCHAK 1979/1	
►P/random variables/sum and difference [2] Latin crosses ►RM/polyominoes/tiling	
joke SSM 3694 Latin rectangle ►C/arrays	
joker JRM 462 770a Latin square latitude JRM 504 PARAB 305 PMI	
Jordan form LA/linear transformations/eigenvalues latter JRM 379 682	. 545
►LA/matrices/adjoints [6] lattice AMM 6032 6172 6179 E27	343
Josephus problem MM 1083	
►C ►HA	
journey MSJ 432 NAvW 450 OMG 17.2.4 17.2.6 ►LA	
jug NYSMTJ 96 SSM 3645 lattice point AMM 6179 6192 E2570 E2	
jukebox	00 JRM 480 557
►C/counting problems MSJ 419 OMG 15.1.2 OSS	00 JRM 480 557 653 E2759
jump AUSTRALIA 1979/3 CRUX 71 IMO 1979/6 PARAB 392 398 PME 456	00 JRM 480 557 653 E2759 M 927 1083 MB 77-2
MM 952 ► AN/derivatives/inequalities	00 JRM 480 557 653 E2759 M 927 1083 MB 77-2 TYCMJ 53 129
jury decision FUNCT 3.1.1 ▶C	00 JRM 480 557 653 E2759 M 927 1083 MB 77-2 TYCMJ 53 129
▶P	00 JRM 480 557 653 E2759 M 927 1083 MB 77-2 TYCMJ 53 129 s

lattice point	1975-	-1979	line graphs
	▶G [2]	lim inf and lim	ı sup
	►G/family of lines		►NT/sequences/monotone sequences
	►G/maxima and minima/shortest paths		►NT/sets/triples
	►NT/divisibility/geometry [4]	limerick	CRUX 215
	►NT/geometry		►RM/cryptarithms/encrypted messages
	►P/geometry/discs	limit	AMM 6062 6096 6133 6167 6209 E2585
latura maatuum	SG OCCMP C79 2 4		E2692 E2721 E2807 CMB P264 P280
latus rectum launch	OSSMB G78.3-4 ►RM/alphametics/phrases		CRUX 130 194 258 273 FQ H-303 NAvW 434
Laurent polynor			542 OSSMB 78-9 G76.3-6 PME 430
Laurent polynor	►HA/rings/polynomials [3]		SPECT 7.3 TYCMJ 111
Laurent series	►AN		►AN
law	AMM 6238 CMB P249 CRUX 16		►AN/Bessel functions/infinite series
	FUNCT 2.5.2 MM 961 PARAB 329		►AN/Bessel functions/integrals
law of formation			►AN/functions/real-valued functions
	►NT/sequences		►AN/gamma function/integrals
	►NT/series/factorials		►AN/integrals
leader	AMM E2638 MM 1024		►AN/integrals/improper integrals
leading digits	NT/digit problems [6]		►AN/integrals/multiple integrals
	NT/digit problems/squares		► AN/location of zeros
	►NT/Pythagorean triples/digit problems ►NT/twin primes/digit problems		►AN/nocation of zeros ►AN/maxima and minima [9]
league	MM 1024 SSM 3617		,
	►AL/sports		► AN/sequences/monotone sequences
leak	OSSMB G79.1-1		► AN/sequences/recurrences
lean	CRUX 122 PME 413		►AN/series/pairs of series
leap	FUNCT 3.1.4 JRM 419		►C/graph theory/trees
least common m	nultiple		►G/projective geometry/quartics
	▶NT		►G/rectangles/squares
	►NT/geometry/lattice points [4]		►G/regular polygons
	►NT/series		►G/squares
* 1	►NT/series/infinite series		►LA/eigenvalues
Lebesgue measu			►LA/matrices/spectral radius [2]
	►AN/intervals/inequalities ►AN/measure theory/Borel sets [2]		►LA/matrices/stochastic matrices
Lebesgue outer			►LA/vector spaces/systems of equations [2]
Lebesgue outer	►AN/maxima and minima/integrals		NT
	►AN/measure theory		
left-continuous	AMM 6142		►NT/base systems
left-distributive	TYCMJ 43 81		►NT/digit problems/sum of digits
left-hand	FUNCT 1.1.4 1.2.5 2.2.3 OSSMB 79-2		►NT/Diophantine equations/degree 2 [5]
	PARAB 327 TYCMJ 145		►NT/factorizations/maxima and minima
leg	CRUX 333 428 ISMJ 10.17 J11.6 JRM 527		►NT/Fibonacci numbers/recurrences
	706 PARAB 400 PENT 298 PME 390 461		►NT/means/consecutive integers
T J l	SSM 3633 3733 3771 TYCMJ 61		►NT/number of divisors
Legendre polyno			►NT/number of divisors/factorials
Legendre symbo	►AN		►NT/number of divisors/iterated functions
Legendre symbo	▶NT		►NT/permutations/derangements
legitimate	JRM 703		►NT/recurrences
Lemoine point	►G/triangles/altitudes		►NT/recurrences/
length 2	▶P/coin tossing/runs		generalized Fibonacci sequences
length 3	▶P/coin tossing/runs		►NT/recurrences/second order [2]
letter	AMM 6146 CRUX 164 238 239 324 401		►NT/sequences
	433 FUNCT 3.4.3 JRM 374 392 431 469		►NT/sequences/rational numbers
	704 740 751 755 KURSCHAK 1979/3		, - ,
	MENEMUI 1.1.3 NYSMTJ 70 OSSMB 77-8		►NT/series [3]
	77-15 G79.1-6 PARAB 306 341 PENT 297		►P/arrays/circular arrays
	SIAM 78-3 SSM 3593 3607 3618 3622 3650		▶P/geometry/point spacing
	3691 3739 3780		▶P/random variables
liars and truthte	►RM/alphametics		▶P/selection problems [2]
nars and traine	►RM/logic puzzles [2]		►RM/chessboard problems/counting problems
library	OSSMB 76-11		►T/surfaces/triangulations [2]
lie	[69 references]	limit distributi	ion AMM 6031
Lie algebras	►HA/category theory	limit point	JRM 622
life	CRUX 117		►AN/functions/continuous functions
lifejacket	JRM 513		►NT/Euler totient/solution of equations
light	AMM 6224 S17 CRUX 289 JRM 448 530 730		NT/Gaussian integers/powers
	MENEMUI 1.3.2 MM 1003 1056 PARAB 304	limiting distrib	, , , ,
1: 1 / :	310	mining distric	►P/random variables/characteristic functions
lightning	JRM 659	limiting figures	
likelihood	JRM 441		
lim inf	►NT/maxima and minima/coprime integers	line graphs	►C/graph theory/isomorphic graphs

line segments	1975-	-1979	machin
line segments	►C/coloring problems/points in plane	location of zero	os
	►G/circles		►AN
	►G/constructions	lock	CRUX 387 ISMJ 11.18 13.22 JRM 499
	►G/dissection problems		PENT 286 SPECT 9.2
	►G/locus/circles	locker	ISMJ 11.18 SPECT 9.2
	►G/maxima and minima [41]	locking boxes	►P/game theory/selection games
	►G/simple closed curves/interior point	locks and keys	►C/configurations/maxima and minima
	▶G/squares	locomotive	PARAB 275
	►G/triangles	locus	AMM S2 CANADA $1976/4$ CMB P277
	▶SG/lines		CRUX 177 370 450 479 IMO 1978/2
line through for			JRM 701 MENEMUI 1.2.1 NAvW 414 415
	▶G/parabolas		436 504 535 547 OSSMB G75.1-4 G75.3-3
linear	AMM 6009 6029 6051 6071 6078 6093		G76.1-1 G76.1-2 G76.3-4 G77.2-6 G78.1-4
iiiicai	6103 6203 6264 6277 E2712 E2774 S22		PME 436 SPECT 7.7 SSM 3788 USA 1976/2
	CMB P272 FQ B-329 B-411 JRM 386		►AM/physics/force fields
	MATYC 85 MM 952 1022 NAvW 395 471		▶G
	497 549 PUTNAM 1979/B.4 SIAM 76-7 77-4		►G/analytic geometry
	TYCMJ 46		►G/non-Euclidean geometry
	►AL/solution of equations		►G/projective geometry
	► AN/differential equations/first order		►G/rolling/discs
	►NT/difference equations [3]		▶SG
	►NT/Diophantine equations	logarithm	CRUX 332 JRM 739 MM 1032
	►NT/divisibility/polynomials		►AL
	►NT/recurrences/first order		►AL/inequalities
	N1/recurrences/first order NT/recurrences/third order		►AL/solution of equations
1:	, ,		►AL/systems of equations
linear combinat			►AL/theory of equations/roots
	►P/Student's t-distribution/		►AN/derivatives/higher derivatives
1:	density functions [8]		►AN/functions/monotone functions
linear forms	▶P/random variables/limits		►AN/integrals/evaluations
linear independ			►AN/integrals/trigonometry
	►AN/functions		►AN/limits
linear programi			►AN/limits/binomial coefficients
1. 1	►AM/operations research		►AN/limits/floor function
	s ►T/locally convex spaces		►AN/series/evaluations
linear system	AMM 6215		►AN/series/integrals
linear transform			►NT/inequalities
	►LA		►NT/Riemann zeta function/coprime integers
linearly	AMM 6253 CMB P243 MM 1087		►NT/series
	PUTNAM 1975/A.5 SIAM 75-14		►NT/series/digit problems
lines	►G/analytic geometry		►NT/series/floor function
	►G/analytic geometry/conics		►TR/infinite series/cos
	►G/constructions	logarithmic	MM 1032 SIAM 76-16
	►G/constructions/circles	logarithmic dist	
	►G/constructions/rusty compass [3]	0	▶P/digit problems/base systems
	►G/lattice points/counting problems	logic	AMM 6272
	►G/locus	logic puzzles	▶RM [2]
	►G/parallelograms	loop	CRUX 325 MATYC 109 NAvW 459 495
	►G/points in plane/partitions	1004	►HA
	►G/squares [6]	loose	JRM 444
	►G/triangles	lose	JRM 533 587 658 682 OSSMB 79-15
	▶sg	1000	PME 350 388
	►SG/maxima and minima	loser	JRM 501 PME 350 388 SPECT 7.4
lines in plane	►G/combinatorial geometry	loss	CANADA 1976/3 JRM 715 PARAB 323
link	JRM 531 PARAB 267	1000	SIAM 75-21
linkage	►G/locus	lost	AMM 6163 CRUX 446 MM 1024 PME 350
liquid	ISMJ 10.15 OMG 17.3.1	lottery	
nquiu	AL/measuring problems		CRUX 195
livo	, 01	low	JRM 573 PME 413
live	CANADA 1977/7 JRM 393 643 655 OMG 16.2.7 PARAB 309 PENT 309	lowest terms	NT/continued fractions/convergents
looded die-			NT/fractions
loaded dice	JRM 588	11	NT/rational expressions
1 1 1	►P/dice problems	loxodrome	AMM 6087
loaded pistol	SPECT 7.5	, , , , , , , , , , , , , , , , , , ,	►SG/space curves
loading	JRM 588	Lucas number	►NT [3]
local	AMM 6029 6071 6163 6274 E2806	, ,	NT/number representations
	NAvW 471 554 OMG 18.1.1 18.2.3 18.2.4	luck	MM 943
locally convex s		lucky	MM Q619 SSM 3568
_	►T	lunch	CRUX 263 OMG 18.2.3 PENT 313
locate	CRUX 338 ISMJ J10.4 MSJ 447 PME 405		►C/configurations/people
	PUTNAM 1975/A.6 1976/A.1 1977/B.2	lying	AMM E2593 E2617 E2639 CRUX 386
	SIAM $76-7$ SSM 3624 TYCMJ 140		PARAB 296 328 PME 374 398
location	AMM E2665 CRUX 224 JRM 534 757		PUTNAM 1975/B.2 SSM 3744
location			

Maclaurin serie	s 1975	5–1979	maxima and minima
Maclaurin serie		mating	▶P/biology
	►AN	matrix	[105 references]
	►NT/Fibonacci numbers/generating functions		►AM/physics/
Madachy	►RM/alphametics/names		systems of differential equations [2] ►C/algorithms
magazine	JRM 703 SSM 3694		►HA/groups
magic	CRUX 145 359 399 JRM 385 563 569 PENT 319 PME 364 SSM 3629 3632		►HA/groups/transformations [2]
magic configura			►HA/rings
magic comigura	▶RM		►LA
magic pentagra			►NT [2]
	►RM/magic configurations		NT/digit problems
magic square	CRUX 359 399 482 ISMJ 14.23 JRM 524		►NT/Pythagorean triples/generators ►P/number theory/divisibility [5]
	MSJ 430 PARAB 301 PENT 319 PME 364	matrix equation	
	SSM 3629	matrix equation	►LA
idan	►RM/magic configurations MSJ 432	matrix sequen	nces
maiden mail	►P/conditional probability		►LA
main	AMM E2528 E2552 CRUX 399 JRM 508 537	maxima and r	
mam	MM 1038 1086 PARAB 319		MM 1072 SIAM 79-14 ►AL
major	OSSMB 75-5 PME 438 SSM 3584		►AL/calendar problems/calendar cycles
major axis	OSSMB G78.3-3 G79.2-8 G79.3-4		► AL/rate problems/rivers
majority	FUNCT 3.1.1 JRM 423		►AL/sports/football
male	AMM E2636 FQ B-304 MSJ 431		►AN
	OSSMB 78-3		►AN/derivatives
manager	OMG 18.2.3		►AN/inequalities/exponentials [11]
maneuver	PARAB 266		AN/rate problems
manipulation	PENT 285		► AN/series/closed form expressions ► AM/navigation/circular motion
map	AMM 6040 6047 6051 6071 6078 6091 6182		► AM/physics/temperature
	6215 6236 6250 E2647 E2712 S8 CMB P257 ISMJ 12.20 12.21 JRM 554 NAvW 503		C/algorithms
	USA 1978/2		►C/algorithms/matrices
map problems	►C/graph theory [2]		►C/arrays
T P	►G		►C/configurations
	►G/n-dimensional geometry/4-space		C/configurations/digital displays
mapping	AMM 6047 6188 6225 6267 CMB P272 P280		►C/geometry/points in plane ►C/geometry/points in space
	FQ H-292 NAvW 549 PUTNAM $1978/A.4$		C/graph theory
	►G/lattice points		C/graph theory/trees
1.1	ST		►C/paths
marble	AMM E2612 FUNCT 2.4.4 JRM 623 OMG 18.2.7		►C/sets/cardinality
marching	SIAM 75-2		►C/sorting ►C/tournaments
marginals	AMM 6115		C/tower of Hanoi
	►P/distribution functions		►GT/bridge
mark	CRUX 175 409 FUNCT 1.3.7 2.3.1 2.5.1		►GT/chess problems
	ISMJ 14.24 J10.2 JRM 501 508 572 MSJ 487		►GT/yes or no questions [2]
	NAvW 405 PARAB 335 PME 341 387		▶G
	TYCMJ 89		►G/analytic geometry/circles
marked card	C/cards/arrays		►G/analytic geometry/folium of Descartes ►G/analytic geometry/triangles
marry	JRM 699 OSSMB 78-3 PARAB 356 PME 449		►G/circles/area
mass	ISMJ 10.15 MATYC 127 NAvW 393 403 437		G/circles/chords
IIIGOS	450 461		►G/circles/interior point
master	MM 1084		►G/combinatorial geometry/polygons [2]
Mastermind	▶GT		G/constructions/chords
match	FUNCT 2.3.3 JRM 511 593 601 621 715 769		► G/constructions/circles
	MENEMUI 1.1.3 NAvW 527 OMG 18.2.6		►G/constructions/rulers ►G/constructions/triangles
	PME 355 407 SSM 3617		G/convexity/points of symmetry [2]
matching probl			G/dissection problems/triangles
mate	►P/dice problems JRM 621		►G/ellipses
math	►RM/alphametics/phrases		►G/hexagons/circumscribed decagon
	►RM/alphametics/words		►G/lattice points ►C/logg/triangles [7]
mathematically	, - ,		►G/locus/triangles [7] ►G/n-dimensional geometry/convexity
mathematician	AMM 6264 CRUX 414 JRM 699 759		► G/n-dimensional geometry/convexity
	MATYC 123 MSJ 437 USA 1978/5		► G/n-dimensional geometry/simplexes
	►C/configurations/people		G/parabolas/chords
mathematics	CRUX 95 215 361 371 431 ISMJ 14.11		►G/points in plane/circles
	MM 1056 MSJ 483 487 OMG 18.3.2		►G/point spacing/distance
	PARAB 335 PENT 311		G/quadrilaterals [2]
mathematics pr			► G/quadrilaterals/triangles ► C/regular polygons/insgribed polygons [4]
	CRUX 452	1	►G/regular polygons/inscribed polygons [4]

Keyword Index 1975-1979 maxima and minima meteorology ►G/right triangles/incircle ▶SG/tetrahedra ►G/simple closed curves ▶TR/solution of equations/sin and cos ▶G/triangles/circumcircles ►TR/triangles ►G/triangles/ellipses [3] maximal extension ►G/triangles/inscribed circles ►HA/fields/extension fields ightharpoonup G/triangles/interior pointmaximal subgroup ▶G/triangles/medians ►HA/groups/subgroups [4] ►G/triangles/special triangles maximized **FUNCT 3.5.2 TYCMJ 86** ►HA/binary operations **AMM** 6163 **OMG** 14.3.1 $_{\mathrm{maze}}$ ►HA/groups/permutation groups ►LA/matrices **AMM** 6257 meager set ►LA/matrices/0-1 matrices [4] ►T/function spaces/first category ►LA/matrices/Hermitian matrices mean proportional \triangleright NT ▶G/circles/2 circles ►NT/arithmetic progressions ▶G/circles/tangents ►NT/arithmetic progressions/primes ►G/right triangles ►NT/arrays/nxn arrays mean value theorem ►NT/base systems
►NT/base systems/squares ► AN/derivatives/higher derivatives [2] ► AN/functions/continuous functions ►NT/binomial coefficients [5] ►AN/functions/differentiable functions [2] ►NT/composed operations/factorial-floor-root means ► AL ►NT/digit problems \triangleright NT ►NT/digit problems/pandigital numbers **AMM** 6281 meant ►NT/digit problems/squares measurability **AMM** 6120 ►NT/Diophantine equations/exponential measurableAMM 6172 CMB P256 NAvW 443►NT/divisibility/polynomials [11] measurable function ►NT/divisibility/triangular numbers **NAvW** 443 ►NT/equations/2 variables measure AMM 6073 6140 6143 6218 6231 6242 ►NT/factorizations CMB P256 P269 P279 CRUX 141 175 \blacktriangleright NT/Fibonacci numbers/algorithms 255 260 394 FUNCT 3.5.2 JRM 445 684 ►NT/floor function MATYC 99 MM 1056 MSJ 464 NAvW 443►NT fractional parts 558 NYSMTJ 85 PENT 317 SIAM 78-1 ►NT/geometry/rectangular parallelepipeds SSM 3715 3722 3786 ►NT/inequalities/logarithms measure theory ►AN ►NT/inequalities/simultaneous inequalities ightharpoonup AN/functions/digit problems►NT/limits ►AN/sets/plane sets measure zero ►NT /limits/coprime integers **AMM** E2668 **ISMJ** 14.18 **JRM** 500 measured ►NT/matrices/inverse matrices **CRUX** 495 **PARAB** 265 297 measurement ►NT/modular arithmetic/sum of squares MM 1056 PARAB 399 measuring ►NT/partitions [3] measuring problems ►NT/permutations/order ightharpoonup NT/primes/recurrencesmedal ►RM/alphametics/phrases [11] ►NT/Pythagorean triples/area **AMM** E2538 **CMB** P244 **CRUX** 56 144 median ►NT/Pythagorean triples/counting problems 218 278 309 383 423 **ISMJ** 12.6 12.14 ►NT/Pythagorean triples/inscribed squares MATYC 99 MM 936 1054 Q638 MSJ 458 ►NT/repdigits/factorizations [2] 480 **NYSMTJ** 47 **PME** 341 351 421 448 ►NT/repunits **SIAM** 79-19 **SSM** 3733 **TYCMJ** 143 ►NT/sequences/finite sequences $ightharpoonup \mathrm{G/constructions/triangles}$ ►NT/sequences/monotone sequences ▶G/triangles ►NT/sequences/sum of consecutive terms [2] ►G/triangles/30 degree angle ightharpoonup NT/series/unit fractions►G/triangles/angle bisectors ►NT/sets ►G/triangles/area ►NT/sets/partitions ►G/triangles/isosceles triangles ►NT/sets/subsets [24] medians and sides ►NT/sets/sum of elements ▶G/triangle inequalities ►NT/triangles/area ►AL/inequalities/fractions mediant ightharpoonup NT/triangles/perimeter►NT/Diophantine equations ►NT/triangles/right triangles medication **OSSMB** 77-9 ▶P/distribution functions/marginals **JRM** 715 ▶P/random variables/limits memory ménage number ►NT/permutations/derangements ▶P/selection problems/distribution problems ▶P'/selection problems/socks Menelaus' theorem ►G/triangles/Ceva's theorem ►RM/arrays mental $\overrightarrow{\mathsf{JRM}}\ 462$ ►RM/arrays/polygonal arrays Mental Heck ►GT/card games ▶RM/chessboard problems meridian **AMM** 6087 ►RM/polyominoes Mersenne number ►RM/polyominoes/pentominoes ►ST/relations/binary relations **AMM** 6146 ▶SG message

metacyclic group

metal

meteorology

►SG/analytic geometry ►SG/curves/arclength

►SG/cylinders/spheres

►SG/lines/line segments

►SG/right circular cones/paths

AMM 6059 **NAvW** 502

MM 1056

 \triangleright AM

►HA/groups/group presentations JRM 379 PARAB 291

metric	1979	5–1979	monotonically
metric	AMM 6009 6025 6063 6081 6113 6126 6275 6282 S8 FUNCT 1.2.2 1.2.3 MSJ 501	modulo 5	►NT/Fibonacci and Lucas numbers/ finite sums
	NAvW 460 ►G/analytic geometry/locus [5]		►NT/Fibonacci numbers/congruences ►NT/Lucas numbers/congruences [2]
	►RM/alphametics/phrases		►NT/series/congruences
metric conversion		modulo 7	►NT/squares/modular arithmetic [2]
	►AL T	modulo 10	►NT/Fibonacci and Lucas numbers/
metric space	►T		finite sums [2]
microbe	AMM E2636		►NT/Fibonacci numbers/congruences
midnight	►P/biology/population problems CRUX PS8-1 FUNCT 2.2.3 3.3.2		►NT/Lucas numbers/congruences
midpoint	[51 references]	modulo 12	►NT/Pythagorean triples/hypotenuse
шарош	►G/equilateral triangles	modulo 24	►NT/Fibonacci numbers/congruences
	►G/locus	modulo 210	►NT/primes/congruences
	►G/triangles/equal areas [4]	modulo 757	►NT/determinants/congruences
	►G/triangles/squares	$\mod p$	►NT/binomial coefficients/congruences [2]
mileage	JRM 671		►NT/determinants/congruences
miles and kilom	eters		►NT/Fibonacci and Lucas numbers/
	►AL/metric conversions		congruences
million	CRUX 34 JRM 371 C9 OSSMB 76-11		►NT/Fibonacci numbers/congruences
mini-Concentrat		modulo powers	
	JRM 601		NT/Fibonacci numbers/congruences
mini-deck	JRM 601		NT/polynomials/congruences
minimal moves	to reach position	modulo powers	
	►GT/chess problems/maxima and minima		►NT/Fibonacci numbers/congruences
	►RM/chessboard problems/ maxima and minima	modulo prime p	owers ►NT/modular arithmetic/
minimal subset	ST/subsets/family of subsets		quadratic congruences
minimize	AMM 6076 JRM 427 499 C5 MM 1059	modulus	AMM 6091 6279 E2600 E2808 SIAM 75-9
1111111111120	PME 354 367 SIAM 76-7 77-14 78-4 79-17	Möbius function	
minor	NYSMTJ 79	Wiobius function	►NT
minus	AMM E2541 CRUX 26 JRM 625 MM 970		►NT/Fermat's little theorem/generalizations
	1024	mold	JRM 703
mirror	CRUX 291 MENEMUI 1.3.2 MM 1003	moment	JRM 782 C7 MSJ 437 NAvW 450
	PARAB 304	11101110110	SIAM 77-10 SPECT 7.5
	►AM/optics		►AN/integral inequalities
missing	JRM 751 MSJ 430		►AN/integrals/multiple integrals
missing digit	JRM 437 SSM 3741	money	CRUX 195 ISMJ 11.16 OMG 17.1.9
, .	NT/digit problems		TYCMJ 104
missing entries			►RM/alphametics [3]
mistake mixed	MATYC 123 MSJ 467 ISMJ 12.7 NYSMTJ 96		►RM/alphametics/phrases
mixtilinear triar			►RM/alphametics/simultaneous alphametics
illixtillilear tirar	CRUX 248 NYSMTJ OBG5 PME 362	money problems	3
	►G/circles		►AL
	►G/circles/2 circles [2]		►C/algorithms/maxima and minima [11]
mixture	ISMJ 12.7 OMG 17.3.1		►C/configurations
mixture problen	ns	monic polynomi	al AMM 6046 6191 E2801 CRUX 452
	►AL/measuring problems		SIAM 75-14
moat	OMG 15.1.1		►HA/fields/polynomials
	►G/squares		►NT/divisibility/polynomials
mode	SIAM 75-1	monkey	FUNCT 3.1.6
model	AMM 6272 E2630 S2	monochromatic	AMM 6229 E2562
	►ST/symbolic logic	monotone	AMM 6218 E2714 CRUX 474 MATYC 133
modest	JRM 476		NAvW 465 510 SIAM 76-15 TYCMJ 112
modified	CMB P253 JRM 675 NAvW 419 SIAM 76-3	monotone functi	
modular arithm	79-15		►AL
modular arithm	►NT		►AN/functions
	NT/base systems		► AN/functions/convex functions
	NT/permutations		►AN/functions/differentiable functions
	NT/polygonal numbers		►AN/measure theory
	NT/recurrences [2]		►AN/measure theory/arcs
	NT/squares		P/inequalities/random variables
module	AMM 6116		P/random variables/finite moments
modulo	AMM 6161 6196 6210 6270 E2560 E2627		►T/function spaces/first category
	E2704 E2753 E2775 E2781 E2797 E2798	monotone seque	
	CMB P274 FQ B-348 B-351 B-363 B-368		AN/sequences [20]
	B-372 H-307 JRM 672 MM 948 961 1002		Namica / pains of accurance
	NAvW 432 OMG 15.3.7 OSSMB 75-16		► AN/series/pairs of sequences
modulo 2	NT/Pascal's triangle [3]		NT/sequences
modulo 3	NT/Fibonacci numbers/congruences		NT/sequences/products
modulo 4	NT/Fibonacci numbers/congruences [3]	man at: 11	NT/sequences/subsequences
	►NT/sequences/finite sequences	monotonically	AMM 6234 CMB P248 JRM 512

Monte's dilemm	a 1975	-1979	niphometer
Monte's dilemm		music	►AM/acoustics
	►P/conditional probability	musical	FUNCT 1.3.6
month	CRUX 231 FUNCT 1.1.1 1.1.9 2.1.2 JRM 374	mutual	JRM 423 PARAB 439
	643 759 C9 PARAB 273 PME 342 449	mutual strangers	
	TYCMJ 104	muzzle	PME 382
moon .	JRM 416 C9	$n \times 1$ polyominoe	
Moore-Penrose i			►RM/polyominoes/maxima and minima ►NT/arrays
manning	►LA/matrices CRUX 402 OSSMB 79-1 PARAB 362	$n \times n$ determinan	
morning morphism	AMM 6032		►NT/determinants/solution of equations
morphism	►HA/lattices/distributive lattices	n-dimensional cu	
mother	FQ B-304 MSJ 431 PARAB 332		▶P/geometry/point spacing [4]
motion	AMM 6230 6276 E2727 JRM C5 NAvW 393	n-dimensional ge	eometry
motion	437 438 450 461 547 PARAB 424		▶G
	SIAM 75-21 SSM 3777		►G/lattice points
motorboat	MM 1004		SG/triangles
movement	JRM 446 OMG 16.1.1		► AL/weights/balance scales
moving	AMM 6096 CRUX 22 408 479 JRM 446 564	n queens problen	n
	NAvW 547 OSSMB G77.2-6 PARAB 266 301		►RM/chessboard problems
	SIAM 76-1		►P/dice problems
moving points	►G/circles/2 circles		▶NT/sets
multinomial coe		n variables	►AL/systems of equations
	NT	name	CRUX 105 333 FUNCT 1.3.7 IMO 1978/6
1.1	►NT/series		JRM 374 392 643 PARAB 323 341
multinomial dist			►RM/alphametics
	P/independent trials/runs	nation natural logarithn	▶RM/alphametics/phrases
multiple angles multiple-choice t	►TR/identities		►AN/series/iterated functions
multiple-choice	CRUX 357		►NT/series/floor function [2]
	►RM/logic puzzles/incomplete information	nature	AMM 6223 FUNCT 1.2.1 JRM 379
multiple integral		navel	MM 1068
manipic integra	►AN/integrals	navigation	►AM
	►AN/integrals/evaluations	near-identity	AMM 6150
multiples	►AL/age problems/different times	nearest integer fu	
•	►NT/digit problems		►AN/functions [24]
	►NT/forms of numbers/squares	nearest neighbor	► C / € + 1-
	►NT/pandigital numbers		►C/configurations/people ►G/point spacing
	►NT/Pythagorean triples/area	necklace	PARAB 406
	►NT/series		►RM/alphametics/phrases
	►NT/sets/maxima and minima	neighbor	AMM E2633 E2732 FUNCT 2.2.3 JRM 650
multiplex	JRM 740		MSJ 472 PARAB 292
multiplication	AMM 6068 E2753 JRM 456 786 MM Q619	neighborhood	AMM 6029 6274 E2572 E2806 NAvW 534
	OMG 15.3.4 15.3.9 OSSMB 79-6 SSM 3632		554
	3670 3739	neighboring	AMM E2732 JRM 569 KURSCHAK 1979/1
	►AL/algorithms	Nelson	PARAB 266 281
	NT/digit problems/primes [3]	nest	►RM/alphametics/names JRM 390
	P/slide rules		►SG/boxes
	►RM/alphametics ►RM/cryptarithms/skeletons [2]		►AL/radicals
multiplication ru			►AL/systems of equations/2 variables
marapheadon re	►NT/digit problems/terminal digits	network	JRM 607 MENEMUI 1.1.2 1.2.2 PARAB 308
multiplication to	, 6 1		SIAM 79-16
mareipheacton to	▶NT		►RM/alphametics/words
multiplicative	AMM 6108 6183 FQ H-300 MM 935		►RM/alphametics/states
•	NAvW 392		►RM/alphametics/phrases
multiplicative F	ibonacci sequences	newspaper nickel	FUNCT 1.1.5 PARAB 363 JRM 463 PENT 290
	►NT/recurrences	night	CRUX 402 FUNCT 1.3.1 OMG 17.2.2 17.2.6
multiplicative fu		III SIII	18.3.1
	►NT/Möbius function	nilpotent element	
multiplicative m		nilpotent group	NAvW 502
3.1.31	►RM/magic configurations/magic squares		►HA/groups/group presentations
multiplicative se		nim	ISMJ 12.1 12.2 JRM 372 373 539
	►HA/rings/Boolean rings	nim-addition	NAvW 477
multiplicative se	equences NT/sequences/finite sequences		►GT
multiplicity	AMM 6222		►RM/alphametics/phrases
шинрисиу	PME 461 SSM 3568	nine-digit nine-point center	PENT 319 • AMM E2793
multiplier	1 IVIE 401 33IVI 3300		
multiplier multiply	CRUX 297 439 PS5-2 FO H-257 H-273	nine-point circle	CRUX 260 353
multiplier multiply	CRUX 297 439 PS5-2 FQ H-257 H-273 FUNCT 1.1.3 3.3.3 3.5.1 JRM 592 728 760	nine-point circle	CRUX 260 353 ▶G/triangles
*	CRUX 297 439 PS5-2 FQ H-257 H-273 FUNCT 1.1.3 3.3.3 3.5.1 JRM 592 728 760 MM Q619 MSJ 468 OMG 17.2.3 18.3.7	1 -	CRUX 260 353 ▶G/triangles PARAB 396

no 0's	1975	5–1979	number of nearest point
	►NT/factorizations/10-digit numbers	normal	AMM 6104 6114 6125 6147 6207 6219
no self-intersectio	ns ▶P/stochastic processes/random walks		6236 CRUX 57 132 JRM 730 MM 981 1067 NAvW 448 PUTNAM 1979/B.1 SSM 3783
node	AMM 6163 NAvW 436 SIAM 79-16		►AN/curves
non-Euclidean ge			►G/analytic geometry/curves
0	> G		►G/ellipses
non-self-intersecti	9	normal distrib	
1 1:	AMM E2513 MM 925		►P/density functions/integrals [5]
nonabellan group nonassociative rin	AMM 6026 6099		►P/distribution functions/convolutions
	^{rg} ►HA/rings		►P/geometry/boxes ►P/random variables/products
noncollinear point			►P/random variables/quotients
•	AMM E2746 CRUX 334 JRM 765		▶P/random vectors/
	OMG 15.1.2		variance-covariance matrices [2]
noncommutative	TYCMJ 43		es ►LA/matrices/norms
noncongruent nonconstant	CRUX 223 PME 435 SSM 3716 AMM 6046 6082 6118 CRUX 138	normal numbe	
ionconstant	FUNCT 2.5.4 MATYC 81 MM Q623	normal spaces	►NT [2] ►T/subspaces/discrete subspaces
	TYCMJ 46 71 144	normal subgro	, - , - ,
nondecreasing	AMM 6007 6257 E2702 MM 999 1047 1073	normar sabgro	►HA/groups/finite groups [49]
	SIAM 76-18		►HA/groups/finite groups
nondegenerate	CRUX 469	normalized	SIAM 76-16
nonequilateral tri	angie NAvW 514	normalizer	CMB P266
nonhomogeneous	PUTNAM 1979/B.4	normed spaces	
onidentity	AMM 6267	nose noted	CRUX 333 FUNCT 2.2.1 JRM 630 PENT 278 314 SIAM 77-10
nonintersecting	CRUX 63 PENT 302	notorious	CRUX 400
nonisomorphic	AMM 6262	nowhere	AMM 6113 E2568 CMB P280 CRUX 129
nonisosceles trian			nuous function
	AMM E2668 NYSMTJ 48		AMM 6081
nonlinear	NT/triangles SIAM 76-12 79-11 SSM 3709		►T/metric spaces/first category
	►AN/differential equations/first order	nowhere differ	entiable functions
	►AN/differential equations/order 2	and halifformer and	►AN/derivatives/one-sided derivatives
	NT/recurrences/first order	nth differences	, , , , , , , , , , , , , , , , , , , ,
ı	►NT/recurrences/second order	nth roots	►AL/roots of unity
nonmonotone seq		nth term	►AL/sequences/finite sums
	NT/arrays/3x3 arrays [6]	nuclear	NAvW 554
nonnegative nonnegative funct	[61 references]	null	SIAM 76-9
	\rightarrow AN/functions/ C^{∞}	number	[1072 references]
nonnegative sumr			►RM/alphametics
	►NT/partitions	number fields	►RM/cryptarithms/hand codes ►HA/fields
nonoverlapping	AMM E2527 E2745 CRUX 436 JRM 500	number of 0's	►NT/series/digit problems
nonparallel nonreflexive Bana	AMM 6276 CRUX 480	number of auc	, , , , , , , , , , , , , , , , , , , ,
ionrenexive Dana	NAvW 440		►GT/bridge/counting problems
ı	T/Banach spaces	number of call	ls ►GT/bridge/counting problems
nonresidue	AMM 6058 6094 FQ H-277	number of dig	
nonseparable	NAvW 471		►NT/base systems ►NT/digit problems
nonsingular	NAvW 469		►NT/digit problems NT/digit problems/factorials
nonsingular matri			NT/Fermat numbers
	AMM 6222 E2552 E2555 E2559 E2690 E2779 MATYC 91 MM 951 NAvW 547		►NT/Fibonacci numbers/digit problems
	SIAM 76-15		►NT/palindromes/divisibility
nonsquare	CRUX 204 FQ H-247 SSM 3624		►NT/palindromes/squares
nonsymmetric	PME 379		►NT/series/digit problems
nonterminating	AMM 6109 CMB P269 PARAB 271	1 0 1	►RM/cryptarithms/powers
nontrivial	AMM 6102 6205 E2520 CRUX 66	number of div	
	MATYC 139 SSM 3596 3742		►NT ►NT/Euler totient/divisors
ionzero	AMM 6093 6116 6145 6152 6168 6206 6231 6284 E2540 E2804 CRUX 40 113 156		►NT/series/infinite series
	294 345 401 407 486 ISMJ 14.15 JRM 676		►NT/sum of divisors
	678 681 MM 935 984 1021 1042 1058	number of eler	ments
	Q644 NAvW 485 545 OSSMB $G75.1-1$		►ST/relations/binary relations
	G75.3-6 PME 402 444 PUTNAM 1979/A.3		es ►RM/polyominoes/pentominoes
	SIAM 76-9 SPECT 9.6 SSM 3670 TYCMJ 93	number of idea	mpotents
noon	132 150 CRUX 68 FUNCT 3.3.2 ISMJ J10.11	number of ma	►HA/rings
noon	OSSMB 75-3 PENT 313 PME 439	number of ma	►P/dice problems/matching problems
norm	AMM 6017 6078 6249 6270 CMB P272	number of mis	
	NAvW 394 431 486 549 554		▶P/statistics
ı	►AN/functional analysis/Banach spaces	number of nea	rest points
	►LA/matrices		►T/Euclidean plane/compact sets

number of occurrences	1975–1979	open sets
number of occurrences		r PENT 285 SSM 3745
▶P/dice problems		►NT/polygonal numbers
number of odd entries NT/matrices/inverse matrices		NT/polygonal numbers/pentagonal numbers
number of operations	octahedral dice	SSM 3598
►NT/Collatz problem	octahedron	►P/dice problems MM 929 Q632 PENT 303 PME 386
number of partitions	octaneuron	SSM 3598 3693
NT/partitions		>SG
►NT/partitions/nonnegative summands number of points		►SG/tetrahedra
►G/lattice points/collinear points	octal representati	•
number of roots AL/theory of equations/roots	_	JRM 440 704 SSM 3626
►NT/modular arithmetic/		►NT/base systems/products
quadratic congruences [3]	octant	NYSMTJ 86
►TR/series/trigonometric series	octasected	JRM 554
►TR/solution of equations/sin and cos number of summands		C/Latin squares/permutations
NT/partitions		C/sequences/finite sums
number of terms		C/sets/differences
►AL/polynomials	'	►G/combinatorial geometry/ counting problems
number representations		G/tiling/regular polygons
NT		►HA/lattices/finite lattices
►NT/binomial coefficients ►NT/recurrences/		LA/determinants/evaluations
generalized Fibonacci sequences		NT/binomial coefficients
►NT/series/geometric series		►NT/finite products
number system AMM E2776 SSM 3574		NT/floor function/exponential [85]
number theory ►AN/complex variables [2]		NT/forms of numbers/difference of powers
►AN/Riemann zeta function	ı	►NT/forms of numbers/squares
▶P	ı	►NT/forms of numbers/unit fractions
number words numbered PRM/word problems CRUX 495 FUNCT 1.3.4 IMO 1978/6		►NT/palindromes/divisibility
ISMJ 11.18 JRM 736 759 MM 1022 1031	ı	NT/palindromes/primes
1066 MSJ 426 NAvW 430 PARAB 266 308	8	►NT/palindromes/squares
343 406 PENT 286 PME 419 SIAM 76-17		►NT/polynomials/products
77-11 SPECT 9.2 TYCMJ 57 USA $1979/3$		►NT/Pythagorean triples
numbered faces ►RM/puzzles/block puzzles		NT/sequences/monotone sequences
numbered squares ►RM/arrays		NT/series/floor function
numbered vertices		NT/triangles/counting problems
►NT/geometry/cubes		P/dice problems/number of occurrences
numeration JRM 511 NYSMTJ 88 SSM 3590 3600 376		➤ ST/subsets/family of subsets ➤ SG/polyhedra/combinatorial geometry
numerator AMM E2753 ISMJ 13.2 14.11 JRM 511		NT/digit problems/squares
PENT 281		G/lattice points/collinear points
numerical analysis ►AN	_	NT/series/unit fractions
numerical approximations	odds	CRUX 195 JRM 782 OSSMB G76.1-6
►AN	odometer	CRUX 31 JRM 671
numerical calculations		►NT/digit problems/distinct digits
►AL	offer	CRUX 182 JRM 423 680 682
numerical evaluations	official	JRM 715 MM 1024
►NT/inequalities/powers [27]	offspring	FUNCT 1.1.9
►TR numerical inequalities	ohm	CRUX 182 JRM 529
►AL	oil	JRM 603 SSM 3654
►AL/inequalities	older	OMG 18.2.3 PARAB 309
numerically AMM E2557 MM 1074 MSJ 424	oldest	JRM 659 MSJ 437
NYSMTJ 82 SIAM 77-13 78-3	Omar	►RM/alphametics/names
object AMM 6169 E2594 CRUX 424 JRM 540 73		►RM/alphametics/phrases
MM 952 NYSMTJ 56 OSSMB 76-5	one-sided derivati	
obtainable JRM 555 obtuse AMM E2566 JRM 557 NAvW 472		►AN/derivatives
OSSMB 79-4 79-5 SSM 3703 3767	one-to-one corresp	
obtuse triangle SSM 3727		NYSMTJ 48
NT/triangles		G/triangles/isosceles triangles
▶P/geometry/triangles	one-to-one function	on AMM 6188 6250 E2554 E2783 CMB P280
occupy FUNCT 3.1.5 JRM 465 NYSMTJ 49		FQ H-292
OSSMB 75-2 PENT 286 SIAM 76-1	Ontario	►RM/alphametics/places
ocean JRM 682 SIAM 76-13		OSSMB 75-14
octagon AUSTRALIA 1979/3 IMO 1979/6 MM 928 MSJ 448 PME 352 SSM 3653	9	T/metric spaces/Cartesian planes
C/counting problems/paths	_	T/Cantor set/subsets
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
▶G	open sets	►G/covering problems/squares

operas	1975	–1979	palindrome
operas	►RM/alphametics/phrases	Orono	►RM/alphametics/places
operation	AMM 6238 E2574 CRUX 133 420 428	orthocenter	AMM E2793 CRUX 15 260 NAvW 402 436
	ISMJ 13.17 13.21 JRM 739 MM 1080		494 OSSMB G78.2-4
	NAvW 477 527 OSSMB 77-15 78-15 79-17		►G/hyperbolas/rectangular hyperbolas
	PARAB 301 327 PUTNAM 1978/A.4	anth a contri	►G/triangles
	SIAM 76-17 78-3 SPECT 8.2 9.2 SSM 3573 3608 TYCMJ 43 81	orthocentric orthogonal	NAvW 460 AMM E2741 CRUX 94 MM 984 1020 1035
	NT/digit problems	Orthogonal	NAvW 393 403
operations rese	,	orthogonal bas	
operations rese	►AM		►LA/vector spaces
operator	AMM 6277 CMB P246 P272 MM 1000	orthogonal circ	
•	NAvW 554 SIAM 77-4 SSM 3723		►G/analytic geometry/circles
opponent	CRUX 418 JRM 372 373 387 424 463 465	anthamanal aum	▶G/circles
	469 475 597 682 772 C5 MM 1084 PME 342	orthogonal cur	ves ►G/analytic geometry/curves
4 1	379 403 SIAM 76-1		►G/ellipses/hyperbolas
opponent decre	es ▶GT/nim variants	orthogonal edg	
opportunity	JRM 482 599		►SG/tetrahedra/opposite edges
opposite	[70 references]	orthogonal ma	
opposite directi		.,	►LA/matrices
opposite direct.	►AL/clock problems/time computation	orthogonal pro	Jection AMM E2576
opposite edges	►SG/tetrahedra		►G/equilateral triangles
optics	SIAM 77-6		SG/analytic geometry/ellipsoids
-F	►AM	orthogonally	MM 976 988 OSSMB G76.3-2
optimal	JRM 372 373 379 387 PME 342 388	orthonormal	AMM 6013
ориниа	SIAM 76-7	orthonormal ba	asis NAvW 542
optimal play	►GT/chess problems	orthonormal sy	rstem
oracle	JRM 530		AMM 6184
orbit	NYSMTJ 50	oscillate	AMM 6035
order	[116 references]	outcome	AMM E2705 JRM 675 MM 1070
01401	►HA/groups/torsion groups	outline	CRUX 291 NYSMTJ 86
	►NT/matrices	outs	JRM 573
	►NT/permutations	oval overheat	CRUX 436 JRM 603
order 2	►AN/differential equations	overlap	AMM E2612 E2651 E2790 ISMJ 14.2 14.17
order 2	►NT/recurrences	Overlap	J10.6 MM 969 996 NAvW 411 OSSMB 75-15
order 3	NT/recurrences		PARAB 318 387 PME 416
order 4	►AN/differential equations	overtake	CANADA 1979/4
order 100	►NT/Farey sequences/consecutive terms	ovoid	►SG/solids of revolution
order n	► AN/differential equations	owes	MSJ 459
order of elemen	,	oxen	OMG 18.1.9
order of elemen	►HA/groups/finite groups	pace	PARAB 331
order of operat	, ,	pack	AMM E2524 E2612 CMB P276 CRUX PS5-1 FUNCT 2.1.1 JRM 443 646 OSSMB 75-15
•	►AL/numerical calculations		PARAB 327 427 SPECT 11.3 TYCMJ 100
order-preservin	g transformations	packing proble	
	►C/arrays/transformations	7 6	▶G
order statistics	▶P		►G/combinatorial geometry
ordered	AMM 6032 6046 6051 6101 E2638 E2772		▶SG
	S20 CMB P258 CRUX 72 FQ B-332 B-333	pad	CRUX 333
	B-387 MM 943 1026 1051 NAvW 429	page	FUNCT 1.3.4 OMG 16.1.6 OSSMB 76-11
	NYSMTJ 66 83 OMG 15.2.3 OSSMB 77-14 79-7 G75.2-1 PUTNAM 1975/A.2 1975/B.1	paint	AMM E2527 E2651 CRUX 122 OMG 16.1.8
	1977/B.3 1978/B.6 SIAM 76-1 78-3 78-13	paired	PARAB 387 SIAM 75-2
ordered pairs	C/counting problems	pairing	FUNCT 3.1.5
ordered pairs	►RM/logic puzzles/incomplete information	pairs of consec	
	ST/mappings/bijections	pairs of consec	►NT/factorizations/consecutive integers
ordering	JRM 539 PARAB 404 408	pairs of sequen	
ordinal	AMM 6220		►AN/sequences
ordinary	AMM E2775 E2808 FQ B-407 MM 992		►AN/series
ordinary	SIAM 76-11 79-11	pairs of series	►AN/series
organization	USA 1979/5	pairwise	AMM 6143 CMB P279 JRM 736 MM 1037
orientation	CRUX 464 MM 988 1004 PARAB 308	mali	NAvW 485 PARAB 388
oriented	AMM 6008 6192 E2594	palindrome	JRM 473 MATYC 79 94 MM 1026 MSJ 425
origin	AMM 6029 6089 E2570 CRUX 408		SSM 3572 3573 3609 3651 ►C/compositions
origin	FUNCT 1.2.1 MM 1062 OSSMB G75.1-4		►NT
	G75.2-4 G76.2-2 G78.1-4 G79.3-3 G79.3-4		►NT/base systems
	PARAB 424 SSM 3756 3761 TYCMJ 108		►NT/digit problems/digit reversals
original probler			►NT/digit problems/sum of digits
- •	►NT/Collatz problem		►NT/polygonal numbers/hexagonal numbers

palindromic nun	nber 1975	-1979	payment
palindromic nur		partial fractions	
	CRUX 31 439 PME 348 SSM 3575 3591	partial result	NT/Fermat's last theorem
palindromic prii	me CRUX 490 SSM 3662	partial sum	►AN/series/divergent series ►NT/harmonic series
pandigital numb			NT/series/alternating series
panaigran nami	JRM 571		NT/series/factorials
	►NT	participant	FUNCT 3.1.5 MSJ 487
	►NT/base systems	particle	AMM E2636 JRM 545 NAvW 461 468
	NT/digit problems		►AM/physics
panelist	►P/digit problems JRM 769 PME 355	partition	AMM 6130 6137 6151 6248 E2530 E2555
paper	AMM S4 CRUX 24 140 204 292 350 390 422		E2556 E2582 E2613 CMB P277 CRUX 170 342 344 473 FQ B-415 H-304 ISMJ 10.2
paper	ISMJ 13.14 13.20 JRM 538 628 MM 996		14.21 JRM 557 651 701 711 MM 940 957
	MSJ 420 OSSMB 78-2 PARAB 335 399 435		MSJ 460 461 NAvW 539 NYSMTJ 41
	PME 375 460 SSM 3637 3661 3768		OSSMB 79-4 PENT 272 PME 419
paper folding	►G ► gg		SIAM 76-9 SPECT 8.4 TYCMJ 113
nanarhaek	►SG SSM 3574		►AN/complex variables/number theory
paperback papers	PARAB 335		► AN/gamma function/asymptotic analysis
parabola	CRUX 242 353 370 374 445 MM 1067		►C/geometry/points in plane ►C/sets
parasora	NYSMTJ 94 OSSMB G78.1-3 G79.1-2		C/sets/sums
	►AN/curves/normals		G/points in plane
	▶G [2]		NT
	G/constructions/conics		►NT/Lucas numbers/sets
manahalia	►G/triangles/nine-point circle [5]		►NT/palindromes/primes
parabolic paraboloid	NAvW 546 NAvW 468 NYSMTJ 86		►NT/Pythagorean triples
paraboloid	►AM/physics/solid geometry		NT/recurrences/arrays
	SG/analytic geometry		NT/sequences
parade	PARAB 263 SSM 3694		►NT/sequences/law of formation ►NT/sets
paradox	PME 345		NT/sets/sum of elements
,, ,	►AL/complex numbers/radicals		P/sets
parallel	[62 references] SSM 3693		►T/sets/irrational numbers
parallel bases parallel chords	►G/circles/chords		►T/sets/real numbers
parallel diamete		partitioned sides	
1	►G/circles/2 circles		►G/inequalities/triangles
parallel lines	►C/geometry/points in space	partitions of the	► Plane ►G/dissection problems
	►G/circles/tangents	partitions of uni	, -
	G/constructions [13]	partitions of an	►AL/inequalities/finite sums
	►G/constructions/equilateral triangles ►G/constructions/line segments	partnership	JRM 560
	G/points in plane	party	JRM 699 PARAB 266 278
	►G/trapezoids	Pascal's triangle	
parallel planes	►SG/convexity/dissection problems		NT
	►SG/covering problems/family of planes	passenger pasture	JRM 527 CRUX 1 JRM 476 PME 382
parallelepiped	IMO 1978/2 PARAB 296	pasture	AMM E2549 CANADA 1977/5 1977/7
	C/counting problems/geometric figures	Patri	1979/4 CRUX 356 408 ISMJ 13.23 JRM 421
parallelism	SG/locus/sphere AMM S2		MM 926 1003 1004 1083 NAvW 424 453 475
parallelogram	AMM E2802 CRUX 139 322 ISMJ 13.24		476 487 547 OMG 14.3.1 16.1.1 16.2.5 16.2.7
1	MM 1001 NAvW 476 NYSMTJ 43 74 OBG1		PARAB 283 410 PME 439 456 SIAM 75-1
	OBG3 OSSMB 75-10 PARAB 296 PME 420		76-13 ▶C
	PUTNAM 1977/B.2 SSM 3754 TYCMJ 117		C/counting problems
	153 ►C/counting problems/geometric figures		C/graph theory/complete graphs
	G Schooling problems/geometric figures		►C/graph theory/covering problems
	G/constructions/rectangles		►C/graph theory/directed graphs
	►SG/plane figures		►GT/board games/chessboard games
parallels	AMM 6087		G/billiards/circles
parameter	CRUX 299 JRM 478 NAvW 475 PME 373		G/maxima and minima
1 4	SIAM 76-3 79-1		►G/rectangles ►NT/geometry/lattice points
parchment parenthesization	CRUX 400		RM/chessboard problems
parenthesization	►HA/groups/associativity		SG/right circular cones
parents	FQ B-304 MSJ 431	paths on Earth	►SG/spherical geometry
parity	AMM E2758 NAvW 439 PENT 298	patience	JRM 379 SPECT 11.3
	SSM 3597	patient	OSSMB 77-9
parking lot	►G/maxima and minima/shortest paths	patio	JRM 381
Parseval's ident	· · · · · · · · · · · · · · · · · · ·	pattern	AMM E2595 E2754 CRUX 433 FUNCT 1.1.9 JRM 391 628 OSSMB 76-13 PME 434
partial deck	►AN/functions/real-valued functions ►P/cards [50]		SSM 3739 3769
partial deck	,	pawn	JRM 424 680 PARAB 281
		1 4	

peace	1975-	-1979	permutation
peace	►RM/alphametics/phrases	perfect numbers	▶NT
peculiar	AMM E2636	1	►NT/digit problems/sum of digits [4]
pedal	FUNCT 1.4.5		►NT/forms of numbers
-			►NT/number representations
pedal triangle	AMM E2517 NAvW 436 548		►NT/sum of divisors
	►G/inequalities/triangles		►NT/triangles/scalene triangles
	►G/triangles	porfect plus one	AMM E2571
pedestrian	SIAM 75-8	perfect-plus-one	
peg	JRM 772 MM 952	perimeter	AMM 6230 E2517 E2557 E2617
peg solitaire	▶RM/puzzles		E2660 CRUX 119 120 171 330 345 397
pegboard	PARAB 397		FUNCT 3.2.8 ISMJ 10.9 J11.11 JRM 532
			535 565 713 MATYC 107 126 MM 947 1088 MSJ 424 NAvW 424 475 476 NYSMTJ 82
Pell number	►NT		OSSMB G75.2-3 G75.3-2 PARAB 319 350
Pell's equation	►NT/Fibonacci numbers		PME 455 PUTNAM 1976/A.5 SPECT 9.5
pen	NYSMTJ 60		SSM 3587 3649 3669 3700 3703 3716 3727
pencil	CRUX 325 333 390 PME 375		TYCMJ 85 98 118 130 131
Penguin	JRM 770a		
peninsula	PME 343		►G/convexity/area [2]
•			►G/inequalities/squares
penny	AMM E2527 E2651 E2745 JRM 396 463		►G/inequalities/triangles
	OSSMB 75-2 79-15 PARAB 387		►G/maxima and minima/right triangles
	►C/coloring problems [2]		►G/maxima and minima/triangles
pentacle	JRM 385		►G/triangle inequalities/angles and radii [3]
pentagon	AUSTRALIA 1979/1 CRUX 73 232		►G/triangle inequalities/sides
- 0	DELTA 6.2-3 IMO 1979/2 ISMJ 11.10 11.14		►G/triangles/2 triangles
	14.2 MM 1057 PME 383 SSM 3650 3661		►NT/triangles
	►C/coloring problems		►NT/triangles/counting problems
	►C/geometry/coloring problems	period	AMM 6031 E2563 CRUX 231 ISMJ 14.1
	G	Portod	JRM 419 C9 MM 940 973 NAvW 529
			OMG 18.1.2 OSSMB 77-9 TYCMJ 104
	ightharpoonup G/constructions [2]		►C/card shuffles
	►G/constructions/points	period 1	►NT/continued fractions/
	►G/constructions/rectangles [2]	period 1	periodic continued fractions [2]
	►G/tesselations	noriod 2	
	►RM/arrays/polygonal arrays	period 2	NT/continued fractions/
		m oni o di o	periodic continued fractions
pontagonal	►SG/polyhedra AMM E2618 FQ B-363 MM 943 SSM 3571	periodic	AMM 6087 CANADA 1975/7 CMB P246 FUNCT 2.1.4 ISMJ 14.1 OSSMB 78-1
pentagonal			PARAB 271 SSM 3667 3709
	3575 3589 3619 3621 3657 3693 3784	periodic continue	
pentagonal nun		periodic continu	►NT/continued fractions
	PENT 285 PME 359 SSM 3575 3589 3619	noriodia function	AMM 6031 E2563 NAvW 409
	3621 3657 3784	periodic function	
	►NT/digit problems/digit reversals [7]		►AL/functional equations
	►NT/number representations/		No. of the state o
	polygonal numbers		►SG/analytic geometry/volume
	►NT/polygonal numbers	periodic sequenc	
	►NT/polygonal numbers/consecutive integers		►AN/sequences/recurrences
	►NT/polygonal numbers/modular arithmetic		►NT/digit problems/terminal digits
pentagram	, - , - ,	periphery	TYCMJ 100
	CRUX 145 JRM 385	permutable	AMM E2633
pentahedron	CRUX 181 182	permutation	AMM 6049 6054 6171 6214 E2551 E2738
	▶SG		CRUX 16 66 69 78 FQ H-309 IMO 1975/1
pentomino	JRM 391 426 470 600		JRM 702 734 C1 MM 948 953 979 984 1002
	►RM/polyominoes		1016 1045 Q639 MSJ 455 465 NAvW 430
	►RM/polyominoes/tiling		439 451 543 NYSMTJ 49 PENT 320
people	CRUX 68 387 FUNCT 1.3.7 3.1.1		SSM 3580 3614 3749 USA 1979/1
people	MATYC 98 MM 1031 MSJ 431 OSSMB 78-3		►AL/finite sums
			►AL/inequalities/finite sums [2]
	PARAB 278 281 322 381 439 PENT 279 SIAM 76-7 SSM 3601		▶C
			►C/configurations/circular arrays
	►C/configurations		►C/Latin squares
	►RM/alphametics/phrases		►LA/matrices
	►RM/alphametics/words		►LA/matrices LA/vector spaces/orthogonal bases
peppers	►RM/alphametics/phrases		, - , -
percent	FUNCT 1.1.4 MATYC 98 MM 1024		NT /digit muchlages
	OSSMB 78-3 PENT 279 TYCMJ 104		NT/digit problems
percent probler			NT/digit problems/primes
percent probler	►AL/measuring problems/mixture problems		►NT/finite products/odd and even
	, , , , , ,		►NT/inequalities/sum of squared differences
1	►AL/word problems		►NT/modular arithmetic
percolation pro			►NT/polynomials/evaluations
	▶P/coloring problems/expected value		►NT/sequences/law of formation [2]
perfect	[60 references]		►NT/series
perfect cube	FQ B-342 JRM 393 SPECT 8.6 SSM 3624		▶P
perfect fields	►HA/fields		►RM/logic puzzles/Caliban puzzles
periect neius	► 1111/ Heids	I .	► 1011/10gic puzzies/ Camban puzzies

permutation gro	►AN/functions/real-valued functions [3]		Pick's formula	▶SG/lattice points/polyhedra
•	, , ,			SG/lattice points/polyhedra
•	- TT A /		pickup	JRM 527
•	►HA/groups		picnic	OMG 18.2.4
	AMM E2516 E2702 E2718 ISMJ 10.8 10.	.13	picture	ISMJ 12.20 NAvW 543
	NAvW 543 PENT 320 SIAM 79-17		picture puzzles	►RM/puzzles [3]
permuted coordi			piecewise contin	
	►SG/maxima and minima/angles		•	AMM 6076 6184 MM 926
	►AN/functions/digits			►AN/functions/real-valued functions
perpendicular	[62 references]		pierce	PARAB 361
	►G/analytic geometry/circles		pig	OMG 18.1.9 PARAB 332 PME 401
	►G/circles/tangents [4]		pile	FUNCT 2.3.3 JRM 372 373 539 648 682
	►G/constructions/rusty compass			NAvW 411 OSSMB 79-15 PME 379
	►G/isosceles right triangles			SPECT 11.3 11.6
	►G/triangle inequalities/		pill	OSSMB 77-9
	angle bisectors extended		pillar	OSSMB G78.3-5
	►G/triangles		pipe	MM 971 NYSMTJ OBG4
	►G/triangles/angle bisectors [2]			►AL/rate problems/flow problems [5]
	►G/triangles/centroids		pipeline	JRM 603
perpendicular bi	sector		pirate	CRUX 400
	►G/points in plane		pistol	SPECT 7.5
perpendicular ch	nord		pitcher	JRM 573 MSJ 447
	►G/circles/chords [2]		pivot	NAvW 450 OSSMB G78.1-4
perpendicular di	agonals		pizza	PENT 313
	►G/regular polygons/diagonals		places	►RM/alphametics
	►SG/skew quadrilaterals/diagonals		placing	AMM E2698 E2790 CANADA 1978/5
perpendicular ha	ands		F6	DELTA 6.2-3 JRM 391 426 572 596 703 C6
	►AL/clock problems/hands [2]			SSM 3677
perpendicular lin	nes		plain	OSSMB G79.3-2
	►G/conics		planar	AMM 6172 E2513 CRUX PS2-3 SIAM 76-13
	►G/triangles/60 degree angle		planar graph	AMM 6182
	►SG/cubes/diagonals		F 8F	►C/graph theory/map problems
	►SG/plane figures/triangles		planar section	CRUX 336
	►SG/skew quadrilaterals/diagonals		plane	[179 references]
perpendicular m			picaro	►G/combinatorial geometry
	►G/constructions/right triangles			►G/combinatorial geometry/
	►G/triangles/medians			counting problems
perpendicular ra	ıys			►G/covering problems/squares
• •	►G/parallelograms			►G/maxima and minima/solid geometry
perpendicular ta	ingents			\triangleright G/n-dimensional geometry/4-space [2]
	►G/locus/ellipses [4]			►G/tesselations/squares
perpendicularly	MATYC 114			SG/tetrahedra [5]
persistent numb	er CRUX PS5-2		plane figures	►SG
	►NT/digit problems/pandigital numbers		plane of symmet	
perspective	NAvW 401 PME 422		pione of symmet	►G/symmetry/center of symmetry
perspective draw	ving		plane rotations	►G/dissection problems/
	CRUX 406 MM 980		piano rotationo	partitions of the plane
	▶G		plane sections	►SG/polyhedra/combinatorial geometry
perspectivities	►G/right triangles		F	►SG/tetrahedra/maxima and minima [2]
	►G/triangles/inscribed triangles		plane sets	►AN/sets
petal	PARAB 340			T/connected sets
phase	SIAM 79-1		planet	JRM 376 504 NYSMTJ 50
phi function	MM Q645		P	►RM/alphametics [2]
phone number	JRM 374		planetary rings	G/maxima and minima/angles
photon	SIAM 75-1		plank	FUNCT 1.4.1 OMG 15.1.1
phrase	►RM/alphametics		plate	CRUX 427
physical	SIAM 77-6		plateau number	
physics	OMG 17.1.2		player	[87 references]
1 0	►AM		players select di	
pi	►AL/numerical calculations		players select di	►GT/selection games [9]
F-	►AN/inequalities		players select in	
	►AN/numerical approximations		players select in	►GT/selection games
	NT/continued fractions		please	RM/alphametics/phrases
	►NT/floor function/primes [2]		plywood	CRUX 325
	NT/inequalities/binomial coefficients		pocket	JRM 379 447 PENT 311
pi function	NT/functional equations		point	[691 references]
p. rancolon	NT/least common multiple/		pomi	►G/constructions
	consecutive integers			►P/selection problems
	NT/primes [2]		point-mass	JRM 564
	NT/products		point on circum	
pi squared	►AN/Riemann zeta function		point on circum	►G/regular hexagons
	NT/series/inequalities			G/regular polygons

point-set distan	nce	1975–1979	positive definite matrices
•	ice		►AL/geometry of zeros
	►T/Euclidean plane/compact sets		►AL/inequalities [7]
	►T/metric spaces		►AL/iterated functions
	►T/metric spaces/inequalities		►AL/maxima and minima/constraints
point sets	►AN [5]		►AL/recurrences
point spacing	►G [10]		► AL/roots of unity
	►P/geometry		► AN/complex variables
points in plane	►C/coloring problems		► AN/curves/curve tracing
	►C/geometry		► AN/functions [18]
	▶G		► AN/integrals/area
	►G/combinatorial geometry/triangles		► AN/location of zeros/complex variables
	►G/inequalities		► AN/maxima and minima
	►G/point spacing/distance		
. , .	►G/triangles/centroids [2]		► AN/maxima and minima/constraints
points in space			► AN/power series/identities
	► G/combinatorial geometry		► AN/sequences/recurrences
mainta of contac	▶SG		►GT/selection games
points of contac			►G/analytic geometry/family of lines
nainta of armm	►SG/spheres/tangent spheres		►G/analytic geometry/tangents
points of symme	►G/convexity		►G/triangles/inscribed triangles
pointwise conve			►HA/algebras
Pomowise Conve	FQ H-292		►HA/fields
	► AN/functions/differentiable functions		►HA/rings
pointwise produ			►HA/rings/ideals
Poisson distribu			►LA/matrices
	▶P/sports/hockey		▶NT
Poisson process	P/stochastic processes		►NT/composite numbers [2]
poker	JRM 647		►NT/divisibility
poker variants	►GT/card games		►NT/Fibonacci and Lucas numbers/
polar	MATYC 104 NAvW 436 SIAM 77-10		divisibility [2]
•	TYCMJ 108		►NT/Fibonacci numbers/congruences
polar curves	►G/analytic geometry		►NT/floor function/identities
pole	MATYC 104 USA 1979/2		►NT/floor function/sequences [3]
police	JRM 792		►NT/forms of numbers/squares
polygon	AMM E2513 E2514 E2594 E2641 CRUX	336	►NT/inequalities/exponential
	375 453 PS3-1 ISMJ 10.9 12.13 12.29		►NT/primes
	JRM 509 KURSCHAK 1979/1 MM 969		►NT/primes/generators [13]
	MSJ 416 489 NAvW 398 OSSMB G75.3-	1	►NT/series
	PARAB 265 395 412 440 PME 390		►NT/series/identities
	SPECT 7.2 SSM 3683		►NT/sets
	►C/geometry/dissection problems		►NT/sets/n-tuples
	►G		►NT/triangular numbers
	G/combinatorial geometry		►P/number theory
	►G/combinatorial geometry/ counting problems		►P/random vectors
	►G/combinatorial geometry/triangulation	s [9] polynomial s	approximations
	►G/dissection problems	s [2] polynomia o	►AN/complex variables/rational functions
	►G/inequalities	polynomial	
	►P/geometry	polynomia: c	►AL
polygonal	CRUX 375 MM 927 1003 1083	polynomial e	
polygonal array		F 3	CRUX PS7-3
1 1 3 3 4 4 4 4	►RM/arrays	polynomial e	expansions
polygonal curve			►AL/polynomials/coefficients
polygonal numb	oers	polynomial f	
	►NT		AMM E2554 MM Q623 SSM 3756
	►NT/base systems [2]	polyomino	CRUX 276 429 MM 969
	►NT/number representations	1 ,	▶RM
polyhedral num		pool	CRUX 402 NYSMTJ OBG4
	►NT [2]	popular	AMM 6017 JRM 533
polyhedron	AMM E2620 AMM E2630 E2694 CRUX	73 population	CRUX 28 373 JRM 376 MSJ 436 SIAM 76-7
	181 453 499 ISMJ 12.21 JRM 528 763	population e	
	MM 927 OSSMB 75-8 PME 352 SIAM 70	0-1	▶P/statistics
	SSM 3693 ► D / m = m = t = m	population p	
	►P/geometry	P P	►AL/word problems
	►SG ►SC /lettice points		►NT/Fibonacci numbers
	►SG/lattice points		►P/biology [2]
n alemane in l			/
polynomial	[109 references]	port	JRM 375
polynomial	[109 references] ►AL	port	JRM 375 AMM E2617 CRUX 276 OSSMB G76 2-2
polynomial	[109 references] ►AL ►AL/determinants	portion	AMM $E2617$ CRUX 276 OSSMB $G76.2-2$
polynomial	[109 references] ►AL ►AL/determinants ►AL/finite sums/fractions [2]	portion positioned	AMM $E2617$ CRUX 276 OSSMB $G76.2-2$ PARAB 263
polynomial	[109 references] ►AL ►AL/determinants	portion positioned positive defir	AMM $E2617$ CRUX 276 OSSMB $G76.2-2$ PARAB 263

positive semid	efinite matrices 1	975–1979	primo
positive semid	efinite matrices		►NT/forms of numbers/
	►LA/matrices/Hermitian matrices [3]		sum of consecutive integers [2]
positively	AMM 6008 6035		►NT/inequalities
post	PARAB 306 PME 382		►NT/inequalities/binomial coefficients [2]
postage	JRM 396 SSM 3662		►NT/powers
postpone	JRM 530		►NT/primes/powers [2]
postulate	CRUX 434		►NT/primes/products
potato	PARAB 385		►NT/quadratic residues/squares
power series	►AN		►NT/recurrences/floor function
	►HA/rings		►NT/series
	►LA/matrices [4]		►NT/sets/divisibility
	►NT/series		►NT/squares
power set	►ST		►NT/sum of divisors/almost perfect numbers
powers	►AL/age problems/different times		►NT/sum of divisors/divisibility
•	►AL/complex numbers		►NT/sum of divisors/number of divisors
	►AL/determinants/identities		►NT/sum of divisors/perfect numbers
	►AL/inequalities		▶P/digit problems
	►AL/inequalities/finite products		►ST/subsets/family of subsets
	►AL/inequalities/finite sums [7]	powers of 2 an	nd 3
	► AL/inequalities/numerical inequalities	1	►NT/divisibility/exponentials [2]
	►AL/iterated functions/polynomials		►NT/floor function/inequalities
	►AL/maxima and minima/constraints		►NT/powers [15]
	► AN/integral inequalities		►NT/sequences/law of formation
		powers of 3	NT/digit problems/cubes
	► AN/limits/finite products	Position of o	►NT/series/alternating series
	►AN/series/continuous functions		►NT/series/binomial coefficients
	►AN/series/divergent series		►NT/series/factorials
	►LA/matrices [2]	powers of 4	NT/squares
	►LA/matrices/0-1 matrices	powers of 8	►NT/digit problems/sum of digits
	►LA/matrix sequences [6]	powers of 10	►NT/series/geometric series
	►NT	1 *	
	►NT/approximations/rational numbers	powers of 11	►NT/digit problems/terminal digits
	►NT/base systems		►NT/sequences/law of formation [2]
	►NT/base systems/number of digits	practice	AMM S4 SIAM 75-14
	►NT/composite numbers	preceding	AMM 6062 FUNCT 1.1.9 MM Q642
	►NT/digit problems		OSSMB G77.1-6 PARAB 421 PENT 311
	►NT/digit problems/terminal digits		SPECT 9.7 SSM 3739 3780
	►NT/forms of numbers/	precise	AMM 6041
	sum of consecutive odd integers	precocious	CRUX 452
	▶NT/forms of numbers/sum of squares	predicate calcu	ulus AMM 6139
	NT/fractional parts/square roots [6]		►ST/symbolic logic
	►NT/Gaussian integers	predicted	AMM 6041
	►NT/geometry/right triangles	prediction	JRM 530 SSM 3597
	►NT/inequalities	preparation	MSJ 483
	►NT/irrational numbers/0-1 numbers	president	►RM/alphametics/names
		press	CRUX 280
	►NT/modular arithmetic	price	CRUX 297 JRM 675 735
	NT/permutations	primality	JRM C1
	NT/primes	prime	[333 references]
	►NT/recurrences/sum of digits	_	►AL/age problems/different times
	►NT/series		►AL/sports/football
	►NT/series/digit problems [2]		►GT/selection games/players select integers
	►NT/series/inequalities		▶NT
	►P/selection problems/unit interval		►NT/arithmetic progressions
	►RM/cryptarithms		NT/arrays/recurrences
	►SG/space curves [4]		►NT/base systems/digit permutations [5]
	►TR/infinite series/tan		►NT/base systems/pandigital numbers
powers of -1	►NT/floor function/finite sums		NT/binomial coefficients
	►NT/floor function/integrals		►NT/digit problems
	NT/series/floor function		
	►NT/series/unit fractions		►NT/digit problems/digital roots ►NT/digit problems/fractions [2]
powers of 2	►NT/approximations		
POWCIO OI Z	►NT/binomial coefficients/		►NT/digit problems/sum of digits
	maxima and minima		NT/Diophantine equations/degree 3
			►NT/Diophantine equations/degree 5 [10]
	►NT/digit problems/divisibility		►NT/Diophantine equations/degree 6
	►NT/digit problems/leading digits		►NT/Diophantine equations/exponential
	►NT/digit problems/terminal digits		►NT/divisibility/difference of squares
	►NT/Diophantine equations/exponential		►NT/divisibility/factorials
	►NT/divisibility		►NT/Euler totient
	►NT/divisibility/exponentials		►NT/Fermat's last theorem/partial results
	►NT/factorizations		►NT/Fibonacci and Lucas numbers
		1	'
	►NT/Fibonacci and Lucas numbers/		N I / F IDOHACCI Humbers
	►NT/Fibonacci and Lucas numbers/ congruences		►NT/Fibonacci numbers ►NT/Fibonacci numbers/
	►NT/Fibonacci and Lucas numbers/ congruences ►NT/Fibonacci numbers/recurrences		►NT/Fibonacci numbers/ greatest common divisor [4]

prime	1975–1979 progr		
	►NT/forms of numbers/	principal norm	<u> </u>
	decimal representations	principal norm	►SG/space curves
	►NT/forms of numbers/	print	FUNCT 1.1.10 2.4.2 ISMJ 13.14 13.20
	sum of consecutive integers	. ,	JRM 755 C8
	►NT/forms of numbers/sum of squares	printer	FUNCT 1.3.4
	►NT/geometry/lattice points	prism	AMM E2694 AUSTRALIA 1979/1 IMO 1979/2 JRM 787 PME 367 SSM 3683
	NT/infinite products/evaluations		►C/geometry/coloring problems
	NT/Mersenne numbers		G/maxima and minima/solid geometry
	NT/modular arithmetic/powers		►SG/maxima and minima
	NT/modular arithmetic/squares	prismoidal for	rmula
	NT/palindromes		PME 425
	►NT/partitions [2] ►NT/polynomials/age problems		►SG/regular tetrahedra/volume
	NT/powers/powers of 2	prison	PENT 286
	NT/powers/powers of 2 and 3	prisoner	FUNCT 1.3.7 OMG 17.2.1 PENT 286
	NT/products/exponential	prize probability	JRM 769
	NT/Pythagorean triples	probability	[97 references] ►C/graph theory/trees
	NT/recurrences/		► G/point spacing/nearest point
	multiplicative Fibonacci sequences		►G/triangles/isosceles triangles
	►NT/series		►LA/matrices/spectral radius
	►NT/series/inequalities [2]		►LA/vector spaces/systems of equations
	►NT/series/unit fractions		►NT/primes/gaps
	►NT/sets/partitions		►RM/chessboard problems [2]
	►NT/sets/sum of elements		►SG/convexity
	▶NT/sum of divisors/number of divisors	probability di	
	►NT/sum of powers	1 1 1 1 1 1 1	AMM 6115 JRM 379
	►NT/triangles [5]	probability m	
	►NT/triangles/isosceles triangles	proboscis	►AN/measure theory CRUX 333
	►RM/alphametics/phrases	1 *	nsecutive integers
	►RM/magic configurations/magic squares	product of col	►NT/forms of numbers
prime chains	►NT/primes		►NT/series/limits
prime character	istic	product of cor	nsecutive primes
	►HA/fields/perfect fields [6]		►NT/abundant numbers
prime divisor	►NT/forms of numbers	product rule	►AN/derivatives
	►NT/forms of numbers/sum of two squares	product space	
	►NT/powers/powers of 2	products	►LA/matrices
	►NT/sets		LA/matrix equations
prime factor	AMM 6135 E2679 E2725 E2805 CRUX 390		NT
	FUNCT 1.5.3 ISMJ J11-14 JRM 756 767		►NT/base systems [4] ►NT/binomial coefficients/primes
nnima faatanisat	TYCMJ 34		NT/digit problems
prime factorizat	►NT/forms of numbers/difference of powers		►NT/digit problems/consecutive digits
	NT/harmonic series/deleted terms		►NT/digit problems/maxima and minima
	NT/primes/generators		►NT/digit problems/missing digits [4]
	NT/sum of divisors		►NT/divisibility
prime ideals	►HA/lattices		►NT/inequalities
primo racais	►HA/rings/regular rings		►NT/maxima and minima
prime number	AMM 6210 E2627 E2648 E2673 E2718		►NT/modular arithmetic/groups
,	S3 CMB P273 CRUX 131 327 PS1-1		►NT/modular arithmetic/powers
	FQ H-287 ISMJ J10.15 MM 953 1029		►NT/partitions/maxima and minima
	MSJ 420 NAvW 485 493 OSSMB 76-15		▶NT/polynomials
	78-10 PARAB 309 PME 423 459		NT/primes [3]
	PUTNAM 1976/A.3 SSM 3602 3606 3620		NT/primes/greatest prime factor
prime number t	3625 3686 3697 3735 3751 3753 3770 3776		NT/sequences
prime number t	►NT/functional equations		►NT/sequences/digits ►NT/series/binomial coefficients
prime order	►HA/groups/finite groups		NT/sets/prime divisors
prime powers	►NT/factorizations/maxima and minima		NT/sum of divisors
primitive	AMM 6209 E2530 E2566 CRUX 5 223		NT/twin primes
p11111101 V O	MM 1088 PENT 298 PUTNAM 1975/A.4		►P/random variables
	SIAM 75-13 SSM 3569 3587 3592 3633 3638		►P/selection problems/unit interval
	3752 3771 TYCMJ 82		►RM/cryptarithms
prince	PME 343	professor	CRUX 452 JRM 699 MM 1072 Q661
princess	PARAB 356		OSSMB 78-10 PENT 283
-	ARARA CIIC CION TOTON BARA ONI BIA SALAIF		ELINCT 9.1.4 IDM 479.470 E00 E10 720 7EE
-	AMM 6116 6180 E2728 MM 981 NAvW 415	program	FUNCT 2.1.4 JRM 478 479 509 510 739 755
principal principal ideal o	541 TYCMJ 104	programmer	C6 C9 JRM 440

progression	1975	-1979	radiating
progression	AMM E2522 E2628 E2684 E2730	quadratic congr	
	CANADA 1975/4 1976/1 1979/1		►NT/modular arithmetic
	CRUX 114 213 214 268 378 399 FQ B-382	quadratic fields	►NT
	ISMJ 11.7 11.12 12.18 JRM 627 651	quadratic forms	►AN/functions/continuous functions
	712 MATYC 111 128 138 MM 961 1010	quadratic numb	er fields
	MSJ 471 OSSMB 79-3 G75.2-1 G78.1-3		►HA/fields/number fields
	G78.3-1 G79.1-5 G79.2-1 PARAB 414 PENT 296 PME 454 PUTNAM 1978/A.1	quadratic recipr	ocity
	SPECT 8.4 8.8 SSM 3585 3641 3663 3697		►NT [2]
	3776 TYCMJ 37 141	quadratic residu	tes
projected	AMM E2535 E2548 MM 988 PME 413		►NT
projectile	SPECT 7.1 8.2	quadric	NAvW 469
	►AM/physics		►SG/projective geometry/tetrahedra
projection	AMM 6228 CRUX 260 NAvW 395 PME 361	quadrilateral	AMM E2557 E2660 CANADA 1978/4
	►G/triangles/Euler line [2]		CRUX 42 106 189 199 375 383 ISMJ 11.14
	$ ightharpoonup HA/algebras/C^*$ -algebras		12.25 J10.5 JRM 497 535 538 MM 963
projective	AMM 6181 6267 NAvW 460 469 481 491 512		Q613 Q630 MSJ 485 NAvW 452 476
	536 546 547		488 NYSMTJ 52 OMG 14.2.3 17.3.7
projective geom			OSSMB G75.2-3 G77.1-3 PARAB 279 347 PENT 291 308 312 PME 346 398 417
	►G ►SG		SPECT 10.1 11.9 SSM 3789 TYCMJ 153
	T/functions		USA 1977/4
promptly	JRM 563		►G
properly	AMM 6098 JRM 530		►G/circles/interior point [3]
property	AMM 6190 FUNCT 3.3.5 JRM 376		G/constructions
proportion	MATYC 85 SSM 3574		
proportional	CRUX 62 148 218 JRM 463 631 739		G/constructions/points
	SSM 3710		►G/covering problems/discs [4]
propose	AMM 6017 JRM 685		►G/inequalities
proposition	CRUX 27 59 SSM 3737		►G/maxima and minima
protractor	PARAB 265		►G/non-Euclidean geometry
psi-particle	AMM E2636		►G/parallelograms/area
publish	CRUX 431 FUNCT 1.2.7 JRM 437		►G/polygons/13-gons
publisher	MSJ 467		►G/squares/circles
pulley	FUNCT 3.1.6		►NT/geometry
punchbowl	JRM 699		►P/geometry
pupil	PARAB 311	quadrisection	CRUX 420
purchase	CRUX 297 JRM 729 OMG 18.3.9 TYCMJ 104		►G/constructions/angles [2]
purchaser	JRM 671	quadruple	AMM E2728 ISMJ 11.9 JRM 680 NAvW 546
pursuer	CANADA 1979/4 PME 401	quantity	AMM $\mathrm{S}4$ JRM 697 NYSMTJ 96 SIAM $78\text{-}1$
pursuit problem	,		SSM 3574
	►AN	quarter	JRM 782 OSSMB G79.3-2
puzzle	JRM 471 473 482 678 704 MM 952 PME 458	quarterly	TYCMJ 104
	SSM 3574	quartic	CRUX 442 NAvW 512
	▶RM	•	►G/projective geometry
	►RM/alphametics/phrases	quasicontinuous	_ 1
pyramid	AMM E2694 KURSCHAK 1979/1 MM Q621	quasiperfect	PUTNAM 1976/B.6
	PME 367 SPECT 10.2 SSM 3693	quaternion	NAvW 431
	►SG ►SC/outhor	quatermen	►HA
	►SG/cubes ►SG/maxima and minima/prisms [2]	Quebec	►RM/alphametics/places
	SG/spheres/inscribed polyhedra	queen	AMM E2698 JRM 468 597 601 680
pyramidal	SSM 3693	queen	PARAB 427
Pythagorean tri		question	►RM/alphametics/phrases
i y magorean m	►G/constructions/angles	questionnaire	ISMJ 13.7
Pythagorean tri		quick	JRM 392 512 536 MSJ 437
, 0	►NT [4]	1 *	CRUX 452 NAvW 436
	►SG/rectangular parallelepipeds/diagonals	quintic	
quadrangle	PME 380	quintuple	AMM S20
	►G/dissection problems/squares	quizmaster	MM 1051
quadrant	AMM 6191 CRUX 119 FUNCT 3.3.4	quoted	SSM 3694
	ISMJ J10.12 JRM 370 603 MM 947 MSJ 451	quotient	FQ B-349 IMO 1977/5 JRM 474 OMG 14.1.1
	PUTNAM 1979/B.5 SSM 3656		PARAB 316 367 SSM 3597
	G/circles/isosceles right triangles		►NT/Euler totient
	G/constructions/circles		►NT/greatest common divisor
	G/regular octagons/inscribed circles		►P/random variables [4]
anadrat:	►G/squares/erected figures	quotient field	AMM 6177
quadratic	AMM 6058 6094 6156 6270 E2627 E2765 CMB P249 P252 P274 CRUX 332 FQ H-277		►HA/fields/perfect fields
	H-307 MM 1072 NAvW 413 486 PME 414	quotient groups	►HA/groups/group presentations
	PUTNAM 1975/A.2 SPECT 7.9 9.7	rabbit	CANADA 1979/4 FUNCT 1.1.9
	SSM 3755	race	FUNCT 3.1.4 PENT 276
	►NT/recurrences/first order [2]	radiating	JRM 464
	- 1.1,100difoliooo, moo order [2]	I radiaville	····· 101

radiation detec	ctor 19	75–1979	rational number
radiation detec		rate problems	►AL
	►AL/weights		►AN
radiator	JRM 603 OMG 17.3.1	rates of converge	
radical	AMM 6068	mates of discounser	NT/sequences/limits [2]
	►AL	rates of diverger	NT/recurrences
	► AL/complex numbers	ratio	AMM 6048 6178 E2514 E2657 E2658
	►AL/finite sums ►AL/inequalities	Tatio	CANADA 1978/4 CRUX 107 114 344
	► AL/inequalities/finite sums		FQ B-348 FUNCT 1.4.1 3.2.5 IMO 1979/4
	►AL/inequalities/logarithms		ISMJ 11.7 11.17 12.15 JRM 445 537 C5
	► AL/iterated functions		MM 1057 1068 1076 1077 Q615 Q616 Q660
	►AL/numerical calculations		NYSMTJ 47 85 OBG8 OSŠMB G78.2-4
	►AL/numerical inequalities [2]		PARAB 320 PENT 303 PME 338 388 435
	►AL/solution of equations		447 451 454 SIAM 78-1 78-7 SSM 3585 3698
	►AN/integrals/evaluations		TYCMJ 79
	►AN/limits/finite products		►AL/word problems
	►AN/limits/sequences [9]		►AN/series/pairs of series
	►AN/maxima and minima		G/circles/2 circles [2]
	►AN/sequences/recurrences		G/circles/surrounding chains
	►G/triangle inequalities/interior point		G/quadrilaterals/triangles [8]
	►HA/algebras		G/regular pentagons
	►NT/continued fractions		►G/triangles ►G/triangles/area
	►NT/Diophantine equations		G/triangles/orthocenter
	►NT/inequalities		►G/triangles/trisected sides
	▶NT/powers		NT/arithmetic progressions
	►NT/quadratic residues		NT/Diophantine equations/degree 2
	►NT/sequences/monotone sequences [4]		NT/number representations [3]
	►RM/alphametics		►NT/Pascal's triangle/consecutive terms
radical axis	CRUX 225		NT/recurrences/
1: 1 4	►G/circles/chords		generalized Fibonacci sequences
radical center	CRUX 248 PME 408		►NT/triangles/counting problems [6]
radioactive radius	PARAB 291		►SG/tetrahedra/inscribed spheres
radius	[93 references] ►G/circles/3 circles	ratio of areas	►G/maxima and minima/triangles
	G/constructions/circles	ratio of successive	
	G/hexagons/circles		►NT/recurrences/second order
	► G/inequalities/quadrilaterals		NT/sum of divisors/sets [7]
	►G/triangle inequalities	rational	[114 references]
	►G/triangles/escribed circles	rational coefficie	
railroad track	CRUX 406 MM 980	rational cube	AMM 6154 DELTA 5.1-3 MM Q649
	►G/perspective drawings	rational distance	•
railway	OMG 17.2.2 18.1.8 PARAB 275	Tational distance	►G/analytic geometry/concyclic points
rainfall	MM 1056		►G/points in plane
	►AM/meteorology	rational expressi	
raised	JRM 539 OMG 16.1.2		▶NT
raisin	►RM/alphametics/phrases		►NT/forms of numbers/squares
raising	OSSMB 78-15 79-17		►NT/limits
ran	MATYC 123	rational function	a AMM 6082 E2693 CMB P277 CRUX 146
random	[87 references]		FQ B-361 B-381 B-390 OSSMB G77.1-6
random arrival			PUTNAM $1977/A.4$ SIAM $76-11$
1 1: 4:	▶P/waiting times		►AN/Bessel functions/infinite series
random directi	▶P/relative motion [2]		►AN/complex variables
random calcati	on JRM 379 MATYC 122		► AN/infinite products [2]
random signs	P/number theory/finite sums		► AN/Maclaurin series
random variab			AN/sequences/monotone sequences [2]
random variab	▶P		► AN/series/closed form expressions
	▶P/inequalities		►HA/fields ►NT/factorials
random vector	, =		NT/generating functions
random walks	▶P/stochastic processes		P/Cauchy distribution/binomial coefficients
	▶P/geometry/polyhedra		TR/approximations/arctan [6]
range	AMM 6091 E2707 E2778 CMB P272	rational number	
<u> </u>	JRM 371 387 589 658 MM Q623 PME 372	1 autonar mannber	346 PS2-2 FQ B-417 FUNCT 1.1.2
	SPECT 7.9 8.2 TYCMJ 111		IMO 1975/5 ISMJ 13.15 JRM 586
	►NT/primes/generators		MM 935 968 972 982 Q617 Q649 MSJ 450
	►NT/sets/density [3]		NYSMTJ 45 OSSMB 78-9 PARAB 314 316
rank	AMM 6125 6215 E2556 E2711 E2762 E2779		PUTNAM 1976/A.4 1978/B.2 SSM 3627
	JRM 424 601 MATYC 115 MM 951 Q644		TYCMJ 81
	NAvW 527 SIAM 75-2 76-15		►AL/algorithms
	►LA/matrices/block matrices		►AN/sequences/rearrangements
rankings	MATYC 117		►GT/selection games/players select digits
	▶P/statistics		►G/analytic geometry/circles
rare	JRM 680 697		►HA/binary operations

rational number	1975	–1979	rectangular parallelepiped
	►HA/fields/extension fields [3]	receipt	OMG 18.2.4
	►HA/groups/subgroups	receive	CRUX 11 JRM 463 499 500 769 OMG 17.1.9
	NT		PARAB 306 427
	►NT/approximations ►NT/floor function/primes	receptor reciprocal	AMM E2636 AMM E2533 E2573 ISMJ 11.20 JRM 477
	►NT/forms of numbers/sum of cubes	reciprocar	586 795 MATYC 104 MM 980 1015
	►NT/forms of numbers/		NAvW 538 OMG 15.3.4 15.3.7 SSM 3623
	sum of squared reciprocals [3]		3737 TYCMJ 73 132
	►NT/irrational numbers/0-1 numbers		►AL/radicals
	NT/polynomials/injections		►AL/sum of powers
	►NT/products [3]		►AN/series/monotone sequences ►G/perspective drawings/railroad tracks
	►NT/sequences ►NT/series/unit fractions		NT/digit problems/primes
	►NT/squares [2]		►NT/Fibonacci and Lucas numbers/
	►T/connected sets/plane sets		infinite series
	►T/unit interval/homeomorphisms		►NT/Fibonacci numbers/inequalities
rational point	AMM 6130 E2598 CRUX 109 JRM 765		►NT/Fibonacci numbers/infinite series [2]
	MM 957 MSJ 419 NYSMTJ 45		NT/modular arithmetic
	►C/geometry/concyclic points ►C/geometry/points in plane		►NT/Pythagorean triples ►NT/series/binomial coefficients
	► G/analytic geometry/circles		NT/squares/rational numbers [2]
	►G/combinatorial geometry/lines in plane	reciprocity	CMB P249
	►G/lattice points/circles	record	FUNCT 1.3.6 JRM 376 530 715 MM 1056
	►G/lattice points/counting problems [2]		OSSMB 76-11
	►G/points in plane/partitions	recrease	AMM S4
rational root	CRUX 178 185 OSSMB G75.1-1	rectangle	AMM 6178 E2577 CRUX 204 435 483
matianal aidaa	►AL/theory of equations/roots NTT/twice place/right triangles [2]		ISMJ 10.9 11.10 12.31 13.16 13.24 14.5 J10.8 JRM 600 713 MM 960 966 Q660 MSJ 424
rational sides	NT/triangles/right triangles [2] AMM S2 CMB P244 CRUX 136 IMO 1978/2		447 NAvW 476 NYSMTJ 68 95 OMG 15.1.3
ray	MM 1003 NYSMTJ 43 OSSMB 77-4		15.2.2 OSSMB 79-11 G79.2-8 PARAB 320
	PARAB 304 PUTNAM 1976/A.1		PME 430 439 455 SSM 3637 3640 3653 3716
	TYCMJ 119		TYCMJ 86 USA 1976/1
reachable point	ISMJ 13.23		►C/counting problems/geometric figures
1.	►C/graph theory/directed graphs		►G ►C /h:ll:anda [12]
reaching reaction	FUNCT 3.1.1 MATYC 123 SPECT 10.9 JRM 730		►G/billiards [13] ►G/constructions
readily	JRM 686		►G/dissection problems
reading	FQ B-363 JRM 704 MM 940 1056 PME 426		►G/dissection problems/squares
real-normed	NAvW 549		►G/inequalities
real numbers	►HA/binary operations		►G/maxima and minima
	►HA/fields/complex numbers		►G/packing problems
	T/sets		► G/packing problems/rectangles
real quadratic fie	►NT/modular arithmetic/fields		►G/paper folding ►G/regular octagons/diagonals
real roots	►AL/theory of equations		NT
1001 10000	►AL/theory of equations/roots		►NT/geometry
real-valued funct	tion		▶P/geometry
	AMM 6018 6042 6073 6084 6093 6140 6165		►RM/chessboard problems/coloring problems
	6181 6184 6198 6256 6273 6278 E2610 S3	rectangular	CANADA 1977/7 CRUX 135 137 244
	CMB P256 FQ H-287 MM 1027 NAvW 442 456 OSSMB 78-1 79-9 PUTNAM 1975/A.5		IMO 1976/3 ISMJ J11.4 JRM 390 444 480 500 646 787 MSJ 501 NAvW 503
	TYCMJ 46 71 92 102 106		OMG 15.2.2 16.2.7 PARAB 319 326 399
	►AN/functions		SIAM 76-15 SSM 3637
	►AN/functions/continuous functions	rectangular ar	
	►AN/functions/differentiable functions	rectangular ar	ray AMM 6192 CRUX 2
	►AN/integrals/functions [3]	rectangular co	
	►AN/limits/sequences	1 0	NAvW 490
	► AN/measure theory/monotone functions ► AN/partial derivatives	rectangular fie rectangular ga	
	T/graph of a function/connected sets	rectangular ga	ISMJ 13.6
	T/functions	rectangular hy	
	►T/metric spaces/first category [6]		CRUX 15
realizable	CMB P268 JRM 707		►G/hyperbolas [2]
realized	CMB P268 MATYC 123	rectangular pa	
rear	CRUX 479 PARAB 311		CRUX 286 367 MM 939 SSM 3761
rearrange	FUNCT 2.2.2 ISMJ J10.8 PARAB 312 326		TYCMJ 100 134 ►C/counting problems/geometric figures
rearrangement	SPECT 10.4 SSM 3629 ISMJ 13.11 PARAB 377 SPECT 11.3		►NT/geometry
1.carrangement	TYCMJ 54		►SG [18]
	►AN/sequences		►SG/analytic geometry/maxima and minima
reason	JRM 376 TYCMJ 104		►SG/curves/arclength
reasonably	PUTNAM 1975/A.2		▶SG/maxima and minima
reassemble	ISMJ 11.15 MM 1057 PARAB 286 PME 416		►SG/packing problems
rebound	CRUX 137	1	►SG/packing problems/cubes

rectangular plate		1975–1979	requested
rectangular plate	CRUX 427	regular heptago	
rectangular solid	OSSMB 77-13 SSM 3584 3719	, ,	►G
rectilinear	OSSMB G79.2-8	regular hexagon	
recurrence	AMM E2688 CRUX 191 355 FQ B-391 B-41	.0	C/counting problems/geometric figures
	MM 1085 PUTNAM 1976/B.3 SIAM 78-2		G C /taggelations
	79-3 TYCMJ 62		►G/tesselations ►P/coloring problems/expected value
	►AL	regular octagon	· · · · · · · · · · · · · · · · · · ·
	►AN/derivatives/roots	regular octagoli	3656
	►AN/differential equations/determinants		▶G
•	►AN/exponential function/infinite series		►SG/polyhedra/spheres [2]
•	►AN/limits/sequences	regular pentago	n CRUX 145 428 PS2-1 FQ B-348
•	►AN/Maclaurin series	1 - 28 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	FUNCT 3.2.5 ISMJ J11.7 MM 1057
•	AN/power series		PME 406 SSM 3661
•	AN/sequences		▶G
	AN/sequences/pairs of sequences		►G/dissection problems
	AN/series/arrays		►G/paper folding [3]
	►LA/determinants	regular polygon	AMM E2594 CRUX 173 ISMJ 12.13
	NT		KURSCHAK 1979/1 PARAB 315 SSM 3772
	NT/arrays		►C/geometry/concyclic points
	NT/binomial coefficients/finite sums		►GT/selection games/arrays
	NT/digit problems/sum of digits [3]		▶G
			►G/dissection problems
	NT/digit problems/terminal digits		►G/limiting figures [2]
	NT/factorials/fractions		►G/maxima and minima
	NT/Fibonacci and Lucas numbers [11]		►G/paper folding [2]
	►NT/Fibonacci numbers		►G/tiling
	►NT/Fibonacci numbers/identities		►NT/Pascal's triangle/modulo 2
•	►NT/permutations/fixed points		▶P/geometry/polygons
)	NT/primes		►SG/pyramids
•	NT/primes/generators	regular polyhed	
•	NT/sequences/binary sequences	, .	►AM/electrical networks/resistances
)	NT/sequences/divisibility	regular rings	►HA/rings
	NT/sequences/floor function	regular simplex	
	►P/inequalities/intersections		►G/n-dimensional geometry/simplexes
	TR	regular tetrahed	CRUX 245 367 PS5-3 JRM 532 PME 425
recursion	AMM E2520 FQ B-349 B-411 JRM 728		►SG [2]
recursive inequalit			SG/curves/arclength
-	►AN/sequences/inequalities [5]	reign	MM 943
redealt	SPECT 11.6	related	OMG 16.1.10 PME 455 SIAM 76-17
redouble	JRM 560	Telated	SSM 3752 3787
reduce	AMM E2777 CRUX 133 299 JRM 373 680	relations	►ST
reduce	728 MM 961 1002 NAvW 432 PENT 277	relations among	
	PME 358		►G/triangles
reducible polynom			►G/triangles/special triangles
reducible polynon	AMM E2578		►SG/polyhedra/convex polyhedra
	►HA/fields/polynomials		►SG/rectangular parallelepipeds
reenter	JRM 499	relationships	►RM/logic puzzles
refinement	CRUX 395	relative motion	►AM/physics/particles
reflected			▶P [5]
reflection	CMB P244 PARAB 304 CRUX 289 JRM C6 MM 1003 1086	released	FUNCT 2.4.4 NAvW 393 403 PENT 286
reflection	NAvW 475 476 508 OSSMB 77-4	reliability	JRM 387
		relocate	JRM 554
	AM/optics	remainder	AMM 6011 CRUX 76 375 FQ B-362
0	SG/paper folding		FUNCT 1.3.1 IMO 1977/5 ISMJ J11.18
refraction	CRUX 289		JRM 563 OMG 14.1.1 OSSMB 76-7 G78.1-1
refreshments	OMG 18.2.4		PARAB 367 SSM 3635 3765
refuse	CRUX 431 OMG 18.2.1	remote	AMM E2620
regard	AMM E2588 E2608 JRM 389 SSM 3739	removing	JRM 533 682
	3780	renumbered	NAvW 430
regardless	AMM E2665 CRUX 418 ISMJ 14.5 JRM 47	5 repair	FUNCT 1.4.5
	557 675 701	repdigits	►NT
regiment	SIAM 75-2	repeating fraction	ons ▶NT/base systems
region of converge	ence	non otition	AMM 6192 CRUX 267 409 PS5-2
•	►AN/complex variables/number theory	repetition	PARAB 327 343 PUTNAM 1977/B.3
regular	[83 references]	replacement	AMM 6155 E2665 FUNCT 3.2.4 JRM 379
regular dodecagon	1MO 1977/1 PARAB 364	теріасешеш	MM 1022 SIAM 78-17
regular dodeceagor.	·	report	FUNCT 1.1.5 ISMJ 13.7 MM 1024
0		1 100010	. 51151 1.1.0 151415 10.1 141141 1024
regular functions	AN/integral inequalities/bounds		PENT 316 320
regular functions	►AN/integral inequalities/bounds AMM E2564	repunit	PENT 316 320 ▶NT
regular functions regular graph	, ,		PENT 316 320 ►NT ►TR/solution of equations/tan

reset	1975	5–1979	rule
reset	JRM 671 PENT 278	road	CRUX 354 PS8-1 FUNCT 1.3.2 JRM 534
residue	AMM 6094 6156 6161 E2627 E2673 E2781		MM 976 NYSMTJ 81 OSSMB G79.1-1
	FQ B-363 JRM 672 MM Q653 NAvW 413		PARAB 308
	431	Robin	JRM 548
resistance	AMM E2535 E2620 CRUX 182 JRM 529	rod	AMM E2596 CRUX 19 NAvW 450
	PARAB 295 SIAM 79-16 SPECT 7.1		OSSMB G78.1-4
resistor	►AM/electrical networks	roll	►AM/physics CRUX 308 333 409 450 FUNCT 1.4.1
restaurant	AMM E2620 JRM 529 CRUX 308 PARAB 384	1011	1.5.1 JRM 621 MENEMUI 1.2.1 MM 1011
restriction	AMM 6159 JRM 424 446 477 MSJ 426		1071 NYSMTJ 56 OMG 17.1.3 PME 407
100011001011	NAvW 452 OSSMB G76.1-6 PME 342		SSM 3598
	SIAM 77-13	roller	►SG/cylinders
resultant	NYSMTJ 63 TYCMJ 78	rolling	▶G [2]
return	►RM/alphametics/phrases	rolling objects	►AM/physics
reversal	JRM 531 PME 348 SSM 3575 3591	Roman numerals	
reverse	JRM 393 539 MSJ 417 435 OSSMB G77.2-2	f	►AL/algorithms FUNCT 2.4.4
	PME 348 461 SSM 3575 3591 3600 3614 3631 3697	roof rook	AMM 6096 JRM 540
reversing	ISMJ 13.21 JRM 760	rook versus knig	
revolution	OMG 17.1.3	TOOK VEISUS KIIIg	►GT/chess problems/individual matchups
rhombus	SSM 3704	rookwise	JRM 480 C6
	►C/counting problems/geometric figures	room	CRUX 195 244 ISMJ 11.18 J11.15 JRM 499
	►G/analytic geometry/Euclidean geometry		OSSMB 76-11 PARAB 356 SPECT 9.2
rhyme	CRUX 215 JRM 751	root	[61 references]
riddle	CRUX 151		►AL/polynomials/Chebyshev polynomials
	►RM [2]		►AL/theory of equations
Riddler	JRM 770a		►AN/derivatives
riding	AMM E2608		►AN/sequences/convergence ►NT/arithmetic progressions
niemann-stiertj	es integrable functions T/function spaces/first category		NT/polyhedral numbers/
Riemann zeta fu			tetrahedral numbers
reicinaiiii zeea re	►AN [4]		►NT/polynomials [2]
	►NT	roots and coeffic	
	►NT/series/inequalities		►AL/polynomials
right-angled	CRUX 33 428 TYCMJ 145		►GT/selection games/polynomials
right angles	►NT/geometry/quadrilaterals		►NT/polynomials/degree 2 [2]
right circular co		roots of unity	►AL
	►G/rolling ►SG		►LA/eigenvalues/evaluations CRUX 89 FUNCT 3.1.6 JRM 395 541
	►SG/paper folding	rope	OMG 16.1.3 PENT 282 PME 382
right-continuous			►AM/physics/equilibrium
right-foot	FUNCT 1.4.5		SG/maxima and minima/spooling
right-hand	AMM E2551 CRUX 436 FUNCT $1.1.4$ $1.2.5$	roses	►RM/alphametics/phrases
	2.2.3 OSSMB 79-2 PARAB 327	rotate	AMM 6102 CRUX 170 394 FQ B-415
right triangles	▶ G [2]		JRM 729 C6 MM 1018 NYSMTJ 60
	►G/analytic geometry/Euclidean geometry		OSSMB G78.1-4 PME 436
	►G/constructions [3]	rotating lines	►G/locus
	►G/constructions/pentagons ►G/dissection problems	rotation	►C/arrays/circular arrays ►C/configurations/circular arrays
	G/inequalities		G/polygons/convex polygons
	G/inequalities/triangles	round robin	JRM 715
	►G/maxima and minima [2]	rounds	PME 350
	►G/points in plane/partitions	route	CRUX 289 PS8-1 JRM 498 603 PARAB 308
	►G/triangles/angle bisectors	row	[71 references]
	►G/triangles/isosceles triangles		►NT/Pascal's triangle/modulo 2
	►NT/geometry [2]	row operations	►LA/matrices/symmetric matrices
	►NT/triangles	row-stochastic	AMM E2652
	TR/triangles/tan	row sums	►AN/series/arrays
rigid rim	AMM E2727 NAvW 475 476 OSSMB G78.1-4		►C/algorithms/matrices ►C/arrays/symmetric arrays
ring	AMM 6039 6068 6069 6116 6134 6141 6152		►NT/arrays/triangular arrays
6	6180 6183 6256 6259 6263 6284 E2528		NT/Fibonacci and Lucas numbers/arrays
	E2536 E2586 E2676 E2704 E2713 E2742	row sums and co	
	CMB P258 DELTA 5.1-3 6.2-3 JRM 504 729		►C/arrays/0-1 matrices [2]
	MM 948 991 1019 1052 TYCMJ 40 65	rowing	SPECT 11.4
	►HA	rubber	JRM 442
	►LA/determinants/evaluations	rubber band	FUNCT 2.5.3 JRM 444
rise	AMM S14 FQ H-257 H-273 H-297	ruin	JRM 423
	OSSMB G79.1-1	rule	AMM 6032 6151 E2777 ISMJ J11.8
	CRUX 193 JRM 478 603 MM 976 1004	I	JRM 592 594 601 NAvW 477 NYSMTJ 72
river	OMC 15 9 1 OSSMD C75 1 5		
river	OMG 15.2.1 OSSMB G75.1-5	ruler	OMG 14.1.2 PARAB 292 341 SSM 3612 FUNCT 2.5.1 NAVW 402 432 PARAB 265
river	OMG 15.2.1 OSSMB G75.1-5 ►AL/rate problems ►AM/navigation	ruler	OMG 14.1.2 PARAB 292 341 SSM 3612 FUNCT 2.5.1 NAvW 402 432 PARAB 265 399

ruler only	1975 ₋	-1979	set
ruler only	►G/constructions/rulers	self-intersecting	
runner-up	▶P/order statistics		►P/geometry/polygons [4]
running	►AL/rate problems [22]	self-polar	CRUX 353
runs	►NT/sequences	semi-definite	AMM 6061 MM Q644 NAvW 554
	▶P/coin tossing	semi-matrix	FQ H-252
	▶P/independent trials	semi-regular	PME 352
rusty compass	CRUX 492 JRM 505	semicircle	CRUX 386 ISMJ 13.10 13.27 JRM 370
rabby compass	►G/constructions		MSJ 470 502 OSSMB 76-4 PME 398
sack	JRM 563 OMG 15.2.1 PARAB 376		►C/geometry/concyclic points
salary	PARAB 322		▶G
Salaiy	C/distribution problems		►G/circles/isosceles right triangles
1	, -		►G/maxima and minima
salvo	JRM 375		►G/squares/inscribed circles [7]
sample	CRUX 484 JRM 379 623		►NT/geometry
sample means	►P/random variables/characteristic functions	semicircular ar	
	y ▶P/biology/mating	semigroup	AMM 6150
satellite	JRM 504		►HA/groupoids
savings	TYCMJ 104	semimonotone	SIAM 76-15
scalar	AMM 6068 6078 E2586 E2742 S22 MM 951	semiperimeter	MM 936 1043 1077 NAvW 488 PME 450
	1058 Q644 NAvW 547		►G/inequalities/triangles
scalar multiples	s ►LA/linear transformations		►G/triangle inequalities/altitudes
scale	AMM 6219 6224 JRM 448 592 NAvW 455		►G/triangle inequalities/radii
	OMG 18.3.5 SSM 3570 3614 USA 1978/2		►NT/triangles/counting problems
	►AL/weights	semiprime	JRM 652
	►G/map problems/constructions	sentence	AMM 6260
	►SG/surfaces		►ST/symbolic logic
analama tuiamula		separable space	
scalene triangle			►T/locally convex spaces/linear subspaces [2]
	►NT/triangles		►T/subspaces/discrete subspaces
scansion	CRUX 215	separate	AMM 6029 E2513 CRUX 328 JRM C5
Schauder decor			MM 952 976 OSSMB G79.1-1 PARAB 267
	►AN/Banach spaces/subspaces		372 399 PME 382 SIAM 75-2 SPECT 7.5
schedule	OMG 17.1.1 PME 382	separation prop	
schilling	ISMJ 11.16		$ ightharpoons ext{T}$
school	FUNCT 3.3.3 ISMJ 13.7 OMG 18.2.4 18.2.6	sequence	[292 references]
	18.3.3 PARAB 335 357 372 PENT 276		►AL
scoop	NAvW 509		►AN
score	CANADA 1976/3 FUNCT 3.5.1 JRM 469 573		►AN/limits
	624 715 MATYC 115 117 MENEMUI 1.1.3		►AN/limits/finite sums
	MSJ 487 OMG 17.2.5 18.2.6 PARAB 323		►AN/limits/logarithms
	PME 403		►AN/limits/trigonometry
scoring	JRM 624 715 OMG 18.2.6		▶ C
scout	SSM 3577		►C/counting problems
screenfold	AMM S4		►G/right triangles
sea	SPECT 7.5 8.2		►NT
seam	JRM 498		►NT/digit problems/terminal digits [2]
	MM 1024 OMG 17.1.1 SSM 3617		►NT/divisors
season			►NT/floor function
seat	PARAB 266 311		►NT/harmonic series/inequalities
sech	►AN/series/hyperbolic functions		►NT/inequalities/powers of 2 [2]
second-best	JRM 647		►NT/Lucas numbers
second-order	FQ B-411		►NT/maxima and minima
secret	JRM 469		►NT/primes
section	AMM E2617 E2751 CRUX 140 JRM 472 532		►NT/primes/products [2]
	OMG 15.2.2 17.2.2 17.2.5		▶P
sector	CRUX 284 436		►RM/chessboard problems/counting problems
	►G/constructions/circles	1 1	s ►LA/linear transformations
seeing	MM 1084 MSJ 437 SSM 3590	sequences of fo	
segment	[92 references]		►GT/chess problems/maxima and minima [4]
selecting	JRM 558 SSM 3767	sequential	FQ H-257 H-273 JRM 566
selection	CRUX 280 JRM 379 510 MSJ 462	series	[52 references]
selection	OMG 18.2.7		►AN
selection games			►AN/identities/integrals
selection games			▶NT
anlanti 11	▶P/game theory		►NT/Möbius function
selection proble			►NT/triangular numbers
	►C		►TR
	▶P	service	SIAM 76-7
	►P/number theory/congruences	serving	JRM 387 NAvW 509
self-adjoint ope		set	[361 references]
	►AN/functional analysis/Hilbert spaces		►AN [2]
self-complemen	itary graph		►AN/functions/differentiable functions
_	PME 441		►AN/series/divergent series
	►C/graph theory/maxima and minima		►C '

set	1975	–1979		si
	►C/coloring problems [3]	sight	▶RM/alphametics/phrases	
	NT	sign	►AL/polynomials/derivatives	
	►NT/Lucas numbers	~-8	►LA/eigenvalues	
	►NT/modular arithmetic/		►NT/sequences/sum of consecutive terms	
	complete residue systems	signed	MM 970	
	►NT/number representations [2]	significant	CRUX 312 FUNCT 3.3.3 JRM 741	
	►NT/sum and product		PARAB 408	
	►NT/sum of divisors	significant dates	►AL/calendar problems	
	▶P [2]	silhouette	NYSMTJ 86	
	▶P/selection problems		►SG/analytic geometry/paraboloids	
	▶T [']	silver	JRM 379	
et functions	►AN/functions/bounded variation		►RM/alphametics/phrases	
et theory	►C/graph theory/bipartite graphs [2]	similar matrices		
v	►NT/arithmetic progressions/subsequences		►G/equilateral triangles	
ets of divisors	►NT/divisors	Similar triangles	►G/inequalities/triangles	
	►NT/sum of divisors/perfect numbers		►G/locus/triangles	
etting	AMM 6109 CRUX 298 420 428 ISMJ 13.9		►G/paper folding/equilateral triangles	
J	JRM 671		►G/quadrilaterals/triangles	
ettle	AMM 6235 6275 PME 413		►G/triangles	
everal players	►GT/betting games		►G/triangles/cevians	
everal variables				
	►AN/complex variables		► G/triangles/inscribed triangles	
hadow	NYSMTJ 64	aimaila:t	NT/triangles	
•	►SG/analytic geometry/cubes [2]	similarity	AMM E2657 PME 435	
hape	AMM 6178 CRUX 394 ISMJ 14.22 JRM 557	simple closed cu		
паро	628 729 787 MM 1056 NYSMTJ 56		►AN/curves	
	OSSMB 78-2 PARAB 315 336 PME 416	. ,	▶G	
	SIAM 78-17 SSM 3661	simple groups	►HA/groups/finite groups	
haped	AMM 6182 PARAB 410 SSM 3640	simple polyhedra		- 1
hare	AMM E2732 CRUX 308 FUNCT 1.3.1		►SG/polyhedra/combinatorial geometry [2]
	JRM 445 502 527 563 684 785 C4	simple rings	►HA/rings/nonassociative rings	
	OSSMB 79-14 PARAB 297 SSM 3577	simplest	JRM 509	
	USA 1979/5	simplex	AMM E2548 E2657 E2674 CMB P244	
	►AL/fair division		CRUX 224 SIAM 78-20	
hareholder	JRM C4		ightharpoonup G/n-dimensional geometry	
haring	JRM 391		▶ G/n -dimensional geometry/4-space [2]	
harp	CRUX 355 MM 1068		ightharpoonup G/n-dimensional geometry/inequalities	
harp inequaliti		simplification	►AL/finite products	
narp mequanti	►AL/means/inequalities		►AL/logarithms [4]	
heep	CRUX 71 JRM 476 OMG 17.1.9 18.1.9		►AL/radicals	
псер	►AL/rate problems		►RM/logic puzzles/statements	
sheet	CRUX 140 204 ISMJ 13.14 JRM 538 628	simplify	CANADA 1975/1 FQ B-394 FUNCT 2.4.	1
ince	MM 996 PARAB 399 SSM 3637		JRM 655 NYSMTJ 57 OSSMB G75.1-2	
shelf	OMG 16.1.6		PARAB 335 SSM 3675 3711	
hift	ISMJ J11.5 MSJ 436	simply connected	d sets	
ship	OMG 17.2.6 SIAM 76-13		►T/connected sets/plane sets	
shop	FUNCT 1.4.5	simultaneous	AMM S20 CRUX 277 JRM 632 666 667	
•	PME 343 SPECT 8.2		MSJ 421 433 NYSMTJ 37	
shore short	MSJ 477 PME 430	simultaneous alp	phametics	
hortened		1	►RM/alphametics	
	JRM 395 ►G/maxima and minima	simultaneous equ		
hortest paths	SG/dissection problems/spheres		ISMJ J11.3 PARAB 280	
la a 4	, , , ,	simultaneous ine		
hot	PME 373		►NT/inequalities [14]	
shoulder-to-sho		simultaneously	AMM 6060 E2618 AUSTRALIA 1979/2	
l	PARAB 331		CRUX 493 FQ H-256 FUNCT 1.5.1	
huffle	AMM E2645 CRUX PS5-1 FUNCT 2.1.1		IMO 1979/3 JRM 601 PARAB 303	
	JRM 740 C3 MM 1022 OSSMB 77-14		SIAM 79-4 SSM 3621 3648	
	PARAB 327 343 SPECT 11.3 USA 1975/5	sin	►AN/derivatives/trigonometric functions	
hunting proble		Sili	► AN/integral inequalities/bounds	
	►RM		► AN/integrals/evaluations	
ides	►G/equilateral triangles		► AN/sequences/trigonometry	
	►G/inequalities/triangles		►G/analytic geometry/polar curves	
	►G/quadrilaterals		, , ,	
	►G/triangle inequalities [2]		►G/triangle inequalities/half-angles	
	►G/triangles		TR/approximations	
	►G/triangles/relations among parts		TR/determinants	
	►NT/Pythagorean triples/inradius		►TR/identities	
ides and angles	s ►G/inequalities/triangles		►TR/identities/constraints	
	►G/non-Euclidean geometry/quadrilaterals		►TR/inequalities	
	►G/regular polygons/cyclic polygons		►TR/infinite products/cos	
ides and base	►G/triangles/isosceles triangles [21]		►TR/infinite series	
ides and diagon	, , , , , , , , , , , , , , , , , , , ,		►TR/triangles	
	►G/inequalities/quadrilaterals		►TR/triangles/maxima and minima [5]	
	, ,,,	i .	,	

sin and cos	1975-	spherical	
sin and cos	►G/triangle inequalities/angles	solid geometry	►AM/physics
	▶TR/fallacies		►G/maxima and minima
	►TR/identities		►HA/groups/transformations
	►TR/identities/constraints [2]	solid tetrahedro	
	►TR/inequalities	solids of revolut	
	►TR/infinite series		▶SG [2]
	►TR/numerical evaluations	solitary	AMM 6020
	TR/solution of equations	solution in ratio	onals
	TR/systems of equations/integer coefficients		►NT/Diophantine equations
sin and cot	►TR/triangles [2] ►TR/triangles	solution of equa	ations
sin and tan	TR/inequalities		►AL
sin and tan	TR/inequalities/Huygens [20]		►AL/logarithms [7]
sine	SSM 3637		►NT/determinants
singular	AMM 6073 E2552 E2559 E2779		►NT/Euler totient
sinh	►AN/integrals/evaluations		►NT/floor function
	►AN/series/hyperbolic functions		►NT/modular arithmetic
	►TR/infinite series		►TR
sinh and tanh	►TR/inequalities/Huygens		►TR/series/trigonometric series
sink	JRM 513	solvable	FQ H-306 SIAM 75-9
situation	AMM E2561 E2571 E2753 S4 CRUX 363	solve	►RM/alphametics/phrases [4]
	JRM 393 MENEMUI 1.1.3 OSSMB 76-14	son	CRUX 122 JRM 393 500 643 659
six-digit numbe			OSSMB 78-10
	3610	sorting	JRM 736
six-petaled	PARAB 340		►C
skeleton	CRUX 371 JRM 410 579 585 617 664 696	sound	JRM 546 686 770a SSM 3780
	698 780 781		►RM/alphametics/words
sketch	►RM/cryptarithms CANADA 1978/6 CRUX 333 FUNCT 1.2.1	south	JRM 534 597 OSSMB G76.3-3 PARAB 305
SKetCII	PARAB 308 PME 458	southwest	CANADA 1977/7 OMG 16.2.7
skew	CRUX PS6-2 MM Q630 NAvW 414	space curves	►SG
DIKO W	USA 1977/4	space curves	
skew lines	▶SG/spheres	space mining cur	►AN/curves
skew quadrilate		spaceship	►AL/rate problems [8]
	▶SG	spacing	JRM 757
skidding	►AM/physics/cars	spacing	JRM 443 597 782
slab	PUTNAM $1975/B.2$	span	AMM 6131 6168 6184 E2548 CRUX 492
	►SG/covering problems/family of planes	Spanish	►RM/alphametics/doubly true
slant	CANADA 1977/5 NYSMTJ 56 OMG 16.2.5	sparse	FQ H-300
slash	JRM 785	_	JRM 421 SIAM 79-1
sleep slide	PME 439 FUNCT 2.5.1 JRM 471 472 592	spatial speak	CRUX 419 JRM 539 USA 1978/5
slide rules	PP P P P P P P P P P P P P P P P P P P	speaker	CRUX 151
sliding tile puzz		special triangles	
shame the puzz	►RM/puzzles	special triangles	, 0
slightly	MM 996		TR/triangles
slipping	FUNCT 1.4.1 MENEMUI 1.2.1	specialist	JRM 440
slit	AMM E2630	species	JRM 376
slope	CRUX 495 FUNCT $1.5.1$ OSSMB G78.2-3	specific	AMM 6262 JRM 372 373 PARAB 343
	PARAB 410 SPECT 10.2	specify	NAvW 484
smoke	►RM/alphametics/phrases	spectral norm	SIAM 78-12
smooth	AMM $S19$ MATYC 126 MM 981 NAvW 468		►LA/matrices/spectral radius
	NYSMTJ 56	spectral radius	AMM 6209 S13 SIAM 75-7 76-9 77-14
snake	JRM 488 489 490		►LA/matrices
	►RM/alphametics/phrases	spectrum	CMB P246 NAvW 534
snow	PME 426	speed	►RM/alphametics/phrases
snowstorm	JRM 472	sphere	AMM 6081 E2694 CRUX 453 500 PS2-3
soap	CRUX 291		PS6-2 FUNCT 1.5.1 IMO 1978/2 JRM 498
soccer	JRM 715 OMG 18.2.6		629 646 733 NAvW 461 OMG 16.1.2
society	►C/tournaments IMO 1978/6		16.1.9 PARAB 291 PENT 303 PME 352
sock	JRM 621		SIAM 75-21
DOCK	►P/selection problems		► G/n-dimensional geometry/curves
soft	ISMJ 10.15 JRM 387		►SG [4]
sold	OMG 17.1.9 18.1.9		►SG/cylinders
soldier	PARAB 263		►SG/dissection problems
	►C/arrays/maxima and minima		▶SG/locus
solely	AMM 6035		►SG/packing problems
		1	►SG/paper folding/circles [3]
solid	AMM E2563 JRM 783 PARAB 296 361		,, -, -, -, -, -, -, -, -, -, -, -
	AMM E2563 JRM 783 PARAB 296 361 PME 460		SG/paper folding/circles [5] SG/polyhedra

spherical geometry	, 1	975–1979	squares and triangl
spherical geometry			▶NT/modular arithmetic/coprime integers [.
	•SG		►NT/palindromes
spherical planet spherical triangle	JRM 504 NYSMTJ 50		NT/partitions/number of partitions
-	SG/spherical geometry		►NT/polygonal numbers/modular arithmeti ►NT/polygonal numbers/
spindle	JRM 785		pentagonal numbers [2]
spiral	MATYC 104		►NT/polyhedral numbers/
split	AMM E2636 JRM 597 785 PARAB 294		tetrahedral numbers
pooling	OMG 16.1.3		►NT/Pythagorean triples
	·SG/maxima and minima ·AL		NT/quadratic residues
1	P		►NT/recurrences/ generalized Fibonacci sequences
pot	FUNCT 2.3.4 ISMJ 14.2		NT/recurrences/third order
pouse	OSSMB 78-3		NT/repunits [25]
pread	JRM 782		►NT/sequences/monotone sequences
quare	[384 references]		►NT/series/factorials
	AL/age problems/different times AL/recurrences		►NT/series/inequalities
	AN/limits/factorials		►NT/sets/prime divisors
	AN/measure theory/geometry		NT/sets/sum of elements
	AN/series/evaluations		►NT/sum of divisors/almost perfect number ►NT/sum of divisors/number of divisors
	•C/counting problems/geometric figures		NT/triangular numbers
	•G		►P/geometry
	•G/analytic geometry/circles [11] •G/constructions		►P/geometry/point spacing
	•G/covering problems		►RM/alphametics
	•G/covering problems/discs		►RM/chessboard problems/coloring problem
	·G/dissection problems		►RM/puzzles/block puzzles
	·G/dissection problems/squares		►RM/puzzles/crossnumber puzzles
	•G/inequalities	~~~~~	SG/polyhedra
	·G/inequalities/area ·G/isosceles right triangles	square array	CRUX 345 399 JRM 569 PARAB 311 PME 377 SSM 3676 TYCMJ 147
	•G/lattice points	square blocks	►LA/determinants/block matrices
	•G/paper folding	square field	SIAM 78-17
•	·G/parallelograms/perpendicular rays	square-free integ	gers
	•G/point spacing/distance		►NT/determinants/counting problems
	G/point spacing/nearest point		►NT/sequences/density
	•G/quadrilaterals/erected figures •G/rectangles		NT/series/unit fractions
	•G/right triangles/erected figures	square-integrabl	NT/sum of divisors/divisibility
	•G/tesselations	square matrix	AMM 6006 6210 E2734 E2735 E2741
	·G/tesselations/regular hexagons	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	MM 951 1038 1058 Q624 SIAM 76-9 76-15
	•G/tiling		79-7
	•G/tiling/squares [2]	square number	CRUX 197 OSSMB G78.1-1 PARAB 352
	•G/triangles •G/triangles/erected figures	,	PENT 297 SSM 3571
	LA/matrices/0-1 matrices	square order square root	►HA/groups/finite groups CRUX 202 FUNCT 1.1.3 JRM 673 737
•	NT [2]	square root	788 C2 MSJ 417 OSSMB G78.1-1 G78.1-2
•	NT/base systems		PARAB 280 SPECT 9.4
	NT/base systems/digit permutations		►AL/finite sums/radicals
	NT/base systems/palindromes NT/composite numbers/characterizations		►AL/solution of equations/radicals
	NT/digit problems [2]		►LA/matrix equations
	NT/digit problems/digital roots		NT
	NT/digit problems/juxtapositions		NT/lagorithms
	NT/digit problems/sum of digits [4]		►NT/base systems [2] ►NT/base systems/digit permutations
	NT/digit problems/terminal digits		►NT/Diophantine equations/radicals
	NT/Diophantine equations/exponential		►NT/Fibonacci numbers/continued fraction
	NT/Diophantine equations/factorials NT/factorials/divisibility		►NT/floor function/solution of equations
	NT/factorials/sums		►NT/fractional parts [117]
	NT/Fibonacci numbers/divisibility		►NT/fractional parts/maxima and minima
•	NT/Fibonacci numbers/forms		NT/recurrences
	NT/Fibonacci numbers/identities		NT/recurrences/floor function
	NT/floor function/primes [3]		►NT/series/floor function ►NT/sum of divisors/products
	NT/forms of numbers		RM/alphametics/radicals
•	NT/forms of numbers/ difference of consecutive cubes		RM/cryptarithms/skeletons
b	NT/forms of numbers/	squared deviation	, 01
•	product of consecutive integers	1	►AL/inequalities/degree 2
•	NT/forms of numbers/	squarefree	AMM 6035 6086 6190 MM 1015 1019
	sum of consecutive integers NT/Lucas numbers/sets		NAvW 473
		squares and tria	

St. Petersburg	1975	-1979	subsequence
St. Petersburg	▶P/game theory/coin tossing	strength	CRUX 402 NAvW 403
stability	JRM 376	strike	CRUX 418 420 428 JRM 573 OMG 18.3.1
stable	AMM 6031		SIAM 75-8
stack	AMM E2569 E2713 OMG 16.1.6 PME 350	string	AMM 6146 6281 CRUX 325 ISMJ 14.15
	TYCMJ 89		JRM 444 OMG 16.1.2
staff	JRM 392	strip	CRUX 244 422 MSJ 464 501 OSSMB 75-15
stage	JRM 423 480 493 C7 PME 379		►G/packing problems/discs
staggered	FQ H-257 H-273		►G/paper folding
stairway	AMM $S17$	strong	CMB P246 MM 936 NAvW 542
stake	JRM 423 631 682 PENT 282 290	Strong	OSSMB 79-3
stalemate	JRM 561 758	strong cluster p	
stamp	JRM 396 SSM 3662	strong claster p	►AN/sequences/cluster points
	►AL/money problems	strongly closed	, 1 , 1
stand	MENEMUI 1.1.3 SPECT 7.5	strongly closed	►T/Banach spaces/star-shaped sets
standard symbol		structure	AMM 6031 6139
	►NT/number representations	student	AMM 6092 CANADA 1976/3 CRUX 229 433
standing	CANADA 1979/4 DELTA 6.2-1 MM 1031	Student	FUNCT 1.4.3 2.3.1 ISMJ 14.11 MM 1056
	OSSMB G78.3-5 PARAB 326 375		1072 MSJ 483 OMG 15.1.1 17.1.2 18.3.2
standings	JRM 715		
stands	JRM 374 431 639 721 MENEMUI 1.1.3		PARAB 335 372 391 PENT 275 281 293 SSM 3725
	NAvW 419 OSSMB G75.1-5 PARAB 375	G. 1 1:	
star	AMM E2564 CRUX 396 ISMJ 12.1 12.2	Student's t-dist	
	OMG 17.3.9		▶P
	►GT/nim variants	study	OMG 17.1.2
	▶ G	stymie	JRM 480
	►T/Banach spaces	sub-factorial	OSSMB 76-5
starboard	JRM 375	subadditivity	AMM $E2590$
starship	OMG 17.2.6		►NT/Euler totient/inequalities
state	AMM $6080 ext{ } ext{E}2777 ext{ } ext{FUNCT } 1.2.1 ext{ } ext{JRM } 591$	subalgebra	CMB P253
	624 MM 1084 MSJ 436 PUTNAM 1975/A.5	subarea	PME 448
	SIAM 76-11 SSM 3597 3719 3769	subatomic parti	
	►RM/alphametics	Subatomic parti	►RM/alphametics/words
statements	►RM/logic puzzles	subcollection	AMM 6060
station	OMG 18.1.8		
stationary	CRUX 318 FUNCT 1.2.1	subdivide	CRUX 280 MSJ 499
statue	OMG 16.1.8 OSSMB G78.3-5	subfield	AMM 6119 6216 6268 CMB P252 NAvW 435
steadily	PME 426 SIAM 77-5		497
steady	CRUX 193		►HA/fields
Steinhaus triang	gle		►HA/fields/finite fields
	►C/arrays/triangular arrays	subfield chains	►HA/fields
stellated	PME 386	subgraph	►C/graph theory/isomorphic graphs
step functions	▶P/distribution functions/convolutions	subgroup	AMM 6059 6098 6204 6205 6221 E2545
stick	OSSMB 76-4		E2592 CMB P266 CRUX 57 66 MM 935
Stirling numbers	S		NAvW 448 501 506 PUTNAM 1975/B.1
	►NT/sequences/binomial coefficients		1977/B.6
	►NT/series		►HA/groups
stochastic matri	x SIAM 75-13		►HA/groups/alternating groups
	►LA/matrices		►HA/groups/finite groups
stochastic proces	sses		►HA/groups/permutation groups
	▶P	auhintamal	
stock	MM Q632	subinterval	NT/sequences/finite sequences
stocked	JRM 376	subject	AMM 6076 6099 E2535 E2713 CMB P259
stone	JRM 381 533		CRUX 358 JRM 424 594 MM 996
stopped clock	►AL/clock problems		OMG 18.3.2 OSSMB 77-9 PARAB 335
storage	JRM 390	1	PME 342 SIAM 76-7 76-12
stories	►RM/alphametics/phrases	subjecting	JRM 379
story	JRM 686 PARAB 266	sublinear map	AMM 6051
story problems	►RM/alphametics		►LA/linear transformations/inequalities
stove	JRM 785	submatrix	FQ H-252 SIAM 76-15
straddle	JRM 375 OSSMB 77-6		►LA/matrix equations
straightedge	CRUX 284 288 308 ISMJ 11.11 13.14 13.20	subpartitions	►NT/partitions
5 6	13.24 J10.12 JRM 505 MATYC 99 MM 1054	subring	AMM 6134
	Q637 PME 341 412 460 TYCMJ 75	24311118	►HA/rings
straightedge only	•	subscript	FQ B-339 B-341 B-348 H-260 ISMJ 13.23
5 6	►G/constructions	subscript	SIAM 78-3
stranger	JRM 682 PARAB 439	aubaa	
strategy	AMM S10 CANADA 1978/5 CRUX 396 418	subsequence	AMM 6281 E2712 FQ H-300 JRM 377
3,	DELTA 6.1-4 FUNCT 2.3.3 ISMJ 12.1 12.2		NAvW 539 542
	12.4 JRM 372 387 510 533 648 658 709		►C/sequences/binary sequences
	MM 1022 1084 NAvW 405 OSSMB 75-2		►LA/linear transformations/sequence spaces
	79-15 PARAB 281 PME 342 388 403		►NT/arithmetic progressions
	SIAM 76-1 TYCMJ 104		►NT/Pascal's triangle/modulo 2
			- · ·
stream	MATYC 123 MM 926		►NT/sequences

subseries	1975	-1979	sum of terms
subseries	▶NT/series	sum of consecu	itive odd squares
subset	[95 references]		►NT/triangular numbers/series
	►C/coloring problems/sets	sum of consecu	
	C/counting problems	C	►NT/forms of numbers
	►C/counting problems/tournaments ►C/sets/sums	sum of consecu	►NT/sequences
	►HA/rings/ideals	sum of coordin	, -
	►NT/quadratic residues	sum of coordin	►NT/sets/n-tuples
	▶NT/sets	sum of cubes	►NT/digit problems
	►NT/sets/divisibility		►NT/Diophantine equations/
	►NT/sets/sum of elements		systems of equations
	►ST		►NT/forms of numbers
	T/Cantor set		►NT/perfect numbers
subspace	►ST/subsets/counting problems AMM 6147 6168 E2779 E2785 CMB P257		▶P/number theory/divisibility
subspace	NAvW 395 471 497	sum of digits	►NT/base systems
	►AN/Banach spaces		NT/base systems/squares
	►LA/vector spaces		NT/digit problems
	►T		►NT/digit problems/digit reversals ►NT/recurrences
substitute	JRM 683 OSSMB 78-10 G78.2-1	sum of distance	,
substitution	►AL	sum of distance	►G/triangles/isosceles triangles
subtend	OSSMB G76.2-2 G78.3-5 SSM 3668	sum of divisors	
subtract subtraction	JRM 648 728 SSM 3723 ►HA/binary operations/characterizations		►NT/divisors
succession	CRUX 265 JRM 782 PARAB 388 389		►NT/forms of numbers
successive	AMM 6035 CRUX 385 IMO 1977/2	sum of edges	►SG/maxima and minima/tetrahedra
	ISMJ 11.7 JRM 467 537 623 737 MM 1003		ts NT/sequences/partitions
	MSJ 464 468 OSSMB 77-12 PME 370		►NT/sets
	SIAM 78-7 79-14 SSM 3571 3608 3615		►NT/sets/divisibility
successively	AMM E2645 CRUX 133 408 JRM C7	sum of factoria	
•.	NAvW 489		►NT/forms of numbers
suit	JRM 442 462 560 782 C3	sum of indicate	
suitor sultan	PARAB 356 CRUX 117		►P/inequalities/independent events
sum and differen		sum of lengths	
sum and differen	►NT/polygonal numbers/pentagonal numbers	sum of powers	►AL
	NT/square roots		►AL/identities ►AN/complex variables/several variables
	▶P/random variables		► AN/sequences/monotone sequences
sum and produc	t		► HA/fields/finite fields
	►AL/age problems		NT
	NT		►NT/digit problems
	►NT/Diophantine equations/factorials ►NT/Diophantine equations/		►NT/sequences/finite sequences
	systems of equations	sum of primes	►NT/primes
	►NT/inequalities	sum of reciproc	
	►RM/logic puzzles/incomplete information		►AL/inequalities/fractions
sum-distinct	AMM E2526		►NT/divisors
sum equals 1	►NT/forms of numbers/unit fractions		►NT/least common multiple/inequalities
	►NT/series/unit fractions	sum of square	
	NT/forms of numbers/unit fractions		►NT/sequences/inequalities [2]
sum equals 23	▶NT/forms of numbers/unit fractions		►NT/square roots
sum equals prod	►AL/money problems	sum of squared	NT/inequalities
sum equals quot		sum of squared	
	▶NT/Diophantine equations/	Sum or squared	►NT/base systems/limits
	solution in rationals	sum of squared	, ,
sum of angles	►G/octagons	1	►G/locus/lines
sum of areas	►C/counting problems/geometric figures	sum of squared	
C	►G/right triangles/sequences		►NT/forms of numbers
sum of coefficien	►AL/polynomials/coefficients	sum of squares	
sum of consecuti	7 2 0 7		►G/circles/chords
din or consecuti	►NT/forms of numbers		►G/locus/equilateral triangles
	►NT/triangular numbers/polynomials		NT/digit problems
sum of consecuti	ive integers		►NT/Diophantine equations/
	►NT/forms of numbers		systems of equations ►NT/Fibonacci numbers/primes
	▶NT/forms of numbers/perfect numbers		►NT/forms of numbers NT/forms of numbers
c	►NT/forms of numbers/sum of squares		NT/modular arithmetic
sum of consecuti			NT/series
of acres : '	►NT/triangular numbers/series		NT/triangular numbers
sum of consecuti	ve odd integers ►NT		P/number theory/divisibility
	►NT/forms of numbers		P/selection problems
	►NT/series/unit fractions	sum of terms	NT/arithmetic progressions [14]
	TYT/SCHES/ UHIT HACHOHS	sum or terms	► 1 1 / arrunneure progressions [14]

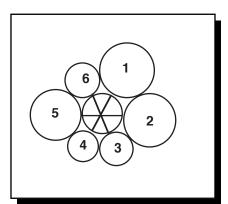
1975-1979 sum of two squares tally Sylow subgroups sum of two squares ►HA/groups/finite groups ►NT/forms of numbers ►NT/square roots symmedian CRUX 313 NAvW 402 494 ►NT/triangular numbers/forms of numbers ►G/triangles/special triangles summand JRM 678 697 711 PARAB 408 symmetric **AMM** 6089 6097 6098 6145 E2632 E2652 **FQ** H-270 **PUTNAM** 1978/B.6 **SIAM** 76-11E2708 E2717 E2793 CRUX 436 FQ H-272 summation MM 995 NAvW 404 PARAB 416 PME 421 $\mathbf{SSM}\ 3585$ CRUX 34 PUTNAM 1975/B.3 SIAM 77-14 78-4 summed **SSM** 3756 **JRM** 379 summon ►AL/age problems/different times sums symmetric arrays ►C/arrays ►AL/age problems/digits symmetric difference C/sets ►GT/tic-tac-toe variants ►ST/subsets/family of subsets ►G/polygons/convex polygons symmetric functions ►HA/algebras/polynomials [2] ►HA/fields/subfields ►LA/matrices/orthogonal matrices symmetric matrices ►LA/determinants ►NT/decimal representations/fractions ►LA/eigenvalues/approximations ▶NT/digit problems/distinct digits ►NT/digit problems/factorials ►LA/matrices [20] ►LA/matrices/spectral radius ►NT/digit problems/maxima and minima JRM 729 MENEMUI 1.3.2 SSM 3598 symmetrical ►NT/digit problems/permutations **AMM** 6079 **CRUX** 394 **DELTA** 5.2-2 ►NT/digit problems/primes symmetry 6.1-2 FQ B-363 OSSMB 75-10 G79.2-8 ►NT/factorials [7] PARAB 374▶NT/geometry/cubes $\triangleright G$ ►NT/twin primes ▶P/selection problems ▶G/n-dimensional geometry/convexity symmetry groups ►RM/puzzles/crossnumber puzzles ►C/graph theory/bipartite graphs **NYSMTJ** 64 sun **AMM** 6161 6181 6215 E2587 E2615 E2664 ►AN/limits/integrals system sup norm $\mathbf{MM}\ 1023$ CMB P245 CRUX 197 252 272 384 498 super-Heronian FQ H-306 IMO 1976/5 JRM 598 672 770a **AMM** E2799 superfactorial **MATYC** 88 **MENEMUI** 1.3.2 **MM** 930 superimposable **AMM** E2698 MSJ 417 440 NAvW 428 431 NYSMTJ 71 superimposed **USA** 1978/2 OMG 17.3.2 OSSMB G79.3-5 PARAB 349supersoluble **NAvW** 502 **PUTNAM** 1977/A.2 **SIAM** 76-12 77-1 77-17 supper ►RM/alphametics/phrases **SSM** 3574 3590 3594 3596 3600 3622 3765 supplementary angles **TYCMJ** 90 115 NYSMTJ 52 systematically **AMM** E2584 **PARAB** 327 343 ►G/quadrilaterals [6] systems of congruences **AMM** 6235 6278 **ISMJ** 11.1 support ►NT/modular arithmetic supremum **AMM** 6228 E2707 **NAvW** 549 systems of differential equations **PUTNAM** 1975/B.3 ►AM/physics **AMM** 6087 6141 E2585 E2636 E2698 surface systems of equations CRUX 367 FUNCT 1.4.1 2.3.2 JRM 498 MM 969 NAvW 461 468 536 NYSMTJ 56 ►AL/identities OMG 16.1.2 PARAB 387 SIAM 79-1►AL/theory of equations $\mathbf{SSM}\ 3598\ 3693$ ►AN/differential equations ▶SG ►LA/vector spaces ►NT/Diophantine equations AMM E2563 JRM 646 NYSMTJ 50surface area **OSSMB** 77-13 **PARAB** 319 **PME** 367 ►NT/Fibonacci numbers **TYCMJ** 134 ►NT/Pythagorean triples ▶TR ►SG/analytic geometry/volume ▶SG/locus systems of inequalities ►SG/surfaces/scale ►NT/series/inequalities surfaces of revolution systems of integral equations ►AN/integrals/gamma function ▶SG/maxima and minima $\mathbf{JRM}\ 453$ systems of recurrences surgeon surjective **AMM** 6009 ►NT/recurrences **CRUX** 137 **FUNCT** 1.2.7 2.2.3 3.3.3 JRM 643 table surname JRM 601 680 700 782 786 MENEMUI 1.1.3 surround ISMJ 12.19 OMG 15.1.1 PME 428NAvW 475 476 OMG 15.3.9 16.1.4 18.1.3 surrounding chains OSSMB G75.1-2 G76.3-3 PARAB 266 344 ▶G/circles [2] **PENT** 283 **PUTNAM** 1978/A.4 **SSM** 3598 OMG 17.1.2 survey table of values ►AL/theory of equations **JRM** 375 survive ► HA/binary operations/finite sets **JRM** 792 suspect tack MM 996 suspended **SIAM** 78-17 CRUX 193 JRM 478 MM 926JRM C5 swimmer tag tail **CRUX** 333 **NAvW** 489 **PME** 457 ►AN/rate problems/maxima and minima **PARAB** 315 tail series ►AN/series swimming pool AMM S17 PARAB 363**FUNCT 3.2.6 PME 370** tails switch ►AM/electrical networks **OMG** 18.2.3 **PARAB** 263 **PME** 413 tall **JRM** 604 624

tally

►RM/logic puzzles [3]

tan	1975-	-1979	tiling
tan	►AN/integrals/evaluations	terminal digits	►NT/base systems/polygonal numbers
	►G/paper folding/squares		►NT/digit problems
	►TR/approximations		►NT/digit problems/multiples
	TR/determinants/triangles [24]		►NT/digit problems/squares
	TR/identities		►NT/Lucas numbers/digit problems
	TR/identities/constraints		►NT/polygonal numbers/octagonal numbers
			►NT/polygonal numbers/pentagonal numbers
	►TR/inequalities	terminate	AMM S4 FQ H-248 H-301 JRM 423 601
	►TR/infinite series		PENT 289 PME 370 415 SSM 3586 3745
	►TR/numerical evaluations	terminating	JRM 623 MSJ 490 USA 1975/4
	►TR/solution of equations	tessellation	CRUX 155 JRM 388 SSM 3677
	►TR/solution of equations/sin and cos		▶G
	►TR/triangles	tesseract	JRM 529
	►TR/triangles/sin and cos	test	CRUX 357 JRM 379 739 MM 1032
tan and cot	►TR/identities/sin and cos		OSSMB 77-9 PENT 293 SSM 3590
	►TR/inequalities	test-patient	OSSMB 77-9
	►TR/triangles	tether	CRUX 89 JRM 395 PME 382
tan and sec	TR/inequalities	tetrad	JRM 445 684
tail and sec		tetrahedral numb	oer
	TR/solution of equations		MATYC 96 SSM 3616
tangency	NYSMTJ 67 OBG5 OSSMB G76.2-2		►NT/polyhedral numbers
	SSM 3706		►NT/twin primes/arithmetic means
tangent	[74 references]	tetrahedron	AMM S11 S12 CANADA 1979/2 CRUX 94
	►AN/Banach spaces/function spaces		330 478 PS4-3 PS5-3 ISMJ J10.13 JRM 528
	►AN/curves		MATYC 129 MM Q616 Q632 NAvW 451
	►G/analytic geometry		460 469 491 513 514 526 536 546 PME 386
	►G/analytic geometry/circles		USA 1976/4 1978/4
	►G/circles		►AM/physics/temperature
	►G/circles/2 circles		►SG
	G/circles/3 circles		►SG/maxima and minima
			►SG/octahedra
	►G/constructions/circles		►SG/paper folding
	►G/constructions/squares		SG/projective geometry
	►G/ellipses		►AN/sequences [2]
	►G/hyperbolas [2]		►NT/base systems/number of digits
	►G/locus/circles		NT/powers
	►G/locus/ellipses [4]		
	►G/parabolas/3 points		►RM/polyominoes/tiling
	►G/parabolas/line through focus	text	AMM 6017
	G/triangles/circumcircles	textbook	FUNCT 1.3.4 MSJ 467 PME 414
	►P/geometry/circles		►RM/alphametics/multiplication
4 4 1 - 1 -	PME 447	theory	AMM 6272 CRUX 434 NAvW 498
tangent circle		theory of equation	
tangent point	NAvW 526		PAL OMC 16.1.6
-	s ►SG/spheres [14]	thick	OMG 16.1.6
tanh	►AN/series/hyperbolic functions	thin	SIAM 78-17
tank	OSSMB G79.1-1	think	AMM 6238 MM 1056 Q624 NAvW 475 476
tape	AMM S4 MSJ 464	third-order	CRUX 359 PENT 319 PME 364
target	JRM 539	thirteen	AMM 6260 JRM 462 757 761 SPECT 11.3
O	►RM/alphametics/phrases	thirteenth	FUNCT 1.1.1 OMG 18.1.2
Target Nim	►GT/nim variants	thoroughfare	JRM 501
task	JRM 505 528 597 OMG 15.2.1 PARAB 314	threaded	PME 382
uask	356	three-coloring	SIAM 78-11
		three-digit	CRUX 43 NYSMTJ 88 OMG 14.1.1
	►GT/chess problems		OSSMB 79-6 PARAB 432 PENT 296 304
taxicab	JRM 527 OSSMB 78-11 78-12		SSM 3600 3631 3679 3689 3697 3776
taxonomic	JRM 376	three-dimensiona	l NAvW 469 491 547 PUTNAM 1975/A.3
tea	PARAB 266		1975/A.6 1975/B.2 SIAM 79-1
teach	JRM 478	three-letter	JRM 524
teacher	CRUX 95 MSJ 467 PARAB 372 PENT 311	three-space	AMM 6276
•	PME 446	three-sphere	AMM 6225
team	JRM 441 624 715 MENEMUI 1.1.3 MM 1024	three-term	AMM $E2730$
ocanii	OMG 14.2.1 17.1.1 18.2.6 SSM 3617	throw	JRM 573 MATYC 123 PARAB 295
toonogon	FUNCT 3.2.3 OMG 18.1.1		TYCMJ 136
teenager		thumbtack	CRUX 325 MM 996
telephone call	PARAB 372		►G/maxima and minima [2]
	►C/configurations/maxima and minima	tic-tac-toe varian	,
teller	OMG 18.2.3	vic-vac-voc variali	AMM S10 JRM 389 465 508 599
temperature	AMM S11		►GT
-	►AM/physics		
tennis	JRM 387	tied	JRM 510 PARAB 335
00111110		tile	JRM 471 NAvW 411 PARAB 315 336
	C/tournaments	,	PME 434 461 SSM 3677 TYCMJ 78
	▶P/sports	tiled	AMM 6229 E2595 JRM 381 600 PME 358
tennis tournam		tiling	PARAB 315
	FUNCT 3.1.5 OMG 17.1.4	I	▶G

tiling	1975-	-1979	triangle
•	►G/right triangles/sequences	tracing	OMG 14.3.1
	►RM/polyominoes [2]	track	CRUX 406 FUNCT 3.5.2 JRM 472 MM 980
tilted	MM 1056		NAvW 450 OMG 17.2.2
time computation		traffic	PARAB 308
4:	►AL/clock problems JRM 545	traffic light	JRM 730 ►AL/rate problems
tiny title	►RM/alphametics/phrases		► AN/rate problems/maxima and minima
today	JRM 655 MATYC 135 OSSMB 78-10	trailing digits	NT/base systems/squares [3]
tomorrow	JRM 530	train	AMM E2608 NAvW 450 OMG 17.3.6 18.3.6
tongue twisters	►RM/alphametics/phrases [12]		PARAB 333 353
topological	AMM 6009 6071 6181 6246 6260 6274 E2806		►AL/rate problems
	NAvW 554 PME 372	transactions	►AL/fair division
topological grou		transcendental f	
topological root	►T on spaces	transcendental r	►AN/functions
topological vect	or spaces ►T	transcendentar i	AMM 6102 MM 985
topologically	JRM 421 C6 PUTNAM 1975/B.4		►NT/series/factorials
topology	AMM 6009 6029 6071 6093 6188 6275	transform	AMM 6075 E2542 S22 JRM 679 MM 1086
1 00	MM 932 NAvW 554 PME 372		Q630 SIAM 76-3
	►AN/complex variables/analytic functions	transformation	AMM 6102 6158 E2542 E2714
_	►AN/functions/differentiable functions		►C/arrays
Toronto	►RM/alphametics/places		C/arrays/circular arrays [5]
torsion-free grou	up AMM 6069 ►HA/rings/integral domains	transition	►HA/groups SIAM 75-1
torsion group	AMM 6052	transitive group	
torsion group	►HA/groups	STATISTOTIC STOUP	C/graph theory/bipartite graphs
torus	AMM 6087 E2698 JRM 787	transitively	AMM 6037
	►RM/chessboard problems/n queens problem	translate	AMM 6131 6217 E2714 E2774 CRUX 436
	►SG/dissection problems/cube		PME 458
	►SG/space curves/loxodromes	translation	AMM 6278
tossing	CRUX 265 PME 370 SPECT 7.4		►AN/functional analysis
total	AMM 6260 S14 CANADA 1976/3 CRUX 193		►AN/measure theory/function spaces ►G/convexity/area
	297 354 FQ B-304 FUNCT 3.1.6 3.3.1 ISMJ 10.15 JRM 423 434 443 463 468		NT/sets/density
	527 528 539 558 588 601 697 739 782	transportation	P
	MATYC 127 MM 926 944 1026 1071	1	►RM/logic puzzles [2]
	NYSMTJ 50 81 OMG 17.2.4 17.2.6	transpose	AMM 6061 6258 E2516 NAvW 439
	18.2.4 OSSMB 77-9 77-13 78-3 G75.2-3		NYSMTJ 63
	G79.2-8 PARAB 323 412 SIAM 76-7 78-9	.,.	LA/matrices/permutations
	SPECT 10.7 SSM 3650 3655 3700 3772 TYCMJ 136	transposition transversal	►LA/matrices/symmetric matrices [3] NAvW 546
	►RM/alphametics/phrases	transversar	SG/projective geometry/tetrahedra
totally	CMB P258	trapezoid	CRUX 394 MSJ 470 NYSMTJ 59 PME 409
totient	AMM 6065 6070 6090 6160 6193 E2590	_	SSM 3743
	JRM 474 PME 379		▶G
touch	AMM E2651 E2669 E2745 E2790 CRUX 62		►G/constructions
	139 177 244 318 500 ISMJ 14.17 J10.12		►SG/maxima and minima/
	OSSMB G75.2-2 G76.2-1 G79.1-3 PARAB 387 401 423 PME 417 447	trapezoidal	surfaces of revolution [2] CRUX 181
	SPECT 7.7	travel	CRUX 354 499 ISMJ J10.11 MENEMUI 1.1.2
touchdown	JRM 624	oraver	1.2.2 MM 1004 NAvW 450 NYSMTJ 81
tour	AMM 6163 TYCMJ 145		OMG 17.2.4 17.2.6 17.3.6 OSSMB 78-6
tournament	FUNCT 3.1.5 JRM 715 OMG 14.2.1		PARAB 353 SIAM 76-7
	PARAB 357 420 SIAM 78-11	traveler	OMG 17.2.4
		traveling	CRUX 479 ISMJ J10.11 OSSMB G79.1-1
	C/coloring problems [2]	4	PARAB 333 353 SIAM 75-8
	►C/counting problems ►P	traverse treasure	AMM E2608 JRM 501 MM 1004 CRUX 400
	►RM/cryptarithms [2]	lieasure	►RM/logic puzzles/incomplete information
toward	AMM 6196 CRUX 422 436 479 JRM 770a	treasury	JRM 379
	NAvW 437 PENT 294 PME 401 413	tredian	PME 448
tower	OSSMB G75.1-5 G76.3-3	tree	AMM 6262 E2671 JRM 785 NAvW 527
	►G/angle measures/rivers		SIAM 77-15 SSM 3630
tower of Hanoi			C/graph theory
town	JRM 534 554 MM 976 OSSMB 75-3		NT/sequences
tov	PARAB 305 308 PENT 294 JRM 413	trend trial	►RM/alphametics/phrases [2] PARAB 345 SIAM 75-14
toy trace	AMM 6061 E2594 CRUX 291 325	trials	AMM E2705 E2724 MM 1070 PME 395
Tacc	MATYC 91 NYSMTJ 60	triangle	[502 references]
	►LA/matrices/characteristic polynomial	- Transit	►C/coloring problems
	LA/matrices/permutations		C/coloring problems/concyclic points [6]
	►LA/matrices/polynomials		►C/coloring problems/hexagons
	►LA/matrix sequences		►C/counting problems/geometric figures
traced	JRM 472 NYSMTJ 60 OSSMB G78.1-4		►C/geometry/dissection problems


triangle	1975	truth	
	►C/geometry/points in space		►NT/divisibility
	C/graph theory/complete graphs		►NT/Fibonacci numbers
	▶G		►NT/number representations/
	►G/analytic geometry		polygonal numbers
	►G/analytic geometry/Euclidean geometry		►NT/perfect numbers
	G/analytic geometry/maxima and minima		NT/polygonal numbers/modular arithmetic
	►G/analytic geometry/polar curves ►G/billiards		►NT/polygonal numbers/pentagonal numbers ►NT/sum of powers/divisibility [2]
	G/circles/3 circles	triangular pyra	
	G/circles/chords [6]	urangalar pyra	►SG/tetrahedra
	G/combinatorial geometry	triangulation	AMM E2585 PARAB 395
	►G/combinatorial geometry/concyclic points		►G/combinatorial geometry
	►G/combinatorial geometry/points in space		►T/surfaces
	►G/conics/ellipses	tribe	JRM 392 PARAB 341
	►G/constructions	trick	JRM 462 536
	G/constructions/squares	tridiagonal	FQ B-411
	►G/convexity/inequalities ►G/cyclic quadrilaterals	trigonometric f	■ AN/derivatives
	G/dissection problems		►NT/Fibonacci numbers
	G/dissection problems/rectangles	trigonometric s	
	G/dissection problems/squares	l consumerio s	▶TR/series
	G/dissection problems/triangles	trigonometric t	
	►G/fallacies		FUNCT 3.3.3 PARAB 344
	►G/hyperbolas/tangents	trigonometry	PENT 293
	►G/inequalities		►AL/algorithms/multiplication
	►G/inequalities/squares		►AN/functions/periodic functions
	G/lattice points		►AN/integrals [2]
	►G/limiting figures		► AN/integrals/evaluations
	►G/locus ►G/maxima and minima		► AN/integrals/functions [7] ► AN/limits
	►G/parabolas		► AN/limits AN/
	G/points in plane		►AN/sequences
	►G/polygons/interior point		►G/ellipses/normals
	►G/quadrilaterals		►G/parallelograms
	►G/regular polygons/diagonals	trilinear	NAvW 436
	►G/tesselations/regular hexagons [2]	trinomial coeffi	
	►G/triangles/erected figures		►NT/binomial coefficients/finite sums
	►G/triangles/escribed circles [6]		NT/multinomial coefficients [3]
	►NT ►P/geometry	trip	►NT/series/binomial coefficients CANADA 1977/7 CRUX 193 499 JRM 527
	►P/geometry/circles	uip	671 OMG 16.2.7 18.3.6 PARAB 348
	►RM/magic configurations		PENT 286
	▶SG		►AL/rate problems
	►SG/paper folding/tetrahedra	triphage	AMM E2636
	►SG/plane figures	triple summation	
	►TR		►NT/series/factorials
	►TR/determinants	triples	►NT/sets
triangle inequal		triplets	AMM E2566 CRUX 320 FUNCT 3.3.2 ISMJ 14.22
triangular	►G [16] AMM E2612 E2618 CRUX 181 271	trisect	NYSMTJ 44 PENT 321 PME 341 448
tilaligulai	MM 929 Q616 Q621 OSSMB 76-13		TYCMJ 75 119
	PME 352 SPECT 10.2 SSM 3617 3621 3677	trisected sides	►G/dissection problems/triangles
	TYCMJ 148		►G/triangles
triangular array	FQ H-269 SSM 3677	trisectible	PME 412
	►C/arrays	trisection	►G/constructions/angles
	►GT/selection games/arrays		►G/constructions/chords
	G/maxima and minima/shortest paths	l	►G/constructions/rulers [3]
	NT/arrays	trisectors	OSSMB G78.2-5
triangular lattic	te MM 975 1001 SSM 3704 3746 ►C/counting problems/geometric figures	trivial tromino	AMM 6149 6225 6246 AMM E2595 CRUX 282 JRM 386
triangular matc		tronnino	TYCMJ 78
triangular mate	►C/tournaments		►RM/polyominoes/coloring problems
triangular matr	ix AMM E2703		►RM/polyominoes/maxima and minima
	per CRUX 274 FQ B-346 B-362 B-371		►RM/polyominoes/tiling
-	ISMJ 10.11 OSSMB 76-12 PME 348	troop	SSM 3577
	PUTNAM 1975/A.1 SSM 3571 3572 3591	trouble	CRUX 95 329 PENT 301
	3621 3640 3647 3721 3729 3784		►RM/alphametics/phrases [2]
	NT	trough	MENEMUI 1.3.2
	NT/base systems	trout	JRM 376
	NT/base systems/digit reversals	truck	CRUX PS8-1 OSSMB G79.1-1
	NT/digit problems	trump	JRM 560 597 JRM 533 785
	NT/digit problems/digit reversels		
	►NT/digit problems/digit reversals ►NT/digit problems/sum of digits	truncated trunk	JRM 785

truth values	1975-	-1979	variance
truth values	►RM/logic puzzles/statements		►AN/maxima and minima
Tuesday	► AL/calendar problems/day of week [2]		►G/concyclic points
tunnel	JRM 770a PME 343		G/points in plane/circles
valinoi	►AM/physics		T/sets
tuple	AMM E2546 E2778 MM 924 932 1026	unit cube	AMM 6040 TYCMJ 100
F	PUTNAM 1975/B.3	unit cube	
turkey	OMG 18.3.9	it dian	AN/Jacobians/integrals
turning	CRUX PS4-1 MENEMUI $1.1.2 \ 1.2.2$	unit disc	AMM 6033 6071 6120 6198 6250 S19 SIAM 78-1
Ü	PENT 286 TYCMJ 86	unit fractions	►AN/Cantor set/constructions
TV game shows	s ►P/game theory	unit fractions	NT/decimal representations/fractions
twelve-digit	AMM E2776		
twin primes	AMM 6200 MATYC 78 96 MM Q648		NT/forms of numbers
	PME 340 SSM 3735		NT/limits/coprime integers [2]
	►NT		NT/number representations
	►NT/inequalities/congruences [2]		►NT/recurrences/first order [8]
two-diagonal	CMB P251		►NT/series
two-digit	ISMJ 14.14 JRM 531 768 786 OSSMB 79-6		►NT/series/inequalities
two-dimensional			►NT/sets
	►P/stochastic processes/random walks	unit interval	CRUX 360 PME 403
two-pan	CRUX 123		►NT/sequences/finite sequences
two-sided	AMM E2528		▶P/selection problems
two-sphere	AMM 6225		▶T
typesetter	JRM 703		►T/product spaces
uglification	NAvW 477	unit mass	NAvW 393
umpire	JRM 465 MM 1084	unit radius	AMM E2694 IMO 1975/5 OSSMB 75-15
unbeaten	OMG 17.2.5		79-11
unbiased dice	FUNCT 3.3.1	unit sphere	SIAM 79-1
unbounded	AMM E2706 JRM 480 MM 1079	unit square	AMM E2610 E2647 CRUX 276 429 JRM 620
unchanged	MM 979 PARAB 292	ann square	683 MM 946 960 SIAM 75-12
uncountable	AMM 6014 6023 6147 6150 6219 6220 6221		►AN/curves
	6261 6266 MATYC 112	unit volume	PME 367
uncountable set		unitary matrix	AMM E2741
	►AN/series/divergent series	unitary matrix	
1 1	NT/normal numbers/base systems		LA/matrices [2]
understood	PUTNAM 1975/A.1	united	MSJ 436
undetermined co		university	JRM 624
,	CRUX 396	unknown	AMM E2587 IMO 1976/5 NAvW 503
undone	►RM/alphametics/phrases [2]		PARAB 288
uniform	AMM 6071 6080 6093 6174 E2535 E2629	unlinked	JRM 787
	E2696 E2784 CRUX 130 182 FUNCT 1.5.1	unlock	ISMJ 11.18 JRM 499 PENT 286 SPECT 9.2
	3.5.2 ISMJ J10.11 NAvW 480 OMG 17.2.6 PME 382 401 403 SIAM 76-16 78-17	unoccupied	JRM 475 703 PARAB 266 SIAM 76-1
	SPECT 11.4 SSM 3598 TYCMJ 148	unoccupied squa	
uniform converg			CANADA 1978/5
umom converg	►NT/series/limits	unoccupied vert	
uniform distribu	, ,	unordered	PENT 272
uimorm distribe	►AN/integrals/limits	unpaid	TYCMJ 104
	►P/digit problems/base systems	untraversible	JRM 471
uniform growth		uphill	MSJ 445
uniform integral		upper and lower	r matrices
annorm meesra	►AN/measure theory		►LA/determinants/identities
	▶P/random variables	upper bounds	►NT/forms of numbers/prime divisors [3]
uniformly	AMM 6085 6174 JRM 786 NAvW 450 509	upper density	►NT/primes/sequences
amomiy	PARAB 353 SIAM 76-4 78-13	upside down nur	mber
union	►RM/alphametics/phrases	1	MSJ 420
unions and inter			►NT/digit problems/primes
amono and mee	C/counting problems/subsets		►RM/arrays [2]
unique factoriza		upstairs	AMM S17
	►HA/rings/integral domains	upstream	CRUX 193 MATYC 123 OSSMB G75.1-5
uniqueness	AMM E2738 JRM 598	upward	NAvW 468
uniqueness cond		1 *	AMM E2722 E2724 CRUX 117 JRM 623
1	►NT/floor function/sequences	urn	SSM 3648
	►NT/Pythagorean triples/counting problems		►C
	►NT/series/factorials		
unit	[107 references]	Tro as mt	P/selection problems [14]
unit ball	►AN/derivatives/gradients	vacant	CRUX 282 429 JRM 471
	►T/Banach spaces/	vacant squares	►RM/polyominoes/maxima and minima
	nonreflexive Banach spaces	validity	AMM 6025
unit circle	AMM E2697 E2783 CRUX 165 173 JRM 509	valuation	SIAM 77-15
	NAvW 410 NYSMTJ OBG5 OSSMB 76-4	vanish	AMM 6007 6008 6042 6131 6173 CRUX 318
	77-16 PME 438 PUTNAM 1975/B.4		498 SIAM 76-22 77-9
	SIAM 78-13 SPECT 9.7	variable point	►G/triangles/equal areas
			***** *
	►AN/complex variables/several variables	variance	AMM 6104 6207 NAvW 489 SIAM 78-8

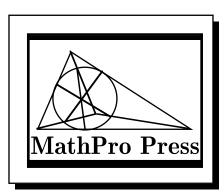
variance-covaria	ance matrices 1975	–1979	winnings
variance-covaria		waiting times	▶P
	▶P/random vectors	walk	CANADA 1977/7 1979/5 FUNCT 1.2.4
variant	JRM 372 373 379 508 647		2.2.1 JRM 480 MATYC 123 MSJ 445 501
variation	AMM 6113 6256 JRM 419 SIAM 76-1		OMG 16.2.7 PARAB 348 PENT 278
variety	JRM 396 SSM 3662	wall	CANADA $1979/4$ CRUX 244 OMG $18.1.8$
vector	AMM 6009 6051 6103 6162 6166 6168 6175		PARAB 356
	6186 6207 6215 6236 6278 E2576 E2594	war	CRUX 333 JRM 375
	E2714 E2785 S22 CMB P257 CRUX 113	warehouse	JRM 736
	333 467 ISMJ 13.9 NAvW 477 497 554	waste	CRUX 135
	OSSMB G76.3-1 SIAM 79-1 79-7	water	ISMJ 12.7 JRM 603 MATYC 123 MM 926
	►NT/divisors		1056 NYSMTJ 56 96 OMG 17.3.1
	►SG/maxima and minima/angles		OSSMB G79.1-1 PARAB 348
vector space	►HA/fields	Wayne	►RM/alphametics/names
	▶LA	weak	AMM 6045 6174 6204 S8 NAvW 542 554
	▶P/random variables/limits	weak cluster po	pints
vehicle	CRUX 354 NYSMTJ 81 OMG 17.2.6	1	►AN/sequences/cluster points
venicle	PME 343	weak limits	►AN/sequences/cluster points
velocity	AMM E2535 FUNCT 3.5.2 JRM 564 C5	weak-star closu	, 1 , 1
velocity	NAvW 393 403 438 450 OMG 17.2.6	weak-star closu	►AN/Banach spaces/
Vann diamana			continuous linear operators
Venn diagrams		weakly	AMM 6074 6283 NAvW 440
verger	OSSMB 79-1	weakly closed s	
verification	CRUX 346	weakly closed s	►T/Banach spaces/star-shaped sets
vernal equinox	JRM C9	weakly compac	
version	JRM 389 533 558 NYSMTJ 57	weakiy compac	►T/Banach spaces/
vertex	[200 references]		nonreflexive Banach spaces
vertex angle	MSJ 456	weather	FUNCT 2.3.1 JRM 530
vertical	AMM 6182 6211 CRUX 374 436 JRM 437		
	572 678 NAvW 450 468 NYSMTJ 68	week	FUNCT 1.1.1 ISMJ J10.1 MSJ 483
	OMG 15.1.3 OSSMB G75.1-5 PARAB 283	****	PARAB 356 PME 449
	PME 413 TYCMJ 89 USA $1976/1$	Weierstrass zeta	
vertically	CRUX 436 PARAB 295 TYCMJ 147		►AN
view	OSSMB 76-15 SSM 3693	weigh	FUNCT 3.1.6 JRM 448
viewable	AMM E2513	weighing	AMM 6224 CRUX 123 JRM 448 OMG 18.3.5
viewpoint	NYSMTJ 86	weight	AMM 6224 CANADA 1976/1 FUNCT 3.1.6
visibility	►G/polygons		ISMJ 11.1 JRM 448 MATYC 127
VISIDIIILY	7 - 4 -		OMG 18.3.5 PARAB 307 PME 426
1	►NT/geometry/lattice points		SIAM 77-15 78-9
visible	AMM E2653 JRM 499 PARAB 440 PME 456		►AL
visit	AMM 6096 JRM 699 C7 MSJ 432		►C/cards
volume	AMM E2548 E2563 E2701 CRUX 181 224	weighted votes	JRM C4
	245 373 375 499 FUNCT 1.1.3 IMO 1976/3		►C/configurations/committees
	ISMJ 12.22 J11.4 JRM 646 785 MATYC 129	well-shuffled ca	rds JRM 757 MM 1066
	MM 927 NAvW 451 531 OMG 16.1.6 16.1.9	west	JRM 597 MM 943 OSSMB G76.3-3
	OSSMB 77-13 PENT 303 PME 386 425	wheel	CRUX 479 OSSMB G78.1-4
	SIAM 78-20 SSM 3672 3683 3693 3761 3783	white	AMM 6211 6229 E2724 CANADA 1978/5
	TYCMJ 86 134 USA 1976/4		CRUX 117 FQ B-415 FUNCT 2.2.3 3.2.4
	►G/convexity		ISMJ 12.4 JRM 386 424 425 434 446 468
	ightharpoonup G/n-dimensional geometry [2]		493 587 703 MM 952 Q624 NYSMTJ 68
	►G/n-dimensional geometry/4-space		OMG 15.1.3 OSSMB 79-14 PARAB 292
	►G/n-dimensional geometry/inequalities		PENT 314 PME 358 TYCMJ 113
	►P/geometry/boxes		USA 1976/1
	▶P/geometry/polyhedra	wholly	MM Q623
	►SG/analytic geometry [2]	width	AMM 6155 CRUX 427 JRM 500 713
	►SG/cylinders/spheres		MSJ 501 OSSMB G75.1-5 PENT 302
	►SG/lattice points/polyhedra [2]	wife	JRM 769 MSJ 431 OSSMB 78-3 PME 449
	►SG/octahedra/tetrahedra	wind	SPECT 8.2
	►SG/pentahedra [30]	windmill	CRUX 356
	SG/rectangular parallelepipeds/cubes	window	CRUX 122 PARAB 310
	,	wine	CRUX 95 FUNCT 2.2.3 NYSMTJ 96
	►SG/regular tetrahedra	WIIIC	PARAB 297
	SG/regular tetrahedra/bimedians	wine glass	CRUX 394
	►SG/right circular cones/frustum		
	►SG/spheres/holes	winner	JRM 372 373 510 539 572 648 682 709 OMC 14 2.1 DARAB 281 DME 342 350 370
	►SG/spheres/inscribed polyhedra		OMG 14.2.1 PARAB 281 PME 342 350 379
	►SG/tetrahedra/octahedra		388 SIAM 76-1 SPECT 7.4
	►SG/tetrahedra/planes	winning	AMM S10 CANADA 1978/5 CRUX 396
vote	JRM C4 SIAM 78-9		418 DELTA 6.1-4 FUNCT 2.3.3 ISMJ 12.1
wage	PENT 279		12.2 JRM 387 441 463 508 533 631 648
wager	JRM 423		658 MM 1024 1066 1084 NAvW 405
-	PARAB 275		OSSMB 75-2 79-15 PARAB 281 PME 403
wagon			SIAM 76-1 SPECT 7.4
wait	CRUX 28 PENT 313	winnings	JRM 499 769

wins 1975-		-1979 Zirco	
wins	CANADA 1978/5 CRUX 195 396 418	writing	PARAB 314 341
	DELTA 6.1-4 FUNCT 2.3.3 3.1.4 JRM 441	wrote	AMM 6146 CRUX 414 452 OSSMB 78-10
	463 508 533 540 558 601 MM 1071		PME 388
	OMG 17.1.1 OSSMB 75-2 PME 388 403	yard	PENT 276
wire	CRUX 182 JRM 650	Yashima	►GT/board games
wish	AMM E2608 JRM 534 MM Q661 OMG 15.1.1 PARAB 297 TYCMJ 104	year	CRUX 28 231 414 FUNCT 2.1.2 3.1.6
with replacement			3.2.1 JRM 374 379 393 419 530 643 759
with replacem	►P/selection problems/urns		C9 MATYC 135 MSJ 437 NAvW 509
withdrawal	OSSMB 75-2		OMG 17.1.2 17.3.5 18.1.2 PARAB 262
withdrawn	AMM E2724 FUNCT 3.2.4 MSJ 426		273 309 332 335 PME 342 SSM 3769
without replace			TYCMJ 104
	►C/selection problems	11	NT/sequences/law of formation
	▶P'selection problems/urns	yellow	JRM 730 OMG 18.2.7 PARAB 362
witness	PARAB 345	yes or no questi	
Wizard	JRM 630		►GT
woman	CANADA 1977/7 JRM 770a OMG 16.2.7		P/examinations [3]
	18.2.1 18.2.4		►RM/logic puzzles
won	JRM 423 769 MM 1024 1084 OMG 17.1.1	young	JRM 643 PARAB 309 PENT 283 311 PME 449
wondered	CRUX 356	roung lady	CRUX 34 297
wood	JRM 785	young lady zero-dimensiona	
word problem	s ►AL ►AL/money problems	zero divisors	►HA/rings/finite rings
	►NT/divisibility	zero-free	AMM 6117
	NT/recurrences/	zeros	AMM 6168 E2552 E2675 E2703 E2801
	generalized Fibonacci sequences	20105	CRUX 60 237 254 372 377 396 410 425 452
	▶RM		486 JRM 604 716 MATYC 128 MM 997
words	►C/counting problems		1046 NAvW 444 454 498 520 OMG 18.3.7
	▶RM G1		PARAB 396 SIAM 75-1 76-11 76-21
	►RM/alphametics		TYCMJ 35 58 93
	►RM/alphametics/multiplication		►AL/polynomials [2]
_	►RM/logic puzzles/incomplete information		►AL/polynomials/integer coefficients
work	CANADA 1977/7 ISMJ 12.3 MSJ 467		►AL/recurrences
	OMG 16.2.7 17.2.7 OSSMB 78-3 79-17		►AN /complex variables/polynomials
worker	PARAB 362 OMG 17.2.2 OSSMB 78-3		►AN/derivatives/higher derivatives
worker world	CRUX 333 FUNCT 3.2.3 JRM 375 441		►AN/functions/entire functions
world	OSSMB 76-11		►AN/functions/infinite series
worry	►RM/alphametics/phrases		►AN/gamma function/generating functions
worst	FUNCT 1.2.4 JRM 647		►AN/Riemann zeta function
worth	ISMJ 11.16 JRM 447 OMG 15.3.2 SSM 3662		►NT/digit problems/counting problems
wound	OMG 16.1.3 PENT 278	zeros of derivati	
write	AMM 6264 E2574 E2703 CMB P250		$ ightharpoonup AN/functions/C^{\infty}$
	FUNCT 2.3.1 ISMJ 13.21 14.4 JRM 469	zeta function	NAvW 429 444 524
	479 739 755 C9 PARAB 419 PME 371 388	zigzag	CRUX 408
	PUTNAM 1975/A.1 1976/B.2 SIAM 76-8	zinc	JRM 379
	SSM 3751 USA 1978/3	Zircon	PARAB 410

About the Cover:

The seven coins shown on the cover illustrate an interesting result known as the Seven Circles Theorem. For more details and additional references, see reference [Rabinowitz 1987]. Inside the six outer circles are figures associated with problems indexed in this book:

- 1. A remarkable property of the least common multiple of binomial coefficients submitted by Peter L. Montgomery as problem AMM E2686.
- 2. A magic pentagram containing distinct integers between 1 and 12 associated with with problem JRM 385 submitted by Vance Revenaugh.
- A well-known congruence involving binomial coefficients which appeared as problem PARAB 355.
- 4. An alphametic puzzle by Sidney Kravitz published as problem JRM 717.
- A challenging geometry problem by F. David Hammer published as problem MATYC 121.
- An unusual variant of the alternating harmonic series submitted by Harry D. Ruderman as problem AMM 6105.


About the Authors:

Stanley Rabinowitz (right) received his Ph.D. in mathematics from the Polytechnic University (of New York) working under the direction of Erwin Lutwak in the areas of convexity, combinatorics, and number theory. Professionally, he is a software engineer and computer consultant, but math problem solving has been his hobby most of his life. He has had over 300 problems published and is a regular contributor, both as solver and proposer, to the problem columns of over a dozen journals from around the world. He served as editor for a problem column in *The Fibonacci Quarterly*.

Mark Bowron is an over-the-road mathematrucker who spends most of his time driving an 18-wheeler throughout the lower 48 states and Canada for Marten Transport, Ltd. (based in Mondovi, Wisconsin). He is surprised more mathematicians do not drive truck for a living: after all, one has ample time to solve problems on the job, the pay is not bad, and (perhaps best of all), there are no exams to grade.

About the Publisher:

MathPro Press was founded in 1989 by Stanley Rabinowitz for the purpose of publishing indexes to problems from the mathematical literature. It also specializes in publishing mathematical problem books, compendiums of mathematical results, and books about ways of using computers to help solve mathematics problems.

The MathPro logo illustrates a result discovered by Dr. Rabinowitz using the Cabri-géomètre computer program and submitted as problem MM 1364 [Rabinowitz 1991]. The text is set in Computer Modern Bold.

INDEX TO MATHEMATICAL PROBLEMS 1975–1979