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FOREWORD
A few years ago, MathPro Press published an index to mathematical problems published between 1980 and
1984, and announced an ambitious program to publish other volumes extending this project both forward and
backward in time.  I was fortunate to have that volume available during my five-year term as Editor of the
Problems and Solutions column of the American Mathematical Monthly.  The system for classifying problems by
topic, by itself, adds an important level of organization, as does the section on notation, but the Index goes be-
yond this to allow related problems to be identified, and locates individuals and journals associated with these
related problems.  The wealth of information about the problems and their means of publication is an enormous
service to anyone facing the task of preparing a list of problems.

In his foreword to the 1980–1984 Index, Murray S. Klamkin was critical of the indexing information on problems
provided by journals.  Although I was in a position to move one journal in the direction that he indicated, there was
little change.  It thus falls on me to defend the present state of indexing of problems in journals.  It is not really an
answer to say that I was never asked to develop a better index, since I am sure that anything along these lines
that I produced would have been used.  The system has some inertia based on the way that various tasks are
assigned to meet publication deadlines, although sweeping changes are often made when there is a change of
editor.  However, the fans of Problem Sections also tend to have strong opinions.  Removing the distinction
between Elementary and Advanced problems had already generated strong comments: half opposed to the
change, and half in favor.  While the subject classification of this volume is useful for organizing thousands of
problems, it is not clear that such a classification would be useful for fewer than one hundred problems.  Indexing
by author has the nice feature that it encourages the reader to use the name of the author as the key to locating a
distinctive problem or solution.  Those whose skill in formulating problems and writing insightful solutions deserve
to be closely identified with their work.  Additional indexing may well be better confined to indexes of broader
scope.  The continuation of this project will raise the general level of awareness of this aspect of doing
mathematics, and give a better picture of the high value placed on this activity. 

The spectrum of problems runs from routine exercises to the great problems capable of inspiring the development of 
mathematics for a century or more.  Those represented here are chosen from a smaller range from contest
problems allowing an hour or so to journal problems for which several months of work are needed for an adequate
solution.  Although this avoids the extremes of the spectrum, there is still room for significant difference in
difficulty.  Since the reader is expected to be able to solve these problems, it is reasonable to expect that each
problem contains the seeds of its solution.  Also, full statements of problems are given, so the Index may be
enjoyed by someone interested in the subject, as well as (indeed, probably more than) those who need it in their
work.  A beginner may need guidance in selecting problems suitable to his present level of training, but an
experienced mathematician should develop an irresistible urge to pick up pencil and paper after opening the book to 
a random page in the Subject Index.  I would go so far as to suggest that this Index is the ideal retirement gift for a 
mathematician to allow the fun of the subject to be rediscovered after a career that has reached the point of
research on a highly specialized topic and teaching of the same old subjects.

v

Richard T. Bumby

professor of mathematics

Rutgers University
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PREFACE TO THIS PDF EDITION 

This ebook contains many corrections and revisions to the original book.  Hyperlinks and text search eliminate the need for any 
Problem Locator, so that section has been removed.  In the Subject Index, the relatively short Statistics and Symbolic Logic sections 
have been subsumed under Probability and Set Theory, respectively.

Many solutions are now readily available online.  Links colored green below represent free unlimited access.  Blue links represent 
JSTOR, which offers free but limited access (the Putnam page leads to JSTOR).  Red links represent paid access.

AMM American Mathematical Monthly https://www.jstor.org/journal/amermathmont
CRUX Crux Mathematicorum https://cms.math.ca/crux/
FQ The Fibonacci Quarterly https://www.fq.math.ca/list-of-issues.html
MM Mathematics Magazine https://www.jstor.org/journal/mathmaga
PARAB Parabola https://www.parabola.unsw.edu.au/2010-2019/volume-54-2018/issue-1
PENT The Pentagon http://www.kappamuepsilon.org/pages/a/pentagon.php
PME The Pi Mu Epsilon Journal http://www.pme-math.org/journal/issues.html
SIAM SIAM Review https://epubs.siam.org/toc/siread/current
SPECT Mathematical Spectrum http://www.appliedprobability.org/content.aspx?Group=ms&Page=allmsissues
SSM School Science and Mathematics https://onlinelibrary.wiley.com/loi/19498594
TYCMJ The Two-Year College Mathematics J. https://www.jstor.org/journal/twoyearcollmathj
PUTNAM The Putnam Mathematical Competition https://kskedlaya.org/putnam-archive/
USA U.S.A. Mathematical Olympiad https://mks.mff.cuni.cz/kalva/usa.html

Separate permissions were obtained from all of the rights holders for this electronic version to be made available at no charge, for 
which we are grateful.  We may do the same for Volume 1, which covers the years 1980-1984.

Stanley Rabinowitz Mark Bowron
Litchfield, NH Laughlin, NV
stan.rabinowitz@comcast.net mathematrucker@gmail.com
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PREFACE TO THE ORIGINAL BOOK
In the preface to the first edition of their book Concrete Mathematics published in 1989, Graham, Knuth, and Patashnik state 
that they have not been able to pin down the sources of many problems that have become part of the folklore. The same year 
that book was published, a new company called MathPro Press was founded by Stanley Rabinowitz to reference the world’s 
problem literature in a comprehensive way.  In 1992, Rabinowitz introduced a series of books called Indexes to Mathematical 
Problems. The first volume in that series, Index to Mathematical Problems 1980-1984, represented a milestone in problem 
indexing: never before had so many problems from so many sources been gathered together into a single volume.  To 
problemists worldwide, the introduction of this remarkable book brought the hope that problems and their references might 
eventually become very easy to locate.

As one might guess, the production of such an index requires an enormous amount of work.  But it was not expected that nine 
years would pass from the time the first volume was published until the time this second one was published. The main culprit 
behind the delay was a seemingly endless variety of loose ends and details that needed tending to. In addition, the editors 
were not able to devote as much attention to the project as they would have liked during the past few years, because their full-
time jobs demanded most of their time. A great deal of work was performed by generous volunteers. Given the unique and 
valuable nature of this project, it is hoped that some sort of alliance may be forged with one or more of the various 
mathematical associations that publish problem columns and contests, in order to accelerate book production in the future.

We were saddened by the passing of our friend and advisor Leroy F. Meyers in 1995.  He played an important role in the suc-
cess of these indexes, offering many detailed comments (especially with respect to the proper spelling of people’s names) and 
providing English translations of problems originally published in Dutch.  He is missed by all of us at MathPro Press.

To the many people who offered encouragement and miscellaneous help, we salute
Gary Barna, Cathy Bence, George and Roberta Berry, Mark Buxbaum, Anton and Peggy Chernoff, Anne 
and Peter Costa, Bill and Tricia Fisher, Peter Gilbert, Tim and Cheryl Hoffman, Herb Jacobs, Clark 
Kimberling, Murray Klamkin, Joe Konhauser, Hank Lieberman, Erwin Lutwak, Walter Mientka, Peter
O’Halloran, Bill Perkins, Susan Perkins, Eric and Carol Peters, Jack and Fay Rabinowitz, Jim and Sharon
Ravan, Leanne Robertson, Josh Rosen, Léo Sauvé, Dave Scheifler, Leo Schneider, Larry Somer, Rob and 
Marty Spence, Judy Swank, Rick Swift, Craig Thomas, and Marijke van Gans.

Except for the specific problems indexed, there are few differences between the first two volumes.  A new cross-referencing
feature was added to the keyword index that allows users to readily browse all classifications containing a given keyword. This
feature adds a new dimension to the classification scheme: while still grouping similar problems together as before, now it can
also be used to conduct keyword searches.  Partly as a result of this, and partly because the overall database is growing,
more detail was added to the lower-level classification categories in this volume.

Another difference between the two volumes is in the typefaces used.  The first volume was typeset with the Computer
Modern family of fonts created by Donald Knuth, whereas this volume was typeset with the MathTime family of fonts created
by Michael Spivak.  Finally, Volume 1 contained a very comprehensive list of journals with problem columns; this section has
been omitted from the present volume to avoid redundancy.  (The list can also be viewed online at our website address:
www.mathpropress.com.)

It should be noted that the collection of contests referenced in this volume is by no means comprehensive.  There are dozens
of fine contests held around the globe each year.  Ones missing from this volume were either too difficult to obtain, or unknown
to us.  Readers are encouraged to submit information regarding any contests missing from this series (or journals missing from
the list mentioned above), so they may be included in future volumes.

It is hoped that users will find this volume at least as useful as Volume 1, if not more useful.  The editors must apologize for
any errors or omissions in the presentation.  It seemed better to publish with errors than to err by not publishing at all.  Please
report any typos or mistakes to MathPro Press so they may be corrected in future editions.  We are constantly striving to
improve our methods of problem indexing, so all comments and suggestions for future enhancements are heartily welcomed.

Stanley Rabinowitz
Chelmsford, MA

Mark Bowron
Laughlin, NV



For Roma the librarian,
who so dutifully reshelved all those hundreds of
books and journals wildly torn from the shelf

during frantic problem-hunting sprees...
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HOW TO USE THIS INDEX
WHAT IS INDEXED?

To determine which journals and contests have been indexed, see the list on page 17. A more
detailed list can be found in the Journal Issue Checklist (page 401). That section also tells you which
columns in these journals were indexed.

SEARCH BY TOPIC
Given a topic that you are interested in, consult the Subject Classification Scheme (page 7) to find the
classification closest to your topic of interest. Click on that topic and scan the problems looking for those
of interest to you. A quick overview of the classification scheme can be found in the Table of Contents.

SEARCH BY KEYWORD
You can look in the Keyword Index (page 440) under various keywords that pertain to your topic of 
interest to locate specific problems associated with this keyword.  This is particularly useful when you re-
member a memorable word or phrase from the problem you are searching for. You can also check the
Title Index (page 355) to see if the keyword appears in the title of a problem.

SEARCH BY AUTHOR
If you know the author of a problem (or are interested in problems by a specific author), use the Author
Index (page 316). For references to biographical information about problemists, see page 430.

LOCATING A PROBLEM

Given a problem number (for example, one listed in the Keyword Index), click on it to jump to the page in
this index where the text of the problem is printed. Scanning around on that page may also show you 
related problems that may be of interest to you.

Note that the text for the problem as printed in this index may only be a summary of the full text as
originally printed. We have omitted extraneous information and may have reworded the problem to make
the notation consistent. To find the original complete wording for this problem, consult the Problem
Chronology (page 282) to find the journal, volume, and page number where the problem was proposed.

When a problem number is not a hyperlink, this means that the text of the problem does not appear in
this index (because the problem was not published during the years 1975–1979). Consult the Problem 
Chronology (page 282) to find a reference to a solution or comment concerning this problem.

To find problems of a certain type or difficulty level, determine which journals or contests normally publish
problems of the kind that you are interested in. Then scan the appropriate portion of the subject index for
problems from these journals.

1



LOCATING A SOLUTION
Once you find a specific problem that interests you, click the problem number to jump to the Problem
Chronology (page 282). You will then find references to where the problem was published (journal,
volume, issue, and page number) as well as references to all published solutions, partial solutions, and 
comments related to this problem.  Additional references may be found in the Citation Index (page 423),
which lists journal articles that reference problems covered by this index.

CONTESTS

Consult the Citation Index (page 423) to find references to specific contest problems. Articles about com-
plete contests (frequently reprinting the problems from the contest and often containing solutions) can be
located in the Contest References section of the Citation Index (page 430).

LOCATING A JOURNAL

The list of abbreviations for the journal names can be found on page 17.  A more complete list of journal 
abbreviations is given in Volume 1, on page 437 of that volume.  If you want to examine a problem or 
solution from some journal and that journal is not in your library, consult the Journal Information section 
(page 435 of Volume 1) for data about the journal, such as the ISSN number. Your librarian should be able 
to help you locate a library that carries this journal from the bibliographic in-formation given. The name of 
the publisher is also given, along with the address to write to for subscription information if the journal is still 
active.  (The list of journals can also be viewed online at our website address: www.mathpropress.com.)

NOTATION
For unfamiliar terms or notation, consult the Notation (page 3) or the Glossary (page 438).

UNSOLVED PROBLEMS

A convenient compilation of those problems proposed during the years 1975–1979 that remain unsolved 
as of 1991 can be found on page 413. An author index to the proposers of these unsolved problems can 
be found on page 422. Consult the Problem Chronology (page 282) to locate references to partial solutions 
to these problems. Additional references to these problems in the literature can be found in the Citation 
Index (page 423).

PROBLEM BOOKS
A list of problem books that have been reviewed during the years 1975–1979 can be found on page 430.

BIBLIOGRAPHY
References to journal articles appear in square brackets. See page 431 for the full bibliographic citation.

ADDITIONAL INFORMATION
Each section of this index also includes additional details on how to use that section.

2



Notation
α 1975–1979 {x | condition}
We have attempted to use a common notation and may 
therefore have modified the statement of a problem for the 
purposes of consistency. The most frequently appearing 
symbols are listed below. Consult the glossary on page 438 for 
additional information about some of the terms used herein. 
Since the problems covered by this index encompass a large 
portion of the field of mathematics, it is not possible to list 
every symbol used. For symbols not appearing in this list, 
consult the individual problem in question and/or go back to 
the original source of the problem where more detail about 
the notation may be given. For problems dealing with very 
specialized topics, it is assumed that the reader is familiar 
with the specialized notation. Consult any standard textbook 
on the subject if you need further information about such 
specialized notation.

α In problems about Fibonacci numbers,
α = (1 +

√
5)/2.

β In problems about Fibonacci numbers,
β = (1−

√
5)/2.

B(m,n) Beta function:
B(m,n) = Γ(m)Γ(n)/Γ(m+ n).

γ Euler’s constant:
γ = limn→∞( 1

1 + 1
2 + · · ·+ 1

n − lnn).

Γ(x) gamma function:
Γ(x) =

∫∞
0
e−ttx−1dt. If n is a

nonnegative integer, Γ(n+ 1) = n!.

∆f(x) First difference:
∆f(x) = f(x+ 1)− f(x).

∆nf(x) nth difference:
∆nf(x) = ∆

(
∆n−1f(x)

)
.

ζ(s) Riemann Zeta Function:
ζ(s) =

∑∞
n=1 1/ns.

µ(n) Möbius mu function: µ(1) = 1,
µ(n) = 0 if n has a squared factor,

µ(p1p2 . . . pk) = (−1)k if all the primes
p1, p2, . . . , pk are different.

π pi: ratio of circumference of a circle to
its diameter.

n∏

k=m

f(k)
product of terms of the form f(k) as
the integer k ranges from m to n.
Also written as

∏n
k=m f(k).

σ(n) sum of the divisors of n
(including 1 and n).

n∑

k=m

f(k)
sum of terms of the form f(k) as the
integer k ranges from m to n.
Also written as

∑n
k=m f(k).

∑

k∈S
f(k) sum of terms of the form f(k) as k

ranges through all elements in set S.

∑

sym

f(x1, . . . , xn) Symmetric sum:
sum of terms of the form
f(xσ(1), . . . , xσ(n)) as σ ranges through

all permutations of (1, . . . , n).

Can also denote the sum, over all
(
n
r

)
subsets of r variables among n given
variables, of a symmetric function f of
r variables.

τ(n) number of divisors of the positive
integer n.

φ(n) Euler’s totient function: number of
positive integers less than or equal to n
that are relatively prime to n.

∅ the null set.

ψ(z) digamma function: ψ(z) = Γ′(z)/Γ(z).

ω Brocard angle of a triangle ABC:
cotω = cotA+ cotB + cotC.

∞ infinity.

± plus or minus.

x× y x times y, also written x · y or just xy.

m× n m by n (as in an m× n array).
6 ABC angle ABC.

4ABC triangle ABC.

[ABC] area of triangle ABC.

AB line segment AB or line AB. May also
refer to the length of line segment AB.
Sometimes written as AB.−→

AB vector AB or ray from A through B.

~x vector x.

AB arc of circle from A to B.

4ABC ∼= 4XY Z triangles ABC and XY Z are
congruent.

4ABC ∼ 4XY Z triangles ABC and XY Z are similar.

f(x) ∼ g(x) f is asymptotic to g: f(x)/g(x)→ 1.

AB‖CD AB is parallel to CD.

AB ⊥ CD AB is perpendicular to CD.

||A|| norm of matrix A.

AT transpose of matrix A.

A∗ conjugate transpose of matrix A.

d |n d divides n.

d - n d does not divide n.

m : n ratio of m to n.

m/n m divided by n.
Usage note: a/bc means a/(bc).

m÷ n same as m/n.(
n
p

)
Also written as (n/p).
Legendre symbol: If p is an odd prime,
(n/p) = 1 if there is an x such that

x2 ≡ n (mod p) and (n/p) = −1
otherwise.

|x| absolute value of real number x:
|x| = x if x ≥ 0 and |x| = −x if x < 0.

|z| norm of complex number z:
If z = a + bi where a and b are real,
then |z| =

√
a2 + b2.

x < y x is less than y.

x ≤ y x is less than or equal to y.

x > y x is greater than y.

x ≥ y x is greater than or equal to y.

x ≺ y x precedes y in some ordering.

x � y x follows y in some ordering.

x = y x equals y.

x 6= y x is not equal to y.

{x | condition} the set of all x such that the specified
condition is true.
Also written as {x : condition}.
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Notation
{xn} 1975–1979 arccotx

{xn} the sequence x1, x2, x3 . . . .

(a, b) point with coordinates a and b.
Also ordered pair.

(a1, a2, . . . , an) point with specified coordinates.
Also ordered n-tuple.

(a, b) open interval from a to b.

[a, b] closed interval from a to b.

(a, b], [a, b) half-open intervals.

n! Factorial: n(n− 1)(n− 2) · · · 3 · 2 · 1.
Usage note: 2n! means 2(n!).
By definition, 0! = 1.

x ∈ A x is an element of the set A.

x /∈ A x is not an element of the set A.

/c monetary amount in cents.

$ monetary amount in dollars.

£ monetary amount in pounds sterling.

x ≈ y x is approximately equal to y.

y ∝ x y is proportional to x: there is a
constant k such that y = kx.

A ∪B union of sets A and B.
A ∪B = {x |x ∈ A or x ∈ B}.

A ∩B intersection of sets A and B.
A ∩B = {x |x ∈ A and x ∈ B}.

AB ∩ CD point that is the intersection of lines
AB and CD.

A \B set difference:
A \B = {x |x ∈ A and x /∈ B}.

A topological closure of set A.

x ≡ y (mod m) m |(x− y).

x 6≡ y (mod m) m - (x− y).

x mod y remainder: x− ybx/yc.
{x} fractional part: x mod 1.

bxc floor: greatest integer not larger than
x: bxc = max{n |n ∈ Z and n ≤ x}.

dxe ceiling: smallest integer not less than
x: dxe = min{n |n ∈ Z and x ≤ n}.

fn(x) nth iterate of the function f , i.e.
f(f(f(. . . f(x) . . .))). Exception:
For trigonometric functions, the
superscript represents an exponent.
For example, sinn θ means (sin θ)n.

f :A→ B a function f that maps A into B.

[G : H] index of subgroup H in group G.

G/H quotient group by normal subgroup H.

G ∼= H groups G and H are isomorphic.

|G| order of group G: the number of
elements in the group.

f ′(x) first derivative of f(x) with respect
to x.

f ′′(x) second derivative of f(x) with respect
to x.

f ′′′(x) third derivative of f(x) with respect
to x.

f (n)(x) nth derivative of the function f at x.

ẋ derivative of x with respect to t.

ẍ second derivative of x with respect
to t.

Dnf nth derivative of f .
df(x)
dx

derivative of f(x) with respect to x.

dnf(x)
dxn

nth derivative of f(x) with respect
to x.

∂f
∂x

partial derivative of f with respect
to x.

∂S boundary of set S.

[f(x)]x=a function f(x) evaluated when x = a.∫
f(x) dx indefinite integral of f(x).∫ b
a
f(x) dx definite integral of f(x) from a to b.∫

R integral over the real line.∫
C integral over the complex plane.

z complex conjugate of the complex
number z: If z = a + bi where a and b
are real, then z = a− bi.

A⇒ B A implies B.

n◦ n degrees.

ABCDE This font indicates that the letters
represent successive digits of a number
written in the usual radix form. If no
radix is specified, base 10 is assumed.

ABCDEb a number written to base b.(
n
k

)
binomial coefficient (“n choose k”):(
n
k

)
= n!

k!(n−k)!
.

[
n
k

]
Stirling number of the first kind
(“Stirling cycle number”):

xn =
∑
k

[
n
k

]
xk.

{
n
k

}
Stirling number of the second kind
(“Stirling subset number”):

xn =
∑
k

{
n
k

}
xk.

√
x square root of x.

n
√
x nth root of x.

xn x to the nth power.

xn falling factorial:
xn = x(x− 1)(x− 2) · · · (x− n+ 1).

xn rising factorial:

xn = x(x+ 1)(x+ 2) · · · (x+ n− 1).
Sometimes written as (x)k
(“Pochhammer’s symbol”).

K[x] ring of polynomials in the variable x
with coefficients from the field K.

K[x, y] ring of polynomials in the variables x
and y with coefficients from the field
K.

An alternating group on n elements.

a, b, c In problems about 4ABC, a, b, and c
denote the lengths of the sides of the
triangle.

A, B, C In problems about 4ABC, A, B, and
C denote the angles of the triangle.

∀x for all x.

adj A (classical) adjoint of matrix A.

arccosx principal value of angle whose cosine is
x. Also written as cos−1 x.

arccotx principal value of angle whose
cotangent is x.
Also written as cot−1 x.
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Notation
arcsinx 1975–1979 Rn

arcsinx principal value of angle whose sine is x.
Also written as sin−1 x.

arctanx principal value of angle whose tangent
is x. Also written as tan−1 x.

arg z argument of complex number z: If
z = r(cos θ + i sin θ), then arg z = θ.

Bn Bernoulli number:
z

ez−1 =
∑∞
n=0Bn

zn

n! .

C the set of complex numbers.

Ck the set of k times differentiable
functions.

C∞ the set of infinitely differentiable
functions.

card(A) cardinality of a set A: the number of
elements in A.
Sometimes written as |A|.

cos θ cosine of the angle θ.

cosh θ hyperbolic cosine of the angle θ.

cot θ cotangent of the angle θ.

csc θ cosecant of the angle θ.

csch θ hyperbolic cosecant of the angle θ.

det(A) determinant of square matrix A.

diag(a1, . . . , an) n × n diagonal matrix with elements
a1, a2, . . . , an along the diagonal.

e base of natural logarithms:

e = limn→∞
(
1 + 1

n

)n
.

En Euclidean n-space.

E[x] expected value.

∃x there exists an x such that.

erf(x) error function: erf(x) = 2√
π

∫ x
0
e−t

2

dt.

exp(x) exponential function: ex.

Fn Fibonacci number: nth term in the
sequence 1, 1, 2, 3, 5, 8, 13, . . .defined
by the recurrence: F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2.

fn(x) Fibonacci polynomial defined by the
recurrence fn(x) = xfn−1(x) + fn−2(x)
with initial conditions f1(x) = 1 and
f2(x) = x.

mFn

(
a1,...,am
b1,...,bn

∣∣∣z
)

also written as
mFn(a1, . . . , am; b1, . . . , bn; z).
hypergeometric function:

F
(
a1,...,am
b1,...,bn

∣∣∣ z
)

=
∑
k≥0

ak1 ···akm
bk1 ···bkn

zk

k! .

The subscripts m and n may be
omitted if their values are clear.

gcd(m,n) greatest common divisor of integers m
and n.

GF(qn) Galois field with qn elements.

Hn Harmonic number: Hn =
∑n
k=1

1
k .

ha, hb, hc In problems about 4ABC, ha, hb, and
hc denote the lengths of the altitudes
of the triangle.

i imaginary unit: i =
√
−1.

iff if and only if.

Im(z) imaginary part of the complex number
z: If z = a + bi where a and b are real,
then Im(z) = b.

inf infimum.

Jν(z) Bessel function (of the first kind):
Jν(z) =

(x/2)ν√
πΓ(ν+ 1

2 )

∫∞
0

cos(x cos(t))(sin2ν t) dt.

K In problems about 4ABC, K
denotes the area of the triangle. (F
is sometimes used in the literature.)

Ln Lucas number: nth term in the
sequence 1, 3, 4, 7, 11, 18, 29, . . .
defined by the recurrence: L0 = 2,
L1 = 1, and Ln = Ln−1 + Ln−2.

Lp[a, b] space of p-times differentiable functions
on the interval [a, b].

lcm[m,n] least common multiple of integers m
and n.

lg x binary logarithm: log2 x.

lim
x→a

f(x) limit of f(x) as x approaches a.

lim
x→a+

f(x) limit of f(x) as x approaches a from
above.

lim
x→a−

f(x) limit of f(x) as x approaches a from
below.

lim inf greatest lower limit. Also written as
lim.

lim sup least upper limit. Also written as lim.

lnx natural logarithm: loge x.

log x common logarithm: log10 x.
Usage note: log x/ log y means
(log x)/(log y).

logb x logarithm of x to the base b.

m(A) Lebesgue measure of the set A.

ma, mb, mc In problems about 4ABC, ma, mb,
and mc denote the lengths of the
medians of the triangle.

max(a, b, . . .) maximum of a set of numbers.

min(a, b, . . .) minimum of a set of numbers.

N the set of natural numbers (integers
larger than 0).

o(n) k = o(n) means that k/n→ 0.

O(f(n)) g(n) = O(f(n)) means that there is a
constant C such that |g(n)| ≤ C|f(n)|.

Pn Pell number (of the first kind): nth
term in the sequence defined by the
recurrence: P0 = 0, P1 = 1, and
Pn = 2Pn−1 + Pn−2.

Pn(x) Legendre polynomial:

Pn(x) = 1
2nn!

dn

dxn (x2 − 1)n.

P (n, k) Permutation:
P (n, k) = n(n−1)(n−2) · · · (n−k+ 1).

per(A) permanent of square matrix A.

P (x) probability that event x is true.

Q the set of rational numbers.

Qn Pell number of the second kind: nth
term in the sequence defined by the
recurrence: Q0 = 1, Q1 = 1, and
Qn = 2Qn−1 +Qn−2.

R the set of real numbers.

Rn for our purposes, same as En,
Euclidean n-space.
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Notation
R 1975–1979 Z[G]

R In problems about 4ABC, R denotes
the length of the circumradius of the
triangle.

r In problems about 4ABC, r denotes
the length of the inradius of the
triangle.

ra, rb, rc In problems about 4ABC, ra, rb, and
rc denote the lengths of the exradii of
the triangle.

Re(z) real part of the complex number z: If
z = a + bi where a and b are real, then
Re(z) = a.

Sn symmetric group on n elements.

s In problems about 4ABC, s denotes
the semiperimeter of the triangle:
s = (a+ b+ c)/2.

sec θ secant of the angle θ.

sech θ hyperbolic secant of the angle θ.

sin θ sine of the angle θ.

sinh θ hyperbolic sine of the angle θ.

sgn(x) sign of x: sgn(0) = 0, sgn(x) = 1 if
x > 0, and sgn(x) = −1 if x < 0.

sup supremum.

Tn(x) Chebyshev polynomial of the first kind:
Tn(x) = cos(n arccosx).

ta, tb, tc In problems about 4ABC, ta, tb,
and tc denote the lengths of the angle
bisectors of the triangle.

tan θ tangent of the angle θ.

tanh θ hyperbolic tangent of the angle θ.

tr(A) trace of the matrix A: sum of the
elements along the main diagonal.

Un(x) Chebyshev polynomial of the second
kind: Un(x) =
sin[(n+ 1) arccosx]/ sin(arccosx).

Z the set of integers.

Z[G] center of group G.
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Subject Classification Scheme
Algebra: Absolute value 1975–1979 Analysis: Functions

Algebra
Absolute value
Age problems

different times
digits
sum and product

Algorithms
Calendar problems

calendar cycles
day of week
Friday the 13th
significant dates

Clock problems
chimes
hands
stopped clock
time computation

Complex numbers
cube roots
exponential equations
identities
inequalities
powers
radicals

Determinants
Discriminants
Exponential equations
Fair division
Finite products
Finite sums

arithmetic progressions
binomial coefficients
exponentials
fractions
permutations
radicals

Floor function
Functional equations

1 parameter
2 parameters
3 parameters
derivatives
fallacies
integrals
periodic functions
polynomials

Functions
Generalized binomial theorem
Geometry of zeros
Identities
Inequalities

absolute value
degree 2
degree 3
degree 4
exponentials
finite products
finite sums
fractions
functional inequalities
iterated functions
logarithms
numerical inequalities
polynomials
powers
radicals

Infinite series
Interest problems
Iterated functions
Logarithms
Maxima and minima
Means

Measuring problems
Metric conversions
Money problems

change
coins
combinations
denominations
devaluation
interchanged digits
stamps
sum equals product
word problems

Monotone functions
Numerical calculations
Numerical inequalities
Partial fractions
Polynomial divisibility
Polynomials

Chebyshev polynomials
coefficients
complex polynomials
degree 4
derivatives
fixed points
integer coefficients
interpolation
number of terms
roots and coefficients
zeros

Radicals
approximations
arithmetic progressions
irrational numbers
nested radicals
reciprocals
simplification

Rate problems
cars
distance
exponential growth
flow problems
rivers
running
sheep
spaceships
traffic lights
trains
trips

Recurrences
Roots of unity
Sequences
Solution of equations

binomial coefficients
degree 2
degree 20
degree 4
determinants
exponential equations
linear
logarithms
radicals

Sports
Substitution
Sum of powers
Systems of equations

2 variables
3 variables
4 variables
5 variables
6 variables
13 variables
n variables
logarithms

Theory of equations
constraints
inequalities
integer roots
real roots
roots
systems of equations
table of values

Uniform growth
Venn diagrams
Weights
Word problems

counting problems
percent problems
population problems
ratios

Analysis
Banach spaces
Bessel functions
Cantor set
Complex variables

analytic functions
conformal mappings
convolutions
harmonic functions
inequalities
number theory
polynomials
rational functions
several variables

Curves
curve tracing
inequalities
inflection points
normals
simple closed curves
space filling curves
tangents
unit square

Derivatives
continued fractions
finite products
finite sums
gradients
higher derivatives
inequalities
maxima and minima
one-sided derivatives
product rule
roots
trigonometric functions

Differential equations
Bernoulli equation
Bessel functions
determinants
functional equations
initial value problems
Laplacian
order 1
order 2
order 4
order n
systems of equations

Differential operators
Elliptic integrals
Exponential function
Fourier series
Functional analysis
Functions

bounded variation
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Subject Classification Scheme
Analysis: Functions 1975–1979 Combinatorics: Graph theory

C∞
composition of functions
continuous functions
convex functions
differentiable functions
digits
entire functions
exponentials
infinite series
iterated functions
linear independence
monotone functions
nearest integer function
periodic functions
polynomials
real-valued functions
transcendental functions

Gamma function
Haar functions
Hankel function
Harmonic functions
Hypergeometric functions
Identities
Inequalities
Infinite products
Integral equations
Integral inequalities
Integrals

area
asymptotic expansions
evaluations
functions
gamma function
improper double integrals
improper integrals
limits
multiple integrals
trigonometry

Intervals
Jacobians
Laplace transforms
Laurent series
Legendre polynomials
Limits

arithmetic means
binomial coefficients
elementary symmetric functions
exponentials
factorials
finite products
finite sums
floor function
functional inequalities
functions
infinite series
integrals
logarithms
sequences
trigonometry

Location of zeros
complex polynomials
complex variables
entire functions
limits

Maclaurin series
Maxima and minima

bounds
complex numbers
constraints
derivatives
integrals
limits
polynomials

radicals
unit circle

Measure theory
arcs
Borel sets
function spaces
geometry
integrals
Lebesgue outer measure
monotone functions
probability measures
uniform integrability

Numerical analysis
Numerical approximations
Partial derivatives
Point sets
Power series
Pursuit problems
Rate problems
Riemann zeta function
Sequences

cluster points
complex numbers
convergence
inequalities
monotone sequences
pairs of sequences
rearrangements
recurrences
tetration
trigonometry

Series
arrays
binomial coefficients
closed form expressions
complex numbers
continuous functions
cubes
differentiable functions
divergent series
evaluations
exponential function
hyperbolic functions
inequalities
integrals
iterated functions
iterated logarithms
monotone sequences
pairs of sequences
pairs of series
tail series

Sets
Weierstrass zeta function

Applied
Mathematics
Acoustics
Astronomy
Demographics
Electrical networks
Engineering
Geography
Meteorology
Navigation
Operations research
Optics
Physics

cars
center of gravity
equilibrium
falling bodies

fluids
force fields
gravity
particles
projectiles
rods
rolling objects
solid geometry
systems of differential equations
temperature
tunnels

Combinatorics
Algorithms
Arrays

0-1 matrices
binary arrays
circular arrays
distinct rows
inequalities
Latin rectangles
maxima and minima
symmetric arrays
transformations
triangular arrays

Card shuffles
Cards
Coloring problems

arcs
concyclic points
graphs
hexagons
pennies
pentagons
points in plane
sets
tournaments
triangles

Compositions
Configurations

chains
circular arrays
committees
concyclic points
couples
digital displays
maxima and minima
money problems
people

Counting problems
geometric figures
jukeboxes
ordered pairs
paths
sequences
subsets
tournaments
words

Distribution problems
Geometry

coloring problems
concyclic points
dissection problems
points in plane
points in space

Graph theory
bipartite graphs
complete graphs
counting problems
covering problems
directed graphs
family trees
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Subject Classification Scheme
Combinatorics: Graph theory 1975–1979 Geometry: Maxima and minima

friends and strangers
isomorphic graphs
map problems
maxima and minima
trees

Josephus problem
Latin squares
Lattice points
Paths
Permutations
Selection problems
Sequences
Sets

cardinality
determinants
differences
family of subsets
partitions
sums

Sorting
Tournaments

chess tournaments
elimination tournaments
incomplete information
maxima and minima
soccer
tennis
triangular matches

Tower of Hanoi
Urns

Game Theory
Betting games
Board games
Bridge
Card games
Chess problems
Cribbage
Dots and Pairs
Mastermind
Nim variants

1 pile
3 piles
opponent decrees
stars
Target Nim

Selection games
arrays
dates
players select digits
players select integers
polynomials

Tic-tac-toe variants
Yes or no questions

Geometry
Affine transformations
Analytic geometry

circles
concyclic points
conics
curves
ellipses
Euclidean geometry
exponentials
family of lines
floor function
folium of Descartes
lines
locus

polar curves
tangents
triangles

Angle measures
Billiards
Butterfly problem
Cake cutting
Circles

2 circles
3 circles
4 circles
arcs
area
chords
circumference and diameter
inscribed rectangles
interior point
isosceles right triangles
line segments
mixtilinear triangles
orthogonal circles
surrounding chains
tangents

Combinatorial geometry
concyclic points
counting problems
equilateral triangles
intervals
lines in plane
packing problems
planes
points in space
polygons
triangles
triangulations

Concyclic points
Conics
Constructions

angle bisectors
angles
chords
circles
compass only
conics
equilateral triangles
line segments
lines
parallel lines
pentagons
points
quadrilaterals
rectangles
right triangles
rulers
rusty compass
squares
straightedge only
trapezoids
triangles

Convexity
Covering problems
Cyclic polygons
Cyclic quadrilaterals
Cycloids
Discs
Dissection problems

angles
equilateral triangles
isosceles right triangles
line segments
partitions of the plane
polygons
rectangles

regular pentagons
regular polygons
right triangles
squares
triangles

Ellipses
Envelopes
Equilateral triangles

exterior point
interior point
isosceles triangles
midpoints
orthogonal projection
sides
similar triangles

Fallacies
Family of lines
Grazing goat
Heptagons
Hexagons
Hyperbolas
Inequalities

area
cyclic quadrilaterals
points in plane
polygons
quadrilaterals
rectangles
right triangles
squares
triangles

Isosceles right triangles
Ladders
Lattice points

circles
collinear points
convexity
counting problems
ellipses
equilateral triangles
mappings
maxima and minima
n-dimensional geometry
squares
triangles

Limiting figures
Locus

angles
circles
conics
ellipses
equal distances
equilateral triangles
lines
linkages
midpoint
rotating lines
triangles

Map problems
Maxima and minima

angles
circular arcs
collinear points
convex hull
equilateral triangles
isosceles triangles
line segments
paths
quadrilaterals
rectangles
regular polygons
right triangles
semicircles
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Subject Classification Scheme
Geometry: Maxima and minima 1975–1979 Linear Algebra: Matrices

shortest paths
solid geometry
thumbtacks
triangles

n-dimensional geometry
4-space
convexity
curves
inequalities
simplexes
volume

Non-Euclidean geometry
Octagons
Packing problems
Paper folding

algorithms
cubes
equilateral triangles
rectangles
regular pentagons
regular polygons
squares
strips

Parabolas
Parallelograms
Pentagons
Perspective drawings
Point spacing
Points in plane

broken lines
circles
distances
parallel lines
partitions
perpendicular bisectors
rational distances
triangles

Polygons
13-gons
17-gons
convex polygons
equilateral polygons
interior point
visibility

Projective geometry
Quadrilaterals

angle bisectors
area
circumscribed quadrilateral
determinants
diagonals
erected figures
inscribed circles
maxima and minima
sides
supplementary angles
triangles

Rectangles
Regular heptagons
Regular hexagons
Regular octagons
Regular pentagons
Regular polygons

cyclic polygons
diagonals
exterior point
inscribed polygons
limits
point on circumcircle

Right triangles
angle measures
circles
erected figures

incircle
mean proportionals
perspectivities
sequences

Rolling
Semicircles
Simple closed curves
Squares

2 squares
angles
circles
circumscribed triangle
erected figures
inscribed circles
interior point
limits
line segments
lines
moats

Stars
Symmetry
Tesselations
Tiling
Trapezoids
Triangle inequalities

altitudes
angle bisectors and medians
angle bisectors extended
angles
angles and radii
angles and sides
centroids
circumcenter and incenter
circumradius
Gergonne point
half angles
interior point
medians and sides
radii
sides

Triangles
2 triangles
3 triangles
30 degree angle
60 degree angle
120 degree angle
adventitious triangles
altitudes
angle bisectors
angle measures
angle trisectors
area
centroids
Ceva’s theorem
cevians
circles
circumcircles
ellipses
equal angles
equal areas
erected figures
escribed circles
Euler line
inscribed circles
inscribed triangles
interior point
isogonal conjugates
isosceles triangles
line segments
lines
medians
nine-point circle
orthocenter

pedal triangles
perpendiculars
ratios
relations among parts
sides
similar triangles
special triangles
squares
trisected sides

Higher Algebra
Algebras
Binary operations
Category theory
Fields

complex numbers
extension fields
finite fields
number fields
perfect fields
polynomials
rational functions
subfield chains
subfields
vector spaces

Galois theory
Groupoids
Groups

abelian groups
alternating groups
associativity
finite groups
group presentations
matrices
permutation groups
subgroups
torsion groups
transformations

Lattices
Loops
Quaternions
Rings

Boolean rings
characteristic
commutative rings
finite rings
ideals
integral domains
matrices
nonassociative rings
number of idempotents
polynomials
power series
regular rings
subrings

Linear Algebra
Affine spaces
Determinants

block matrices
complex numbers
evaluations
identities
recurrences
symmetric matrices

Eigenvalues
Lattices
Linear transformations
Matrices

0-1 matrices
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Subject Classification Scheme
Linear Algebra: Matrices 1975–1979 Number Theory: Forms of numbers

adjoints
block matrices
characteristic polynomial
Hermitian matrices
identity matrix
maxima and minima
Moore-Penrose inverse
norms
orthogonal matrices
permutations
polynomials
positive definite matrices
power series
powers
products
similar matrices
spectral radius
stochastic matrices
symmetric matrices
unitary matrices

Matrix equations
Matrix sequences
Normed spaces
Vector spaces

Number Theory
Abundant numbers
Algorithms
Approximations
Arithmetic operations
Arithmetic progressions

coprime integers
geometric progressions
maxima and minima
primes
ratios
roots
subsequences
sum of terms

Arrays
Base systems

cubes
digit permutations
digit reversals
divisibility
factorials
limits
maxima and minima
modular arithmetic
number of digits
palindromes
pandigital numbers
polygonal numbers
powers
products
repeating fractions
square roots
squares
sum of digits
triangular numbers

Binomial coefficients
arithmetic progressions
congruences
divisibility
finite sums
generating functions
maxima and minima
number representations
odd and even
primes

Collatz problem

Composed operations
Composite numbers
Continued fractions

convergents
evaluations
identities
periodic continued fractions
pi
radicals

Decimal representations
Determinants

0-1 matrices
binomial coefficients
congruences
counting problems
factorials
identities
solution of equations

Difference equations
Digit problems

arithmetic progressions
base systems
cancellation
consecutive digits
counting problems
cubes
cyclic shift
digit reversals
digital roots
distinct digits
divisibility
division
factorials
fractions
juxtapositions
leading digits
matrices
maxima and minima
missing digits
multiples
number of digits
operations
pandigital numbers
permutations
powers
primes
products
squares
sum of cubes
sum of digits
sum of powers
sum of squares
terminal digits
triangular numbers

Diophantine equations
degree 2
degree 3
degree 4
degree 5
degree 6
degree n
exponentials
factorials
linear
mediants
radicals
solution in rationals
systems of equations

Divisibility
consecutive integers
cube roots
difference of squares
exponentials

factorials
floor function
geometry
polynomials
powers of 2
products
triangular numbers
word problems

Divisors
Equations
Euler totient

divisors
fractions
inequalities
primes
quotients
solution of equations

Factorials
Factorizations
Farey sequences
Fermat’s Last Theorem
Fermat’s Little Theorem
Fermat numbers
Fibonacci and Lucas numbers

arrays
congruences
determinants
divisibility
finite sums
golden ratio
identities
infinite series
primes
recurrences

Fibonacci numbers
algorithms
ancestors
composite numbers
congruences
continued fractions
determinants
digit problems
divisibility
Euler totient
finite sums
forms
generating functions
greatest common divisor
identities
inequalities
infinite series
Pell’s equation
population problems
primes
recurrences
systems of equations
triangular numbers
trigonometric functions

Finite products
Floor function

exponentials
finite sums
identities
inequalities
integrals
iterated functions
maxima and minima
primes
sequences
solution of equations

Forms of numbers
decimal representations
difference of consecutive cubes
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Subject Classification Scheme
Number Theory: Forms of numbers 1975–1979 Number Theory: Sequences

difference of powers
difference of squares
perfect numbers
powers of 2
prime divisors
product of consecutive integers
squares
sum of consecutive cubes
sum of consecutive integers
sum of consecutive odd integers
sum of consecutive squares
sum of cubes
sum of divisors
sum of factorials
sum of squared reciprocals
sum of squares
sum of two squares
unit fractions

Fractional parts
Fractions
Functional equations
Gaussian integers
Generating functions
Geometry

cubes
cyclic quadrilaterals
lattice points
quadrilaterals
rectangles
rectangular parallelepipeds
right triangles
semicircles

Greatest common divisor
Harmonic series
Inequalities

binomial coefficients
congruences
exponentials
fractional parts
logarithms
powers
powers of 2
products
radicals
simultaneous inequalities
sum and product
sum of squared differences

Infinite products
Irrational numbers
Least common multiple
Legendre symbol
Limits
Lucas numbers

binomial coefficients
congruences
cubes
digit problems
divisibility
sequences
sets

Matrices
Maxima and minima
Means
Mersenne numbers
Möbius function
Modular arithmetic

complete residue systems
coprime integers
fields
groups
permutations
powers
quadratic congruences

reciprocals
solution of equations
squares
sum of squares
systems of congruences

Multinomial coefficients
Multiplication tables
Normal numbers
Number of divisors
Number representations

Fibonacci numbers
fractions
Lucas numbers
perfect numbers
polygonal numbers
ratios
sets
standard symbols
unit fractions

Palindromes
Pandigital numbers
Partitions
Pascal’s triangle
Pell numbers
Perfect numbers
Permutations

derangements
fixed points
inequalities
modular arithmetic
order
powers

Polygonal numbers
consecutive integers
formulas
heptagonal numbers
hexagonal numbers
modular arithmetic
octagonal numbers
pentagonal numbers

Polyhedral numbers
Polynomials

2 variables
3 variables
age problems
congruences
cyclotomic polynomials
degree 2
degree 5
evaluations
inequalities
injections
products
roots

Powers
differences
integers
powers of 2
powers of 2 and 3
radicals
tetration

Primes
arithmetic progressions
complete residue systems
congruences
digit permutations
digit reversals
forms of numbers
gaps
generators
greatest prime factor
pi function
polynomials

powers
prime chains
products
recurrences
sequences
sum of primes

Products
Pythagorean triples

area
area and perimeter
arithmetic progressions
counting problems
digit problems
divisibility
Fibonacci and Lucas numbers
generators
hypotenuse
inequalities
inradius
inscribed squares
odd and even
partitions
primes
reciprocals
squares
systems of equations

Quadratic fields
Quadratic reciprocity
Quadratic residues
Rational expressions
Rational numbers
Rectangles
Recurrences

arrays
finite sums
floor function
fractions
generalized Fibonacci sequences
inequalities
limits
modular arithmetic
multiplicative Fibonacci sequences
order 1
order 2
order 3
rates of divergence
square roots
sum of digits
systems of recurrences

Repdigits
Repunits
Riemann zeta function
Sequences

binary sequences
binomial coefficients
consecutive integers
counts
density
digits
divisibility
family of sequences
finite sequences
floor function
inequalities
law of formation
limits
monotone sequences
partitions
products
rational numbers
runs
subsequences
sum of consecutive terms
trees

12



Subject Classification Scheme
Number Theory: Series 1975–1979 Recreational Mathematics: Logic puzzles

Series
alternating series
arithmetic progressions
binomial coefficients
congruences
digit problems
divisibility
factorials
floor function
geometric series
identities
inequalities
infinite series
least common multiple
limits
logarithms
multinomial coefficients
multiples
permutations
polynomials
power series
powers
powers of 2
primes
Stirling numbers
subseries
sum of squares
unit fractions

Sets
arithmetic means
arithmetic progressions
closed under product
density
divisibility
family of sets
irrational numbers
maxima and minima
n-tuples
partitions
polynomials
prime divisors
subsets
sum of elements
triples
unit fractions

Square roots
Squares
Sum and product
Sum of consecutive odd integers
Sum of divisors

almost perfect numbers
density
divisibility
evaluations
iterated functions
number of divisors
perfect numbers
prime factorizations
products
sets

Sum of powers
Triangles

60 degree angle
120 degree angle
area
area and perimeter
base and altitude
consecutive integers
counting problems
geometric progressions
isosceles triangles
nonisosceles triangles
obtuse triangles

perimeter
primes
right triangles
scalene triangles
similar triangles

Triangular numbers
counting problems
forms of numbers
identities
palindromes
polynomials
series
squares
sum of squares

Twin primes

Probability
Arrays
Bingo
Biology
Birthdays
Cards
Cauchy distribution
Coin tossing
Coloring problems
Conditional probability
Density functions
Dice problems

independent trials
loaded dice
matching problems
n-sided dice
number of occurrences
octahedral dice

Digit problems
Distribution functions
Distribution problems
Examinations
Gambler’s ruin
Game theory

card games
coin tossing
dice games
selection games
TV game shows

Geometry
boxes
circles
concyclic points
convex hull
discs
point spacing
polygons
polyhedra
quadrilaterals
rectangles
squares
triangles

Independent trials
Inequalities
Jury decisions
Number theory
Order statistics
Permutations
Random variables
Random vectors
Relative motion
Selection problems

distribution problems
horse racing
limits

points
sets
socks
sum of squares
sums
unit interval
urns

Sequences
Sets
Slide rules
Sports
Statistics
Stochastic processes
Student’s t-distribution
Tournaments
Transportation
Waiting times

Recreational
Mathematics
Alphametics

animals
chess moves
Christmas
congruences
constructions
cubes
division
doubly true
elements
equations
food
letters
money
multiplication
names
numbers
phrases
places
planets
radicals
simultaneous alphametics
squares
states
story problems
words

Arrays
Chess tours
Chessboard problems

coloring problems
counting problems
covering problems
deleted squares
distribution problems
maxima and minima
n queens problem
paths
probability

Cryptarithms
alphabet
chess moves
encrypted messages
hand codes
powers
products
skeletons
tournaments

Logic puzzles
Caliban puzzles
incomplete information
labeled boxes
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Subject Classification Scheme
Recreational Mathematics: Logic puzzles 1975–1979 Trigonometry: Triangles

liars and truthtellers
relationships
statements
switches
transportation
yes or no questions

Magic configurations
gnomon magic squares
hexagons
magic pentagrams
magic squares
triangles

Mazes
Polyominoes

coloring problems
dominoes
maxima and minima
pentominoes
tiling

Puzzles
block puzzles
crossnumber puzzles
peg solitaire
picture puzzles
sliding tile puzzles

Riddles
Shunting problems
Word problems
Words

Set Theory
Chains
Mappings
Power set
Relations
Subsets
Symbolic logic

Solid Geometry
Analytic geometry
Boxes
Complexes
Convexity
Covering problems
Cubes
Curves
Cylinders
Dissection problems

Lattice points
Lines
Locus
Maxima and minima
Octahedra
Packing problems
Paper folding
Pentahedra
Plane figures
Points in space
Polyhedra

combinatorial geometry
convex polyhedra
pentagons
spheres
squares

Projective geometry
Pyramids
Rectangular parallelepipeds
Regular tetrahedra
Right circular cones
Skew quadrilaterals
Solids of revolution
Space curves
Spheres
Spherical geometry
Surfaces
Tetrahedra

altitudes
dihedral angles
faces
family of tetrahedra
incenter
inscribed spheres
maxima and minima
octahedra
opposite edges
planes
triangular pyramids

Triangles

Topology
Banach spaces
Cantor set
Compactifications
Composed operations
Connected sets
Euclidean plane
Function spaces

Functions
Graph of a function
Hilbert spaces
Knots
Locally convex spaces
Metric spaces
Product spaces
Separation properties
Sets
Subspaces
Surfaces
Topological groups
Topological vector spaces
Unit interval

Trigonometry
Approximations
Calculator problems
Determinants
Fallacies
Identities

constraints
cos
inverse trigonometric functions
multiple angles
sin
sin and cos
tan

Inequalities
cos
Huygens
sin
sin and cos
sin and tan
tan
tan and cot
tan and sec

Infinite products
Infinite series
Numerical evaluations
Recurrences
Series
Solution of equations

arctan
sin and cos
tan
tan and sec

Systems of equations
Triangles
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SUBJECT INDEX
(Problems sorted by topic)

Use this section to

• find problems related to a given topic
• find problems similar to a given problem
• locate the text for a specific problem

In this section, we list all problems that were published during the years 1975–1979 sorted by topic. The full text of
each problem is frequently given, but in many cases, only a summary of the problem will appear.  The intent is to
print enough of the problem so that you can locate the problem or result you are looking for without having
to consult secondary references.  We have taken the liberty of removing all extraneous matter from the text of
the problems. Once a suitable problem has been found, you should consult the original source for more
information. The proposer may have included additional information or references. We have also attempted to
standardize the terminology and notation of the problems so that a consistent notation is used throughout this
index. See the Glossary (page 438) or the Notation (page 3) for any unfamiliar terms or notation.

To locate the reference to where a problem originally appeared, click on the problem number to consult the
Problem Chronology (page 282). The chronology will also give you references to where you can find the solution
to the problem or comments about the problem. See also the Citation Index (page 423) to locate articles that
reference this problem.

The Subject Classification Scheme used can be found beginning on page 7 of this index; or you can just browse
around through the problems until you find the subject area you are interested in. If you are looking for a specific
problem for which you remember some memorable phrase or concept, you may find it easier to locate the
problem using the Keyword Index (page 440).

In many cases, a problem could be classified under more than one topic. We have chosen the one topic that we
feel best represents the problem.  Thus, each problem appears just once in this index. The Keyword Index (page
440) may be useful in locating a problem from secondary topics.

This index is not a problem book. The solutions to the problems are not printed here. To find the solution to a
given problem, use the Problem Chronology (page 282) to locate the volume and page number of the journal in
which the solution is published.  Go to that journal for more information.  Links to many journal archives appear in
the Preface on page ix.

To the right of each problem number is the name of the person that proposed the problem. Not all journals require
that published problems be original. If the journal indicated that the problem was not new, we use the phrase
“submitted by” before the submitter’s name. If no author’s name is given, this means that the editor selected the
problem from the mathematical folklore.

If two problems are identical or nearly the same, both problem numbers are listed in succession and then the text
for the problem is printed just once.

Problems marked with an asterisk appear in the Unsolved Problems section (page 413).
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When making references to a given problem in scholarly articles, you should give the original reference to the
problem (or solution) in your paper. You should not reference this index. When referencing a problem or solution
from a problem column in a bibliography or list of references, be sure to include the author’s name and a proper
reference to the journal containing the problem or solution. You should also go back to the original source and
check out the exact text of the problem. Remember that the text as printed in this index may be a summary only
and may contain omissions or revisions. Be sure to check the chronology of the problem (page 282) to see if
there were any corrections printed for the original statement of the problem. You should also check out the
comments and solutions published for the problem — there may be other notes there too concerning corrections
to the statement of the problem. If you cannot locate the journal containing the problem, you can use the Journal
Issue Checklist (page 401) to get the full name of the journal, as it was known at the time the problem was
published, for inclusion in your bibliography. Use the Problem Chronology (page 282) to get the volume and page
number where the problem was proposed.  The Journal Information section (page 435 of Volume 1) may
be useful to you in locating a library that holds the journal you are interested in.
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JOURNALS AND CONTESTS 
COVERED BY THE SUBJECT INDEX

Journals: Abbreviation
AMM
CMB
CRUX
DELTA
FQ
FUNCT
ISMJ
JRM
MATYC
MENEMUI
MM
MSJ
NAvW
NYSMTJ
OMG
OSSMB
PARAB
PENT
PME
SIAM
SPECT
SSM
TYCMJ

Abbreviation
AUSTRALIA
CANADA
IMO
KURSCHAK
PUTNAM
USA

Contests:

Name
The American Mathematical Monthly
Canadian Mathematical Bulletin
Crux Mathematicorum
Delta
The Fibonacci Quarterly
Function
Indiana State Mathematics Journal
Journal of Recreational Mathematics
The MATYC Journal
Menemui Matematik
Mathematics Magazine
The Mathematics Student Journal
Nieuw Archief voor Wiskunde
The New York State Mathematics Teachers’ Journal
Ontario Mathematics Gazette
Ontario Secondary School Mathematics Bulletin
Parabola
The Pentagon
The Pi Mu Epsilon Journal
SIAM Review
Mathematical Spectrum
School Science and Mathematics
The Two-Year College Mathematics Journal

Name
Australian Mathematical Olympiad
Canadian Mathematics Olympiad
International Mathematical Olympiad
Kurschak Mathematical Competition of Hungary
The William Lowell Putnam Mathematical Competition
U.S.A. Mathematical Olympiad

17



Algebra
Absolute value Problems sorted by topic Age problems: sum and product

Absolute value

SSM 3664. by Albert White
Let a and b be real numbers. Prove that

|a+ b|+ |a− b| = |a|+ |b|

if and only if |a| = |b|.

SSM 3671. by Al White
Show that if x, y, and z are real numbers such that

|x+ y + z| = |x|+ |y|+ |z|,

then (x ≥ 0, y ≥ 0, and z ≥ 0) or (x ≤ 0, y ≤ 0, and z ≤ 0).

Age problems: different times

PME 449. by Richard I. Hess
A fairly young man was married at the beginning of

the month. At the end of the month his wife gave him a
chess set for his birthday. If he was married and received
the chess set on the same day of the week he was born, how
old was he when he got married?

MATYC 135. by Frank Kocher
Miss Cohen is in her prime. Today is her birthday and

her age is (as it was last year) the product of two primes,
p1 and p2. The difference p1 − p2 is the product of two
other primes, p3 and p4, but p3−p4 = p5 where p5 is a fifth
prime.

Assuming that Miss Cohen’s age is less than a century,
determine her age.

OMG 17.3.5.
A man was x years old in the year x2. How old was he

in 1960?

OMG 17.3.4.
When Ernie was as old as Bert is now, Bert’s age was

half of Ernie’s present age. When Bert will be as old as
Ernie is now, the sum of their ages will be 99. Find Bert’s
present age.

JRM 393. by Les Marvin
In the year 2000, if I live that long, my age will be a

perfect cube, and my son’s age a perfect square. Not too
many years ago the situation was reversed. How old are we?

FUNCT 3.1.6.
Hanging over a pulley is a rope with a weight at one

end. At the other end, there is a monkey of equal weight.
The rope weighs 250 gm per meter. The combined ages
of the monkey and its father total 4 years, and the weight
of the monkey is as many kilograms as his father is years
old. The father is twice as old as the monkey was when
the father was half as old as the monkey will be when the
monkey is three times as old as the father was when he was
three times as old as the monkey was. The weight of the
weight plus the weight of the rope is half as much again
as the difference between the weight of the weight and the
weight of the weight plus the weight of the monkey. How
long is the rope?

PARAB 332.
In a number of years equal to the number of times a

pig’s mother is as old as the pig, the pig’s father will be as
many times as old as the pig as the pig is years old now.
The pig’s mother is twice as old as the pig will be when the
pig’s father is twice as old as the pig will be when the pig’s
mother is less by the difference in ages between the father
and the mother than three times as old as the pig will be
when the pig’s father is one year less than twelve times as
old as the pig is when the pig’s mother is eight times the
age of the pig.

When the pig is as old as the pig’s mother will be when
the difference in ages between the pig’s father and the pig is
less than the age of the pig’s mother by twice the difference
in ages between the pig’s father and the pig’s mother, the
pig’s mother will be five times as old as the pig will be when
the pig’s father is one year more than ten times as old as the
pig is when the pig is less by four years than one-seventh
of the combined ages of his father and mother. Find their
respective ages. (For the purposes of this problem, the pig
may be considered to be immortal.)

PARAB 309.
In a family with 6 children, the five elder children are

respectively 2, 6, 8, 12, and 14 years older than the youngest.
The age of each is a prime number of years. How old are
they? Show that their ages will never again all be prime
numbers (even if they live indefinitely).

Age problems: digits

JRM 794. by Arthur G. Bradbury
“How old is grandfather?” David asked. His father

replied, “His age, like mine, is one more than six times the
sum of its digits.” How old is David’s grandfather?

PARAB 262.
On his birthday in 1975, John reaches an age equal to

the sum of the digits in the year he was born. What year
was that?

Age problems: sum and product

CRUX 329. by Gilbert W. Kessler
“The Product of the ages of my three children is less

than 100,” said Bill, “but even if I told you the exact prod-
uct and even told you the sum of their ages you still couldn’t
figure out each child’s age.”

“l would have trouble if different ages are very close”
said John as he looked at the children, “but tell me the
product anyway.”

Bill told him and John confidently told each child his
age.

If you can now also tell the three ages, what are they?

JRM 699. by L. R. Ford, Jr.
Over the punchbowl, my host said, “Having been mar-

ried on the twenty-ninth of February, we don’t get to cele-
brate our anniversary very often: in fact this is only the fifth
one. I usually ask visiting mathematicians to determine the
ages of my three children given the sum and product of their
ages, but since Professor Smith failed tonight, and Profes-
sor Jones also failed at our last party, I am going to let you
off.”

“Oh, don’t do that,” I replied, “I have already heard
all the information I will need.”

How old were the children?
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Algebra
Age problems: sum and product Problems sorted by topic Calendar problems: day of week

JRM 659. by David L. Silverman
“I see that the sum of your children’s ages is 36, the

same as mine,” said Alice to Barbara, “and the product of
their ages is also the same as the product of my children’s
ages.” “Then I know the ages of all the children, but of
course I don’t know which family is which,” said Carol,
who is known as a lightning calculator. “Well, my son is
the oldest of all the children,” said Barbara.

What are the ages of the children?

MSJ 437. by Paul Weinberg
PENT 314. by H. Laurence Ridge

Two mathematicians were seeing each other again for
the first time in many years. One said, “Since I last saw
you, I have had three children.” “Well,” said the other,
“What are their ages?” “The product of their ages is 36,
and the sum of their ages is the same as your house number,”
replied the first. The second thought for a moment and then
said that he would need more information. “Oh, the oldest
one looks like me,” the first added, whereupon his friend
quickly figured out their ages. What were the ages of the
three children?

OSSMB 79-1.
One morning after church the verger, pointing to three

departing parishioners, asked the bishop, “How old are
those three people?” The bishop replied, “The product of
their ages is 2450, and the sum of their ages is twice your
age.” The verger thought for some moments and said, “I’m
afraid I still don’t know.” The bishop answered, “I’m older
than any of them.” “Aha!” said the verger. “Now I know.”
How old was the bishop? (Ages are in whole numbers of
years and no one is over 100.)

Algorithms

SSM 3690. by Louis J. Hall
Establish the following generalization of a method for

finding cube roots and fifth roots using the square-root key
of a hand calculator: The rth root of any positive number
N can be approximated by the iterative formula

xn+1 = (Nxin)1/2m ,

where xn is the nth approximation, m is the smallest posi-
tive integer such that 2m ≥ r, and i = 2m − r.

PUTNAM 1977/B.3.
An ordered triple (x1, x2, x3) of positive irrational

numbers with x1 + x2 + x3 = 1 is called balanced if each
xi < 1/2. If a triple is not balanced, say if xj > 1/2, one
performs the following

B(x1, x2, x3) = (x′1, x
′
2, x
′
3),

where x′i = 2xi if i 6= j and x′j = 2xj − 1. If the new triple
is not balanced, repeat the procedure. Does continuation of
this process always lead to a balanced triple after a finite
number of repetitions?

FUNCT 3.3.3.
Give an algorithm for multiplying any two numbers

(given, say, to four significant figures) using your school
trigonometric tables.

PARAB 314.
Bob set himself the task of arranging all the positive

rational numbers in a list. He did it as follows:

a1 = 1/1, a2 = 1/2, a3 = 2/1, a4 = 1/3,

a5 = 2/2, a6 = 3/1, a7 = 1/4, a8 = 2/3,

a9 = 3/2, a10 = 4/1, a11 = 1/5, . . . .

(Thus the rational number p/q precedes h/k in the list if
p + q < h + k or if p + q = h + k and p < h.) His friend
Joe asked him how he knew that every rational number
would appear in the list. Bob answered by writing down
a formula, giving the value of n when the rational number
p/q = an would appear. Joe, still unconvinced, wanted to
know what the 1001st number in the list would be. After
a few calculations, Bob answered him. Duplicate Bob’s
formula and find a1001.

JRM 755. by Friend H. Kierstead, Jr.
Write a program which will read a decimal number

and print it out as a roman numeral. Although the letters
I,V,X,L,C,D, and M will have to be contained within the
program as constants, there should be no constants within
the program which include two or more of these letters.

Calendar problems: calendar cycles

SSM 3769. by Kathryn W. Lynch
There is a mathematical pattern for determining the

years in which Christmas is observed on Sunday. Show
that you have discovered the pattern for years since the last
calendar change (1752). After December 25, 1978, state the
years involved through the year 2025 A.D. How long will
this pattern continue?

CRUX 231. by Viktors Linis
Find the period P of the Easter dates based on Gauss’s

algorithm, that is, the smallest positive integer P satisfying
the conditions:

D(Y + P ) = D(Y ) and M(Y + P ) = M(Y )

for all Y , where D and M are the day and month functions
of year number Y .

JRM 419. by Sidney Kravitz
Our calendar has 97 Leap years in every 400-year pe-

riod. Every fourth year is a Leap year except that the years
2100, 2200, and 2300 will not be Leap years, but 2000 and
2400 will be. The average length of the calendar year is thus
365 97

400 days.
On which day in the 400-year cycle will the calendar

time be the maximum behind the average true time and
on which day will it be the maximum ahead? What is the
variation between these extremes?

Calendar problems: day of week

ISMJ J10.1.
If a girl’s 13th birthday is Tuesday, October 8, 1974,

on what day of the week was she born?

FUNCT 2.1.3.
Is 2/22/2022 a Tuesday? How about 2/2/2202?
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Algebra
Calendar problems: Friday the 13th Problems sorted by topic Complex numbers: inequalities

Calendar problems: Friday the 13th

FUNCT 1.1.1.
Show that the 13th day of the month is more likely to

fall on a Friday than on any other day of the week.

OMG 18.1.2.
On the average, over a period of years, how frequently

does Friday the 13th occur?

FUNCT 3.2.1.
Prove that every year contains at least one Friday the

13th.

PARAB 273.
What is the largest possible number of Friday the 13ths

that can occur in any calendar year? What is the smallest?

Calendar problems: significant dates

JRM C9. by Ray Lipman
Easter is defined as the first Sunday after the full moon,

on or after the vernal equinox. Using the Gregorian calendar
and taking into account those known astronomical processes
which will in the long run affect either the occurrence of the
equinoxes or the length of the lunar period, write a program
capable of listing the month and day of Easter for every year
up to one million A.D.

Clock problems: chimes

OMG 18.3.1.
A clock strikes the hours and once each half hour. If

you woke up at night and heard the clock strike “one”, what
is the longest time you would have to lie awake to be sure
of the time?

Clock problems: hands

ISMJ 14.24.
Suppose the two hands of a clock are indistinguishable,

that they both point exactly at minute marks, and they are
9 minutes apart. What can you deduce about the time?

ISMJ J10.2.
The hour and minute hands of a clock are each ex-

actly on a minute mark and the angle between the hands is
exactly 36◦. What time is it?

ISMJ J10.9.
The hour and minute hands of a clock form a right

angle. How long before they will form a right angle again?

OMG 15.3.8.
On a twelve-hour clock, how often are the minute and

hour hands at right angles in 12 hours?

FUNCT 3.3.2.
The hour hand, the minute hand, and the second hand

of a standard 12-hour clock are all together on the twelve at
noon. If the clock keeps perfect time, they are all together
again at midnight. Do they coincide at any other time? If
so, when? If not, when do they most nearly coincide? When
do the hands come closest to trisecting the clock-face?

OMG 18.1.8.
A clock hangs on the wall of a railway station. The

wall is 71 ft 9 in. long and 10 ft 4 in. high. If the hands
of the clock were pointing in opposite directions, and were
parallel to one of the diagonals of the wall, what was the
time?

MM 940. by Edwin P. McCravy
Suppose a clock has minute and hour hands of the same

length and indistinguishable. Of the set of all instants in a
12-hour period, consider the partition:

A = set of all instants when the clock reading would
be ambiguous;

B = set of all instants when the reading would not be
ambiguous.

Which, if either, of these sets is finite?

Clock problems: stopped clock

PENT 278. by Kenneth M. Wilke
Dr. Knowitall noticed that his clock had stopped. So

he wound it, noted the time to be 6:00 pm, and went to a
friend’s house to play chess. He arrived at 8:30 according
to the clock in his friend’s house. Dr. Knowitall left at
11:00. When he arrived home, the time, according to his
clock, was 12:30 amHe reset his clock to the correct time.
Assuming that Dr. Knowitall walked at the same rate in
both directions and assuming that his friend’s clock kept
perfect time, what was the correct time when Dr. Knowitall
reset his clock?

Clock problems: time computation

OMG 17.3.3.
If at a certain instant it is 7 o’clock, what time is it

11,999,999,994 hours later?

Complex numbers: cube roots

CRUX 4. by Léo Sauvé
It is easy to verify that 2

√
3 + i is a cube root of

18
√

3 + 35i. What are the other two cube roots?

ISMJ 12.12.
Find a and b so that (a+ bi)3 = i.

Complex numbers: exponential equations

CRUX 10. by Jacques Marion
Does the equation ez = z have any complex roots?

Complex numbers: identities

PME 353. by Clayton W. Dodge
Prove that if a, b, and c are complex numbers such

that a + b + c = 0 and |a| = |b| = |c|, then a3 = b3 = c3.
Can this result be extended to more than three numbers?

Complex numbers: inequalities

AMM E2616. by Andrew Odlyzko
and Lloyd Welch

Let a be a complex number with |a| < 1, and let ε > 0.
Prove or disprove: There exists an algebraic integer b such
that |a− b| < ε and all conjugates of b lie in the annulus

|a| − ε < |z| < 1 + ε.
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Algebra
Complex numbers: inequalities Problems sorted by topic Fair division

MM Q663.

Prove that |1 + z| ≤ |1 + z|2 + |z| for complex z.

PUTNAM 1979/B.6.
For k = 1, 2, . . . , n let zk = xk + iyk, where the xk and

yk are real and i =
√
−1. Let r be the absolute value of the

real part of

±
√
z2
1 + z2

2 + · · ·+ z2
n.

Prove that r ≤ |x1|+ |x2|+ · · ·+ |xn|.

Complex numbers: powers

MATYC 118. by Lawrence Cohen
ISMJ 12.11.

Prove that ii is real and find its value.

Complex numbers: radicals

PME 345. by Vladimir F. Ivanoff
Resolve the paradox:

i(
√
i+
√
−i) = i

√
i+ i
√
−i =

√
−i+

√
i =
√
i+
√
−i.

Determinants

SIAM 78-3. by H. L. Langhaar and R. E. Miller
A special case of a more general conjecture on determi-

nants that has been corroborated numerically by operations
with random determinants generated by a digital computer
is expressed by the equation Ω = ∆n+1, in which

∆ = |a1b2 · · · qn−1rn|
is any nth order determinant, and Ω is a determinant of
order n(n + 1)/2, constructed from the elements of ∆ as
follows: The first row in Ω consists of all terms that occur
in the expansion of (a1 + a2 + · · ·+ an)2. A similar con-
struction applies for rows 2, 3, . . . , n. Row n+ 1 consists of
expressions that occur in the expansion of

(a1 + a2 + · · ·+ an) (b1 + b2 + · · ·+ bn) .

A similar construction applies for the remaining rows. The
letters in the columns in Ω are ordered in the same way as
the subscripts in the rows. Prove or disprove the conjecture
Ω = ∆n+1.

PUTNAM 1978/A.2.
Let a, b, p1, p2, . . . , pn be real numbers with a 6= b.

Define

f(x) = (p1 − x)(p2 − x)(p3 − x) · · · (pn − x).

Show that

det




p1 a a a · · · a a

b p2 a a · · · a a

b b p3 a · · · a a

b b b p4 · · · a a
...

...
...

...
...

...

b b b b · · · pn−1 a

b b b b · · · b pn




=
bf(a)− af(b)

b− a .

AMM E2735. by I. P. Goulden
and D. M. Jackson

Let n be a fixed integer and define

fk(x) =
∑

r≥0

xnr+k

(nr + k)!
, 0 ≤ k ≤ n− 1.

For P ⊂ S = {0, 1, . . . , n− 1}, let F (P ;x) = F (P ) be
the square matrix whose entries are indexed by elements
of P and the (i, j)-th entry is fi−j(x), i, j ∈ P . (We set
fr(x) = fk(x) if r ≡ k mod n.)

If n is even, show that detF (P ) = detF (S\P ) for all
P ⊂ S. Generalize.

Discriminants

PME 414. by Steven R. Conrad
In discussing the discriminant of a quadratic equation,

a certain textbook says, “. . . if a, b, and c are integers with
a 6= 0 and if b2 − 4ac = 79, the roots of ax2 + bx + c = 0
will be real, irrational, and unequal.” Explain why this is
incorrect.

Exponential equations

MATYC 131. by Jeffrey Goldstein
Let a > 1. Prove that there exist real numbers b and

c such that ab = 2bc where −1 < b < c < 0.

TYCMJ 114. by Larry Hoehn
Find all real solutions of 8x(3x+ 1) = 4.

MM 1078. by R. P. Boas
Describe as fully as possible the solutions of

xey + yex = 0.

MM 1081. by Edwin P. McCravy
Find all real t such that for all x > y > 0,

(x− y)t(x+ y)t = (xt − yt)t(xt + yt)2−t.

Fair division

JRM 527. by David L. Silverman
It has been established that when a taxicab carries

several passengers, not all picked up at the same time, the
equitable way to determine each passenger’s share of the to-
tal fare is to divide the trip into uninterrupted legs, i.e., legs
between consecutive pickups, assign to each leg a prorated
share of the total fare based on relative distance, and to
each passenger during that leg a fraction of that share, pro-
rated on the basis of the total number of passengers during
that leg.

(a) Mr. and Mrs. N reside at 1/N on the real line for
N = 1, 2, 3, . . . . A taxicab drives from 1 to 0, picking up
successively all the Mmes. N and depositing them at 0 to
attend a Female Liberation meeting. If the total fare is a
dollar, how much is owed by Mrs. One?

(b) The cab returns from 0 to 1, picking up all the
Messrs. N (N = 2, 3, 4, . . .) in reverse order and depositing
them at Mr. One’s home to attend a Male Domination
meeting. The total fare is again a dollar. What is the
maximum share owed by any passenger?
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FUNCT 1.3.1. by Michael Moses
Three men go fishing and catch a certain number of

fish. During the night, one man awakes and decides to go
home. Without waking the others, he makes 3 equal shares
and finds 2 fish left over. He takes his share and the 2 left
over and goes home.

A little while later another awakes and makes 3 shares
of what is left, finds 2 left over, takes these and his share,
and leaves.

The last man also makes 3 shares, finds 2 left over, and
takes these 2 and his share and leaves.

How many fish did they catch?
Generalize this problem so as to answer the same ques-

tion but now for M men, with a remainder of N (0 ≤ N <
M).

OMG 17.1.9.
Two men sold their herd of x cows at x dollars per

head. With the proceeds, they bought sheep at $10 each
and a single lamb costing less than $10. Each man received
the same number of animals but the one receiving the lamb
had to be compensated so as to make the division equitable.
How much money did he receive from the other man?

Finite products

SSM 3675. by Steven R. Conrad
Simplify the product

n∏

k=1

(
x2k − a2k−1

x2k−1

+ a2k
)
.

AMM 6044. by Jacques Gilles

Show that
∏

(α4 + α + 1) 6= 833, the product being

taken over all the roots of the equation α49 = 1 except
α = 1.

Finite sums: arithmetic progressions

OMG 16.1.7.
What is the sum of the first 30 odd natural numbers?

SSM 3585. by Herta T. Freitag
Consider {ai}, an arithmetic progression of difference

d and {bi}, a geometric progression of ratio r. Let the first
n terms of these sequences “intermingle” to form the series

n∑

i=0

aibi.

(a) Obtain a formula for this summation.
(b) What happens if n grows beyond bound?

SSM 3663. by George Nichols
and Robert A. Carman

Find a formula for the sum of the following “combined
arithmetic-geometric” progression:

a+ (a+ d)r + (a+ 2d)r2 + (a+ 3d)r3 + · · ·+ (a+ nd)rn.

Finite sums: binomial coefficients

CRUX 366. by A. Liu

Evaluate

2n−1∑

i=n

(
i− 1

n− 1

)
21−i.

PUTNAM 1976/B.5.

Evaluate

n∑

k=0

(−1)k
(
n

k

)
(x− k)n.

SIAM 76-14.* by L. Carlitz

Prove that

m∑

i=0

n∑

j=0

(−1)i+j
(
i+ j

i

)(
m− i+ j

m− i

)(
i+ n− j

i

)

·
(
m− i+ n− j

m− i

)
=

{( 1
2 (m+n)

1
2m

)2
, (m, n both even),

0, otherwise,

m∑

i=0

n∑

j=0

(−1)i+j

(
m
i

)2(n
j

)2
(
m+n
i+j

) = δmn,

min(i,j,k)∑

r=0

(
i
r

)(
j
r

)(
k
r

)
(
i+j+k
r

) =
(j + k)!(k + i)!(i+ j)!

i!j!k!(i+ j + k)!
.

AMM E2601. by Robert Weinstock

Prove that

bn/2c∑

k=0

(
2n−k
k

)
(

2n−k
n

) 2n− 4k − 1

2n− 2k + 1
2n−2k = 1.

AMM E2602. by C. L. Mallows

Prove that

a−1∑

i=0

(
b+ i− 1

b− 1

)(
2n− b− i
n− b

)

=

n∑

i=b

(
a+ i− 1

a− 1

)(
2n− a− i
n− a

)
.

AMM E2681. by David Burman

If x+ y = 1, show that

m−1∑

i=0

(
n+ i− 1

i

)
xiyn +

n−1∑

j=0

(
m+ j − 1

j

)
xmyj = 1.
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Finite sums: exponentials

SIAM 75-3. by U. G. Haussmann
Let

f(u) =
exp(u+ nu) + exp(−nu)

1 + expu
,

where

coshu = 1 +
x

2
.

If y = f [u(x)], then show that

y(x) =

n∑

k=0

(
n+ k

2k

)
xk.

Finite sums: fractions

CANADA 1975/1.
Simplify

(
1 · 2 · 4 + 2 · 4 · 8 + · · ·+ n · 2n · 4n
1 · 3 · 9 + 2 · 6 · 18 + · · ·+ n · 3n · 9n

)1/3

.

OSSMB G75.1-3.
Find the sum

n∑

k=1

xk−1

(
1 + xk

) (
1 + xk+1

) .

OSSMB G76.1-5.
Consider the sequence defined by

tn =
n

1 + n2 + n4
, n = 1, 2, 3, . . . .

Find the sum of the first n terms of this sequence.

OSSMB G79.3-6.
Sum to n terms the series whose ith term is

i4 + 2i3 + i2 − 1

i2 + i
.

MSJ 429. by Joanne B. Rudnytsky
For x > 1, find a formula for

n∑

k=1

(−1)k+1

xk
.

FQ H-245. by P. Bruckman
Prove the identity

n∑

k=0

x
1
2k(k−1)

(x)k(x)n−k
=

2
∏n−1
r=1 (1 + xr)

(x)n
,

(n = 1, 2, . . .), where

(x)n = (1− x)(1− x2)(1− x3) · · · (1− xn),

(n = 1, 2, . . . ; (x)0 = 1).

CRUX 393. by Sahib Ram Mandan
If

fn(ai) = (ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an),

prove that, for k = 0, 1, . . . , n− 2,

n∑

i=1

aki
fn(ai)

= 0.

Finite sums: permutations

CRUX 78. by Jacques Sauvé
Is there a simple formula for the sum of all the permu-

tations
n∑

r=0

P (n, r)?

Finite sums: radicals

CRUX 214. by Steven R. Conrad
Prove that if the sequence (ai) is an arithmetic pro-

gression, then

n−1∑

k=1

1√
ak +

√
ak+1

=
n− 1√
a1 +

√
an
.

Floor function

MM 1080. by Marlow Sholander
Some calculators have an “int” key. The “integral part

of x” is given by int x = b|x|c sgnx.
We have |x| = x sgnx and max(x, y) = (x+y+|x−y|)/2

as examples of familiar functions that can be expressed in
terms of “sgn” together with the operations {+,−,×,÷}.
Show that these functions can be similarly expressed in
terms of “int”.

Functional equations: 1 parameter

CRUX 343.* by Steven R. Conrad
The greatest integer function satisfies the functional

equation

f(nx) =

n−1∑

k=0

f
(
x+

k

n

)

for all real x and positive integers n. Are there other func-
tions which satisfy this equation?

AMM E2677. by Erwin Just
Let n ≥ 2 be an integer. Show that there exists a

function f :R→ R such that

f(x) + f(2x) + · · ·+ f(nx) = 0

for all x and f(x) = 0 if and only if x = 0.

PUTNAM 1977/A.3.
Let u, f and g be functions, defined for all real numbers

x, such that

u(x+ 1) + u(x− 1)

2
= f(x)

and
u(x+ 4) + u(x− 4)

2
= g(x).

Determine u(x) in terms of f and g.
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AMM 6106. by D. S. Mitrinović
and P. M. Vasić

Find the general solution to the functional equation

n∑

k=1

f(xk) =

n∑

k=1

f(x−k).

FQ B-325. by Verner E. Hoggatt, Jr.

Let α = 1+
√

5
2 and β = 1−

√
5

2 . Prove that there does
not exist an even, single-valued function G such that

x+G(x2) = G(αx) +G(βx)

on −α < x < α.

PUTNAM 1979/A.2.
Establish necessary and sufficient conditions on the

constant k for the existence of a continuous real valued
function f(x) satisfying f(f(x)) = kx9 for all real x.

MM 990. by Harry W. Hickey
Prove that the identity

f(x+ 1)/g(x+ 1)− f(x)/g(x) = h(1/x)

is not satisfied by any non-constant polynomials f , g, and
h.

Functional equations: 2 parameters

AMM 6226. by Marlow Sholander
Domain D consists of the real numbers R from which

a finite set is deleted. On domain D, the functions f , F ,
and G are continuous and satisfy the identity

f(r)− f(s) = (r − s)F (r)G(s).

Describe f(x) on domain R.

AMM E2575. by David Shelupsky
Solve the functional equation

f

(
x− y

log x− log y

)
=

1

2
f(x) +

1

2
f(y),

this to hold for all distinct x, y ∈ (0,∞) and f : (0,∞)→ R
to be continuous.

AMM E2583. by C. L. Mallows
Find all continuous g:R → R such that, for some

continuous f :R2 → R, we have g(xy) = f(x, g(y)) for all
x, y ∈ R.

AMM E2661. by Steve Galovich
Find all functions f that satisfy the three conditions
(i) f(x, x) = x,
(ii) f(x, y) = f(y, x),
(iii) (x+ y)f(x, y) = yf(x, x+ y),

assuming that the variables and the values of f are positive
integers.

CRUX 314. by Michael Ecker
Find all functions f :R → R, continuous at x = 0,

satisfying the functional relation

f(x) · f(y) =
[
f
(
x+ y

2

)]2

for all x, y ∈ R.

CRUX PS7-1.
(a) Determine F (x) if, for all real x and y,

F (x)F (y)− F (xy) = x+ y.

(b) Generalize.

MM Q609. by Julian H. Blau
Which real functions satisfy

f(x+ y)2 = f(x)2 + f(y)2?

OSSMB 79-9.
In each of (a), (b) below, f denotes a real-valued func-

tion of a real variable, not identically zero and differentiable
at x = 0.

(a) If f(x)f(y) = f(x+y) for all x, y, prove that f has
derivatives of all orders at all points x, and that

∞∑

n=0

f(n) =
1

1− f(1)
if f(1) < 1.

(b) If f(x)f(y) = f(x− y) for all x, y, find f .

TYCMJ 102. by Mangho Ahuja
and Leonard Palmer

Find all real-valued functions f on (0,∞) such that
f(x) · f(y) = f(x− y) for all real x and y.

TYCMJ 106. by James W. Murdock
Let f be a real-valued function with domain (−∞,∞)

such that f(xy) = [f(x)+f(y)]/(x+y) for all x and y. Does
there exist a value of x for which f(x) 6= 0?

TYCMJ 71. by Peter A. Lindstrom
Let f and g be real-valued, nonconstant functions such

that, for all real numbers x and y,

f(x+ y) = f(x)g(y) + g(x)f(y)

and
g(x+ y) = g(x)g(y)− f(x)f(y).

What are the possible values of f(0) and g(0)?

ISMJ 13.13.
What are the continuous solutions of the functional

equation f(xy) = f(x) + f(y)?

TYCMJ 92. by Wm. R. Klinger
Let f be a real-valued function defined on (0,∞) such

that f(xy) = f(x) + f(y) for all x, y ∈ (0,∞). Prove that if
f is continuous at 1, then f is continuous on (0,∞).

Functional equations: 3 parameters

AMM E2607. by E. Montana College
Prob. Group

Solve the functional equation

f(x, y) + f(y, z) + f(z, x)

= 3f
(

1

3
(x+ y + z),

1

3
(x+ y + z)

)

in the class of all continuous functions R2 → R.
What can be said about the solutions in the class of

all functions R2 → R?
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Functional equations: derivatives

AMM 6154. by Richard Stanley
Define a sequence of polynomials (with rational coef-

ficients) as follows: p0(x) = 1, pn(0) = 0 if n > 0, and

p′n+1 = pn(1−x) if n > 0. Thus p1(x) = x, p2(x) = x− 1
2x

2,

p3(x) = 1
2x − 1

6x
3, etc. Find pn(x). In particular, what is

pn(1)?

MATYC 129. by Gino Fala
Find all differentiable functions f :R2 → R, z =

f(x, y), such that the volumes of the tetrahedrons formed
by the tangent planes and the coordinate planes remain
constant.

Functional equations: fallacies

MATYC 72. by Gene Zirkel
Find the fallacy: One is given a function f such that

f2 ≡ f . Therefore

f2 − f ≡ 0

f(f − 1) ≡ 0.

Therefore f is a constant function.

Functional equations: integrals

SIAM 75-18. by O. G. Ruehr
Find a continuous function F (t) for t ≥ 0 satisfying

t {F (t)}2 =

∫ 1

0

F (ts)− F (t− ts)
1− 2s

ds

and F (0) = c > 0.

Functional equations: periodic functions

OSSMB 78-1.
A real-valued function f satisfies, for all real x,

f(x+ 1) =
1 + f(x)

1− f(x)
.

Show that f is periodic.

Functional equations: polynomials

AMM E2731. by Bruce Reznick
Characterize all polynomials that satisfy P (x, y) =

P (y, x) and P (x, y) = P (x, x− y) for all x and y.

IMO 1975/6.
Find all polynomials P , in two variables, with the

following properties:
(1) for a positive integer n and all real t, x and y

P (tx, ty) = tnP (x, y)

(2) for all real a, b and c,

P (b+ c, a) + P (c+ a, b) + P (a+ b, c) = 0,

(3) P (1, 0) = 1.

MATYC 100. by Steve Kahn
Characterize all polynomials P (x) with complex coef-

ficients such that P (x) = P−1(x).

MM 965. by Bernard B. Beard
Find all polynomials P (x) satisfying the equation

P (F (x)) = F (P (x)), P (0) = 0, where F (x) is a given func-
tion satisfying F (x) > x for all x ≥ 0.

PME 411. by R. S. Luthar
Find all polynomials P (x) such that

P (x2 + 1)− [P (x)]2 − 2xP (x) = 0

and P (0) = 1.

TYCMJ 38. by Warren Page
Determine all polynomials, P (x), satisfying P (0) = 0

and P (x) = [P (x+ 1) + P (x− 1)] /2.

TYCMJ 77. by R. S. Luthar
Determine all polynomial functions, f , such that

(x− 1)f(x+ 1)− (x+ 2)f(x) ≡ 0.

Functions

NYSMTJ 51.
Consider the composition of two functions f and g:

f ◦ g = g ◦ f if f = g, if f = g−1, or if either function is the
identity function. Aside from these examples, composition
of functions is not generally commutative.

(a) Show that, for any first-degree polynomial

f(x) = ax+ b,

there are an infinite number of functions g such that

f ◦ g = g ◦ f.
(b) Are there other polynomial functions that, simi-

larly, commute?
(c) How about other types of functions — trigonomet-

ric, logarithmic, exponential, etc.?

Generalized binomial theorem

CRUX 352. by Dan Sokolowsky

Let x(0) = 1;

x(n) =

n∏

k=1

[x+ (k − 1)c]

c constant, n = 1, 2, . . . .
Prove that

(a+ b)(n) =

n∑

k=0

(
n

k

)
a(n−k)b(k), n = 0, 1, 2, . . . .

Geometry of zeros

TYCMJ 35. by Richard Miller
Let P (z) be a polynomial with real coefficients such

that each of the zeros of P (z) is pure imaginary. Prove that
all but one of the zeros of P ′(z) are pure imaginaries.

MM 1010. by Marius Solomon
Prove that if the roots of a fourth degree polynomial

are in arithmetic progression, then the roots of its derivative
are also in arithmetic progression.
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NAvW 503. by O. Bottema
The cubic equation with unknown u:

(x+ 8)u3 − 3yu2 − 3xu+ y = 0

is mapped onto the point P (x, y) of a plane V with the
rectangular frame OXY . Determine in V the regions cor-
responding to the sets of equations with

(a) one positive and two imaginary roots,
(b) one negative and two imaginary roots,
(c) one positive and two negative roots,
(d) one negative and two positive roots.

Identities

CRUX 316. by Hippolyte Charles
Prove that

a− x
x− b =

a− d
b− c ·

c− y
y − d

implies
a− y
y − b =

a− d
b− c ·

c− x
x− d .

CRUX PS3-3.
If

a

bc− a2
+

b

ca− b2 +
c

ab− c2 = 0,

prove that also

a

(bc− a2)2
+

b

(ca− b2)2
+

c

(ab− c2)2
= 0.

ISMJ J11.12.
Show that if abc = 1, then

a

ab+ a+ 1
+

b

bc+ b+ 1
+

c

ca+ c+ 1
= 1.

OSSMB G75.2-5.
Show that if

1

a
+

1

b
+

1

c
=

1

a+ b+ c
,

then

1

a2n+1
+

1

b2n+1
+

1

c2n+1
=

1

(a+ b+ c)2n+1
.

OSSMB G75.3-6.
Show that if a, b, c are distinct, nonzero real numbers

such that a+ b+ c = 0, then
(
b− c
a

+
c− a
b

+
a− b
c

)(
a

b− c +
b

c− a +
c

a− c
)

= 9.

PARAB 300.
Prove that if

1

ab
+

1

bc
+

1

ca
=

1

ab+ bc+ ca
,

then the sum of two of the numbers a, b, and c is zero.

MSJ 469.
What general identity is exemplified by the following

statements:

3(12 + 32 + 72) = 22 + 42 + 62 + 112,

3(22 + 112 + 162) = 52 + 92 + 142 + 292?

CRUX PS4-2.
If a, b, c, and d are real, prove that





a2 + b2 = 2,

c2 + d2 = 2,

ac = bd,





if and only if 



a2 + c2 = 2,

b2 + d2 = 2,

ab = cd.





Inequalities: absolute value

TYCMJ 144. by R. S. Luthar
Does there exist a nonconstant function, f , that obeys

the inequality (f(x)− f(y))2 ≤ |x− y|3 for all x and y?

Inequalities: degree 2

CRUX 323. by Jack Garfunkel
and M. S. Klamkin

If xyz = (1 − x)(1 − y)(1 − z) where 0 ≤ x, y, z ≤ 1,
show that

x(1− z) + y(1− x) + z(1− y) ≥ 3/4.

PARAB 290.
If x1, x2, x3, x4, and x5 are all positive numbers, prove

that

(x1 + x2 + x3 + x4 + x5)2

≥ 4 (x1x2 + x2x3 + x3x4 + x4x5 + x5x1) .

PARAB 394.
Prove that, if a2 + b2 = x2 + y2 = 1, then ax+ by ≤ 1.

PME 443. by R. S. Luthar
If x and y are any real numbers, prove that

x2 + 5y2 ≥ 4xy.

PUTNAM 1977/B.5.
Suppose that a1, a2, . . . , an are real (n > 1) and

A+

n∑

i=1

a2
i <

1

n− 1

(
n∑

i=1

ai

)2

.

Prove that A < 2aiaj for 1 ≤ i ≤ j ≤ n.

PARAB 377.
Let xi, yi (i = 1, 2, . . . n) be real numbers such that

x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn.
Prove that if z1, z2, . . . , zn is any given rearrangement

of y1, y2, . . . , yn, then

n∑

i=1

(xi − yi)2 ≤
n∑

i=1

(xi − zi)2.
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Inequalities: degree 3

CRUX PS1-3.
(a) If a, b, c ≥ 0 and (1 + a)(1 + b)(1 + c) = 8, prove

that

abc ≤ 1.

(b) If a, b, c ≥ 1, prove that

4(abc+ 1) ≥ (1 + a)(1 + b)(1 + c).

CRUX PS6-3.
If x, y, z ≥ 0, prove that

x3 + y3 + z3 = y2z + z2x+ x2y

and determine when there is equality.

SIAM 77-12. by Peter Flor
Establish or disprove the following inequalities where

all the variables are positive:

a3 + b3 + c3 + 3abc ≥ a2(b+ c) + b2(c+ a) + c2(a+ b);

39a3 + 15a
(
b2 + c2

)
+ 20ad2 + 5bc(b+ c+ d)

≥ 10a2(b+ c) + 43a2d+ 39abc+ ad(b+ c);

5
(
a4 + b4 + c4 + d4

)
+ 6
(
a2c2 + b2d2

)
+ 12

(
a2 + c2

)
bd

+12
(
b2 + d2

)
ac ≥ 2

(
a3 + b3 + c3 + d2

)
(a+ b+ c+ d)

+4(a+ c)(b+ d)(ac+ bd) + 2
(
a2 + c2

) (
b2 + d2

)
+ 8abcd.

Inequalities: degree 4

ISMJ 10.3.
Show that

x3 − 1

3
≤ x4 − 1

4

for all real numbers x.

Inequalities: exponentials

MM Q658. by M. S. Klamkin
CMB P261. by R. Schramm

If a, b > 0, prove that ab + ba > 1.

NYSMTJ 40. by David E. Bock
Prove that, if a and b are positive real numbers, then

aabb ≥ (ab)(a+b)/2.

PME 378. by M. L. Glasser and M. S. Klamkin
Show that

{
xx

(1 + x)1+x

}x
> (1− x) +

{
x

1 + x

}1+x

>
1

(1 + x)1+x

for 1 > x > 0.

SPECT 11.7.
Show that ekx + k(1 − ex) ≥ 1 for every real number

x and every integer k.

TYCMJ 123. by V. N. Murty
Let x and y be positive numbers. Prove that

xx · yy ≥
(
x+ y

2

)x+y

with equality if and only if x = y.

TYCMJ 149. by V. N. Murty
Let a, b, and α be positive with a + b = 1. Prove or

disprove that
(
a+

1

a

)α
+
(
b+

1

b

)α
≥ 5α

2α−1
.

AMM E2547. by T. S. Bolis
Let p and q be positive numbers with p+ q = 1. Show

that for all x,

pex/p + qe−x/q ≤ ex
2/8p2q2 .

AMM S6. by M. S. Klamkin and A. Meir
Let xi > 0 for i = 1, 2, . . . , n with n ≥ 2. Prove that

(x1)x2 + (x2)x3 + · · ·+ (xn−1)xn + (xn)x1 ≥ 1.

SPECT 10.3. by T. B. Cruddis
The positive real numbers p, q, r are such that q 6= r

and 2p = q + r. Show that

pq+r

qqrr
< 1.

Inequalities: finite products

AMM 6254. by Thomas E. Elsner
For real numbers rij with 0 ≤ rij ≤ 1 for i =

1, 2, . . . ,m and j = 1, 2, . . . , n, prove that

1−
n∏

j=1

(
1−

m∏

i=1

rij

)
≤

m∏

i=1


1−

n∏

j=1

(1− rij)


 .

CMB P270. by M. S. Klamkin
Prove that

2nP

{
xn1 + xn2 + · · ·+ xnn

n

}n−1

≥
n∏

i=1

{xni + P}

where P = x1x2 · · ·xn, xi ≥ 0, and there is equality if and
only if xi = constant.

AMM E2691. by Z̆ivojin M. Mijalković
and J. B. Keller

If xi > 0 (1 ≤ i ≤ n), show that

(∏
xi

)Σxi/n

≤
∏

xxii ≤
(∑

x2
i∑
xi

)Σxi

.

Inequalities: finite sums

AMM E2656. by G. Tsintsifas
Let a2, a3, . . . , an be positive real numbers and

s = a2 + a3 + · · ·+ an.

Show that
n∑

k=2

a
1−1/k
k < s+ 2

√
s.
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Inequalities: finite sums Problems sorted by topic Inequalities: fractions

PARAB 390.
Let b1, b2, . . . , bn be any positive numbers. Prove that

(b1 + b2 + · · ·+ bn)
(

1

b1
+

1

b2
+ · · ·+ 1

bn

)
≥ n2.

SIAM 75-5. by M. M. Gupta
Suppose p and q are positive integers, p > q, and

Z1, . . . , Zp are arbitrary real numbers. Define

α = p−2q−2(p− q)−1,

βp = (Z2 − 2Z1)2 +

p−1∑

i=2

(Zi−1 − 2Zi + Zi+1)2 ,

and

Ip,q = −2q3αZ1Zp + 2p3αZ1Zq − 2αZ2
1 + (1− 2α)βp.

Show that Ip,q ≥ 0.

SPECT 9.3.
The real numbers a1, . . . , an, b1, . . . , bn (n ≥ 1) are

such that

a1 ≤
1

2
(a1 + a2) ≤ 1

3
(a1 + a2 + a3)

≤ · · · ≤ 1

n
(a1 + a2 + · · ·+ an),

b1 ≤
1

2
(b1 + b2) ≤ 1

3
(b1 + b2 + b3)

≤ · · · ≤ 1

n
(b1 + b2 + · · ·+ bn).

Show that
( n∑

k=1

ak

)( n∑

k=1

bk

)
≤ n

n∑

k=1

akbk.

TYCMJ 45. by Robert Sulek and Lester Suna
Assume ai ≥ 0, (i = 1, 2, . . . , n), with an+1 = a1.

Prove or disprove:

n∑

i=1

(
ai
ai+1

)n
≥

n∑

i=1

ai+1

ai
.

PUTNAM 1979/A.6.
Let 0 ≤ pi ≤ 1 for i = 1, 2, . . . , n. Show that

n∑

i=1

1

|x− pi|
≤ 8n

(
1 +

1

3
+

1

5
+ · · ·+ 1

2n− 1

)

for some x satisfying 0 ≤ x ≤ 1.

PUTNAM 1978/B.6.
Let p and n be positive integers. Suppose that the

numbers ch,k (h = 1, 2, . . . , n; k = 1, 2, . . . , ph) satisfy
0 ≤ ch,k ≤ 1. Prove that

(∑ ch,k
h

)2

≤ 2p
∑

ch,k,

where each summation is over all admissible ordered pairs
(h, k).

AMM E2744. by H. L. Montgomery
Let an ≥ 0 and am+n ≤ am + an for m,n = 1, 2, . . . .

Show that
n∑

k=1

k−2ak ≥
1

4
n−1an logn.

AMM E2551. by Hugh L. Montgomery
Let r1, . . . , rn be real numbers such that −1 ≤ ri ≤ 1

for i = 1, 2, . . . , n and such that r1 + · · ·+ rn = 0. It is easy
to see that there is a permutation π of {1, . . . , n} with the
property that all the partial sums

Sk(π) =

k∑

i=1

rπ(i), k = 1, 2, . . . , n

lie in the interval [−1, 1]. Strengthen this as follows: Show
that there exists a permutation π such that

max
k

Sk(π)−min
k
Sk(π) < 2− n−1.

Show also that if the right-hand side of the above inequality
is replaced by 2−4n−1, then the assertion is false for certain
arbitrarily large n.

CMB P248. by M. S. Klamkin
Let S = x1 + x2 + · · · + xn, where xi > 0, T0 = 1/S

and

Tr =
∑

sym

{S − x1 − x2 − · · · − xr}−1, 1 ≤ r ≤ n− 1.

Prove that (n− r)2Tr/
(
n−1
r

)
is monotonically increasing in

r from 0 to n− 1.

MM Q664. by M. S. Klamkin
Prove that

n∑

k=1

(xk + 1/xk)a ≥ (n2 + 1)a

na−1

where xk > 0 (k = 1, 2, . . . , n), a > 0 and x1+x2+· · ·+xn =
1.

OSSMB G77.1-2.
Prove that

1 +
1√
2

+
1√
3

+ · · ·+ 1√
n
> 2
√
n+ 1− 2.

Inequalities: fractions

AMM E2603. by M. S. Klamkin
Let xi > 0, 1 ≤ i ≤ n. Prove that

r ·
∑

sym

x1x2 · · ·xr
x1 + x2 + · · ·+ xr

≤
(
n

r

)(
x1 + · · ·+ xn

n

)r−1

and that equality holds if and only if x1 = x2 = · · · = xn.

CRUX 54. by Léo Sauvé
If a, b, c > 0 and a < b+ c, show that

a

1 + a
<

b

1 + b
+

c

1 + c
.
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MM Q608. by M. S. Klamkin
If x, y, and z are nonnegative and are not sides of a

triangle, show that

1 +
x

y + z − x +
y

z + x− y +
z

x+ y − z ≤ 0.

MM Q618. by M. S. Klamkin
If 1 ≥ x, y, z ≥ −1, show that

1

(1− x)(1− y)(1− z) +
1

(1 + x)(1 + y)(1 + z)
≥ 2

with equality if and only if x = y = z = 0.

MM Q655. by Mark Kleiman
If a, b, c, and d are positive real numbers, prove that

a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b
≥ 2.

When does equality hold?

MSJ 418. by Peter A. Lindstrom
Find all real x such that

x(x− 2)(x− 4)

(x− 1)(x− 3)(x− 5)
< 0.

PARAB 370.
Prove that, when x > 0,

1 + x2 + x4

x+ x3
≥ 3

2
.

SSM 3744. by Bob Edwards
If r/s and p/q are two positive fractions in lowest terms

and qr−ps = 1, prove that all fractions lying between these
two must have a denominator that is not less than q − s.

TYCMJ 87. by Norman Schaumberger
Let a, b, c, and d be positive real numbers. Prove that

a2 + b2 + c2

a+ b+ c
+
a2 + b2 + d2

a+ b+ d
+
a2 + c2 + d2

a+ c+ d

+
b2 + c2 + d2

b+ c+ d
≥ a+ b+ c+ d.

CRUX 17. by Viktors Linis
Prove the inequality

1

2
· 3

4
· 5

6
· · · 999999

1000000
<

1

1000
.

ISMJ 12.23.
Find a number n large enough so that

1

1
+

1

3
+

1

5
+ · · ·+ 1

2n− 1
> 100.

ISMJ 13.5.
Given that a, b, c, and d are positive numbers and

a/b < c/d, show that

a

b
<
a+ c

b+ d
<
c

d
.

ISMJ J11.2.
Prove that if a1, a2, a3 and b1, b2, b3 are positive num-

bers such that

a1

b1
<
a2

b2
<
a3

b3
then

a1

b1
<
a1 + a2 + a3

b1 + b2 + b3
<
a3

b3
.

CRUX 413. by G. C. Giri
If a, b, c > 0, prove that

1

a
+

1

b
+

1

c
≤ a8 + b8 + c8

a3b3c3
.

MSJ 484.
Let a, b, and c be positive numbers such that a+b+c =

1. Prove that 1/a+ 1/b+ 1/c ≥ 9.

Inequalities: functional inequalities

ISMJ 12.16.
Let φ be a nonnegative function such that

φ
(
t1 + t2

2

)
<

1

3
[φ(t1) + φ(t2)]

for all real numbers t1 and t2 such that t1 6= t2. Show that

φ
(
s1 + s2 + s3 + s4

4

)

<
1

4
[φ(s1) + φ(s2) + φ(s3) + φ(s4)]

if s1, s2, s3, and s4 are real numbers, no three of which are
all equal.

KURSCHAK 1979/2.
The function f satisfies the following inequalities for

every pair of real numbers x and y:

f(x) ≤ x,
f(x+ y) ≤ f(x) + f(y).

Show that f(x) = x for every real number x.

IMO 1977/6.
PARAB 368.

Let f(n) be a function defined on the set of all positive
integers and having all its values in the same set. Prove
that if

f(n+ 1) > f(f(n))

for each positive integer n, then

f(n) = n for each n.

Inequalities: iterated functions

OMG 16.2.6.
Let 0 < u < 1 and define

u1 = 1 + u,

u2 = 1/u1 + u,

...

un+1 = 1/un + u, n ≥ 1.

Show that un > 1 for all values of n = 1, 2, 3, . . . .
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Inequalities: logarithms

AMM E2695. by Eliyahu Beller
Prove or disprove the following conjecture: For a > 1

and x > 0, show that − log
(
1− (1− e−x)a

)
< xa.

CRUX 98. by Viktors Linis
Prove that, if 0 < a < b, then

ln
b2

a2
<
b

a
− a

b
.

PME 424. by R. S. Luthar
Prove that
(
x1/n + y1/n

)n
>

(
x− y

lnx− ln y

)
(2n+ 2),

where n is an odd integer and n ≥ 3 and 0 < y < x.

ISMJ 12.17.
Show that

| loga b+ logb a| ≥ 2

if a and b are both positive real numbers.

FQ B-357. by Frank Higgins
Let m be a fixed positive integer, and let k be a real

number such that

2m ≤ log(
√

5k)

logα
< 2m+ 1,

where α = (1 +
√

5)/2. For how many positive integers n is
Fn ≤ k?

CRUX 304. by Viktors Linis
Prove the following inequality:

lnx

x− 1
≤ 1 + 3

√
x

x+ 3
√
x
, x > 0, x 6= 1.

Inequalities: numerical inequalities

ISMJ 10.1.
Which is larger

(
1 +

1

1000

)1001

or
(

1 +
1

1000

)1002

?

MM 937. by Norman Schaumberger

Which is greater: eπ or (ee · πe · ππ)1/3?

Inequalities: polynomials

AMM E2655. by Michael W. Chamberlain
Prove that for integral n ≥ 2 and 0 < x < n/(n + 1),

one has
(1− 2xn + xn+1)n < (1− xn)n+1.

TYCMJ 59. by Robert Sulek and Lester Suna
Let n be a positive odd integer and x a positive real

number. Prove that xn + 2 ≥ 2x(n−1)/2 + x, and

x36 + x8 + x4 + 1 ≥ x15 + x14 + x13 + x6.

Inequalities: powers

ISMJ 10.7.
Given that x, y, m, and n are positive, prove that

xmyn + xnym ≤ xm+n + ym+n.

SIAM 75-19. by K. B. Stolarsky and L. J. Yang
If N and m+ 1 are positive integers, it is conjectured

that Lm(x) ≥ Rm(x) for all x ≥ 0, where

Lm(x) =
{

1 +
1

N2m−1

}{
x2 +

2

N
x+ 1

}m
,

Rm(x) =
{
x+

1

N

}2m

+
{

1 +
x

N

}2m

+ (N − 1)
{
x− 1

N

}2m

.

Inequalities: radicals

CRUX 295. by Basil C. Rennie
If 0 < b ≤ a, prove that

a+ b− 2
√
ab ≥ 1

2

(a− b)2

a+ b
.

CRUX 310. by Jack Garfunkel
Prove that

a√
a2 + b2

+
b√

9a2 + b2
+

2ab√
a2 + b2 ·

√
9a2 + b2

≤ 3

2
.

When is equality attained?

TYCMJ 154. by V. N. Murty
Assume that a, b, c, and d are real numbers satisfying

ad− bc = 1. Prove that a2 + b2 + c2 + d2 + ac+ bd ≥
√

3.

USA 1977/5.
If a, b, c, d and e are positive numbers bounded by p

and q, prove that

(a+ b+ c+ d+ e)
(

1

a
+

1

b
+

1

c
+

1

d
+

1

e

)

≤ 25 + 6

(√
p

q
−
√
q

p

)2

and determine when there is equality.

AMM E2667. by John R. Samborski

If
∑∞
k=1 2−nk is the binary expansion of

(√
5− 1

)
/2,

show that nk ≤ 5 · 2k−2 − 1.

Infinite series

FQ H-251. by Paul Bruckman
Prove the identity:

∞∑

n=0

xn
2

[(x)n]2
=

∞∑

n=0

xn

(x)n
,

where

(x)n = (1− x)(1− x2) · · · (1− xn), (x)0 = 1.
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Interest problems

FUNCT 2.1.2.
I have the following options for depositing $100 for one

year. The bank will give me $4 interest at the end of the
year. A Housing Cooperative will give me interest at the
rate of 2% per half-year (compound, so it pays interest in
the second half also on the first half’s interest). A Credit
Union will give me interest at the rate of 1/3% per month,
compound. A friend says he will give me interest equivalent
to the 4% per annum rate, but compounding every instant!
Which should I choose, and how much interest do I get?

TYCMJ 104. by Roger W. Pease, Jr.
A man wishes to purchase a new car. He finds that he

can finance this car over a 36-month period for 0.8 percent
interest per month on the unpaid balance. With $1,000
in savings at 6 percent interest compounded quarterly, he
wishes to decide whether to retain his savings or use it to
finance the car.

He reasons that he should finance the car by borrowing
the money because the difference between the sum of the 36
payments and the $1,000 original principal is $154.87 which
is less than the interest of $195.62 earned on the money in
the bank if it is left on deposit for three years. Is this the
best strategy for the car buyer to follow?

OMG 16.1.5.
A car depreciates at 20% per year for 3 years. What,

at this time, is its percentage value of the original price?

Iterated functions

CANADA 1975/8.
Let k be a positive integer. Find all polynomials

P (x) = a0 + a1x+ · · ·+ anx
n,

where the ai are real, which satisfy the equation

P (P (x)) = {P (x)}k.

SSM 3659. by Brother U. Alfred
If

f(x) =

√
x2 + 1

x2 − 1

and f2(x) = f (f(x)), f3(x) = f
(
f2(x)

)
, . . . , for what

values of n does fn(x) = f(x)?

Logarithms

CRUX 41. by Léo Sauvé
Given that log6 3 = p and log3 5 = q, express log10 5

and log10 6 as functions of p and q.

OSSMB G77.1-5.
Show that if

x(y + z − x)

log x
=
y(z + x− y)

log y
=
z(x+ y − z)

log z
,

then xyyx = zyyz = xzzx.

OSSMB G79.2-6.
Prove that

loga n

logam n
= 1 + logam.

OSSMB G75.1-2. by Peter Crippen
(a) For a, b > 0, show that logb a = 1/ loga b.
(b) Simplify the following without the use of tables:

1

log1/2 144
+

1

log2 144
+

1

log12 144
.

MATYC 139. by J. F. Allison
Is there a nontrivial solution in real numbers to

log(x+ y + z) = log(x) log(y) log(z)?

PENT 281. by Kenneth M. Wilke
An algebra student encountered the following problem

on an exam: Evaluate logA
logB . Being pressed for time, he

cancelled common factors from both numerator and denom-
inator to obtain the correct answer.

logA

logB
=
A

B
=

3

4
.

What are A and B?

Maxima and minima

AMM E2573. by Murray S. Klamkin
If n positive real numbers vary such that the sum of

their reciprocals is fixed and equal to A, find the maximum
value of the sum of the reciprocals of the

(
n
j

)
sums of the n

numbers taken j at a time.

SPECT 11.2. by B. G. Eke
The positive numbers x, y, z are such that

1

x
+

1

y
+

1

z
= 1.

Show that (x− 1)(y − 1)(z − 1) ≥ 8.

CRUX 487. by Dan Sokolowsky
If a, b, c, and d are positive real numbers such that

c2 + d2 = (a2 + b2)3, prove that

a3

c
+
b3

d
≥ 1,

with equality if and only if ad = bc.

MM 1059. by David E. Daykin
How should n given nonnegative real numbers be in-

dexed to minimize (maximize)

a1a2 + a2a3 + · · ·+ an−1an + ana1?

Means

CANADA 1979/1.
Given: (i) a, b > 0; (ii) a,A1, A2, b is an arithmetic pro-

gression; (iii) a,G1, G2, b is a geometric progression. Show
that A1A2 ≥ G1G2.

CRUX 247. by Kenneth S. Williams
If 0 < a1 ≤ a2 ≤ · · · ≤ an, is there a constant k such

that

k

∑
1≤i<j≤n(ai − aj)2

an
≤ ai + · · ·+ an

n
− n
√
a1 · · · an

≤ k
∑

1≤i<j≤n(ai − aj)2

a1
?
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CRUX 362. by Kenneth S. Williams
In the inequality

1

2n2

∑
1≤i<j≤n(ai − aj)2

an

≤ a1 + · · ·+ an
n

− n
√
a1 · · · an

≤ 1

2n2

∑
1≤i<j≤n(ai − aj)2

ai
,

prove that the constant 1/2n2 is best possible.

CRUX 395. by Kenneth S. Williams
The inequality

1

2n2

∑
1≤i<j≤n(ai − aj)2

an
≤ A−G

≤ 1

2n2

∑
1≤i<j≤n(ai − aj)2

ai

is a refinement of the familiar inequality A ≥ G where
A (resp. G) is the arithmetic (resp. geometric) mean of
a1, . . . , an If H denotes the harmonic mean of a1, . . . , an,
find the corresponding refinement of the familiar inequality
G ≥ H.

SSM 3713. by Alan Wayne
(a) Find a necessary and sufficient condition so that

the arithmetic mean of two unequal, positive numbers is
closer to their geometric mean than their geometric mean
is to the smaller number.

(b) Find a necessary and sufficient condition so that
the arithmetic mean of two unequal, positive numbers is
closer to their harmonic mean than their harmonic mean is
to the smaller number.

SSM 3755. by Alan Wayne
If a and b are numbers such that 0 < a < b, define

their quadratic mean by Q =

√
(a2+b2)

2 .

(a) Show that the quadratic mean lies between b and
the arithmetic mean of a and b.

(b) Show that the arithmetic mean is closer to the
quadratic mean than the quadratic mean is to b.

(c) Show that the arithmetic mean of a and b is the
quadratic mean of their quadratic mean and their geometric
mean.

TYCMJ 39. by Norman Schaumberger
Let A = (x + y)/2 and G =

√
xy, where x and y are

unequal, positive numbers. Prove that

A >
(x− y)2

8(A−G)
> G.

MM 1000. by Murray S. Klamkin
Let T denote a cyclic permutation operator acting on

the indices of a sequence (ai), that is, T (a1x1 +a2x2 + · · ·+
anxn) = a2x1 + a3x2 + · · ·+ a1xn. If, for all i, ai ≥ 0 and
xi > 0, show that
{

n∑

i=1

ai
n

}n
≥

n∏

i=1

T i
{
a1x1 + a2x2 + · · ·+ anxn

x1 + x2 + · · ·+ xn

}
≥

n∏

i=1

ai.

Measuring problems

OMG 16.1.6.
If each volume of a twelve-book encyclopedia is 3 cm

thick and the covers are 1 mm thick, what is the distance
from the first page of volume 1 to the last page of volume
12 when they are stacked in order on a shelf?

PARAB 297.
A man has 3 bottles which hold exactly 8 liters, 5 liters,

and 3 liters. The two smaller bottles are empty, but the
largest one is full of wine which the man wishes to share with
a friend. Without using any other means of measurement
or any other container, how can he divide the wine into two
equal amounts of 4 liters each?

NYSMTJ 96. by Samuel A. Greenspan
A man had an 8-gallon keg of wine and a jug. One day,

he drew off a jugful of wine and filled up the keg with water.
Later on, when the wine and water had been thoroughly
mixed, he drew off another jugful, and again filled up the
keg with water. The keg then contained equal quantities of
wine and water. What was the capacity of the jug?

OMG 17.3.1.
A 16-quart radiator is filled with water. Four quarts

are removed and replaced with pure antifreeze liquid. Then
four quarts of the mixture are removed and replaced with
pure antifreeze. This is done a third and fourth time. What
part of the final mixture is water?

ISMJ 12.7.
An empty five gallon can A is filled with antifreeze.

Some antifreeze is transferred from A to a second five gallon
can B (originally empty). Can B is then filled with water
and the contents are mixed. Enough of the mixture in B is
then poured into A to fill it. Show that the mixture in A is
at least 75% antifreeze.

Metric conversions

FUNCT 3.5.4.
The number of kilometers in a mile is often given as

8/5. Given only that the approximation is expressed in this
form, estimate the error involved.

Money problems

JRM 735. by Frank Rubin
A housespouse has cents-off coupons for three different

brands of detergent, all in different amounts. The regular
prices, number of ounces, and number of wash loads per box
are known for all three brands. If only one coupon can be
used, how should one decide which?

PARAB 418.
Two classes organized a party. To meet the expenses,

each pupil of class A paid $5 and each pupil of class B paid
$3. If the pupils of class A had paid all the expenses, they
would have paid $k each. At a second similar event, the
pupils of class A paid $4 each and those of class B paid
$6 each; and the total sum was the same as if each pupil in
class B had paid $k. Find k. Which class had more pupils?
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Money problems: change

MSJ 459. by Albert Wilansky
I owed Mr. Smith an amount less than $20. I offered

him a $20 bill, but he could not make change. So, I offered
him a $50 bill and he gave me the correct change. How
much did I owe Mr. Smith?

Money problems: coins

PENT 290. by Charles Trigg
“Come on in, Bob,” said Dan; “only small stakes

tonight.” “That’s good,” replied Bob, “I haven’t quite three
dollars in nickels, dimes, and quarters.” “I haven’t any pen-
nies either,” said Dan, “but I have the same number of coins
that you have. That includes twice as many dimes as you
have.” “Correct,” replied Bob, “but my number of nickels
is twice yours. It also equals the number of all our quar-
ters combined. The total value of your change is the same
as mine.” “Okay, let’s go,” said Dan; “it appears that my
lucky half-dollar is the largest coin on the table.”

How many coins of each type did Bob and Dan have?

Money problems: combinations

ISMJ 11.16.
In Ruritania, the basic unit of money is the farthing,

however, farthings are no longer made. A forinth is worth
m farthings and a schilling is worth n farthings, m and n
integers, m < n. Schillings and forinths can be combined to
make all but 35 monetary values in farthings. In particular
58 farthings can not be made from schillings and forinths.
What are m and n?

JRM 447. by Sidney Kravitz
John has a dollar’s worth of coins in his pocket, but

no half dollars. He told me how many coins he had but I
could not tell what those coins were because there were six
different possible combinations.

How many coins does John have?

OMG 17.1.5.
Donald Corleone cashed a $200 check at the bank and

requested some one-dollar bills, 10 times as many two-dollar
bills, and the balance in five-dollar bills. How did the cashier
pay him?

OMG 18.2.4.
In the local Sunday School picnic, men are asked to

pay 50 cents for refreshments, women are asked to pay 30
cents and children only 1 cent. At the last picnic, the total
attendance was 100. If everyone paid the correct change,
and the total receipts were exactly $10, how many men,
women and children attended?

Money problems: denominations

JRM 618. by Frank Rubin
Let S be any set of distinct positive-integer-valued coin

denominations capable of making up any amount from one
cent to a dollar. Let A(S) be the average of the minimal
numbers of S-type coins required to make up the hundred
totals from 1 to 100. Thus A(1 cents, 5 cents, 10 cents,
25 cents, 50 cents) = .01(1 + 2 + 3 + 4 + 1 + 2 + · · ·+ 8 + 2)
= 4.22. Define the efficiency E(S) to be 1/[A(S)N(S)],
where N(S) is the number of coin denominations in S. Thus
E(1,5,10,25,50) = 1/(4.22 · 5) = .04739.

(a) What set is most efficient?
(b) What set containing no coins of denomination

greater than 100 is the least efficient?

Money problems: devaluation

FUNCT 1.1.5.
A newspaper report stated that the combined effect

of Australia’s 17.5% devaluation and New Zealand’s 7%
devaluation was to revalue the New Zealand dollar by 12.7%
in comparison with the Australian dollar. Where does this
figure come from? Is it correct?

Money problems: interchanged digits

PARAB 363.
An absent-minded bank clerk switched the dollars and

cents when he cashed a check for Mr. Brown, giving him
dollars instead of cents and cents instead of dollars. After
buying a five-cent newspaper, Mr. Brown discovered that he
had left exactly twice as much as his original check. What
was the amount of his check?

Money problems: stamps

JRM 396. by Ray Lipman
The adjoining countries Angkor and Bangkor each have

two denominations of postage stamps, all in the integral
units of their common equivalent of the penny (the kor).
One of Angkor’s stamps is the 3-kor variety and one of
Bangkor’s is the 6-kor. The two types of stamps of nei-
ther country can be used to obtain all desired amounts of
postage, but, curiously, the maximum postage unobtainable
with Angkorian stamps is the same as the maximum unob-
tainable with Bangkorian stamps. What are the smallest
possible values of the other two stamps?

Money problems: sum equals product

CRUX 297. by Kenneth M. Wilke
A young lady went to the store to purchase four items.

In computing her bill, the nervous clerk multiplied the four
amounts together and announced that the bill was $6.75.
Since the young lady had added the four amounts mentally
and obtained the same total, she paid her bill and left.
Assuming that the prices for each item are distinct, what
are the individual prices?

Money problems: word problems

OMG 18.1.9.
A cattle dealer had 5 droves of animals consisting of

oxen, pigs and sheep, with the same number of animals in
each drove. He sold them all to 8 dealers. Each dealer
bought the same number of animals, paying $17 per ox, $4
per pig and $2 per sheep, and the dealer received $301 in
all. What was the greatest number of animals the dealer
could have had and how many of each kind were there?

OSSMB 78-3.
A firm employs 350 people, some married and the rest

single. It pays a total Christmas bonus of $B, by giving to
each single worker $83.50 and to each married worker $100,
except that if both spouses of a married couple work for
the firm, the wife gets $100 and the husband nothing. If
the total bonus can be determined when the percentage of
married workers getting no bonus is known, how many male
workers have wives employed by the firm?
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Monotone functions

SSM 3692. by Michael Brozinsky
Prove that f(x) = (1 + 1

x )x is an increasing function
of x where x is a positive real number.

Numerical calculations

SSM 3568. by Alan Wayne

In the expression (3/2)2 − (1/2)2, Lucky Larry inter-
preted the exponents as multipliers, obtaining

2(3/2)− 2(1/2) = 2,

a correct equivalent of the given expression. Explain his
success.

MM Q619. by Alan Wayne
Using “the distributivity of addition over multiplica-

tion” Lucky Larry obtained the correct answer to (0.5) +
(0.2)(0.3) by multiplying 0.7 by 0.8. Explain his success.

NYSMTJ 62.
Here is an incorrect cancellation that produces a cor-

rect result:
16 6
6 64

=
1

4
.

Find other such fractions.

NYSMTJ 72.
Guess by what rule the following equalities are com-

posed. Using the rule you have found, make up one more
such equality:

12× 42 = 21× 24

13× 62 = 31× 26.

CRUX 340. by Léo Sauvé
Find a problem whose answer is 22/7− π.

CRUX 312. by R. Robinson Rowe
Evaluate

{
(

16
√

1416317954− 2)2 − 3
}2

to at least five significant figures.

Numerical inequalities

PENT 283. by Kenneth M. Wilke
On Professor Knowitall’s College Algebra exam, the

following question appeared:
Which is larger 6

√
4 or 7

√
5? Find the solution without

using tables.
Young Percival Whizkid solved the problem easily.

How did he do it?

Partial fractions

OSSMB G79.2-7.
Express x

1−5x+6x2 as a sum of partial fractions. Then

find the coefficient of xr in the expansion of x(1 − 5x +

6x2)−1.

Polynomial divisibility

FUNCT 3.2.2.
Let P (x), Q(x), and R(x) be polynomials that satisfy

the identity

P (x3) + xQ(x3) = (1 + x+ x2)R(x).

Show that all three polynomials are exactly divisible by
x − 1.

MSJ 486.
Let P and Q be two polynomials satisfying the equa-

tion P (x)/Q(x) = (2x − 1)/(x + 2), and define R(x) =

P (x)2 +Q(x)2. Prove that x2 + 1 is a factor of R(x).

SPECT 10.5.
The real polynomials f1(x), . . . , fn−1(x), g(x) (n > 1)

are such that

f1(xn) + xf2(xn) + · · ·+ xn−2fn−1(xn)

= (1 + x+ x2 + · · ·+ xn−1)g(x).

Show that f1(x), . . . , fn−1(x) all have x− 1 as a factor.

USA 1976/5.
If P (x), Q(x), R(x) and S(x) are all polynomials such

that

P (x5) + xQ(x5) + x2R(x5) = (x4 + x3 + x2 + x+ 1)S(x),

prove that x− 1 is a factor of P (x).

CANADA 1976/7.
Let P (x, y) be a polynomial in two variables x and y

such that P (x, y) = P (y, x) for every x and y. Given that

(x− y) is a factor of P (x, y), show that (x− y)2 is a factor
of P (x, y).

PARAB 299.
Find all values of p, q such that x4 +px2 +q is divisible

by x2 + ax+ b.

PME 446. by Clayton W. Dodge
A teacher showing the factorization of

x3 − y3 = (x− y)
(
x2 + xy + y2

)

emphasized that the second factor is not a square (not
(x+y) squared), and then chose x = 5 and y = 3 at random,

obtaining x2 + xy + y2 = 49, which is a square.
(a) Explain this apparent contradiction.

(b) Show that the equation x2+xy+y2 = 49 illustrates
that a 3:5:7 triangle has a 120◦ angle.

CRUX 7. by H. G. Dworschak
Find a fifth degree polynomial P (x) such that P (x)+1

is divisible by (x− 1)3 and P (x)− 1 is divisible by (x+ 1)3.

OSSMB 76-7.
What is the remainder when x+ x9 + x25 + x49 + x81

is divided by x3 − x?

PENT 288. by Charles Trigg

Factor 6x5 − 15x4 + 20x3 − 15x2 + 6x− 1.
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MM 1072. by Peter Ørno
The professor is preparing her final exam for calculus.

She wants to include the problem: “Find the relative max-
ima, relative minima, and points of inflection of the follow-
ing function.” The function should be a polynomial P (x) of
degree 4 with three distinct relative extrema and two dis-
tinct points of inflection. In order to solve the problem, the
students must be able to factor P ′(x) and P ′′(x). But the
typical calculus student in her class can factor a quadratic
polynomial correctly only if its roots are integers between
−20 and 20, and the student can factor a cubic polynomial
only if it is x times a quadratic which the student can factor.
Help the professor find such a polynomial.

Polynomials: Chebyshev polynomials

FQ B-373. by V. E. Hoggatt, Jr.
The sequence of Chebyshev polynomials is defined by

T0(x) = 1, T1(x) = x, and

Tn(x) = 2xTn−1(x)− Tn−2(x)

for n = 2, 3, . . . . Show that cos π
(2n+1)

is a root of

[Tn+1(x) + Tn(x)]/(x+ 1) = 0

and use a particular case to show that 2 cos π5 is a root of

x2 − x− 1 = 0.

Polynomials: coefficients

OSSMB 77-17.
Consider polynomials in n symbols x1, x2, . . . , xn of

the form

(x1 + δ1)(x2 + δ2) . . . (xn + δn)

where each δi = 1 or −1. If f(x1, . . . , xn) and g(x1, . . . , xn)
are any two such polynomials, show that the sum of the
products of the coefficients of corresponding terms of f and
g is 0.

OSSMB G75.3-5.
Show that if a, b, c, d be any four consecutive coeffi-

cients in the expansion of (1 + x)n, then

a

a+ b
+

c

c+ d
=

2b

b+ c
.

OSSMB G79.1-6.
(a) Find the number of homogeneous products of r

dimensions that can be formed out of the letters a, b, c and
their powers, that is, products of the form axbycz where x,
y, z are nonnegative integers and x+ y + z = r.

(b) Find the number of terms in the expansion of

(a+ b+ c)8.

(c) Find the sum of the coefficients in (a+ b+ c)8.

(d) Find the coefficient of the term a2b3c4d in

(a− b− c+ d)10.

SIAM 76-22. by N. Liron and L. A. Rubenfeld
Define

F (x) = Bm(x2) sinx− xAn(x2) cosx,

where Bm(z) and An(z) are polynomials of orders m and n
respectively, Bm(0) = 1 and where m − n = 0 or 1. Prove
that the coefficients in the polynomials Bm and An can be
uniquely chosen so that F (x) vanishes to maximum order
at x = 0, and the order of the zero is 2(m+ n) + 3.

CRUX 198. by Gali Salvatore

Find the coefficient of x8 in the expansion of the poly-
nomial

(1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 + 7x6)6.

OSSMB G75.2-6.
Find the sum of the first n coefficients in

(1 + x)n(1− x)−2.

Polynomials: complex polynomials

AMM 6136. by H. L. Montgomery
Let

P (z, w) =
∑

cmnz
mwn

be a polynomial in C[z, w]. Suppose that

Q(z, w) = P (z, w/z)

is also a polynomial: that is cmn = 0 whenever n > m.
Show that

{P (z, w) : |z| < 1, |w| < 1} = {Q(z, w) : |z| < 1, |w| < 1} .

Polynomials: degree 4

PUTNAM 1978/B.5.
Find the largest A for which there exists a polynomial

P (x) = Ax4 +Bx3 + Cx2 +Dx+ E,

with real coefficients, which satisfies

0 ≤ P (x) ≤ 1 for − 1 ≤ x ≤ 1.

Polynomials: derivatives

AMM E2550. by I. J. Schoenberg
Let q > 1, and let n be a natural number. Show that

the polynomial

P (x) =

n∑

k=1

(−1)k+1

(
n

k

)
xk − 1

qk − 1

has the property that for k = 1, 2, . . . , n,

(−1)k+1P (k)(x) > 0 if x ≤ q.

Polynomials: fixed points

PARAB 386.
Determine all polynomials f(x) = ax2 + bx + c such

that

f(a) = a, f(b) = b, and f(c) = c.
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Polynomials: integer coefficients

PUTNAM 1976/A.2.

Let P (x, y) = x2y + xy2 and Q(x, y) = x2 + xy + y2.
For n = 1, 2, 3, . . ., let Fn(x, y) = (x + y)n − xn − yn and
Gn(x, y) = (x+ y)n+xn+ yn. Prove that for each n either
Fn or Gn is expressible as a polynomial in P and Q with
integer coefficients.

MSJ 475.
Let g(x) be a fixed polynomial with integer coefficients,

and let f(x) = x2 + xg(x3). Prove that f(x) can not be

expressed in the form (x2 − x + 1) · h(x), where h(x) is a
polynomial with integer coefficients.

PUTNAM 1976/A.4.

Let r be a root of P (x) = x3 + ax2 + bx − 1 = 0 and

r+ 1 be a root of y3 + cy2 + dy+ 1 = 0, where a, b, c and d
are integers. Also let P (x) be irreducible over the rational
numbers. Express another root s of P (x) = 0 as a function
of r which does not explicitly involve a, b, c or d.

CRUX 254. by M. S. Klamkin
(a) If P (x) denotes a polynomial with integer coeffi-

cients such that

P (1000) = 1000, P (2000) = 2000, P (3000) = 4000,

prove that the zeros of P (x) cannot be integers.
(b) Prove that there is no such polynomial if

P (1000) = 1000, P (2000) = 2000, P (3000) = 1000.

JRM 589. by Frank Rubin
(a) Of all polynomials f(x) of degree less than or equal

to 3 and with integer coefficients all in the range [−10, 10],
which one has a zero nearest in value to π?

(b) Of all polynomials of degree less than or equal to
5 and with integer coefficients all in the range [−100, 100],
which has a zero nearest in value to π?

Polynomials: interpolation

USA 1975/3.
If P (x) denotes a polynomial of degree n such that

P (k) = k/(k+ 1) for k = 0, 1, 2, . . . , n, determine P (n+ 1).

Polynomials: number of terms

CRUX PS8-2.
Find all fourth-degree polynomials (with complex co-

efficients) with the property that the polynomial and its
square each consist of exactly five terms.

Polynomials: roots and coefficients

CRUX 332. by Leroy F. Meyers
In the quadratic equation

A(
√

3−
√

2)x2 +
B√

2 +
√

3
x+ C = 0,

we are given:

A =
4
√

49 + 20
√

6;
B = the sum of the geometric series

8
√

3 + (8
√

6)(3−
1
2 ) + 16(3−

1
2 ) + · · · ;

and the difference of the roots is

(6
√

6)log 10−2 log
√

5+log
√

log 18+log 72,

where the base of the logarithms is 6. Find the value of C.

CRUX 128. by Paul Khoury

Find real a, b, and c given that the equation az2 +bz+
c = 0 has as one of its roots v + v2 + v4, where v is an
imaginary root of z7 − 1 = 0.

MSJ 427. by J. Orten Gadd
The roots of the equation

z4 + az3 + bz2 + cz + 62500 = 0

are x ± iy and y ± ix. Find all solutions if x and y are
positive integers with x < y.

CRUX 335. by Hippolyte Charles
Find necessary and sufficient conditions for the equa-

tion ax2 + bx+ c = 0, a 6= 0, to have one of its roots equal
to the square of the other.

PUTNAM 1975/A.2.
(a) For which ordered pairs of real numbers b and c do

both roots of the quadratic equation

z2 + bz + c = 0

lie inside the unit disc {|z| < 1} in the complex plane?
(b) Draw a reasonably accurate graph of the region

in the real bc-plane for which the above condition holds.
Identify precisely the boundary curves of this region.

Polynomials: zeros

CRUX 425. by Gali Salvatore
Let x1, x2, . . . xn be the zeros of the polynomial

P (x) = xn + axn−1 + an−1x+ 1, n ≥ 3

and consider the sum

n∑

k=1

xk + 2

xk − 1
.

Find all values of a and n for which this sum is defined and
equal to n− 3.

MATYC 128. by Steve Kahn
Find all real values of k such that the zeros of

x4 − 2x3 + (1− 2k)x2 + 2kx

are real, distinct, and form an arithmetic progression.

MSJ 488.
Let f(x) = x4 + x3 − 1, and g(x) = x4 − x3 − 2x2 + 1.

Prove that if f(x) = 0, then g(x2) = 0.

MM Q659. by Peter Ørno
Show that for each complex number b the polynomial

P (z) = z4 + 32z + b has a zero in {z |Re(z) ≥ 1}.

Radicals: approximations

CRUX 207. by Ross Honsberger
Prove that 2r+5

r+2 is always a better approximation to√
5 than r.
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Radicals: arithmetic progressions

ISMJ 11.12.
Prove that the numbers

√
2,
√

3, and
√

5 cannot be
terms of a single arithmetic progression.

Radicals: irrational numbers

CRUX 104. by H. G. Dworschak
Prove that 3

√
5− 4
√

3 is irrational.

PARAB 287.
Show that

√
19761977 + 19781979

is irrational.

Radicals: nested radicals

OMG 14.3.2.

(a) What is the value of

√
6 +

√
6 +
√

6 + · · · ?

(b) What is the sum of 1
2 + 1

6 + 1
12 + · · · ?

CRUX 8. by Jacques Marion
Investigate the convergence of the sequence (an) de-

fined by

an =

√
1 +

√
1 +

√
1 + · · ·+

√
1, (n radicals)

and determine limn→∞ an if it exists.

CRUX 9. by Jacques Marion
Investigate the convergence of the sequence (bn) de-

fined by

bn =

√
1 +

√
2 +

√
3 + · · ·+√n.

Radicals: reciprocals

OMG 15.3.4.
Given that a + b

√
2, with a, b ∈ R, is a closed system

under multiplication, what is the reciprocal of 3 − 2
√

2 in
the form a+ b

√
2?

Radicals: simplification

CRUX 169. by Kenneth S. Williams
Prove that

√
5 +

√
22 + 2

√
5 =

√
11 + 2

√
29 +

√
16− 2

√
29 + 2

√
55− 10

√
29.

SSM 3711. by William D. Markel
Simplify:

3

√
5
√

33

18
− 3

2
− 3

√
5
√

33

18
+

3

2
.

Rate problems: cars

CRUX PS8-1.
At midnight, a truck starts from city A and goes to

city B; at 2:40 am a car starts along the same route from
city B to city A. They pass at 4:00 am. The car arrives
at its destination 40 minutes later than the truck. Having
completed their business, they start for home and pass each
other on the road at 2:00 pm. Finally, they both arrive home
at the same time. At what time did they arrive home?

ISMJ J10.11.
Two cars each traveling at a uniform speed set out at

noon from A and travel to B. They reach B at 3 pm and
4 pm respectively. At what time was the slower car twice as
far from B as the faster one?

OMG 18.2.9.
It is 52 kilometers by road from Hamilton to Toronto.

At 10 am, Peter Brown left Hamilton and traveled at a
uniform pace, without stopping, to Toronto and back again.
Some time later, Bill Storey left Toronto and drove his car
at a uniform speed to Hamilton and back again. Storey
passed Brown, on his outward journey, 15 kilometers from
Toronto. He passed him again, on his return journey, 11
kilometers from Toronto. Storey was back in Toronto at
4:40 pm. What time was it when Brown arrived back in
Hamilton?

OSSMB 75-3. by Murray Klamkin
and Rodney Cooper

Al leaves at noon and drives at constant speed back
and forth from town A to town B. Bob also leaves at noon,
driving at 40 mph back and forth from town B to town A
on the same highway as Al. Al arrives at town B twenty
minutes after first passing Bob, whereas Bob arrives at town
A 45 minutes after first passing Al. At what time do Al and
Bob pass each other for the nth time?

OSSMB G79.1-1.
(a) An automobile traveling at a rate of 30 feet per

second is approaching an intersection. When the auto is
120 feet from the intersection, a truck traveling at 40 feet
per second crosses the intersection. The roads are at right
angles. How fast are the truck and the auto separating 2
seconds after the truck crosses the intersection?

(b) Water is poured at the rate of 8 cubic feet per
minute into a tank in the form of an inverted cone. The
cone is 20 feet deep and 10 feet in diameter. If there is a
leak in the bottom and the water level is rising at 1 inch
per minute when the water is 16 feet deep, how fast is the
water leaking?

PENT 294. by Léo Sauvé
Two cars leave at the same time from two towns A and

B, going towards each other. When the faster car reaches
the midpoint M , between A and B, the distance between
them is 96 miles. They meet 45 minutes later. Finally, when
the slower car reaches M , they are 160 miles apart. Find

(a) the speed of each car, and
(b) the distance between the two towns.
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Rate problems: distance

FUNCT 2.2.1.
A man walks in a straight line from A to B, starting

at A, at a constant speed of 5 km/hr. A fly starts at B at
the same time that the man sets off from A and flies to the
man’s nose, then back to B, then to the man’s nose, and
so on. The fly flies at twice the speed that the man walks.
How far has the fly flown when the man reaches B?

MSJ 445. by Joanne B. Rudnytsky
Some hikers start in a walk at 3 pm and return at 9 pm.

If their speed is 4 mph on level land, 6 mph downhill, and 3
mph uphill, how far did they walk? If the uphill rate were
x mph and the downhill rate were y mph, what must be
the rate, in mph, on the flat, for such a problem to have a
unique solution?

OMG 18.3.3.
Dianne goes to school cycling at 12 kph and she is

10 minutes late. Next day she goes at 15 kph and reaches
school 10 minutes early. Find the distance of the school
from her house. At what speed should she cycle to reach
school precisely on time?

Rate problems: exponential growth

CRUX 373. by Leroy F. Meyers
Suppose that the human population of the Earth is

increasing exponentially at a constant relative rate k, that
the average volume of a person stays at V0, and that the
present population is N0. If people are assumed packed
solidly into a sphere, how long will it be until the radius of
that sphere is increasing at the speed of light, c, and what
will the radius of the sphere be then?

The following approximate data may be used: N0 =
4× 109, k = 1%/yr, 1 yr =365.25 days, 1 day = 24 · 60 · 60

sec; and V0 = 0.1 m3 and c = 3× 108 m/sec.

Rate problems: flow problems

OMG 17.2.7.
If x men working x hours a day for each of x days pro-

duce x articles, determine the number of articles produced
by y men working y hours a day for each of y days.

NYSMTJ OBG4.
Four pipes lead into a pool. When pipes 1, 2, and 3

are open, the pool is filled in 12 minutes; when pipes 2, 3,
and 4 are open, it takes 15 minutes to fill the pool; when
just pipes 1 and 4 are open, it takes 20 minutes. How long
will it take to fill the pool if all four pipes are open?

Rate problems: rivers

CRUX 193. by L. F. Meyers
A river with a steady current flows into a still-water

lake at Q. A swimmer swims down the river from P to Q,
and then across the lake to R, in a total of 3 hours. If the
swimmer had gone from R to Q to P , the trip would have
taken 6 hours. If there had been a current in the lake equal
to that in the river, then the downstream trip PQR would
have taken 21/4 hours. How long would the upstream trip
RQP have taken under the same circumstances?

MATYC 123. by Sarah Brooks
A mathematician went home along the bank of a

stream, walking upstream at a rate 1 1/2 times the flow
of the stream. He held in his hands his hat and his cane.
At a certain time, his hat fell unnoticed into the stream; he
continued to go upstream at the same rate. After a while, he
realized his mistake, threw his cane into the stream, and ran
back at the rate twice as great as that at which he had been
going upstream. Upon reaching the floating hat, he imme-
diately fished it out of the water, and walked upstream at
his initial rate. Ten minutes after he had fished out the hat,
he met his cane floating in the stream. How much earlier
would he have arrived home if he had not dropped his hat
into the water?

SPECT 11.4. by B. G. Eke
A man rows with uniform speed v mph in a straight

line against a current of c mph. After 1 hour his hat falls
off; after another hour he notices, turns back, and catches
up with his hat where he first started rowing. Find v/c. If
now his hat falls off after 1 mile instead of 1 hour, with all
the other statements the same, determine c and comment
on the fact that c is independent of v in this case.

MM 1004. by M. S. Klamkin
A river flows with a constant speed w. A motorboat

cruises with a constant speed v with respect to the river,
where v > w. If the path traveled by the boat is a square of
side L with respect to the ground, the time of the traverse
will vary with the orientation of the square. Determine the
maximum and minimum time for the traverse.

Rate problems: running

CRUX 356. by R. Robinson Rowe
Jogging daily to a landmark windmill P on the north-

easterly horizon, Joe wondered how far it was. Directly
(path OP ), his time was 25 minutes; jogging first 2 miles
due North (path ONP ) took 30 minutes, and jogging first 2
miles due East (path OEP ) took 35 minutes. How far was
Joe’s jog (path OP )?

FUNCT 3.1.4.
A man and a horse run a race, one hundred meters

straight, and return. The horse leaps 3 meters at each stride
and the man only 2, but then the man makes three strides
to each of the horse’s two. Who wins the race?

JRM 770a. by Michael J. Messner
Our four favorite fiends have been chasing the caped

crusader all over Gotham City. As he enters a tunnel with
Penguin on his heels, an alarm is sounded and at that same
time the other three fiends begin to converge toward the
center of the tunnel system. Batman is in top condition
and able to run faster than any of the fiends. He can go
15 kph indefinitely. Since good guys always turn right, the
caped crusader turns right when he reaches the center of
the tunnel system and heads toward Cat Woman. When
he meets her, he turns and heads back toward the center.
There he turns right again and continues in this manner
until one of the fiends reaches the center and cuts off his
retreat. Now caught between two of them, Batman runs
back and forth until all three meet and he can go no further.

Which two wicked weasels will waylay our wary wor-
shipped wonder, and how many miles does he run before
they catch him? Penguin goes 3 kph, Cat Woman and Rid-
dler 2 kph, and Joker can go 4 kph but he doesn’t – he just
sits and waits.
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Rate problems: sheep

CRUX 71. by Léo Sauvé
If ten sheep jump over a fence in ten seconds, how

many would jump over the fence in ten minutes?

Rate problems: spaceships

OMG 17.2.6.
A 25-vehicle interterrestrial starship fleet took off from

rebel headquarters, one ship departing every 5 earth min-
utes. Each ship traveled at the uniform speed of 4 1

2 inter-
galactic distance units per earth hour, attaining this velocity
instantaneously, and each ship has to journey 12 earth hours
before arriving at its destination. The first ship departed
at 11 am earth time. Find the total number of intergalactic
distance units traveled by all these starships from 11 am to
9 pm earth time that night.

Rate problems: traffic lights

FUNCT 3.4.1.
Five sets of traffic lights are spaced along a road at 200-

meter intervals. For each set, the red signal lasts 30 sec,
the green 28 sec, and the yellow 2 sec. The lights are
synchronized in such a way that a car traveling at 36 kph,
and just catching the first light, just catches the other four.
The width of the cross-street at each light is 20 meters. Find
all the speeds at which it is possible to travel without being
held up at any of the lights.

JRM 730. by Frank Rubin
A traffic light has a one-minute cycle, divided into 25

seconds green, 5 seconds yellow, and 30 seconds red. A car
approaches the light at a speed of 20 meters per second. The
car can brake and accelerate at 5 meters per second. The
driver has a one-second reaction time, and perfect judgment,
i.e., if the light is red, he will brake at maximum rate so as to
stop just at the intersection if this is possible; otherwise he
will continue through the intersection at his normal speed.
On the average, how much delay does the traffic light cause?

Rate problems: trains

OMG 17.3.6.
A freight train and an express train travel at constant

speeds on straight parallel tracks. It takes 21 seconds for
the trains to clear each other when passing in the same
direction, but only 6 seconds when passing in opposite di-
rections. Find the ratio of the speed of the freight train to
the speed of the express train.

OMG 18.3.6.
Two trains start at 7 am, one from A going to B and

the other from B going to A. The first train makes the trip
in 8 hours and the second in 12 hours. At what hour of the
day will the two trains pass each other?

Rate problems: trips

PARAB 353.
In traveling from A to B, a distance of 100 km, a train

accelerates uniformly, travels 80 km at a constant speed of
100 km/hr, and then decelerates uniformly. How long does
the trip take?

PARAB 303.
Four men A, B, C, and D set out simultaneously from

M to reach N , 5 kilometers away. One of them, D, owns
a motorcycle. He gives A a lift for part of the way, then
turns back and picks up B. When they overtake A, B
alights and the unselfish D once more turns back to assist
C. Eventually they all arrive at N at the same moment. If
D always travels at a steady v km/hour, and A, B, and C
all walk at w km/hr, how long did the trip from M to N
take?

PARAB 348.
Four explorers are going to make a trip into the desert.

Each man can carry enough water to last ten days. Each
man can walk 24 kilometers a day. Obviously if all four stay
together, they can manage a trip of only five days into the
desert, leaving enough water to return. If our explorers are
thinkers, how far can they manage to get into the desert
before they have to return? Assume that the desert is so
uninhabited that it is safe to leave water behind for the
return trip, but no explorer can return to civilization to
replenish his supply and then return to the desert.

Recurrences

SIAM 79-5. by L. Erlebach and O. Ruehr
A sequence {an} is defined as follows:

an = n(n− 1)an−1 +
1

2
n(n− 1)2an−2,

n ≥ 3; a1 = 0, a2 = 1. Determine how an behaves for large
n.

AMM E2520. by G. B. Huff
The nontrivial sequence a0, a1, . . . satisfies the follow-

ing recursion formula:

an =

bn/2c∑

k=0

(
n

2k

)2

(n− 2k)!a2
k.

Find an.

CANADA 1977/6.
Let 0 < u < 1 and define

u1 = 1 + u, u2 =
1

u1
+ u, . . . , un+1 =

1

un
+ u, n ≥ 1.

Show that un > 1 for all values of n = 1, 2, 3, . . ..

CRUX 162. by Viktors Linis
If x0 = 5 and xn+1 = xn + 1

xn
, show that

45 < x10000 < 45.1.

AMM E2567. by J. H. Conway
and R. L. Graham

Define polynomials fm = fm(x1, . . . , xm) by f0 = 1,
f1 = x1, fk = xkfk−1 − fk−2, k ≥ 2. For a fixed n ≥ 3,
let y1, y2, . . . satisfy fn(yk+1, . . . , yk+n) = 1 for all k ≥ 0.
Show that yn+k+2 = yk for all k ≥ 1.

IMO 1976/2.

Let P1(x) = x2 − 2 and Pj(x) = P1(Pj−1(x)) for
j = 2, 3, . . .. Show that, for any positive integer n, the
roots of the equation Pn(x) = x are real and distinct.
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CRUX 191. by R. Robinson Rowe
Consider the recurrence defined by

NnNn−2 = Nn−1 + e.

(a) Find sets of square integers N0 and N1 for which
N5 = N0 when e = 2.

(b) Find the general relation between N0 and N1 for
any value of e.

AMM E2737. by Robert Ross Wilson
Define a sequence of polynomials by P0 = 1, P1 = x+1,

and Pn+1 = Pn + xPn−1 (n ≥ 1). Show that all roots of
each Pn are real.

Roots of unity

JRM 556. by Ray Lipman
Consider the nth roots of unity for n = 1, 2, . . . , 100.

How many of these are distinct? What is the closest that
two of them come to each other in the complex plane?
Generalize.

OSSMB G79.2-3.
Given w3 = 1, w 6= 1 (i.e., w is a complex cube root of

unity), find the value of

(1− w)(1− w2)(1− w4)(1− w5)(1− w7)(1− w8).

TYCMJ 82. by Norman Schaumberger
Choose w and r so that w is a primitive nth root of

unity and rn 6= 1. Prove that

n−1∑

k=0

1

1− wkr =
n

1− rn .

PUTNAM 1975/A.4.
Let n = 2m, where m is an odd integer greater than 1.

Let θ = e2πi/n. Express (1−θ)−1 explicitly as a polynomial
in θ,

akθ
k + ak−1θ

k−1 + · · ·+ a1θ + a0,

with integer coefficients ai. [Note that θ is a primitive nth
root of unity, and thus it satisfies all of the identities which
hold for such roots.]

Sequences

OSSMB G78.3-1.
(a) The two middle terms of an arithmetic progression

of 2n terms are a and b. Find the difference between the
sum of the first n terms and the sum of the last n terms.

(b) Determine x such that

n∑

k=0

(k + 1)
(
x− k

n

)
= 0.

OSSMB G79.2-1.
Given any arithmetic progression t1, t2, . . . such that

tr = 0 for some fixed r > 1, show that t1 + · · ·+ t2r−1 = 0.

CANADA 1975/2.
A sequence of numbers a1, a2, a3, . . . satisfies
(1) a1 = 1

2 ,

(2) a1 + a2 + · · ·+ an = n2an (n ≥ 1).
Determine the value of an (n ≥ 1).

Solution of equations: binomial coefficients

SSM 3736. by William D. Markel
Find the distinct roots of the equation

1−
(
n

2

)
x2 +

(
n

4

)
x4 −

(
n

6

)
x6 + · · ·+ (−1)j

(
n

2j

)
x2j = 0,

where

j =

{
n/2, if n is even

(n− 1)/2, if n is odd.

Solution of equations: degree 2

CRUX 489. by V. N. Murty
Find all real numbers x, y, and z such that

(1− x)2 + (x− y)2 + (y − z)2 + z2 =
1

4
.

CRUX 51. by H. G. Dworschak
Solve the following equation for the positive integers x

and y:

(360 + 3x)2 = 492y04.

FUNCT 3.2.7.
Let a, b, and c be real numbers that satisfy the equation

3a2 + 4b2 + 18c2 − 4ab− 12ac = 0.

Prove that a = 2b = 3c.

NYSMTJ 87. by Thomas Masters
and Sidney Penner

Let t > 1 and a, b, c, d be nonnegative. If

(at+ b)(ct+ d) = (bt+ a)(dt+ c)

and d+ c = 2(a+ b), show that d = 2a and c = 2b.

SSM 3725. by Robert A. Carman
Some students incorrectly try to solve quadratic equa-

tions by the method illustrated in the following examples:

(x+ 3)(4− x) = 6 (x+ 1)(2− x) = 2

x+ 3 = 6 or 4− x = 6 x+ 1 = 2 or 2− x = 2

x = 3 or x = −2 x = 1 or x = 0

Notice that in each case the correct answer is obtained.
Under what conditions will this approach always yield the
correct result?

Solution of equations: degree 4

OMG 18.1.7.
Solve:

(x+ 1)(x+ 3)(x+ 5)(x+ 7) = 9.

Solution of equations: degree 20

OSSMB 79-18.
(a) The first two terms of a 20th degree polynomial are

x20 − 20x19 and the last term is 1. If all the roots are real
and positive, find them.

(b) Show that if any subset of n+1 numbers is selected
from the first 2n positive integers, the subset must contain
two numbers that are relatively prime.
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Solution of equations: determinants

CRUX 398. by Murray S. Klamkin
Find the roots of the n× n determinantal equation

∣∣∣ 1

xδrs + kr

∣∣∣ = 0,

where δrs is the Kronecker delta.

Solution of equations: exponential equations

CRUX 262. by Steven R. Conrad
Find the real values of x such that

32x2−7x+3 = 4x
2−x−6.

JRM 653. by J. A. H. Hunter

Given that k =
(
rx−1
r−1

)x
, r > 1, determine x in terms

of k and r.

Solution of equations: linear

OSSMB G76.2-5.
Solve the equation

a+ b− x
c

+
a+ c− x

b
+
b+ c− x

a
+

4x

a+ b+ c
= 1.

OSSMB G79.2-2.
Solve

x− ab
a+ b

+
x− bc
b+ c

+
x− ac
a+ c

= a+ b+ c

given that a, b, c are positive real constants.

Solution of equations: logarithms

MATYC 110. by Louise Grinstein
Solve for x: x+ loga(x) = a.

OSSMB G76.2-7.
Solve

2 logx a+ logax a+ 3 loga2x a = 0.

Solution of equations: radicals

CRUX 116. by Viktors Linis
For which values of a, b, and c does the equation

√
x+ a

√
x+ b+

√
x = c

have infinitely many solutions?

CRUX 287. by M. S. Klamkin
Determine a real value of x satisfying

√
2ab+ 2ax+ 2bx− a2 − b2 − x2

=
√
ax− a2 +

√
bx− b2

if x > a and b > 0.

MSJ 457.
Solve for x:

√
7x−

√
3x = 7− 3.

Sports

FUNCT 3.5.1. by Ray Bence
Football score is calculated by adding the number of

behinds to six times the number of goals. Some scores may
be calculated correctly by multiplying the number of goals
by the number of behinds. Give a list of all scores for which
this is possible.

NYSMTJ 57. by David Rosen
Assume that, in a simplified version of football, there

are only two types of scoring: a 3-point play and a 7-point
play. What is the largest total that cannot be achieved?

JRM 624. by Benedict Marukian
When the Latakia State University football team

played Filter Tech in the Tobacco Bowl, the lead changed
hands after each tally. Moreover, following each tally, each
team’s score was prime. Under these conditions the final
score was as large as it could be. What was it?

“Tally” here is defined to be the points awarded for
any scoring play, including, in the case of a touchdown,
the conversion, if successful. Thus there are five different
possible tallies: 2, 3, 6, 7, and 8.

MM 1024. by David A. Smith
In many athletic leagues the progress of teams is re-

ported both in terms of winning percentage and in terms of
“games behind” the league leader, defined as the difference
in games won minus the difference in games lost, divided by
2. Sports fans often observe, especially early in the season,
that the league leader in percentage (the official standard)
is behind some other team in games.

Suppose team A is the percentage leader, but team B
is ahead of Team A in games. Assume no ties.

(a) Which team has played more games?
(b) What is the minimum difference in number of

games played?
(c) Characterize possible won/lost records for the two

teams if the difference in number of games played is mini-
mal.

(d) Is it possible for this to occur late in the season?

Substitution

FQ B-394. by Phil Mana
Let P (x) = x(x − 1)(x − 2)/6. Simplify the following

expression:

P (x+ y + z)− P (y + z)− P (x+ z)− P (x+ y)

+P (x) + P (y) + P (z).

OSSMB G78.2-1.
When x = (3 + 5

√
−1)/2, find the value of

2x3 + 2x2 − 7x+ 72

and show that it is unaltered if (3−5
√
−1)/2 is substituted

for x.

Sum of powers

PARAB 337.
Let x and y be real numbers such that x + y = 1 and

x4 + y4 = 7. Find x2 + y2 and x3 + y3.
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PARAB 382.
Prove or disprove: There are two numbers x, y such

that x+ y = 1, x2 + y2 = 2, and x3 + y3 = 3.

CRUX 143. by Léo Sauvé
Suppose that

f(n) = xn + yn + zn,

where (x, y, z) is a triple of complex numbers such that
f(n) = n for n = 1, 2, 3. Show that the triple (x, y, z)
cannot be real and calculate f(4), f(5), and f(6).

CRUX 156. by Léo Sauvé
Find all integers n for which the following implication

holds: For all real nonzero a, b, and c with nonzero sum,

1

a
+

1

b
+

1

c
=

1

a+ b+ c

=⇒ 1

an
+

1

bn
+

1

cn
=

1

an + bn + cn
.

Systems of equations: 2 variables

CRUX 384. by Hippolyte Charles
Solve the following system of equations for x and y:

(ab+ 1)(x2 + 1)

x+ 1
=

(a2 + 1)(xy + 1)

y + 1

(ab+ 1)(y2 + 1)

y + 1
=

(b2 + 1)(xy + 1)

x+ 1
.

ISMJ J11.3.
Solve the simultaneous equations

x− y + 1

x+ y − 1
= a

x+ y + 1

x− y − 1
= b.

Does a solution exist for all values of a and b?

SSM 3596. by Howard L. Prouse
Show that the system of equations

ax+ by = c

dx+ ey = f

always has the solution (−1, 2) if a, b, c, d, e, and f form a
nontrivial arithmetic sequence.

TYCMJ 126. by R. C. Buck
If x = 1.36 and y = 1.69, calculation in the set of

equations

x2 + y2 + xy = 7

3x2 − y2 − y = 1

−x2 + 3y2 − 2x = 4

suggests you have almost found a common solution. Does
there exist a common solution?

CRUX 252. by Richard S. Field
Discuss the solutions, if any, of the system

xy = A

yx = A+ 1,

where A ≥ 2 is an integer.

OSSMB G77.2-1.
Find the positive solutions of the equations

xx+y = ya and yx+y = x4a

where a > 0.

PARAB 280.
Find all solutions of the simultaneous equations:

y = x+

√
x+

√
x+ · · ·+

√
x+
√
y

x+ y = 6,

where there are 1975 square roots in the first equation.

Systems of equations: 3 variables

CANADA 1978/3.
Determine the largest real number z such that

x+ y + z = 5

xy + yz + xz = 3

and x and y are also real.

CRUX 438. by Sahib Ram Mandan
Eliminate x, y, and z from the following three equa-

tions:

aix
2 + biy

2 + cz2 + 2fiyz+ 2gizx+ 2hixy = 0, i = 1, 2, 3.

OSSMB G78.3-2.
Solve

x− y = 1− z
3(x2 − y2) = 5(1− z2)

7(x3 − y3) = 19(1− z3)

when x 6= y.

OMG 15.2.3.
Find all the ordered triples (x, y, z) such that when any

one of these numbers is added to the product of the other
two the result is 2.

MSJ 440. by Harry Sitomer
Solve the system of equations:

x+ y + z = 5

x+ y − z = 7

(x− y)3 + (y − z)3 = (x− z)3.
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CRUX 272. by Steven R. Conrad
Solve the system of equations

zx = y2x

2z = 2(4)x

x+ y + z = 16.

OSSMB G79.3-5.
Solve the system of equations:

x+ y + z = 15

x2 + y2 + z2 = 83

x3 + y3 + z3 = 495.

Systems of equations: 4 variables

PUTNAM 1977/A.2.
Determine all solutions in real numbers x, y, z and w

of the system

x+ y + z = w

1

x
+

1

y
+

1

z
=

1

w
.

Systems of equations: 5 variables

USA 1978/1.
Given that a, b, c, d and e are real numbers such that

a+ b+ c+ d+ e = 8

a2 + b2 + c2 + d2 + e2 = 16.

Determine the maximum value of e.

IMO 1979/5.
Find all real numbers a for which there exist non-

negative real numbers x1, x2, x3, x4, x5 satisfying the
relations

5∑

k=1

kxk = a,

5∑

k=1

k3xk = a2,

5∑

k=1

k5xk = a3.

CRUX 299. by M. S. Klamkin
If

F1 = (−r2 + s2 − 2t2)(x2 − y2 − 2xy)−

2rs(x2 − y2 + 2xy) + 4rt(x2 + y2),

F2 = 2rs(x2 − y2 + 2xy) + (r2 + s2 − 2t2)(x2 − y2 − 2xy)+

4st(x2 + y2),

F3 = −2rt(x2 − y2 − 2xy)− 2st(x2 − y2 + 2xy)+

(r2 + s2 + 2t2)(x2 + y2),

show that F1, F2, and F3 are functionally dependent and
find their functional relationship. Also, reduce the five-
parameter representation of F1, F2, and F3 to one of two
parameters.

Systems of equations: 6 variables

CRUX 45. by H. G. Dworschak
Find the constants A, B, C, D, p, and q such that

A(x− p)2 +B(x− q)2 = 5x2 + 8x+ 14,

C(x− p)2 +D(x− q)2 = x2 + 10x+ 17.

Systems of equations: 13 variables

PARAB 288.
Find all solutions of the equations with 13 unknowns:

x1x2 = x2x3 = x3x4 = · · · = x12x13 = x13x1 = 1.

Solve the similar set of equations with 12 unknowns.

Systems of equations: n variables

AMM E2587. by Bruno O. Shubert
Consider the system of n equations

x0 + xk = min
j=1,...,m

max
i=1,...,n

(aijk + xi), k = 1, . . . , n,

in n+ 1 unknowns x0, x1, . . . , xn, where the aijk are given
constants. Show that

(a) the system always has a solution and that
(b) the first component, x0, is unique.

MM 930. by M. S. Klamkin
Solve the system of equations

(xi − ai+1)(xi+1 − ai+3) = a2
i+2,

i = 1, 2, . . . , n, for the xi’s where an+i = ai, xn+i = xi, and
a1a2 · · · an 6= 0.

Systems of equations: logarithms

PARAB 349.
Solve the system of equations

xlog y + ylog
√
x = 110, xy = 1000.

Theory of equations: constraints

MM 1074. by Chandrakant Raju
and R. Shantaram

Suppose that all three roots of the cubic

x3 − px+ q = 0 (p > 0, q > 0)

are real. Show that the numerically smallest root lies be-
tween q/p and 2q/p.

OMG 17.1.6.
Find all real values of k so that the equation

x3 + x2 − 4kx− 4k = 0

has two of its three roots equal.

Theory of equations: inequalities

SPECT 7.9. by B. G. Eke
Let a be a positive integer and let b, c be integers.

Suppose that ax2 +bx+c has two distinct roots in the range
0 < x < 1. Show that a ≥ 5 and find such a quadratic with
a = 5.
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Theory of equations: integer roots

CRUX 190. by Kenneth M. Wilke
Find all integral values of m for which the polynomial

P (x) = x3 −mx2 −mx− (m2 + 1)

has an integral zero.

Theory of equations: real roots

CRUX PS7-3.
Show that the polynomial equation with real coeffi-

cients

P (x) ≡ a0x
n + a1x

n−1 + · · ·+ an−3x
3 + x2 + x+ 1 = 0

cannot have all real roots.

MM Q626. by Philip Tracy
If a, b, and c are real and b2 < 2ac, prove that the cubic

x3 + ax2 + bx+ c has only one distinct real root.

PARAB 282.
Let

f(x) = ax2 + bx+ c,

where a, b, c are real numbers. Prove that if the coefficients
a, b, c are such that the equation f(x) = x has no real roots,
then also the equation f (f(x)) = x has no real roots.

Theory of equations: roots

CRUX 298. by Clayton W. Dodge
The equation x2 − 9x+ 18 = 4 has the property that,

if the left side is factored, so that (x − 3)(x − 6) = 4, then
one of the roots, x = 7, is found by illegally setting one of
the factors equal to the constant on the right, x − 3 = 4.
Unfortunately, the second root cannot be similarly found; it
is not x−6 = 4. Find all such quadratic equations in which
both roots can be obtained by equating each factor in turn
to the nonzero constant on the right.

PUTNAM 1978/B.3.
The sequence {Qn(x)} of polynomials is defined by

Q1(x) = 1 + x, Q2(x) = 1 + 2x,

and for m ≥ 1, by

Q2m+1(x) = Q2m(x) + (m+ 1)xQ2m−1(x),

Q2m+2(x) = Q2m+1(x) + (m+ 1)xQ2m(x).

Let xn be the largest solution of Qn(x) = 0. Prove that
{xn} is an increasing sequence and that limn→∞ xn = 0.

USA 1977/3.

If a and b are two of the roots of x4 +x3−1 = 0, prove
that ab is a root of x6 + x4 + x3 − x2 − 1 = 0.

MATYC 138. by Mangho Ahuja
If a, b, c, and d are in arithmetic progression, then

prove that the roots of the equation

1

x− a +
1

x− b +
1

x− c +
1

x− d = 0

are also in arithmetic progression.

OSSMB G79.1-5.
Show that the roots of the cubic equation

bx3 + a2x2 + a2x+ b = 0

are in geometric progression.

CRUX 468. by Viktors Linis
(a) Prove that the equation

a1x
k1 + a2x

k2 + · · ·+ anx
kn − 1 = 0,

where a1, . . . , an are real and k1, . . . , kn are natural num-
bers, has at most n positive roots.

(b) Prove that the equation

axk(x+ 1)p + bxl(x+ 1)q + cxm(x+ 1)r − 1 = 0,

where a, b, c are real and k, l, m, p, q, r are natural
numbers, has at most 14 positive roots.

TYCMJ 55. by Louis Rotando
Find the set of real values of b, b > 1, for which

logb x = x has
(a) exactly one solution,
(b) exactly two solutions, and
(c) no solutions.

OSSMB G75.1-1.
Given that x3+px+q = 0 has 3 rational nonzero roots,

α, β, γ, show that αy2 + βy + γ = 0 has rational roots.

CRUX 178. by Gali Salvatore
Prove or disprove that the equation ax2 + bx + c = 0

has no rational root if a, b, and c are all odd integers.

CRUX 185. by H. G. Dworschak
Prove that, for any positive integer n > 1, the equation

1 + 2x+ 3x2 + · · ·+ nxn−1 = n2

has a rational root between 1 and 2.

ISMJ 11.6.
Show that if p, q, p1, and q1 are real numbers such

that pp1 = 2(q + q1), then at least one of the equations

x2 + px+ q = 0

x2 + p1x+ q1 = 0

has real roots.

Theory of equations: systems of equations

MATYC 88. by Roger Lindley
Show that the system

a1x
2 − 2b1xy − a1y

2 + a2x− b2y + a3 = 0

b1x
2 + 2a1xy − b1y2 + b2x+ a2y + b3 = 0

has at least one and at most two distinct real solutions.

Theory of equations: table of values

OMG 16.1.4.
Find an equation that would generate the following

table of values.

n | 1 | 2 | 3 | 4

s | 0 | 2 | 6 | 12
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Uniform growth Problems sorted by topic Weights

Uniform growth

JRM 655. by Friend H. Kierstead, Jr.
It is known that most of the human beings who have

ever lived are still alive today. Using the simplifying as-
sumptions that each individual lives to the age of 70, all
babies are born when the mother is 20 years old, and the
population is a continuous function of time, what birth rate
is necessary to guarantee that the number of living is always
just equal to the number of dead?

PME 426. by R. Robinson Rowe
After a cold, dry snow had been falling steadily for

72 hours, a niphometer showed a depth of 340 cm, com-
pared to a reading of 175 cm after the first 24 hours. As-
suming that underlying snow had been compacted only by
the weight of its snow overburden, so that the depth varied
as a power of time, what would have been the depths after
12 and 48 hours?

SSM 3577. by Max Sute
A Boy Scout troop has enough bread to last them 11

days; if there had been 400 more boys, each boy would have
received 2 oz. less per day; if there had been 600 fewer boys,
each boy’s daily share could have been increased by 2 oz.
and the Boy Scout troop would have had enough bread to
last them 12 days. How many pounds of bread did the troop
have, and what was each daily share?

CRUX 402. by R. Robinson Rowe
An army with an initial strength of A men is exactly

decimated each day of a 5-day battle and reinforced each
night with R men from the reserve pool of P men, winding
up on the morning of the 6th day with 60% of its initial
strength. At least how large must the initial strength have
been if

(a) R was a constant number each day;
(b) R was exactly half the men available in the dwin-

dling pool?

CRUX 1. by Léo Sauvé
In 12 days 75 cows have grazed all the grass in a 60-

acre pasture, and 81 cows have in 15 days grazed all the
grass in a 72-acre pasture. How many cows can in 18 days
graze all the grass in a 96-acre pasture?

JRM 476. by Robert F. Josephson
Seven sheep will graze my modest pasture level in six

days, and eight sheep in five days. How many sheep will the
pasture sustain indefinitely?

Venn diagrams

OMG 18.3.2.
In grade 9, 160 students are enrolled in Mathematics,

175 in English and 60 in French. No student is permitted to
take more than two of the three subjects, but every student
is required to take at least one. With 350 grade 9 students,
it is known that no student taking French is taking either
of the other two subjects. How many students are taking
both Mathematics and English?

OMG 17.1.2.
In a survey of year IV students, the numbers studying

various Sciences were found to be: Chemistry - 28, Biology -
30, Physics - 42, Chemistry and Biology - 8, Chemistry and
Physics - 10, Biology and Physics - 5, all three Sciences - 3.
Find the number of students studying exactly one Science.

Weights

CRUX 123. by Walter Bluger
By means of only three weighings on a two-pan bal-

ance, you are to find among 13 dimes the one counterfeit
coin and be able to tell whether it is heavier or lighter than
a true coin. You are given the 13 coins and a balance, and
you may bring anything you like with you that may help
you in solving the problem.

JRM 448. by P. MacDonald
There are 17 coins of three different weights. Light

coins weigh 1 ounce, regular coins weigh 2 ounces, and heavy
coins weigh 3 ounces. They are sorted by weight and placed
into three boxes as shown. All the light coins are in one box,
all the regular in another, and all the heavy in the third.
However, each box is mismarked.

Divide the 17 coins into two groups that will balance
when placed on a balance scale. No preliminary weighings
or inspections are allowed.

CANADA 1976/1.
Given four weights in geometric progression and an

equal arm balance, show how to find the heaviest weight
using the balance only twice.

PARAB 307.
I have 5 balls, identical in appearance, of which two are

unequal in weight, one heavier and one lighter than each of
the other 3. Together these 2 are equal in weight to two
regular balls. Show how to distinguish the balls in three
comparisons using a beam balance.

AMM 6224. by David P. Robbins
Suppose we are givenN balls that are indistinguishable

except that some are heavy and some are light (the heavy
balls are alike in weight, as are the light balls). Using a
balance scale, find the minimum number of weighings in
which it is always possible

(a) to identify one heavy and one light ball;
(b) to determine the number of heavy and light balls.

MATYC 127. by Joseph Browne
A set of weights is desired that may be used in various

combinations to equal every multiple of 10 gm from 10 gm
to the total mass of the set. Give a formula for n, the
minimum number of weights needed in the set if the largest
mass ever required is w gm.

PARAB 291.
Among 11 apparently identical metal spheres, 2 are

radioactive. We have an instrument which detects the pres-
ence of radioactivity. Show that it is possible to determine
the radioactive spheres after 7 uses of the instrument.
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Weights Problems sorted by topic Word problems: ratios

OMG 18.3.5.
There are ten bags, each containing ten weights, all of

which look identical. In nine of the bags, each weight is 16
grams, but in one of the bags the weights are actually 17
grams each. How is it possible, in a single weighing on an
accurate weighing scale, to determine which bag contains
the 17 gram weights?

Word problems: counting problems

CRUX 11. by Léo Sauvé
A basket contains exactly 30 apples. The apples are

distributed among 10 children, each child receiving n apples,
where n is a positive integer. At the end of the distribution,
there are n apples left in the basket. Find n.

JRM 761. by Harry Nelson
In 1776, thirteen colonies sent 56 representatives to

Philadelphia who signed the Declaration of Independence.
Pennsylvania had the most signers with nine. Four colonies
had one more than the least. Four colonies had two more
than the least. Two colonies had three more than Rhode
Island. One colony had five more than Rhode Island. How
many did Rhode Island have?

Word problems: percent problems

CRUX 28. by Léo Sauvé
If 7% of the population escapes getting a cold during

any given year, how many days must the average inhabitant
expect to wait from one cold to the next?

OMG 17.1.1.
A hockey team has won 5 out of 8 games played. With

16 games still to be played, how many more games must be
won so that the team wins 75% of its season’s schedule?

PENT 279. by Kenneth M. Wilke
In Moldavia, people pay an income tax equal to a per-

centage of the weekly wage based upon the number of ducats
earned each week; e.g., on a weekly wage of 10 ducats,
the rate is 10 percent. Assuming the maximum salary is
100 ducats per week, what is the optimum salary in Mol-
davia?

PENT 301. by Kenneth M. Wilke
If 65% of the populace have kidney trouble, 70% have

diabetes, 85% have respiratory problems, and 90% have
athlete’s foot, what is the smallest portion of the populace
who are afflicted with all four maladies?

SSM 3694. by Charles W. Trigg
There is a “Favorite Joke” quoted in PARADE Mag-

azine: “Two drunks were talking about the fuel shortage.
One said, ’Charlie, I installed a new carburetor, and it saved
me 36 percent on gasoline. I had a new distributor put in,
and it saved me 42 percent. I put new radial tires on my
car, and they saved me 53 percent on gasoline. And then,
by golly, I put in those new special spark plugs, and they
saved me 66 percent on gasoline.’ ’What happened?’ asked
Charlie. ’Well,’ answered the first, ’I drove 426 miles, and
the tank overflowed.’ ”

What is your reaction to this tall tale?

Word problems: population problems

SSM 3666. by Mary S. Krimmel
If a single cell of E. coli, under ideal circumstances,

were to divide every twenty minutes, in a single day it
could produce a colony equal in size and weight to the earth.
What would the volume and mass of the original cell have
to be for this to happen?

Word problems: ratios

JRM 563. by Michael J. Messner
Gandalf gave each of the four Hobbits one fifth of his

magic biscuits, which they promptly ate, except for Frodo,
who saved half of his. All the uneaten biscuits doubled
overnight, and the next day Gandalf gave to each Hobbit
a fifth of the biscuits he had left. Frodo ate eight of his
share and put the remainder back into Gandalf’s sack when
he wasn’t looking. Again the uneaten biscuits doubled and
when Gandalf opened the sack the third day, he was amazed
to find a dozen more biscuits than he expected. How many
did the Hobbits eat?

MSJ 431. by Harry Sitomer
At a PTA affair, attended by parents and children, the

number of females is 2/3 the number of males; 1/2 the males
are boys; 28 of the females are girls; the husbands of 1/3 of
the mothers in attendance are present, and the wives of 1/4
of the fathers in attendance are present. How many people
are attending this affair?

MSJ 432. by Don Baker
Sam wanted to visit the fair maiden, but he had to

cross six bridges to get to her house. At each bridge, the
bridgekeeper took half of Sam’s apples plus half an apple
and let Sam continue on his journey. When he finally arrived
at the fair maiden’s house, he had only 13 apples left. How
many apples did Sam start with?

NYSMTJ 89. by Norman Gore
A cookie distributor sells half of his cookies plus one-

half a cookie to his first customer, half of the remaining
cookies plus one-half a cookie to his second customer, and
so on. If no cookies are left after n sales are made in this
manner, express the distributor’s original number of cookies
in terms of n.

OMG 17.2.4.
A traveler sets out to cross a desert. On the first day

he covers 1/10 of the journey; on the second day he goes
2/3 of the distance already traveled. He continues on in
this manner, alternating the days on which he does 1/10 of
the distance still to be done, with days on which he travels
2/3 of the total distance already covered. At the end of the
seventh day he finds that another 22.5 kilometers will see
the end of his journey. How wide is the desert?

OMG 18.1.1.
Members of a local teenage club disagreed about the

way a certain outing was managed, and 15 girls withdrew.
This left two boys for each girl. The boys were unhappy
about the new setup and 45 moved out, leaving only one
boy for each five girls. Work out how many girls there were
in the club at the time of the outing.
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Banach spaces Problems sorted by topic Bessel functions

Banach spaces

CMB P272. by Jon Borwein
Do there exist Banach spaces X, Y and a continuous

linear operator T :X → Y with the adjoint mapping T ∗

having different norm and weak-star closures to its range?

AMM 6203. by Albert Wilansky
Let X, Y , and Z be Banach spaces, and let T :X → Z

and S:Y → Z be continuous and linear functions. Show
that the (equivalent) conditions

(i) TD1 ⊃ SDε for some ε > 0 (Dε is the disc of
radius ε),

(ii) ‖S′(f)‖ ≤ k‖T ′(f)‖ for all f ∈ Z′ for some k > 0,
do not imply that TX ⊃ SY .

NAvW 549. by W. M. Dienske
Let X be a real-normed linear space that is not only

{0}, and let Y be the set of all continuous bounded (but
not necessarily linear) functions from X to R. With the
supremum norm, Y is a Banach space. For every a ∈ X, we
define the function fa:X → R by

fa(x) = ‖x− a‖ − ‖x‖
in which ‖x‖ is the norm of x. It follows easily that fa ∈ Y .
Let L be a line in X, and F [L] its image under the mapping

F :X → Y

where F (a) = fa. Show that F [L] is a curve in Y , at no
point of which a tangent can be drawn.

NAvW 395. by D. van Dulst
A sequence (Xn)n∈N of finite-dimensional subspaces

of a Banach space X is called a finite-dimensional Schauder
decomposition of X if every x ∈ X can be uniquely written
as

x =

∞∑

n=1

xn, xn ∈ Xn (n = 1, 2, . . .).

It is well known that in this case

ν(Xn)n∈N
= sup {‖Pk‖ : k ∈ N} <∞,

where, for k = 1, 2, . . . , Pk is the projection defined by

Pk(x) =

k∑

n=1

xn,

(
x =

∞∑

n=1

xn ∈ X
)
.

Prove that every infinite-dimensional Banach space Y con-
tains an infinite-dimensional closed linear subspace X with
the property that, for every ε > 0, X has a finite-

dimensional Schauder decomposition
(
X

(ε)
n

)
n∈N with

ν(
X

(ε)
n

)
n∈N

< 1 + ε.

Bessel functions

SIAM 75-20. by M. L. Glasser
Show that

lim
n→∞

∫ ∞

0

In(x)Jn(x)Kn(x) dx = 8−1/2,

where, as usual, In, Jn, and Kn are Bessel functions.

SIAM 76-10.* by L. Wijnberg
and M. L. Glasser

(a) If α > 0, v ≥ 0, and

Sv(x) ≡
∞∑

m=0

∞∑

n=0

(
m+ n

m

)
(2α)mJv+m+2n+1(x),

show that

lim
x→∞

e−αxSv(x) =
1

2





[
(1 + α2)1/2 − α

]v

(1 + α2)1/2



 .

(b) For 1 < α, show that

Sv(x) =
1

2




eαx

[
(1 + α2)1/2 − α

]v

(1 + α2)1/2 −Gv(α, x)



 ,

where

Gv(α, x) =

∞∑

k=0

α−k−1J
(k)
v (x).

(c) Can a result corresponding to (b) be found for
0 < α < 1?

(d) Sum the series Gv(α, x).

SIAM 76-11. by B. C. Berndt
(a) Let jv,n denote the nth positive zero of the ordi-

nary Bessel function Jv(z), where v > −1. If ai 6= 0, ±jv,n,
1 ≤ n <∞, show that

∞∑

n=1

1

j2v,n + a2
=

1

2ai

Jv+1(ai)

Jv(ai)
.

(b) State and prove a general theorem on the summa-
tion of rational functions of zeros of Bessel functions for
which the equation above is the special case corresponding
to the rational function 1/

(
z2 + a2

)
.

SIAM 77-6. by J. E. Wilkins, Jr.
To complete the solution of a certain variational prob-

lem arising in physical optics, it is necessary to verify that

[∫ 1

0

J0(vx)x dx

]2 ∫ 1

0

J ′′20 (vx)x5 dx

>

[∫ 1

0

J ′′0 (vx)x3 dx

]2 ∫ 1

0

J2
0 (vx)x dx,

at least if 0 ≤ v ≤ v0, in which v0 = 2.29991 is the smallest
positive zero of ∫ 1

0

J ′′0 (vx)x3 dx.

Numerical calculations indicate that the first equation is
true when v = 0.(0.1)2.9, but not when v = 3.0. Establish
the truth of the first equation when 0 ≤ v ≤ v0.

SIAM 77-8. by M. L. Glasser
Prove that

∫ ∞

0

log |J0(x)|
x2

dx = −π
2
.
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Bessel functions Problems sorted by topic Complex variables: convolutions

SIAM 79-12. by P. J. de Doelder
(a) Evaluate in closed form:

S(p, q, x) =

∞∑

n=1

Jp(nx)Jq(nx)

n2m
;

Jp(x) and Jq(x) are Bessel functions of order p and q; p+q =
2l; p − q = 2s; l = 0, 1, 2, . . .; s = 0, 1, 2, . . .; m = 1, 2, . . .;
0 ≤ x ≤ 2π.

In particular, for p+ q > 2m, show that (a) is given by

∞∑

n=1

Jp(nx)Jq(nx)

n2m
=

1

2

Γ(2m)Γ
(
l −m+ 1

2

)

Γ
(
m+ s+ 1

2

)
Γ
(
m− s+ 1

2

)
Γ
(
m+ l + 1

2

)
(
x

2

)2m−1

.

(b) Evaluate in closed form:

T (p, q, x) =

∞∑

n=1

Jp(nx)Jq(nx)

n2m+1
;

p+ q = 2l+ 1; p− q = 2s+ 1; l = 0, 1, 2, . . .; s = 0, 1, 2, . . .;
m = 0, 1, 2, . . .; 0 ≤ x ≤ 2π.

In particular, for p+q > 2m+1, show that (b) is given
by

∞∑

n=1

Jp(nx)Jq(nx)

n2m+1
=

1

2

Γ(2m+ 1)Γ
(
l −m+ 1

2

)

Γ
(
m+ l + 3

2

)
Γ
(
m+ s+ 3

2

)
Γ
(
m− s+ 1

2

)
(
−x

2

4

)m
.

SIAM 79-18. by M. L. Glasser
Show that for m a positive integer,

∞∑

n=1

(−1)n
J2m(nπ)

a2 − n2
=
πJ2m(aπ)

2a sin aπ
,

∞∑

n=1

(−1)n
nJ2m−1(nπ)

a2 − n2
=
πJ2m(aπ)

2 sin aπ
.

NAvW 419. by H. K. Kuiken
Prove that, for a > 0

∫ ∞

0

e−t
Kν+1

(√
a2 + t2

)

(a2 + t2)
1
2 (ν+1)

dt = a−2ν−1

∫ ∞

a

xνKν(x) dx,

where Kν(z) stands for the modified Bessel function of the
second kind of order ν.

NAvW 557. by N. Ortner
Show that
∫ a

0

J2
0

(
b
√
a2 − x2

)
dx =

1

2b

∫ 2ab

0

J0(x) dx

and
∫ π/2

0

J0 (c sinφ) J1 (c sinφ) dφ =
1− J0(2c)

2c

(a > 0, b > 0, c > 0).

Cantor set

NYSMTJ 44.
Given line segment AB, trisect the segment, and elim-

inate all points in the middle third, except the points of tri-
section. Then trisect each of the two remaining segments,
again eliminating the middle thirds (except the points of tri-
section); then each of the remaining four segments, etc. If
the coordinates of A and B are 0 and 1, respectively, which
of the coordinates 1/4, 1/5, 1/10, 1/11 belongs to a point
that always remains?

Complex variables: analytic functions

AMM 6045. by J. B. Rosser
Let D be a domain of the complex plane. For each

fixed a, let Da be the set of z’s such that both a + z and
a− z lie in D. Choose a fixed complex α and let f(z) be a
function such that for each fixed a,

f(a+ z) + αf(a− z)
is analytic in Da.

Can one conclude that f(z) is analytic throughout D?
If not, give some additional weak conditions on f from which
one could infer this.

AMM 6071. by J. G. Milcetich
The set of analytic functions defined on the unit disc,

U , with the topology of uniform convergence on compact
subsets of U forms a locally convex, linear topological space.
In such a space, coB denotes the closed convex hull of a
subset B. Let K denote the set of analytic functions

f(z) = z +

∞∑

n=2

anz
n,

which map U onto a convex domain. Show that for k ≥ 2,

z + akz
k ∈ coK if and only if |ak| ≤ 1

2 .

Complex variables: conformal mappings

AMM 6047. by C. D. Minda
Let E1 and E2 be ellipses in the complex plane. Prove

that there is a conformal mapping of the interior of E1 onto
the interior of E2 that maps the foci of E1 onto the foci
of E2 if and only if E1 and E2 have the same eccentricity.
Moreover, show that if such a conformal mapping exists,
then it must necessarily be of the form az + b for some
complex numbers a and b with a 6= 0.

Complex variables: convolutions

AMM 6145. by Michael Barr
Let N0 = {0, 1, 2, . . .}, C∗ the nonzero complex num-

bers. Suppose
ρ:N0 × N0 → C∗

is a “kernel function” with the property that the convolution
product defined on functions N0 → C∗ by the formula

(f ∗ρ g) (n) =
∑

i+j=n

ρ(i, j)f(i)g(j)

is associative. Show that there is a function σ:N0 → C∗
such that f ∗ρ g = σ−1 (σf ∗ g), where an unadorned ∗
denotes the usual convolution with respect to the kernel,
which is identically 1. Note that this implies that f ∗ρ g =
g ∗ρ f and ultimately that ρ is symmetric.
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Complex variables: harmonic functions Problems sorted by topic Curves: simple closed curves

Complex variables: harmonic functions

AMM 6198. by Sanford S. Miller
Let u(z) = u(x, y) be harmonic in the unit disc D with

u(0) = 1, and let g(t) be a real-valued function satisfying
g(1) > 0 and g(0) ≤ 1/2. Show that if u satisfies g(u) +
xux + yuy > 0 for z ∈ D, then u(z) > 0 for z ∈ D.

In particular, if g(t) = 1
2 , or g(t) = t + 1

2 , we obtain,
respectively,

xux + yuy > −1

2
⇒ u > 0,

u+ xux + yuy > −1

2
⇒ u > 0.

Complex variables: inequalities

AMM 6033. by S. S. Miller
Let w(z) be regular in the unit disc D with w(0) = 0,

and let A be a complex number such that Re A ≥ 1. If
z ∈ D, show that

|w2(z) +Aw(z) + zw′(z)| < 1

implies |w(z)| < 1.

Complex variables: number theory

AMM 6109. by Stuart P. Lloyd
The functions S1(z), S2(z), . . . are defined recursively

by setting S1(z) = z, Sn+1(z) = φ(Sn(z)) for n ≥ 1, where

φ(s) = s+ s2. When z is a positive integer, the series

1

z
=

∞∑

n=1

1

Sn(z) + 1

is the nonterminating Sylvester series for the rational num-
ber 1/z. Determine the region of convergence of this series
in the complex z-plane.

AMM E2778. by David J. Allwright
Let k and r be integers with r ≥ 1, and let z be a

complex number with |z| < 1. Calculate the sum of z‖N‖
as

N = (n0, n1, . . . , nr)

ranges over all (r + 1)-tuples of integers such that

n0 + n1 + · · ·+ nr = k

and
‖N‖ = |n0|+ |n1|+ · · ·+ |nr|.

Complex variables: polynomials

AMM E2808. by P. Henrici

Let p(z) = a0 + a1z + · · · + akz
k, where the ai are

complex numbers and a0 6= 0. Ordinary iteration applied
to p in the form

qn+1 =
−a0

a1 + qn (a2 + qn (a3 + · · ·+ qnak) · · ·)
may or may not produce a sequence (qn) that converges to
a zero of p. Show, however, that if the above equation is
replaced by

qn+1 =
−a0

a1 + qn (a2 + qn−1 (a3 + · · ·+ qn−k+2ak) · · ·) ,

then for almost all choices (q1, q2, . . . , qk−1) of starting val-
ues, the sequence (qn) converges to the zero of smallest mod-
ulus of p, if p has a single such zero.

Complex variables: rational functions

CMB P277.* by Allan M. Krall
and D. J. Allwright

Let R(z) be a rational function of the complex variable
z, and let Γ be the locus of R(ix) for x real. Prove that Γ
partitions the plane into finitely many regions.

CRUX 130. by Jacques Marion
Let A be the annulus {z | r ≤ |z| ≤ R}. Show that the

function f(z) = 1
z is not a uniform limit of polynomials on

A.

Complex variables: several variables

AMM 6091. by H. S. Shapiro
Let Γ denote the set of complex numbers of modulus 1,

and consider for positive integers m, n the map T : Γn → Cm
defined by

w1 = z1 + z2 + · · ·+ zn

w2 = z2
1 + z2

2 + · · ·+ z2
n

...

wm = zm1 + zm2 + · · ·+ zmn ,

where each zi ranges over Γ. Prove that for any m and any
positive R, the range of T contains the ball ‖w‖ ≤ R for all
sufficiently large n.

Curves: curve tracing

CANADA 1978/6.

Sketch the graph of x3 + xy + y3 = 3.

Curves: inequalities

AMM S19. by Anon
Let C be a smooth simple arc inside the unit disc,

except for its endpoints, which are on the boundary. How
long must C be if it cuts off one-third of the disc’s area?
Generalize.

Curves: inflection points

NAvW 481. by O. Bottema
and J. T. Groenman

With respect to a plane projective coordinate system,
a cubic curve is given by the equation

x2y + y2z + z2x− 3xyz = 0.

Determine the coordinates of its inflection points.

Curves: normals

MM 1067. by M. S. Klamkin
Find the length of the shortest chord that is normal

to the parabola y2 = 2ax, a > 0, at one end. Give a
completely “non-calculus” solution.

Curves: simple closed curves

AMM 6225. by Edmund H. Anderson
Construct a homotopically trivial mapping from the

three-sphere onto the two-sphere such that the pre-images
of points are simple closed curves.
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Curves: space filling curves

SPECT 10.8.
Accepting as known the existence of a continuous

square-filling curve, demonstrate the existence of a contin-
uous curve that passes through every point of the entire
plane.

Curves: tangents

AMM 6223. by Harry D. Ruderman
Let C be a convex curve. Let Q be a curve such that

the two tangents to C from each point P of Q form an angle
θ fixed in size. Assume that all points are in the same plane.

(a) If θ = 90◦ and Q is a circle, must C be a circle or
an ellipse?

(b) If C is an ellipse and θ 6= 90◦, what is the nature
of Q?

NYSMTJ 67.
Consider the function y = ax and its inverse y =

loga x. For what value of a > 1 will the two graphs be
tangent to each other, and what will be the point of tan-
gency?

PUTNAM 1979/B.1.
Prove or disprove: there is at least one straight line

normal to the graph of y = coshx at a point (a, cosh a) and
also normal to the graph of y = sinhx at a point (c, sinh c).

Curves: unit square

AMM E2647. by Daniel Gallin
Let Γ1 and Γ2 be two continuous maps of the unit

segment

I = {x | 0 ≤ x ≤ 1}
into the unit square I2. Suppose that Γ1(0) = (0, 0),
Γ1(1) = (1, 1), Γ2(0) = (0, 1), Γ2(1) = (1, 0). Prove by
elementary means (e.g., without using the Jordan Curve
Theorem) that the two curves Γ1 and Γ2 meet.

Derivatives: continued fractions

MATYC 103. by Robert Carman
Find the derivative of the continued fraction

y =
1

x+
1

3x+
4

5x+ · · ·+
n2

(2n+ 1)x

.

MATYC 89. by J. Kapoor
Find the derivative of the continued fraction

y = 2x+
3

2x+
3

2x+
3

. . .

.

Derivatives: finite products

AMM E2580. by Clark Kimberling
Show that

d

dx

[
n−1∏

k=0

(
a− 2

√
x cos

(2k + 1)π

2n

)]

= −n
n−2∏

k=1

(
a− 2

√
x cos

kπ

n− 1

)
.

Derivatives: finite sums

MM 1053. by Peter Ørno
Let f(x) be differentiable on [0, 1] with f(0) = 0 and

f(1) = 1. For each positive integer n, show that there exist
distinct x1, x2, . . . , xn such that

n∑

i=1

1

f ′(xi)
= n.

Derivatives: gradients

NAvW 394. by J. J. A. M. Brands
Let B = {x ∈ Rn : |x| < 1}, where |x| is the Euclidean

norm of x. Suppose f ∈ C(B → R) is differentiable on B
and max {|f(x)| : |x| = 1} ≤ 1. Show that there exists a
point ξ ∈ B at which |grad f | ≤ 1.

Derivatives: higher derivatives

MATYC 83. by Aleksandras Zujus
Let

F (x) =
1

a2 + x2
.

Prove that

dn

dxn
(F (x)) =

(−1)n · n!

a
· sin [(n+ 1)α]

(a2 + x2)(n+1)/2
,

where

α = tan−1
(
a

x

)
.

PENT 273. by Gary Schmidt
Show that

d2y

dx2
=
−d2x/dy2

(dx/dy)3

is an identity.

AMM E2748. by Lance Littlejohn
If f(x) = xn log x, find

lim
n→∞

f (n) (1/n)

n!
.

TYCMJ 122. by Lance Littlejohn

Let y = xn lnx and let y(n) denote the nth derivative
of y with respect to x. Prove that

lim
n→∞

y(n)
(

1

n

)/
n! = γ,

where γ is Euler’s constant.
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SSM 3731. by John Oman
If the second derivative f ′′ exists at the point a, prove

that

f ′′(a) = lim
h→0

f(a+ h) + f(a− h)− 2f(a)

h2
.

AMM E2755. by Michael Slater
Let f ∈ C∞(R) and suppose that f(x) = o(xn) as

x→ ±∞ for some integer n ≥ 0. Show that f (r) has a zero
for every r ≥ n+ 1. Is this conclusion the best possible?

Derivatives: inequalities

AMM E2759.* by Hugh L. Montgomery

Suppose that a−1 ≤ f ′′(x) ≤ 2a−1 for 0 ≤ x ≤ a,
where a ≥ 8. Prove that there exists a lattice point (m,n)

such that 0 ≤ m ≤ a and |f(m)− n| ≤ 2a−1/2.

Derivatives: maxima and minima

AMM E2518. by Derek A. Zave
Let F be the set of real polynomials f with nonnegative

coefficients for which f(1) = 1. Let

0 < x0 < 1 and 0 < α ≤ 1

be fixed. Compute

m(x0;α) = inf
{
f ′(1) | f ∈ F and f(x0) ≤ α

}
.

Derivatives: one-sided derivatives

AMM 6166. by D. A. Gregory
If f is a convex functional on a convex subset K of a

vector space, then for all x and x + h in K, the one-sided
directional derivatives

f ′+(x, h) = lim
α→0+

f(x+ αh)− f(x)

α

exist in the extended reals and f(x+ h) ≥ f(x) + f ′+(x, h).
Is the converse true? If so, we have an analytic characteri-
zation of convex functionals.

CMB P280. by F. S. Cater
Clearly any nowhere differentiable one-to-one function

mapping the interval (0, 1) onto (0, 1) must be discontinuous
at a dense set of points in (0, 1). Does such a function exist
that is left continuous at every point, has a right limit at
every point, but is not left or right differentiable at any
point?

Derivatives: product rule

FUNCT 1.4.3.
A student believed that

d

dx
[u(x)v(x)] = u′(x)v′(x).

Using his formula, he correctly differentiated (x + 2)2x−2.
What relation must hold between a pair of functions u(x),
v(x) for him to get a correct answer? Give some other
examples.

Derivatives: roots

MM 997. by John Lott
Let P be a polynomial of degree n, n ≥ 2, with simple

zeros z1, z2, . . . , zn. Let (gk) be the sequence of functions
defined by g1 = 1/P ′, and gk+1 = g′k/P

′. Prove for all k
that

n∑

j=1

gk(zj) = 0.

Derivatives: trigonometric functions

PME 347. by Joe Dan Austin
Let f(x) = sin x

x − 99x
4 + 1 for x > 0. Show that

f ′(x) 6= 0 for x > 1.

Differential equations: Bernoulli equation

AMM E2568. by Stroughton Bell
Show that the Bernoulli equation

y′ + y2 + xy = 0

has exactly two solutions on the entire real line for which
y′′ is nowhere zero.

Differential equations: Bessel functions

SIAM 77-20. by I. N̊asell
Prove that the equation

Iν(x) = I ′ν(x)

has exactly one positive solution x = ξ(ν) for each ν > 0.
Investigate the properties of the function ξ.

Differential equations: determinants

AMM E2767. by James W. Burgmeier
Let f be a function with sufficiently many derivatives,

and let Dn be the determinant

Dn =

∣∣∣∣∣∣∣∣∣∣∣

f ′ f 0 0 . . . 0 0
f ′′

2! f ′ f 0 . . . 0 0
f ′′′

3!
f ′′

2! f ′ f . . . 0 0
...

f(n)

n!
f(n−1)

(n−1)!
. . . f ′

∣∣∣∣∣∣∣∣∣∣∣

.

Show that

Dn+1 = f ′Dn − 1

n+ 1
fD′n.

Differential equations: functional equations

MATYC 81. by Steven Kerr
Let g(x) = xn, n > 1, where n is a positive integer.

Find all nonconstant differentiable functions f such that
(f(g(x)))′ = f ′(x)g′(x) for all real numbers.

MM 1030. by G. Edgar
(a) Solve the following functional-differential equation

for the complex-valued differentiable function f:

f(s+ t) = f(s) + f(t)− f ′(s)f ′(t)
for all real s and t, and f(0) = 0.

(b) If the real part of f(t) is nonpositive for all real
t, but f is not identically zero, show that f(t) = 0 only if
t = 0.
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TYCMJ 101. by Louis Alpert
and Jerry Brantley

Determine all functions f defined on (−∞,∞) such

that for all a 6= b, f ′
(

1
2 (a+ b)

)
= (f(b)− f(a))/(b− a).

AMM 6088. by Nathaniel Grossman
The functional-differential equation f ′ = f−1 has a

solution satisfying f(0) = 0 and f ′(x) > 0 for x > 0, namely,

f(x) = (1/α)1/αxα, where α = (1 +
√

5)/2. Is this the only
solution satisfying the given conditions for x ≥ 0?

Differential equations: initial value problems

SIAM 79-20. by J. D. Love
Derive a bounded solution of the equation

dy

dt
= y(λt), y(0) = 1,

where λ is a constant > 1.

Differential equations: Laplacian

CMB P260. by S. Zaidman
Let Ω be a bounded open set in Rn and let d(Ω) =

supx,y∈Ω |x − y|. Suppose that u ∈ C2(Ω) ∩ C0(Ω̄) and

satisfies the equation 4u+Au = 0 in Ω, where A ∈ C0(Ω̄)

and supx,∈Ω̄A(x) < 2nd−2(Ω). Show that, if u satisfies the

boundary condition u(x) = 0 on ∂Ω, then u(x) ≡ 0 in Ω.

Differential equations: order 1

MM 950. by Erwin Just
Show that there is a unique real number c such that for

every differentiable function f on [0, 1] with f(0) = 0 and
f(1) = 1, the equation f ′(x) = cx has a solution in (0, 1).

SIAM 77-16. by I. Rubinstein
Solve the differential equation

dr

dt
+ t−1

√
r2 + a2 = b, t > 1,

where r(1) = r0 and a, b are constants.

Differential equations: order 2

MM 1050. by W. R. Utz
Consider the differential equation

y′′ + P1(x)y′ + P2(x)y = 0,

where P1and P2 are polynomials not both constant. Show
that this equation has at most one solution of the form
xaemx for real a.

PUTNAM 1975/A.5.
On some interval I of the real line, let y1(x) and y2(x)

be linearly independent solutions of the differential equation

y′′ = f(x)y,

where f(x) is a continuous real-valued function. Suppose
that y1(x) > 0 and y2(x) > 0 on I. Show that there exists
a positive constant c such that, on I, the function

z(x) = c
√
y1(x)y2(x)

satisfies the equation

z′′ +
1

z3
= f(x)z.

State clearly how c depends on y1(x) and y2(x).

PUTNAM 1979/B.4.
(a) Find a solution that is not identically zero, of the

homogeneous linear differential equation

(3x2 + x− 1)y′′ − (9x2 + 9x− 2)y′ + (18x+ 3)y = 0.

(b) Let y = f(x) be the solution of the nonhomoge-
neous differential equation

(3x2 + x− 1)y′′− (9x2 + 9x− 2)y′+ (18x+ 3)y = 6(6x+ 1)

that has f(0) = 1 and (f(−1) − 2)(f(1) − 6) = 1. Find
integers a, b and c such that

(f(−2)− a)(f(2)− b) = c.

SIAM 75-6.* by P. C. T. de Boer
and G. S. S. Ludford

Show that there exists a continuous solution of

y′′ =
(
2yα − x

)
y, α > 0,

for −∞ < x <∞ such that

y ∼ (x/2)1/α
[
1 + (1− α)/α3x3 + · · ·

]

as x → +∞; and that, for some k(α), y ∼ kAi(−x) as
x→ −∞.

SIAM 79-11. by D. K. Ross
Find the general solution of the ordinary nonlinear

differential equation

1

x

d

dx

(
x
dy

dx

)
= e−εy, with x > 0

and where ε = 1 or −1.

Differential equations: order 4

MM Q631. by M. S. Klamkin
Solve the differential equation

(xD4 − axD + 3a)y = 0.

Differential equations: order n

NAvW 447. by W. R. Utz
Assume that

y = (x− α)−i, i = 1, 2, . . . , n, (x 6= α),

are solutions of the differential equation

(x− α)ny(n) + P1,n(x)y(n−1) + · · ·+ Pn,n(x)y = 0.

It is easily seen that Pn,n(x) depends only on n. Determine
this function of n.

SIAM 76-6. by M. S. Klamkin
Solve the differential equation

[
x2n

(
D − a

x

)n
− kn

]
y = 0.
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Differential equations: systems of equations

CRUX 498. by G. P. Henderson
Let ai(t), i = 1, 2, 3, be given functions whose Wron-

skian, w(t), never vanishes. Let

u(t) =

√∑
a2
i

and

v(t) = (
∑

a2
i )(
∑

a′2i )− (
∑

aia
′
i)

2.

Prove that the general solution of the system

x′1/a1 = x′2/a2 = x′3/a3

a1x1 + a2x2 + a3x3 = 0

can be expressed in terms of
∫

uw

v
dt,

no other quadratures being required.

SIAM 76-12.* by A. S. Perelson and C. Delisi
The following system of nonlinear differential equations

dxn
dt

= 2k

n−1∑

m=1

xn−mym − 2xn(kS + k′n)

+k′
∞∑

m=n

(2xm + ym), n = 1, 2, . . . ,

dyn
dt

= 4k

n∑

m=1

zn−mxm

+k

n−1∑

m=1

yn−mym − yn
[
k(S + L) + (2n− 1)k′

]

+2k′
[ ∞∑

m=n+1

xm +

∞∑

m=n+1

yn +

∞∑

m=n

zm

]
,

n = 1, 2, . . . ,

dzn
dt

= 2k

n∑

m=1

zn−mym − 2zn(kL+ k′n)

+k′
∞∑

m=n+1

(2zm + ym), n = 0, 1, 2, . . . ,

where

S =

∞∑

m=1

ym + 2

∞∑

m=0

zm

and

L =

∞∑

m=1

(ym + 2xm) ,

subject to the initial conditions x1(0) = a, xn(0) = 0
(n = 2, 3, . . .), yn(0) = 0 = zn(0) (n = 1, 2, . . .), z0 = b,
with k and k′ being nonnegative constants, can be solved
by a combinatorial method. Can they be solved by a direct
method?

MM 1005. by Brian Hogan
Suppose f and g are differentiable functions for x > 0

and f ′(x) = −g(x)/x and g′(x) = −f(x)/x. Characterize
all such f and g.

SIAM 77-17. by L. Carlitz
Solve the following system of differential equations:

F ′′(x) = F (x)3 + F (x)G(x)2,

G′′(x) = 2G(x)F (x)2,

where F (0) = G′(0) = 1, F ′(0) = G(0) = 0.

Differential operators

SIAM 77-4. by A. Ungar
Let x = (x1, x2, . . . , xn) be a set of n real variables and

let L be the linear differential operator

L {f(x)} =

N∑

i=1

api(x)
∂pif(x)

∂xpi
.

Here pi are multi-indices of order n. For a multi-index p of
order n, p = (p1, p2, . . . , pn), where the entries are integers,
|p| = p1 + p2 + · · ·+ pn and

∂p

∂xp
=

∂|p|

∂xp11 ∂xp22 · · · ∂x
pn
n

.

The coefficients api(x) are functions of x and N is an inte-
ger.

Prove that

f(x) = S1(x)A [S2(x)] ,

where S1(x) and S2(x) are specified functions and A is an
arbitrary suitably differentiable function of S2(x), satisfies
the linear partial differential equation

L {F (x)} = 0

in a domain, if and only if

g(x) = S1(x)eαS2(x)

is a particular solution of L {F (x)} = 0 in that domain, for
every real α in some interval.

Elliptic integrals

NAvW 479. by J. Boersma
Show that∫ a

0

kK(k)

(1− k2)
√
a2 − k2

dk =

π

4
√

1− a2
log

1 + a

1− a , 0 ≤ a < 1,

where K(k) denotes the complete elliptic integral of the first
kind.

SIAM 78-10. by A. V. Boyd
Prove that
∫ π/2

0

K(t sinφ) dφ = K2

{√
1 + t−

√
1− t

2

}

for −1 ≤ t ≤ 1, where K(k) denotes the complete elliptic
integral of the first kind.
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Exponential function

PUTNAM 1975/B.5.
Let f0(x) = ex and fn+1(x) = xf ′n(x) for n =

0, 1, 2, . . . . Show that

∞∑

n=0

fn(1)

n!
= ee.

Fourier series

SIAM 79-9. by N. R. Pereira
For all real values of a, find the Fourier series for the

function [dn(u) + iksn(u)]a. For integral values of a, the
Fourier coefficients can be evaluated using contour integra-
tion and the results are well-known.

Functional analysis

AMM 6078. by Albert Wilansky
Is it possible for a continuous linear functional on a

normed space to map every bounded closed set onto a closed
set of scalars?

AMM 6278. by Stanley Wagon
LetX be the real vector space consisting of all bounded

real-valued functions on the reals with bounded support. Is
there a basis, B, for X that is closed under translation,
i.e., if f is in B and t is real, then ft is in B, where
ft(x) = f(x+ t)?

NAvW 534. by S. T. M. Ackermans
Let A be a Banach algebra with identity element e,

and let the elements b and c satisfy cb = c, b 6= e. The
function f is analytic in a neighborhood of the spectrum of
c and f(0) = 0. Show that f(bc) = bf(c).

AMM 6021. by Charles R. Diminnie
and Albert White

In lp, p > 2, does

‖x− y‖ ‖x+ y‖ =
∣∣‖x‖2 − ‖y‖2

∣∣,
with x, y 6= 0, imply that y = αx for some real α?

AMM 6277. by Yasuo Watatani
If α and β are *-automorphisms of the algebra B(H)

of all bounded linear operators acting on a Hilbert space H
such that

α(x) + α−1(x) = β(x) + β−1(x) for x ∈ B(H),

then prove that they commute.

CMB P246. by S. Zaidman
Let A be a self adjoint operator with domain D(A) in

Hilbert space H. Let f :R1 → H be almost periodic and
suppose that u:R1 → D(A) is an almost periodic C1(H)
strong solution of the equation u′ = Au+ f . Then the real
number λ 6= 0 belongs to the spectrum of f if and only if it
belongs to the spectrum of u.

Functions: bounded variation

AMM 6256. by A. Kussmaul and P. E. Kopp
Prove or disprove the assertion that every countably

additive real-valued set function on a ring R of sets is of
bounded variation. Is the assertion true if R is an algebra
of sets?

Functions: C∞

AMM 6042. by F. T. Laseau, G. M. Leibowitz,
C. H. Rasmussen, and S. J. Sidney

Is every C∞ real-valued function on the line that van-
ishes outside [0, 1] expressible as a difference of two such
functions that are nonnegative?

AMM E2756. by Michael Slater
Let f ∈ C∞(R), f(0)f ′(0) ≥ 0, and f(x) → 0 as

x→∞. Show that there exists a sequence (xn) with

0 ≤ x1 < x2 < · · ·

such that f (n)(xn) = 0 for n = 1, 2, . . . .

Functions: composition of functions

AMM 6244. by John Myhill
Let fi, i = 0, 1, 2, . . . , be a sequence of (everywhere

defined) real functions. Prove that there exist two functions
φ, ψ such that each of the fi can be obtained from φ and ψ
by composition.

Functions: continuous functions

AMM 6120. by Jack Fishburn
Let f be a continuous function from the closed unit

disc into the reals. If the line integral of f over every chord
is zero, must f be identically zero?

What if the continuity of f is replaced by measurabil-
ity? Must f = 0 almost everywhere?

AMM 6250. by Harold Shapiro
Let w = f(z) be a continuous complex-valued function

on the closed unit disc |z| ≤ 1, which is one-to-one on the
open disc |z| < 1. Show that the set of boundary points
of the image that have three or more distinct pre-images
under the map f is at most countably infinite.

AMM E2706. by David L. Lovelady
Let

f(t) = g(t)

∫ t

0

g(s)−α ds,

where α > 1 and g is a positive continuous function on
[0,∞). Prove that f is unbounded. Is this true if α = 1?

AMM E2783. by William Knight
and Bruce Lund

Find all functions φ(z) such that φ is a one-to-one
continuous map of the unit circle {z : |z| = 1} onto itself

and [φ(z)]2 = φ
(
z2
)

for all z on the circle.

CRUX 20. by Jacques Marion
The function f :R→ R is defined by

f(x) = x, if x is irrational,

f(x) = p sin
1

q
if x =

p

q
(rational and irreducible).

At which points is f continuous?
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NAvW 416. by J. J. A. M. Brands
and M. L. J. Hautus

Let g be a positive and continuous function on (0,∞)
with the property that

∫ ∞

1

(g(s))−1 ds <∞.

Prove that there exists no positive and continuous function
f on (0,∞) that satisfies

f(x+ y) ≥ yg (f(x)) , x > 0, y > 0.

AMM 6100. by Eric Chandler
For fixed integer n > 1, find a bijection T on the real

numbers such that Tm is a contraction if and only if m = kn
for k = 1, 2, . . . . Can T be continuous?

CRUX 184. by Hippolyte Charles
If I = {x ∈ R | a ≤ x ≤ b} and if the function f : I → I

is continuous, show that the equation f(x) = x has at least
one solution in I.

AMM 6133. by J. Cano and A. Gruebler
Let f : [a, b]→ [a, b] be continuous and denote

P (f) = {x: fn(x) = x for some n = 1, 2, . . .},
C(f) = {x: fm(x) ∈ P (f) for some m = 1, 2, . . .},

and Lx the set of limit points of the sequence

{x, f(x), f2(x), . . . , fn(x), . . .}.
Here fn(x) is the nth iterate of f(x). Prove that for each

x ∈ [a, b], Lx ⊂ C(f). Is this true in R2?

CRUX 100. by Léo Sauvé
Let f(x) be continuous and nonnegative for all x ≥ 0.

Suppose there exists a > 0 such that for all x > 0,

f(x) ≤ a
∫ x

0

f(t) dt.

Show that f(x) = 0 for all x ≥ 0.

NAvW 427. by N. G. de Bruijn
Let u be a continuous function on [0,∞). Put

p(x) =

∫ x

0

u(t) dt− xu(x).

We assume that x−1
∫ x

0
u(t) dt→ 0 (x→∞), and that λ is

a real number, λ < 1, with p(x) = O
(
xλ
)
, (x→∞).

Show that u(x) = O
(
xλ−1

)
, (x→∞).

MM 1069. by F. David Hammer
Suppose f :R→ R is continuous and for every rational

q there exists an n with fn(q) = 0 (the nth iterate of f).
Prove or disprove: For every real number t there is an n
such that fn(t) = 0.

TYCMJ 46. by Louis Alpert
Let f be a nonconstant, real-valued, continuous func-

tion defined on the real line such that its average value over
any finite interval equals its value at the midpoint of that
interval. Must f be a linear function?

CMB P281. by M. S. Klamkin

It is well known that, if a, c ≥ 0, b2 ≤ 4ac then

ax2 + bxy + cy2 ≥ 0 (1)

and

ax4 + bx2y2 + cy4 ≥ 0 (2)

for all real x and y. Assume a, b, and c are continuous
functions of x and y.

(a) Given that b > 0, that a, c ≥ 0 and that (2) is valid

for all real x and y, is it necessary that b2 − 4ac ≥ 0?
(b) Given that a, c ≥ 0 and that (1) is valid for all real

x and y, is it necessary that b2 − 4ac ≥ 0?

AMM E2537. by David Shelupsky
Find all continuous functions f defined on (0,∞) for

which

f(x1y)− f(x2y)

is independent of y.

AMM 6142. by L. O. Chung
Find a function f : [0, 1] → [0, 1] that is continuous

everywhere except on two countable dense subsetsD1, D2 of
rationals such that on D1, f is right-continuous but not left-
continuous, and on D2, f is left-continuous but not right-
continuous.

Functions: convex functions

MM 1027. by Daniel B. Shapiro
Let f(k) be a real-valued function on the nonnegative

integers. Suppose that f(0) = 0 and that f(k) is a convex
function. That is, for k ≥ 1, f(k) is less than the average
of f(k − 1) and f(k + 1). For integers k, 1 ≤ k ≤ n, define

Fn(k) = f(k)q + f(r), for n = kq + r, 0 ≤ r < k.

Prove that, for fixed n, Fn(k) is strictly increasing for 1 ≤
k ≤ n.

Functions: differentiable functions

AMM 6027. by Philip Hanser
Let f be a continuous real function on R, the reals.

Must there exist a strictly increasing function g:R → R
such that g ◦ f is everywhere differentiable?

CRUX 129. by Léo Sauvé
It has been known since Weierstrass that there exist

functions continuous over the whole real axis but differen-
tiable nowhere. Describe a function which is continuous
over the whole real axis but differentiable only at

(a) x = 0;
(b) a finite number of points;
(c) a countable number of points.

CRUX 174. by Leroy F. Meyers
Describe a function which is defined on R and is con-

tinuous and differentiable at each point in a set E (specified
below), but is discontinuous at each point not in E.

(a) E = {O};
(b) E is a finite set;
(c) E is denumerable.
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CRUX 374. by Sidney Penner
Prove or disprove the following.
THEOREM. Let the function f :R → R be such that

f ′′(x) exists, is continuous and is positive for every x in R.
Let P1 and P2 be two distinct points on the graph of f . let
L1 be the line tangent to f at P1 and define L2 analogously.
Let Q be the intersection of L1 and L2 and let S be the
intersection of the graph of f with the vertical line through
Q. Finally, let R1 be the region bounded by segment P1Q,
segment SQ and P1S, and define R2 analogously. If, for
each choice of P1 and P2, the areas of R1 and R2 are equal,
then the graph of f is a parabola with vertical axis.

TYCMJ 52. by Steven Kahn
Let f be a function that is differentiable on [0, 1] such

that f(0) = 0, f(1) = 1, and f(x) ∈ [0, 1] for each x ∈ [0, 1].
Prove that there exist a, b ∈ [0, 1] such that a 6= b and
f ′(a) · f ′(b) = 1.

CRUX 176. by Hippolyte Charles
Let f :R→ R be an even differentiable function. Show

that the derivative f ′ is not even, unless f is a constant
function.

PUTNAM 1976/A.6.
Suppose f(x) is a twice continuously differentiable real

valued function defined for all real numbers x and satisfying
|f(x)| ≤ 1 for all x and

(f(0))2 + (f ′(0))2 = 4.

Prove that there exists a real number x0, such that

f(x0) + f ′′(x0) = 0.

SIAM 79-10. by Y. P. Sabharwal and J. Kumar
Determine the general form of a function F (x) satisfy-

ing the following conditions for x ≥ 0:

0 ≤ F (x) ≤ 1,

d

dx
F (x) > 0,

d

dx

{
F (x)

x

}
< 0.

SIAM 75-16. by J. Walter
Let G denote a continuously differentiable positive

function defined in some interval [t0,∞) and a, b, c, x,
y, z, and w be real numbers such that 0 < a ≤ b,
t0 ≤ x ≤ y ≤ z ≤ w. Prove the existence of a continu-
ous function H(a, b, c) of three variables such that

∫ z

y

dt

G(t)
= a,

∫ w

x

dt

G(t)
≤ b, |G′(t)| ≤ c

for t ∈ [t0,∞) imply that

∫ w

x

G(t) dt ≤ H(a, b, c)

∫ z

y

G(t) dt.

NAvW 474. by J. van de Lune
Let f, g: [0,∞) → R be two given functions satisfying

the following conditions:
(1) f(x) = g(x) = 1 for 0 ≤ x ≤ 1,
(2) f and g are continuous on [0,∞),
(3) f and g are differentiable on (1,∞) such that, for

x > 1,
xf ′(x) = −f(x− 1)

and
xg′(x) = g(x− 1).

Prove that ∫ x

0

f(x− t)g(t) dt = x, x ≥ 0.

CRUX 283. by A. W. Goodman
The function

y = −2x lnx

1− x2

is increasing for 0 < x < 1 and in fact y runs from 0 to 1 in
this interval. Therefore an inverse function x = g(y) exists.
Can this inverse function be expressed in closed form and
if so what is it? If it cannot be expressed in closed form, is
there some nice series expression for g(y)?

FQ H-292. by F. S. Cater and J. Daily
Find all real numbers r ∈ (0, 1) for which there exists a

one-to-one function fr mapping (0, 1) onto (0, 1) such that

(a) fr and f−1
r are infinitely many times differentiable

on (0, 1), and
(b) the sequence of functions fr, fr ◦ fr, fr ◦ fr ◦ fr,

fr ◦ fr ◦ fr ◦ fr, . . . converges pointwise to r on (0, 1).

MM 987. by Sidney Penner
Let f be differentiable with f ′ continuous on [a, b].

Show that if there is a number c in (a, b] such that f ′(c) = 0,
then we can find a number ξ in (a, b) such that

f ′(ξ) =
f(ξ)− f(a)

b− a .

AMM E2572. by C. D. H. Cooper
Prove or give a counterexample: If f :R → R is differ-

entiable everywhere and f ′ is differentiable at some point
a, then f ′ is continuous in some neighborhood of a.

AMM E2663. by Marius Solomon
Let f : (0,∞) → R be differentiable, and assume that

f(x) + f ′(x) → 0, when x → ∞. Show that f(x) → 0 as
x→∞.

Functions: digits

AMM E2738. by Michael W. Ecker
Let σ be a permutation of the digits 0, 1, . . . , 9. Let

f : [0, 1]→ [0, 1]

be the “extension” of σ, i.e., f(x) is obtained from x by
applying σ to each digit in the decimal expansion of x.
(For uniqueness of decimal expansions, we do not allow
expansions with all but finitely many digits equal to 9.)

(a) Find the points where f is continuous (or differen-
tiable).

(b) Show that f is Riemann integrable and compute
the integral.
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CMB P269. by J. Borwein
Let q = (q1, q2, . . .) be a sequence of positive real num-

bers with
∑

qn = 1, and let Tq: (0, 1] → (0, 1] be given by
Tq(a) =

∑
qnan, where 0 · a1a2a3 · · · is the nonterminating

binary expansion of a. Are there q and r such that T−1
q {r}

is a set of positive Lebesgue measure?

Functions: entire functions

AMM 6117. by M. J. Pelling
A well-known theorem asserts that given entire func-

tions f(z), g(z) with no common zero, then there exist entire
functions a(z), b(z) such that af + bg = 1 identically.

(a) Show that it is always possible to choose a(z) to be
zero-free.

(b) Is it always possible to choose both a(z) and b(z)
to be zero-free?

AMM 6118. by M. J. Pelling
(a) Show there is no nonconstant solution to

ef(z) + eg(z) = 1

in entire functions f(z) and g(z).
(b) Is there a nonconstant solution to

ef(z) + eg(z) + eh(z) = 1

in entire functions f , g, and h?

AMM 6279. by Lee A. Rubel
Let f(z) be an entire function such that the maximum

modulus over every closed line segment L is achieved at one
of the endpoints a and b of L; that is,

max {|f(z)| : z ∈ L} = max {|f(a)|, |f(b)|} .

Prove that f(z) has either the form A(z −B)n or the form
A expBz, where A and B are constants and n is a nonneg-
ative integer.

NAvW 464. by J. van de Lune
Prove that the function f , defined for the real variable

s (s > 1) by

f(s) = (s− 1)

∞∑

n=2

1

n(logn)s
,

can be extended in the complex plane to an entire function.

NAvW 520. by J. van de Lune
Prove that all the zeros of the entire function

1 + 2s + 3s + 4s

are simple.

Functions: exponentials

SPECT 9.1.
Prove that the exponential function ex cannot be ex-

pressed in the form f(x)/g(x), where f(x) and g(x) are
polynomials in x with real coefficients.

Functions: infinite series

NAvW 454. by J. van de Lune
Prove that the function λ:R→ C defined by

λ(t) =

∞∑

n=1

n−1(n+ 1)−1−it, t ∈ R

has no real zeros.

Functions: iterated functions

MM 993. by F. David Hammer
Let g be a continuous function from [0, 1] to [0, 1] with

g(0) = 0. If for each x in [0, 1] there is a positive integer

n(x) such that gn(x) = x (the n(x)-th iterate of g), then
show that g(x) = x for all x in [0, 1].

Functions: linear independence

AMM 6253. by Maurice Machover
If 0 ≤ θ1 < θ2 < θ3 < · · · < θn < 2π, are the functions

exp
[
i cos(θ − θj)

]
, j = 1, 2, . . . , n

linearly independent over the complex numbers?

Functions: monotone functions

SIAM 77-5.* by M. L. Glasser
Let

S(r) =

∞∑

k=1

(−1)k+1 sinh y csch ky
(
y = cosh−1 r

)
.

Numerical evidence suggests that S(r) increases steadily
between the values S(1) = log 2 and S(∞) = 1. Prove
whether or not this is the case.

MATYC 134. by William Stretton
Let y = f(x) be the increasing function shown, s be

the arc length from (0, 1) to (x1, y1), and the shaded areas
be equal. Find f(x).

NAvW 434. by J. van de Lune
For s > 0, let

λ(s) =
1

Γ(s+ 1)

∫ s

0

e−xxs dx.

For n ∈ N, let

e(n) = e−n
n∑

k=0

nk

k!
.

Prove that λ(s) is increasing, e(n) is decreasing, and that
they have the same limit.

57



Analysis
Functions: monotone functions Problems sorted by topic Functions: real-valued functions

NAvW 465. by J. van de Lune
Prove that the function f :R+ → R+ defined by

f(s) =

(
ss

Γ(s+ 1)

)1/s

is monotone increasing.

AMM S15. by Joel L. Brenner
Let f(t) > 0 for a ≤ t < b and u be a fixed real number.

Show that the functional

[∫
fs+u∫
fs

]1/u

increases with s.

MATYC 97. by Benjamin G. Klein
Let k be a positive constant and let

f(x) =
− log(1− kx)

log(1 + x)
.

Show that f(x) is an increasing function of x for x in
(0, 1/k).

Functions: nearest integer function

MATYC 80. by Gino Fala
Define a function f :R→ [0, 1/2] verbally as follows:
For every real number x, the image of x under f is the

distance from x to the nearest integer.
Find a single formula y = f(x) for this function.

Functions: periodic functions

NAvW 409. by O. P. Lossers
Let a and b be distinct real numbers. Suppose that f

is a continuous function of the real variable x, such that

f(x) = o
(
x2
)
, (x→ ±∞) ,

and

f(x+ a) + f(x+ b) =
1

2
f(2x) for all x ∈ R.

Show that f must be a periodic function.

SSM 3667. by Steven R. Conrad
Prove that the function cos

√
x is not periodic.

CANADA 1975/7.
A function f(x) is periodic if there is a positive number

p such that f(x+p) = f(x) for all x. Is the function sin(x2)
periodic? Prove your assertion.

SSM 3709. by John Carpenter
Find a nonlinear function f such that cos f(x) is peri-

odic.

Functions: polynomials

AMM 6208. by Gary Gundersen
Let p(z) and q(z) be two polynomials with

deg(q) ≥ deg(p),

and suppose there is a discrete real sequence
{
xj
}∞
j=1

with

cluster points at ±∞. Prove that if q(z) ∈ R whenever

p(z) ∈
{
xj
}∞
j=1

,

then

q(z) =

n∑

i=0

ci (p(z))i ,

where ci ∈ R (0 ≤ i ≤ n).
Can the condition deg(p) ≤ deg(q) be dropped?

AMM E2796. by P. Henrici
Prove that the polynomial p with degree less than or

equal to n that agrees with a given function f(x) at the
Chebyshev points xk = cosφk, where

φk =
(2k + 1)π

(2n+ 2)
, k = 0, 1, . . . , n,

is, for x not in {x0, . . . , xn}, given by p(x) = N(x)/D(x)
with

N(x) =

n∑

k=0

(−1)kf (xk) sinφk
x− xk

,

D(x) =

n∑

k=0

(−1)k sinφk
x− xk

.

Functions: real-valued functions

AMM E2610. by Hugh L. Montgomery
Let f be a real-valued function defined on the unit

square [0, 1]× [0, 1]. Suppose that f(x, y) is continuous in x
for each fixed y and continuous in y for each fixed x. Show
that if f−1(0) is dense in the unit square then f = 0.

AMM 6132. by Mihai Eşanu
Find all the functions f :R → R with the Darboux

property such that for some n ≥ 1, fn(x) = −x for all x.

PUTNAM 1977/A.6.
Let f(x, y) be a continuous function on the square

S = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

For each point (a, b) in the interior of S, let S(a,b) be the

largest square that is contained in S, is centered at (a, b),
and has sides parallel to those of S. If

∫ ∫
f(x, y) dx dy = 0

when taken over each square S(a,b), must f(x, y) be identi-
cally zero on S?

58



Analysis
Functions: real-valued functions Problems sorted by topic Gamma function

AMM 6273. by K. L. Chung
Let f be a real-valued function defined on (−∞,+∞)

and continuous from the right everywhere. Suppose also
that the following is true:

lim
n→∞

[
max

−∞<k<∞

∣∣∣f
(
k + 1

n

)
− f

(
k

n

)∣∣∣
]

= 0

where n and k are integers, n ≥ 1. Is f continuous in
(−∞,+∞)?

AMM 6184. by Ole Jørsboe
Let (φn)∞n=1 be an orthonormal system of real-valued

piecewise continuous functions on the interval [0, 1] with
the property that if f is a real-valued piecewise continuous
function on [0, 1] fulfilling

(f, φn) =

∫ 1

0

f(x)φn(x) dx = 0

for all n ∈ N, then f is 0 at all points of continuity.
Does this imply that (φn) spans the space of all real-

valued piecewise continuous functions on [0, 1], i.e., can ev-
ery piecewise continuous function f be written in the form

f = lim
N→∞

N∑

n=1

anφn?

AMM 6054. by Lung Ock Chung
Let

φ: {0, 1, . . . , N − 1} → {0, 1, . . . , N − 1}
be a permutation for N ≥ 2. Then φ induces a function

φ∗: (0, 1)→ (0, 1)

from the open unit interval to itself as

φ∗
( ∞∑

i=1

mi

N i

)
=
∑ φ(mi)

N i
,

where mi ∈ {0, 1, . . . , N − 1}, mi 6→ 0, and

N i = N ·N · · ·N (i times).

Find the subgroup H of the permutation group such that
φ∗ is continuous if φ ∈ H. Further, show that φ∗ is differ-
entiable for such φ.

Functions: transcendental functions

CRUX 300. by Léo Sauvé
Does there exist a dense subset E of the reals such that

sinx and cosx are both algebraic for every x ∈ E?

Gamma function

AMM 6186.* by Ronald Evans
Let r, k ∈ N, where r is fixed. Fix β > 1. Let

Fr(k) =
∑

(j1j2 · · · jr)β−1 ,

where the sum is over all vectors (j1, j2, . . . , jr) ∈ Nr for
which j1 + j2 + · · ·+ jr = k. Prove that

Fr(k) ∼ Γr(β)

Γ(rβ)
kβr−1 as k →∞.

SIAM 75-11. by D. K. Ross

Prove that

∣∣∣∣∣
Γ(α) Γ(α+ β) Γ(α+ 2β)

Γ(α+ β) Γ(α+ 2β) Γ(α+ 3β)

Γ(α+ 2β) Γ(α+ 3β) Γ(α+ 4β)

∣∣∣∣∣ > 0,

provided that α, β > 0, and generalize the result to include
higher order determinants and other classes of special func-
tions.

SIAM 76-21.* by P. Barrucand

Define the polynomials {pn(x,m, γ)} by the generating
function

∑
pn(x,m, γ)tn =

exp(xt)

[Γ(1 + γ + t)]m
,

m positive integer, γ > −1.

Prove that for every n, all the zeros of pn(x) are real
and give an asymptotic formula for the lesser-in-modulus
(i.e., the greater) negative zeros.

AMM 6067. by Ron Evans

Prove that for each real σ, there exist infinitely many
t > 0 for which Γ(σ + it) < 0.

AMM 6269. by Robert E. Shafer

Let F (u) = u−uΓ
(
u+ 1

2

)
and

G(x, s, t) =

1(
x− s+ 1

2

) (
x− t+ 1

2

) − 1(
x+ s+ 1

2

) (
x+ t+ 1

2

) .

Prove that for 0 ≤ s < t ≤ x,

e(s−t)G(x,s,t)/24 <
F
(
x− t+ 1

2

)
F
(
x+ t+ 1

2

)

F
(
x− s+ 1

2

)
F
(
x+ s+ 1

2

) < 1.

NAvW 462. by P. J. de Doelder

Show that

∞∑

n=−∞

1

Γ(a+ n)Γ(a− n)
=

22a−2

Γ(2a− 1)
, Re a >

1

2
.

NAvW 518. by L. Kuipers

Let

Φ(T ) =

∫ T

0

log
Γ(pT + 1)

Γ(pt+ 1)Γ(pT − pt+ 1)
dt,

(p > 0, T > 0).

(a) Prove that T−2Φ(T )→ 1
2p as T →∞.

(b) If p is an integer, then prove that

lim
n→∞

n−2
n∑

k=1

log

(
pn

pk

)
=

1

2
p.
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Haar functions

AMM 6013. by J. R. Higgins
Let {hr(t)}∞r=1 be the orthonormal Haar functions,

defined by

h1(t) = 1, t ∈ [0, 1]

hr(t) =

{
2m/2 sgn sin(2m+1πt), t ∈

(
k−1
2m , k

2m

)

0, elsewhere in [0, 1],

where r = 2m + k, m = 0, 1, . . . , and k = 1, . . . , 2m. Let p
be any odd positive integer and q any positive integer such
that p < 2q. Set

I(p, q,m, k) =

∫ p/2q

0

hr(t) dt.

Show that

q−1∑

m=0

{I(p, q,m, k)}2 =
p

2q

(
1− p

2q

)
.

Hankel function

NAvW 470. by P. J. de Doelder
Prove that

∫ ∞

0

H
(1)
0

(
k
√
y2 + α2

)

√
y2 + 1

dy =

πi

4
H

(1)
0

(
1

2
kα1

)
H

(1)
0

(
1

2
kα2

)
,

where H
(1)
0 is a Hankel function, and α1 and α2 are the

roots of x2 − 2αx+ 1 = 0.

Harmonic functions

AMM 6280. by David Siegel
Let u be a harmonic function in a regular n-gon with

sides s1, . . . , sn and radii r1, . . . , rn joining the center to the
vertices. Show that

n∑

i=1

∫

si

u ds = 2 sin
π

n

n∑

i=1

∫

ri

u ds,

where the integrals are taken with respect to arc length.

Hypergeometric functions

NAvW 550. by P. J. de Doelder
Show that

2F1

(
1

4
,

1

2
;

3

4
;

3

4

)
= 23/2 · 3−3/4.

SIAM 77-2. by P. W. Karlsson
Establish the identity

1− x
a+ c

2F1(a, 1− b; a+ c+ 1; 1− x)2F1(b, 1− a; b+ c;x)

+
x

b+ c
2F1(a, 1− b; a+ c; 1− x)2F1(b, 1− a; b+ c+ 1;x)

=
Γ(a+ c)Γ(b+ c)

Γ(c+ 1)Γ(a+ b+ c)
.

SIAM 75-17. by H. M. Srivastava
Let

F

[
a : b, b′, . . . ; c, c′, . . . ;

x, y, z

d, d′, . . . ; e, e′, . . . ;

]

=

∞∑

l,m,n=0

(a)l+m+n(b)l+m(b′)l+m . . . (c)l+n(c′)l+n . . .
(d)l+m(d′)l+m . . . (e)l+n(e′)l+n . . .

·x
l

l!

ym

m!

zn

n!

and

φ(x, y, z) =
∞∑

n=0

(λ)n
∏p
j=1(aj)n

∏r
j=1(αj)n

n!
∏q
j=1(bj)n

∏s
j=1(βj)n

[
xyz

(1− z)2

]n
·G,

where

G = p+1Fq

[
λ+ n, a1 + n, . . . , ap + n;

xz
z−1

b1 + n, . . . , bq + n;

]

× r+1Fs

[
λ+ n, α1 + n, . . . , αr + n;

yz
z−1

β1 + n, . . . , βs + n;

]
.

Prove or disprove that

φ(x, y, z) =

F

[
λ : a1, . . . , ap;α1, . . . , αr;

xyz
1−z ,

xz
z−1 ,

yz
z−1

b1, . . . , bq;β1, . . . , βs;

]
.

SIAM 76-19. by R. I. Joseph
Evaluate the double integral

α =

∫ 1

0

u du

∫ ∞

0

dv
2F1

(
3
4 ,

5
4 ; 2; 4u/(u+ v + 1)2

)

(u+ v + 1)3/2(u+ v)5/2
,

where 2F1 is Gauss’ hypergeometric function.

Identities

NAvW 433. by J. van de Lune
Prove that

(
e

s

)s ∫ s

0

e−xxs dx = s

∞∑

k=1

kke−k

k!(s+ k)
, s > 0.

Inequalities

AMM 6084. by Theodore J. Rivlin
Let

Tn(x) = t0 + t1x+ · · ·+ tnx
n

denote the Chebyshev polynomial of degree n. Suppose that

p(x) = a0 + a1x+ · · ·+ anx
n

is real-valued. Show that if |p(cos(jπ/n))| ≤ 1 for j =
0, 1, . . . , n, then

|an−2m|+ |an−2m−1| ≤ |tn−2m| ,
m = 0, 1, . . . , (n− 1)/2.
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AMM E2670. by Shyam Johari
and Stanley L. Sclove

Let

f(x, y) =
xe−x − ye−y
e−x − e−y .

If 0 < a < b < c < ∞ and 0 < x < y < z < ∞, prove or
disprove that

|f(a, b) + f(b, c)− f(x, y)− f(y, z)|
≤ 2 max (|x− a|, |y − b|, |z − c|) .

AMM E2782. by Robert E. Shafer
Prove that

2 arctan
1

2x− 1
<

∞∑

n=0

1

(n+ x)2
<

1

x− 1
2

for x > 1
2 .

NAvW 458. by P. J. van Albada
Wallis’ inequality

2

2n+ 1

{
(2n)!!

(2n− 1)!!

}2

< π <
1

n

{
(2n)!!

(2n− 1)!!

}

restricts π to an interval of length O
(
n−1

)
, (n → ∞).

Gurland’s amelioration restricts π to an interval of length
O
(
n−2

)
, (n → ∞). Find simple functions f and g such

that

f(n)

{
(2n)!!

(2n− 1)!!

}2

< π < g(n)

{
(2n)!!

(2n− 1)!!

}2

is sharper than the inequalities quoted above.

Infinite products

PUTNAM 1977/B.1.
OSSMB G76.3-6.

Evaluate the infinite product

∞∏

n=2

n3 − 1

n3 + 1
.

AMM 6233. by James Lynch and Jan Mycielski
Prove that

∏∞
n=1

(
1− a−n

)
is irrational for every in-

teger a with |a| > 1.

Integral equations

SIAM 79-1.* by I. Lux
Let V be an arbitrary three-dimensional spatial region.

Let P = (r, ω), a six-dimensional phase space point, where
r ∈ V and ω is a directional unit vector. Define a function
Mλ(P ) through the following integral equation

Mλ(P ) = 1− e−D +
λ

4π

∫ D

0

e−λx dx
∫
Mλ

(
P ′
)
dω′

where P ′ =
(
r + xω, ω′

)
, λ is an arbitrary but positive

parameter, D is the distance between the point r and the
boundary of V along the direction ω and the integral over
dω′ is a double integral over the surface of a unit sphere.
Prove or disprove that

d

dλ
Mλ(P )

]
λ=1
≥ 0.

TYCMJ 151. by Peter A. Lindstrom
The function f , defined by f(t) = 1/t, t ∈ (0,∞), is

decreasing, has derivatives of all orders, and satisfies the
equality ∫ x

1

f(t) dt =

∫ xy

y

f(t) dt

for x, y > 0. Does there exist a function defined on (0,∞)
that has these three properties but which, unlike f , has a
graph that is concave downward?

SIAM 75-9. by M. L. Glasser
Suppose

Z(s) = e−q
∫ 1

0

dt
Z(t)

(1− st)p .

(a) Show that in the case p = 1, q = lnπ, the exact
solution of the above equation is

Z(s) = A(1− s)−1/2K
(
s1/2

)
,

where K(k) denotes the complete elliptic integral of the first
kind with modulus k and A is an arbitrary constant.

(b) Are there any other exactly solvable cases?

Integral inequalities

MENEMUI 1.3.3.* by S. L. Lee
If f is continuously differentiable up to derivatives of

4th order and f(−1) = f(1) = 0, find the least constant A
such that ∣∣∣∣∣

∫ √3

−
√

3

f(x) dx

∣∣∣∣∣ ≤ A.

CMB P278. by E. J. Barbeau
Let f(x) be a strictly increasing continuous function on

the closed interval [0, 1] for which f(0) = 1 and f(1) = 1.
Suppose that g(x) is the composition inverse of f(x), so that
f(g(x)) = g(f(x)) = x for 0 ≤ x ≤ 1. Is it necessarily true
that ∫ 1

0

f(x)kg(x)k dx ≤ 1

2k + 1

for each nonnegative real number k?

AMM E2622. by S. Zaidman
Let f : [a, b]→ R be a continuous function that is twice

differentiable in (a, b) and satisfies f(a) = f(b) = 0. Prove
that ∫ b

a

|f(x)| dx ≤ 1

12
M(b− a)3,

where M = sup
∣∣f ′′(x)

∣∣ for x ∈ (a, b).

CRUX 79. by John Thomas
Show that for x > 0,

∣∣∣∣
∫ x+1

x

sin(t2) dt

∣∣∣∣ <
2

x
.

61



Analysis
Integral inequalities Problems sorted by topic Integrals: evaluations

AMM 6185. by John Milcetich
Let

f(z, θ) = (1 + eiθz)β(1− z)−α,
where |z| < 1, θ ∈ R, and α ≥ β ≥ 1. Show that for p > 0
and 0 < r < 1,

∫ π

−π

∣∣∣f ′(reiφ, θ)
∣∣∣
p

dφ ≤
∫ π

−π

∣∣∣f ′(reiφ, 0)

∣∣∣
p

dφ.

AMM 6075. by H. L. Montgomery

Prove that if f(x) ∈ L1(−∞,∞), f(x) ≥ 0, f̂(t) ≥ 0

for all x, t where f̂ is the Fourier transform, then for any
integer k ≥ 1,

∫ k

−k
f(x) dx ≤ (2k + 1)

∫ 1

−1

f(x) dx.

MM Q622. by M. S. Klamkin
If G and F are integrable, a > 0, G(x) ≥ F (x) ≥ 0,

and ∫ 1

0

xF (x) dx =

∫ a

0

xG(x) dx,

show that ∫ 1

0

F (x) dx ≤
∫ a

0

G(x) dx.

SIAM 78-18. by A. Meir
Let F (x) be nonnegative and integrable on [0, a] and

such that
{∫ t

0

F (x) dx

}2

≥
∫ t

0

F (x)3 dx

for every t in [0, a]. Prove or disprove the conjecture:

a3

3
≥
∫ a

0

{F (x)− x}2 dx.

Integrals: area

CRUX 380. by G. P. Henderson
Let P be a point on the graph of y = f(x), where f

is a third-degree polynomial, let the tangent at P intersect
the curve again at Q, and let A be the area of the region
bounded by the curve and the segment PQ. Let B be the
area of the region defined in the same way by starting with
Q instead of P . What is the relationship between A and B?

Integrals: asymptotic expansions

NAvW 456. by S. L. Paveri-Fontana
and D. Katz

Find the first two terms of the asymptotic expansion
of the integral

ω(λ) =

2

πλ

∫ 1

0

dµ · µ−2
(
1− µ2

)− 1
2

∫ ∞

0

dx sin2(xλµ)x−2f(x)

for real λ→ +∞, under the assumptions:
(1) f is a real-valued continuous function on [0,∞);
(2) f(x) = 1 +O(x) for x→ 0;

(3)
∫∞

0
|f(x)| dx < +∞.

Integrals: evaluations

NAvW 522. by N. Ortner
Prove that∫ ∞

0

sinh t− t
t3
(
cosh t

2

)2 dt =
7

2π2
ζ(3).

NAvW 408. by H. K. Kuiken
Prove that∫ ∞

−∞

dx

π2 + (yex + y − x)2
=

1

y + 1
, y ≥ 0.

SIAM 77-3. by P. J. Schweitzer
Evaluate ∫ ∞

0

F (x)
(
F ′(x)− lnx

)
dx,

where

F (x) =

∫ ∞

−∞

cosxy dy

(1 + y2)3/2
.

AMM E2523. by K. P. Kerney
Evaluate

∫ 1

0

log(1 + x) log(1− x) dx.

TYCMJ 83. by Joe Allison
Evaluate ∫ 1

0

log(1− x)

1 + x
dx.

MATYC 125. by Louise Grinstein
Evaluate ∫ √

1 +
lnx

x
dx .

SIAM 75-12. by H. J. Oser
Evaluate the 4-fold integral

F =

∫ 1

0

∫ 0

−1

∫ 1/2

−1/2

·
∫ 1/2

−1/2

{
(x1 − x2)2 + (y1 − y2)2

}1/2
dx1dx2dy1dy2

which gives the average distance between points in two
adjacent unit squares.

CRUX 88. by F. G. B. Maskell
Evaluate the indefinite integral

I =

∫
dx

3
√

1 + x3
.

NAvW 449. by J. Boersma
Let

F (t) =

∫ ∞

−∞
eixt

(
1 + x6

)− 1
2 dx, t ≥ 0.

Determine an expansion of F (t) of the form

F (t) = A(t) +B(t) log t

where A(t) and B(t) are power series.
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CRUX 455. by Hippolyte Charles
Evaluate

I =

∫ π
2

0

x cosx sinx

cos4 x+ sin4 x
dx.

CRUX 477. by Hippolyte Charles
For n = 0, 1, 2, . . . , evaluate the integral

τn =

∫ π

0

cosnx

5− 4 cosx
dx.

SSM 3775. by Fred A. Miller
Evaluate the following integral:

∫ π

0

x dx

1 + cos2 x
.

AMM E2803. by L. R. Shenton,
Frank Bowman, and H. K. Lam

Prove that

(a)
∫ π/4

0
g(θ)dθ = π2/24,

(b)
∫ π/6

0
g(θ)dθ = π2/32,

where g(θ) = arctan
[
(cos 2θ)/

(
2 cos2 θ

)]1/2
.

MM 1033. by H. Kestelman
For given positive integers n1, n2, . . . , nk, when is

∫ 2π

0

cosn1θ cosn2θ · · · cosnkθ dθ

different from zero and what is its value?

SIAM 78-19. by M. L. Glasser
Show that

∫ ∞

0

cos
(
x2/π

)
dx

coshx cosh(x+ a) cosh(x− a)

=
π

2
√

2
sech2 a csch2 a

(
cosh2 a− cos

a2

π
− sin

a2

π

)
.

NAvW 537. by J. A. van Casteren
Prove that

∫ π/2

0

θ cot θ log cot θ dθ =
π3

48
.

CRUX 161. by Viktors Linis
Evaluate

∫ π/2

0

sin25 t

cos25 t+ sin25 t
dt.

CRUX 432. by Basil C. Rennie
Evaluate

∫ ∞

−∞

cosx+ x sinx

x2 + cos2 x
dx.

MM 1064. by Edward T. H. Wang
For each positive integer n, define

L(n) =

∫ ∞

0

(
sinx

x

)n
dx.

It is well known that L(1) = L(2) = π/2.
(a) Find L(3), L(4), and L(5).
(b) Is there a formula for L(n) for general n?

AMM 6206. by Gérard Letac
Prove that if n is a nonzero integer, then

∫ +π/2

−π/2
exp [2in(x+ tanx)] dx = 0.

Integrals: functions

AMM E2765. by Naoki Kimura
Establish the two following equations:

∫ 3/2

−1/2

f
(
3x2 − 2x3

)
dx = 2

∫ 1

0

f
(
3x2 − 2x3

)
dx,

∫ 3/2

−1/2

xf
(
3x2 − 2x3

)
dx = 2

∫ 1

0

xf
(
3x2 − 2x3

)
dx,

for all functions f continuous on −1/2 ≤ x ≤ 3/2.
Is there a quadratic polynomial g(x) such that

∫ 3/2

−1/2

f
(
3x2 − 2x3

)
dx =

∫ 1

0

g(x)f
(
3x2 − 2x3

)
dx

for every continuous function f?

SIAM 77-7. by L. A. Shepp
Define

A(h) = A(h;T ) =

∫ T

0

h(t)

{
d

dt

1√
h′(t)

}2

dt

where 0 < T ≤ ∞ and h is twice differentiable, strictly
increasing on [0, T ] with h(0) = 0. Show that A(h;T ) <∞
if and only if A

(
h−1, h(T )

)
< ∞ where h−1 is the inverse

function of h on [0, h(T )].

AMM E2658. by W. Weston Meyer
(a) For 0 < α < π/2 and integral n ≥ 0, show that

∫ α

0

(
sin θ

sinα

)2n

dθ =

n∑

k=0

cnk

∫ α

0

(
tan θ

tanα

)2k

dθ,

where the constants cnk are independent of α.
(b) Find all polynomials P such that the ratio

∫ α

0

P
(

sin θ

sinα

)
dθ

/∫ α

0

P
(

tan θ

tanα

)
dθ

is independent of α ∈ (0, π/2).
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Integrals: gamma function

AMM 6245. by C. L. Mallows
For 0 < a < 1, t ≥ 0, b = 1− a, prove that

1

π

∫ π

0

(sinu)t

(sin au)at(sin bu)bt
du =

Γ(t+ 1)

Γ(at+ 1)Γ(bt+ 1)
.

SIAM 77-1. by R. A. Waller
and M. S. Waterman

If 0 < ξ1 < ξ2 < 1 and 1 < b are fixed, consider
solutions (λ, φ) of the system

f(λ, φ) ≡
∫ λ

0

e−yyφ−1

Γ(φ)
dy = ξ1,

g(λ, φ) ≡
∫ bλ

0

e−yyφ−1

Γ(φ)
dy = ξ2,

where 0 < λ and 0 < φ. Does this system always have a
solution? If a solution exists, is it unique?

Integrals: improper double integrals

PUTNAM 1976/A.5.
In the (x, y)-plane, if R is the set of points inside and

on a convex polygon, let D(x, y) be the distance from (x, y)
to the nearest point of R.

(a) Show that there exist constants a, b, and c, inde-
pendent of R, such that

∫ ∞

−∞

∫ ∞

−∞
e−D(x,y) dx dy = a+ bL+ cA,

where L is the perimeter of R and A is the area of R.
(b) Find the values of a, b, and c.

Integrals: improper integrals

NAvW 532. by M. J. Ritter

For (x, y, z) ∈ R3, 0 < y, 1 < z, we define

f(x, y, z) =
yx sinx

zy
x

+ 1
.

For y 6= 1 and z > 1, the function Fy is defined by

Fy(z) =

∫ ∞

−∞
f(x, y, z) dx.

Determine the values of y for which Fy is identically 0.

CRUX 58. by Jacques Marion
Let f : {z |Re z = 0} → R be continuous and bounded.

If µ: (z |Re z > 0} → R is defined by

µ(z) = µ(x+ iy) =
1

π

∫ +∞

−∞

xf(it)

x2 + (y − t)2
dt,

show that f(ic) = limz→ic µ(z).

PUTNAM 1978/A.3.
Let

p(x) = 2 + 4x+ 3x2 + 5x3 + 3x4 + 4x5 + 2x6.

For k with 0 < k < 5, define

Ik =

∫ ∞

0

xk

p(x)
dx.

For which k is Ik smallest?

CRUX 273. by M. S. Klamkin
Prove that

lim
n→∞

∫ ∞

c

(x+ a)n−1

(x+ b)n+1
dx

=

∫ ∞

c

(x+ a)−1

x+ b
dx, (a, b, c > 0),

without interchanging the limit with the integral.

Integrals: limits

NAvW 412. by J. van de Lune
Suppose that the function f :R+ → C satisfies the

following conditions:
(1) the function f is (Lebesgue) integrable over (0, T )

for every T > 0,
(2) there exists an A ∈ R such that

f(x) = O(eAx), (x→∞),

(3) limx→1− f(x) = L, limx→1+ f(x) = R.
Then prove that

lim
s→∞

∫ ∞

0

e−xxs

Γ(s+ 1)
f
(
x

s

)
dx =

L+R

2
.

NAvW 442. by L. Kuipers
Let h(z) be a real-valued function, Riemann-integrable

on [0, 1] such that
∫ 1

0

h(z) dz = 0.

Let (zn), 0 ≤ zn < 1, n = 1, 2, . . . , be a completely
uniformly distributed sequence; that is, for any k = 1, 2, . . . ,
and any set of k distinct positive integers q1, q2, . . . , qk, the
sequence

(zn+q1 , zn+q2 , . . . , zn+qk ) ,

n = 0, 1, . . . , is uniformly distributed in the k-dimensional
unit cube. Let g(t) be a function such that g(t) = 0 if t < 0
and g(t) = h (zn) if 0 ≤ n ≤ t < n+ 1.

Let φ(t) = g(t)g(t+α)g(t+β), where α and β are real
numbers.

(a) Show that the function

φ̃(t) = lim
N→∞

1

N

N−1∑

q=0

φ(t+ q)

vanishes if at least two of the integers btc, bt+αc, and bt+βc
are distinct.

(b) Evaluate

γ(τ) = lim
N→∞

1

N

∫ N

0

φ(t)φ(t+ τ) dt

for τ = 3
4 , α = 1

4 , and β = 1
2 .
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Integrals: multiple integrals

AMM 6008. by P. B. Gilkey

For ξ = (x1, x2, x3) ∈ R3, set

A = A(ξ) = x1A1 + x2A2 + x3A3,

where

A1 =




0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0


 ,

A2 =




0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0


 ,

A3 =




0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0


 ,

and let Γ = Γ(ξ) be any positively oriented closed curve
enclosing the eigenvalues of A(ξ). Show that the integral

I(B) =

∫

R3

∮

Γ

tr
{

(λ−A)−1
[
B(λ−A)−1

]3}

× λ exp
[
−λ2

]
dλdξ

vanishes for every 4× 4 matrix B.

AMM 6165. by A. G. O’Farrell
Suppose that f(x) is a real-valued function on Rn, and

define

M(x, r) =

∫
|x−y|≤r f(y) dy
∫
|x−y|≤r 1 dy

,

for x ∈ Rn, r > 0. Suppose

M(x, r)− f(x)

r2
→ 0

as r ↓ 0 for each x ∈ Rn. Must f(x) be harmonic?

AMM 6055. by S. Zaidman
Let uα(x, t) be the complex-valued function defined for

x ∈ Rn, t ≥ 0, through the formula

uα(x, t) = (2π)−n/2

×
∫

s21+···+s2n≤1

· · ·
∫

exp (−i(x1s1 + · · ·+ xnsn))

× gα(s1, . . . , sn, t) ds1 · · · dsn

where gα(s1, . . . , sn, t) = |s|−α−2(1−e−|s|2t); |s| ≤ 1; t ≥ 0;

|s| = (s21 + · · ·+ s2n)1/2; and α is a real number.
Find a number α such that

lim
t→∞

∫

Rn
|uα(x, t)|2 dx1 · · · dxn = +∞.

AMM 6111. by Barthel W. Huff
Evaluate

lim
n→∞

(
−2n

∫ ∞

−∞

[
(2π3λ)−1/2

∫ |x|

0

exp

{
− y

2

2λ

}
dy

]

×
[∫ ∞

−∞
exp

{
−|u|

α

2n

}
e−iux du

]
dx

)
,

where 0 < α < 1 and λ > 0.

Integrals: trigonometry

MENEMUI 1.1.1.* by T. N. T. Goodman
For n = 1, 2, 3, . . . , show that

n∑

j=1

∫ π

0

{
cos
(

1

2
− 2j − 1

2n

)
(u− π)

· sec
(

1

2
− 2j − 1

2n

)
π − 1

}
csc

u

2
du = 2n logn.

Intervals

CMB P279. by F. S. Cater
Let F be a family of closed intervals in the real line,

such that m
(⋃

I∈F I
)
< ∞, where m denotes Lebesgue

measure. For each number c > 0, prove that there exist
finitely many pairwise disjoint intervals I1, I2, . . . , In ∈ F
such that

m(I1 ∪ I2 ∪ . . . ∪ In) >
1

2
m

(⋃

I∈F
I

)
− c.

AMM E2733. by Jim Fickett
Let Si, i = 1, 2, . . . ,m, be subsets of [0, 1]; each Si is

a finite union of disjoint intervals. Let l(Si) be the sum
of the lengths of these intervals. Assume that l(Si) = ε,

l
(
Si ∩ Sj

)
≤ ε2, i 6= j, where ε > 0 is fixed. How large can

m be?

Jacobians

AMM 6040. by Jan Mycielski
Let f be a continuously differentiable map of the unit

cube In into the Euclidean space Rn that maps the bound-
ary of In into one point. Let J(f, x) be the Jacobian deter-
minant of f at x. Prove that

∫

In
J(f, x) dx = 0.

Laplace transforms

SIAM 76-3.* by S. A. Rice
Determine the inverse Laplace transforms, or at least

asymptotic formulas for large time t, of the following three
functions:

Iv(x)

Iv(y)
,

Iv(x)Iv(z)Kv(y)

Iv(y)
, Iv(z)Kv(x).

Here Iv(x) and Kv(x) are modified Bessel functions of the
first and second kind, respectively, and v =

√
as, where s

is the Laplace transform parameter, a is a constant, and
x 6= y 6= z.
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Laurent series

MM 1087. by Barbara Turner
Let

k=+∞∑

k=−∞
akz

k

be the Laurent series of ez+1/z for 0 < |z| <∞.
(a) Show that each ak is an irrational number.
(b) Show that the set {ak | k ≥ 0} is linearly dependent

over the rationals.

Legendre polynomials

SIAM 79-14. by A. K. Raina and V. Singh
Let the successive maxima of |Pν(cos θ)|, considered

as a function of ν (ν ≥ 0) for a fixed θ (π/2 ≥ θ > 0),
be denoted by m0 = 1,m2,m3, . . . . Prove or disprove that
m0 > m1 > m2 > . . . .

MM 941. by Stanley Rabinowitz
Show that each of the following expressions is equal to

the nth Legendre polynomial.

(a)
1

n!

∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 · · · 0

1 3x 2 0 · · · 0

0 2 5x 3 · · · 0

0 0 3
. . .

...
...

...
...

. . . n− 1

0 0 0 · · · n− 1 (2n− 1)x

∣∣∣∣∣∣∣∣∣∣∣∣

;

(b)
1

n!

∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 · · · 0

1 3x 1 0 · · · 0

0 4 5x 1 · · · 0

0 0 9
. . .

...
...

...
...

. . . 1

0 0 0 · · · (n− 1)2 (2n− 1)x

∣∣∣∣∣∣∣∣∣∣∣∣

.

SIAM 79-15. by J. D. Love
Prove that for real x > 0 and nonnegative integers n,

cschx = Pn(coshx)Qn(coshx)

+Qn(coshx)

n−1∑

m=0

Pm(coshx)e(n−m)x

+Pn(coshx)

∞∑

m=n+1

Qm(coshx)e(n−m)x

where Pn(coshx) and Qn(coshx) are modified Legendre
functions of the first and second kinds, respectively.

AMM 6227. by D. M. Milošević
Prove the following inequality in which Pn(x) is a Leg-

endre polynomial:

∫ +1

−1

1− Pn(x)

(1− x)5/4
dx < 25/4

(
n∑

k=1

n

k

)1/2

.

Limits: arithmetic means

TYCMJ 155. by Norman Schaumberger
Assume that Kn, a set of n distinct real numbers, has a

product equal to unity and a sum equal to Sn, (n = 1, 2, . . .).
Is it possible that limn→∞ Sn/n = 1?

Limits: binomial coefficients

MM 1055. by Andreas N. Philippou
For 0 < p < 1, find

lim
n→∞

n∑

k=0

(
2n+ 1

k

)
pk(1− p)2n+1−k.

AMM 6252. by Ioan Tomescu
Let

f(n) =

n∑

i=1

n∑

j=1

(
n

i

)(
n

j

)
in−jjn−i.

Show that

lim
n→∞

[f(n)]1/2n lnn

n
=

1

e
.

Limits: elementary symmetric functions

NAvW 404. by David W. Boyd
Given a sequence (an)n∈N, define

Mn,k =

{(
n

k

)−1

σk (a1, . . . , an)

}1/k

,

where σk denotes the kth elementary symmetric function.
If (an)n∈N is the sequence that alternates between the two
nonnegative numbers a and b, determine limn→∞M2n,n.

Limits: exponentials

CRUX 124. by Bernard Vanbrugghe
Evaluate:

lim
x→∞

x

∫ x

0

et
2−x2

dt.

Limits: factorials

JRM 645. by Richard S. Field, Jr.

Evaluate limn→∞(n!)1/n − ((n− 1)!)1/(n−1).

SSM 3791. by John Oman
Find

lim
n→+∞

(n2 + n− 1)!

n2n(n2 − 1)!
.

FQ B-401. by Gary L. Mullen
Show that

lim
n→∞

[
(n!)2n

(n2)!

]
= 0.
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Limits: finite products

MM 933. by Norman Schaumberger
Show that

lim
n→∞

n2

(1 · 22 · 33 · · ·nn)4/n2 = e.

TYCMJ 76. by Peter A. Lindstrom
Prove that

lim
n→∞

n∏

i=1

n
√

(ai + 1)ai+1 = 4e−3/4,

where
i− 1

n
< ai <

i

n
, (i = 1, 2, . . . , n).

Limits: finite sums

FUNCT 1.1.8.
The expressions

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
and lnn

are not equal. But for large natural numbers n, the dif-
ference between them is quite small. Use a calculator or
computer to investigate how the difference between them
varies as n increases.

In fact,

lim
n→∞

(Hn − lnn)

exists. Roughly, what is the limiting value?

AMM E2723. by Allen Moy
For a fixed t > 0, find

lim
n→∞

(
e−nt

n−1∑

k=0

(nt)k

k!

)
.

FQ H-303. by Paul Bruckman
If 0 < s < 1, and n is any positive integer, let

Hn(s) =

n∑

k=1

k−s, and

θn(s) =
n1−s

1− s −Hn(s).

Prove that limn→∞ θn(s) exists, and find this limit.

CRUX 258. by Peter A. Lindstrom
For any rational k other than 0 and −1, find the value

of the following limit:

lim
n→∞

n∑

i=1

i1/k(nk−1/k + ik−1/k)

nk+1
.

AMM 6056. by Simeon Reich
Let (an) be an increasing sequence of real numbers

tending to infinity, and set

pn(t) =

n∑

k=0

an−k
tk

k!
.

Is it true that

lim
n→∞

e−an
pn(an)

an
= 0?

MM 928. by Norman Schaumberger
If k is a positive integer, prove that

lim
n→∞

1

nk+1

n∑

j=1

cotk(
1

j
) =

1

k + 1
.

Limits: floor function

PUTNAM 1976/B.1.
Evaluate

lim
n→∞

1

n

n∑

k=1

(⌊
2n

k

⌋
− 2
⌊
n

k

⌋)

and express your answer in the form log a− b, with a and b
positive integers.

Limits: functional inequalities

NAvW 426. by J. J. A. M. Brands
and M. L. J. Hautus

Prove that if f : (0,∞)→ R satisfies

f(xy) ≤ y−1f(x) + f(y), x > 0, y > 0,

then limx→∞ f(x) exists.

Limits: functions

AMM 6167. by Charles R. Williams
and Joseph C. Warndof

Suppose f :Rn → Rn−1, and for each point a ∈ Rn,
the limit

lim
x→a

|f(x)− f(a)|
|x− a|

exists. Is f necessarily a constant function?

Limits: infinite series

NAvW 423. by J. van de Lune
Let

Qx(n) = n

∞∑

k=1

xk
(

1− xk
)n−1

, 0 < x < 1, n ∈ N.

Prove that

(a) lim supn→∞Qx(n) ≤ x−1∑∞
k=−∞ xke−x

k

,

and

(b) lim infn→∞Qx(n) ≥ x
∑∞
k=−∞ xke−x

k

.

Also show that the sequence (Qx(n))n∈N does not con-
verge for any x ∈ (0, 1).
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Limits: integrals

PUTNAM 1979/B.2.

Let 0 < a < b. Evaluate

lim
t→0

{∫ 1

0

[bx+ a(1− x)]t dx

}1/t

.

SIAM 78-1.* by J. S. Lew

Let (x, y) be an arbitrary point of the Euclidean unit
disc D, let a(p;x, y) denote the average lp distance to a ran-
dom disc point (u, v), and let b(p; r) denote the rotational
average of this function a(p;x, y):

D =
{

(x, y) : x2 + y2 ≤ 1
}
,

a(p;x, y) =

∫ ∫

D

{
|x− u|p + |y − v|p

}1/p
du dv/π,

b(p; r) =

∫ 2π

0

a(p; r cos θ, r sin θ) dθ/(2π).

To measure the deviation from this average, we introduce
the ratio of these quantities and we consider its extrema on
the disc:

c(p;x, y) = a(p;x, y)/
[
b
(
p;
√
x2 + y2

)]
,

λ(p) = inf {c(p;x, y) : (x, y) ∈ D} ,

µ(p) = sup {c(p;x, y) : (x, y) ∈ D} .

Conjecture. λ(p) ↑ 1 and µ(p) ↓ 1 as either p ↑ 2 or
p ↓ 2.

Limits: logarithms

TYCMJ 51. by Joseph Rothschild

Let (an) and (bn) be sequences of positive, real num-
bers for which

a = lim
n→∞

1

n
log an ≥ lim

n→∞
1

n
log bn > 0.

Prove or disprove that

lim
n→∞

1

n
log(an + bn) = a.

Limits: sequences

AMM 6265. by John H. Cook
and David Sanders

Prove or disprove the following assertion: If x = sn is
the solution to the equation

e−x
(

1 + x+
1

2
x2 + · · ·+ 1

n!
xn
)

=
1

2
,

then sn − n→ 2/3 as n→∞.

AMM E2692. by Donald R. Woods
Show that the sequence of increasingly complex frac-

tions

1

2
,
(

1

2

)/(
3

4

)
,

(
1
2

)/ (
3
4

)
(

5
6

)/ (
7
8

) ,
(

1
2

)/ (
3
4

)
(

5
6

)/ (
7
8

)
/( 9

10

)/ (
11
12

)
(

13
14

)/ (
15
16

) , . . .

approaches a limit, and find that limit.
What can be said about the more general sequence

x

x+ 1
,
(

x

x+ 1

)/(
x+ 2

x+ 3

)
,

(
x
x+1

)/(
x+2
x+3

)

(
x+4
x+5

)/(
x+6
x+7

) , . . . ?

CRUX 48. by Léo Sauvé
Let the function f :R→ R be defined by

f(x) = 2 + sinx cos
1

x
, if x 6= 0,

f(0) = 2.

For each n ≥ 1, consider the integral

In =

∫ 2
n

− 2
n

(
n+ (

1

n
− n)Xn(x)

)
f(x) dx,

where Xn is the characteristic function of the interval[
− 1
n ,

1
n

]
. Express In as a function of n and find limn→∞ In.

MM 958. by Murray S. Klamkin
Give direct proofs of the following two results:
(a) If Re(z0) > 0 and the sequence (zn) is defined for

n ≥ 1 by

zn =
1

2

(
zn−1 +

A

zn−1

)
,

where A is real and positive, then limn→∞ zn =
√
A.

(b) Suppose (xn) is a real sequence defined for n ≥ 1
by

xn =
1

2

(
xn−1 +

A

xn−1

)
,

where A is positive. Show that if p is a given integer greater
than 1, then the initial term x0 can be chosen so that (xn)
is periodic with period p.

SSM 3698. by Michael Brozinsky
Let a, b, c, and d, with c < d, be positive real numbers.

It is known that x = ad+bc
a+b divides the interval [c, d] in the

ratio a/b (that is, (x − c)/(d − x) = a/b). Consider the
sequence {xn} defined by the following: x1 = c, x2 = d, and

xn =
axn−1+bxn−2

a+b for n = 3, 4, 5, . . . . Find limn→+∞ xn.

SSM 3760. by N. J. Kuenzi
It is known that if ai is an arbitrary positive number

and an =
√
an−1, n = 2, 3, . . . then limn→+∞ an = 1.

Suppose a1 and m are arbitrary, positive numbers. Define
an = m

√
an−1, n = 2, 3, . . . . Find limn→+∞ an.
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Limits: trigonometry

AMM E2699. by Emile Haddad
and Peter Johnson

Suppose that 1 = θ0 > θ1 > · · · > θk > 0 and that

k∑

i=0

ai cosnθiπ → 0

as n→∞ through the integers.
Does it follow that ai = 0 for all i?

PME 376. by Solomon W. Golomb
Let the sequence {an} be defined inductively by a1 = 1

and an+1 = sin(arctan an) for n ≥ 1. Let the sequence {bn}
be defined inductively by b1 = 1 and bn+1 = cos(arctan bn)
for n ≥ 1. Give explicit expressions for an and bn, and find
limn→∞ an and limn→∞ bn.

Location of zeros: complex polynomials

AMM 6191. by Harry D. Ruderman
Let P (z) be a monic polynomial with complex coef-

ficients, in the complex variable z. Let P (z1) and P (z2)
be in opposite quadrants I and III or II and IV. Let
z3 = (z1 + z2)/2. What is an upper bound (least, if pos-
sible) on r that will guarantee that a zero of P (z) will be
within a distance r from z3?

AMM 6237. by Emeric Deutsch
Show that every zero z of the complex polynomial

f(z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an−1z + an

satisfies −β ≤ Re(z) ≤ α, where α and β are the unique
positive roots of the equations

xn + Re(a1)xn−1 − |a2|xn−2

− |a3|xn−3 − · · · − |an−1|x− |an| = 0

and

xn − Re(a1)xn−1 − |a2|xn−2

− |a3|xn−3 − · · · − |an−1|x− |an| = 0,

respectively.

AMM E2761. by Ron Adin
Let P (z) be a polynomial of degree at least 2 with

complex coefficients, not all of them real. Prove that the
equation

P (z)P (−z) = P (z)

has roots in both the upper and lower open half-planes,
Im(z) > 0 and Im(z) < 0.

AMM E2801. by Louis Nirenberg,
D. Kinderlehrer, and J. Spruck

Let P1(z) and P2(z) be monic polynomials with com-
plex coefficients of degree m + k, 0 ≤ k < m, such that
z1, . . . , zm in the upper half-plane are zeros of P1 while
z1, . . . , zm are zeros of P2. Show that P1 − P2 has degree
greater than m− k − 2.

CRUX 138. by Jacques Marion
Let

p(z) = zn + a1z
n−1 + · · ·+ an

be a nonconstant polynomial such that |p(z)| < 1 on the
circle |z| = 1. Show that p(z) has a zero on |z| = 1.

CRUX 237. by Basil C. Rennie
Suppose a closed set E in the complex plane has the

property that if a polynomial has all its zeros in E then the
derivative also has all its zeros in E. Must E be convex?

SPECT 8.9.
The polynomial f has complex coefficients, and all its

roots have positive real parts. Show that all the roots of
the derivative of f have positive real parts.

Location of zeros: complex variables

CRUX 60. by Jacques Marion
Let f be an analytic function on the closed disc B(0, R)

such that |f(z)| < M , and |f(0)| = a > 0. Show that the

number of zeros of f in B(0, R3 ) does not exceed 1
log 2 log M

a .

CRUX 196. by Hippolyte Charles
Show that if |ai| < 2 for 1 ≤ i ≤ n, then the equation

1 + a1z + · · ·+ anz
n = 0

has no roots in the disc |z| ≤ 1
3 . Is the converse true?

CRUX 152. by Jacques Marion
If a > e, show that the equation ez = azm has m

solutions inside the circle |z| = 1.

Location of zeros: entire functions

NAvW 498. by J. van de Lune
For any positive integer m, we define

fm(z) =

∞∑

n=m+1

zn−m−1

n!
z ∈ C.

From the theory of entire functions, it follows that fm(z)
has infinitely many zeros.

Prove that none of these zeros are real and that all of
them have positive real parts.

Location of zeros: limits

AMM E2787. by James V. Whittaker

Show that if k ≥ 3, then the equation (log x)k = x for
x ≥ 1 has just two solutions rk and sk, where rk → e and
sk →∞ as k →∞.

Maclaurin series

FQ H-249. by F. D. Parker
Find an explicit formula for the coefficients of the

Maclaurin series for

b0 + b1x+ · · ·+ bkx
k

1 + αx+ βx2
.
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AMM E2688.* by David Jackson
Let {fi} and {gi}, i = 0, 1, 2, . . . , be the solutions of

the recurrence equation

um+1 = −um −m(m+ 1)xum−1

satisfying the initial conditions f0 = 0, f1 = 1, g0 = 1, and
g1 = −1, respectively. Show that the coefficient of xn−1 in
the Maclaurin expansion of −fn/gn is t2n−1, where

tanx =
∑

n≥1

t2n−1
x2n−1

(2n− 1)!
.

Maxima and minima: bounds

AMM E2519. by H. L. Montgomery
Let P be a complex polynomial of degree n with

P (1) = 0 and P (0) = 1. Show that

max {|P (z)| : |z| ≤ 1} ≥ 1 +
1

3n
.

Maxima and minima: complex numbers

AMM E2600. by Ron Evans
Fix r ≥ 2 and suppose that z1, z2, z3, and z4 are

complex numbers of modulus ≥ r. Find the point at which

2− (z1 + z2)(z3 + z4) + z1z2z3z4

attains its minimum modulus.

Maxima and minima: constraints

MM 942. by M. S. Klamkin
Determine the maximum value of

S =
∑

1≤i<j≤n

(
xixj

1− xi
+

xixj
1− xj

)

where xi ≥ 0 and x1 + x2 + · · ·+ xn = 1.

AMM 6076. by Robert L. Anderson
Given n real numbers p1, p2, . . . , pn, find a continuous

function x(t) with piecewise continuous derivative x′(t) on
[0, n] such that x(t) minimizes

L(x) =

∫ n

0

√
1 + [x′(t)]2 dt

subject to the n constraints

∫ i

i−1

x(t) dt = pi, i = 1, 2, . . . , n.

Is the solution unique?

PUTNAM 1975/A.3.
Let a, b and c be constants with 0 < a < b < c. At

what points of the set

{xb + yb + zb = 1, x ≥ 0, y ≥ 0, z ≥ 0}

in three-dimensional space R3 does the function f(x, y, z) =

xa + yb + zc assume its maximum and minimum values?

Maxima and minima: derivatives

AMM 6173. by Otomar Hájek

For C2 functions f 6= 0 vanishing at 0 and π, con-
sider the functional inf(0,π) f

′′/f (ignore undefined values).
Show that its maximum −1 is attained only by sinx and its
multiples.

Maxima and minima: integrals

AMM E2707. by Leonard Shapiro
Find supσ(f) where

σ(f) = inf
x>0

{
f(x)

x

∫ x

0

(1− f(t)) dt

}

and f ranges over continuous functions on [0,∞). For which
f (if any) is this supremum achieved?

AMM 6140. by F. S. Cater
Let f be a continuous real-valued function on [0, 1],

and let Ef denote the (possibly void) set

{
x ∈ [0, 1] : f ′(x) exists and is finite

}
.

Let a(f) be the Lebesgue outer measure of f
(
[0, 1]\Ef

)
,

m(t) =

{
f ′(t), for t ∈ Ef ,

0, otherwise.

Let

b(f) = a(f) +

∫ 1

0

m(t) dt

and

c(f) = a(f) +

∫ 1

0

[
1 +m(t)2

]1/2
dt.

Find max c(f) and min c(f) over all f such that b(f) = 1.
Describe functions for which c(f) takes one of these values.

Maxima and minima: limits

SIAM 77-13. by Ilia Kaufman
For x ≥ 1, c ≥ 0 let

fc(x) = (x+ c) [B (x+ c |x− 1)−B (x+ c |x)] ,

where

B (y |x) =
e−yyx∫∞

y
e−ttx dt

.

The function B, or its restriction to integral values of x,

B (y |n) =
yn/n!∑n
k=0 y

k/k!
,

is called the first Erlang function. It is easy to prove that
for any fixed value of c, limx→∞ fc(x) = 2/π. Determine
or numerically estimate

∆ = inf
c≥0

sup
x≥1

∣∣∣fc(x)− 2

π

∣∣∣.
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Maxima and minima: polynomials

PUTNAM 1975/B.3.
Let sk(a1, . . . , an) denote the kth elementary symmet-

ric function of a1, . . . , an. With k held fixed, find the supre-
mum (or least upper bound) Mk of

sk(a1, . . . , an)/[s1(a1, . . . , an)]k

for arbitrary n ≥ k and arbitrary n-tuples a1, . . . , an of
positive real numbers.

Maxima and minima: radicals

MM Q610. by C. F. Pinzka

Maximize (7 + x)(11− 3x)1/3.

CRUX 358. by Murray S. Klamkin

Determine the maximum of x2y, subject to the con-
straints

x+ y +
√

2x2 + 2xy + 3y2 = k (constant), x, y ≥ 0.

CRUX 347. by M. S. Klamkin
Determine the maximum value of

3

√
4− 3x+

√
16− 24x+ 9x2 − x3

+
3

√
4− 3x−

√
16− 24x+ 9x2 − x3

in the interval −1 ≤ x ≤ 1.

Maxima and minima: unit circle

MM Q662. by M. S. Klamkin
Determine the maximum of

R =
|z1z2 + z2z3 + z3z4 + z4z5 + z5z1|3

|z1z2z3 + z2z3z4 + z3z4z5 + z4z5z1 + z5z1z2|2

where z1, z2, z3, z4, and z5 are complex numbers of unit
length.

Measure theory: arcs

AMM 6007. by Rollin Sandberg
Let f be a nondecreasing, continuous function from

[0, a] onto [0, b] such that f ′ vanishes almost everywhere.
Determine the length of this arc.

AMM 6074. by H. L. Montgomery
Let f be a weakly increasing continuous function de-

fined on [0, 1], with f(0) = 0, f(1) = 1, and let l denote
the arc length of the curve (x, f(x)), 0 ≤ x ≤ 1. Prove
that l ≤ 2, with equality if and only if f ′(x) = 0 almost
everywhere.

Measure theory: Borel sets

AMM 6242. by Jan Mycielski
Let I be the interval [0, 1], λ the Lebesgue measure in

I, and µ a Borel measure in I. Suppose that λ(A) = 1
2

implies µ(A) = 1
2 for every Borel set A ⊆ I. Prove that

µ(B) = λ(B) for every Borel set B ⊆ I.

Measure theory: function spaces

AMM 6131. by Lee A. Rubel

Suppose φ ≥ 0 is in L1(−∞,∞), φ vanishes outside of
[a, b], and φ is strictly decreasing on [a, b]. Prove that the

span of the translates of φ is dense in L1(−∞,∞).

Measure theory: geometry

AMM 6231. by Terry R. McConnell

Let A be a subset of R2 with nonzero Lebesgue mea-
sure. Prove that A contains the vertices of a square.

Measure theory: integrals

CMB P256. by T. Zaidman
Let (S, B, m) be a measure space, m(S) < ∞, and

let f be a bounded, measurable, real-valued function of
S. For any real number t let Et = {s ∈ S : 0 ≤
f(s) + t < 1}. Prove, without using Fubini’s theorem, that∫∞
−∞m(Et) dt = m(S).

NAvW 443. by J. van de Lune
Let X be a set equipped with a (nonnegative) measure

µ. Let φ:X → [0,∞] be µ-measurable. Find a necessary
and sufficient condition on φ that guarantees the existence
of a µ-measurable function ψ:X → [0,∞] satisfying

(1)
∫
X
ψ dµ <∞

and
(2)
∫
X

φ
ψ dµ <∞.

(For convenience let 0
0 = 0 and ∞∞ =∞.)

Measure theory: Lebesgue outer measure

AMM E2710. by J. A. Andrews
Call two real numbers equivalent if their difference is

rational. Call S ⊂ R a choice set if S is a set of represen-
tatives of the equivalence classes in R. Let F be the family
of all choice sets contained in [0, 1]. Show that the numbers
m∗(S) (S ∈ F) are dense in [0, 1]. (m∗ is the usual outer
measure.)

Measure theory: monotone functions

AMM 6218. by M. J. Pelling
Let S be a subset of the real line R having cardinality of

the continuum. Is there always a monotonic f :R→ R such
that m∗f(S) > 0 where m∗ is outer Lebesgue measure?

AMM 6073. by George Crofts
Let f be an increasing real-valued function from [a, b]

onto [c, d] and let m denote Lebesgue measure. If there is a
set E ⊂ [a, b], with m(E) = 0, for which m(f(E)) = d − c,
must f be singular (i.e., f ′ = 0 almost everywhere)?

Measure theory: probability measures

AMM 6143. by A. L. Macdonald
Let π1, π2, . . . , πn be nonatomic probability measures

on a set X. Prove that there are pairwise disjoint sets
B1, B2, . . . , Bn with πi(Bi) ≥ 1/n.
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Measure theory: uniform integrability

AMM 6085. by William J. Sánchez
Call a family F of functions uniformly integrable if

there exists k(ε) such that
∫
{|f | dµ : |f | > k} < ε

for all f ∈ F . If there exists integrable h such that |f | ≤ h
(almost everywhere) for all f ∈ F , then F is uniformly
integrable. Is the converse true?

Numerical analysis

SIAM 78-2. by J. C. Cavendish
and W. W. Meyer

For p a positive integer, let Φk(x) denote a (2p + 1)-
degree basis polynomial for (2p + 1)-Hermite interpolation
on 0 ≤ x ≤ 1. That is, for n, k = 0, 1, . . . , p,

dnΦk
dxn

}

x=0

=

{
0, if n 6= k,

1, if n = k,

dnΦk
dxn

}

x=1

= 0.

Establish the following two recurrence relations for any t ∈
[0, 1]:

tΦk−1(t)− kΦk(t) =

(2p− k + 1)!

p!(k − 1)!(p− k + 1)!
tp+1(1− t)p+1, (0 < k ≤ p),

Φk−1(t)− Φ′k(t) =

(2p− k + 1)!

p!k!(p− k + 1)!
tp(1− t)p(p+ 1− kt), (0 < k ≤ p).

Numerical approximations

SPECT 7.8.
Use the identity

4

1 + t2
= 4− 4t2 + 5t4 − 4t5 + t6 − t4(1− t)4

1 + t2

to show that

22

7
− 1

1260
> π >

22

7
− 1

630
.

Partial derivatives

AMM 6018. by Antonio Marquina
Does there exist a real-valued function f(x, y) defined

at every point of R2, satisfying the following properties?
(i) For every point (x, y), f(x, y) is continuous.
(ii) For every point (x, y), the two partial derivatives

Dxf and Dyf exist.
(iii) The function f(x, y) is not differentiable in (x, y)

for every point of R2.

Point sets

AMM E2598. by Erwin Just
Does there exist a set of rational points that is dense in

the plane such that the distance between each pair of points
in the set is irrational?

Power series

MM 978. by L. Carlitz
For λ > 0, let

(1− x− y + axy)−λ =

∞∑

m,n=0

c
(λ)
m,nx

myn.

Show that c
(λ)
m,n ≥ 0 for all m and n if and only if a ≤ 1.

AMM 6080. by R. N. Hevener, Jr.
A theorem of Abel states that if

∞∑

n=0

anz
n

converges on the closed interval A, then
(i) convergence is uniform on A, whence
(ii) it determines a continuous function on A.
Is either part of this theorem true if A denotes a closed

disc instead of an interval? If we impose the additional
hypothesis, trivially satisfied in Abel’s theorem, that the
function be continuous on the boundary of A, is either part
true?

CRUX 259. by Jacques Sauvé
The function

f(x) =

∞∑

n=0

(
xn

n!

)2

is defined for all real x. Can one express f(x) in closed form
in terms of known (not necessarily elementary) functions?

AMM 6038. by Oto Strauch
Let

f(x) =
∑

aix
i

and

sn(x) =
∑

i≤n
aix

i.

Let r 6= 0 be an interior point of the interval of convergence
of the power series

∑
aix

i. Prove that if sn(r) < f(r) for

every n = 0, 1, 2, . . . , then the derivative f ′(r) 6= 0.

NAvW 519. by J. van de Lune
Let

z
ez + 1

ez − 1
=

∞∑

n=0

βn
z2n

(2n)!
.

Prove that β2
n ≤ βn−1βn+1 for n ≥ 2.

FQ H-293. by Leonard Carlitz
Show that if a set of polynomials (fn(x))∞n=0 satisfies

∞∑

n=0

fn+k(x)
zn

n!
=

∞∑

n=0

fn(x)
zn

n!
fk(x− z)

for k ≥ 0, f0(x) = 1, and f1(x) = 2x, then

fn(x) = Hn(x), n = 0, 1, 2, . . . .
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FQ B-399. by V. E. Hoggatt, Jr.
Let

f(x) = u1 + u2x+ u3x
2 + · · ·

and
g(x) = v1 + v2x+ v3x

2 + · · · ,
where u1 = u2 = 1, u3 = 2, un+3 = un+2 +un+1 +un, and
vn+3 = vn+2 + vn+1 + vn. Find initial values v1, v2, and

v3 so that eg(x) = f(x).

Pursuit problems

JRM 534. by David L. Silverman
A farmer carrying two chicks on a narrow North-South

road inadvertently drops them. The slower chick runs
North, the other South. The farmer, who is faster than
either, wants to catch both in minimum time.

(a) Solve the farmer’s problem.
(b) Using any tools you wish, determine which chick

the farmer should chase first if his objective is to deliver
them in minimum time to a town located on the road.
Consider all four relative locations of the town.

(c) Generalize (b) to the case in which the town is not
situated on the road. Consider it confined to the plane of
the road first, then generalize to 3-space.

JRM C5. by Travis Fletcher
Let A, B, and C denote three point-like entities, ca-

pable of motion in the plane with respective velocities in
the ratio 1:2:3. At the start of a game of tag in which C is
“it” A and B are together, and C is displaced from them
at a distance d, which happens to be the common distance
required for each of the three players to accelerate from zero
to his maximum velocity. The game ends only after C has
tagged both of his opponents, so it behooves A and B to
separate.

Determine the evasion and pursuit history in which A
and B maximize and C minimizes the time necessary to
make the two tags.

PME 357. by David L. Silverman
Able, Baker, and Charlie, with respective speeds a >

b > c, start at point P with Able designated “it” in a game
of Tag, which terminates when Able has tagged both Baker
and Charlie. At time −T , Baker heads north and Charlie
south. After a count taking time T , Able starts chasing one
of the two quarries. Assuming that Baker and Charlie will
maintain their speeds and directions, whom should Able
chase first in order to minimize the time required to make
the second and final tag?

CANADA 1979/4.
A dog standing at the center of a circular arena sees

a rabbit at the wall. The rabbit runs around the wall and
the dog pursues it along a unique path which is determined
by running at the same speed and staying on the radial line
joining the center of the arena to the rabbit. Show that
the dog overtakes the rabbit just as it reaches a point one-
quarter of the way around the arena.

PME 401. by Zelda Katz
From a point 250 yards due north of Tom, a pig runs

due east. Starting at the same time, Tom pursues the pig at
a speed 4/3 that of the pig, and changes his direction so as
to run toward the pig at each instant. With each running
at uniform speed, how far does the pig run before being
caught?

Rate problems

IMO 1979/3.

Two circles in a plane intersect. Let A be one of
the points of intersection. Starting simultaneously from A
two points move with constant speeds, each point traveling
along its own circle in the same sense. The two points return
to A simultaneously after one revolution. Prove that there
is a fixed point P in the plane such that, at any time. the
distances from P to the moving points are equal.

OSSMB 78-6. by J. Levitt

A man always drives his automobile at a constant
speed. The points A, B, C, D are such that BC = CD = 10
km, and 6 BCD = π/2. Point A is inside angle BCD. If he
travels from A to C directly in 30 min, A to C via B in 35
min, and A to C via D in 40 min, at what constant speed
does he drive?

FUNCT 3.5.2.

A camera at O tracks a horse running along PQ with
OP ⊥ PQ. Let s be the distance from P to Q. Let θ be
the measure of 6 POQ. Find the value of s for which θ̇ is
maximized, given that its velocity at P is u, and that its
uniform acceleration is a.

MM 926. by Melvin F. Gardner

A swimmer can swim with speed v in still water. He
is required to swim for a given length of time T in a stream
whose speed is r with r < v. If he is also required to
start and finish at the same point, what is the longest path
(total arc length) that he can complete? Assume the path
is continuous with piecewise continuous first derivatives.

JRM 796. by Peter MacDonald

A. J. Gunnet is poised at one end of Lookout Avenue,
anxious to try out his super-charged racer. Three traffic
lights divide the distance from A.J. to the end of the Look-
out Avenue into four equal parts. Each traffic light is red
for one minute and green for two minutes (no yellow light).
No two lights are ever red at the same time. A.J. notices
that the light farthest from him has just turned green, and
the light nearest him has just turned red. He decides to wait
until such time as the round trip can be made in the fastest
possible time. He must maintain a constant speed through-
out, and each light must be green as he goes through it.
How long should he wait before embarking on his journey,
and how fast can he make the round trip? Assume instan-
taneous acceleration at the start and instantaneous reversal
at the end of the street without any loss of speed.

Riemann zeta function

AMM 6127. by M. J. Pelling

Sum the series

∞∑

n=2

ζ(n)
(
a

b

)n
,

where 0 < a/b < 1 is rational.
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NAvW 524. by Mihály Bencze
Let ζ be the Riemann zeta-function, and let d(n) de-

note the number of divisors of n.
Show that

∞∑

k=1

(
k−1d(k)

)s
>

(
2

ζ
(
1 + 1

s−1

)
)s−1

, (s > 1).

CRUX 440. by Kenneth S. Williams
Find a simple elementary proof of

ζ(2) =
1

12
+

1

22
+

1

32
+ · · · = π2

6
.

NAvW 444. by J. van de Lune
Let ζ(s) denote Riemann’s zeta-function. For t > 0,

let I(t) be the imaginary part of ζ(1 + it). Prove that I(t)
has infinitely many real zeros.

Sequences: cluster points

NAvW 542. by A. A. Jagers and H. Th. Jongen

Let s be a sequence of elements of `2 of the form

s = (αnen)∞n=1 ,

where e1, e2, e3, . . . is an orthonormal basis of `2 and αn > 0
for all n. Prove that 0 is a weak cluster point of s if and
only if

(
α−1
n

)
n=1

/∈ `2. Compare:

(1) 0 is the weak limit of a subsequence of s if and only
if (

α−1
n

)∞
n=1

/∈ c0.

(2) 0 is a strong cluster point of s if and only if

(
α−1
n

)
n=1

/∈ `∞.

Sequences: complex numbers

SPECT 9.6. by I. J. Maddox
(a) Let (bn) be a sequence of complex numbers such

that bn+1 − bn → l as n → ∞. Show that bn/n → l and
that |bn+1| − |bn| → |l| as n→∞.

(b) Let (an) be a sequence of nonzero real numbers,
and put bn = an+1/an for n = 1, 2, 3, . . . . Put

cn = bn+1 − bn,
c′n = |bn+1| − |bn|.

Show that it is possible for c′n to tend to zero as n → ∞
but for the sequence (cn) to diverge.

Sequences: convergence

AMM 6090. by T. S̆alát and O. Strauch
Define φ-convergence of a sequence {γn} of real num-

bers in this way: φ-lim γn = λ if and only if lim sn = λ,
where sn = n−1∑

d/n φ(d)γd. (φ denotes Euler’s totient

function.) Find a sequence that is φ-convergent but is not
convergent.

SIAM 75-14.* by M. W. Green,
A. J. Korsak, and M. C. Pease

It has been found in practice that the following very
simple (but very effective) procedure always converges for
any n starting trial roots:

x′i =
xi − P (xi)∏
j 6=i
(
xi − xj

) , i = 1, 2, . . . , n,

where P (x) is an arbitrary (complex coefficient) monic poly-
nomial in x of degree n. In fact, even when P (x) has multi-
ple roots, the above procedure still converges, but only lin-
early (as opposed to quadratically in the distinct root case).
Show that this procedure is globally convergent outside of
a set of measure zero in the starting space and describe this
set for n = 2. Show the same result, if possible, for arbitrary
n.

Sequences: inequalities

NAvW 492. by J. J. A. M. Brands
Let (an)n∈N be a sequence of positive real numbers

with the property that

an+1 − an+2

an
≥ 1

4
, n = 1, 2, . . . .

Prove that there is a number C, such that

n∑

k=1

ak+1 − ak+2

ak
=

1

4
n+ C +O

(
n−1

)
, (n→∞).

SPECT 7.3. by B. G. Eke
The real numbers a1, a2, a3, . . . are positive, less than

1, and such that

an <
1

2
(an−1 + an+1)

for n = 2, 3, . . . . Show that an tends to a limit as n tends
to infinity.

Sequences: monotone sequences

NAvW 510. by J. van de Lune
Determine all constants c > −1 for which the sequence

(Hn − log(n+ c))n∈N

is strictly monotonic, where Hn =
∑n
k=1 k

−1.

TYCMJ 112. by Richard Johnsonbaugh
Find the least positive integer N for which

(n+ 1)1/(n+1)

n1/n
,

(n = N,N + 1, N + 2, . . .), is monotonic increasing.

SPECT 9.9.
Let

un =

(
1 +

1

n

)n
, vn =

(
1 +

1

n

)n+1

.

Show that the sequence (un) is strictly increasing, whereas
(vn) is strictly decreasing.
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CMB P247. by P. Erdős and R. E. Bixby
Let a1 < a2 < a3 · · · be an increasing sequence such

that an = o(n1+ε) and 0 < c < dn = an+1−an = o(nε) for
every ε > 0. Show that there exist sequences of integers ni,
mi such that ani/ami → ∞ and dni/dmi → 1. Show also

that, if an/n
k → ∞ for every k, then there exist integers

ni, mi such that ani/ami → 1 and dni/dmi →∞.

NAvW 446. by R. J. Stroeker
For each n = 2, 3, . . . , let xn be the unique solution of

the equation

n =
xn + x−n

x+ x−1

in the interval (0, 1). Show that the sequence (xn)n≥2 is
increasing and determine

lim
n→∞

xn.

NAvW 399. by J. van de Lune
For n ∈ N and s ∈ R, let

σn(s) =

n∑

k=1

ks,

Un(s) = n−s−1σn(s),

Ln(s) = n−s−1σn−1(s),

where σ0(s) = 0.
Prove that if s is positive, Un(s) is decreasing in n and

Ln(s) is increasing in n.

NAvW 400. by J. van de Lune
For n ∈ N and s ∈ R, let

σn(s) =

n∑

k=1

ks,

Un(s) = n−s−1σn(s),

Ln(s) = n−s−1σn−1(s),

where σ0(s) = 0.
We define

Tn(s) =
1

2
{Un(s) + Ln(s)} .

Prove that Tn(s) is increasing in n if 0 < s < 1 and
decreasing in n if s > 1.

Sequences: pairs of sequences

TYCMJ 60. by Richard Johnsonbaugh
Assume that (xn) and (yn) are sequences satisfying

yn = xn + xn+1 and that (yn) converges. For which values
of ε ∈ (0, 1] must (xn/n

ε) converge?

TYCMJ 133. by Barbara Turner

Let a,m, n > 0 and m2 = an2. Define Mk and Nk
inductively as follows: M1 = an −m, Mk+1 = aNk −Mk,
N1 = m − n, and Nk+1 = Mk − Nk. Prove that the
sequences (Mi) and (Ni) diverge if and only if a > 4.

Sequences: rearrangements

MM 1021.* by Peter Ørno
Prove or disprove that a countably infinite set of posi-

tive real numbers with a finite nonzero cluster point can be

arranged in a sequence, (an), so that ((an)1/n) is conver-
gent.

MM 972. by Marius Solomon
Prove or disprove that the set of all positive rational

numbers can be arranged in an infinite sequence, (an), such

that ((an)1/n) is convergent.

Sequences: recurrences

NAvW 407. by M. L. J. Hautus

Let α > 0. Consider the sequence (xn)N+1
n=0 defined by

x0 = 1,

xn+1 = xn −
√
xn

n+ α
, (n = 0, 1, . . . , N),

where N is determined by the condition

xN+1 < 0 ≤ xN .
Show that such N exists and that

N ∼
(
e2 − 1

)
α, (α→∞).

TYCMJ 62. by N. J. Kuenzi
Let (xn) be a sequence defined by the recurrence re-

lation xn+1 = xn/(1 + 1
2xn) for n ≥ 0. For which initial

values x0 will the sequence converge to zero?

MM 1085. by Bert Waits
Consider the polynomial

P (x) = x4 − 14x2 + x+ 38.

Find a function g = g(x; ε1, ε2), where ε1, and ε2 are ±1,
such that the recursive sequence xn+1 = g(xn) converges to
a different zero of P (x) for each of the four distinct values
of (ε1, ε2).

CRUX 194. by Steven R. Conrad
A sequence {an} is defined by

a1 = X, an = Xan−1 , n = 2, 3, . . .

where X =
(

4
3

)3/4
. Discuss the convergence of the sequence

and find the value of the limit, if any.

AMM E2721. by Allen Emerson
Let a0, a1 > 0 and define an, n ≥ 2, recursively by

an =
√
an−1 +

√
an−2.

Show that (an) is convergent, and compute its limit.

NAvW 529. by D. Furth
For α ∈ R, x0 ∈ R, let S (α, x0) denote the sequence

(xn)∞n=0, defined by

xn+1 = (α− xn)−1 , (n ≥ 0).

Show that, for every k ≥ 2, there exists an α ∈ R such
that S (α, x0) has period k for every x0 (except for a finite
number of values of x0).
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Sequences: tetration

TYCMJ 41. by Harry Schor

Let b > 0, b1 = b, and bk+1 = bb
bk

for k = 1, 2, . . . .
Prove that there exists a number B, such that (bn) con-
verges if and only if b ≤ B.

Sequences: trigonometry

AMM E2788. by Kwang-Nan Chow
and David Protas

Let (un) be any sequence of real numbers such that
un →∞ and (cosun) converges. Does there always exist a
real number c such that (cos cun) diverges?

CRUX 80. by Jacques Marion
Does there exist a sequence of integers (an) such that

limn→∞ an = ∞ and the sequence {sin anx} converges for
all x ∈ [0, 2π]?

Series: arrays

FUNCT 1.5.2.
Let

S = X1,1 +X1,2 + · · ·+X1,n + · · ·

be a convergent series with sum S. Construct an array
where the entry Xi,j , for i ≥ 2, and j = 1, 2, . . . , in row
i and column j is given by the formula Xi,j = (Xi,j−1 +
Xi−1,j)/2. Also, Xi,0 = 0 and X0,j = 0, for i, j = 1, 2, . . . .
Show that each row in this array has sum S.

Series: binomial coefficients

AMM 6083. by Emil Grosswald
Prove that for real p > 0, the following identity holds:

∞∑

r=1

p

r(p+ r)
=

∞∑

r=1

(−1)r−1

(
p

r

)
1

r
.

What is the function represented by both sides of this iden-
tity?

Series: closed form expressions

PUTNAM 1977/A.4.
For 0 < x < 1, express

∞∑

n=0

x2n

1− x2n+1

as a rational function of x.

FQ B-361. by L. Carlitz
Show that

∞∑

r,s=0

xrysumin(r,s)vmax(r,s)

is a rational function of x, y, u, and v when these four
variables are less than one in absolute value.

Series: complex numbers

CRUX 40. by Jacques Marion
Let (an) be a sequence of nonzero complex numbers

such that for some r > 0,

m 6= n =⇒ |am − an| ≥ r.

If un = 1
|an|α , where α > 2, show that the series

∑∞
n=1 un

converges. What if α = 2?

Series: continuous functions

AMM E2626. by Richard Johnsonbaugh
Is there a positive continuous function f on [1,∞) such

that
∞∑

n=1

f(n) =∞

but
∞∑

n=1

anf(an) <∞

for all a > 1?

Series: cubes

AMM E2791. by John W. Vogel
If the series of real numbers

∑∞
n=1 an converges, does∑∞

n=1 a
3
n converge?

Series: differentiable functions

MM 1060. by Peter Ørno
Prove or disprove: There exists a function f defined

on [−1, 1] with f ′′ continuous such that
∑∞
n=1 f(1/n) con-

verges but
∑∞
n=1 |f(1/n)| diverges.

AMM 6112. by Jan Mycielski
Let f(x) be a differentiable function such that f(0) =

0, 0 < f(x) < x for x > 0, and f ′(0) = 1. Set f0(x) = x

and fn+1(x) = f(fn(x)) for n = 0, 1, . . . . Find conditions
under which the series

∑∞
n=0 f

n(1) converges (diverges).

Series: divergent series

MM 938. by S. C. Geller
and W. C. Waterhouse

Let
∑

an be an infinite series, and set sn = a1 + a2 +
· · ·+ an. A familiar theorem of Abel says that if the an are
positive and

∑
an diverges, then

∑
(an/sn) also diverges.

If we allow arbitrary signs, can we make
∑

an diverge to
+∞ while

∑
(an/sn) converges?

AMM E2558. by A. Torchinsky
Suppose that

∑
an is a divergent series of positive

terms, and let sn = a1 + · · · + an for n = 1, 2, . . . . For
which values of p does the series

∑
an/s

p
n converge?

MATYC 112. by Gino Fala
Prove: For all uncountable subsets X ⊂ (0,+∞), there

exists a denumerable subset A ⊂ X, A = {a1, a2, a3, . . .}
such that

∑∞
i=1 ai diverges.
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Series: evaluations

AMM 6243. by Emil Grosswald
Find in closed form the sum S of the conditionally

convergent series

∞∑

n=2

(−1)nn−1 logn.

CRUX 47. by Jacques Sauvé
For a > 1, evaluate

∞∑

k=1

k2

ak
.

Series: exponential function

FQ H-267. by V. E. Hoggatt, Jr.
Show that

S(x) =

∞∑

n=0

(kn+ 1)n−1xn

n!

satisfies S(x) = exS
k(x).

Series: hyperbolic functions

SIAM 76-2. by Murray Geller
Show that

∞∑

n=1

(
cosh6 nπ

√
2
)−1

=

2
√

2

15π
+

√
2

15
A+

(√
2− 1

)

12
A2 +

(
5− 3

√
2
)

120
A3 − 1

2
,

where

A =

√
2Γ4(1/8)

16π2Γ2(1/4)
.

SIAM 79-8. by Chih-Bing Ling
Show that, for a > 0,

∞∑

n=0

1

cosh(2n+ 1)a
=

∞∑

n=0

(−1)n

sinh(2n+ 1)a
.

CRUX 448. by G. Ramanaiah
A function f is said to be an inverse point function if

f(k) = f(1/k) for all k > 0. Show that the functions g and
h defined below are inverse point functions:

g(k) =
1

k

∞∑

n=1

(−1)n−1 (1− sechλnk)

λ3
n

,

h(k) =
1

k2

∞∑

n=1

λnk − tanhλnk

λ5
n

,

where λn = (2n− 1)π/2.

Series: inequalities

MM 922. by Alan Schwartz
Let (xn) be a sequence of nonnegative numbers satis-

fying
∞∑

n=0

xnxn+k ≤ Cxk

for some constant C and k = 0, 1, 2, . . . . Prove that
∑

xn
converges. Is the result still true if k = 0, 1, 2, . . . is replaced
with k = 1, 2, . . .?

Series: integrals

NAvW 406. by P. J. de Doelder
If

Ci(x) = −
∫ ∞

x

t−1 cos t dt,

then show that

∞∑

n=0

Ci
((
n+

1

2

)
a
)

=





1
2 log 2 + 1

2

∑k
s=1(−1)ss−1,

2kπ < a < 2(k + 1)π, k ≥ 0,

1
2 log 2 + 1

2

∑k−1
s=1 (−1)ss−1 + (−1)k(4k)−1,

a = 2kπ, k = 1, 2, . . . .

Series: iterated functions

DELTA 6.2-2. by Jan Mycielski

Considering f (0)(x) = x and f (n+1)(x) = f(f (n)(x))
for n = 0, 1, . . . , prove the following:

(a) If f(x) = ln(1 + x), then
∑∞

0 f (n)(1) =∞.

(b) If f(x) = x
1+x , then

∑∞
0 f (n)(1) =∞.

(c) If f(x) = x
1+
√
x

, then
∑∞

0 f (n)(1) <∞.

Series: iterated logarithms

MM 1032. by R. P. Boas
Let l1(x) = log x, l2(x) = log log x, and lk(x) =

log lk−1(x). Let N(k) be the first integer n such that
lk(n) > 1. When k is fixed, the integral test shows that
the series

∞∑

n=N(k)

1

nl1(n)l2(n) · · · (lk(n))p

diverges for p = 1 and converges for p > 1. It is known that
this equation is very slowly divergent if p = 1 and k (the
number of logarithmic factors in the equation) is no longer
fixed but depends on n, being taken as large as possible so
that all the logarithms exceed 1, i.e., so that lk(n) > 1 but
lk+1(n) < 1. With this choice of k = k(n), how large can
p = p(k) be before the series becomes convergent? Will
p = 2 or p = k suffice?
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Series: monotone sequences

CMB P265. by P. Erdős
Let 0 < a1 < a2 < · · · ,

∑
1
an

<∞. Show that

∑∣∣∣∣
n

an
− n+ 1

an+1

∣∣∣∣ <∞.

Series: pairs of sequences

CRUX 209. by L. F. Meyers
Suppose that the sequence (an)∞n=1 of nonnegative real

numbers converges to 0. Show that there exists a sequence
(en)∞n=1 each of whose terms is 1 or −1 such that

∞∑

n=1

enan

converges.

AMM E2591. by Jan Mycielski
Prove that for every sequence a1, a2, . . . with lim an =

0, there exists a sequence b1, b2, . . . with b1 ≥ b2 ≥ · · · ≥ 0
such that

∑
bn diverges and

∑
anbn converges absolutely.

Series: pairs of series

SPECT 8.3.
The real series

∑
an,

∑
bn are such that

∑
an is

convergent, no an is zero, and bn/an → 1 as n→∞. Does
the series

∑
bn have to be convergent?

Series: tail series

JRM 602. by Travis Fletcher
The sequence a1, a2, . . . satisfies the equation

an =

∞∑

k=n+1

ak

for each n. Find a9.

Sets

NAvW 558. by I. J. Schoenberg
Let S be the set of all (x1, x2) ∈ R2 such that x1, x2,

and 1 are arithmetically independent. Let S̃ be the set of
all X = (x1, x2) such that |X − A| 6= |X − B| if A,B ∈ Z2

and A 6= B. Prove:
(a) The set R2\S̃ has measure zero.

(b) S ⊂ S̃.

(c) The set S̃ contains no continuous arc.

Weierstrass zeta function

SIAM 78-5. by Chih-Bing Ling
Show that

ζ
(

1

2
| 1, i

)
=
π

2
,

ζ
(

1

2
| 1, eπi/3

)
=

π√
3
,

ζ

(
1

2
| 1, e

πi/6

√
3

)
= π
√

3,

where ζ (z | 2ω1, 2ω2) is a Weierstrass zeta function of z with
double pseudo-periods 2ω1 and 2ω2.
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Acoustics

FUNCT 1.3.6. by Andrew Fortune
If a record is played at 331/3 rpm, and three musical

notes are heard, namely middle C, E, and G, what will the
three notes be if

(a) the same record is played at 45 rpm?
(b) it is played at 78 rpm?

Astronomy

NYSMTJ 50.
An astronaut is in circular orbit around a spherical

planet. If the radius of the planet is r miles, and the altitude
of the orbit is amiles, express in terms of r and a the fraction
of the total surface area of the planet that the astronaut can
see during one complete orbit.

Demographics

MSJ 436. by Steven R. Conrad
What was the population of the United States when

a man, by going from New York City to San Francisco, a
distance of 3100 miles, would shift the center of population
of the United States 11/4 inches?

Electrical networks

JRM 529. by D. C. Morley
Current is made to flow between two opposite vertices

of a tesseract, each of whose 32 edges is a 1-ohm resistor.
What is the resistance across the tesseract?

SIAM 79-16.* by D. Singmaster
Determine the resistances R(n, i) between two nodes a

distance i apart in an n-cubical network if all of the edges
are of unit resistance.

AMM E2620. by Albert Mullin
and Derek Zave

Let Γ be the graph consisting of the vertices and edges
of one of the five regular polyhedra. Suppose all edges of Γ
are one-ohm resistors. Compute the resistance between any
two of the most remote vertices of Γ.

Answer the same question when Γ is the graph of the
n-dimensional cube.

FUNCT 3.4.2.
Many hallways have light switches at either end, allow-

ing the light to be operated from each. How can the wiring
be arranged to achieve this?

Engineering

ISMJ 11.1.
Suppose that a brick will support the weight of 999

bricks but will be crushed by the weight of 1000 bricks. We
will build a tower whose top is a column one brick wide and
K1(= 999) bricks high. Supporting it is a column two bricks
wide. Supposing that the weight of the 1-brick column is
evenly distributed, the top bricks of the 2-brick column will
not be crushed. The 2-brick column has K2 courses, the
largest possible, so the bottom bricks will not be crushed.
Then we start a 3-brick column and make it as long as
possible, etc. Show that for any j, Kj is within one whole
number of 1000/j.

Geography

FUNCT 2.3.2.

What point on the earth’s surface is farthest from the
earth’s center?

Meteorology

MM 1056. by Daniel A. Moran

“Oh, drat!” exclaimed the meteorologist stormily.
“I’ve just anchored my new rain gauge onto a cement post,
and it seems to be crooked.”

“What does your rain gauge look like?” asked his
friend, the math student.

“It’s in the shape of a circular cylinder 8 centimeters in
diameter with height-markings all around its sides. Its axis
is only 3 degrees off-vertical, but this will affect the amount
of rain entering the top, and besides, which height-marking
should I use? The water level will look tilted. I’m very
discouraged about this whole business.”

“Do you have any interest in measuring extremely light
rains?” asked his friend.

“Not really. Anything less than a half-centimeter is
too hard to measure accurately anyway, so I just record it
as being a ‘trace of precipitation’.”

“I think I can help you,” said the math student.

Tell the meteorologist how to correct the readings on
his crooked rain gauge.

Navigation

JRM 375. by R. Robinson Rowe

In World War II a destroyer miraculously survived a
straddling salvo of three near misses — two fore and aft to
port and the third amidship to starboard, twisting its keel
and hull so that it veered to starboard, even with full left
rudder. Its identity being still classified, it became known
as the USS Sidewinder.

When its skipper determined that with full left rudder
it circled to starboard on a long radius R, or that with full
right rudder it circled to starboard on a short radius r, he
computed the quickest way to reach a repair base due north.
With full left rudder he sailed until he was headed NE, then
switched to full right rudder, turning through a 270◦ loop
until he was headed NW, then switched back to full left
rudder. Repeating such cycles, he cruised the Sidewinder
along a trochoid-like sidewinding path to safety.

Now, if r was 1 mile, what was R? And, relatively,
how much longer was this path than the beeline distance to
the repair base?

JRM 478. by Ray Lipman

A swimmer is suddenly blanketed by fog in a river with
straight banks. Devise a program that will teach itself a
swimming procedure that assures the swimmer of attaining
a bank within some fixed time specified as an input param-
eter.
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Operations research

SIAM 76-7.* by R. D. Spinetto
Suppose a company wants to locate k service centers

that will service n communities and suppose that the com-
pany wants to locate these k centers in k of the communities
so that the total population distance traveled by the people
in the n − k communities without service centers to those
communities with service centers is minimized. This prob-
lem can be set up as a 0-1 integer programming problem as
follows. Let

xjj =

{
1, if community j gets a service center,

0, otherwise,

and let

xij =

{
1, if community i is to be serviced by a center

in community j,

0, otherwise.

Let pi be the population of community i and let dij be the
distance from community i to community j. The problem
then is to minimize

n∑

i=1

n∑

j=1

pidijxij ,

subject to constraints

n∑

j=1

xij = 1 for i = 1, 2, 3, . . . , n;

xij − xjj ≤ 0 for i = 1, 2, 3, . . . , n, and

for j = 1, 2, 3, . . . , n;
n∑

j=1

xjj = k,

and with the added condition that each of the variables xii
and xij takes on only the values of 0 or 1.

(a) What are the smallest n and k for which there ex-
ists a linear programming problem of the above form which
will have only non-0-1 optimal extreme point solutions?

(b) Can the non-0-1 extreme points of polyhedrons de-
termined by the constraints shown above be characterized
in any set theoretic way that would be useful in developing
more efficient algorithms for solving this facility location
problem?

Optics

CRUX 291. by Gilbert W. Kessler
Using soap, on a mirror, please trace
The apparent outline of your face;
Now explain (if you’re wise)
Why it turns out “half size”,
Using geometry as your base.

MENEMUI 1.3.2. by S. L. Lee
A certain diagram shows a cross section of a symmetri-

cal trough with side mirrors whose base is of a fixed length
a. If all the light hitting the mirror is concentrated on the
base of the trough, we shall say that the system has a con-
centration factor of x/a. Find the minimum value of l so
that the system has a concentration factor of 4. Find also
the angle of inclination of the mirror for this value of l.

PARAB 304.

Prove that a ray of light, having been reflected from
three mutually perpendicular mirrors in turn, becomes par-
allel to its original direction but in the opposite sense.

CRUX 289. by L. F. Meyers

Let L be a straight line, and let A and B be points not
on L. Let the speed of light on the side of L on which A
lies be c1, and let the speed of light on the other side of L
be c2. Characterize the points C on L for which the time
taken for the route ACB is smallest, if

(a) A and B are on the same side of L, (reflection);

(b) A and B are on opposite sides of L (refraction).

Physics: cars

FUNCT 1.3.2.

A road sign shows a car with skid marks behind. The
skid marks are “S” shaped but cross each other. How could
a car make the skid marks as indicated on the sign?

Physics: center of gravity

NYSMTJ 53. by Walter van B. Roberts

ISMJ 10.15.

Assume the center of gravity of a can full of beer is at
the center of the can. As the beer is consumed, the center
of gravity of the can and remaining contents begin to drop;
but by the time the can is empty, the center of gravity has
returned to its original position. When does the center of
gravity reach its lowest point?

Physics: equilibrium

CRUX 424. by J. Walter Lynch

Is it possible to make a convex object out of homoge-
neous material that will be at rest in exactly one position?

JRM 541. by Horace W. Hinkle

After the King had spitefully cut off his daughter Ra-
punzel’s hair, her lover braided it into a rope, spliced one
end to form an eyeloop, drew the other end through to form
a lariat, and lassoed the conical spire of Rapunzel’s tower,
which offered no friction to the lariat and was just steep
enough to prevent the rope from rolling or slipping. The
lariat found an equilibrium and supported his weight while
he climbed to Rapunzel’s window. How steep was the roof?

Physics: falling bodies

FUNCT 2.4.4.

From the roof of a 300-meter building in New York, two
marbles are dropped, one being released when the other has
already fallen 1 mm. How far apart will they be when the
first hits the ground?
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Physics: fluids

MM 971. by Sidney Kravitz

In designing pipes and other conduits it is usually de-
sirable to enclose the maximum cross-sectional area for a
given weight of pipe. Mathematically, this may be simpli-
fied by enclosing the maximum area for a given perimeter.

Dual ducts are often used to convey fluids in two direc-
tions. They have a portion of their perimeter in common.
For example, two equal squares, each of side s are placed
to share a common side. The total perimeter is 7s and
the total cross-sectional area is 2s2. Thus, the ratio of the
area to the square of the perimeter is 2/49. Assume equal
cross-sectional area of the two ducts.

(a) Which regular polygon is the most efficient for use
as a dual duct?

(b) Which contour is the most efficient for use as a dual
duct?

Physics: force fields

NAvW 393. by O. Bottema

In a 4-dimensional Euclidian space with orthogonal
coordinate system OX1X2X3X4 a force field is given such
that the force F per unit mass depends on the velocity v as
follows:

F = Av,

where F is the row matrix of the force components and A
is the matrix




0 p q r

−p 0 −r q

−q r 0 −p
−r −q p 0




for some constants p, q and r.

Determine the motion of a mass point released at a
given initial point with a given initial velocity.

NAvW 403. by O. Bottema

In a plane with an orthogonal coordinate system OXY ,
a force field is given. The X- and Y -components of the field
strength at point (x, y) are

Fx = p2y, Fy = q2x,

where p and q are positive constants. A mass point P is
to be released with initial velocity zero; for which release
points A will the the curve of P have an inflection point at
A?

Physics: gravity

SIAM 78-17. by J. S. Lew

It is well known that if a uniform thin flexible cord
is suspended freely from its endpoints in a uniform grav-
itational field, then the shape of the cord will be an arc
of a catenary. Determine the shape of the cord if we use a
very long one which requires the replacement of the uniform
gravitational field approximation by the inverse square field.

Physics: particles

JRM 564. by Sherry Nolan
Three perfectly elastic balls A, B, and C, considered as

equal point-masses, are moving at constant velocities along
the x-axis. At t = 0, A is at x = 0, C is at x = 1, and B
is somewhere between them. At t = 1, A and B collide. At
t = 2, a second collision occurs and at t = 3 a third. Where
was B at t = 0?

NAvW 461. by O. Bottema
A particle P of massmmoves on the surface of a sphere

(center O, radius R) under influence of a force F = mkAP ;
A is a given point in space (OA = d 6= 0) and k is a constant
unequal to zero. Determine the motion of P .

NAvW 437. by O. Bottema
The force on a unit of mass at the point A of a plane

field is directed towards the center O and equal to crn,
where OA = r and c and n are constants. Two mass points
P1 and P2 move, in the same direction, on different circles
with center O. Has the motion of P2, as seen from P1, a
permanent direction?

Physics: projectiles

AMM E2535. by M. S. Klamkin
A body is projected in a uniform gravitational field

and is subject to a resistance that is a function of its speed
|v|. If the acceleration a of the body always has a constant
direction, no matter what the initial velocity v0, show that

a = a0e
−kt

for some constant k.

CRUX 348. by Gilbert W. Kessler
I launched a missile, airward bound;
Velocity — the speed of sound;
Its angle-30. Can you tell
How far from here that missile fell?

PARAB 295. by J. Scott
A man is able to throw a cricket ball 30 meters verti-

cally upwards. What is the furthest distance he can throw
it horizontally? (Ignore any air resistance.)

SPECT 7.1.
Two projectiles are fired from a point O at the same

time. Describe how the direction and length of the straight
line joining the projectiles vary with time during the subse-
quent flight. (Air resistance can be neglected.)

SPECT 7.5.

Two men stand on the edges of two cliffs, the heights
of the cliffs above sea level being the same. The cliffs are
separated by a deep chasm. The men point loaded pistols
directly at each other (the pistols may not be of the same
make), and each fires at the same moment. Show that the
bullets collide.
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SPECT 8.2.
A projectile is fired upwards from a cliff 45 meters high

at an angle of 45◦ to the horizontal, and lands in the sea
at a distance 360 meters from the foot of the cliff. The
operation is then repeated, but this time a wind of speed
2 meters/sec is blowing on shore. How does this affect the
range of the projectile? With the wind blowing, could the
range of the projectile be increased by altering the angle of
inclination? (You may take the acceleration due to gravity

to be 10 meters/sec2.)

Physics: rods

NAvW 450. by O. Bottema
A train travels from A to B along a horizontal straight

track OX. On the floor of one of the cars, a rod PQ is
pivoted so that it may move about the fixed point P on
the floor in the vertical plane OXY . The rod is under the
influence of gravity. The motion of the train is arbitrary but
known beforehand. It is known that there exists at least one
initial position of the rod ( 6 QPX = α) such that the rod
will not fall to the floor during the entire journey. Suppose
that the train is initially at rest at A; it gets an impact such
that it leaves A with velocity V ; it moves uniformly to B.
Determine α such that the rod does not fall to the floor for
any position of B.

The mass center of the rod is G, PG = `, its mass
is m, its moment of inertia with respect to P is mρ2, the
acceleration of gravity is g.

Physics: rolling objects

FUNCT 1.5.1. by Elijah Glenn Merlo
If you are given a hoop, a disc, and a sphere, each of

uniform density and each of radius r units, and you roll
them simultaneously down the slope of steepest descent of
an inclined plane, which ones arrive first and last at the
inclined plane’s foot?

FUNCT 1.4.1. by Alisdair McAndrew
Imagine a circle rolling, without slipping, on a flat

surface. At the same time, a plank rolls (without slipping)
along the top of the circle. What is the ratio of the speed
of the plank to the speed of the center of the circle?

Physics: solid geometry

NAvW 468. by O. Bottema
On a Cartesian frame OXY Z, with OZ vertical and

upward, the paraboloid S has the equation

x2 + y2 = 2pz, p > 0.

A particle P moves under gravity (with acceleration g) on
the smooth inner surface of S.

(a) Show that P moves between two parallel circles Ci
on S, given by z = z1 and z = z2.

If P is on Ci, let its angular velocity about OZ be ωi
(i = 1, 2).

(b) Show that ω1z1 = ω2z2 and ω1ω2 = g/p.

Physics: systems of differential equations

SIAM 79-7. by O. Hájek
The controlled harmonic oscillator x̊ = Ax+bu, A =(

0 1

−1 0

)
, has the curious property that it is controllable

for every real vector b 6= 0. Determine which real square
matrices A have this “super-controllability” property.

Physics: temperature

AMM S11. by R. C. Buck and E. F. Buck
A solid tetrahedron carries a continuous temperature

distribution. What is the maximum number of points hav-
ing the same temperature one can be sure of finding on the
edges of the tetrahedron?

Physics: tunnels

PME 343. by R. Robinson Rowe
There is some interest in a fall-through tunnel un-

der the Bering Strait. From Cape Prince of Wales on
Alaska’s Seward Peninsula to Mys Dezhneva (East Cape)
on Siberia’s Chukchi Peninsula is 51 miles. A straight
tunnel 58 miles long could be driven in earth below the
bed of the Strait, which is 20 fathoms deep near each
shore and 24 fathoms near mid-Strait. A frictionless ve-
hicle could “fall” through such a tunnel without motive
power. How long would it take? (At latitude 66◦ North, the
earth’s radius is 3954 miles and the acceleration of gravity,
g = 32.23 ft/sec2.)
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Algorithms

JRM 513. by P. J. Flores
As their boat sinks, N crewmen are arranged in a circle

and counted off by k’s until only one remains, who is given
the sole lifejacket. As each man is eliminated, the circle is
closed up and the count is resumed. Devise an algorithm
that produces the position S(k,N) of the survivor.

The diagonal sequence S(N,N) begins 1, 1, 2, 2, 2, 4,
5. Devise an algorithm to determine the smallest N such
that S(N,N) = r, for any given r.

SIAM 79-17.* by W. R. Utz
Determine an algorithm, better than complete enumer-

ation, for the following problem: Given a nonnegative in-
teger matrix, permute the entries in each column indepen-
dently so as to minimize the largest row sum.

JRM C8. by Marshall Willheit
What is the least number of BASIC commands that

will print out every possible way of changing a dollar?

Arrays: 0-1 matrices

AMM E2794.* by Robert A. Leslie
Let m, n, r, and c be positive integers with rm = cn.

How many m× n matrices are there with each entry either
0 or 1 and where every row sum is r and every column sum
is c?

Arrays: binary arrays

FUNCT 2.3.1.
Two students keep a calendar of the weather as follows:

Days with good weather are marked +, while days with
bad weather are marked −. Each student makes three
observations daily, at the same times. The first student
writes − if it rains at the time of any of these observations,
but otherwise he writes +. The second student writes + if
the weather is fair at any of these times and − otherwise.
Thus it would seem that the weather on any given day might
be described as ++, +−, −+, or −− (the first symbol
made by the first student, the second symbol by the second
student). Are these four cases all actually possible?

SSM 3676. by Charles W. Trigg
In the following square array, select 10 elements (two

from each row and each column) so as to include a nonad-
jacent a and b in each column and row.

a b a b b

a b b a a

a b b a a

b a a b b

b a b a a

How many distinct solutions are there?

Arrays: circular arrays

OSSMB 76-14.
Let any number of 0’s and 1’s be arranged around a

circle in any order. Let a concentric copy of this arrange-
ment be spun around on top of it through any number of
positions to pair off the numbers one above the other. In
some pairs a 0 faces a 0, or a 1 faces a 1. No matter what
the situation, however, prove that the number of pairs in
which a 0 faces a 1 is even.

FUNCT 2.2.3.
Fifty knights of King Arthur sit at a round table. Each

has a goblet of red or white wine in front of him. At
midnight, each passes his goblet to his right-hand neighbor
if he has red wine, to his left-hand neighbor if he has white
wine. Assuming that both red and white wine were at the
table, prove that someone at the table will be left without
wine after midnight. Is the conclusion still true if the King
was also at the table?

Arrays: distinct rows

KURSCHAK 1979/3.
Letters are arranged in an n× n array so that no two

rows of the array are identical. Prove that it is possible to
delete one of the columns of the array so that the remaining
rows will remain distinct.

Arrays: inequalities

OSSMB 77-6.
Let A denote an m×n matrix of distinct real numbers.

Prove that there exists a real number x such that either each
row of A contains a pair of elements that straddle x or each
column contains a pair of elements that straddle x.

Arrays: Latin rectangles

AMM E2577. by F. W. Light, Jr.
Given the 2× n Latin rectangle

1 2 3 · · · n− 1 n

2 3 4 · · · n 1,

find the number of ways f(k) in which a 3×n Latin rectangle
can be built up from it by adding a third row starting with
k, where k is one of the numbers 3, 4, . . . , n.

Arrays: maxima and minima

CRUX 2. by Léo Sauvé
A rectangular array of m rows and n columns contains

mn distinct real numbers. For i = 1, 2, . . . ,m, let si denote
the smallest number of the ith row; and for j = 1, 2, . . . , n,
let lj denote the largest number of the jth column. Let
A = max(si) and B = min(lj). Compare A and B.

MM 1061. by Edward T. H. Wang
In how many ways can n2 distinct real numbers be

arranged into an n× n array (aij) such that

max
j

min
i
aij = min

i
max
j
aij?

OMG 18.1.3.
The positive integers 1, 2, 3, . . . , 25 have been arranged

very carefully into the table below:

11 17 25 19 16

24 10 13 15 3

12 5 14 2 18

23 4 1 8 22

6 20 7 21 9

In 120 different ways a set of 5 numbers from this table
can be chosen so that a number is taken from each row and
from each column. In each set of 5 there occurs a minimum
number. Find the largest number which occurs as one of
these minima.
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PARAB 263.
Three hundred soldiers are positioned in 15 rows, each

containing 20 soldiers. From each of the 20 columns thus
formed, the shortest soldier falls out and the tallest of these
20 men proves to be Private Jones. They then resume their
places on the parade ground. Next the tallest soldier in each
row falls out, and the shortest of these 15 soldiers is Private
Smith. Who is taller, Jones or Smith?

SIAM 75-2. by G. J. Simmons
Is it possible to form a marching column of two’s with

n− 1 members from each of n regiments in such a way that
every regiment is paired with every other regiment and no
two members of the same regiment have fewer than the ob-
vious maximum-minimum of b(n− 3)/2c ranks separating
them?

Arrays: symmetric arrays

AMM E2717.* by E. Ehrhart
Find the number of symmetric 4 × 4 matrices whose

entries are all the integers from 1 to 10 and whose row sums
are all equal.

Arrays: transformations

PARAB 311.
In a classroom, there are 25 seats in a square array,

each occupied by a pupil. Each pupil moves to an adjacent
seat to his right, left, front or rear, or stays in his seat.
Prove that at least one pupil must in fact have stayed in his
seat.

PARAB 326.
Suppose that mn boys are standing in a rectangular

formation of m rows and n columns. Suppose that the boys
in each row get shorter going from left to right. Suppose
someone rearranges each column, independently of one an-
other, so that going from front to back the boys get shorter.
Show that the boys in each row still get shorter going left
to right.

Arrays: triangular arrays

AMM E2541. by E. T. H. Wang
A Steinhaus triangle is formed as follows: Start with a

row of n plus and minus signs. Under each pair of like signs,
a plus sign is written and under each pair of unlike signs,
a minus sign is written. Continuing, one finally obtains a
triangle of n(n+ 1)/2 plus and minus signs.

Prove that if the first row pattern of a Steinhaus trian-
gle is −−+−−+ · · · (i.e., two minuses followed by a plus),
then the same pattern repeats itself when one traverses all
the entries in a clockwise spiral fashion.

Card shuffles

CRUX PS5-1.
A pack of 13 distinct cards is shuffled in some particular

manner and then repeatedly in exactly the same manner.
What is the maximum number of shuffles required for the
cards to return to their original position?

OSSMB 77-14.
A perfect shuffle of a deck of 2n cards, ordered as 1, 2,

3, . . . , 2n, yields the order 1, n + 1, 2, n + 2, 3, . . . , 2n − 2,
2n. How many perfect shuffles will restore the deck to its
original order?

PARAB 327.

If a pack of playing cards is shuffled systematically
and the operation of shuffling repeated exactly, then after a
certain number of repetitions of the operation, the original
order of the pack will be restored. Suppose the pack is
shuffled as follows: Hold the pack face down in the left
hand; in the right hand, take the top half of the pack and
insert it into the lower half so that each right-hand card is
above the corresponding left-hand card.

(a) After how many shuffles is a 52-card pack returned
to order?

(b) After how many shuffles is a 26-card pack returned
to order?

PARAB 343.

We define a “shuffle” of a deck of N cards numbered
1, 2, . . . , N to be a specific procedure for arranging them in
a different order. If one systematically repeats the same
shuffle of the deck enough times, it returns to its original
order. What shuffle of a deck of 28 cards requires the largest
number of repetitions before returning to the original order?

SPECT 11.6. by A. K. Austin

A number of cards are dealt into m not necessarily
equal piles. They are then collected together and redealt
into m+ k piles, where k > 0. Show that there are at least
k + 1 cards that are in smaller piles in the second dealing
than in the first.

FUNCT 2.1.1.

We have a pack of cards, an even number c of them.
By a “shuffle” we shall mean that we divide the pack into a
top half and a bottom half, then put the pack back together
again by alternately taking one card from each half, starting
with the bottom half. How many shuffles does it take for
the cards to return to their original position?

Cards

TYCMJ 89. by Warren Page

Let n be a positive integer. Mark any one card in a
deck of 3n playing cards. Deal the cards to the positions in
an n × 3 array proceeding across the first row from left to
right, then similarly across the second row, and so on until
the nth row of cards has been dealt. Assemble the n cards
in each column into a vertical stack such that the top to
bottom order in the stack corresponds to the top to bottom
order in the column. Combine the stacks by sandwiching
the stack containing the marked card between the other two
stacks. Repeat this dealing and stacking procedure twice
more. For which values of n is the final position of the
marked card independent of its initial position?

PARAB 427.

The four aces, kings, queens, and jacks are taken from
a pack of cards and dealt to four players. Thereupon, the
bank pays $1 for every jack held, $3 for every queen, $5 for
every king, and $7 for every ace. In how many ways can it
happen that all four players receive equal payments (namely
$16)?
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Coloring problems: arcs

FQ B-415. by V. E. Hoggatt, Jr.
The circumference of a circle is partitioned into n arcs

of equal length. In how many ways can one color these arcs
if each arc must be red, white, or blue? Colorings that can
be rotated into one another should be considered to be the
same.

Coloring problems: concyclic points

CANADA 1976/8.
Each of the 36 line segments joining 9 distinct points

on a circle is colored either red or blue. Suppose that each
triangle determined by 3 of the 9 points contains at least
one red side. Prove that there are four points such that the
6 segments connecting them are all red.

Coloring problems: graphs

AMM 6157.* by C. C. Chen and D. E. Daykin
(a) Find integers ∆ and p with the following property:

Whenever the lines of the complete graph Kp are colored so
that every vertex is on not more than ∆ lines of each color,
there is a triangle whose lines have different colors.

(b) Find integers δ, p, and n with the following prop-
erty: Whenever the lines of a complete graph Kp are colored
with n colors so that every vertex is on at least δ lines of
each color, there is a triangle whose lines have different col-
ors.

Coloring problems: hexagons

TYCMJ 42. by Bernard Eisenberg
Each pair of vertices of a convex hexagon is connected

with a straight line segment that is either blue or red.
Among the 20 triangles, each of which is determined by
three vertices, prove that at least two of the triangles con-
sist entirely of blue segments, two consist entirely of red
segments, or one triangle consists of blue segments and one
consists of red segments.

Coloring problems: pennies

AMM E2527. by F. D. Hammer
(a) A finite number of pennies are placed flat in the

plane. Prove that these (nonoverlapping) pennies can be
painted with at most four colors so that touching pennies
bear different colors.

(b) Prove the same result for an infinite collection of
pennies in the plane.

(c) What is the minimum number of pennies that re-
quires four colors?

AMM E2651. by P. Erdős
PARAB 387.

A finite number of pennies are placed flat on the plane
so that no two overlap and no three touch each other. Prove
that these pennies can be painted with at most three colors
so that touching pennies bear different colors.

AMM E2745. by David Hammer
Can every collection of nonoverlapping pennies in the

plane be colored with three colors so that no penny touches
more than one penny with the same color?

Coloring problems: pentagons

ISMJ 11.13.
Let ABCDE be a convex pentagon. In how many ways

is it possible to color the edges and diagonals red or blue
so that no triangle determined by three vertices has all its
sides the same color?

Coloring problems: points in plane

PUTNAM 1979/A.4.
Let A be a set of 2n points in the plane, no three of

which are collinear. Suppose that n of them are colored
red and the remaining n blue. Prove or disprove: there
are n closed straight line segments, no two with a point in
common, such that the endpoints of each segment are points
of A having different colors.

Coloring problems: sets

TYCMJ 113. by Sidney Penner
Let S be a set of n(n + 1)/2 elements and let k =

bn(n+1)/6c. Assume that k of the elements of S are colored
red, k are colored white and k are colored blue, with one
remaining element (if there is one) colored red. Show that,
for n > 3, it is possible to partition S into n subsets Tm
(m = 1, 2, . . . , n) such that for each m,

(a) Tm has m elements, and
(b) the elements of Tm are all the same color.

Coloring problems: tournaments

SIAM 78-11. by N. Megiddo
We define an edge k-coloring of a tournament (i.e., a

directed graph with a unique edge between every pair of
vertices) to be that of coloring the edges in k colors such that
every directed cycle of length n contains at least min(k, n)
edges of distinct colors. Does every tournament have a
three-coloring?

Coloring problems: triangles

PARAB 362.
(a) In the morning, a working man leaves his cat in the

house. The house has one door which has been left open.
When the man returns in the evening, the cat is outside.
Prove that the cat crossed the threshold an odd number of
times.

(b) A triangle ABC is the union of a finite family, F ,
of triangles. If two different triangles in F intersect, they
intersect in a vertex of both or an edge of both. Color each
of the vertices of the triangles in F red, blue, or yellow.
Color A red, B blue, and C yellow. If a vertex V lies on
AB, color it red or blue; if V lies on BC, color it blue or
yellow; and if V lies on CA, color it red or yellow. Prove
that the number of triangles in F which have one red, one
blue, and one yellow vertex is odd.

Compositions

PARAB 408.
The number 3 can be expressed as the sum of one or

more positive integers in 4 ways: 3, 2+1, 1+2, and 1+1+1.
Note that the ordering of the summands is significant; 1+2
is counted as well as 2 + 1. Find a formula for the number
of ways in which an arbitrary positive integer n can be so
expressed as a sum of positive integers.
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AMM S20. by A. P. Hillman
Let n be a nonnegative integer, and let S consist of all

ordered quintuples Q = (x1, x2, x3, x4, x5) of nonnegative
integers xi with x1 + x2 + x3 + x4 + x5 = n. Prove or
disprove that there are exactly the same number of Q in
S with x2 ≤ x3 ≤ x4 ≤ x5 as there are satisfying the
simultaneous conditions

x1 ≤ x2 ≤ x4,

x1 ≤ x3 ≤ x4,

x3 ≤ x5.

MM 1026. by Michael Capobianco
A decomposition of a positive integer n is an or-

dered tuple (n1, n2, . . . , nk) of positive integers such that∑k
i=1 ni = n. Find the total number of decompositions of

n that are palindromes.

Configurations: chains

PARAB 267.
A chain has 2047 links in it. It is to be separated into

a number of pieces by cutting and disengaging appropriate
links, in such a way that any number of links (from 1 to
2047) may be gathered together from the parts of chain
thus produced. What is the smallest number of links which
must be cut to achieve this?

Configurations: circular arrays

JRM 729. by Frank Rubin
A blind man keeps his keys on a circular key ring.

There are s distinct handle shapes that he can tell apart
by feel, and he can purchase any key with any desired
handle shape. Assume that all keys are symmetrical so
that a rotation of the key ring about an axis in its plane is
undetectable from examination of a single key. How many
keys can he keep on the ring and still be able to select the
proper key by feel?

PARAB 266.
At the mad hatter’s afternoon tea party, there are

twenty seats numbered consecutively clockwise around a cir-
cular table with 4 neighboring ones with red cushions (1, 2,
3, and 4) being initially occupied by Alice, the mad hatter,
the march hare, and the dormouse respectively. Instead
of all moving round one seat at a time (as in the classical
story), the members of the party move quite independently
as the fancy takes them, but always to an unoccupied seat 7
places away in either direction. Even the dormouse proves
to be wakeful enough to carry out this complicated maneu-
ver several times.

At a later time, it turns out that they are again sitting
next to one another on the same red-upholstered chairs (1,
2, 3, and 4), though none is in the same place as initially.
How many possible seating arrangements are there at the
finish and what are they?

PARAB 406.
Given n beads numbered 1, 2, 3, . . . , n, show how you

can make a single-strand closed necklace from them with
the property that the numbers on adjacent beads always
differ by either 1 or 2.

CANADA 1975/6.
OSSMB 77-7.

(a) Fifteen chairs are equally placed around a circular
table on which are name cards for 15 guests. The guests
fail to notice these cards until after they have sat down and
it turns out that no one is sitting in front of his own card.
Prove that the table can be rotated so that at least two of
the guests are simultaneously correctly seated.

(b) Give an example of an arrangement in which just
one of the 15 guests is correctly seated and for which no
rotation correctly places more than one person.

Configurations: committees

USA 1979/5.
A certain organization has n members, and it has n+1

three-member committees, no two of which have identical
membership. Prove that there are two committees which
share exactly one member.

JRM C4. by David L. Silverman
A certain corporation issues shares only in integer

amounts, and every shareholder is a director. On every
“yea-nay” question that comes before the Board, each di-
rector’s vote is weighted according to the number of shares
he holds. Among the corporate bylaws are two that govern
the various numbers of shares held by the directors.

(1) No tie vote must be possible (unless all directors
abstain).

(2) No group of directors must be capable of being
outvoted by a smaller group.

Given N directors, let S(N) represent the minimum
total number of shares consistent with bylaws (1) and (2).
Listed below are the values for S for N = 1 through 5, to-
gether with the share allocations that result in these values
of S:

N S(N) Share Allocation

1 1 1

2 3 1, 2

3 9 2, 3, 4

4 21 3, 5, 6, 7

5 51 6, 9, 11, 12, 13

The allocations are unique, though they may not be so
for larger values of N . By the time one gets to the case
N = 6, however, one is likely to find pencil and paper
analysis formidable. Write a program that will list S(N)
for N up to 10 as well as all share allocations that total
S(N) without violating either of the two bylaws.

SIAM 78-9.* by W. Aiello and T. V. Narayana
Suppose we assign positive integer weights x1, . . . , xn

to the vote of each member of a board of directors that con-
sists of n members so that the following conditions apply:

(1) Different subsets of the board always have differ-
ent total weights so that there are no ties in voting (tie-
avoiding).

(2) Any subset of size k will always have more weight
than any subset of size k− 1 (k = 1, . . . , n) so that any ma-
jority carries the vote, abstentions allowed (nondistorting).

Find a solution (x1, . . . , xn) such that no other solution
(y1, . . . , yn) exists with xi ≥ yi for i = 1, . . . , n.
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Configurations: concyclic points

CRUX 354. by Sidney Penner
NYSMTJ 81. by Sidney Penner

Along a circular road there are n identical parked au-
tomobiles. The total amount of gas in all of the vehicles
is enough for only one of them to travel the whole circular
road. Prove that at least one of these cars could travel the
entire road, taking on gas along the way from the other n−1
vehicles.

Configurations: couples

OMG 18.2.1.
At a dance there are 50 men and 38 women. How

many different couples could appear on the dance floor?
How many couples could appear if there are three men such
that two certain women refuse to dance with any in that set
of three men?

Configurations: digital displays

PENT 302. by Randall J. Covill
Consider the following digital display problem. A

character is a set of parallel and/or perpendicular non-
intersecting line segments of constant length. If a character
has height, the height is equal to a constant whole num-
ber of line segments. If a character has width, the width is
equal to a different constant whole number of line segments.
If any segment or subset of segments can be either displayed
or not displayed, what is the minimum number of segments
necessary to represent all ten digits 0 to 9?

Configurations: maxima and minima

ISMJ 13.22.
A box is locked with several padlocks, all of which must

be opened to open the box and all of which have different
keys. Five people each have keys to some of the locks. No
two of the five can open the box but any three of them can.
What is the smallest number of locks with which this can
be done?

PARAB 372.
After the first day of classes, each of 5 different students

knows a different bit of gossip about the teachers in their
school. When they get to their separate homes, the tele-
phoning begins. Assume that whenever anyone calls anyone
else, each tells the other all the gossip he knows. What is
the smallest number of calls after which it is possible for
every student to know all 5 bits of gossip?

Configurations: money problems

OMG 15.3.2.
In how many ways is it possible to make up 28 cents

using coins worth 1 cent, 5 cents, 10 cents, and 15 cents?

Configurations: people

SSM 3579. by Stanley E. Payne
Fifty-six graduate assistants are to be split into eight

seminars, with seven assistants in each seminar and with
each grouping to be maintained for one month. Although
the school year consists of nine months, a little time lost here
and there during the year renders eight distinct groupings
sufficient. The problem is, then, to group the assistants
in eight distinct ways so as never to have two assistants
in a seminar together more than once. Show that this is
possible.

CRUX 263. by Sahib Ram Mandan
Ten friends, identified by the digits 0, 1, . . . , 9, form a

lunch club. Each day four of them meet and have lunch
together. Describe minimal sets of lunches ijkl such that

(i) every two of the friends lunch together an equal
number of times;

(ii) every three of them lunch together just once;
(iii) every four of them lunch together just once.

USA 1978/5.
Nine mathematicians meet at an international confer-

ence and discover that among any three of them, at least
two speak a common language. If each of the mathemati-
cians can speak at most three languages, prove that there
are at least three of the mathematicians who can speak the
same language.

PARAB 313.
The King’s men have captured a band of outlaws with

an odd number of men. The rangers demand to know which
ones shot the King’s deer. The outlaws in panic each point
to the nearest man. Prove that at least one man will not
be accused. (Assume that no two pairs of outlaws are the
same distance apart.)

Counting problems: geometric figures

AMM 6179. by E. Ehrhart
Find all cubes in a cubic lattice whose vertices are

lattice points.

MM 939. by Richard A. Gibbs

Consider an n×n×n cube consisting of n3 unit cubes.
Using only the unit cubes, determine, in terms of n:

(a) the number of possible sizes of rectangular paral-
lelepipeds “imbedded” in the cube,

(b) the number of cubes of all sizes “imbedded” in the
cube, and

(c) the number of rectangular parallelepipeds of all
sizes “imbedded” in the cube.

PARAB 296.
A parallelepiped is a solid figure with six faces, each of

which is a parallelogram. You are given four points, A, B,
C, D, in space not all lying in the same plane. How many
parallelepipeds exist with A, B, C, D included amongst the
eight vertices?

CRUX 286. by Richard A. Gibbs
Find, for positive integers W ≤ L ≤ H:
(a) the number of rectangular parallelepipeds,
(b) the number of cubes,
(c) the number of different sizes of rectangular par-

allelepipeds imbedded in a W × L × H rectangular paral-
lelepiped made up of WLH unit cubes.

CRUX 204. by R. Robinson Rowe
A sheet of coordinate paper is 80 spaces wide by 100

spaces long with 8,000 small squares.
(a) Including larger ones, how many squares are there?
(b) How many oblongs (nonsquare rectangles) are

there?
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SSM 3655. by Herta T. Freitag
The total sum of the areas of all squares of an n × n

checkerboard is 1 for n = 1, 8 for n = 2, and 34 for n = 3.
Obtain a formula for the total area of all possible squares
on an n× n checkerboard.

CRUX 19. by H. G. Dworschak
How many different triangles can be formed from n

straight rods of lengths 1, 2, 3, . . . , n units?

ISMJ J11.20.
How many triangles are there whose vertices are ver-

tices of a given cube?

MM 1001. by Edward T. Wang
Find a formula for the number of parallelograms con-

tained in an equilateral triangular lattice of side n.

SSM 3704. by Herta T. Freitag
Find a formula for the number of rhombuses contained

in an equilateral triangular lattice of side n.

MM 975. by Charles L. Hamberg
and Thomas M. Green

SSM 3746. by Michael Brozinsky
Find a formula for the number of regular hexagons

contained in an equilateral triangular lattice of side n.

Counting problems: jukeboxes

CRUX 280. by L. F. Meyers
A jukebox has N buttons.
(a) If the set of N buttons is subdivided into disjoint

subsets, and a customer is required to press exactly one
button from each subset in order to make a selection, what
is the distribution of buttons which gives the maximum
possible number of different selections?

(b) What choice of n will allow the greatest number of
selections if a customer, in making a selection, may press
any n distinct buttons out of the N? How many selections
are possible then?

Counting problems: ordered pairs

FQ B-332. by Philip Mana
Let a(n) be the number of ordered pairs of integers

(r, s) with both 0 ≤ r ≤ s and 2r + s = n. Find the
generating function

A(x) = a(0) + xa(1) + x2a(2) + · · · .

Counting problems: paths

CANADA 1977/7.
OMG 16.2.7.

A rectangular city is exactly m blocks long and n
blocks wide. A woman lives in the southwest corner of the
city and works in the northeast corner. She walks to work
each day but, on any given trip, she makes sure that her
path does not include any intersection twice. Show that
the number f(m,n) of different paths she can take to work
satisfies f(m,n) ≤ 2mn.

CANADA 1979/5.
A walk consists of a sequence of steps of length 1 taken

in directions north, south, east or west. A walk is self-
avoiding if it never passes through the same point twice.
Let f(n) denote the number of n-step self-avoiding walks
which begin at the origin. Compute f(1), f(2), f(3), f(4)
and show that

2n < f(n) ≤ 4 · 3n−1.

AUSTRALIA 1979/3.
IMO 1979/6.

Let A and E be opposite vertices of a regular octagon.
A frog starts jumping at vertex A. From any vertex of
the octagon except E, it may jump to either of the two
adjacent vertices. When it reaches vertex E, the frog stops
and stays there. Let an be the number of distinct paths
of exactly n jumps ending at E. Prove that a2n−1 = 0,

a2n = 1√
2

(xn−1 − yn−1), n = 1, 2, 3, . . ., where x = 2 +
√

2

and y = 2−
√

2.

OMG 16.1.1.
If movement is allowed only in the direction of the

arrows in a certain diagram, find the number of paths from
A to B.

SIAM 75-1. by R. W. Allen
An optical fiber carries power in two modes represented

by 0 and 1. The path of one photon is represented by an
N -bit binary number. The sequence 0 1 or 1 0 is counted
as one transition. Thus the path 1 0 0 0 1 1 1 contains two
transitions and three zeros. Determine the number of paths
S(N,T,M) that contain T transitions and M zeros. Prove
whether or not the following formula is valid for all N :

S(N,T,M) = 2H(N,T )

(
M − 1

U

)(
N −M − 1

U

)
,

where

H(2N,T ) =

(
N−1
V

)
(
N−1
U

) ,

H(2N + 1, T ) =

(
2N
2V

)
(

2N
T−1

) ,

and

U =
⌊
T − 1

2

⌋
, V =

⌊
T

2

⌋
.

AMM E2608. by Judith Q. Longyear
A child is riding in a train n cars long and wishes to

go exploring. An exploration may be described by listing
in order the cars traversed; each exploration must end in
the same car in which it began. How many explorations of
length k can it make?

Suppose we regard the exploration

(e1, e2, . . . , ek)

to be equivalent with all explorations

(er, er+1, . . . , ek, e1, . . . , er−1)

(r = 2, . . . , k). How many nonequivalent explorations can
it make?
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Counting problems: sequences

MM 989. by L. Carlitz and Richard Scoville
Let r ≥ 0, s ≥ 0, and r + s ≤ n. Find the number of

sequences of positive integers (a1, a2, . . . , an) such that for
1 ≤ k ≤ n, ak ≤ k where ak = 1 for r values of k, and
ak = k for s values of k.

OSSMB 76-3.
The numbers 1, 2, . . . , n are placed in a row so that,

except for an arbitrary choice of first number, the number
k can be placed in the row only if it is preceded either by
k − 1 or k + 1 (not necessarily immediately). How many
such arrangements are there for the numbers 1, 2, . . . , n?

Counting problems: subsets

OSSMB 75-9.
Counting the empty set, how many subsets of the set

{1, 2, . . . , n} do not contain a pair of consecutive numbers?

AMM E2521.* by John A. Cross
An instructor has a file of p questions of equal diag-

nostic value in testing students on a certain topic. He gives
q-question tests repeatedly (q < p). How many test forms
can he compose if any n-size subset, 1 ≤ n < q, of the p
questions may appear on at most two tests, and no subset of
size m > n may appear on more than one test? Determine
an algorithm for composing the set of possible tests, for any
allowable p, q, and n.

OSSMB 78-5.
The Fibonacci sequence {Fn} satisfies

Fn =
1√
5

(
1 +
√

5

2

)n
− 1√

5

(
1−
√

5

2

)n

for all n. A sequence {bn} is defined by requiring that bn is
the number of subsets of {1, 2, . . . , n} having the property
that any two different elements of the subset differ by more
than 1. Find a similar formula for the sequence {bn}.

AMM E2764. by Ioan Tomescu
Let X be a finite set. Prove that∑
|A1 ∪A2 ∪ · · · ∪Ak|

=
(

2k − 1
)∑

|A1 ∩A2 ∩ · · · ∩Ak| ,

where the sums are over all choices of A1, . . . , Ak ⊆ X.

Counting problems: tournaments

PARAB 264.
In the 1974 cricket XI, there were 7 boys who had been

in the 1973 XI; and in the 1973 XI, there were 8 boys who
had been in the 1972 XI. What is the least number who
have been in all three XI’s?

Answer the same question with x instead of 7 and y
instead of 8. For what values of x and y is it possible that
there were no boys in all three XI’s?

Counting problems: words

CRUX 433. by Dan Sokolowsky
An exam question asked: How many distinct 5-letter

words can be formed using the letters A, A, A, B, B, B?
A student misread the question and determined instead

the number of distinct 6-letter words using these same let-
ters, yet obtained the correct answer. Was this accidental
or is it a special case of a more general pattern?

PARAB 341.
A certain tribe of early men had an alphabet consisting

of two letters A and B. They also had the rule that, in any
word, ABA was equivalent to B (that is, each could replace
the other in the word and the word was considered to be
the same); and the rule that BAB was equivalent to A.

(a) How many different words could be represented?
(b) Find two other ways of writing down the name of

the Swedish pop group ABBA.

Distribution problems

PARAB 322.
Suppose there were 250,000 people in Sydney in 1968

who made between $8,000 and $9,000. Show that there were
at least 3 people who made the same salary down to the last
cent.

Geometry: coloring problems

IMO 1979/2.
AUSTRALIA 1979/1.

Consider a given prism with pentagons A1A2A3A4A5
and B1B2B3B4B5 as top and bottom faces. Each side of
the two pentagons and each of the line segments AiBj , for
all i, j = 1, . . . , 5, is colored either red or green. Every
triangle whose vertices are vertices of the prism and whose
sides have all been colored has two sides of a different color.
Show that all 10 sides of the top and bottom faces are the
same color.

Geometry: concyclic points

TYCMJ 33. by Norman Schaumberger
Let P be any point on a circle. Prove that the four

distances from P to the vertices of a square inscribed in the
circle cannot all be rational.

TYCMJ 105. by Norman Schaumberger
Let n > 1 be odd and {A1, A2, . . . , An} be a set of n

points on a circle such that the lengths of the chords AiAi+1
(i = 1, 2, . . . , n;An+1 = A1) are all equal. Is it possible that
three of these points are rational?

ISMJ 13.27.
Show that if 5 points are located on a circle so that

every 3 of them lie on a semicircle, then all 5 of them are
on a semicircle.

Geometry: dissection problems

OSSMB 79-14.
A convex n-gon is a plane figure with n sides such that

a straight line joining any two points on different sides lies
inside the figure. For what values of n can the figure be
divided into black and white triangles so that all of the
sides are edges of black triangles and no two triangles of the
same color share an edge? (Note that points are added in
the interior.)

Geometry: points in plane

ISMJ 10.14.
Suppose that n points are located in the plane so that

the maximum distance apart of any two of them is 1. Prove
that there are not more than n pairs of points whose dis-
tance apart is 1 and that the n points can be located so that
there are n pairs whose distance apart is 1.
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AMM 6130. by Erwin Just and Eugene Levine
Prove that there exists a partition of the rational points

of the plane into an infinite number of everywhere dense
subsets such that each straight line containing two rational
points will have a nonempty intersection with each of the
subsets.

Geometry: points in space

PARAB 402.
Consider 5 points in space such that each pair is not

more than 1 cm apart. What is the greatest number of pairs
which can be exactly 1 cm apart?

AMM E2593. by Jeanne W. Kerr
and John E. Wetzel

Three points are given on each of three parallel lines,
the three lines not all lying in the same plane. These points
by threes, one on each line, determine 27 triangular plates,
and these triangular plates could, on the face of it, meet to

determine as many as
(

27
3

)
= 2925 points, though it is clear

that not that many can actually occur. At most how many
points can the 27 plates determine?

Graph theory: bipartite graphs

AMM E2565. by T. Nemetz
Given a bipartite graph on n and 2n vertices that is

regular on either set (of degree 2k and k, respectively), can
one necessarily find n vertices of the second kind such that
upon their removal along with all arcs containing them the
remaining graph is regular of degree k?

CMB P268.* by P. Erdős and E. C. Milner
A graph G = (V,E) is said to be realized if there is

a family of sets {Ax |x ∈ V } associated with the vertices
of G such that Ax ⊂ {0, 1, 2 . . .} and such that {x, y} is an
edge of G if and only if Ax ∩ Ay = ∅. It is easy to see
that any realizable graph has chromatic number that is not

larger than ℵ0. Is it true that any bipartite graph on 2ℵ0
vertices is realizable?

AMM 6079. by D. J. Kleitman
Given a bipartite graph connecting n vertices with n

others. If the symmetry group of the graph is transitive on
both parts of the graph, must it be transitive on the whole
graph?

Graph theory: complete graphs

AMM E2562. by N. C. K. Phillips

Each of the
(
m
2

)
edges of the complete graph on m

vertices is assigned a direction and one of n colors in such a

way that there is no monochromatic directed path
−→
AB,

−−→
BC

of length 2. How large can m be in terms of n?

AMM E2672. by Marianne Gardner

Each of the
(
m
2

)
edges of the complete graph Km is

assigned a direction, and each vertex is assigned one of n
colors in such a way that there is no directed path of length
k, k < m, whose vertices are all of the same color. How
large can m be in terms of n and k?

AMM 6034. by Fred Galvin
Suppose the edges of the complete graph on n vertices

are colored so that no color is used more than k times.
(a) If n ≥ k + 2, show that there is a triangle no two

of whose edges are the same color.
(b) Show that this is not necessarily so if n = k + 1.

Graph theory: counting problems

JRM 421. by Mary Youngquist
Find all connected, topologically distinct, spatial ar-

rangements of three C’s and six O’s, in which exactly four
bonds (kinks, paths) emanate from each C and two from
each O.

Graph theory: covering problems

AMM E2549. by David Singmaster
Let G be a connected graph with 2k vertices of odd

degree. It is well known that G can be covered by a k-part
Euler path, i.e., a union of k edge-disjoint paths having no
repeated edges. When can G be covered by a single path
with at most k − 1 repeated edges?

AMM E2564. by R. L. Graham
Can one cover the vertices of any regular graph of

degree four (every vertex in it has degree four) by disjoint
arcs and stars?

Graph theory: directed graphs

ISMJ 13.18.
We are given a finite set S of points. From each point

of S an arrow is drawn connecting it to some other point
of S. Show that the points of S can be colored with three
colors so that no two points of the same color are joined by
an arrow.

PARAB 308.
Seven towns T1, T2, . . . , T7 are connected by a network

of 21 one-way roads such that exactly one road runs directly
between any 2 towns. Given any pair of towns Ti, Tj
(1 ≤ i < j ≤ 7), there is a third town, Tk, such that Tk
can be reached by a direct route from both Ti and Tj .

(a) Prove that, of the 6 roads with an end at any town
Ti, the number in which traffic is directed away from Ti is
at least 3. Hence prove that it is exactly 3.

(b) Let the towns that can be reached directly from T1
be numbered T2, T3, T4. Show that the roads between T2,
T3, T4 form a circuit.

(c) Display on a sketch a possible orientation of traffic
on the 21 roads.

NAvW 453. by J. H. van Lint
Let us call a directed graph “of type k” if, for any two

(not necessarily distinct) vertices P and Q of the graph,
there is exactly one path of length at most k from P to Q.
Prove that if k > 2, a graph of type k is a circuit with k
points.

ISMJ 13.23.
Let P1, P2, P3, . . . be an infinite set of distinct points.

From some of these points Pn, two arrows go out and join
Pn to Pm and P` where n < m < `. From others of the Pn,
no arrows go out. (For example, we could have arrows from
Pn to P2n and P3n when n is odd and no arrows otherwise.)
A point Pn is called reachable if there is a path starting from
P1 that consists of arrows and gets to Pn.

(a) How many points with subscripts not exceeding 100
are reachable in this example?

(b) Assume that there are infinitely many reachable
points. Show that there exists an infinitely long path that
starts from P1 and that consists entirely of arrows.
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Graph theory: family trees

SSM 3630. by Charles W. Trigg
A man announced that he was one-third Cherokee.

How do you arrange the branches on his family tree?

Graph theory: friends and strangers

PARAB 439.
Given any two people, we may classify them as friends,

enemies, or strangers. Prove that at a gathering of seven-
teen people, there must be either (a) three mutual friends,
(b) three mutual enemies, or (c) three mutual strangers.

PARAB 391.
Each of three classes has n students. Each student

knows altogether (n+ 1) students in the other two classes.
Prove that it is possible to select one student from each
class so that all three know one another. (Acquaintances
are always mutual.)

PENT 315. by H. Laurence Ridge
Four married couples meet for dinner. There is some

shaking of hands. No one shakes hands more than once with
the same person. Spouses do not shake hands.

When the hand shaking is finished, one husband asks
all of the other people how many times they shook hands.
Everyone gives a different answer. How many times did the
questioner’s wife shake hands?

FUNCT 3.2.3.
Prove that, of all the teenagers in the world, at least

two have the same number of teenage friends.

PARAB 278.
At a party, the guests are lined up so that each person

(with the exception of the two at the ends) is acquainted
with exactly as many people to his right as to his left. Show
that the first and last person have the same number of
acquaintances.

Graph theory: isomorphic graphs

NAvW 527. by A. M. Cohen and A. A. Jagers
Let G and H be graphs. Choose two vertices i and j

of G, and for each vertex k adjacent to j (k 6= i), delete
the edge between k and i (resp. place an edge between k
and i) whenever k and i are adjacent (resp. nonadjacent)
in G. The result is a new graph denoted by πij(G). If
a graph isomorphic to H can be obtained from G by re-
peated application of operations of the form πij , then H
is called a conjugate of G; notation H ∼ G. Clearly ∼ is
an equivalence relation. Now for any graph K, let n(K) be
the number of vertices of K and let m(K) be the number
of edges in a maximal matching of K. Denote by r(K) the
rank of the adjacency matrix of K over Z2. Then prove that

(a) (H ∼ G)⇐⇒ (n(H) = N(G) and r(H) = r(G)),
(b) r(T ) = 2m(T ) if T is a tree.

AMM 6037. by Jim Lawrence
Show that any graph H is isomorphic to an induced

subgraph of some finite graph H ′ which has a group of
automorphisms that acts transitively on its vertices.

NAvW 459. by M. R. Best
Determine all graphs (without loops or multiple edges)

whose complement and line graph are isomorphic.

NAvW 495. by J. I. Hall
Determine all finite graphs (loops and multiple edges

allowed) that are isomorphic to their line graphs.

Graph theory: map problems

AMM 6182. by A. K. Austin
Prove or disprove that any finite planar graph can be

represented by a map in which all the regions are L-shaped
with sides horizontal and vertical.

Graph theory: maxima and minima

NAvW 487. by H. C. A. van Tilborg
Let Γ be a De Bruijn graph on 2n points, i.e., a directed

graph with vertices labeled by elements of {0, 1}n with a
directed edge from (a1, a2, . . . , an) to (b1, b2, . . . , bn) if and
only if (a2, a3, . . . , an) = (b1, b2, . . . , bn−1). Determine the
maximal k such that every path of length k in Γ starting in
(0, 0, . . . , 0) is the initial part of an Euler path in Γ.

AMM 6159. by Thomas E. Elsner
It is well known that for a graph on k vertices with

no triangles, the maximum number of edges is L(k) = mn,
where m = bk/2c and n = b(k + 1)/2c and that this value
occurs for the complete bigraph Km,n. Express the max-
imum number of edges in case we add the restriction that
the graph be

(a) Hamiltonian;
(b) Eulerian.

PME 441. by Richard A. Gibbs
Prove that a self-complementary graph with an even

number of vertices has no more than 2i vertices of degree i,
and that the number of them is even.

Graph theory: trees

AMM 6262. by A. Blass,
F. Harary, and W. T. Trotter, Jr.

What is the probability that a tree selected at random
has a fixed point? More specifically, let tn be the number
of (nonisomorphic) trees with n points, and let fn be the
number of such trees T with at least one point fixed under
all automorphisms of T . Calculate limn→∞ fn/tn.

AMM E2671. by Ibrahim Cahit
SIAM 77-15. by I. Cahit

Let T = (V,E) be a k-level complete binary tree with

vertex set V and edge set E. Thus |V | = 2k − 1, and we

set N = {1, 2, 3, . . . , 2k − 1}. For every bijection f :V → N
define

W (f) =
∑

{i,j}∈E
|f(i)− f(j)|.

Prove or disprove that minf W (f) = (k − 1)2k−1 (k ≥ 2).

Josephus problem

MM 1031. by Richard A. Gibbs
There are n people, numbered consecutively, standing

in a circle. First 2 sits down, then 4, 6, etc., continuing
around the circle with every other standing person sitting
down until just one person is left standing. What is his
number?
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Latin squares

NAvW 439. by R. H. F. Denniston
By taking two rows of a Latin square as “equivalent”

when one is an even permutation of the other, we can define
an equivalence relation on the set of rows. Let us say that a
Latin square of even order is “row-odd” when there are two
equivalence classes with odd cardinalities. Let L1 be any
Latin square of order 2m; let L2 be the transpose of L1, and
L3 the square obtained from L1 by interchanging the parts
played by the rows and the symbols used as entries. Prove
that the number of row-odd squares among these three Li
has the same parity as m.

Lattice points

AMM 6192. by Harry D. Ruderman
Let R be a rectangular array of lattice points having

at least two rows and two columns. Let each lattice point
of R be labeled by one of the numbers 1, 2, 3, or 4. Sup-
pose that the boundary points of R contain at least one of
each of the four numbers and the boundary is oriented, say
counterclockwise, with repetitions permitted, and with pos-
sibly more than one cycle (1 is allowed to follow 4). Call
two lattice points adjacent if they are vertices of a common
small square. Call two lattice points opposite if they are
labeled either 1 and 3 or 2 and 4. Prove that for every such
R, there is a square containing two lattice points that are
both opposite and adjacent.

Paths

MENEMUI 1.1.2. by S. L. Lee
MENEMUI 1.2.2. by S. L. Lee

A certain figure shows a network consisting of 49
points. What is the minimum number of turnings one has
to make to travel from S to T , passing through all 49 points
at least once?

Permutations

SIAM 76-17. by David Berman
and M. S. Klamkin

A deck of n cards is numbered 1 to n in random order.
Perform the following operations on the deck. Whatever
the number of the top card is, count down that many in the
deck and turn the whole block over on top of the remaining
cards. Then, whatever the number of the (new) top card,
count down that many cards in the deck and turn this
whole block over on top of the remaining cards. Repeat
the process. Show that the number 1 will eventually reach
the top.

Consider the following set of related and more difficult
problems:

(a) Determine the number N(k) of initial card permu-
tations, so that the 1 first appears on top after k steps of the
process. In particular, show that N(0) = N(1) = N(2) =
(n− 1)! and that

N(3) =





(n− 1)!− 1
2 (n− 1)(n− 3)(n− 4)!, n odd,

(n− 1)!− 1
2 (n− 2)2(n− 4)!, n even.

(b) Estimate the maximum number of steps it takes to
get the 1 to the top.

(c) For what n is there a unique permutation giving
the maximum number of steps?

(d) Does the last step of a maximum step permutation
leave the cards in order (i.e., 1, 2, . . . , n)?

AMM 6214.* by Leonard Carlitz
Let k and t be fixed integers, k ≥ 2, t ≥ 0, and let

Ak(kn+ t) denote the number of permutations of

Zkn+t = {1, 2, 3, . . . , kn+ t}

such that

akj+1 < akj+2 < · · · < akj+k,

akj+k > akj+k+1 j = 0, 1, . . . , n− 1,

akn+1 < akn+2 < · · · < akn+t.

It has recently been proved as a corollary of a general result
that A4(2n+ 1) = 2−nA2(2n+ 1). Prove this identity by a
direct combinatorial argument.

AMM E2702.* by David Jackson
Let a = (a1, a2, . . . , a2m) be a nondecreasing sequence

of positive integers. Let S denote the set of sequences
obtained from a by permuting its terms. Let A, B, C
be the subsets of S consisting of those sequences s =
(s1, s2, . . . , s2m) that satisfy

s1 < s2 ≥ s3 < s4 ≥ · · · ≥ s2m−1 < s2m,

2m∏

i=1

(si − ai) > 0,

2m∏

i=1

(si − ai) < 0,

respectively. Show that |A| is equal to the absolute value of
|B| − |C|.

NAvW 543. by H. W. Lenstra, Jr.
Let n and m be integers (n > 1, m > 1), and let

σ be the permutation of {1, 2, 3, . . . , nm} suggested by the
following picture:

1 2 3 . . . n

n+ 1 n+ 2 n+ 3 . . . 2n
...

...

(m− 1)n+ 1 mn

→

1 m+ 1 2m+ 1 . . . (n− 1)m+ 1

2 m+ 2 2m+ 2 . . . (n− 1)m+ 2
...

...
...

...

m 2m 3m . . . nm

.

Clearly σ(1) = 1 and σ(nm) = nm, so the cycle decom-
position of σ contains two cycles of length one. Suppose
that there is only one other cycle, of length nm− 2, in this
decomposition; i.e., that the numbers 2, 3, 4, . . . , nm−1 are
cyclically permuted by σ, in a suitable order.

Prove that each n, m is 2 or 3 (mod 4), and they are
not both 3 (mod 4).

MM Q639. by Frank Gillespie
ISMJ 13.11.

Let k1, k2, . . . , kn be any given set of n integers and let
m1,m2, . . . ,mn be any permutation of this set. Prove that

|k1 −m1|+ |k2 −m2|+ · · ·+ |kn −mn|

is even.
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AMM S14. by C. L. Mallows
Let n(m, f, r) represent the total number of arrange-

ments (a1, a2, . . . , am) of (1, 2, . . . ,m) that have f fixed
points (ai = i) and r rises (ai < ai+1). Prove that
n(m, 0, r) = n(m, 1, r) for 1 ≤ r ≤ m− 1, and that

n(m, f, r) =

m−r∑

j=2

(−1)m−r−j(j − 1)jjm−f−j

×
(
f + j − 1

j − 1

)(
m+ 1

m− r − j

)

+(−1)m−f
δr+1−f
m− f + 1

(
m

f

)

for 0 ≤ f ≤ r + 1 ≤ m, 0 ≤ r, where

δk =

{
1, if k = 0,

0, if k 6= 0.

NAvW 430. by H.S.M. Kruijer
Given is an engine with n cylinders (n ≥ 1) numbered

1 to n going from left to right in a line.
The ignition sequence can be characterized using the

cylinder numbers as a permutation of the numbers 1 to n ,
assuming that cylinder 1 is ignited first. Determine the
number of ignition sequences for which this characterization
does not change when the cylinders are renumbered from
right to left.

Selection problems

PARAB 376.
Given are n sacks each holding the same number of

apples. On the first day, an apple is removed from one sack.
On the second day, an apple is removed from each of 2 sacks
and so on, until the nth day when one apple is removed from
each of the n sacks.

The sacks are now all empty. For which n is this
possible, and how is it to be done?

Sequences

JRM 757. by Michio Matsuda
Deal out nine cards face-up in a row from a well-

shuffled deck. You will find that there are always at least
three cards of the same color at equal spacing.

(a) Now deal out thirteen cards face-down. What is
the minimum number of cards which you must turn face-
up in order to determine the locations of three cards of the
same color at equal spacing?

(b) Same question, but with n cards, where n ≥ 9.

AMM E2795. by Doug Wiedemann
Let S be a nonempty subset of

{0, 1}n = {0, 1} × · · · × {0, 1}
such that each member of S is adjacent to exactly k other
members of S, where “adjacent” means differing in one
coordinate position. Show that the size of S is even and at

least 2k. Furthermore, if the graph of the adjacency relation
of S is connected, show that it will still be connected after
removal of any point.

NAvW 511. by I. H. Smit
For an integer n ≥ 3, let Sn be the set of finite se-

quences (xi)
n
i=1 of length n with

xi ∈ {−1,+1},
i.e., Sn = {−1,+1}n. If x ∈ Sn, then β(x) denotes the

number of alternating subsequences
(
xjk
)3
k=1

of length 3

(j1 < j2 < j3), i.e., subsequences such that xjk + xjk+1
= 0

(k = 1, 2).
(a) Determine

f(n) = max
{
β(x)

∣∣ x ∈ Sn
}
.

(b) Determine the cardinality of the set
{
x ∈ Sn

∣∣ β(x) = f(n)
}
.

OSSMB 78-7.
Consider sequences of length n with elements drawn

from the set {1, 2, . . . , 9}. Let En be the number of such
sequences whose entries sum to an even number and On the
number of sequences whose entries sum to an odd number.

(a) Show that En −On = (−1)n.
(b) Find En and On in terms of n.

Sets: cardinality

AMM 6060.* by Daniel Sokolowsky
For fixed k ≥ 2, Ai, Bi (i = 1, 2, . . . , k) are 2k subsets

of a finite set S. What is the largest possible value of
n = |S| such that the following three conditions can hold
simultaneously for i = 1, 2, . . . , k?

(i) Ai ∩Bi = ∅,
(ii) |Ai ∪Bi| = n− 1,
(iii) For each x ∈ S, {x} is the intersection of an appro-

priate subcollection of the 2k sets Ai, Bi (i = 1, 2, . . . , k).

SSM 3738. by Philip Smith
Consider a collection of n nonempty sets of positive

integers such that
(1) no two distinct sets in the collection have the same

cardinal number, and
(2) no set in the collection is a subset of any other set

in the collection. What is the minimum possible cardinal
number of the union of the n sets?

Sets: determinants

AMM E2690. by Anthony J. Quinzi
Let S1, S2, . . . , Sk be a list of all non-empty subsets of

{1, 2, . . . , n}. Thus k = 2n − 1. Let aij = 0 if Si ∩ Sj = ∅
and aij = 1 otherwise. Show that the matrix A = (aij) is
nonsingular.

Sets: differences

MM 1041. by Richard A. Gibbs
For 0 < m < n, find N(m,n), the minimum positive

integer such that any subset of {1, 2, . . . , n} of N(m,n)
elements contains numbers differing by m.

MSJ 476.
Prove that any subset of 55 numbers chosen from the

set {1, 2, 3, 4, . . . , 100} must contain numbers differing by 9,
10, 12, and 13, but need not contain a pair differing by 11.
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AMM S5. by R. L. Graham
For a finite set X of integers, let |X| denote the car-

dinality of X, and let X − X denote
{
x− x′ |x, x′ ∈ X

}
.

Show that if A,B ⊆ {1, 2, . . . , n} with |A||B| ≥ 2n−1, then

(A−A) ∩ (B −B)

contains a positive element. Here n > 1.

PARAB 419.
Write on a large blackboard the numbers

1, 2, 3, . . . , 1979.

Erase any two of the numbers and replace them by their
difference. Repeat this process until only a single number
is left on the board. Prove that this number is even.

Sets: family of subsets

AMM E2654. by D. E. Daykin
Let A = {0, 1, 2, . . . , n − 1}. For m ∈ A, let f(m,n)

be the least integer k with the following property: If F is
a family of subsets of A such that every i ∈ A belongs to
more than k members of F , then A can be covered by n−m
members of F . Evaluate f(m,n) for 2m ≤ n.

Sets: partitions

AMM E2582. by Ioan Tomescu
Let {Ai; 1 ≤ i ≤ n}, {Bi; 1 ≤ i ≤ n}, and {Ci; 1 ≤ i ≤

n} be three partitions of a finite set M . If for every i, j,
and k we have

∣∣Ai ∩Bj
∣∣+ |Ai ∩ Ck|+

∣∣Bj ∩ Ck
∣∣ ≥ n,

prove that |M | ≥ n3/3 and that this inequality cannot be
improved when n is divisible by 3.

Sets: sums

IMO 1978/6.
An international society has its members from six dif-

ferent countries. The list of members contains 1978 names,
numbered 1, 2, . . . , 1978. Prove that there is at least one
member whose number is the sum of the numbers of two
members from his own country, or twice as large as the
number of one member from his own country.

CRUX 404. by A. Liu
Let A be a set of n distinct positive numbers. Prove

that
(a) the number of distinct sums of subsets of A is at

least 1
2n(n+ 1) + 1;

(b) the number of distinct subsets of A with sum equal
to half the sum of A is at most 2n/(n+ 1).

CRUX 344. by Viktors Linis
Given is a set S of n positive real numbers. With each

nonempty subset P of S, we associate the number

σ(P ) = Sum of all its elements.

Show that the set {σ(P )|P ⊆ S} can be partitioned into
n subsets such that in each subset the ratio of the largest
element to the smallest is at most 2.

Sorting

AMM E2569.* by Harry Dweighter
The chef in our place is sloppy, and when he prepares a

stack of pancakes, they come out all different sizes. There-
fore, when I deliver them to a customer, on the way to the
table I rearrange them (so that the smallest winds up on
top, and so on, down to the largest on the bottom) by grab-
bing several from the top and flipping them over, repeating
this (varying the number I flip) as many times as necessary.
If there are n pancakes, what is the maximum number of
flips (as a function of n) that I will ever have to use to
rearrange them?

JRM 736. by Frank Rubin
An automated warehouse contains a large collection of

numbered cartons stored in unnumbered bins, and no two of
the cartons have the same number. In order to improve the
efficiency of the warehouse, it is decided to sort the cartons
into numerical order. What is the least number of moves
required when:

(a) Two automated selectors perform pairwise inter-
changes of cartons, and all of the bins are filled.

(b) A single selector can move one carton at a time,
and there is only one empty bin.

Tournaments: chess tournaments

CANADA 1976/3.
Two grade seven students were allowed to enter a chess

tournament otherwise composed of grade eight students.
Each contestant played once with each other contestant
and received one point for a win, one half point for a tie
and zero for a loss. The two grade seven students together
gained a total of eight points and each grade eight student
scored the same number of points as his classmates. How
many students from grade eight participated in the chess
tournament? Is the solution unique?

OMG 17.2.5.
Twenty-four players competed in a recent chess tour-

nament. The committee divided them into two sections.
In each section, each player played one game against ev-
ery other competitor. There were 69 more games in section
B than in section A. Mr. Gambit, unbeaten in Section A,
scored 5 1

2 points (win = 1 point; draw = 1
2 point). Deter-

mine how many of Mr. Gambit’s games were drawn.

PARAB 323.
Twenty-six entrants with names A,B,C, . . . , Z play in

a chess tournament, each against all others. Score 2 points
for a win, 1 for a draw, and 0 for a loss. No one’s total
was odd, there were no ties, and they ended in the order
A,B,C, . . . , Z. What was the result of the match between
M and N?

PARAB 357.

Chess players from two schools competed. Each player
played one game with every other player. There were
66 games among players from one school, and in all there
were 136 games. How many players from each school en-
tered the tournament?
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Tournaments: elimination tournaments

OMG 14.2.1.
How many games are needed to produce a winner in a

knock-out tournament with (a) 8, (b) 27, (c) 47, and (d) n
teams?

OMG 17.1.4.
If 94 players enter a knockout tennis tournament for

a singles championship, how many matches must be played
to determine the winner? For a 95-player tournament, how
many matches must be played?

Tournaments: incomplete information

JRM 715. by Peter J. Green
Partway through a round-robin soccer tournament in-

volving five teams, all official match records were acciden-
tally destroyed. The only parts of the standings that could
be established definitely from memory are shown. The scor-
ing is two points for a win, one point for a draw, and zero
points for a loss. Each team was supposed to play each of
the others once.

Has C played D yet, and if so what were their respective
scores?

Tournaments: maxima and minima

PARAB 420.
King Arthur’s knights arrange a tournament. After it

is all over, the King notices that to every two knights, there
is a third one who has vanquished both. How many knights
(at least) must have taken part in the tournament?

Tournaments: soccer

OMG 18.2.6.
Four high school soccer teams each played one game

against each of the others. The scoring was:
MACDONALD: Goals For - 13, Against - 17, Points - 4.
LAURIER: Goals For - 17, Against - 13, Points - 3.
CLARK: Goals For - 17, Against - 13, Points - 3.
WESTVIEW: Goals For - 13 , Against - 17, Points - 2.

Two points were scored for a win and one for a tie.
Each game produced the same number of goals but no two
matches produced the same score. Of their 13 goals, West-
view scored two against Clark. What was the result of the
match between Westview and Laurier?

Tournaments: tennis

FUNCT 3.1.5.
There are 2n participants in a tennis tournament. In

the first round of the tournament each participant plays just
once, so there are n games each occupying a pair of players.
Show that the pairings for the first round can be arranged
in exactly 1× 3× 5× · · · × (2n− 1) different ways.

Tournaments: triangular matches

SSM 3617. by James F. Ulrich
There are n athletic teams that should meet each other

exactly once in a given season. How can the teams be
matched in a league that allows only dual and triangular
meets but requires that a maximum number of triangular
meets be held? Assume that n is a positive integer between
3 and 20.

Tower of Hanoi

AMM E2713.* by Saul Singer
A stack of x rings is given, decreasing in size from

the bottom up. In addition, y empty stacks are provided
(y ≥ 2). Let N(x, y) be the minimum number of moves
necessary to transfer the rings to one of the empty stacks
subject to the following two rules:

(i) Move just one ring at a time.
(ii) At no time can a larger ring be placed atop a

smaller.
It is conjectured that

N(x, y) =

m∑

k=1

2k−1

(
k + y − 3

y − 2

)
+2m

[
x−

(
m+ y − 2

y − 1

)]
,

where m is the largest integer such that the expression in
the brackets is ≥ 0.

Urns

MSJ 426. by Ira Ewen
Fifteen balls, numbered 1 through 15, are placed in a

hat. They are then withdrawn, one at a time, until all the
balls have been removed from the hat. In how many ways is
it possible to empty the hat under the following restriction:
at any time after two or more balls have been removed, it
should be possible to arrange these removed balls so that
the numbers on them form a set of consecutive integers.

OMG 18.2.7.
I have two little bags, of which the contents are iden-

tical. Each has in it four blue marbles, four red ones, and
four yellow ones. I close my eyes and remove from Bag No. 1
enough marbles (but just enough) to ensure that my selec-
tion includes two marbles at least of any one color, and one
marble at least of either of the other colors. These marbles I
transfer to Bag No. 2. Now (again closing my eyes), I trans-
fer from Bag No. 2 to Bag No. 1 enough marbles to ensure
that in Bag No. 1, there will at least be three marbles of
each of the three colors. How many marbles will be left in
Bag No. 2?
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Betting games

PME 350. by R. Robinson Rowe
In the game of ELDOS, an acronym for Each Loser

Doubles Opponents’ Stacks, each of n players starts with his
“bank” (B) and at any point in the play holds his “stack”
(S), which he bets on the next round. For each round, there
is just one loser; in paying the n − 1 winners, he doubles
their stacks. Consider here a unique game when, after n
rounds, each player has lost once and all players end with
equal stacks.

(a) For n = 5, what was the minimum bank, B, for
each player?

(b) How many players were there if the least initial B
was 11 cents?

(c) Find a general formula for Bm, the initial B of the
mth player to lose, as a function of m and n.

(c) What was the initial bank B of the 9th of 13 players
to lose?

Board games

SIAM 76-1. by D. N. Berman
The board used here consists of a single row of po-

sitions (1, 2, . . . , n), ordered from left to right, in which a
given number of pieces are placed in some fashion among
the positions. Only one piece may ever occupy a given po-
sition. Alternating play between two players is made by
moving any one of the pieces as far to the left as desired
but still remaining to the right of the piece immediately on
its left. The winner is the player who leaves his opponent
no possible move.

Another variation of the game allows the players to
move as far to the left as desired to an unoccupied position.
Determine a winning strategy for the game.

MM 1084. by William A. McWorter, Jr.
In the game of Kriegspiel Hex, two players sit back

to back, each with his own Hex board. An umpire with
a master board directs the game as each player attempts
to make a legal move without seeing his opponent’s move.
The umpire’s duties are: (1) Advise each player of his turn,
following a legal move by his opponent. (2) Declare an
illegal move so that the offending player can try a different
move. (3) State when a player has won.

(a) Show that there is a winning strategy for the first
player in Kriegspiel Hex played on a 3× 3 board.

(b) Prove that there is no winning strategy for the first
player in Kriegspiel Hex played on an n× n board, n ≥ 4.

JRM 501. by Makoto Arisawa
In the new game of Yashima played on a Petersen

graph, two players move alternately, starting at the marked
positions, until one (the loser) no longer has a move. A
move consists of transferring one’s counter to an adjacent,
unoccupied vertex and, as in Hackenbush, erasing the edge
just traversed, which cannot then be used as a thoroughfare.
Who has the advantage?

PARAB 281.
Two people play the following game on an 8× 8 chess-

board:
A pawn is placed on the lower-left corner square and

moved alternately by the players to a neighboring square
either up, to the right, or diagonally up and right. The
game stops when the pawn reaches the upper-right corner
square, the player making the final move being the winner.

Which player has a winning strategy, and what is it?

JRM 475. by Ray Lipman
Two opponents play on an infinite 3-dimensional chess-

board. One has a king, the other a nondescript-looking
piece that can move to any unoccupied cell. The king may
not move to any cell that has once been occupied by the
other. It is conjectured that the king can be trapped in a
finite number of moves regardless of how he moves. Prove
or disprove.

Bridge

JRM 597. by Les Marvin
Against South’s 3 No Trump contract, West leads the

five of spades and East follows with the nine. South’s task
is obviously to set up clubs without letting in the dangerous
opponent to lead spades through South’s tenace. He must
hope that clubs are not split 3 and 0. When he leads the
seven of clubs, how should he respond to the next player’s
play of the jack? The king? The queen?

MM 944. by Richard Johnsonbaugh
and R. Rangarajan

Compute the total number of distinct auctions in con-
tract bridge.

JRM 560. by Sherry Nolan
How many calls (pass, double, redouble, or one to seven

of a suit or no trump) can be made during a single contract
bridge auction? How many nonpassing calls can be made
by one player? By one partnership?

JRM 442. by John Selfridge
In the last hand of a rubber of bridge, each of the four

players had (A,B,C,D) distribution (without, of course,
specifying the order of the suits). Does it follow that each
of the four suits was distributed (A;B;C,D) among the
players (again not specifying the order of the players)?

JRM 536. by Sherry Nolan
Between two tricks in a hand of contract bridge, the

Kibitzer came on the scene and quickly looked at all four
hands, each of which contained n cards. With no other
information, he made a correct deduction and ostentatiously
announced it: “One of you clowns has revoked!” What is
the maximum possible value of n? The minimum?

Card games

JRM 462. by Fred Foldvary
In a game of Mental Heck with four suits, thirteen

tricks and a bid of six (no jokers) prove that the first player
should always win.
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JRM 601. by David L. Silverman
In the card game Concentration, the 52 playing cards

are laid face down on a table top. Cyclically the players,
in turn, turn over two cards simultaneously. If the cards
do not match in rank, they are returned to their positions
face down and the turn is complete. If they match, they are
removed, a point is added to the player’s total, and he is
permitted to attempt another match. After the final match
the player with the most points wins.

(a) Consider Mini-Concentration involving two players
and only six cards: two kings, two queens, and two jacks.
In order to assure that the game terminates, a rule is added
that a player is not permitted to turn up the same pair of
cards as the previous player. Who has the advantage, the
first or the second player?

(b) Whom does the game favor if the mini-deck has
two aces, two kings, two queens and two jacks?

JRM 647. by David L. Silverman
In Chili Poker, as played in northern Italy, each player

has received ten cards by the time the betting is over, and
from them he is required to make up two five-card hands.
When the time comes to compare hands, only the poorer
of the two hands is permitted to compete. It thus be-
hooves each player to make the poorer hand as good as
possible. The best possible second-best hand is called the
“chili hand.”

(a) Among all 10-card deals which has the worst chili
hand?

(b) In the 15- and 20-card variants, what are the worst
possible chili deals? In these variants, the chili hands are
respectively third- and fourth-best hands.

Chess problems

JRM 540. by David L. Silverman
A rook and a knight play a private game on an n× n

chessboard, their object being to capture the other. They
start at opposite corners and rook has first move.

(a) Demonstrate rook wins in no more than 3 moves
on the 3× 3 and 4× 4 board, in no more than 4 moves on
the 5× 5 board, and in no more than 5 on the 6× 6 board.

(b) How about boards of larger dimension?

JRM 468. by Frank Rubin
Depicted is an arrangement of fourteen black

and fourteen white queens, with a total number of
412 available moves. Is there another arrangement
with the number of black and white pieces arbitrary
in which the number of available moves is larger?

8 ________ 
8/qŒqŒqŒqœ\ 
7/œ x x xQ\ 
6/Qx x x œ\ 
5/œ x x xQ\ 
4/Qx x x œ\ 
3/œ x x xQ\ 
2/Qx x x œ\ 
1/ŒqŒqŒqŒQ\ 
8 --------        a   b   c   d   e   f   g   h

JRM 587. by Les Marvin and Sherry Nolan
White to play in the adjoining diagram. If both

players play optimally, will White win, lose, or draw?

8 ________ 
8/Kx x x Í\ 
7/∫Bx x Í \ 
6/ ∫ x x x\ 
5/x x x x \ 
4/ x x x x\ 
3/x x x ı \ 
2/ ß x xbı\ 
1/ß x x xk\ 
8 --------        a   b   c   d   e   f   g   h

JRM 561. by Emil Prochaska
Is it possible to create a legal chess position with fewer

than eight pieces such that the game is stalemated and such
that it is impossible to deduce whose move it is?

JRM 758. by Karl Scherer
Does there exist a legal chess position with more than

30 pieces, in which the game is stalemated and in which it
is impossible to deduce whose move it is?

JRM 424. by Paul Morphy IV
White and Black start with an empty chessboard and

two pawns and a king apiece. In turn, beginning with
White, they place their three men, in any order, but subject
to these restrictions: A king cannot be placed next to oppo-
nent’s king or in such a way to be attacked by opponent’s
previously placed pawn, and a pawn cannot be placed on the
first or the eighth rank. After the six men have been placed,
White has the first move in the endgame thus generated.

White’s advantage in playing first seems to be more
than offset by the disadvantage of having to begin the place-
ment sequence. If both players play optimally, what is the
result?

JRM 446. by Michael Keith
In a game of chess, what is the minimum number of

moves required, after which White will be legally entitled
to a draw by virtue of a perpetual check, the first move of
the first cycle of which would take place following White’s
claim for the draw, if:

(a) No captures are made and the Black King does not
move prior to the perpetual checking cycle?

(b) No captures are made but the restriction against
moving the Black King prior to the perpetual checking cycle
is removed?

(c) No restrictions on movement of the Black King or
against captures are made?

JRM 680. by Sidney J. Rubin
While doubled pawns (two pawns of the same color

on the same file) occur frequently in chess games, tripled
or quadruples pawns are rare. It is possible, however, to
have sextupled pawns on any file in a legal game. It is even
possible to have momentarily septupled pawns on the king,
queen, or either bishop file.

The minimum number of moves necessary in a legal
game to achieve n-tupledness on the various files, known to
the proposer, is presented in the table shown. Fill in the
gaps, reduce the known minimum numbers, and/or offer
proofs that no smaller numbers are possible.
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JRM 493. by Emil Prochaska
Call a sequence of consecutive chess moves a “strait-

jacket sequence” if there is no “choice” of moves available;
that is, if one and only one legal move can be made by both
White and Black at each stage in the sequence. What is the
maximum possible length of a straitjacket sequence?

Cribbage

JRM 510. by Marshall Willheit
Two cribbage players are tied at 120 points. Since

one point will win the game, and at least one point in the
pegging is inevitable, the pegging will determine the win-
ner. Cribber, who plays second, clearly has the advantage.
Taking into account the expectation of various 6-card deals,
possible 4-card selection policies for each deal, and possible
pegging strategies, devise a program that will estimate this
advantage.

Dots and Pairs

ISMJ 12.3.
Work out the solution of the 3×3 Dots and Pairs game.

Mastermind

JRM 772. by Ronald J. Lancaster
Code Pegs: WWGR + WWOO + YYBB + WOBB = OWBB
Key Pegs: B + WB + BB + BBWW + BBBB
In a recent game of Mastermind between two cunning

opponents, the codebreaker broke the code in five logical
moves. Interestingly enough, the code pegs form an al-
phametic which has a unique solution! Can you find it?

Nim variants: 1 pile

FUNCT 2.3.3.
Two players in turn take matches from a pile of 21

matches. At each turn, a player must take at most 5
matches and at least 1 match. The player who takes the
last match wins. Devise a winning strategy for playing this
game. Generalize.

JRM 682. by David L. Silverman
Sulucrus is a one-pile countdown game for two players.

Alternately they remove chips from an n-chip pile, the win-
ner being the player who takes the last chip or chips. One
player has the option at each turn of removing 1, 3, or 6
chips; the other player may remove 2, 4, or 5 chips. (Note
that the latter player loses if his opponent leaves him with
no chips or a single chip.)

On an ocean cruise a well-dressed stranger invites you
to play a game of Sulucrus for high stakes. He offers to
let you pick any 3-digit number for the initial pile number,
and he also gives you either the choice of position (first or
second play) or of role (1,3,6- or 2,4,5-player), reserving to
himself whichever of those two choices you pass up. Which
initial conditions should you select?

MATYC 116. by Richard Gibbs
In a game with two players, A and B, A goes first and

chooses an integer between 1 and 10 inclusive. Player B
then selects an integer from the same range and adds his
choice to A’s. Then A selects and adds his to the sum, etc.
The winner is the player whose selection makes the total
equal to 100. What is the winning strategy? Generalize.

PARAB 371.
A game is played by two players with matchsticks, as

follows. To start, 36 matches are equally spaced in a row.
Each player picks up, in turn, either one, two, or three
matches. The player who picks up the last match wins the
game.

(a) Prove that the second player can always win.
(b) The rules are changed to require that the one, two,

or three matches must be neighboring matches from one
group. Can the second player still always win?

PME 379. by David L. Silverman
You play in a nonsymmetric, two-man subtractive

game in which the players alternately remove counters from
a single pile, the winner being the player who removes the
last counter(s). At a stage when the pile contains k coun-
ters, if it is your opponent’s move, he may remove 1, 2, . . . ,
up to b

√
kc counters. If it is your move, you may remove

1, 2, . . . , up to φ(k) counters, where φ is the Euler totient
function. If you play first on a pile of 1776 counters, can you
assure yourself of a win against best play by your opponent?

Nim variants: 3 piles

JRM 648. by David L. Silverman
Two persons play alternately on several piles of chips.

On each play a number of chips equal to the current number
of piles must be subtracted from a single pile having at least
that many chips. The winner is the player who is last able
to make a legal move.

If the game starts with two piles of six and one pile
of seven, who has the advantage and what is his winning
strategy?

OSSMB 79-15.
Consider the following two player game. Three piles

are given containing x, y, and z pennies. Players alter-
nately select a pile, then choose 1, 2, or 3 pennies from that
pile. The player who is forced to take the last penny loses.
Determine a winning strategy for one of the players.

Nim variants: opponent decrees

JRM 372. by Jesse Croach, Jr.
In this Nim variant two players, as in Nim, are con-

fronted with several piles of varying number of counters
and alternately remove one or more (up to all) counters
from one pile, the winner being the player who removes the
last counter(s). Unlike Nim, however, one’s opponent has
an important say in one’s decision at each play. Specifically,
on your play you announce the number of counters you in-
tend to play — a positive integer that does not exceed the
current size of the largest pile. Your opponent can then re-
quire you to remove that number of counters from any pile
that contains at least that number. Naturally you have the
same privilege on your opponent’s plays.

Determine the optimal strategy in this game, which is
equivalent to finding a practical technique for recognizing
which pile arrays constitute “safe leaves”.

JRM 373. by David L. Silverman
Same as JRM 372 (above) except at his turn, each

player announces the pile he intends to reduce, and his
opponent decrees the number of counters removed, from one
to the entire pile. Determine the optimal pile choice if you
are confronted with the array (1.2.3.4.5). What criterion
distinguishes safe from unsafe leaves?
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Nim variants: stars

ISMJ 12.1.

Two players play Star Nim on a 10 point star. Can
you describe the winning strategy?

ISMJ 12.2.

Which of two players has the winning strategy on a
nine point star in a game of Star Nim?

Nim variants: Target Nim

JRM 539. by Jesse Croach, Jr.

Roughly speaking, Target Nim is played like standard
Nim, but in reverse fashion. Several positive integers are
written down and, from a common supply of counters equal
in number to the total of the integers, two players alter-
nately build up piles of counters, the winner being the player
attaining pile numbers equal to the target, i.e., to the initial
set of integers. A play is never allowed that would make it
impossible for either player to attain the target, e.g., if the
target is (2, 3, 7) and the current pile sizes (1, 2, 4) neither
of the two smaller piles may be made larger than 3, nor can
a fourth pile be started.

If the piles and the target were associated by some
ordering, then this game would be equivalent to standard
Nim. But there is no such ordering, and in the above
example, either of the two smaller piles may be raised to
3. By what criterion can safe leaves be identified?

Selection games: arrays

OSSMB 75-2.

A penny is placed at each vertex of a regular n-gon.
The pennies are removed alternately by two players, each
move consisting of the withdrawal of a single penny or of
two pennies that occupy adjacent vertices. The player to
take the last penny wins the game. Determine a winning
strategy for the second player.

JRM 709. by Ronald E. Ruemmler

An equilateral triangle of 55 dots is first drawn as
shown. Players alternate drawing equilateral triangles by
connecting three adjacent unused dots. The winner is the
player who is last able to draw a triangle.

(a) A partially completed game is shown. Which
player has the advantage?

(b) Develop a general strategy for the complete game.

JRM 533. by Karl Scherer
The popular German game of Nimbi is played on a

truncated hexagonal field with twelve stones arranged in
twelve rows. A play consists of removing one or more stones
from the same horizontal, 45◦, or 135◦ row. Determine who
has the advantage and the winning strategies in the two
versions: Last stone wins and last stone loses.

Selection games: dates

PME 342. by David L. Silverman
In The Game of the Century, two players alternately

select dates of the Twentieth Century (1 January 1901 –
31 December 2000) subject to the following restrictions:

(1) The first date chosen must be in 1901.
(2) Following the first play, each player, on his turn,

must advance his opponent’s last date by changing exactly
one of the three “components” (day, month, year).

(3) Impossible dates such as 31 April or 29 February
of a non-leap year are prohibited.

The player able to announce 31 December 2000 is the
winner.

(a) What are the optimal responses by the second
player to first player openings of 4 July 1901 and 25 De-
cember 1901?

(b) Who has the advantage and what is the optimal
strategy?

(c) What is the maximum number of moves that can
occur if both players play optimally?

Selection games: players select digits

DELTA 6.1-4. by Philip Miles
Two players take turns choosing digits for an infinite

decimal expansion beginning from the decimal point. Player
A wins if the result of this infinite game is an irrational
number; player B wins if the result is rational. Which player
can win and what is his winning strategy?

Selection games: players select integers

PME 388. by David L. Silverman
In the game of “Larger, But Not That Large”, two

players each write down a positive integer. The numbers
are then disclosed and the winner (who is paid a dollar by
the loser) is the player who wrote the larger number, unless
the ratio of larger number to smaller is three or more, in
which case the player with the smaller number wins. If the
same number is picked by both players, no payment is made.

(a) What is the optimal strategy?
(b) Suppose, instead, that the players are not re-

stricted to integers but to the set [1,∞) and that the larger
number wins provided the larger-to-smaller ratio is less than
r (for some r > 1); otherwise the larger number loses. Find
an optimal strategy.
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NAvW 405. by N. G. de Bruijn
Players P and Q play a game, of which the rules are

determined by positive integers k, `, and m. There is a
countable set of markers labeled 1, 2, 3, . . . . Players P and
Q move alternately; P moves first. Each move of P consists
of taking k markers, and each move of Q consists of taking
` markers. Player P has a win as soon as his set of markers
contains a sequence of m consecutive integers. Determine
all cases (k, `,m) where P has a winning strategy.

CRUX 418. by James Gary Propp
Given a sequence S consisting of n consecutive natural

numbers with n ≥ 3, two players take turns striking terms
from S until only two terms a, b remain. If a and b are
relatively prime, then the player with the first move wins;
otherwise, his opponent does. For what values of n does the
first player have a winning strategy, regardless of S?

JRM 658. by Harry Nelson
You are allowed to choose any integer y in the range

2 ≤ y < b, and then a random integer x is chosen in the
same range. If gcd(x, y) = 1, you lose; if gcd(x, y) > 1, you
win. Assuming you apply your best strategy:

(a) For what value of b, 3 < b ≤ 200, do you have the
lowest probability of winning?

(b) For what value of b do you have the highest prob-
ability of winning?

(c) Same questions for 3 < b ≤ 2000000.

JRM 558. by Les Marvin
Two players alternate in selecting integers from the set

1, 2, . . . , n until all have been taken. (First player gets the
last integer if n is odd.) First player wins if either player’s
total is prime. Otherwise the second player wins. For what
n does the first player have the advantage? Same question
for the misère version in which first player wins if both totals
are composite.

Selection games: polynomials

CRUX 396. by Viktors Linis
Given is the following polynomial with some undeter-

mined coefficients denoted by stars:

x10 + ∗x9 + ∗x8 + · · ·+ ∗x2 + x+ 1.

Two players, in turn, replace one star by a real number until
all stars are replaced. The first player wins if all zeros of the
polynomial are imaginary, the second if at least one zero is
real. Is there a winning strategy for the second player?

Tic-tac-toe variants

JRM 599. by Les Marvin
At this point in the incomplete game shown, two Tic-

Tac-Toe players agreed to a draw. Only later did they
discover that both were experts. (A Tic-Tac-Toe expert
always exploits but never affords an opportunity to win.)
Reconstruct the first and last moves.

CANADA 1978/5.
Eve and Odette play a game on a 3× 3 checkerboard,

with black checkers and white checkers. The rules are as
follows:

1. They play alternately.
2. A turn consists of placing one checker on an unoc-

cupied square of the board.
3. In her turn, a player may select either a white

checker or a black checker and need not always use the same
color.

4. When the board is full, Eve obtains one point for
every row, column or diagonal that has an even number
of black checkers, and Odette obtains one point for every
row, column or diagonal that has an odd number of black
checkers.

5. The player obtaining at least five of the eight points
wins.

(a) Is a 4− 4 tie possible?
(b) Describe a winning strategy for the girl who is first

to play.

JRM 508. by David L. Silverman
Felix and Rover play a variant of Tic-Tac-Toe on a

4 × 4 board. Rover wins if either player gets four of his
marks on any of the four rows, four columns, or two main
diagonals. Felix wins if neither player appropriates any of
the ten lines. Does the player who moves first have the
winning advantage?

AMM S10. by Richard K. Guy
and J. L. Selfridge

When n-in-a-row (the generalization of tic-tac-toe) is
played on a large enough board, it is easy to see that the
first player has a winning strategy if n = 1, 2, 3, or 4. There
is a folk theorem that Go Moku (n = 5) is also a first-player
win, but nothing has been proved for 5 ≤ n ≤ 8. Show that
the second player can force a draw if n ≥ 9, no matter how
large the board is.

JRM 572. by David L. Silverman
In the game of Go Moku, two players alternate in

placing their marks on an infinite grid, the winner being the
first player to get five of his marks adjacent in a vertical,
horizontal, or diagonal row. Demonstrate a first-player win
against any defense.

JRM 465. by David L. Silverman
In Kriegspiel Tic-Tac-Toe, the two players sit back to

back, each with his own board. An umpire announces “No
move” when a player attempts to occupy a cell already
taken by his opponent and advises each player when his
turn comes up. To offset opener’s great advantage, he is
penalized with a loss of turn when he receives a “no move”
call. Second player is allowed to play at each turn until
he makes a valid move. In one game the second player, O,
received 3 straight “no move” calls, pinpointing X’s position
as shown:

− − X

− X −
O X O

Rating win, tie, and loss 1, 0, and −1 respectively and
speaking game-theoretically, how should O continue?
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JRM 389. by Azriel Rosenfeld
Tic-tac-toe can be regarded as played with integers,

for example 1’s and 0’s rather than X’s and O’s; the player
using 1’s tries to fill some row, column, or diagonal so that
it sums to 3, while the player using 0’s tries to achieve sum
0. Consider the alternative versions of the game in which:

(a) The 1 and 0 players try to achieve sums 2 and 1,
respectively.

(b) They try to achieve sums 2 and 0, respectively.
Prove that in version (a) the first player should always

win, and in version (b), whichever player goes first, the 1
player should always win.

Yes or no questions

PENT 300. by Kenneth M. Wilke
Let A and B play a game according to the following

rules:
Player A selects a positive integer. Player B then must

determine the number chosen by A by asking not more than
thirty questions, each of which can be answered by only no
or yes.

What is the largest number that A can choose which
can be determined by B in thirty questions? Generalize to
n questions.
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Affine transformations

AMM 6158.* by M. J. Pelling
Prove that if R is a bounded convex region of the plane

of area 1, then there is a d > 0 independent of R such that R
is equivalent under an area preserving affine transformation
to a region of diameter ≤ d. What is the best possible value
of d?

Analytic geometry: circles

CRUX 315. by Orlando Ramos
Prove that, if two points are conjugate with respect to

a circle, then the sum of their powers is equal to the square
of the distance between them.

OSSMB G76.2-1.
Find the equations of two circles each of which passes

through (3, 1) and (3,−1) and touches the line x = y.

OSSMB G76.3-1.
A circle is tangent to line l1, 4x − 3y + 10 = 0, at

B(−12) and also tangent to line l2, 3x + 4y − 30 = 0. Use
vector methods to find the equation of the circle.

OSSMB G79.1-3.
Two circles touch the y-axis and intersect in the points

(1, 0) and (2,−1). Find their radii and find the second
common tangent.

OSSMB G79.2-8.
Two equal rectangles, both inscribed in the circle

x2 + y2 = 1

with their axes of symmetry along the x-axis and y-axis, re-
spectively, cross each other forming a square ABCD which
is common to both rectangles.

(a) If θ is the acute angle between the diagonal and its
major axis of symmetry, find, in terms of θ, the total area
of the four rectilinear figures exterior to square ABCD.

(b) Find the value of tan θ when this area is a maxi-
mum.

OSSMB G76.3-2.
Find the equation of the circle that cuts orthogonally

each of the three circles

x2 + y2 + 2x+ 17y + 4 = 0,

x2 + y2 + 7x+ 6y + 11 = 0, and

x2 + y2 − x+ 22y + 3 = 0.

PENT 305. by John A. Winterink

If (x− h)2 + (y − g)2 = r2 represents a circle tangent
to three given circles, then (h, g, r) is called an Apollonian
triple. Given the three circles

(x+ 3)2 + (y − 3)2 = 62

(x− 1)2 + (y + 5)2 = 22

(x− 2)2 + (y + 2)2 = 12,

find all Apollonian triples (h, g, r) for the given circles such
that h, g, and r are rational and such that r > 0.

AMM E2669. by I. J. Schoenberg
Let a > b > 0. For a given r, 0 < r < b, there is a

unique R > 0 such that the circle

(x− a+ r)2 + y2 = r2

lies inside and touches the circle

x2 + (y − b+R)2 = R2.

For which r is R/r minimal?

OSSMB G75.2-4.
The circle x2 + y2 − ax − ay = 0 passes through the

origin and also intersects the x and y axes at A and B
respectively. From any point P on the circle, perpendiculars
are drawn to meet the x-axis at L, the y-axis at M and AB
at N . Prove that L, M , and N are collinear.

CRUX 109. by Léo Sauvé
(a) Prove that rational points (i.e. both coordinates

rational) are dense on any circle with rational center and
rational radius.

(b) Prove that if the radius is irrational the circle may
have infinitely many rational points.

(c) Prove that if even one coordinate of the center is
irrational, the circle has at most two rational points.

NYSMTJ 45. by Sidney Penner
and H. Ian Whitlock

A point of a plane is rational if both of its coordinates
are rational numbers.

(a) Show that there are three concentric circles on
which there are exactly zero, one, and two rational points.

(b) Is there a circle on which there are exactly three
rational points?

Analytic geometry: concyclic points

AMM E2697. by William Anderson
and William Simons

Is there a dense subset S of the unit circle such that
each point in S has rational coordinates and the (Euclidean)
distance between any pair of points in S is also rational?

IMO 1975/5.
Determine, with proof, whether or not one can find

1975 points on the circumference of a circle with unit radius
such that the distance between any two of them is a rational
number.

Analytic geometry: conics

CRUX 442. by Sahib Ram Mandan
Prove that the equation of any quartic may, in an

infinity of ways, be thrown into the form

aU2 + bV 2 + cW 2 + 2fV W + 2gWU + 2hUV = 0,

where U = 0, V = 0, and W = 0 represent three conics.

CRUX 469. by Gali Salvatore
Of the conics represented by the equations

±x2 ± 2xy ± y2 ± 2x± 2y ± 1 = 0,

how many are proper (nondegenerate)?
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OSSMB G75.2-2.
A straight line inclined at an angle θ touches both

curves y2 = 8x and x2+y2 = 9. Find, by analytic geometry,
the values of θ and the x-intercept of the required lines.

MATYC 114. by Dean Jordan
Show that unless both of the equations

a1x
2 − 2b1xy − a1y

2 + a2x− b2y + a3 = 0

b1x
2 + 2a1xy − b1y2 + b2x+ a2y + b3 = 0

represent degenerate conics, the curves they describe inter-
sect perpendicularly.

Analytic geometry: curves

MATYC 137. by Aaron Seligman
and Larry Cohen

Let y = f(x) be differentiable everywhere with A =
(a, b) and f(a) 6= b. Prove or disprove the following theorem
and its converse: If |AM | is the minimum distance from A
to f(x), then AM ⊥ TM where TM is the line tangent to
f(x) at M .

Analytic geometry: ellipses

MM 1062. by G. A. Edgar
(a) Let (x1, y1), (x2, y2), and (x3, y3) be three points

in the Cartesian plane. Assume the points and their nega-
tives are all distinct. Show that there is an ellipse, centered
at the origin, passing through the three points if and only
if
∣∣∣∣∣
x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣ ·
∣∣∣∣∣
x1 y1 −1

x2 y2 1

x3 y3 1

∣∣∣∣∣ ·

∣∣∣∣∣
x1 y1 1

x2 y2 −1

x3 y3 1

∣∣∣∣∣ ·
∣∣∣∣∣
x1 y1 1

x2 y2 1

x3 y3 −1

∣∣∣∣∣ > 0.

Interpret this condition geometrically.
(b) Find a necessary and sufficient condition for the

existence of an ellipsoid, centered at the origin, passing
through four given points in 3-space.

Analytic geometry: Euclidean geometry

OMG 17.1.8.
Prove, by the methods of analytic geometry, that if two

medians of a triangle are equal, then the triangle is isosceles.

OMG 18.2.8.
Prove, using the methods of analytic geometry, that

the diagonals of a rhombus are perpendicular.

OMG 18.3.8.
Prove, using the methods of analytic geometry, that

a triangle is right-angled if the square on the hypotenuse
equals the sum of the squares on the other two sides.

Analytic geometry: exponentials

CRUX 293. by David R. Stone
For which b is the exponential function y = bx tangent

to the line y = mx? Conversely, given y = bx, for which m
is y = mx tangent to y = bx?

Analytic geometry: family of lines

PUTNAM 1977/A.1.
Consider all lines which meet the graph of

y = 2x4 + 7x3 + 3x− 5

in four distinct points, say (xi, yi), i = 1, 2, 3, 4. Show that

x1 + x2 + x3 + x4

4

is independent of the line and find its value.

Analytic geometry: floor function

CANADA 1975/3.
Indicate on the (x, y)-plane the set of all points (x, y)

for which bxc2 + byc2 = 4.

Analytic geometry: folium of Descartes

CRUX 417. by John A. Tierney
It is easy to guess from the graph of the Folium of

Descartes,

x3 + y3 − 3axy = 0, a > 0

that the point of maximum curvature is (3a/2, 3a/2). Prove
it.

Analytic geometry: lines

CRUX 480. by Kenneth S. Williams
In a Cartesian plane let l1 and l2 be two nonparallel

lines intersecting in a point P and Q(x1, y1) a point distinct
from P . Let l be a line which does not pass through either
P or Q, is not parallel to PQ, and intersects PQ at the
point R(x2, y2).

If ax+ by = c, a1x+ b1y = c1, and a2x+ b2y = c2 are
equations for l, l1, and l2, respectively, find, as simply as
possible, the coordinates of R in terms of

a, b, c; a1, b1, c1; a2, b2, c2; and x1, y1.

Analytic geometry: locus

OSSMB 78-11.
The “taxicab” distance between 2 points A = (a1, a2)

and B = (b1, b2) in the cartesian plane is defined by

d(A,B) = |a1 − b1|+ |a2 − b2|.

If A = (−2,−2) and B = (2, 2) find all points X on the
“taxicab ellipses”

(a) d(A,X) + d(B,X) = 8,
(b) d(A,X) + d(B,X) = 10.

OSSMB 78-12.
Let d(A,B) = |a1 − b1| + |a2 − b2|. Then if A =

(−2,−2), B = (2, 2), C = (0, 3), and D = (3, 7), find all
points on the “taxicab bisectors”

(a) d(C,X) = d(D,X),
(b) d(A,X) = d(B,X).
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Analytic geometry: polar curves

MATYC 104. by Hung C. Li

Let θ > 0. Let the reciprocal spiral r = 1/θ intersect
the lines PQ (passing through the pole P and perpendicular
to the polar axis PT ) and PT at C1, C2, C3, C4, . . . consec-
utively. Construct triangles PC1C2, PC2C3, PC3C4, . . . .
Find the sum of the areas of these infinitely many triangles.

TYCMJ 108. by Arnold Lapidus

Let Γ be the circle with center at the origin and radius√
3/2. Let T and P be the points with polar coordinates

(
√

3/2, θ) and (
√

3/2, π/6), respectively, where 0 ≤ θ < π/6.
Let A be the point on the line tangent to Γ at T such that
6 TAP = π/3. Define S(θ) = 1

2 − TA, 0 ≤ θ < π/6. Prove
or disprove that S(θ) = sin θ.

Analytic geometry: tangents

SSM 3756. by Gregory Wulczyn

Show that if a third-degree polynomial function is sym-
metric with respect to the origin, then there are infinitely
many intervals [a, b] such that the line joining (a, f(a)) to
(b, f(b)) is a tangent line to the graph of the polynomial.

FUNCT 1.2.1.

(a) A curve has equation y = 3x4−4x3−6ax2 +12ax,
where a is a positive constant. For what values of x does
the curve have a horizontal tangent? Determine the nature
of all stationary points if 0 < a < 1, and if a = 1.

Sketch the curve when a = 1. State the coordinates
of all stationary points but make no attempt to determine
exactly the x-coordinates of any points (other than the
origin) at which the curve crosses the x-axis.

(b) Extend the discussion to cover a < 0, a = 0, and
a > 1.

Analytic geometry: triangles

CRUX 119. by John A. Tierney

A line through the first quadrant point (a, b) forms
a right triangle with the positive coordinate axes. Find
analytically the minimum perimeter of the triangle.

MATYC 106. by Gino Fala

Let T be the triangle in the plane whose vertices are
(−1,−1), (1,−1), and (2, 5). Find an equation E(x, y) = 0
for T .

Angle measures

OSSMB G75.1-5.

A river flows due north, and a vertical tower, CD,
stands on its left bank. From a point A upstream and on
the same bank as the tower, the elevation of the tower is
60◦; and from a point B just opposite A on the other bank,
the angle of elevation of the tower is 45◦. If the tower is 150
feet high, find the width of the river.

Billiards

CRUX 137. by Viktors Linis
On a rectangular billiard table ABCD, where AB = a

and BC = b, one ball is at a distance p from AB and at a
distance q from BC, and another ball is at the center of the
table. Under what angle α (from AB) must the first ball
be hit so that after the rebounds from AD, DC, and CB it
will hit the other ball?

NAvW 475. by I. J. Schoenberg
Let E be an ellipse and n be an integer greater than or

equal to 3. We think of E as the rim of a billiard table, the
objective being to determine all closed billiard ball paths
Πn that are closed convex n-gons. This requires that, at
each vertex of Πn, the angle of incidence with E be equal
to the angle of reflection. Prove the following:

(a) There is a 1-parameter family Fn of n-gons Πn
inscribed in E with the reflection property, the initial vertex
of Πn being chosen arbitrarily on E.

(b) All these Πn are circumscribed to a fixed ellipse
En confocal to E.

(c) All n-gons of the family Fn have the same (maxi-
mal) perimeter.

NAvW 476. by I. J. Schoenberg
Let E be an ellipse that we think of as the rim of a

billiard table, the objective being to determine all convex
quadrilaterals Q = A1A2A3A4 that are closed billiard ball
paths. Equivalently, Q should have equal incidence and
reflection angles at each Ai, and we call this “the reflection
property.”

Prove the following statements:
(a) Circumscribe to E an arbitrary rectangle

B1B2B3B4,

and let BiBi+1 be tangent to E at Ai (B5 = B1). Then

Q = A1A2A3A4

is a parallelogram having the reflection property, and the

perimeter of Q is constant and equals 4
(
a2 + b2

)1/2
.

(b) The Q are circumscribed to an ellipse E4, confocal
to E, and having the semi-axes

a4 =
a2

(a2 + b2)
1/2

,

b4 =
b2

(a2 + b2)
1/2

,

where a and b are the semi-axes of E.
(c) The parallelograms Q give all convex quadrilateral

billiard ball paths.

MM 1003. by Richard Crandall
and Peter Ørno

Let P and Q be two distinct points in the interior
of a circular disc with neither point at the center. With
the boundary of the disc acting as a mirror, a ray of light
from point P determines, by the successive reflections from
the boundary, a polygonal path in the disc. This path is
dependent on the initial direction of the ray of light. Given
a positive integer k, show that there is such a path with the
kth reflection of the ray intersecting Q.

With k, P , and Q given, can the number of such
distinct paths be determined?
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OSSMB 77-4.

Let P and Q be points inside 4ABC. Determine how
to aim a ray from P so that, upon reflection by each of the
sides of 4ABC, the ray goes through Q.

Butterfly problem

OSSMB 75-5. by P. Erdős

CRUX 75. by R. Duff Butterill

MM 949. by P. Erdős and M. S. Klamkin

Let AB be a chord of a circle, center O. Let ON be the
radius perpendicular to AB, meeting AB at M . Let P be
any point in the major arc AB, not diametrically opposite
N . Let PM and PN determine Q and R, respectively, on
the circle and AB. Prove that RN > MQ.

Cake cutting

PARAB 381.

A square cake has frosting on its top and on all four
sides. Show how to cut it in order to serve nine people so
that each one gets exactly the same amount of cake and
exactly the same amount of frosting.

Circles: 2 circles

CRUX PS1-2.

If two circles pass through the vertex and a point on
the bisector of an angle, prove that they intercept equal
segments on the sides of the angle.

PME 338. by Hung C. Li

Let (O) be a circle centered at O with radius a. Let
P , any point on the circumference of (O), be the center of
circle (P ). What is the radius of (P ) such that it divides
the area of (O) into two regions whose areas are in the ratio
s:t?

SSM 3730. by Fred A. Miller

Let C1 and C2 be two concentric circles with radii r1
and r2 respectively, r1 > r2. Under what conditions is it
possible to draw a line cutting both C1 and C2 so that the
length of the chord intercepted by C1 is twice the length
of the chord intercepted by C2? If this is possible, describe
how it can be done.

ISMJ 11.3.
PARAB 401.

Show that if AB and CD are parallel diameters of two
circles that are tangent at P then AD and BC intersect at
P .

CRUX 62. by F. G. B. Maskell
Prove that if two circles touch externally, their common

tangent is a mean proportional between their diameters.

NYSMTJ OBG5.
Two unit circles are drawn with centers O and O1. One

of the points of intersection is D. Let B and C be the points
of tangency on the common tangent nearer to D. Segment
OO1 meets the two circles at points A and E. Find the
length of OO1 if mixtilinear triangles BCD and AED have
the same area.

AUSTRALIA 1979/2.
Two circles in a plane intersect. Let A and B be the

two points of intersection. Starting simultaneously from
A two points P and Q move with constant speeds around
different circles, each point traveling along its own circle in
the same sense as the other point. The two points return
to A simultaneously after one revolution. Prove

(a) P , B and Q are always collinear;
(b) that there is a fixed point S in the plane such that,

at any time, the distances from S to the moving points are
equal.

CRUX 63. by H. G. Dworschak
Given are two nonintersecting circles C1 and C2. From

the center of C1 both tangents are drawn to C2. These
tangents intersect C1 at points P and Q. Points R and S
on C2 are obtained similarly. Prove that the chords PQ and
RS are equal in length.

Circles: 3 circles

OMG 17.1.7.
Three circles are on the same side of a straight line and

are tangent to the line. One of the circles has radius 4 and
each of the three circles is tangent to the other two. Draw
a diagram and then determine the radius of the two equal
circles.

FUNCT 3.1.3.
Prove that the points of intersection of all common

tangents to three circles are collinear.

PME 344. by J. A. H. Hunter
Three circles whose radii are a, b, and c are tangent

externally in pairs and are enclosed by a triangle, each side
of which is an extended tangent of two of the circles. Find
the sides of the triangle.
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Circles: 4 circles

SSM 3684. by Donald L. Chambers
Without using calculus, find the area of the region

which is the intersection of the four circular regions which
have, as their centers, the vertices of a square and the side
of the square as radius.

CRUX 248. by Dan Sokolowsky
Circles (M) and (N) are externally tangent at point

P and mutually circumscribed by circle (O). Point Q is
the center of the circle inscribed in the mixtilinear triangle
bounded by (M), (N), and (O). The diameter of (Q)
parallel to the line containing points M , N , O, and P is
given by FG. Point W is the radical center of circles (M),
(N), and (O). Prove that WQ is equal to the circumradius
of 4PFG.

Circles: arcs

SSM 3695. by Steven R. Conrad
An equilateral Gothic arch ABC is made by drawing

line segment AC, circular arc AB with center C, and cir-
cular arc BC with center A. A circle is inscribed in this
Gothic arch, tangent to arcs AB and BC and also to line
segment AC. If AC = 24, find the area of this inscribed
circle.

SSM 3724. by Alan Wayne
A plane figure ABCD consists of two parallel, circular

arcs AD and BC, together with two line segments AB and
DC, each of length a. If the arcs AD and BC have lengths
s and t respectively, find a formula for the area K in terms
of s, t, and a.

OMG 17.2.2.
A section of railway track 5000 meters long was laid in

the desert. Because of the heat during the day, the workmen
put the track down during the cool of the night and securely
fastened each end. In the heat of the following day the
section of track expanded by 1 meter in length. If the track
bowed upwards, how high would the center of the track be
above the ground level?

Circles: area

MATYC 93. by Elliott Hartman
Three circles A, B, and C have radii equal to 6, 4, and

2, respectively. Circles B and C are externally tangent to
one another and both are tangent to A internally. Find the
area of the largest possible circle that is interior to A and
exterior to B and to C.

Circles: chords

CANADA 1975/5.
Let A, B, C and D be four “consecutive” points on the

circumference of a circle and P , Q, R and S be points on the
circumference which are respectively the midpoints of the
arcs AB, BC, CD and DA. Prove that PR is perpendicular
to QS.

CRUX 466. by Roger Fischler
Let AB and BC be arcs on a circle such that arc AB >

arc BC and let D be the midpoint of arc AC. If DE ⊥ AB,
show that AE = EB +BC.

CRUX 225. by Dan Sokolowsky
Let C be a point on the diameter AB of a circle. A

chord through C, perpendicular to AB, meets the circle at
D. Two chords through B meet CD at T1, T2 and arc AD
at U1, U2 respectively. It is known that there are circles C1
and C2 tangent to CD at T1 and T2 and arc AD at U1 and
U2 respectively. Prove that the radical axis of C1 and C2
passes through B.

CRUX 110. by H. G. Dworschak
(a) Let AB and PR be two chords of a circle inter-

secting at Q. If A, B, and P are kept fixed, characterize
geometrically the position of R for which the length of QR
is maximal.

(b) Give a Euclidean construction for the point R
which maximizes the length of QR, or show that no such
construction is possible.

PARAB 289.
In a circle of radius 5, we have two parallel chords CB

and ED of lengths 8 and 6, respectively. Let CD and EB
be extended to meet at A. Let AF be an altitude of the
triangle ABC. Calculate the length of AF .

CRUX 220. by Dan Sokolowsky
Let C be a point on the diameter AB of a circle. A

chord through C, perpendicular to AB, meets the circle at
D. A chord through B meets CD at T and arc AD at U .
Prove that there is a circle tangent to CD at T and to arc
AD at U .

SSM 3688. by Fred A. Miller
Prove that if two chords of a circle intersect at right

angles, then the sum of the squares of the lengths of the
four segments formed is equal to the square of the length of
the diameter.

Circles: circumference and diameter

OMG 16.1.2.
A string is stretched tightly around the equator of a

perfect sphere the size of the earth, i.e., 6400 km radius. Six
meters more string is added, and the whole circle of string is
raised equally above the surface. What approximately will
the height of the string above the surface be?

Circles: inscribed rectangles

MSJ 447. by Michael Massimilla
Tom, Dick, and Harry faced the problem of creating a

baseball-like diamond within a circular field. Tom decided
that it would be a good idea to inscribe a rectangle in the
field. Dick decided to place one base at the midpoint of
each side of the rectangle. Finally, Harry decided to locate
the pitcher’s mound at the very center of the field. In this
makeshift diamond, the distance from the pitcher’s mound
to first base was 15 meters and the distance from first base to
the edge of the field was 12 meters. What was the ‘distance
around the bases’ in this diamond?

Circles: interior point

CANADA 1977/2.
OMG 16.2.2.

Let O be the center of a circle and A a fixed interior
point of the circle different from O. Determine all points P
on the circumference of the circle such that the angle OPA
is a maximum.
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JRM 535. by Sherry Nolan

Points A, B, and C are selected on a circle and point
P inside the circle so that the perimeter of the quadrilateral
ABCP is equal to the circumference of the circle.

(a) Prove that P cannot be the center of the circle.

(b) If B is fixed, determine the positions of A, P , and
C that maximize the area of ABCP .

Circles: isosceles right triangles

JRM 370. by Leon Bankoff

OSSMB 78-13.

An isosceles right triangle is inscribed in a semicircle,
and the radius bisecting the other semicircle is drawn. Cir-
cles are inscribed in the triangle and in the two quadrants
as shown. Prove that these three smaller circles are equal.

Circles: line segments

OMG 18.1.4.

Given is a circle with center O and radius OD. Points
A, B, and C are selected such that B is on the circumference
of the circle, C is on OD, OA and BC are perpendicular to
OD, and AB is parallel to OD. If OC = 5 and CD = 1,
find the length of AC.

Circles: mixtilinear triangles

PME 362. by Zelda Katz

A diameter AB of a circle (O) passes through C, the
midpoint of a chord DE. Let M be the midpoint of arc
AB, and let MC meet the circle again at P . The radius
OP cuts the chord DE at Q. Point O1 is the center of the
circle on AC as diameter. Point O2 is the center of the
circle on BC as diameter. Point W1 is the center of the
circle inscribed in the mixtilinear triangle bounded by (O),
(O1), and CE. Point W2 is the center of the circle inscribed
in the mixtilinear triangle bounded by (O), (O2), and CE.

Show that DQ = W1W2.

Circles: orthogonal circles

MM 1020. by Leon Gerber

For i = 1, 2, and 3, let the circle Ci have center (hi, ki)
and radius ri. Find a determinant equation for the circle
orthogonal to these three given circles which generalizes the
well-known result for the circle through three points.

Circles: surrounding chains

SPECT 9.7. by J. G. Brennan
A chain of six unit circles are each externally tangent

to a central unit circle, and tangent to the preceding and
following one of the chain. A chain of six circles each of
radius r are such that each is externally tangent to two of
the unit circles and each member of the chain is tangent
to the preceding and following one of the chain. Find a
quadratic equation, one of whose roots is r. What is the
geometrical significance of the other root of the quadratic
equation?

PME 428. by Solomon W. Golomb
One circle of radius a may be “exactly surrounded” by

6 circles of radius a. It may also be exactly surrounded by
n circles of radius t, for any n ≥ 3, where

t = a(csc
π

n
− 1)−1.

Suppose instead that we surround it with n+1 circles, one of
radius a and n of radius b (again n ≥ 3). Find an expression
for b/a as a function of n.

Circles: tangents

AMM E2625. by Hüseyin Demir
Let Ai, i = 0, 1, 2, 3 (mod 4) be four points on a circle

Γ. Let ti be the tangent to Γ at Ai, and let pi and qi be
the lines parallel to ti passing through the points Ai−1 and
Ai+1, respectively. If

Bi = ti ∩ ti+1,

Ci = pi ∩ qi+1,

show that the four lines BiCi have a common point.

SSM 3710. by Steven R. Conrad
Tangents TA and TB are drawn to points A and B

of a circle, and an arbitrary point P is selected on arc AB.
Prove that the perpendicular from P to AB is the mean
proportional between the perpendiculars drawn from P to
TA and TB.

Combinatorial geometry: concyclic points

AMM E2789. by Doug Hensley
Suppose gcd(n, 30) = 1 and n ≥ 13. Let Sn be a set

of n points equally spaced around a circle. Show that there
are
(
n2 − 1

)
/12 incongruent triangles with vertices in Sn.

Show further that their areas are distinct when n is a prime.

Combinatorial geometry: counting problems

ISMJ 14.21.
In the plane, n circles are drawn so that every two

distinct circles meet in exactly two points and no three of
the circles have a common point. Give a formula for the
number of regions into which the circles partition the plane.

OMG 14.3.3.
Into how many regions do n planes divide space if no

two planes are parallel and no four intersect at a point?
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PARAB 412.
Consider a convex polygon with n vertices, and sup-

pose that no three of its diagonals meet at the same point
inside the polygon. Determine

(a) the total number of line segments into which the
diagonals are divided by their points of intersection, and

(b) the total number of regions into which the figure is
divided by all its diagonals.

ISMJ J11.15.
Every room of a house has an even number of doors.

Show that the number of doors leading directly to the out-
side must be even.

Combinatorial geometry: equilateral triangles

FQ B-413. by Herta T. Freitag
For every positive integer n, let Un consist of the points

j+ke2πi/3 in the Argand plane with j ∈ {0, 1, 2, . . . , n} and
k ∈ {0, 1, . . . , j}. Let T (n) be the number of equilateral
triangles whose vertices are subsets of Un.

(a) Obtain a formula for T (n);
(b) Find all n for which T (n) is an integral multiple of

2n+ 1.

Combinatorial geometry: intervals

PARAB 284.
You are given 50 intervals on a line. Prove that at

least one of the following statements about those intervals
is true:

(a) There are 8 intervals, all of which have at least one
point in common.

(b) There are 8 intervals so that no two of them have
a common point.

Combinatorial geometry: lines in plane

AMM E2754. by Jim Fickett
Given n arbitrary lines k1, . . . , kn in the plane, need

there exist another n lines h1, . . . , hn having the same in-
tersection pattern but with all intersection points ratio-
nal? The first condition means that for every subset S of
{1, . . . , n}, we have

⋂

i∈S
ki 6= ∅ ⇐⇒

⋂

i∈S
hi 6= ∅.

Combinatorial geometry: packing problems

AMM E2612. by Sidney Penner
How many diamonds can be packed in a Chinese

checkerboard? This board consists of two order 13 trian-
gular arrays of holes, overlapping in an order 5 hexagon,
121 holes in all. A diamond consists of four marbles that
fill four adjacent holes.

Combinatorial geometry: planes

OMG 15.3.1.
What is the number of intersection points of 4 planes

if no two are parallel and no three intersect in a straight
line?

OMG 15.3.10.
What is the number of intersection points of 5 planes

if no two are parallel and no three intersect in a straight
line?

Combinatorial geometry: points in space

PARAB 437.

Two hundred points are distributed in space so that no
three are collinear and no four are coplanar. Prove that it is
possible to draw 10,000 line segments joining them without
completing a single triangle.

Combinatorial geometry: polygons

NYSMTJ 38. by Richard Bury

Find the maximum number of points of intersection of
the diagonals of an n-gon.

Combinatorial geometry: triangles

AMM E2736. by E. Ehrhart

Let ∆ be a closed triangle and P0, A0, P1, A1, . . . an
infinite sequence of points in a plane. Assume that Pi 6=
Pi+1, Ai 6= Ai+1, each Ai is a vertex of ∆ and the midpoint
of the segment [Pi, Pi+1], and [Pi, Pi+1] ∩∆ = {Ai}.

Prove that Pn = P0 for some positive n.

Combinatorial geometry: triangulations

PARAB 395.

A polygon is said to be triangulated when diagonals,
no two of which cross, are drawn cutting the polygon into
triangles. A polygon other than a triangle can be triangu-
lated in more than one way.

(a) Show that a triangulated n-gon is always cut into
n− 2 triangles by n− 3 diagonals.

(b) Show that there are at least two vertices of a tri-
angulated polygon, each of which lies in a single triangle.

Concyclic points

CRUX 173. by Dan Eustice

For each choice of n points on the unit circle (n ≥ 2),
there exists a point on the unit circle such that the product
of the distances to the chosen points is greater than or equal
to 2. Moreover, the product is less than or equal to 2 for all
points on the unit circle if and only if the n points are the
vertices of a regular polygon.

Conics

CRUX 279. by F. G. B. Maskell

Three collinear points A, O, and B are given such that
O is between A and B, and AO 6= OB. Show that the three
conics having two focii and one vertex at the three given
points intersect in two points.

NAvW 484. by J. T. Groenman

Let Ai (i = 1, 2, 3, 4) be four points on a given conic K.
Let Bij be the midpoints of AiAj and `ij the line through
Bij conjugated with respect to K, to the line AkA` opposite
AiAj .

Prove that the six lines `ij have one common point S
and specify the position of this point S.
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NAvW 490. by O. Bottema
The rectangular coordinates (x, y) of the vertices of

the triangle A1A2A3 are given: A1 = (−a, 0), A2 = (a, 0),
A3 = (p, h), a > 0, 0 ≤ p < a. The circumscribed Steiner
ellipse K of a triangle is defined as the conic passing through
the vertices, the tangents at these points being parallel to
the opposite sides. The fourth intersection S of K and
the circumcircle C is called Steiner’s point. Determine the
limiting position of S if a and p are constants and h→ 0.

AMM E2751. by Paul Monsky
Let X be a conic section. Through what points in

space do there pass three mutually perpendicular lines, all
meeting X?

Constructions: angle bisectors

NAvW 553. by J. T. Groenman
Construct a scalene triangle ABC such that the exter-

nal bisectors of angles A and B are of equal length, given
the measurements: 6 C = γ and AB = c. Show that this
construction is only possible if γ < 60◦.

Constructions: angles

CRUX 96. by Viktors Linis
By Euclidean methods divide a 13◦ angle into thirteen

equal parts.

CRUX 420. by J. A. Spencer
Given an angle AOB, find an economical Euclidean

construction that will quadrisect the angle. “Economical”
means here using the smallest possible number of Euclidean
operations: setting a compass, striking an arc, drawing a
line.

ISMJ 14.22.
A piece of cardboard is cut in a certain shape, where

PQ = TS = 1, QR = 2, and the curve is a circular arc
centered at Q. The angles at T , R, and S are right angles.
To use this device to trisect an angle AOB, place it so that
Q lies on TU , R lies on OB, and OA is tangent to the circle.
Prove that TU trisects 6 AOB.

PME 412. by Solomon W. Golomb
Are there examples of angles which are trisectible but

not constructible? That is, can you find an angle α which is
not constructible with straightedge and compass, but such
that, when α is given, α/3 can be constructed from it with
straightedge and compass?

TYCMJ 119. by Thomas E. Elsner
The following construction is well known as a false

trisection of an angle. For a given angle Z ≤ π, construct
a circle with center on the vertex of Z and label as A
and B the intersections of the circle with the rays of the
angle. Label as M and N , respectively, the diametric points
opposite to A and B. Construct diameter EF as bisector of
angle Z with F ∈ AB, and bisect each of these half angles
with radii ending at G and H, G ∈ AF , H ∈ BF . Now
label K as the intersection of lines EG and MF and L as
the intersection of lines EH and NF . Then ZK and ZL
approximately trisect angle Z. What is the greatest error
in any of the trisection angles for Z?

PME 341. by Jack Garfunkel
Prove that the following construction trisects an angle

of 60◦. Triangle ABC is a 30◦ − 60◦ − 90◦ right triangle
inscribed in a circle. Median CM is drawn to side AB and
extended to M ′ on the circle. Using a marked straightedge,
point N on AB is located such that CN extended to N ′ on
the circle makes NN ′ = MM ′. Then CN trisects the 60◦

angle ACM .

TYCMJ 75. by Norman Schaumberger
Find an integer-sided right triangle such that each of

its angles can be trisected with straightedge and compasses.

Constructions: chords

NYSMTJ 73. by John J. Sullivan
In a given circle, construct a chord of given length

which is part of a line passing through a point exterior to
the given circle.

USA 1979/4.
Show how to construct a chord BPC of a given angle

A through a given point P such that 1/BP + 1/PC is a
maximum.

PENT 321. by Fred A. Miller
In a circle whose center is at O, radii OA and OB are

drawn. Construct a chord that will be trisected by radii OA
and OB.

Constructions: circles

ISMJ 11.11.
ISMJ 12.5.

Given two circles, show how to construct with straight-
edge and compass a circle whose area is the sum of the areas
of the two given circles.

USA 1975/4.
Two given circles intersect in two points P and Q.

Show how to construct a segment AB passing through P
and terminating on the two circles such that AP · PB is a
maximum.

MSJ 466.
Let C be a given circle and A a point outside of C.

Construct a line through A intersecting C at points P and
Q so that PQ = 2(AP ).

CRUX 284. by W. A. McWorter, Jr.
Given a sector AOD of a circle with B on arc AD, can

a straightedge and compass construct the line OB so that
AB = AC?
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ISMJ J10.12.
A circle is to be inscribed in a quadrant of a circle of

radius R so that it touches all three sides of the quadrant.
Find its radius and show how to construct the circle using
straightedge and compass.

OSSMB 76-6.
Establish the following method, known as Swale’s

method, to determine the radius of a circle given just the
circumference:

With any point O on the circumference C construct a
circle D to cut C at P and Q. With center Q and the same
radius, cut off the point R on D inside C. Let PR meet C
at L. Then QL (and also LR) is the radius of C.

PARAB 423.
Given two intersecting straight lines a and b and a

point P on b, show how to construct a circle whose center
is on b and which passes through P and touches a.

Constructions: compass only

CRUX 125. by Bernard Vanbrugghe
Using compass only, determine the center of a given

circle.

Constructions: conics

CRUX 325. by Basil C. Rennie
It is well known that if you put two thumbtacks in a

drawing board and a loop of string around them you can
draw an ellipse by pulling the string tight with a pencil.
Now suppose that instead of the two thumbtacks, you use
an ellipse cut out from plywood. Will the pencil in the loop
of string trace out another ellipse?

CRUX 242. by Bruce McColl
Give a geometrical construction for determining the

focus of a parabola when two tangents and their points of
contact are given.

Constructions: equilateral triangles

CRUX 463. by Jack Garfunkel
Construct an equilateral triangle so that one vertex is

at a given point, a second vertex is on a given line, and the
third vertex is on a given circle.

NYSMTJ 54.
NYSMTJ OBG6. by Aaron L. Buchman

(a) Given three coplanar parallel lines, construct an
equilateral triangle having one vertex on each line.

(b) Suppose the parallel lines are not coplanar; is the
construction still possible?

Constructions: line segments

MATYC 85. by Robert Forster
Given is a linear distance `. Find an equation or algo-

rithm that will divide ` into a given number of segments p
such that the segments are in geometric proportion.

MM Q637. by Bertram Ross
Bisect a line segment with a straightedge given only a

line parallel to it.

Constructions: lines

CRUX 488. by Kesiraju Satyanarayana
Given a point P within a given angle, construct a line

through P such that the segment intercepted by the sides
of the angle has minimum length.

Constructions: parallel lines

ISMJ 12.10.
Let A, B, and C be three given points in the plane.

Determine whether it is possible to draw equidistant parallel
lines through these points and show how such lines might
be found.

Constructions: pentagons

CRUX 428. by J. A. Spencer
Let AOB be a right-angled triangle with legs OA =

2OB. Use it to find an economical Euclidean construction
of a regular pentagon whose side is not equal to any side
of 4AOB. “Economical” means here using the smallest
possible number of Euclidean operations: setting a compass,
striking an arc, drawing a line.

Constructions: points

ISMJ 11.14.
Suppose you are given that somewhere on the side AB

of the pentagon ABCDE there is a point M such that DM
divides the pentagon into two quadrilaterals of equal area.
Show how to construct DM .

JRM 538. by Harold Wyatt
A quadrilateral ABCD is drawn on a sheet of paper.

Let E be the intersection of the diagonals, P the intersection
of AB and CD, R the intersection of PE and AD, and Q
the intersection of AD and BC.

(a) How can R be obtained by Euclidean construction
when P does not lie on the sheet of paper?

(b) Assume that both P and Q lie off the sheet, but
PQ intersects the sheet in the segment MN . Show how to
obtain MN by Euclidean construction.

Constructions: quadrilaterals

ISMJ J10.5.
Show how to construct a quadrilateral if you are given

the four angles and a pair of opposite sides.

Constructions: rectangles

ISMJ 13.24.
The point P is on one side of a parallelogram ABCD.

Show how to construct (with compass and straightedge) a
rectangle with P as one vertex and the other vertices on the
other three sides of the parallelogram.

ISMJ 11.10.
Show how to construct a rectangle whose area is equal

to that of a given pentagon (not necessarily regular).

Constructions: right triangles

MSJ 480.
Construct a right triangle with hypotenuse of length

12, if it is given that two of its medians are perpendicular.
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Constructions: rulers

PARAB 265.
If you are required to make an exact copy of an irregu-

lar hexagon given a ruler and a protractor, what is the least
number of measurements you would have to make?

If you had no protractor could you still do it? If so,
would a greater number of measurements be needed?

What would be the least number of measurements re-
quired to copy an irregular polygon with n sides?

NAvW 402. by O. Bottema
Show that any construction in the plane with ruler and

compass can also be performed by means of the ruler only,
if a triangle, its circumcircle, and one of the following points
are given:

(1) its centroid,
(2) its orthocenter,
(3) its incenter.
Prove that the statement does not hold if a triangle,

its circumcircle, and its symmedian point are given.

FUNCT 2.5.1. by Gordon C. Smith
Let 6 BAC be any angle. Construct BB′ parallel to

AC, and BP perpendicular to BB′. Mark a length equal
to twice BA on a ruler. Place your ruler on the point A,
turn it and slide it until the marked length has its ends on
BP and BB′, with G on BP and D on BB′.

Prove that 6 DAC is 1/3 of 6 BAC.

Constructions: rusty compass

CRUX 492. by Dan Pedoe
(a) A segment AB and a rusty compass of span r ≥

1
2AB are given. Show how to find the vertex C of an
equilateral triangle ABC using, as few times as possible,
the rusty compass only.

(b) Is the construction possible when r < 1
2AB?

JRM 505. by Sherry Nolan
Given a point P on a line L, construct a perpendicular

through P using straightedge and rusty compass. In how
few applications of the rusty compass can the task be done?

Constructions: squares

CRUX 127. by Viktors Linis
Let A, B, C, and D be four distinct points on a line.

Construct a square by drawing two pairs of parallel lines
through the four points.

CRUX 32. by Viktors Linis
Construct a square given a vertex and a midpoint of

one side.

CRUX 44. by Viktors Linis
Construct a square ABCD given its center and any two

points M and N on its two sides BC and CD, respectively.

PME 453. by Jack Garfunkel
Given two intersecting lines and a circle tangent to

each of them, construct a square having two of its vertices
on the circumference of the circle and the other two on the
intersecting lines.

JRM 466. by Vincent J. Seally
Given is a triangle ABC. Construct a square with two

sides meeting at A and with the other two sides containing
B and C, respectively.

Constructions: straightedge only

CRUX 257. by W. A. McWorter, Jr.
Can one draw a line joining two distant points with a

BankAmericard?

CRUX 338. by W. A. McWorter, Jr.
Can one locate the center of a circle with a VISA card?

ISMJ 13.20.
ISMJ 13.14.

Given a line ` and a point P not on ` on a piece of lined
paper, show how to construct the line parallel to ` through
P using a straightedge alone. Do not assume P is on one of
the printed lines.

Constructions: trapezoids

NYSMTJ 59.
Construct a trapezoid, given both bases and both di-

agonals.

Constructions: triangles

CRUX 415. by A. Liu
Is there a Euclidean construction of a triangle given

two sides and the radius of the incircle?

ISMJ J10.4.
Show how to locate the vertices B and C of a triangle

ABC if you are given the point A, the circumcenter of
4ABC, and the centroid of 4ABC.

MM 1054. by Jerome C. Cherry

(a) Show how to construct triangle ABC by straight-
edge and compass, given side a, the median ma to side a,
and the angle bisector ta to side a.

(b) Show how to construct triangle ABC by straight-
edge and compass, given angle A, ma, and ta.

SSM 3642. by Ed Silver and Philip Smith
Construct triangle ABC given angle A, side a, and a

segment b + c equal in length to the sum of the triangle’s
other two sides.

JRM 562. by Michael J. Messner
Watson was busily engaged in constructing the three

altitudes of a triangle. He had just swung three intersecting
semicircular arcs from the three vertices, using the same
radius, when he got an emergency call. “I say, Holmes, can
you finish the job for me?” he asked. “Certainly, my dear
fellow, and using the compass only twice more.” How did
the great detective plan to do it?

CRUX 379. by Peter Arends
Construct a triangle ABC, given angle A and the

lengths of side a and ta (the internal bisector of angle A).
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CRUX 454. by Ram Rekha Tiwari
(a) Is there a Euclidean construction for a triangle

ABC given the lengths of its internal angle bisectors ta,
tb, and tc?

(b) Find formulas for the sides a, b, and c in terms of
ta, tb, and tc.

CRUX 288. by W. J. Blundon
Show how to construct (with compass and straight-

edge) a triangle given the circumcenter, the incenter and
one vertex.

CRUX 472. by Jordi Dou
Construct a triangle given side b and circumradius R

such that the line joining circumcenter and incenter is par-
allel to side a.

CRUX 476. by Jack Garfunkel
Construct an isosceles right triangle such that the three

vertices lie each on one of three concurrent lines, the vertex
of the right angle being on the inside line.

CRUX 120. by John A. Tierney
Given a point P inside an arbitrary angle, give a Eu-

clidean construction of the line through P that determines
with the sides of the angle a triangle

(a) of minimum area;
(b) of minimum perimeter.

ISMJ 12.6.
Construct a triangle given the lengths of its three me-

dians. Can any three numbers be the lengths of the medians
of a triangle?

MATYC 99. by Aleksandras Zujus
Using only straightedge and compass, construct trian-

gle ABC, given the measure of 6 A and the medians mb and
mc.

Convexity

MATYC 126. by Gino Fala
Let G represent a convex polygon in the plane with

perimeter |G| and enclosed area ‖G‖. Encircle G with a
smooth curve C in the plane of G such that C is at a
constant distance r from G. Denote the perimeter of C
and the area enclosed by C by |C| and ‖C‖, respectively.
Prove that:

|C| = |G|+ 2πr

and
‖C‖ = ‖G‖+ r|G|+ πr2.

AMM E2714. by M. J. Pelling
Let G1 and G2 be two bounded convex regions in R2,

and suppose G1 is translated to G1(t) by the transformation

x→ x+ ta,

where a is a fixed unit vector. Consider the area A(t) of

G1(t) ∩G2

as a function of t. Is it always true that there is a constant
c such that A(t) is monotonic increasing for t ≤ c and
monotonic decreasing for t ≥ c?

What happens in Rn?

PUTNAM 1979/B.5.
In the plane, let C be a closed convex set that contains

(0, 0) but no other point with integer coordinates. Suppose
that A(C), the area of C, is equally distributed among the
four quadrants. Prove that A(C) ≤ 4.

PARAB 416.
Let S be a convex area which is symmetric about the

point O. Show that the area of any triangle drawn in S is
less than or equal to half the area of S.

OSSMB 75-10.
Consider a plane convex set K that has a center of

symmetry. Prove that a circumscribing parallelogram P of
minimum area contacts K at the midpoints of its four sides.

AMM 6089.* by E. Ehrhart
Let K be a convex body in Rn of Jordan content

V (K) >
(n+ 1)n

n!

and with centroid at the origin. Does K ∪ (−K) contain
a convex body C, symmetric about the origin, for which
V (C) > 2n?

Covering problems

PARAB 279.
MSJ 502.

On each side of a convex quadrilateral, a circle is drawn
having that side as diameter. Prove that every point inside
the quadrilateral lies inside at least one of the 4 circles.

ISMJ J10.6.
A square one unit on each side is to be covered by two

circular discs of the same size (overlapping is permitted).
How small can the discs be?

AMM E2790. by Mark D. Meyerson
Suppose we have a collection of squares, one each of

area 1/n for n = 1, 2, 3, . . ., and any open set, G, in the
plane. Show that we can cover all of G except a set of area
0 by placing some of the squares inside G without overlap.
(The edges of the squares are allowed to touch.)

NAvW 411. by J. van de Lune
Let (Sn)n∈N be a sequence of (closed) squares with

corresponding areas (an)n∈N such that
∑∞
n=1 an diverges.

Prove that it is possible to cover the plane by means
of the given “pile of tiles” (overlap permitted).

Cyclic polygons

MSJ 416. by Albert Wilansky
A polygon inscribed in a circle has congruent angles.

Must it also have congruent sides?

ISMJ 12.29.
If a polygon inscribed in a circle has equal angles, must

its sides all be equal?
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Cyclic quadrilaterals

OSSMB G75.2-3.
Given is a cyclic quadrilateral with sides a, b, c, d and

perimeter 2s. Show that the total area of this quadrilateral

is
√

(s− a)(s− b)(s− c)(s− d).

CRUX PS7-2. by Jan van de Craats
Let A1A2A3A4 be a kite (i.e., A1A2 = A1A4 and

A3A2 = A3A4) inscribed in a circle. Show that the incen-
ters I1, I2, I3, and I4 of the respective triangles A2A3A4,
A3A4A1, A4A1A2, and A1A2A3 are the vertices of a square.

AMM E2553. by V. B. Sarma
Suppose that A, B, C, and D are cyclic points and

that the Simson line of A with respect to triangle BCD is
perpendicular to the Euler line of triangle BCD. Show that
the Simson line of B will be perpendicular to the Euler line
of triangle CDA. Is this true if we replace “perpendicular”
by “parallel”?

CRUX 483. by Stanley Collings
Let ABCD be a convex quadrilateral; let AB ∩DC =

F and AD ∩ BC = G; and let IA, IB , IC , and ID, be
the incenters of triangles BCD, CDA, DAB, and ABC,
respectively. Prove that:

(a) ABCD is a cyclic quadrilateral if and only if the
internal bisectors of the angles at F and G are perpendicu-
lar.

(b) If ABCD is cyclic, then IAIBIC lD is a rectangle.
(*) Is the converse true?

Cycloids

NAvW 438. by O. Bottema
The circles C = (M ;R) and c = (m; r) are given in the

coinciding planes U and u respectively. The plane u moves
with respect to U in the following way: c remains tangent to
C at a point that moves along C with velocity V and along
c with velocity v, such that V = λv, λ being a constant.
Show that, except for some special values of λ, the motion
is cycloidal.

Discs

PARAB 328.
Six circular discs are lying in the plane so that no one

of them covers the center of another. Show that there is no
point in common to all six discs.

Dissection problems: angles

PENT 299. by Kenneth M. Wilke
Devise a method for dividing a 17◦ angle into seventeen

equal parts.

Dissection problems: equilateral triangles

CRUX 256. by Harry L. Nelson
Prove that an equilateral triangle can be dissected into

five isosceles triangles, n of which are equilateral, if and only
if 0 ≤ n ≤ 2.

Dissection problems: isosceles right triangles

PME 416. by Scott Kim
Each of the three figures shown is composed of two

isosceles right triangles, 4ABC and 4DBE, where 6 ABC
and 6 DBE are right angles, and B is between points A and
D. Points C and E coincide so that CB/EB = 1 in the first
figure. In the second figure, we are given that CB/EB = 2,
and in the third figure that CB/EB = 3. Consider each pair
of triangles as a single shape, and suppose that the areas of
the three shapes are equal. For each pair of figures, find the
minimum number of pieces into which the first figure must
be cut so that the pieces may be reassembled to form the
second figure. Pieces may not overlap, and all pieces must
be used in each assembly.

Dissection problems: line segments

CRUX 158. by André Bourbeau
Devise a Euclidean construction to divide a given line

segment into two parts such that the sum of the squares on
the whole segment and on one of its parts is equal to twice
the square on the other part.

Dissection problems: partitions of the plane

CRUX 170. by Leroy F. Meyers
Is it possible to partition the plane into three sets A, B,

and C (so that each point of the plane belongs to exactly
one of the sets) in such a way that

(i) a counterclockwise rotation of 120◦ about some
point P takes A onto B, and

(ii) a counterclockwise rotation of 120◦ about some
point Q takes B onto C?

Dissection problems: polygons

PARAB 330.
Certain convex polygons can be dissected into squares

and equilateral triangles all having the same length of sides.
If a convex polygon can be dissected in this way, how many
sides did it have originally?

Dissection problems: rectangles

AMM 6178. by Robert Kowalski
Define the shape of a rectangle to be the ratio of the

longer side to the shorter side. Suppose one has an unlim-
ited number of congruent squares at one’s disposal. Given
shape α and an error ε, what is the least number of squares
one needs to construct a rectangle whose shape differs from
α by less than ε?

ISMJ J10.8.
Show that any triangle can be cut into three pieces

that can be rearranged to form a rectangle whose area is
the same as that of the triangle.
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Dissection problems: regular pentagons

MM 1057. by D. M. Collison
Dissect a regular pentagon into six pieces and reassem-

ble the pieces to form three regular pentagons whose sides
are in the ratio 2:2:1.

Dissection problems: regular polygons

CRUX 308. by W. A. McWorter, Jr.
Some restaurants give only one pat of butter with two

rolls. To get equal shares of butter on each roll, one can cut
the butter square along a diagonal with a knife.

(a) What regular n-gons can be cut in half with only
a straightedge?

(b) What convex n-gons can be cut in half with a
straightedge and compass?

Dissection problems: right triangles

MSJ 460. by Zalman Usiskin
MSJ 461. by Zalman Usiskin

Any right triangle can be partitioned into three tri-
angles similar to it. Prove that no other triangles can be
partitioned into three triangles similar to it.

MSJ 428. by Robert Lam
Suppose that ABC is a right triangle, with right angle

at C. Construct a line perpendicular to AB that divides
triangle ABC into two regions of equal area.

Dissection problems: squares

PARAB 286.
Show how to cut up and reassemble five squares of side

length 1 into a single square.

PARAB 310.
A man had a square window with sides of length 1

meter. However, the window let in too much light and so
he blocked up one-half of it. How did he do this in such
a way as to still have a square window which was 1 meter
high and 1 meter wide?

PARAB 339.
Given is a square made up of 100 squares arranged

in 10 rows and 10 columns. The first, second, third, and
fourth squares in the first, second, third, and fourth rows,
respectively, are colored black. Show how to dissect the
square into 4 congruent pieces, each containing one of the
black squares.

PME 380. by V. F. Ivanoff
Form a square from a quadrangle by bisecting segments

and the angles.

PARAB 320.
A large square is divided into one small square (with

sides of length s) and four rectangles A, B, C, and D which
are not squares. No side of any rectangle is the same length
as a side of another nor the side of the big square. The sides
of A are 4s and 2s. Rectangle B has the largest area of any
of the rectangles. Rectangle C has sides in the ratio 3:1 and
its area is 300. Find the area of D.

ISMJ 11.15.
Given five squares each of side length 1. Show how to

cut them up and reassemble them to form a single square.

MSJ 499.
Prove that if n is a positive integer greater than 5, then

it is possible to subdivide a square into n smaller squares
whose sides are parallel to the sides of the original square.

PARAB 334.
Find all positive integers n such that it is impossible

to dissect a square into n squares.

PARAB 356.
A suitor asking for the hand of the king’s daughter is

given the following task:
Divide the square wall of the princess’s room into ten

smaller squares, a different way for each day of the week.
No square should have the same 4 vertices as any square
used on previous days. Is it possible for the suitor to marry
the princess, or will he end up on the chopping block?

CRUX 29. by Viktors Linis
Cut a square into a minimal number of triangles with

all angles acute.

Dissection problems: triangles

PARAB 435.
Show how to cut a square piece of paper into acute

triangles.

OSSMB 79-4. by M. Poirier
Let ABC be a triangle with an obtuse angle at A.

Show that it is possible to partition ABC into smaller trian-
gles all having only acute angles. What is the least number
of line segments required to obtain such a partition?

CRUX 24. by Viktors Linis
A paper triangle has base 6 cm and height 2 cm. Show

that by three or fewer cuts the sides can cover a cube of
edge 1 cm.

JRM 593. by Nobuyuki Yoshigahara
Nine matches are arranged to form a 2×3×4 triangle.

Place two additional matches in such a way as to divide the
triangle into two equal areas.

CRUX 200. by Léo Sauvé
(a) Prove that there exist triangles that cannot be dis-

sected into two or three isosceles triangles.
(b) Prove or disprove that, for n ≥ 4, every triangle

can be dissected into n isosceles triangles.

ISMJ 10.2.
What triangles can be partitioned into 3 congruent

triangles?

PME 448. by R. Robinson Rowe
Analogous to the median, call a line from a vertex

of a triangle to a point of trisection of the opposite side
a “tredian”. Then, if both tredians are drawn from each
vertex, the 6 lines will intersect at 12 interior points and
divide the area into 19 subareas, each a rational part of
the area of the triangle. Find two triangles for which each
subarea is an integer, one being a Pythagorean right triangle
and the other with consecutive integers for its three sides.
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Ellipses

CRUX 419. by G. Ramanaiah
A variable point P describes the ellipse x2/a2+y2/b2 =

1. Does it make sense to speak of “the mean distance of P
from a focus S”? lf so, what is this mean distance?

CRUX 180. by Kenneth S. Williams
Through O, the midpoint of a chord AB of an ellipse,

is drawn any chord POQ. The tangents to the ellipse at
P and Q meet AB at S and T , respectively. Prove that
AS = BT .

OSSMB G79.3-4.
Let P be any point on the ellipse b2a2 + a2y2 = a2b2

having foci F1, F2. Show that the circles drawn with diam-
eters PF1 and PF2 are tangent to the circle having center
at the origin, and diameter the major axis.

PUTNAM 1976/B.4.
For a point P on an ellipse, let d be the distance from

the center of the ellipse to the line tangent to the ellipse at
P . Prove that (PF1)(PF2)d2 is constant as P varies on the
ellipse, where PF1 and PF2 are the distances from P to the
foci F1 and F2 of the ellipse.

OSSMB G77.2-5.
An ellipse and a hyperbola have the same foci. Show

that the two curves intersect at right angles.

MM Q660. by Alan Wayne
Find the ratio of the area of an ellipse to the area of

the largest inscribed rectangle.

CRUX 132. by Léo Sauvé
If cos θ 6= 0 and sin θ 6= 0 for θ = α, β, γ, prove that

the normals to the ellipse

x2

a2
+
y2

b2
= 1

at the points of eccentric angles α, β, γ are concurrent if
and only if

sin(β + γ) + sin(γ + α) + sin(α+ β) = 0.

OSSMB G78.3-3.
Let any tangent to an ellipse meet the tangents at the

ends of the major axis at P1 and P2. Show that the circle
having P1P2 as diameter passes through the foci.

OSSMB G76.2-2.
Show that the portion of any tangent to the ellipse

2x2 + y2 = 1 intercepted between the lines x = 1 and
x = −1 is divided (by the point of tangency) into two parts
that subtend equal angles at the origin.

Envelopes

MM 1068.* by James Propp
Given a simple closed curve S, let the “navel” of S

denote the envelope of the family of lines that bisect the
area within S.

(a) If S is a triangle, find sharp upper and lower bounds
for the ratio of the area within the navel of S to the area
within S.

(b) If S bounds a convex set, find a sharp upper bound
for this ratio.

(c) If S is arbitrary, find a sharp upper bound for this
ratio.

Equilateral triangles: exterior point

SSM 3714. by Charles W. Trigg
From a point in the exterior of an equilateral triangle,

the distances to the vertices of the triangle are 5, 4, and 3
respectively. Determine the length of a side of the triangle.

Equilateral triangles: interior point

OSSMB 75-7. by Maurice Poirier
CRUX 39. by Maurice Poirier
SSM 3682. by Alan Wayne

Let P be a point inside an equilateral triangle ABC
such that PA = 3, PB = 4, and PC = 5. Determine the
length of the side of the triangle.

Equilateral triangles: isosceles triangles

OMG 17.2.9.
Triangle ABC is drawn inside an equilateral 4ADE

so that AB = AC =
√

7, BC = 1, and DB = CE = 2.
Find the length of one side of 4ADE.

Equilateral triangles: midpoints

SPECT 11.5.
A sum and product are defined on the points of the

plane as follows: A + B is the unique point such that A,
B, and A + B form an equilateral triangle, described in a
counterclockwise direction, and A × B is the midpoint of
the straight line joining A and B. Show that

A× (B + C) = (B +A)× (A+ C).

Equilateral triangles: orthogonal projection

MM 988. by Murray S. Klamkin
A given equilateral triangle ABC is projected orthogo-

nally from a given plane P to another plane P ′. Show that
the sum of the squares of the sides of triangle A′B′C′ is
independent of the orientation of triangle ABC in plane P .

Equilateral triangles: sides

MM 1014. by K. R. S. Sastry
Given a triangle, 4ABC, points D, E, and F are on

the lines determined by BC, CA, and AB, respectively. The
lines AD, BE, and CF intersect to form triangle 4PQR,
and satisfy AD = BE = CF .

(a) Show that 4PQR is equilateral iff 4ABC is.
(b) Express the area of 4PQR in terms of that of

4ABC.

CRUX 412. by Kesiraju Satyanarayana
The sides BC, CA, and AB of 4ABC are produced to

D, E, and F , respectively so that CD = AE = BF . Show
that 4ABC is equilateral if 4DEF is equilateral.
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Equilateral triangles: similar triangles

PME 387. by Jack Garfunkel
On the sides AB and AC of an equilateral triangle

ABC, mark the points D and E respectively, such that
AD = AE. Erect directly similar equilateral triangles
CDP , AEQ, BAR on CD, AE, and AB respectively. Show
that triangle PQR is equilateral. Also show that the mid-
points of PE, AQ, and RD are vertices of an equilateral
triangle.

Fallacies

CRUX 141. by Leon Bankoff
What is wrong with the following “proof” of the

Steiner-Lehmus Theorem?
If in a triangle two angle bisectors are equal, then the

triangle is isosceles.
At the midpoints of the angle bisectors, I erect two

perpendiculars which meet inO; withO as center and AO as
radius, I describe a circle which will evidently pass through
the points A, M, N, C.

Now the angles MAN, MCN are equal since the mea-
sure of each is arc MN

2 ; hence BAC = ACB, and triangle
ABC is isosceles.

Family of lines

MSJ 419. by Sidney Penner
A point in the plane is called a rational point if its co-

ordinates are rational. Let L be the set of lines determined
by lattice points of the plane. Let Q be the set of lines
determined by the rational points of the plane.

(a) Show that L is a proper subset of Q and character-
ize all equations in the xy plane that define lines that are
elements of Q but which are not elements of L.

(b) Does there exist a point in the plane that is not on
a line of L but is on a line of Q?

Grazing goat

JRM 395. by R. S. Johnson
A farmer has a circular fenced field, of radius 200 feet,

in which two goats are grazing. The goats are not friendly;
consequently they are tethered by long ropes, each rope
being secured to diametrically opposite fence posts. One
tether permits a grazing area of one-half of the field; the
other permits grazing of one-third of the field.

One day the farmer discovered that the goats were
fighting furiously, and hastily shortened the tethers.

What was the area of the inadvertent “battle arena”?

JRM 710. by Bruce E. Bushman
A farmer ties his cow to a pole in a grassy field with a

ten-foot rope. After the cow has grazed all of the grass
within reach, the farmer moves the pole to the edge of
the grazed area. He then lengthens the rope just enough
to allow the cow an ungrazed area equal to what it had
originally. How long is the rope?

PENT 282. by Kenneth M. Wilke
A farmer has a circular plot of radius 50 feet. At a

point on the circumference of the plot, he places a stake to
which a goat is connected by a rope. How long is the rope
if the goat can graze on exactly one-half of the area of the
plot?

PME 382. by R. Robinson Rowe
Two cows, Lulu and Mumu, are tethered at opposite

ends of a 120-foot rope threaded through a knothole in a
post of a straight fence separating two uniform pastures.
How much area can they graze, presuming they eat, nap,
and ruminate on identical schedules, and the rope length is
also the extreme reach from muzzle to muzzle of Lulu and
Mumu? If Mumu is replaced by the heifer Nunu with half
the appetite, what is the area accessible to Lulu and Nunu?

CRUX 89. by Vince Bradley
and Christine Robertson

A goat is tethered to a point on the circumference of
a circular field of radius r by a rope of length l. For what
value of l will it be able to graze over exactly half of the
field?

Heptagons

PARAB 422.
The heptagon ABCDEFG is inscribed in a circle and

three of its angles are 120◦. Prove that the heptagon has
two equal sides.

Hexagons

PARAB 340.
Let O be the center of a circle C of radius r. Let A be

the vertex of a regular hexagon inscribed in C. Using A and
the other vertices of the hexagon as centers, arcs of radius
r are drawn. The result is a six-petaled “flower”. Next are
drawn the largest circles that will fit between petals, for
example C1. Then the next largest, C2, is drawn, and so
on. What are the radii of the circles C1, C2, C3, and so on?

PME 438. by Ernst Straus
Prove that the sum of the lengths of alternate sides of

a hexagon with concurrent major diagonals inscribed in the
unit circle is less than 4.

MATYC 107. by Roger Debelak
Hexagon ABCDEF is inscribed in a circle. Triangle

ACE is equilateral. Show that the sum of the lengths of the
three diagonals AD, BE, and CF is equal to its perimeter.

MATYC 121. by F. David Hammer
A hexagon with three sides of length a and three sides

of length b is inscribed in a circle. What is the radius?

ISMJ 12.28.
A hexagon is inscribed in a convex decagon so that

the area A is a maximum. Show that there is a hexagon
of area A in that decagon whose vertices are vertices of the
decagon.

MM 992. by Kenneth Fogarty,
Erwin Just, and Norman Schaumberger

Call a vertex of a convex hexagon ordinary if it is the
intersection of at least three diagonals or sides of different
lengths. Otherwise, let the vertex be called exceptional.

(a) Prove that at least one vertex of a convex hexagon
is ordinary.

(b) What is the maximum number of exceptional ver-
tices that a convex hexagon can have?
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Hyperbolas

OSSMB G78.3-4.
A circle is described with a focus of the hyperbola

9x2 − 16y2 = 144 as center, and with radius 1/4 of the
length of the latus rectum. Show that the lines joining the
points of intersection of the circle and the hyperbola to the
focus are parallel to the asymptotes.

CRUX 15. by H. G. Dworschak
Let A, B, and C be three distinct points on a rectan-

gular hyperbola. Prove that the orthocenter of 4ABC lies
on the hyperbola.

OSSMB G79.3-3.

The tangent to the hyperbola x2

a2
− y2

b2
= 1, at any

point P , meets the asymptotes at Q and R. Show that the
area of the triangle OQR, where O is the origin, is constant
for all positions of the point P .

Inequalities: area

SPECT 10.7.
Let S be any finite system of similarly-oriented squares

of equal size in the plane. Denote by A(S) the total area
covered by S. Show that it is always possible to find a
discrete subsystem T of S such that A(T ) ≥ 1

6A(S).

Inequalities: cyclic quadrilaterals

DELTA 5.1-2. by R. S. Luthar
Let ABCD be a cyclic quadrilateral with AC and BD

as its diagonals. Prove that

(AD −BC)2 + (AB −DC)2 ≥ (AC −BD)2.

Inequalities: points in plane

PARAB 302.
Let A, B, C, and D be four points, in that order, on a

straight line.
(1) If AB′ = CD′, show that for any point P in the

plane, PA′ + PD′ ≥ PB′ + PC′.
(2) Conversely, if PA′ + PD′ ≥ PB′ + PC′ for every

position of P , show that AB′ = CD′.

Inequalities: polygons

ISMJ 10.9.
For a polygon Pn of n sides let p be its perimeter and

let d be the maximum distance between two points of the
polygon. Let π(Pn) = p/d.

(a) Show that π(Pn) > 2 for any polygon with n sides.
(b) Show that for any triangle P3, π(P3) ≤ 3.
(c) Find a triangle P3 such that π(P3) = 3.
(d) Find the rectangle R with largest possible π(R).

Inequalities: quadrilaterals

CRUX 106. by Viktors Linis
Prove that, for any quadrilateral with sides a, b, c, d,

a2 + b2 + c2 >
1

3
d2.

NAvW 488. by W. J. Blundon and R. H. Eddy
Let ABCD be a quadrilateral inscribed in a circle

of radius R and circumscribed about a circle of radius r.
If s is the semiperimeter of the quadrilateral, prove the
inequalities

s ≤
√

4R2 + r2 + r

and

s2 ≥ 8r
(√

4R2 + r2 − r
)
,

and find when equality holds in each case. Hence, derive
the inequalities

s ≤ 2R+
(
4− 2

√
2
)
r

and

s2 ≥ 32
√

2

3
Rr − 16

3
r2,

again stating when equality holds.

SPECT 10.1. by B. G. Eke
Show that the sum of the lengths of the diagonals of

a plane quadrilateral exceeds the sum of the lengths of two
opposite sides.

Inequalities: rectangles

ISMJ 13.16.
Let ABCD be a rectangle with point P in its interior.

Let the distances from P to A, B, C, and D be a, b, c, and
d respectively, and let α be the area of the rectangle.

(a) Show that a2 + b2 + c2 + d2 ≥ 2α.
(b) Can equality ever occur? If so, when?

Inequalities: right triangles

PME 431. by Jack Garfunkel
In a right triangle ABC, with sides a, b, and hy-

potenuse c, show that 4(ac+ b2) ≤ 5c2.

Inequalities: squares

PARAB 350.
Let ABCD be a square of side 1. Suppose P lies on

BC, Q lies on DC, and that AP = AQ. Show that the
perimeter of the triangle APQ is not more than 2 +

√
2.

Inequalities: triangles

AMM E2634. by Jack Garfunkel
Let Ai, i = 0, 1, 2 (mod 3) be the vertices of a triangle,

and let Γ be its inscribed circle with center O. Let Bi be
the intersection of the segment AiO with Γ and let Ci be
the intersection of the line AiO with the side Ai−1Ai+1.

Prove that
∑

AiCi ≤ 3
∑

AiBi.

CRUX 397. by Jack Garfunkel
Given is 4ABC with incenter I. Lines AI, BI, and

CI are drawn to meet the incircle (I) for the first time in
D, E, and F , respectively. Prove that

(AB +DE + CF )
√

3

is not less than the perimeter of the triangle of maximum
perimeter that can be inscribed in the incircle.
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PME 368. by Jack Garfunkel
Given is a triangle ABC with its inscribed circle (I).

Lines AI, BI, CI cut the circle in points D, E, F respec-
tively. Prove that

AD +BE + CF ≥ ∂DEF√
3

.

AMM E2716. by Jack Garfunkel
LetABC be a triangle with P an interior point. LetA′,

B′, and C′ be the points where the perpendiculars drawn
from P meet the sides of ABC. Let A′′, B′′, and C′′ be the
points where the lines joining P to A, B, and C meet the
corresponding sides of ABC. Prove or disprove that

A′B′ +B′C′ + C′A′ ≤ A′′B′′ +B′′C′′ + C′′A′′.

OSSMB 76-8.
Suppose BC is the longest side of 4ABC. Let a point

O be chosen anywhere inside the triangle and let AO, BO,
CO cut the opposite sides in A′, B′, C′ respectively. Prove
that

OA′ +OB′ +OC′ < BC.

AMM E2517. by Alex G. Ferrer
Let P be a point interior to the triangle ABC, and let

r1, r2, and r3 be the distances of P from the sides of the
triangle. If p denotes the perimeter of the pedal triangle,
show that ∑

(r1 + r2) cos
1

2
C ≤ p.

When does equality occur?

MM Q651. by Geoffrey Kandall
Given any triangle ABC. Divide BC (respectively,

AC, AB) into n equal segments by means of points Ai
(respectively, Bi, Ci), i = 1, 2, . . . , n− 1. Prove that

n−1∑

i=1

{
(AAi)

2 + (BBi)
2 + (CCi)

2
}

=
(n− 1)(5n− 1)

6n
(a2 + b2 + c2).

SPECT 9.5. by B. G. Eke
The triangle T1 lies inside the triangle T2. Show that

the perimeter of T1 is shorter than that of T2.

ISMJ J11.6.
Prove that the sum of the lengths of the legs of a right

triangle does not exceed the length of the diagonal of the
square on the hypotenuse.

PME 450. by Clayton W. Dodge
In 4ABC, let 6 A ≤ 6 B ≤ 6 C. Prove that

s

{
>

=

<

}
(R+ r)

√
3 if and only if 6 B

{
>

=

<

}
π/3,

where s is the semiperimeter, r the inradius, and R the
circumradius of 4ABC.

PARAB 274.
A triangle has area 1 and sides of length a, b, c, where

a ≥ b ≥ c. Prove that b ≥
√

2.

FUNCT 2.3.5.
If a side of a triangle is of length less than the average

length of the other two sides, show that its opposite angle is
less, in magnitude, than the average of the other two angle
magnitudes.

TYCMJ 94. by Martin Berman
Given a, b+c and angleA (0 < A < π), prove that there

exists a triangle ABC if and only if a < b+c ≤ a/ sin(A/2).

PME 435. by David R. Simonds
Two noncongruent triangles are “almost congruent” if

two sides and three angles of one triangle are congruent to
two sides and three angles of the other triangle. Clearly two
such triangles are similar. Show that the ratio of similarity
k is such that φ−1 < k < φ, where φ = (1 +

√
5)/2, the

golden ratio.

Isosceles right triangles

CRUX 33. by Viktors Linis
On the sides CA and CB of an isosceles right-angled

triangle ABC, points D and E are chosen such that CD =
CE. The perpendiculars from D and C on AE intersect
the hypotenuse AB in K and L respectively. Prove that
KL = LB.

OMG 17.3.7.
The isosceles right triangle EFG in a certain diagram

has a vertex at the center of the square ABCD. Determine
the area of the common quadrilateral given BC = 7, FG =
8, HD = 2.

Ladders

CRUX 122. by Jeremy Wheeler
I had leant my ladder up against the side of the house

to paint my bedroom window and found that it just reached
the bottom of the window. My son was pushing a box
around and was just able to get it under the ladder. The
box was a 1-meter cube and the ladder was 4 meters long.
How high was the bedroom window off the ground?

JRM 793. by Harry L. Nelson
There is an alley between two buildings with ladders

extending across the alley from the base of each building
to the side of the other. The two ladders are not the same
length.

(a) Find all solutions such that all of the labeled
lengths except h are integers and the lengths of the ladders
are each less than 200 units.

(b) Find the solution with the smallest length for the
longer ladder such that all lengths, including h, are integers.
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PME 413. by R. Robinson Rowe
The new tall building on one side of the alley was ver-

tical, but on the other side the old low building, having
settled, leaned toward the alley. Projected, its face would
have met the top of the tall building and would have been
one foot longer than the height of the tall building. The lad-
ders, unequal in length, rested against the buildings 21 feet
above the ground and crossed 12 feet above the ground.
How high was the tall building and how wide was the alley?

OSSMB G76.3-3.
The angular elevation of a tower CD at a place A due

south of it is 30◦ and at a place B 100 feet due west of A
is 18◦. Without the use of tables, find the heights of the
tower to the nearest 1/10 foot.

Lattice points: circles

TYCMJ 53. by Sidney Penner
Let h, k, and n be integers and assume that the circle

defined by (x − h)2 + (y − k)2 = n contains a point with
rational coordinates. Prove or disprove that the circle must
also contain a lattice point.

Lattice points: collinear points

CRUX 408. by Michael W. Ecker
A zigzag is an infinite connected path in a Cartesian

plane formed by starting at the origin and moving succes-
sively one unit right or up. Prove or disprove that for every
zigzag and for every positive integer k, there exist (at least)
k collinear lattice points on the zigzag.

PARAB 342.
Let S be the set of all points in the Cartesian

plane whose coordinates (x, y) are both integers such that
0 ≤ x ≤ 100, 0 ≤ y ≤ 100. Show that however one chooses
5 points P1, P2, P3, P4, P5 from S, at least one pair of these
points has the property that the straight line through them
contains a third point of S (possibly, but not necessarily,
another of the chosen points). Does the statement remain
true if 5 is replaced by 4?

PARAB 375.
A cornfield has 1000 cornstalks. When the farmer

stands at a cornstalk at the corner of the field, he notices
that some of the cornstalks line up with the one he is stand-
ing at. On closer examination, it turns out that the number
of these lines which contain an odd number of other corn-
stalks is odd. Is this true no matter which cornstalk he
stands at?

Lattice points: convexity

CRUX 495. by J. L. Brenner
Let S be the set of lattice points (points having integral

coordinates) contained in a bounded convex set in the plane.
Denote by N the minimum of two measurements of S: the
greatest number of points of S on any line of slope 1, −1.
Two lattice points are adjoining if they are exactly one unit
apart. Let the n points of S be numbered by the integers
from 1 to n in such a way that the largest difference of
the assigned integers of adjoining points is minimal. This
minimal largest difference we call the discrepancy of S.

(a) Show that the discrepancy of S is no greater than
N + 1.

(b) Give such a set S whose discrepancy is N + 1.
(c)* Show that the discrepancy of S is no less than N .

Lattice points: counting problems

CRUX 275. by Gilbert W. Kessler
Given are the points P (a, b) and Q(c, d), where a, b,

c, and d are all rational. Find a formula for the number of
lattice points on segment PQ.

Lattice points: ellipses

AMM E2682. by Douglas Hensley
Let E be an ellipse in the plane whose interior area

A ≥ 1. Prove that the number n of integer points on E

satisfies n < 6A1/3.

Lattice points: equilateral triangles

PARAB 398.
Show that there is no equilateral triangle whose ver-

tices are lattice points in the plane.

Lattice points: mappings

AMM E2633. by Benjamin G. Klein
Two points x and y in Zn are said to be neighbors if

y − x = ±ei
for some i = 1, . . . , n (e1, . . . , en is the canonical basis of
Zn). A subset S ⊂ Zn is said to be permutable if there
is a bijection T :S → S such that for each x ∈ S, Tx and
x are neighbors. Show that if a finite subset S ⊂ Zn is
permutable, then card(S) is even.

Find necessary and sufficient conditions for a subset
S ⊂ Z2 to be permutable.

Lattice points: maxima and minima

OMG 15.1.2.
What is the greatest number of noncollinear points you

can select such that the midpoint of any line joining any pair
of selected points is not a lattice point?

Lattice points: n-dimensional geometry

TYCMJ 129. by Warren Page
For any nm + 1 (n ≥ 2) lattice points in m-space,

prove there is at least one pair of points {P,Q} such that
(P −Q)/n is a lattice point.

Lattice points: squares

PARAB 397.
The smallest square on a pegboard has unit area.
(a) Show how to construct squares of areas 8 and 10.
(b) Prove that it is not possible to construct a square

of area 4n+ 3, where n is an integer.

Lattice points: triangles

PARAB 392.
Prove that, out of any 9 lattice points, it is always

possible to choose 3 with the property that the center of
gravity of the triangle formed by them is also a lattice point.
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Limiting figures

CRUX 422. by Dan Pedoe
The lines l and m are the parallel edges of a strip of

paper and P1, Q1, are points on l and m, respectively. Fold
P1Q1 along l and crease, obtaining P1Q2 as the crease.
Fold P1Q2 along m and crease, obtaining P2Q2. Fold P2Q2
along l and crease, obtaining P2Q3. If the process is contin-
ued indefinitely, show that the triangle PnPn+1Qn+1 tends
towards an equilateral triangle.

AMM 6062. by B. H. Voorhees
Consider an infinite sequence of regular n-gons such

that each (n + 1)-gon is contained within the preceding n-
gon and is of maximal area consistent with this constraint.
Take the first element of this sequence as an equilateral
triangle having unit area. Is the limit of this sequence a
point or a circle? If it is a circle, determine its area.

CRUX 416. by W. A. McWorter Jr.
Let A0BC be a triangle and a a positive number less

than 1. Construct P1 on A0B so that A0P1/A0B = a.
Construct A1 on P1C so that P1A1/P1C = a. Inductively
construct Pn+1 on AnB so that AnPn+1/AnB = a and
construct An+1 on Pn+1C so that Pn+1An+1/Pn+1C = a.
Show that all the Pi are on a line and all the Ai are on a
line, the two lines being parallel.

Locus: angles

OSSMB G76.3-4.
Two straight lines meet at a fixed point A so that

the angle formed is a fixed angle, θ. The lines at A are
intersected by a third line at K and L such that KL is
of fixed length. Describe the locus of the center of the
circumcircle to 4AKL.

SSM 3781. by Michael Brozinsky
An immortal ant starts at A, crawls along a perpendic-

ular to radius OB, then along a perpendicular to radius OA,
then along a perpendicular to OB again, and so on ad infini-
tum. Find the distance covered by the ant if 6 AOB = 30◦

and OA has length 1 inch.

Locus: circles

CANADA 1976/4.
Let AB be a diameter of a circle, C be any fixed point

between A and B on this diameter, and Q be a variable
point on the circumference of the circle. Let P be the point

on the line determined by Q and C for which AC
CB = QC

CP .
Describe, with proof, the locus of the point P .

OSSMB G75.3-3.
The circle x2 + y2 = r2 and points B(m, 0), C(n, 0),

with m+ n 6= 0, are given. Let Q and R be the ends of an
arbitrary diameter of the circle and let QB and RC intersect
at P . Determine the locus of P .

CRUX 177. by Kenneth S. Williams
Let P be a point on the diameter AB of a circle whose

center is C. On AP and BP as diameters, circles are drawn.
The point Q is the center of a circle that touches these three
circles. What is the locus of Q as P varies?

USA 1976/2.
If A and B are fixed points on a given circle and XY is

a variable diameter of the same circle, determine the locus
of the point of intersection of lines AX and BY . You may
assume that AB is not a diameter.

PME 447. by Zelda Katz
A variable circle touches the circumferences of two

internally tangent circles.
(a) Show that the center of the variable circle lies on

an ellipse whose foci are the centers of the fixed circles.
(b) Show that the radius of the variable circle bears a

constant ratio to the distance from its center to the common
tangent of the fixed circles.

(c) Show that this constant ratio is equal to the eccen-
tricity of the ellipse.

OSSMB G78.1-4.
A wheel of radius R with its center at the origin rotates

in the xy-plane. A rod of length 2R has one end pivoted at
the rim of the wheel and the other end is free to move along
the positive x-axis. Find the equation of the locus traced
by the midpoint of the rod.

SPECT 7.7.
Distinct points L and M are given in the plane, and

k is a real number such that 0 < k < 1. Then the locus
of all points X in the plane, such that LX/MX = k, is a
circle (Apollonius’ Circle). A tangent is drawn through M
to touch the circle at T . Show that 6 TLM = 90◦.

Locus: conics

CRUX 370. by O. Bottema
If K is an inscribed or escribed conic of the given

triangle A1A2A3, and if the points of contact on A2A1,
A3A1, and A1, A2 are T1, T2, and T3, respectively, then it
is well-known that A1T1, A2T2, and A3T3 are concurrent in
a point S. Determine the locus of S if K is a parabola.

Locus: ellipses

SSM 3777. by Irwin K. Feinstein

Consider the ellipse x2

25 + y2

9 = 1 with foci F1 and F2.
Let P be a point on the ellipse, ` be the tangent to the
ellipse at P , and Q be the foot of the perpendicular from
F2 to `. As P moves around the ellipse, describe the motion
of Q.

NYSMTJ 60.
When a carpenter’s square is rotated around a circle in

such a way that the two sides remain tangent to the circle, a
pen held at the vertex of the right angle would trace a circle
concentric with the original circle. When the same process
is completed, starting with an ellipse, what is traced out?

Locus: equal distances

OSSMB G76.1-2.
Find the equation of the locus of a point that moves

so that it is always equidistant from the line x+ 3 = 0, and
the circle x2 + y2 = 25.
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Locus: equilateral triangles

OSSMB G77.2-6.
The sum of the squares of the distances of a moving

point from the sides of a fixed equilateral triangle is a con-
stant. Identify the locus of the point and find its equation.

Locus: lines

SSM 3788. by Michael Brozinsky
Describe the locus of points in the plane the sum of

the squares of whose distances from n distinct straight lines
is a constant k (where k is such that the locus is real).

Locus: linkages

CRUX 479. by G. P. Henderson
A car, of wheelbase L makes a left turn in such a way

that the locus of A, the point of contact of the left front
wheel, is a circle of radius R > L. B is the point of contact
of the left rear wheel. Before the turn, the car was traveling
in a straight line with A moving toward the circle along a
tangent. Find the locus of B.

JRM 472. by Friend H. Kierstead, Jr.
A garage door is divided into two sections: A is hinged

to the garage at one end and to section B at the other.
The other end of B slides in tracks at top and bottom
of the garage opening. Describe mathematically the curve
traced by the bottom of the garage door when opened after
a snowstorm.

Locus: midpoint

OSSMB G75.1-4.
Let P and Q be any 2 points on the lines represented

by 2x− 3y = 0 and 2x+ 3y = 0 respectively. Let O be the
origin. Find the locus of the midpoint of PQ, given that
the area of 4POQ is 5.

Locus: rotating lines

PME 436. by Carl Spangler
and Richard A. Gibbs

Let P1 and P2 be distinct points on lines L1 and L2,
respectively. Let L1 and L2 rotate about P1 and P2, re-
spectively, with equal angular velocities. Describe the locus
of their intersection.

Locus: triangles

OSSMB G76.1-1.
Triangle ABC has a base AB of length k and C is such

that 6 CAB = 2 6 CBA < 120◦. Find the equation of the
locus of C.

NAvW 415. by O. Bottema
A focal curve is defined as a plane cubic curve c passing

through the isotropic points J1, J2 and such that the inter-
section of the tangents at J1 and J2 (the principal focus of
c) is on c.

Let P1 and P2 be two points, isogonally conjugate with
respect to a given triangle such that their midpoint M is on
a given line `. Prove that the locus of P1 and P2 is a focal
curve.

NAvW 504. by O. Bottema
In the plane U , a triangle A1A2A3 and a point M

are given, such that M does not lie on the line through Ai
parallel to the opposite side (i = 1, 2, 3); k1, k2, and k3 are
three given real numbers (ki 6= 0, ki 6= 1, i = 1, 2, 3).

Each point P in U is associated with three points P1,
P2, and P3 in the following way: If the line `i through P
parallel to AiU intersects the opposite side of Ai at Si, then
Pi lies on `i such that PiSi = kiPSi (i = 1, 2, 3).

(a) Determine the locus of P if P1, P2, and P3 are
collinear.

(b) Determine the locus of P if the six points Ai, Pi
are on a conic.

NAvW 436. by O. Bottema
and M. C. van Hoorn

Let P be a point in the plane of a given triangle ABC,
P ′ the isogonal conjugate of P with respect to ABC, L1
the line PP ′, L2 the trilinear polar (or harmonical) of P
with respect to ABC. Show that the locus of the points P
such that L1 and L2 are perpendicular is a quintic curve,
with nodes at the vertices of ABC, passing through the
isotropic points, through the incenter and the three excen-
ters, through the centroid, through the orthocenter, and
through the vertices of the pedal triangle of the orthocen-
ter.

NAvW 535. by O. Bottema
In a Euclidean plane, a triangle ABC and a line ` are

given. The points P and P ′ are isogonal conjugates with
respect to the triangle. Determine the locus of the point P
such that the line PP ′ is parallel to `.

CRUX 450. by A. Liu
Triangle ABC has a fixed base BC and a fixed inra-

dius. Describe the locus of A as the incircle rolls along BC.
When is AB of minimal length?

PARAB 424.
A triangle ABC is given in the xy-plane. Now, O is the

origin, the point P moves along the line x = 1, and the point
Q is determined so that the triangles ABC and OPQ are
similar (that is, 6 QOP = 6 CAB and 6 QPO = 6 CBA).
Describe the motion of Q as P moves.

Map problems

USA 1978/2.
Given are ABCD and A′B′C′D′, square maps of the

same region, drawn to different scales and superimposed.
Prove that there is only one point O on the small map which
lies directly over point O′ of the large map such that O and
O′ each represent the same place of the country. Also, give
a Euclidean construction for O.

Maxima and minima: angles

PUTNAM 1976/A.1.
Given an interior point P of the angle whose sides are

the rays OA and OB. Locate X on OA and Y on OB
so that the line segment XY contains P and so that the
product of distances (PX)(PY ) is a minimum.
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JRM 504. by Robert Walsh
A spherical planet of radius r has a satellite ring in

the plane of its equator extending from altitude h1 to h2.
To an observer on the planet, at what latitude will the ring
appear widest?

Maxima and minima: circular arcs

ISMJ J10.14.
An equilateral triangle and a square are inscribed in

the same circle in such a way that no vertices of the trian-
gle and the square coincide. Show that among the seven
circular arcs thus obtained, there will always be at least
one that is not longer than 1/24 of the circumference of the
circle. How many such arcs can there be?

MM 976. by Miller Puckette
and Steven Tschantz

A road is to be built connecting two towns separated
by a river whose banks are concentric circular arcs. If the
road must bridge the river banks orthogonally, describe the
minimum length road (assuming coplanarity).

Maxima and minima: collinear points

OSSMB 76-10.
Given n points x1, x2, . . . , xn on a line, find the point

x on the line at which the sum S of the distances from the
n given points is a minimum.

Maxima and minima: convex hull

JRM 427. by Susan Laird
How should five circles with radii 1, 2, 3, 4, and 5 be

arranged with respect to each other so as to minimize the
area of their convex hull?

Maxima and minima: equilateral triangles

DELTA 5.2-2. by Walter Rudin
DELTA 6.1-2. by Walter Rudin

Let A, B, and C be the vertices of an equilateral
triangle. Denote the triangle together with its interior by
4. Define

f(P ) = AP ·BP · CP, P ∈ 4.
The compactness of 4 shows that f attains its maximum
at some point P0 ∈ 4. “By symmetry”, P0 is the center of
4. Is it true or false? Find the largest value of f on 4.

Maxima and minima: isosceles triangles

PENT 284. by Kenneth M. Wilke
Given two sides of an isosceles triangle, what is the

length of the third side which produces the maximum area?

NYSMTJ 85. by Alan Wayne
Let ABC be an isosceles triangle ( 6 B = 6 C) with an

inscribed square having one of its sides on segment BC.
Find the measure of 6 A for which the ratio of the area of
the inscribed square to that of 4ABC is a maximum.

Maxima and minima: line segments

JRM 464. by C. F. White and N. R. White
Find the maximum area definable by the outer extrem-

ities of four line segments of lengths 1, 2, 3, and 4 units
radiating from a common point.

Maxima and minima: paths

PENT 276. by Kenneth M. Wilke
A class of school children were to run an unusual race.

In the school yard there were two flagpoles, one located
60 feet due south of the wall of the building and the other
located 90 feet due southeast from the first pole. Each child
starts at the first pole, runs to any point in the wall, makes a
chalk mark on the wall, and then runs to the other pole. One
child’s time was much better than any other’s. Assuming
that all the children ran equally fast, what path did the
winner take?

Maxima and minima: quadrilaterals

PENT 291. by Leigh James
Prove that the quadrilateral having sides a, b, c, and d

has maximum area when the quadrilateral is cyclic.

Maxima and minima: rectangles

CRUX 427. by G. P. Henderson
A corridor of width a intersects a corridor of width b to

form an “L”. A rectangular plate is to be taken along one
corridor, around the corner and along the other corridor
with the plate being kept in a horizontal plane. Among all
the plates for which this is possible, find those of maximum
area.

ISMJ 13.6.
A man has 100 feet of fence with which he wants to

enclose a rectangular garden plot of as great an area as
possible. What is the greatest area?

JRM 500. by Sherry Nolan
(a) A man died at age 80, leaving his land to his four

sons. His will stated the following: “My sons are to receive
nonoverlapping rectangular plots of land with the following
characteristic: Each plot will contain the same odd number
of square units of area, and its units in length shall exceed
its units in width by the age of the son who receives it.”
If it is known that each son is of a different age, and if all
ages and edges are to be measured in whole numbers, what
is the smallest rectangular area in which the plots can be
contained?

(b) Can the four plots be contained in a square 48.5
units on a side?

JRM 731. by Frank Rubin
The high priests of Heterodoxy have ordered the build-

ing of a new temple. It will be rectangular on a single
level, and will have several (two or more) rectangular inte-
rior rooms. To maximize heterogeneity, no room may have
any dimension in common with any other room; i.e., if there
are k rooms, the dimensions of the rooms must be 2k dis-
tinct integers.

You have been hired to build the temple for a fixed
fee. To maximize your profit, you wish to minimize the
total floor area of the temple. What floor plan should you
adopt?

OSSMB 79-11.
A chord of length

√
3 divides a circle of unit radius into

two regions. Find the rectangle of maximum area that can
be inscribed in the smaller region.
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Maxima and minima: regular polygons

AMM E2632. by Azriel Rosenfeld
Define the discrepancy d(A,B) between two plane ge-

ometric figures to be the area of their symmetric difference.
Let A be a circle of radius r. Determine the inradius of the
regular n-gon B for which d(A,B) is minimal.

Maxima and minima: right triangles

MM 947. by Steve Moore
and Mike Chamberlain

A line through the point (a, b) which is in the first
quadrant forms a right triangle with the positive coordinate
axes. Find the equation of the line that forms the triangle
with minimum perimeter.

Maxima and minima: semicircles

OSSMB 76-4.
A semicircle is drawn outwardly on chord AB of the

unit circle with center O. Prove that the point C on this
semicircle that sticks out of the given circle the farthest is
on the radius OD that is perpendicular to AB.

The fartherAB is moved from the centerO, the smaller
it gets, accordingly yielding a smaller semicircle. Determine
the chord AB that makes OC a maximum.

Maxima and minima: shortest paths

JRM 603. by Fred Walbrook
While driving in the first Quadrant, A. Point allowed

his engine to overheat and found himself at (5, 2) without
water in his radiator or oil in his crankcase. The nearest wa-
ter was in the x-axis river and the nearest oil in the y-axis
pipeline. Toting a couple of containers he took the short-
est hike necessary to replenish his crankcase and radiator.
What was his route?

PARAB 407.
Let ` be a given line and let A and B be two points on

the same side of `. Find the point P on ` with the property
that the sum of the distances AP and PB is as small as
possible.

MM 1083. by M. S. Klamkin and A. Liu
Given an equilateral point lattice with n points on a

side, it is easy to draw a polygonal path of n segments
passing through all the n(n+1)/2 lattice points. Show that
it cannot be done with less than n segments.

MSJ 501.
Mr. Geo. Metric walks diagonally from one corner of

a rectangular parking lot to the opposite corner. Due to
the angular parking of cars in two strips of width 3 m, he
can walk in these strips only in the SW direction. The lot
is 48 m wide and 60 m long. Find the minimal distance he
must walk.

Maxima and minima: solid geometry

IMO 1979/4.
Given a plane π, a point P in this plane and a point

Q not in π, find all points R in π such that the ratio
(QP + PR)/QR is a maximum.

SSM 3683. by Herta T. Freitag
A familiar elementary calculus problem requires deter-

mination of the open-top, square prism of largest volume
which can be obtained by cutting congruent squares from
each corner of a square cardboard and bending up the re-
maining flaps. Generalize this problem by letting the card-
board be any regular n-sided polygon, n ≥ 3.

Maxima and minima: thumbtacks

MM 996. by Richard A. Gibbs
Suppose thumbtacks are used to tack congruent square

sheets of paper to a large bulletin board subject to the
following conditions:

(i) the sides of the sheet are parallel to the sides of
the bulletin board;

(ii) each sheet has exactly four thumbtacks, one in
each corner; and

(iii) the sheets may overlap slightly so that one thumb-
tack could secure a corner of from one to four sheets.

(a) Find, in terms of n, the minimum number of
thumbtacks required to tack n such sheets.

(b) For a given n, find the number of distinct minimal
arrangements.

(c) Can the problem be generalized to hypercubes and
hyperthumbtacks in three or more dimensions?

Maxima and minima: triangles

MM 955. by Charles F. White
For three line segments of unequal lengths a, b, and c

drawn on a plane from a common point, characterize the
proper angular positions such that the outer endpoints of
the line segments define the maximum-area triangle. Show
how to approximate the exact values of the angles for a = 3,
b = 4, and c = 5.

FUNCT 3.2.8.
Prove that amongst all the triangles of a given perime-

ter, the equilateral triangle has the largest area.

PME 405. by Norman Schaumberger
Locate a point P in the interior of a triangle such that

the product of the three distances from P to the sides of
the triangle is a maximum.

TYCMJ 140. by Norman Schaumberger
Locate a point P in the interior of a triangle such that

the sum of the squares of the distances from P to the sides
of the triangle is a minimum.

JRM 565. by Archimedes O’Toole
(a) Given a triangle with sides 3, 4, and 5, what is the

smallest perimeter a triangle can have and not fit within it?
(b) What if the sides are 4, 4, and 4?
(c) Given a triangle with sides a, b, and c, what is the

smallest perimeter a triangle can have and not fit within it?

NYSMTJ OBG8. by Alan Wayne
In what type of triangle is the ratio of the area of the

inscribed square to that of the triangle a maximum?
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n-dimensional geometry: 4-space

ISMJ 12.19.
Show that a plane in 4-space does not have two sides

by constructing a square whose edges surround the plane.

ISMJ 12.20.
Describe or make a picture of the three dimensional

map of a 4-cube.

ISMJ 12.22.
The four dimensional “volume” or content of a 4-cube

is the fourth power of its side. Can you find the content of
a regular 4-simplex?

n-dimensional geometry: convexity

AMM 6098. by Peter L. Renz
Let A be the group of affine bijections from Rn to Rn.

For any subset S of Rn, define A(S) to be the subgroup of A
that takes S onto itself. A convex body is a compact convex
set with nonempty interior. We say a convex body K in Rn
is maximally symmetric if A(K) is not properly contained
in A(L) for any convex body L in Rn. Characterize the
maximally symmetric convex bodies in Rn.

n-dimensional geometry: curves

SIAM 75-21. by I. J. Schoenberg
In Rn, we consider the curve

Γ : xi = cos (λit+ ai) ,

i = 1, . . . , n, −∞ < t < ∞, which represents an n-
dimensional simple harmonic motion entirely contained
within the cube U : −1 ≤ xi ≤ 1, i = 1, . . . , n. We want Γ
to be truly n-dimensional and will therefore assume without
loss of generality that λi > 0 for all i. We consider the open
sphere

S :

n∑

i=1

x2
i < r2

and want the motion of the first equation to take place
entirely outside of S, hence contained in the closed set
U − S. What is the largest sphere S such that there exist
motions Γ entirely contained in U−S? Show that the largest

such sphere S0 has the radius r0 =
√
n/2, and that the

only motions Γ within U − S0 lie entirely on the boundary∑
x2
i = r2

0 of S0.

n-dimensional geometry: inequalities

CMB P244. by P. Erdős and M. S. Klamkin
Let P denote any point within or on a given n-

dimensional simplex A1, A2, . . . , An+1. The point P is “re-
flected” across each face of the simplex along rays parallel
to the respective medians to each face producing an as-
sociated simplex A′1, A

′
2, . . . , A

′
n+1 (PA′i is parallel to the

median from Ai and is bisected by the face opposite Ai).
Show that

nnVolume(A′1, A
′
2 . . . , A

′
n+1)

≤ 2nVolume(A1, A2, . . . An+1)

with equality if and only if P is the centroid of the given
simplex.

SIAM 78-20. by M. S. Klamkin
The lines joining the vertices {Vi}, i = 0, 1, . . . , n of

a simplex S to its centroid G meets the circumsphere of S
again in points

{
V ′i
}

, i = 0, 1, . . . , n. Prove that the volume

of simplex S′ with vertices V ′i is ≥ the volume of S.

n-dimensional geometry: simplexes

AMM E2548. by Murray S. Klamkin
Let A0, A1, . . . , An be distinct points of n-space that

lie within a hyperplane. Suppose that these points are
parallel projected into another hyperplane and that their
images are B0, B1, . . . , Bn, respectively. Prove that for any
r = 0, 1, . . . , n, the volumes of the simplexes spanned by A0,
A1, . . . , Ar, Br+1, Br+2, . . . , Bn and by B0, B1, . . . , Br,
Ar+1, Ar+2, . . . , An are equal.

CRUX 224. by M. S. Klamkin
Let P be an interior point of a given n-dimensional sim-

plex with vertices A1, A2, . . . An+1. Let Pi(i = 1, 2, . . . , n+
1) denote points on AiP such that AiPi/AiP = 1/ni. Fi-
nally, let Vi denote the volume of the simplex cut off from
the given simplex by a hyperplane through Pi parallel to the
face of the given simplex opposite Ai. Determine the min-
imum value of

∑
Vi and the location of the corresponding

point P .

AMM E2674. by G. Tsintsifas
Let

S = {A0, A1, . . . , An}
and

S′ = {A′0, A′1, . . . , A′n}
be regular n-simplices such that A′i lies on the face

{A0, . . . , Ai−1, Ai+1, . . . , An}

of S, 0 ≤ i ≤ n. Is it true that the centroids of S and S′

coincide?

AMM E2657. by G. Tsintsifas
Let A = A0A1 . . . An and B = B0B1 . . . Bn be regular

simplices in Rn. Assume that the ith vertex of B lies on
the ith face of A, 0 ≤ i ≤ n. What is the minimal value of
their similarity ratio λ (λA congruent to B, λ > 0)?

n-dimensional geometry: volume

NAvW 531. by W. A. J. Luxemburg
Determine the volume of the body S in Rn (n ≥ 2) de-

termined by the set of points y = (y1, y2, . . . , yn), satisfying

yk =
∑

1≤i1<i2<···<ik≤n
xi1xi2 · · ·xik

(0 ≤ x1 < x2 < · · · < xn ≤ 1 and k = 1, 2, . . . , n).

AMM E2701. by Richard Stanley
Find the volume of the convex polytope determined by

xi ≥ 0, 1 ≤ i ≤ n,
and

xi + xi+1 ≤ 1, 1 ≤ i ≤ n− 1.
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Non-Euclidean geometry

AMM S2. by H. S. M. Coxeter
In the hyperbolic plane, the locus of a point at constant

distance δ from a fixed line (on one side of the line) is
one branch of an “equidistant curve” (or “hypercycle”). In
Poincaré’s half-plane model, this curve can be represented
by a ray making a certain angle with the bounding line of
the half-plane. Show that this angle is equal to

∏
(δ), the

angle of parallelism for the distance δ.

AMM E2680. by Jerrold W. Grossman
Let ABCD be a convex quadrilateral in the hyperbolic

plane. Assume that AD = BC and that

6 A+ 6 B = 6 C + 6 D.

Does AB = CD follow from these hypotheses?

Octagons

PUTNAM 1978/B.1.
Find the area of a convex octagon that is inscribed in

a circle and has four consecutive sides of length 3 units and
the remaining four sides of length 2 units. Give the answer
in the form r + s

√
t with r, s and t positive integers.

MSJ 448. by Steven R. Conrad
Find the area of an equiangular octagon, the lengths

of whose sides are alternately 1 and
√

2.

MM 925. by Julius G. Baron
and Thomas E. Elsner

(a) Prove that any non-self-intersecting cyclic octagon
is such that the sum of any four nonadjacent interior angles
is 3π.

(b) An octagon is inscribed in a circle with vertices
on any four diameters. Show that each alternate pair of
exterior angles is complementary.

Packing problems

AMM E2524. by T. H. Foregger
Show that 41 1 × 2 × 4 bricks can be packed into a

7× 7× 7 box. Is there a packing of 42 such bricks into this
box?

AMM E2774.* by James Propp
Prove or disprove that given a convex two-dimensional

figure S, six translates of S can fit inside a homothetic figure
three times as large as S in linear dimensions.

CMB P276. by H. S. M. Coxeter
Find the radius of the smallest circle inside which discs

of radius 1/n (n = 1, 2, 3, . . .) can all be packed.

OSSMB 75-15.
Circles of unit radius are packed, without overlapping

of interior points, in a strip S of the plane whose parallel
edges are a distance w apart. We say the circles form a k-
cloud if every straight line that cuts across S makes contact
with at least k circles. Prove that for a 2-cloud w ≥ 2+

√
3.

CRUX 135. by Steven R. Conrad
How many 3 × 5 rectangular pieces of cardboard can

be cut from a 17×22 rectangular piece of cardboard so that
the amount of waste is a minimum?

Paper folding: algorithms

AMM S4. by Richard K. Guy
In order to store a given length L of paper tape in an

accessible way, I choose a length, λ, and an even integer, 2n,
so that 2nλ = L. I then screenfold the tape with n “odd”
folds in one sense at distances f1, f3, . . . , f2n−1 along the
tape, and n−1 “even” folds, in the other sense, at distances
f2, f4, . . . , f2n−2. The ends of the tape are f0 = 0 and f2n =
L = 2nλ. I try to arrange that the quantities fi+1−fi = λi,
0 ≤ i ≤ 2n − 1, are each equal to λ, but in practice this
rarely happens, so I then endeavor to improve the situation
by lining up the ends and the even folds, f0, f2, . . . , f2n

and recreasing the odd folds at f ′1, f
′
3, . . . , f

′
2n−1, so that

hopefully better approximations, λ′i to λi are produced,
namely, λ′i = λ′i+1 [= (λi + λi+1) /2] for i = 0, 2, . . . , 2n−2.
I then line up the odd folds and recrease the even ones,
giving λ′′i−1 = λ′′i

[
=
(
λ′i−1 + λ′i

)
/2
]

for i = 2, 4, . . . , 2n −
2. I then repeat the process. Does it terminate or even
converge?

Paper folding: cubes

JRM 628. by Henry Larson
A 9×12 sheet of paper is to be cut down into a pattern

(consisting of a single piece) that can be folded into a cube.
Find the largest cube that can be obtained, given that the
pattern:

(a) consists of six squares;
(b) has arbitrary shape.

Paper folding: equilateral triangles

PARAB 399.
Show how to construct an equilateral triangle by fold-

ing a single (rectangular) sheet of paper. No rulers, com-
passes, or separate sheets for measuring are to be used.

SSM 3768. by Charles W. Trigg
The paper triangle ABC is equilateral with sides of

length a. Vertex A is brought into contact with point D
and BC, and the paper is flattened to form a crease EF ,
with E on AB and F on AC. If DF is perpendicular to
BC, find

(a) the length of EF in terms of a; and
(b) the areas of triangles BED, DEF , and DFC in

terms of a.

OSSMB 78-2.
A piece of paper in the shape of an equilateral triangle

ABC is creased along a line XY , X on AB and Y on AC,
so that A falls on some point D on BC. Show that the
triangles XBD and DCY are similar. If AB = 15 and
BD = 3, what is the length of the crease XY ?

Paper folding: rectangles

SSM 3637. by Charles W. Trigg
A rectangular sheet of paper, ABCD, has the dimen-

sion AB = CD = x and BC = DA = y. The point E
is located on CD so that angle BEC is 60◦. The sheet is
folded along BE so that C assumes a new position C′. The
sheet is folded again so that a crease runs along EC′ and
meets DA in F . When a third fold along BF is made, AF
falls along FE.

(a) Express y in terms of x.
(b) What are the lengths of the creases?
(c) What are the areas of the parts into which the

creases divide the rectangle?
(d) Check your results by determining the sines of

three angles using the computed dimensions.
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Paper folding: regular pentagons

SSM 3661. by Alan Wayne
A piece of paper has the shape of a regular pentagon.

The paper is folded over once and creased flat so that a
vertex of the pentagon coincides with the midpoint of that
side which is farthest from the vertex. Show that the length
of the crease is one and a half times the length of a side of
the pentagon.

Paper folding: regular polygons

CRUX 350. by W. A. McWorter, Jr.
What regular n-gons can be constructed by paper fold-

ing?

Paper folding: squares

CRUX 292. by Charles W. Trigg
Fold a square piece of paper to form four creases that

determine angles with tangents of 1, 2, and 3.

Paper folding: strips

MSJ 464.
A strip of adding machine tape is folded making an

angle A0 of 80◦ with the bottom edge of the tape. Angles
A1, A2, A3, . . . are formed by successive folds of the edges
of the tape to the creases previously obtained (and thereby
halving the respective angles). Find the measure of A100.

Parabolas

OSSMB G78.1-3.
Let P , Q, R be three points on a parabola such that

their distances from the axis of the parabola are in geometric
progression. Show that the tangents to the parabola at P
and R meet on the line through Q perpendicular to the axis.

OSSMB G79.1-2.
A chord y = mx + b intersects a parabola y2 = 4px

at P1(x1, y1) and P2(x2, y2). Find the coordinates of P , a
point on the parabola, such that 4PP1P2 has maximum
area.

NYSMTJ 94. by H. O. Eberhart
A nonaxial line passing through the focus of a parabola

intersects it in two points, P and Q. Show that
(a) the tangent at P is perpendicular to the tangent at

Q;
(b) these tangents intersect on the directrix.

CRUX 445. by Jordi Dou
Consider a family of parabolas escribed to a given

triangle. To each parabola corresponds a focus F and a
point S of intersection of the lines joining the vertices of
the triangle to the points of contact with the opposite sides.
Prove that all lines FS are concurrent.

Parallelograms

TYCMJ 153. by K. R. S. Sastry
Let c ∈ (0, 1) be given and A1A2A3A4 be a paral-

lelogram of one unit area with Ei ∈ AiAi+1 such that
AiEi/EiAi+1 = c, (i = 1, 2, 3, 4;A5 = A1). Set AiEi+1 ∩
Ai+1Ei+2 = Pi, (i = 1, 2, 3, 4;A5 = A1, E5 = E1, E6 =
E2). Determine the area of quadrilateral P1P2P3P4.

NYSMTJ 74. by Norman Gore
NYSMTJ OBG3. by Norman Gore

In parallelogram ABCD, L and M are interior points
of sides AD and BC respectively. Let P = BL ∩ AM and
Q = MD∩CL. If the line determined by P and Q is parallel
to line AD, show that it bisects ABCD.

CRUX 139. by Dan Pedoe
Let ABCD be a parallelogram, and suppose a circle γ

touches AB and BC and intersects AC in the points E and
F . Show that there exists a circle δ which passes through
E and F and touches AD and DC.

NYSMTJ OBG1. by Norman Schaumberger
Let ABCD be a parallelogram. If a circle passes

through A and cuts segments AB, AC, and AD at points
P , Q, and R respectively, then prove that

AP ×AB +AR×AD = AQ×AC.

TYCMJ 117. by Norman Schaumberger
Let E be the intersection of the diagonals of a parallel-

ogram ABCD, and let P and Q be points on a circle with
center E. Prove that

PA2 + PB2 + PC2 + PD2 = QA2 +QB2 +QC2 +QD2.

CRUX 322. by Harry Sitomer
In parallelogram ABCD, 6 A is acute and AB = 5.

Point E is on AD with AE = 4 and BE = 3. A line
through B, perpendicular to CD, intersects CD at F . If
BF = 5, find EF .

NYSMTJ 43.

Given perpendicular rays
−→
AB and

−→
AC, let PQ be any

segment with an endpoint on each ray (other than A). Let
X be the point of intersection of the bisectors of the exterior
angles at P and Q of 4APQ. Introduce segments XM and

XN perpendicular to rays
−→
AB and

−→
AC, respectively. Prove

that parallelogram ANXM is a square.

SSM 3754. by Fred A. Miller
If θ is the angle between the diagonals of a parallelo-

gram whose sides a and b are inclined at an angle α to each
other, show that

tan θ =
2ab sinα

a2 − b2 .

Pentagons

CRUX 232. by Viktors Linis
Given are five points A, B, C, D, and E in the

plane, together with the segments joining all pairs of dis-
tinct points. The areas of the five triangles BCD, EAB,
ABC, CDE, and DEA being known, find the area of the
pentagon ABCDE.

PME 383. by Norman Schaumberger
Find a pentagon such that the sum of the squares of

its sides is equal to four times its area.
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Perspective drawings

CRUX 406. by W. A. McWorter Jr.
The figure shows an unfinished perspective drawing of

a railroad track with two ties drawn parallel to the line at
infinity. Can the remaining ties be drawn, assuming that
the actual track has equally spaced ties?

MM 980. by Peter Ungar
Show that in a perspective drawing of a straight rail-

road track which is at right angles to the image plane, the
reciprocals of the images of the ties form an arithmetic pro-
gression.

Point spacing

CRUX 405. by Viktors Linis
A circle of radius 16 contains 650 points. Prove that

there exists an annulus of inner radius 2 and outer radius 3
that contains at least 10 of the given points.

ISMJ J11.11.
Given a circle of radius 1, show that of any seven points

on its perimeter at least two must be at a distance from each
other of less than 1.

PUTNAM 1978/A.6.
Let n distinct points in the plane be given. Prove that

fewer than 2n3/2 pairs of them are unit distance apart.

DELTA 6.1-3. by Anthony Biagioli
PARAB 324.

Given five points in a square with side a, show that
two of them are within a/

√
2 of each other.

SIAM 78-13.* by T. D. Rogers
Given n points distributed uniformly in the unit circle,

associate with each such point the region in the circle whose
points are closer to it than the remaining n−1 a priori given
points. If A1 ≤ A2 ≤ · · · ≤ An is the ordered enumeration
of the areas of these regions, what are the expected values
of the Ai’s?

JRM 554. by Sidney Kravitz
The town council of Erewhon proposes to relocate its

24 fire companies according to the following scheme: The
square map of Erewhon is to be octasected by the two diago-
nals and the two segments connecting midpoints of opposite
sides, and each of the eight interior half-segments divided
into four equal segments by three points. Each fire com-
pany is then to be located at one of these 24 points, with
the closest company responsible for handling a fire. Under
this scheme, the areas of responsibility are to be as in a cer-
tain diagram. The firemen of Erewhon oppose this scheme
and favor any plan that would ensure that the largest rela-
tive discrepancy in area between two regions be as small as
possible. If, along each of the eight interior half-segments,
the three fire companies may be spaced arbitrarily, what
scheme comes closest to satisfying the firemen?

Points in plane: broken lines

MSJ 472.
Nine points, no two of which are the same distance

apart, are given in a plane. Prove that if each point is
connected to its nearest neighbor, then the line segments do
not intersect one another except possibly at the endpoints.

PARAB 383.
Let n points be given in the plane. Show that the

shortest broken line connecting the points does not cross
itself.

Points in plane: circles

AMM E2746. by George F. Shumm
Let A1, . . . , An be distinct noncollinear points in the

plane. A circle with center P and radius r is called minimal
if AkP ≤ r for all k and equality holds for at least three
values of k.

If A1, . . . , An vary (n being fixed), what is the maxi-
mum number of minimal circles?

CRUX 165. by Dan Eustice
Prove that, for each choice of n points in the plane (at

least two distinct), there exists a point on the unit circle
such that the product of the distances from the point to the
chosen points is greater than one.

Points in plane: distances

CRUX 233. by Viktors Linis
The three points (1), (2), (3) lie in this order on an

axis, and the distances [1, 2] = a and [2, 3] = b are given.
Points (4) and (5) lie on one side of the axis, and the
distance [4, 5] = 2c > 0 and the angles (415) = v1, (425) =
v2, (435) = v3 are also known. Determine the position of
the points (1), (2), (3) relative to (4) and (5).

MSJ 482.
Find all possible arrangements of four points in the

plane such that there are at most two different values for
the set of distances between all possible pairs of points.

PME 406. by P. Erdős
Let there be given five distinct points in the plane.

Suppose they determine only two distances. Is it true that
they are the vertices of a regular pentagon?

Points in plane: parallel lines

ISMJ 14.19.
Given three points in the plane, in how many ways can

one draw three equidistant parallel lines through them?

Points in plane: partitions

MM 957. by Erwin Just
Show that it is possible to partition the rational points

of the plane into four sets, each of which is dense in the
plane, and such that no straight line will contain a point
from each of the four sets.

Can the partitioning also be into three sets?

JRM 557. by David L. Silverman
A set of points is called Scottian if, regardless of the

way it is partitioned into two sets A and B, either A or B
(or both) contains three points that are the vertices of a
right triangle.

(a) Prove that the vertices of a square and the mid-
points of the four sides constitute a Scottian set.

(b) Prove that the circumference of a circle is not Scot-
tian, but the addition of the center of the circle makes it so.

(c) Prove that a triangle is Scottian if and only if it is
not obtuse.

(d) Among all finite Scottian sets on a square lattice,
what is the least number n of points possible and what
shape must such an n-point set have? Is there an n-point
Scottian set that cannot be embedded in a square lattice?
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JRM 701. by David L. Silverman
A set of points is called Scottian if, regardless of how it

is partitioned into two sets, at least one of the sets contains
the vertices of a right triangle. Given a circle C and a point
P in the plane of C, P is said to be Scottian with respect to
C if the union of P and C is Scottian. What is the locus of
points that are Scottian with respect to C?

Points in plane: perpendicular bisectors

NAvW 544. by W. H. J. H. van Meeuwen,
C. P. van Nieuwkasteele, and K. A. Post

Prove the following statement: Let n be an integer,
n ≥ 4. Then n points can be chosen in the plane, such
that their

(
n
2

)
perpendicular bisectors dissect the plane into

convex pieces among which an (n− 1)-gon occurs.

Points in plane: rational distances

JRM 765. by William C. Reil
Given a set of noncollinear points in a plane, define a

rational point as a point in the plane, but not in the set,
that is a rational distance from each point in the set.

(a) Does any such set have an infinity of rational
points?

(b) Does every such set have a rational point?

Points in plane: triangles

MSJ 494.
Prove that it is impossible to pick four points A, B,

C, and D in the plane so that each of the interior angles of
4ABC, 4ABD, 4ACD, and 4BCD is acute.

AMM E2531. by V. F. Ivanoff
Given points A, B, C, D, E, and F in the plane, let

[ABC] denote the directed area of triangle ABC, etc. Prove
that

[AEF ] · [DBC] + [BEF ] · [DCA] + [CEF ] · [DAB]

= [DEF ] · [ABC].

Polygons: 13-gons

CRUX 70. by Viktors Linis
Show that for any 13-gon there exists a straight line

containing only one of its sides. Show also that for every
n > 13 there exists an n-gon for which the above statement
does not hold.

PARAB 347.
Is it possible to select four vertices of a regular 13-gon

so that the four sides and two diagonals of the quadrilateral
formed by the four chosen vertices have different lengths?

Polygons: 17-gons

CRUX PS3-1.
Does there exist a polygon of 17 sides such that some

straight line intersects each of its sides in some point other
than a vertex of the polygon? Note that the polygon need
not be convex nor simple.

Polygons: convex polygons

AMM E2514. by G. A. Tsintsifas
Let P be a convex polygon, and let K be the polygon

whose vertices are the midpoints of the sides of P . A
polygon M is formed by dividing the sides of P (cyclically
directed) in a fixed ratio p:q where p+ q = 1. Show that

[M ] = (p− q)2[P ] + 4pq[K],

where [X] denotes the area of polygon X.

CRUX 67. by Viktors Linis
Show that in any convex 2n-gon there is a diagonal

that is not parallel to any of its sides.

AMM E2641. by Philip Straffin
Given a convex polygon and a point p inside it, define

D(p) to be the sum of the perpendicular distances from p
to the sides of the polygon (extended if necessary). Charac-
terize those convex polygons for which D(p) is independent
of p.

MM 1018. by H. Kestelman
Let P1, P2, . . . , Pn be the vertices in order of a convex

n-gon with θr, 0 < θr < π, as the angle at Pr. Rotations
R1, R2, . . . , Rn are defined as follows: R1 rotates 2θ1 about
P1, R2 rotates 2θ2 about R1(P2), R3 rotates 2θ3 about
R2R1(P3), etc. Prove that RnRn−1 · · ·R2R1 is the identity.

Polygons: equilateral polygons

NAvW 398. by Hosia W. Labbers, Jr.
Given an equilateral polygon A1A2 . . . An, n ≥ 3, in

the plane such that each of the n−2 angles 6 Aj−1AjAj+1,
1 < j < n, is a rational multiple of π, prove that the angles
6 An−1AnA1 and 6 AnA1A2 must also be rational multiples
of π.

Polygons: interior point

MSJ 489.
Any interior point P of a given convex polygon having

vertices V1, V2, . . . , Vn is called equitable if all the triangles
V1PV2, V2PV3, . . . , VnPV1 are of equal area. Prove that no
such polygon can have more than one equitable point.

Polygons: visibility

PARAB 440.
Let Π be a polygon and let P be any point inside Π.

If every line segment joining P to any other point inside or
on Π lies completely in Π, we say that Π is visible from P .
Prove that the set of all points from which Π is visible is a
convex set.

AMM E2513. by Neal Felsinger
Let P be a simple (non-self-intersecting) planar poly-

gon. If A is a point in the plane, and if E is an edge of P ,
then E is viewable from A if for every point x of E, the line
segment joining A to x contains no point of P other than x.

(a) Let A and P be arbitrary. Must some edge of P
be viewable from A? Examine the cases of A exterior to P
and interior to P separately.

(b) Find sufficient conditions on A in order that some
edge of P be viewable from A.
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Projective geometry

AMM 6267. by A. E. Fekete
We say that two collineations of the real projective

space PRn are of the same type if their invariant con-
figurations are projectively equivalent (i.e., there is a real
projective collineation mapping one configuration into the
other). Find an explicit formula determining the number of
all different nonidentity collineation types. For example, for
n = 1 there are three types: hyperbolic (two fixed points),
parabolic (one fixed point), and elliptic (no fixed point).
Also, define collineation types for the complex projective
space PCn and find their number.

NAvW 547. by O. Bottema
Two coinciding three-dimensional projective spaces Σ

and S have the homogeneous point coordinates Xi and xi
(i = 1, 2, 3, 4), respectively. A motion of S with respect to
Σ is given by

X = (A+Bt)x,

where X and x are column vectors with the elements Xi and
xi, A and B are nonsingular 4× 4 matrices, the eigenvalues
of B are real and distinct, and the scalar t represents the
time.

Obviously, the path of any moving point of S is a
straight line. Determine the locus of the paths.

NAvW 512. by O. Bottema
In the projective plane, a quartic curve k with three

cusps is given. The cusps Di (i = 1, 2, 3) are taken as the
vertices of the coordinate triangle, and the intersection of
the three cuspidal tangents as the unit point.

Let P1 be an arbitrary point on k. The fourth inter-
section of P1D1 and k is Q1, that of Q1D2 and k is R1,
that of R1D3 and k is P2. The construction is then re-
peated starting at P2, etc., and the series P1, P2, P3, . . . , is
obtained.

Determine limn→∞ Pn.

Quadrilaterals: angle bisectors

PME 346. by R. S. Luthar
The internal angle bisectors of a convex quadrilateral

ABCD enclose another quadrilateral EFGH. Let FE and
GH meet in M and let GF and HE meet in N . If the
internal bisectors of angles EMH and ENF meet in L,
show that angle NLM is a right angle.

Quadrilaterals: area

CRUX 42. by Viktors Linis
Find the area of a quadrilateral as a function of its four

sides, given that the sums of opposite angles are equal.

SSM 3789. by Alan Wayne
In the plane quadrilateral ABCD, angles A and B are

complementary. Also AB = 60, BC = 33, CD = 25, and
DA = 16. Find

(a) the area of ABCD and
(b) the lengths of the diagonals AC and BD.

MSJ 442.
In convex quadrilateral ABCD, the diagonals intersect

at E. If the areas of regions BEC, CED, DEA, and AEB
are a, b, c, and d, respectively, prove that ac = bd.

MSJ 443.
In convex quadrilateral ABCD, the diagonals intersect

at point E. If the areas of regions BEC, CED, and DEA
are 6, 8, and 12, respectively, find the area of region AEB.

Quadrilaterals: circumscribed quadrilateral

CRUX 189. by Kenneth S. Williams
If a quadrilateral circumscribes an ellipse, prove that

the line through the midpoints of its diagonals passes
through the center of the ellipse.

CRUX 199. by H. G. Dworschak
If a quadrilateral is circumscribed about a circle, prove

that its diagonals and the two chords joining the points of
contact of opposite sides are all concurrent.

Quadrilaterals: determinants

MM 963. by Hüseyin Demir
Characterize convex quadrilaterals with sides a, b, c,

and d such that
∣∣∣∣∣∣∣

a b c d

d a b c

c d a b

b c d a

∣∣∣∣∣∣∣
= 0.

SSM 3747. by Alan Wayne
The points P1(x1, y1), P2(x2, y2), P3(x3, y3), and

P4(x4, y4) are the vertices of a convex quadrilateral in the
plane. What is the geometric significance of the following
determinant? ∣∣∣∣∣∣∣

x1 y1 1 0

x2 y2 1 1

x3 y3 1 0

x4 y4 1 1

∣∣∣∣∣∣∣

Quadrilaterals: diagonals

IMO 1976/1.
In a plane convex quadrilateral of area 32, the sum of

the lengths of two opposite sides and one diagonal is 16.
Determine all possible lengths of the other diagonal.

Quadrilaterals: erected figures

PENT 308. by John A. Winterink
CRUX 37. by Maurice Poirier

On the sides of quadrilateral ABCD, isosceles right
triangles ABP , BCQ, CDR, and DAS are constructed.
Show that PR = QS and PR⊥QS.

SPECT 11.9. by A. J. Douglas
Let Z1Z2Z3Z4 be a convex quadrilateral in the plane.

Denote by W1, W2, W3, W4 the midpoints of the squares,
drawn externally to the quadrilateral, with sides Z1Z2,
Z2Z3, Z3Z4, Z4Z1 respectively. Let U1, U2, U3, U4 be the
midpoints of the squares with sides W1W2, W2W3, W3W4,
W4W1 respectively. Show that

(a) W1W3 = W2W4 and W1W3⊥W2W4,
(b) U1Z2 and U3Z4 are perpendicular to Z1Z3, and

U1Z2 = U3Z4 =
1

2
Z1Z3.
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Quadrilaterals: inscribed circles

PME 417. by Clayton W. Dodge
(a) Prove that the line joining the midpoints of the

diagonals of a quadrilateral circumscribed about a circle
passes through the center of the circle.

(b) Let the incircle of triangle ABC touch side BC at
X. Prove that the line joining the midpoints of AX and
BC passes through the incenter I of the triangle.

Quadrilaterals: maxima and minima

MSJ 485.
JRM 497. by Sidney Kravitz

Prove that among all quadrilaterals of given sides the
one of maximum area is inscribable in a circle.

Quadrilaterals: sides

MM Q613. by Sidney Penner
Given quadrilateral ABCD with sides a, b, c, and d,

prove or disprove:

If a+ b = c+ d, then a = c or a = d.

Quadrilaterals: supplementary angles

NYSMTJ 52.
(a) Prove that if both pairs of opposite angles of a

quadrilateral are supplementary, then the quadrilateral can
be inscribed in a circle.

(b) Prove that if the sum of the lengths of one pair
of opposite sides of a (convex) quadrilateral is equal to the
sum of the lengths of the other pair of sides, then a circle
can be inscribed in the quadrilateral.

Quadrilaterals: triangles

ISMJ 12.25.
Given any convex quadrilateral, consider all the tri-

angles whose vertices lie on the quadrilateral. Show that
the maximum area of such triangles can be achieved by a
triangle with its vertices being vertices of the quadrilateral.

CANADA 1978/4.
The sidesAD andBC of a convex quadrilateralABCD

are extended to meet at E. Let H and G be the midpoints
of BD and AC, respectively. Find the ratio of the area of
the triangle EHG to that of the quadrilateral ABCD.

PENT 312. by John A. Winterink
Let L1 and L2 be the axes of a plane coordinate system

that cut off line segments aibi (i = 1, 2, 3, 4) on the sides
(extended if necessary) of a quadrilateral ABCD in such a
manner that each point ai lies on L1 and each point bi lies
on L2. Let K denote the intersection of L1 and L2.

If similar triangles aibici are drawn on each line seg-
ment aibi such that each angle with its vertex at ci is equal
to the angle formed by L1 and L2, then show that the ver-
tices ci and the intersection K of the axes are collinear.

Rectangles

OMG 15.2.2.
If a rectangle is divided into four rectangular sections,

prove that A ·D = B ·C where A, B, C, and D are the areas
of the sections, with area A and area D being diagonally
adjacent.

SSM 3716. by Alan Wayne
Show that there cannot be two noncongruent rectan-

gles having the same perimeter and the same area.

CRUX 244. by Steven R. Conrad
A rectangular strip of carpet 3 ft. wide is laid diago-

nally across the floor of a room 9 ft. by 12 ft. so that each
of the four corners of the strip touches a wall. How long is
the strip?

MM 960. by Alan Wayne
In an a× b rectangle, lines parallel to the sides divide

the interior into ab square unit areas. Through the interior
of how many of these unit squares will a diagonal of the
rectangle pass?

Can the result be generalized to higher dimensions?

DELTA 6.2-1. by R. C. Buck
A man is standing in a rectangular field and is exactly

5 miles from one corner, 8 from another and 14 from a third.
(a) Can you tell how far he is from the remaining cor-

ner?
(b) If you know that the field is square, can you tell

what its area is?

MM 966. by Clayton W. Dodge
A point P lies in the interior of a rectangle of sides a

and b.
(a) Find a, b, and P so that all eight distances from P

to the four vertices and the four sides are positive integers.
(b) Find an example of a square where seven of the

distances are integers.
(c) Can all eight distances be integers for a square?

NYSMTJ 95. by Samuel A. Greenspan
The distance from a point in the interior of a rectangle

to a given corner is 10 yards; to the opposite corner 11 yards;
and to a third corner 5 yards. What is the distance from
the point to the fourth corner?

PME 439. by Richard I. Hess
A bug starts at Monday noon in the upper-left corner

(X) of a p × q rectangle, and crawls within the rectangle
to the diagonally opposite corner (Y ), arriving at 6 PM.
Exhausted, he sleeps till noon Tuesday. At that time, he
embarks for X, crawling along another path in the rectangle
and arriving at X at 6 PM Tuesday. Prove that, at some
time Tuesday, the bug was at a point no farther than p from
where he was at the same time Monday.

PME 430. by John M. Howell
Given any rectangle, form a new rectangle by adding

a square to the long side. Repeat. What is the limit of the
long side to the short side?

Regular heptagons

OSSMB 77-16.
If A0, A1, . . . , A6 are the vertices of a regular 7-gon

inscribed in the unit circle, show that

A0A1 ·A0A2 ·A0A3 . . . A0A6 = 7.
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Regular hexagons

SSM 3701. by Fred A. Miller
If, from any point on a circle, line segments are drawn

to the vertices of an inscribed regular hexagon, prove that
the sum of the longest two of these line segments equals the
sum of the remaining four line segments.

Regular octagons

SSM 3653. by Charles W. Trigg
The diagonals of a regular octagon have three different

lengths. Show that the area of a rectangle determined by
a largest and a smallest diagonal is twice the area of a
rectangle determined by an intermediate diagonal and a side
of the octagon.

SSM 3656. by Fred A. Miller
Show that the diameter of a circle inscribed in a quad-

rant of a circle is equal to the side of a regular octagon
circumscribed about the given circle.

Regular pentagons

ISMJ J11.7.
The diagonals AC and BD of the regular pentagon

ABCDE intersect at P . Show that AP = PD = ED.

FUNCT 3.2.5.
Let ABCDE be a regular pentagon. The diagonals

AD and EC meet at the point Q. Show that

AD

AQ
=
AQ

QD
,

and hence prove that the ratio AD/AQ is equal to the

golden ratio
(
1 +
√

5
)
/2.

CRUX PS2-1.
Prove that only one ellipse can be inscribed in a given

regular pentagon.

DELTA 6.2-3. by D. W. Crowe
A drawing shows an incomplete “ring” of regular pen-

tagons formed by placing each pentagon next to the other
so that they have one side in common. A second drawing
shows a “ring” of regular heptagons formed in the same
way, except that the ring is completed by a square of side
the same length as the side of one of the heptagons. Explain
how each is incorrect.

FQ B-348. by Sidney Kravitz
Let P1, . . . , P5 be the vertices of a regular pentagon

and let Qi be the intersection of segments Pi+1Pi+3 and
Pi+2Pi+4 (subscripts taken modulo 5). Find the ratio of
lengths Q1Q2/P1P2.

Regular polygons: cyclic polygons

OSSMB G75.3-1.
Two regular polygons are inscribed in a circle. The

number of sides in one polygon is double the number in the
other and an angle of one is to an angle of the other as 9:8.
Prove that the areas are as 1: cos 18◦.

Regular polygons: diagonals

ISMJ 12.13.
Suppose that all diagonals are drawn from some one

vertex of a regular polygon. For which regular polygons are
at least two of these diagonals perpendicular to each other?

PME 390. by Robb Koether and David C. Kay
Let the diagonals of a regular n-gon of unit side be

drawn. Prove that the n − 2 consecutive triangles thus
formed which have their bases along one diagonal, their legs
along two others or a side, and one vertex in common with
a vertex of the polygon each have the property that the
product of two sides equals the third.

Regular polygons: exterior point

SPECT 7.2.
Let A1A2 . . . An be a regular plane polygon with center

O, and let P be a point in the plane outside the circumcircle
of the polygon. Compare the geometric mean of the lengths
ArP (1 ≤ r ≤ n) with the length OP in the following two
cases:

(a) When OP passes through a vertex of the polygon.
(b) When OP bisects a side of the polygon.

Regular polygons: inscribed polygons

MM 1076. by M. S. Klamkin
Let B be an n-gon inscribed in a regular n-gon A.

Show that the vertices of B divide each side of A in the
same ratio and sense if and only if B is regular.

TYCMJ 146. by M. S. Klamkin
Prove that the smallest regular n-gon that can be in-

scribed in a given regular n-gon will have its vertices at the
midpoints of the sides of the given n-gon.

Regular polygons: limits

JRM 394. by Archimedes O’Toole
From a fixed point P on the circumference of a circle,

regular n-gons (n = 3, 4, 5, 6, . . .) are inscribed, all having
one vertex at P . Prove or disprove: The limiting area
common to all the n-gons as n→∞ is zero.

NAvW 410. by J. van de Lune
Let P1, P2, . . . , Pn be the vertices of a regular n-gon

inscribed in the unit circle, and let an denote the average
of the n2 Euclidean distances d

(
Pi, Pj

)
, i = 1, 2, . . . , n;

j = 1, 2, . . . , n. Prove that an is increasing and determine
limn→∞ an.

SSM 3766. by Herta T. Freitag
(a) Consider the sequence of circles contained “inside”

an equilateral triangle having side length a generated in
the following manner. Begin with the inscribed circle. In
one “corner” of the triangle inscribe a circle tangent to the
first circle and to two sides of the triangle. Inscribe another
circle tangent to the second circle and to the same two sides.
Continue this process indefinitely. Find the sum of the radii
of these circles.

(b) What is the corresponding result if a square having
side length s is used instead of an equilateral triangle?
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SSM 3772. by Herta T. Freitag
(a) Obtain a formula for the area of an equilateral

triangle inscribed in a circle of radius R.
(b) Starting with the above triangle, inscribe a similar

one in the incircle of the first one, and continue in this
manner indefinitely. Obtain the total area (if it exists) of
this set of triangles.

(c) Generalize the above for an arbitrary regular poly-
gon with n sides.

Regular polygons: point on circumcircle

AMM E2646. by William Wernick
Let A1, . . . , An be vertices of a regular n-gon inscribed

in a circle with center O. Let B be a point on arc A1An and
θ = 6 AnOB. If ak is the length of the chord BAk, express

n∑

k=1

(−1)kak

as a function of θ.

Right triangles: angle measures

CRUX 18. by Jacques Marion
Show that in a right triangle with sides 3, 4 and 5,

neither of the acute angles is a rational multiple of π.

Right triangles: circles

MATYC 119. by Norman Shimmel
A circle of radius R is inscribed in 6 ABC of right

triangle ABC (with right angle at C). The tangent to the
circle parallel to AC and furthest from AC meets BC at D.
If AC = H, CD = L, and 6 ABC = θ, find θ in terms of L,
H, and R.

Right triangles: erected figures

FUNCT 2.5.3.
A right triangle has area A and hypotenuse of length

c. On each side of the triangle draw a square, exterior to
the triangle. Imagine a tight rubber band placed around
the figure. What area would it enclose?

Right triangles: incircle

PARAB 400.
ISMJ 10.17.
OMG 18.1.5.

Show that the diameter d of the incircle of a right
triangle of legs a, b, and hypotenuse c satisfies

d = a+ b− c.

OSSMB G75.3-2.
Find the radius of the greatest circle that can be in-

scribed in a right triangle whose perimeter is 100 inches.
Find also each of the sides of the triangle when the radius
is greatest.

Right triangles: mean proportionals

CRUX 218. by Gilbert W. Kessler
The altitude to the hypotenuse of a right triangle is the

mean proportional between the segments of the hypotenuse.
The median to the hypotenuse also has this property. Does
any other segment from vertex to hypotenuse have the prop-
erty?

Right triangles: perspectivities

PME 422. by Jack Garfunkel
Let perpendiculars be erected outwardly at A and B

of a right triangle ABC (C = 90◦), and at M , the midpoint
of AB. Extend these perpendiculars to points P , Q, R such
that

AP = BQ = MR =
AB

2
.

Show that triangle PQR is perspective with triangle ABC.

Right triangles: sequences

TYCMJ 61. by Peter A. Lindstrom
By the altitude of a right triangle, we mean the alti-

tude which is not also a leg of that triangle. Construct the
altitude of right triangle T0. Call one of the subtriangles
T and the other T1. Construct the altitude of T1 and call
one of the subtriangles T2. Continue the process so that, in
general, Tn is one of the two subtriangles formed by con-
structing the altitude of Tn−1. It is known that there exist
sequences T0, T1, T2, . . . , for which

∑∞
i=0(area Ti) equals

twice the area of T0. Prove that the sum of the altitudes
of the triangles in any one of these sequences equals the
perimeter of T .

PME 461. by David C. Kay
(a) A right triangle with unit hypotenuse and legs r

and s is used to form a sequence of similar right triangles
T1, T2, T3, . . . where the sides of T1 are r times those of the
given triangle, and for n ≥ 1 the sides of Tn+1 are s times
those of Tn. Prove that the sequence Tn will tile the given
triangle.

(b) What happens if the multipliers r and s are re-
versed?

(c) Given is a right triangle ABC with hypotenuseBC.
A perpendicular is dropped from A onto BC, meeting BC
at point P1. Next, a perpendicular is dropped from P1 onto
AB, meeting AB at point P2. This process is continued:
perpendiculars are alternately dropped onto AB and BC
to obtain a sequence of points P1, P2, . . . . Show that the
sum of the areas of 4CAP1, 4P1P2P3, 4P3P4P5, . . . is
equal to (b3c+ bc3)/(2b2 + 4c2).

Rolling

MENEMUI 1.2.1. by R. J. E. Porkess
A disc of radius R rolls without slipping around the

inside of the circumference of a fixed circle whose radius is
2R. Prove that the locus of a point at distance R/2 from

the center of the disc is an ellipse of area 3πR2/4.

NYSMTJ 56.
Consider an object, such as a water glass in the shape

of a frustum of a right circular cone, with base radii r and
R, and slant height l. When such an object is placed on its
side on a smooth, level surface, it can be rolled in a circle,
returning to its starting point. Express the radius of this
circle in terms of r, R, and l.

Semicircles

ISMJ 13.10.
Arc ARPB is a semicircle. Prove that if R is above P

then AR+RB = AP + PB.
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CRUX 386. by Francine Bankoff
A square PQRS is inscribed in a semicircle (O) with

PQ falling along diameter AB. A right triangle ABC,
equivalent to the square, is inscribed in the same semicircle
with C lying on the arc RB. Show that the incenter I of
triangle ABC lies at the intersection of SB and RQ, and
that

RI

IQ
=
SI

IB
=

1 +
√

5

2
.

Simple closed curves

AMM 6129. by E. H. Kronheimer
Let S be a simple closed curve in the plane. Prove that

unless S is a circle, it is always possible to find four points
p, q, u, v on S and a point x inside S such that u and v
belong to distinct components of S \ {p, q}, and x is nearer
to both p and q than it is to either u or v.

PUTNAM 1977/B.4.
Let C be a continuous closed curve in the plane which

does not cross itself and let Q be a point inside C. Show
that there exist points P1 and P2 on C such that Q is the
midpoint of the line segment P1P2.

MM 1006. by G. A. Heuer
A simple closed curve in the plane encloses a region

R of area A. There is a point P in the interior of R such
that every line through P intersects R in a line segment of
length d. Find the greatest lower and least upper bounds
for A. Are there curves where these bounds are attained?

Squares: 2 squares

CRUX 464. by J. Chris Fisher and E. L. Koh
(a) If the two squares ABCD and AB′C′D′ have ver-

tex A in common and are taken with the same orientation,
then the centers of the squares together with the midpoints
of BD′ and B′D are the vertices of a square.

(b) What is the analogous theorem for regular n-gons?

Squares: angles

CRUX 147. by Steven R. Conrad
In square ABCD, AC and BD meet at E. Point F is

in CD and 6 CAF = 6 FAD. If AF meets ED at G and if
EG = 24, find CF .

Squares: circles

OSSMB G77.1-3.
The square ABCD, with sides of length a, has circles

of radius a drawn with centers A, B, C, D. Find the area
of the central curvilinear quadrilateral.

Squares: circumscribed triangle

SSM 3652. by Fred A. Miller
Prove: The side of a square inscribed in a triangle is

half the harmonic mean between the base and the altitude.

Squares: erected figures

IMO 1977/1.
PARAB 364.

Equilateral triangles ABK, BCL, CDM and DAN
are constructed inside the square ABCD. Prove that the
midpoints of the four segments KL, LM , MN , NK and
the midpoints of the eight segments AK, BK, BL, CL,
CM , DM , DN and AN are the twelve vertices of a regular
dodecagon.

FUNCT 3.3.4. by Lindsay Pope
Given is a square with side s. Four quadrants of radius

s are inscribed in the square, each having its center at one
of the corners. Find the area of the intersection of the four
quadrants.

MSJ 451. by Saleh Rahman
Let ABCD be a square with AB = 10. Quadrants with

centers at A and B, drawn interior to the square, intersect
at E. Find the area of the region bounded by DC, arc DE,
and arc EC.

Squares: inscribed circles

CRUX 444. by Dan Sokolowsky
A circle is inscribed in a square ABCD. Point E

is selected on BC so that the circle with diameter BE is
tangent to the first circle. Show that AB = 4BE.

JRM 382. by Leon Bankoff
In the diagram shown, prove that the ten smaller cir-

cles are equal.

Squares: interior point

MATYC 130. by Patrick J. Boyle
Let P be a point in the square ABCD. If PA = a,

PB = a+b, PD = c, and a2 +b2 = c2, prove 6 APB = 90◦.

Squares: limits

OMG 15.3.3.
A circle is inscribed in a square of side 2. A square is

inscribed in that circle. A circle is inscribed in that square,
and so on ad infinitum. What is the sum of all the areas of
the squares?

Squares: line segments

OSSMB 75-14.
A collection of line segments contained in a closed

square of side 1 is said to be “opaque” if every straight
line that crosses the square makes contact with at least one
of the segments. Find an opaque set whose length is less
than 1 +

√
3.
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Squares: lines

PARAB 413.
Let O be the center of the square ABCD and let ` be

a given line. The points O′, A′, B′, C′, and D′ are the feet
of the perpendiculars dropped from O, A, B, C, and D to
the line `. If AA′ ·CC′ = BB′ ·DD′ and AB = 2, find OO′.

Squares: moats

OMG 15.1.1.
A student wishes to cross to a square island surrounded

by a 4-meter wide moat. Can he do it with only two 3-meter
long planks, and if so, how?

Stars

OMG 17.3.9.
Find the area of a star if
(a) the circumscribed circle has radius 10;
(b) the points of the star are the same distance apart;
(c) the star is formed by joining each point to the two

opposite ones.

Symmetry

PARAB 374.
(a) A plane figure has one axis of symmetry and a

point on that axis is a center of symmetry. Does the figure
necessarily have a second axis of symmetry?

(b) A 3-dimensional figure has one plane of symmetry
and a point in that plane is a center of symmetry. Does the
figure necessarily have a second plane of symmetry?

Tesselations

ISMJ 14.2.
You are given an infinite supply of cardboard copies of

a pentagon that has all sides one inch long and has two 90◦

angles that are not at opposite ends of the same side. Show
how to cover the plane with these pentagons so that there
are no overlaps and no uncovered spots.

CRUX 155. by Steven R. Conrad and Ira Ewen
A plane is tessellated by regular hexagons when the

plane is the union of congruent regular hexagonal closed
regions which have disjoint interiors. A lattice point of this
tessellation is any vertex of any of the hexagons.

Prove that no four lattice points of a regular hexagonal
tessellation of a plane can be the vertices of a square.

SSM 3677. by Herta T. Freitag
(a) Consider the following tessellation of equal-sized,

regular hexagons of side a. After placing a tile, each follow-
ing row is fitted so as to form a triangular array. Each time
a row is completed, join the midpoints of the outer tiles of
the tessellation to form a triangle. Obtain a formula for the
area of these triangles in terms of the number of tiles used
in the tessellation.

(b) Obtain corresponding formulas using (1) triangular
tiles, (2) two different placements of square tiles.

JRM 388. by Solomon W. Golomb
Let S1, S2, S3, . . . be a sequence of squares in the plane

such that Si has side length i. Can this sequence possibly
tessellate the plane?

Tiling

PME 434. by Sidney Penner

Consider (2n+ 1)2 hexagons arranged in a “diamond”
pattern, the kth column from the left and also from the
right consisting of k hexagons, 1 ≤ k ≤ 2n + 1. Show that
if exactly one of the six hexagons adjacent to the center
hexagon is deleted, then it is impossible to tile the remain-
ing hexagons by pieces consisting of 3 mutually touching
hexagons.

PARAB 315.

A large supply of small tiles is available for tiling the
flat bottom of a large swimming pool. Each tile is in the
shape of a regular polygon with edges all 1 cm long, and
exactly 3 different shapes are used. The tiles are laid edge
to edge in such a way that, although the vertices of 3 dif-
ferent tiles sometimes come together at the same point, no
more than 3 vertices ever come together at the same point.
Whenever 3 vertices do come together, the tiles at that point
have different shapes. Prove that no tile used has an odd
number of edges.

ISMJ 14.17.

Show that it is not possible to arrange ten equal
squares in the plane so that no two overlap and so that
one square touches each of the other nine squares.

PARAB 318.

Show how to place squares with sides of length (1/m),
where m = 2, 3, 4, 5, . . . (an infinite number of them) inside
a square with side of length 1. None of the squares you use
are allowed to overlap any other one.

Trapezoids

MSJ 470.

TrapezoidAPQB is inscribed in a semicircle andAB =
4 and AP = BQ = 1. Find the length of PQ.

SSM 3743. by Steven R. Conrad

Consider a trapezoid ABCD having bases b andB with
b < B. If each diagonal is divided into n equal parts, find
the length of the line segment formed by connecting the ith
division point on one diagonal to the ith division point on
the other diagonal.

PME 409. by Zazou Katz

A point E is chosen on side CD of a trapezoid ABCD,
(AD ‖ BC), and is joined to A and B. A line through D
parallel to BE intersects AB in F . Show that FC is parallel
to AE.

Triangle inequalities: altitudes

NYSMTJ 92. by Norman Schaumberger

If ha, hb, and hc are the lengths of the altitudes of a
triangle, show that

hahb + hbhc > hahc.
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MM 936. by Jack Garfunkel
It is known that

ha + hb + hc ≤
√

3s,

where the h’s represent altitudes to sides a, b, and c and
s represents the semiperimeter of triangle ABC. Prove or
disprove the stronger inequality

ta + tb +mc ≤
√

3s,

where the t’s are the angle bisectors and mc is the median
to side c.

Triangle inequalities: angle bisectors and medians

PME 421. by Murray S. Klamkin
If F (x, y, z) is a symmetric, increasing function of x, y,

z, prove that for any triangle in which wa, wb, wc are the
internal angle bisectors and ma, mb, mc the medians, we
have

F (wa, wb, wc) ≤ F (ma,mb,mc)

with equality if and only if the triangle is equilateral.

Triangle inequalities: angle bisectors extended

AMM S23. by Jack Garfunkel
and Leon Bankoff

Prove that the sum of the distances from the incenter
of a triangle ABC to the vertices does not exceed half of
the sum of the internal angle bisectors, each extended to its
intersection with the circumcircle of triangle ABC.

PME 374. by Jack Garfunkel
In a triangle ABC inscribed in a circle (O), angle

bisectors AT1, BT2, CT3 are drawn and extended to the
circle with Ti lying on the circle. Perpendiculars T1H1,
T2H2, T3H3 are drawn to sides AC, BA, CB respectively.
Prove that

T1H1 + T2H2 + T3H3 ≤ 3R,

where R is the radius of the circumcircle.

Triangle inequalities: angles

PME 394. by Erwin Just and Bertram Kabak
Prove that if A1, A2, and A3 are the angles of a trian-

gle, then

3

3∑

i=1

sin2Ai − 2

3∑

i=1

cos3Ai ≤ 6.

Triangle inequalities: angles and radii

TYCMJ 85. by Bertram Kabak
(a) Let R, r, and P be the radius of the circumscribed

circle, the radius of the inscribed circle, and the perimeter
of a triangle, respectively. Prove that

54Rr ≤ P 2.

(b) Let O be a point within triangle A1A2A3 and let
di be the distance from O to ai, the side opposite angle Ai,
(i = 1, 2, 3). Prove that

3∑

i=1

di sinAi =

3∏

i=1

ai
4R2

.

Triangle inequalities: angles and sides

AMM E2649. by A. Oppenheim
Let a, b, c and α, β, γ be the sides and the correspond-

ing opposite angles of a nonobtuse triangle. Show that

3(a+ b+ c) ≤ π
(
a

α
+
b

β
+
c

γ

)
,

and

3(a2 + b2 + c2) ≥ π
(
a2

α
+
b2

β
+
c2

γ

)
.

Triangle inequalities: centroids

AMM E2715. by Jack Garfunkel
Let G be the centroid of the triangle A1A2A3 and let

θi = 6
(−−−−−→
AiAi+1,

−−→
AiG

)
, i = 1, 2, 3.

Prove or disprove that
∑

sin θi ≤ 3/2.

Triangle inequalities: circumcenter and incenter

PME 442. by Jack Garfunkel
Show that the sum of the perpendiculars from the

circumcenter of a triangle to its sides is not less than the
sum of the perpendiculars drawn from the incenter to the
sides of the triangle.

Triangle inequalities: circumradius

SIAM 77-9. by I. J. Schoenberg
Let Pi = (xi, yi), i = 1, 2, 3, x1 < x2 < x3, be points

in the Cartesian (x, y)-plane and let R denote the radius of
the circumcircle Γ of the triangle P1P2P3 (R = ∞ if the
triangle is degenerate). Show that

1

R
< 2

∣∣∣∣
y1

(x1 − x2) (x1 − x3)

+
y2

(x2 − x3) (x2 − x1)
+

y3

(x3 − x1) (x3 − x2)

∣∣∣∣

unless both sides vanish and that 2 is the best constant in
the equation.

Triangle inequalities: Gergonne point

NAvW 478. by W. J. Blundon and R. H. Eddy
Let ga, gb, and gc denote the cevians of a triangle

ABC concurrent at the Gergonne point. Prove (in the usual
notation) that

8Rr + 11r2 ≤
∑

g2
a ≤ 4R2 + 11r2,

with equality if and only if the triangle is equilateral.

Triangle inequalities: half angles

NYSMTJ OBG7. by Norman Schaumberger
If A, B, and C are the angles of a triangle, then prove

that

sin
A

2
sin

B

2
sin

C

2
≤ 1

8
.
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Triangle inequalities: interior point

PME 410. by Murray S. Klamkin
If x, y, z are the distances of an interior point of a

triangle ABC to the sides BC, CA, AB, show that

1

x
+

1

y
+

1

z
≥ 2

r
,

where r is the inradius of the triangle.

MM 959. by L. Carlitz
Let P be a point in the interior of the triangleABC and

let r1, r2, and r3 denote the distances from P to the sides of
the triangle. Let R denote the circumradius of ABC. Show
that √

r1 +
√
r2 +

√
r3 ≤ 3

√
R/2,

with equality if and only if ABC is equilateral and P is the
center of ABC.

Triangle inequalities: medians and sides

MM Q638. by Murray S. Klamkin
Let a, b, and c denote the sides of an arbitrary triangle

with respective medians ma, mb, and mc. Determine all
integral p and q so that
(√

3

2

)p
(apmq

a + bpmq
b + cpmq

c) ≥
(√

3

2

)q
(aqmp

a + bqmp
b + cqmp

c).

SIAM 79-19. by M. S. Klamkin
If a1, a2, a3 and m1,m2,m3 denote the sides and cor-

responding medians of a triangle, respectively, prove that
(
a2

1 + a2
2 + a2

3

)
(a1m1 + a2m2 + a3m3)

≥ 4m1m2m3 (a1 + a2 + a3) .

Triangle inequalities: radii

NAvW 472. by J. T. Groenman
Let r, ra, rb, and rc be the radii of the inscribed circles

of a triangle ABC. Depending upon the fact of whether
the triangle is acute, right, or obtuse, prove that one of the
following statements holds:

(
rarbrc
r

) 1
2

>
1

2
(r + ra + rb + rc) ,

(respectively = and <).

MM 1043. by M. S. Klamkin
If (ai, bi, ci) are the sides, Ri the circumradii, ri the

inradii, and si the semiperimeters of two triangles (i = 1, 2),
show that√

s1
r1R1

s2
r2R2

≥ 3

{
1√
a1a2

+
1√
b1b2

+
1√
c1c2

}

with equality if and only if the two triangles are equilateral.
Also show that the analogous three triangle inequality

√
s1
r1R1

s2
r2R2

s3
r3R3

≥ 9

{
1√

a1a2a3
+

1√
b1b2b3

+
1√

c1c2c3

}

is invalid.

Triangle inequalities: sides

SIAM 77-10. by M. S. Klamkin
Let P and P ′ denote two arbitrary points and let

A1A2A3 denote an arbitrary triangle of sides a1, a2, a3.
If Ri = PAi and R′i = P ′Ai, prove that

a1R1R
′
1 + a2R2R

′
2 + a3R3R

′
3 ≥ a1a2a3

and determine the conditions for equality. It is to be noted
that when P ′ coincides with P , we obtain a known polar
moment of inertia inequality.

TYCMJ 98. by Norman Schaumberger
Let a, b, and c be the lengths of the sides of a triangle

with area K and perimeter P . Prove or disprove that

a3 + b3 + c3 ≥ 4
√

3

3
KP

and
a4 + b4 + c4 ≥ 16K2.

TYCMJ 130. by Aron Pinker
Let a, b, and c be the sides of a triangle, P its perime-

ter, and K its area. Prove that:

1

a
+

1

b
+

1

c
≥ 9

P

a2 + b2 + c2 ≥ P 2

3

P 2 ≥ 12
√

3K

a2 + b2 + c2 ≥ 4
√

3K

a3 + b3 + c3 ≥ P 3

9
.

Triangles: 2 triangles

AMM E2512. by E. A. Herman
Let T1 and T2 be two triangles with circumcircles C1

and C2, respectively. Show that if T1 meets T2, then some
vertex of T1 lies in (or on) C2 or vice versa. Generalize.

NAvW 508. by L. Kuipers
In a plane, two congruent triangles ABC and A′B′C′

are in such a position that

AB ‖
−−→
B′A′, BC ‖

−−→
C′B′, and CA ‖

−−→
A′C′.

Now let A′′ be the reflection of A′ in the side BC, B′′ that
of B′ in the side CA, and C′′ that of C′ in AB.

Prove that the triangles ABC and A′′B′′C′′ are simi-
lar.

CRUX 171. by Dan Sokolowsky
Let P1 and P2 denote, respectively, the perimeters of

triangles ABE and ACD. Without using circles, prove that

P1 = P2 =⇒ AB +BF = AD +DF.
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Triangles: 3 triangles

SSM 3660. by Steven R. Conrad
Triangles 1, 2, and 3 are coplanar. Every point of

triangle 2 is interior to and 2 inches from triangle 1. Every
point of triangle 3 is interior to and 2 inches from triangle
2. If the inch-lengths of the sides of triangle 2 are 13, 14,
and 15, find the area of the region interior to triangle 1 but
not also interior to triangle 3.

Triangles: 30 degree angle

OSSMB G78.3-6.
(a) If, in 4ABC, b = a(

√
3 − 1) and 6 C = 30◦, find

6 A and 6 B.
(b) Given that a = 2b in 4ABC, show that 6 A >

26 B.

PME 351. by Jack Garfunkel
Angle A and angle B are acute angles of a triangle

ABC. If 6 A = 30◦ and ha, the altitude issuing from A, is
equal to mb, the median issuing from B, find angles B and
C.

Triangles: 60 degree angle

CRUX 148. by Steven R. Conrad
In4ABC, 6 C = 60◦ and 6 A is greater than 6 B. The

bisector of 6 C meets AB in E. If CE is a mean proportional
between AE and EB, find 6 B.

OSSMB 79-16.
In triangle ABC, BE bisects angle ABC and angle

AEB is 60◦. Let F be a point on the side BC so that angle
AFB is also 60◦. Segment AF intersects BE at the point
D. Prove that DE = EC.

AMM E2639. by G. Tsintsifas
Let ABC be a triangle with 6 A = 40◦ and 6 B = 60◦.

Let D and E be points lying on the sides AC and AB,
respectively, such that 6 CBD = 40◦ and 6 BCE = 70◦.
Let F be the point where the lines BD and CE intersect.
Show that the line AF is perpendicular to the line BC.

Triangles: 120 degree angle

CRUX 38. by Léo Sauvé
Consider the two triangles 4ABC and 4PQR. In the

triangle 4ABC, we have 6 ADB = 6 BDC = 6 CDA =
120◦. Prove that X = u+ v + w.

Triangles: adventitious triangles

CRUX 255. by Barry Hornstein
In 4ABC, the measures of angles 1, 2, 3, 4 are given.

Calculate angle x in terms of angles 1, 2, 3, 4.

ISMJ 12.32.
Let OPQ be an isosceles triangle with angles 20◦, 80◦,

and 80◦. The pointB is chosen on sideOQ so that 6 OPD =
20◦ and A is chosen on side OP so that 6 OQA = 30◦. Show
that 6 BAQ = 80◦.

Triangles: altitudes

TYCMJ 74. by Harley Flanders
Let O be the intersection of the altitudes of acute

triangle ABC. Choose B′ on OB and C′ on OC so that
AB′C and AC′B are right angles. Prove that AB′ = AC′.

CRUX 192. by Ross Honsberger
Let D, E, and F denote the feet of the altitudes of

4ABC, and let (X1, X2), (Y1, Y2), and (Z1, Z2) denote the
feet of perpendiculars from D, E, and F , respectively, upon
the other two sides of the triangle. Prove that the six points
X1, X2, Y1, Y2, Z1, and Z2 lie on a circle.

NAvW 525. by O. Bottema
The altitudes of the triangle A1A2A3 are A1H1, A2H2,

and A3H3. The conic K is tangent to A2A3 at H1, to A3A1
at H2, and to A1A2 at H3.

Show that the center of K coincides with the Lemoine
point of the triangle.

TYCMJ 110. by K. R. S. Sastry
Let ABC be a triangle; AP , BQ, CR its altitudes; and

AD, BE, CF the internal bisectors of the angles. Let BE
and CF intersect AP in X1 and X2, respectively; CF and
AD intersect BQ in Y1 and Y2, respectively; and AD and
BE intersect CR in Z1 and Z2, respectively. Prove that
IX1 · IY1 · IZ1 = IX2 · IY2 · IZ2 = X1X2 · Y1Y2 · Z1Z2,
where I is the incenter of 4ABC.

CRUX 46. by F. G. B. Maskell
If p1, p2, and p3 are the altitudes of a triangle and r

is the radius of its inscribed circle, show that

1

p1
+

1

p2
+

1

p3
=

1

r
.

Triangles: angle bisectors

CRUX 365. by Kesiraju Satyanarayana
A scalene triangle ABC is such that the external bi-

sectors of angles B and C (i.e., the segments intercepted by
B. C and the opposite sides) are of equal length. Given the
lengths of the sides b and c (with b > c), find the length of
the third side, a, and show that its value is unique.
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ISMJ 10.6.
In the triangle ABC, point P is on AB, the line CP

bisects angle C, m = CP , a = BC, b = AC, x = AP , and
y = PB. Show that m2 = ab− xy.

ISMJ 14.18.
Let ABC be a triangle with 6 A < 6 C < 90◦ < 6 B.

Suppose the bisectors of the external angles at A and B,
measured from the vertex to the opposite side (extended),
are each equal to AB. Determine angle A.

ISMJ 11.2.
In triangle ABC, M is the midpoint of BC and the

bisector of angle A cuts BC at X. The circle through A, X,
and M cuts AB at P and AC at Q. Prove that BP = CQ.

CRUX 168. by Jack Garfunkel
MM Q646. by Jack Garfunkel

If a, b, c are the sides of a triangle ABC, ta, tb, tc are
the angle bisectors, and Ta, Tb, Tc are the angle bisectors
extended until they are chords of the circle circumscribing
the triangle ABC, prove that

abc =
√
TaTbTctatbtc.

CRUX 309. by Peter Shor
Let ABC be a triangle with a ≥ b ≥ c or a ≤ b ≤ c.

Let D and E be the midpoints of AB and BC, and let the
bisectors of angles BAE and BCD meet at R. Prove that

(a) AR ⊥ CR if and only if 2b2 = c2 + a2;

(b) lf 2b2 = c2 + a2, then R lies on the median from
B. Is the converse of (b) true?

OMG 18.3.4.
In 4ABC, show that the angle contained between the

bisector of A and the perpendicular from A to BC is equal
to the difference of angles B and C.

MM 998. by Hüseyin Demir
Characterize all triangles in which the triangle whose

vertices are the feet of the internal angle bisectors is a right
triangle.

Triangles: angle measures

AMM E2579. by Benjamin Klein
and Brian White

Let 0 < θ < 1
2π, and let p, q be arbitrary distinct

points in the Euclidean plane E. Define fθ(p, q) to be
the unique point r in E such that triangle pqr is in the
counterclockwise sense and 6 rpq = 6 rqp = θ radians. Show
that fπ/3(p, q) can be written as an expression involving
only fπ/6, p, q, and parentheses.

PARAB 411.
Let D be a point on side AC of 4ABC. The angles

ABD, DBC, and BCD are 20◦, 20◦, and 40◦, respectively.
Prove that BC = BD +DA.

Triangles: angle trisectors

JRM 706. by Sidney Kravitz
(a) Given an isosceles right triangle with unit legs, find

the length of the sides of Morley’s equilateral triangle.
(b) Solve the same problem for a general triangle.

OSSMB G78.2-5.
(a) If a, b, x, y are positive numbers such that

0◦ < a+ b < 180◦,

x+ y = a+ b, and

sinx

sin y
=

sin a

sin b
,

show that x = a and y = b.
(b) Show that sin 3θ = 4 sin θ ·sin(60◦−θ)·sin(60◦+θ).
(c) Prove Morley’s Theorem: The points of intersec-

tion of the adjacent trisectors of the angles of a triangle are
the vertices of an equilateral triangle.

Triangles: area

USA 1977/2.
The triangles ABC and DEF have AD, BE and CF

parallel. Show that

[AEF ] + [DBF ] + [DEC] + [DBC] + [AEC] + [ABF ] =

3([ABC] + [DEF ]),

where [XY Z] denotes the signed area of triangle XY Z.
(Thus [XY Z] is +area(XY Z) when the order X, Y , Z is
counterclockwise and−area(XY Z) otherwise. For example,
[XY Z] = [Y ZX] = −[Y XZ].)

CRUX 56. by F. G. B. Maskell
Find the area of a triangle in terms of its medians m1,

m2, and m3.

ISMJ 11.17.
ISMJ 12.15.

A triangle ABC has area F . Let P , Q, and R divide
the sides AB, BC, and CA in the ratios 1:2. Let the triangle
PQR have area f . Determine the ratio F/f .

TYCMJ 79. by Martin Berman
In triangle ABC, let D, E, and F be points on BC,

CA, and AB, respectively, such that

AF/AB = BD/BC = CE/CA = r < 1/2.

Prove that the ratio of the area of the triangle determined
by AD, BE, and CF to the area of triangle ABC is 4 −
3/(r2 − r + 1).

Triangles: centroids

MSJ 438. by Frank Eccles and Esmond McNutt
Find necessary and sufficient conditions under which

a line passing through the centroid of a triangle will divide
the triangle into two regions of equal area.

TYCMJ 148. by Martin Berman
Form a triangle with line segments of uniform density

and having lengths a, b, and c. Denote by g1 the centroid
of the three line segments and by g2 the centroid of the
triangular region bounded by the line segments. When do
g1 and g2 coincide?
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MM 1028. by Leon Gerber
Let ABC be a triangle and P1, P2, and P3 be arbitrary

points in the plane of ABC. Let arbitrary lines perpendic-
ular to APi, BPi, and CPi determine triangles AiBiCi for
i = 1, 2, 3. Now, let A0, B0, and C0, be the centroids of tri-
angles A1A2A3, B1B2B3, and C1C2C3, respectively. Show
that the perpendiculars from A, B, and C on the sides of
triangle A0B0C0 concur.

CRUX 334. by Philip D. Straffin
Let A, B, and C be three fixed noncollinear points

in the plane, and let X0 be the centroid of 4ABC. Call
a point P in the plane accessible from X0 if there is a
sequence of points X0, X1, . . . , Xn = P such that Xi+1
is closer than Xi to at least two of the points A, B, and C
(i = 0, 1, . . . , n − 1). Characterize the set of points in the
plane which are accessible from X0.

Triangles: Ceva’s theorem

CRUX 414. by Basil C. Rennie
A few years ago a distinguished mathematician wrote

a book saying that the theorems of Ceva and Menelaus were
dual to each other. Another distinguished mathematician
reviewing the book wrote that they were not dual. Explain
why they were both right.

Triangles: cevians

CRUX 485. by M. S. Klamkin
Given three concurrent cevians of a triangle ABC in-

tersecting at a point P , we construct three new points A′,
B′, C′ such that AA′ = kAP , BB′ = kBP , CC′ = kCP ,
where k > 0, k 6= 1, and the segments are directed. Show
that A, B, C, A′, B′, and C′ lie on a conic if and only if
k = 2.

CRUX 456. by Orlando Ramos
Let ABC be a triangle and P any point in the plane.

Triangle MNO is determined by the feet of the perpendic-
ulars from P to the sides, and triangle QRS is determined
by the cevians through P and the circumcircle of triangle
ABC. Prove that triangles MNO and QRS are similar.

Triangles: circles

OSSMB G78.2-3.
A triangle ABC is defined as follows: A has coordi-

nates (0, 0), C is on the positive x-axis, the slope of AB is

4/3, the length of AB is 10, and the length of BC is 2
√

17.
Show that there are two values for C, say C1 and C2, and
find the equation of the circle BC1C2.

SSM 3678. by Fred A. Miller
Prove or disprove that the circle determined by two

vertices of a triangle and its incenter has its center on the
circumcircle of the triangle.

OSSMB 79-8. by Maurice Field
Let ABC be a triangle and let D, E, F be points on

the lines BC, AC, AB respectively; none of the points D, E,
F are vertices of the triangle. Show that the circles AFE,
BFD and CDE are concurrent. What interesting fact is
obtained if, in addition, the points D, E, F are collinear?

CRUX 206. by Dan Pedoe
A circle intersects the sides BC, CA, and AB of a

triangle ABC in the pairs of points X, X ′, Y, Y ′ and Z, Z′

respectively. If the perpendiculars at X, Y and Z to the
respective sides BC, CA and AB are concurrent at a point
P , prove that the respective perpendiculars at X ′, Y ′ and
Z′ to the sides BC, CA and AB are concurrent at a point
P ′.

Triangles: circumcircles

MM 967. by K. R. S. Sastry
Let ABC be a triangle inscribed in a circle with the

internal bisectors of the angles B and C meeting the circle
again in the points B1 and C1, respectively.

(a) If B = C, prove BB1 = CC1.
(b) Characterize triangles ABC for which BB1 =

CC1. Do these results hold if BB1 and CC1 are the ex-
ternal bisectors?

NAvW 425. by O. Bottema
Let a, b, and c be the sides and R the circumradius of

an acute triangle. Show that

ρ = 0.344
(
a2 + b2 + c2

) 1
2

is an approximate value of R with a relative error
|ρ−R|
R

that is less than 0.04.

AMM E2538. by J. Garfunkel
Let ABC be a triangle. If X is a point on side BC,

let AX meet the circumcircle of ABC again at X ′. Prove
or disprove that if XX ′ has maximum length, then AX lies
between the median and the internal angle bisector issuing
from A.

SPECT 10.9. by J. R. Alexander
The following algorithm describes a geometrical proce-

dure:
(1) take any triangle ABC;
(2) circumscribe a circle around ABC;
(3) draw tangents l, m, n at A, B, C;
(4) let A = m ∩ n, B = n ∩ l, C = l ∩m;
(5) go to (2).
Describe the angles of 4ABC after reaching (4) for

the nth time, and determine under what circumstances the
angle at A takes its initial value again.

Now begin with a cyclic quadrilateral ABCD instead
of a triangle, and carry out the analogous construction.
Show that if it is possible to pass beyond (2) for the second
time, then

AB2 + CD2 = d2,

where d is the diameter of the circle circumscribing ABCD.

Triangles: ellipses

CRUX 318. by C. A. Davis
Given any triangle ABC, thinking of it as in the com-

plex plane, two points L and N may be defined as the sta-
tionary values of a cubic that vanishes at the vertices A, B,
and C. Prove that L and N are the foci of the ellipse that
touches the sides of the triangle at their midpoints, which
is the inscribed ellipse of maximal area.
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Triangles: equal angles

SSM 3668. by Fred A. Miller
In a triangle ABC a line has been drawn from vertex

A to a given point in the opposite side BC. Find a point P
on this line from which the two parts of BC subtend equal
angles.

Triangles: equal areas

PENT 307. by Fred A. Miller
Let A, B, C denote the vertices of a triangle that

lie on the sides DE, EF , and FD respectively of triangle
DEF . Let A′B′C′ be a second triangle whose vertices lie
on the sides of triangle DEF in such a way that A and
A′ are equidistant from the midpoint of DF , B and B′ are
equidistant from the midpoint of DE, and C and C′ are
equidistant from the midpoint of EF . Prove that triangles
ABC and A′B′C′ have equal areas.

SSM 3707. by Fred A. Miller
Let RST be a triangle such that M , N , and L are the

midpoints of its sides. If triangles ABC and DEF have
vertices which lie on the sides of triangle RST at equal
distances from M , N , and L, prove that these triangles
have the same area.

MSJ 444.
For how many different positions of point P in the

plane of triangle ABC will 4PAB, 4PBC, and 4PAC
all be the boundaries of regions that have equal areas?

Triangles: erected figures

ISMJ 10.4.
On the side AB of a given triangle ABC two equilateral

triangles ABX and ABY are constructed. Prove that

(CX)2 + (CY )2 = (AB)2 + (BC)2 + (CA)2.

PME 354. by Arthur Bernhart
and David C. Kay

In a triangle ABC with angles less than 2π/3, the
Fermat point, defined as that point which minimizes the
function f(X) = AX + BX + CX, may be determined as
the point P of concurrence of lines AD, BE, and CF , where
BCD, ACE, and ABF are equilateral triangles constructed
externally on the sides of triangle ABC. If R, S, and T are
the points where PD, PE, and PF meet the sides of triangle
ABC, prove that PD, PE, and PF are twice the arithmetic
means, and that PR, PS, and PT are half the harmonic
means, of the pairs of distances (PB,PC), (PC,PA), and
(PA,PB) respectively.

CRUX 363. by Roland H. Eddy
The following generalization of the Fermat point is

known: lf similar isosceles triangles BCA′, CAB′, ABC′

are constructed externally to triangle ABC, then AA′, BB′,
CC′ are congruent.

Determine a situation in which AA′, BB′, CC′ are
concurrent if the constructed triangles are isosceles but not
similar.

AMM E2802. by M. Slater

Given a triangle ABC (in the Euclidean plane), con-
struct similar isosceles triangles ABC′ and ACB′ outwards
on the respective bases AB and AC, and BCA′′ inwards
on the base BC (or ABC′′ and ACB′′ inwards and BCA′

outwards). Show that AB′A′′C′ (respectively, AB′′A′C′′)
is a parallelogram.

PME 408. by Clayton W. Dodge

Squares are erected on the sides of a triangle, either all
externally or all internally. A circle is centered at the center
of each square with each radius a fixed multiple k > 0 of
the side of that square. Find k so that the radical center of
the three circles falls on the Euler line of the triangle, and
find where it falls on the Euler line.

IMO 1975/3.

PARAB 379.

On the sides of an arbitrary triangle ABC, trian-
gles ABR, BCP , CAQ are constructed externally with
6 CBP = 6 CAQ = 45◦, 6 BCP = 6 ACQ = 30◦, 6 ABR =
6 BAR = 15◦. Prove that 6 QRP = 90◦ and QR = RP .

Triangles: escribed circles

OSSMB G77.2-3.

Given 4ABC with radius of incircle r and r1, r2, r3
the radii of the escribed circles opposite angles A, B, C
respectively, show that ab = r1r2 + rr3.

PME 437. by Zelda Katz

Let N be the Nagel point of a triangle, which is the
intersection of the lines from the vertices to the points of
contact of the opposite escribed circles. In the triangle
whose sides are AB = 5, BC = 3, and CA = 4, show
that the areas of triangles ABN , CAN , and BCN are 1, 2,
and 3 respectively.

Triangles: Euler line

CRUX 260. by W. J. Blundon

Given any triangle (other than equilateral), let P rep-
resent the projection of the incenter I on the Euler line
OGNH where O, G, N, H represent respectively the cir-
cumcenter, the centroid, the center of the nine-point circle
and the orthocenter of the given triangle. Prove that P lies
between G and H. In particular, prove that P coincides
with N if and only if one angle of the given triangle has
measure 60◦.

Triangles: inscribed circles

SSM 3706. by Irwin K. Feinstein

In the coordinate plane, a line forms a Pythagorean
triangle with the positive axes. A circle with radius r, r a
positive integer, is inscribed in the triangle. The point (u, v)
is the point of tangency of the line to the circle, where u
and v are positive integers. What is the smallest value u+v
may assume?
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Triangles: inscribed triangles

CRUX 372. by Steven R. Conrad
and Gilbert W. Kessler

A triangle ABC has area 1. Point P is on side a, α
units from B; point Q is on b, β units from C; and point R
is on c, γ units from A. Prove that, if α/a, β/b, and γ/c are
the zeros of a cubic polynomial f whose leading coefficient
is unity, then the area of 4PQR is given by f(1)− f(0).

CRUX 210. by Murray S. Klamkin
Let P , O, and R denote points on the sides BC, CA,

and AB, respectively, of a given triangle ABC. Determine
all triangles ABC such that if

BP

BC
=
CQ

CA
=
AR

AB
= k (k 6= 0, 1/2, 1),

then PQR (in some order) is similar to ABC.

NAvW 401. by O. Bottema
Given the triangle A = A1A2A3, determine the (real)

triangle(s) X = X1X2X3 such that
(1) X is inscribed in A with Xi on the side opposite

Ai (i = 1, 2, 3),
(2) X and A are similar,
(3) X and A are perspective.

Triangles: interior point

CRUX 270. by Dan Sokolowsky
A chord of a triangle is a segment with endpoints on

the sides. Show that for every acute-angled triangle there
is a unique point P through which pass three equal chords
each of which is bisected by P .

PME 454. by Marian Haste
The point within a triangle whose combined distances

to the vertices is a minimum is known as the Fermat-
Torricelli point T . In a triangle ABC, if AT , BT , CT form
a geometric progression with a common ratio of 2, find the
angles of the triangle.

ISMJ 11.19.
Let ABC be a triangle and P a point inside or on this

triangle.
(a) One of the three distances PA, PB, PC is least.

Find the position(s) of P that makes this number as large
as possible.

(b) One of the distances PA, PB, PC is largest. Find
the position(s) of P that make this number least.

Triangles: isogonal conjugates

AMM E2793. by E. D. Camier
Let P and Q be two points isogonally conjugate with

respect to a triangle ABC of which the circumcenter, ortho-
center, and nine-point center are O, H, and N , respectively.
If −→

OR =
−−→
OP +

−−→
OQ,

and U is the point symmetric to R with respect to N , show
that the isogonal conjugate of U in the triangle ABC is the
intersection V of the lines P1Q and PQ1, where P1 and Q1
are the inverses of P and Q in the circle ABC. (Assume
that neither P nor Q is on the circle ABC.)

Triangles: isosceles triangles

OSSMB 79-5. by H. Haruki
An isosceles triangle ABC has an obtuse angle of 100◦

at A. The bisector of the base angle B meets AC at D.
Show that BD +AD = BC.

CRUX 175. by Andrejs Dunkels
Given is an isosceles triangle ABC with AB = AC

and 6 BAC = 20◦. On AC a point D is marked off so that
AD = BC = b. Find the measure of 6 ABD.

MSJ 456. by Steven R. Conrad
In an isosceles triangle with a 30◦ vertex angle, the

length of the base is 12. Using only plane geometry, find
the length of the altitude to the base.

MSJ 434. by Gary Steiger
Points D and E are outside isosceles triangle ABC

such that CD and AE are the angle bisectors of base angles
A and C. Segments CD and AE meet at H and points
D, B, and E are collinear. If DB = BE, prove that
6 BDH = 6 BEH.

CRUX 134. by Kenneth S. Williams
Let ABC be an isosceles triangle with 6 ABC =

6 ACB = 80◦. Let P be the point on AB such that
6 PCB = 70◦. Let Q be the point on AC such that
6 QBC = 60◦. Find 6 PQA.

PARAB 344. by G. Davis
In4ABC, AB = AC, D is on sideAB and E is on side

AC. Also, 6 DAE = 20◦, 6 DCB = 60◦, 6 EBC = 50◦, and
6 CDE = x◦. Find x without using trigonometric tables.

IMO 1978/4.
In triangle ABC, AB = AC. A circle is tangent

internally to the circumcircle of triangle ABC and also to
sides AB and AC at P and Q, respectively. Prove that
the midpoint of segment PQ is the center of the incircle of
triangle ABC.

CRUX 271. by Shmuel Avital
Find all possible triangles ABC which have the prop-

erty that one can draw a line AD, outside the triangular
region, on the same side of AC as AB, which meets CB
(extended) in D so that triangles ABD and ACD will be
isosceles.

MSJ 422. by Ira Ewen
In triangle ABC, AB = BC. There is a point P

interior to the triangle for which 6 APB = 6 CPB. Line
BP intersects AC at D. Prove that D is the midpoint of
AC.

SSM 3733. by Charles W. Trigg
Suppose the median to the base of an isosceles triangle

is equal to the base. Show that a leg, an altitude to the
other leg, and one of the segments of that leg form a 3:4:5
triangle.

NYSMTJ 48. by S. R. Conrad
Establish a one-to-one correspondence between all

isosceles triangles and all nonisosceles right triangles. Con-
sider congruent triangles as the same triangle.
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CRUX 376. by V. G. Hobbes
Isosceles triangles can be divided into two types: those

with equal sides longer than the base and those with equal
sides shorter than the base. Of all possible isosceles triangles
what proportion are long-legged?

ISMJ J11.17.
Prove that in an isosceles triangle, the sum of the

distances from any point on the base to the other two sides
is a constant.

Triangles: line segments

NAvW 424. by O. Bottema
The endpoints B1 and B2 of a line segment with length

2` move along the perimeters of the triangle A1A2A3 with
altitudes hi; h1 ≥ h2 ≥ h3 > 2`. A point B between B1
and B2 describes a path b. Prove that the area of the region
inside A1A2A3 and outside b is independent of hi.

Triangles: lines

NAvW 482. by O. Bottema
and J. T. Groenman

Let P and Q be two points in the plane of the trian-
gle A1A2A3. The line AiP intersects the opposite side of
the triangle at Bi. In the triangle B1B2B3, the line BiQ
intersects the opposite side at Ci.

(a) Prove that the lines AiCi pass through one point
R.

(b) Let Q be a fixed point and P a variable point;
show that the relationship between P and R is a birational
involutory correspondence.

Triangles: medians

CRUX 383. by Daniel Sokolowsky
Let ma, mb, and mc be respectively the medians AD,

BE, and CF of a triangle ABC with centroid G. Prove
that

(a) if ma:mb:mc = a:b:c; then 4ABC is equilateral;
(b) if mb/mc = c/b, then either (i) b = c or (ii) quadri-

lateral AEGF is cyclic;
(c) if both (i) and (ii) hold in (b), then 4ABC is

equilateral.

CRUX 278. by W. A. McWorter, Jr.
If each of the medians of a triangle is extended beyond

the sides of the triangle to 4/3 its length, show that the
three new points formed and the vertices of the triangle all
lie on an ellipse.

CRUX 144. by Viktors Linis
In a triangle ABC, the medians AM and BN intersect

at G. If the radii of the inscribed circles in triangles ANG
and BMG are equal, show that ABC is an isosceles triangle.

MSJ 458.
In a triangle, the lengths of the three medians are 9,

12, and 15. Find the length of the side to which the longest
median is drawn.

ISMJ 12.14.
Let M be the midpoint of side BC of 4ABC. Show

that, if AM/BC = 3/2, then the medians from B and C
are perpendicular to each other.

Triangles: nine-point circle

CRUX 353. by Orlando Ramos
Prove that, if a triangle is self-polar with respect to a

parabola, then its nine-point circle passes through the focus.

Triangles: orthocenter

OSSMB G78.2-4.
Given any triangle ABC, with orthocenter H, circum-

center O, and D on BC such that OD ⊥ BC, find the ratio
OD/AH.

NAvW 494. by J. T. Groenman
The triangles A1B1C1 and A2B2C2 have the same

circumcircle O(R). The orthocenter of triangle AiBiCi is
Hi (i = 1, 2). Moreover:

A1A2 is parallel to B1C1,
B1B2 is parallel to C1A1, and
C1C2 is parallel to A1B1.

Prove that OL and H1H2 are parallel where L is the sym-
median point of 4A1B1C1.

Triangles: pedal triangles

NAvW 548. by O. Bottema
Do there exist triangles that coincide with one of their

own pedal triangles?

Triangles: perpendiculars

CRUX 364. by Sahib Ram Mandan
In the Euclidean plane, if xi1(x = a, b; i = 0, 1, 2) are

the 2 triads of perpendiculars to a line p from two triads
of points X ′i(X = A,B) on p and (X) a pair of triangles

with vertices Xi on xi1 and sides xi opposite Xi such that

the three perpendiculars to bi from A′i concur at a point G,
then it is true for every member of the 3-parameter family
f(B) of triangles like (B); and the 3 perpendiculars from

B′i to the sides ai of any member of the 3-parameter family
f(A) of triangles like A concur at a point G′ if and only if

A′0A
′
1

A′1A
′
2

=
B′0B

′
1

B′1B
′
2

.

Triangles: ratios

CRUX 136. by Steven R. Conrad
In 4ABC, C′ is on AB such that AC′:C′B = 1:2

and B′ is on AC such that AB′:B′C = 4:3. Let P be the
intersection of BB′ and CC′, and let A′ be the intersection

of BC and ray
−→
AP . Find AP :PA′.

NYSMTJ 47. by David Rosen
We are given any triangle ABC and points P , between

B and C, and Q, between A and C. Let AP meet BQ at
X. Let CX intersect AB at R.

(a) If AQ/QC = a/b and BP/PC = c/d, the follow-
ing ratios are determined: AX/XP , BX/XQ, CX/XR,
AR/RB. Find each.

(b) Are there any concurrent segments, other than the
medians, which divide the three sides into equal ratios?

(c) If AC and BC are each divided into n congruent
segments, and P andQ are the points of this division nearest
C, prove that AX/XP = BX/XQ = n.

(d) With the same conditions as stated for part (c),

prove that CR is the median to AB and that

CX

XR
=

2

n− 1
.
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OMG 17.2.8.
In 4ABC, point D is on BC such that BD:DC = 5:4,

and point E is on AC such that AE:EC = 1:2. If AD and
BE intersect at point P , then BP :PE = k:4. Find k.

Triangles: relations among parts

OSSMB G78.1-5.
(a) Prove that the distance d between the circumcenter

and the incenter of a triangle is given by the relation d =
R2 − 2Rr where R and r are the circumradius and the
inradius respectively.

(b) If the circumcenter of 4ABC is on the inscribed
circle, prove that

cosA+ cosB + cosC =
√

2.

CRUX 74. by Viktors Linis
Prove that if the sides a, b, and c of a triangle satisfy

a2 + b2 = kc2, then k > 1
2 .

Triangles: sides

CRUX 14. by Viktors Linis
If a, b, and c are the lengths of three segments that

can form a triangle, show that the same holds true for

1

a+ c
,

1

b+ c
,

1

a+ b
.

Triangles: similar triangles

PENT 275. by Kenneth M. Wilke
One bright student observed that two similar triangles

can be drawn which are not congruent even though two sides
of one triangle are equal to two sides of the second triangle.
How did he do it and what relationship is necessary for this
to occur?

Triangles: special triangles

PARAB 409.
In a triangle ABC, BC = 2AC. Produce BA past A

to D so that AD = 1
3AB. Prove that CD = 2AD.

CRUX 102. by Léo Sauvé
Given a triangle ABC with a = 4, b = 5, and c = 6,

show that C = 2A.

CRUX 213. by W. J. Blundon
(a) Prove that the sides of a triangle are in arithmetic

progression if and only if

s2 = 18Rr − 9r2.

(b) Find the corresponding result for geometric pro-
gression.

CRUX 388. by W. J. Blundon
Prove that the line containing the circumcenter and

the incenter of a triangle is parallel to a side of the triangle
if and only if

s2 =
(2R− r)2(R+ r)

R− r .

JRM 626. by Les Marvin
(a) Prove that a triangle with side lengths of 4, 5, and

6 has a pair of angles one of which is twice the other.
(b) For what other integer triples (a, b, c), does a tri-

angle with side lengths of a, b, and c have a pair of angles
one of which is twice the other?

CRUX 229. by Kenneth M. Wilke
On an examination, one question asked for the largest

angle of the triangle with sides 21, 41, and 50. A student
obtained the correct answer as follows:

Let C denote the desired angle; then sinC = 50/41 =
1 + 9/41. But sin 90◦ = 1 and 9/41 = sin 12◦40′49′′. Thus

C = 90◦ + 12◦40′49′′ = 102◦40′49′′,

which is correct. Find the triangle of least area having
integral sides and possessing this property.

CRUX 313. by Leon Bankoff

In triangle ABC, we have 2b2 = c2 + a2. Prove that
GK, the join of the centroid and the symmedian point, is
parallel to the base b.

Triangles: squares

PME 361. by Carl A. Argila
Consider any triangle ABC such that the midpoint P

of side BC is joined to the midpoint Q of side AC by the
line segment PQ. Suppose R and S are the projections of
Q and P respectively on AB, extended if necessary. What
relationship must hold between the sides of the triangle if
the figure PQRS is a square?

Triangles: trisected sides

CRUX 320. by Dan Sokolowsky
The sides of 4ABC are trisected by the points P1, P2,

Q1, Q2, R1, R2. Show that:
(a) 4P1Q1R1

∼= 4P2Q2R2;

(b) [P1Q1R1] = 1
3 [ABC], where the brackets denote

area;
(c) the sides of 4P1Q1R1 and 4P2Q2R2 trisect one

another;
(d) If M1 is the midpoint of AB, then C, S, T , and

M1 are collinear.

CRUX 317. by James Gary Propp
In triangle ABC, let D and E be the trisection points

of side BC with D between B and E, let F be the midpoint
of side AC, and let G be the midpoint of side AB. Let H
be the intersection of segments EG and DF . Find the ratio
EH:HG by means of mass points.
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Algebras

AMM 6228. by Ivan Vidav
Let A be a C∗-algebra with unit 1, and let e and f be

two projections of A such that e+f is invertible in A. Show
that e ∩ f = 2e(e + f)−1f . (e ∩ f is the supremum of the
set of all projections h ∈ A such that h ≤ e and h ≤ f .)

AMM 6097. by Glen E. Bredon
Consider the polynomial

P (t) = 2−n(1 + ta1)(1 + ta2) · · · (1 + tan).

The first k derivatives of P (t) evaluated at t = 1, that is,

q1 = P ′(1), q2 = P ′′(1), . . . , qk = P (k)(1),

are symmetric functions of a1, a2, . . . , an. Show that the
polynomial algebra generated by these k symmetric func-
tions coincides with that generated by S1 and the S2j
for 2 ≤ 2j ≤ k. Here Si is the sum of ith powers,
Si = ai1 + ai2 + · · ·+ ain.

AMM 6068. by Seth Warner
Let A be an algebra over a commutative ring K, and

let A+ be the K-algebra K × A where addition and scalar
multiplication are defined componentwise and multiplica-
tion by

(x, a)(y, b) = (xy, x · b+ y · a+ ab).

Let N and R be, respectively, the (Jacobson) radicals of K
and A. It is standard that if N = (0), N ×R is the radical
of A+. What are the necessary and sufficient conditions for
N ×R to be the radical of A+?

Binary operations

TYCMJ 43. by Bernard C. Anderson
Prove that there exists a noncommutative binary op-

eration on the set of real numbers that is both right- and
left-distributive over addition.

TYCMJ 81. by Gino T. Fala
Prove or disprove that any binary operation, ∗, on the

rational numbers that is right- and left-distributive over
addition is commutative.

AMM E2574. by F. David Hammer
Let N0 = {0, 1, 2, . . .} and let p be a prime. There is

a binary operation ∗ on N0 satisfying x ∗ y ≤ x + y for all
x, y ∈ N0 such that (N0, ∗) is an abelian group with every
element (except 0) of order p: for example, write x and y to
base p and add individual digits mod p. Prove or disprove
that this gives the only such operation.

AMM 6238. by F. David Hammer
To see if a binary operation on a set with n elements is

associative, one might think it necessary to verify directly
n3 instances of the associative law. Often, however, for
instance if the operation is commutative and has an iden-
tity, considerably fewer need be verified. Is there a set of n
elements and an operation on them for which all n3 verifi-
cations are necessary?

PUTNAM 1978/A.4.
A bypass operation on a set S is a mapping from S×S

to S with the property

B(B(w, x), B(y, z)) = B(w, z) for all w, x, y, z in S.

(a) Prove that B(a, b) = c implies B(c, c) = c when B
is a bypass.

(b) Prove that B(a, b) = c implies B(a, x) = B(c, x)
for all x in S when B is a bypass.

(c) Construct a table for a bypass operation B on a
finite set S with the following three properties:

(1) B(x, x) = x for all x in S.
(2) There exist d and e in S with B(d, e) = d 6= e.
(3) There exist f and g in S with B(f, g) 6= f .

NAvW 477. by M. N. van Ulvenhout
Define an operation ∪∗ (called “uglification”) on the

nonnegative integers by the inductive rule:
(1) ∪∗ is distributive over Nim-addition ⊕ (Nim-

addition of integers written in binary is vector addition over
GF(2) — i.e., ‘add without carry’ — or ‘exclusive or’).

(2) 2m ∪∗ 2n is the smallest number different from all
numbers

x∪∗ 2n (x < 2m),

2m ∪∗ y (y < 2n).

Determine the numbers x such that x∪∗ y = 0 implies
y = 0.

ISMJ 13.17.
Given two real numbers x and y, they can be combined

by the new operation � so as to give the real number x � y.
Assume the following properties of �:

(1) (x+ y)(x � y) = x2 � y2 for all x and y.
(2) (x � y) = (x+ z) � (y + z) for all x, y, and z.
(3) 1 � 0 = 1.
Use these properties to show that x � y = x− y for all

x and y.

PARAB 351.
A product x ◦ y is defined for all pairs of real numbers

x, y so that the following hold for any x, y, z:
(1) x ◦ y = y ◦ x.
(2) (x ◦ y)z = xz ◦ yz.
(3) (x ◦ y) + z = (x+ z) ◦ (y + z).
What is the value of 99 ◦ 100?

Category theory

AMM 6169. by Joseph Rotman
Prove that the category of all Lie algebras over a field

K has no injective objects other than 0.

Fields: complex numbers

CMB P252. by D. Ž. Djoković
Let F be a subfield of C such that C is a quadratic

extension of F , i.e., (C : F ) = 2. It is well known that
this implies that F is a real closed field and hence i 6∈ F
(i = the imaginary unit). Is it true or not that F must be
isomorphic to R?
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Fields: extension fields

AMM 6043. by Brian Peterson
Let P be a nonempty proper subset of the primes.

Consider algebraic extensions F of the rationals Q with the
property:

(*) Every x in F has degree over Q divisible only by
primes in P .

A Zorn’s lemma argument shows that there exist max-
imal extensions satisfying (*). Is such a maximal extension
unique up to isomorphism?

Fields: finite fields

AMM E2540. by Richard Stanley
Let F be a finite field of order q, let n be a divisor of

q − 1, and let α be a nonzero element of F . Evaluate

S(n, q;α) =
∑(

tn − α
)−1

,

the sum being over all t ∈ F with tn 6= α.

NAvW 435. by M. van Rijk
Let Fp be the prime field with p elements, and let ξ

and η be algebraically independent over Fp.
Let

P = Fp(ξ, η),

and let E be the subfield

Fp
(
ξp − ξ, ηp − ξ

)

of P . Determine the field of all elements of P that are purely
inseparable over E and determine Aut(P |E), the group of
all automorphisms of P that fix E.

AMM 6201. by Daniel D. Anderson
Let GF(pn) be the finite field of order pn. For which

positive integers k is every element of GF(pn) a sum of kth
powers?

Fields: number fields

NAvW 486. by G. J. Rieger
Let K be a quadratic number field. Let NK denote

the norm of K and {ρ, σ} be a complete basis of K. Given

α = aρ+ bσ, β = cρ+ dσ

where a, b, c, and d are real numbers, show that

gcd(α, β) = 1⇐⇒ gcd (NK(α), ad− bc,NK(β)) = 1,

where |ad− bc| is basis-independent.

Fields: perfect fields

AMM 6177. by Adrian R. Wadsworth
Let K be a perfect field of prime characteristic. Prove

that if R is a Noetherian integral domain with quotient field
K, then R = K.

Fields: polynomials

AMM 6066. by C. W. Anderson
For n = 3 and x ∈ (0, 1) rational, show that

fn(x) = (1− xn)1/n

is algebraic of degree n.

AMM 6101. by Michael Slater
Suppose F is an ordered field in which Rolle’s theorem

holds for polynomials. Show that any sum of squares in F
is a square in F .

CMB P253. by D. Ž. Djoković
Let F be a field of characteristic zero and let

f(X) =

r∏

i=1

fi(X)mi , g(X) =

s∏

i=1

gj(X)nj

be prime factorizations of two polynomials f(X) and g(X)
in one variable X over F . Further, suppose Ei = F (αi) and
Kj = F (βj) (1 ≤ i ≤ r, 1 ≤ j ≤ s) are simple extensions
of F considered as F -algebras, where αi is a root of fi(X)
and βj is a root of gj(X). Show that the following are
equivalent:

(1) There exists a polynomial h(X) such that f(h(X))
is divisible by g(X).

(2) For each j there exists an i such that Ei is isomor-
phic to an F -subalgebra of Kj .

How should (2) be modified if F has prime character-
istic?

PUTNAM 1979/B.3.
Let F be a finite field having an odd number m of

elements. Let p(x) be an irreducible polynomial over F of
the form

x2 + bx+ c, b, c ∈ F.
For how many elements k in F is p(x) + k irreducible over
F?

AMM 6046. by Stephen McAdam
Let f and g be two nonconstant monic irreducible poly-

nomials over the field K. Let u and v be roots of f and g,
respectively, in some extension field of K. Suppose that over
K[v], the irreducible decomposition of f is f = fe11 , . . . , fenn

while over K[u], g decomposes into g = gd11 , . . . , gdmm . Then
n = m and, when appropriately ordered, ei = di and

deg gi
deg fi

=
deg g

deg f
.

AMM E2578. by Carl Pomerance
Prove that x4 + 1 is reducible over every field of prime

characteristic. Do the same for x4 − x2 + 1.

Fields: rational functions

AMM 6082. by Thomas C. Craven
Let K(t) be the rational function field in one variable

over a field K of arbitrary characteristic. Does the equation

xn − y2 = 1

have a nonconstant solution in K(t) when n > 2?

Fields: subfield chains

AMM 6268. by Gene Smith
and Hugh M. Edgar

Assume that the algebraic number field K possesses
at least one proper intermediate field E, i.e, Q ⊂ E ⊂ K.
Prove or disprove the following: K must have a strictly
increasing chain

Q = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn−1 ⊂ Kn = K,

n ≥ 2, of subfields such that Ki has a relative integral basis
over Ki−1 for 1 ≤ i ≤ n.
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Fields: subfields

AMM 6119.* by M. J. Pelling
AMM 6216.* by M. J. Pelling

Are there any algebraic number fields A with the prop-
erty that A = A1 +A2 (qua abelian groups), where A1, A2
are proper subfields of A?

Fields: vector spaces

NAvW 497. by J. H. van Lint

Let p be a prime, F = GF (p2t), and K be the subfield

GF (pt). The field F can be interpreted as a 2t-dimensional
vector space over GF (p). Let V be a (2t − 1)-dimensional
linear subspace of this space. Show that exactly one coset
of K∗ in F ∗ is completely contained in V .

Galois theory

AMM E2650. by M. J. Pelling

Find the Galois group of the equation x9 + x3 + 1 = 0
over the rationals.

Groupoids

AMM 6150. by Albert A. Mullin
Let G be any groupoid. Call e ∈ G a near identity

of G if e is idempotent and ex = xe = x fails for at most
one x ∈ G. It is well known that G can have at most one
identity.

(a) Show that if G is a semigroup, then it can have at
most two near-identity elements. Every group has precisely
one near-identity element.

(b) Give an example of an uncountably infinite semi-
group with precisely two near identities that contains a
countably infinite semigroup with precisely two near iden-
tities.

Groups: abelian groups

MM Q612. by Kenneth Taylor
Let (G, ·) be a group with the following special cancel-

lation property:

x · a · y = b · a · c implies x · y = b · c

for all x, y, b, c, and a in G. Prove that G is abelian.

AMM 6011. by M. Slater
The group Z of integers has the following property X:

For any n, suppose that A is a list of (2n + 1) terms in Z,
such that on removal of any one term, the remainder can
be divided into two batches of n terms having equal sums.
Then all the terms of A are equal.

Determine exactly what abelian groups G have prop-
erty X.

Groups: alternating groups

CMB P266. by D. Ž. Djoković and J. Malzan
Is there a subgroup G of An such that its normalizer

in Sn actually lies in An?

Groups: associativity

AMM E2659. by Arthur L. Holshouser
The sequence a, b, c, d can be parenthesized in five

ways. Equating these two at a time, we obtain the following
“identities”:

(1) (ab)(cd) = a (b(cd)) , (2) (ab)(cd) = a ((bc)d) ,

(3) (ab)(cd) = ((ab)c) d, (4) (ab)(cd) = (a(bc)) d,

(5) a (b(cd)) = a ((bc)d) , (6) a (b(cd)) = ((ab)c) d,

(7) a ((bc)d) = (a(bc)) d, (8) ((ab)c) d = (a(bc)) d,

(9) a (b(cd)) = (a(bc)) d, (10) a ((bc)d) = ((ab)c) d.

Which of these identities implies that a quasigroup satisfy-
ing it is necessarily a group?

Groups: finite groups

NAvW 540. by N. Hekster and R. Schoof
Let n ∈ N. Prove that there is exactly one group of

order n if and only if gcd (φ(n), n) = 1.

JRM 479. by Garland Hopkins
Write a program capable, for a given value of n, of

generating and listing all groups of order n, weeding out
isomorphic repeats. For what composite values of n (1 ≤
n ≤ 100) is there only one group, viz., the cyclic group?

AMM 6202. by A. A. Jagers
Let S be a set of generators of a finite group G. For g ∈

G, let m(g) be the least number of terms in a representation
of g as a product of elements of S. Let n1, n2, . . . , nk be the
degrees of the irreducible characters of G. Prove that

m(g) ≤ n1 + n2 + · · ·+ nk − 1.

AMM E2592. by Melvin Hausner
Let G be a finite group of even order n = 2m. Let H

be the set of all x in G with xm = 1. Prove
(a) H is a subgroup of G, and
(b) either H = G or the index [G : H] is 2.

CRUX 57. by Jacques Marion
Let G be a group of order pn where p is prime and

p ≥ n. Show that if H is a subgroup of order p then H is
normal in G.

NAvW 555. by H. W. Lenstra, Jr.
and R. W. van der Waall

Which finite groups G have the property that for
all a, b ∈ G, with gcd(order(a), order(b)) = 1, we have
order(ab) = order(a) · order(b)?

AMM 6176. by Morris Newman
and Daniel Shanks

Prove that for the most common type of simple group,
which is designated PSL2(pn), its order N is never a perfect
square. Find at least one simple group that does have square
order.
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NAvW 501. by J. C. Bioch
Let G be a finite group. It is well known that the

intersection of the commutator subgroup G′ and the center
Z(G) of G is contained in the Frattini subgroup Φ(G) of G.
Prove the following extension of this result:

G′ ∩ Z∞(G) ≤ Φ(G),

where Z∞(G) is the hypercenter of G.

NAvW 448. by J. C. Bioch
and R. W. van der Waall

Let G be a finite group. Let M be a subgroup of G
such that gcd (|M |, t− 1) = 1, where t is the index of M in
G. If t is prime, then prove that M is a normal subgroup
of G.

AMM 6026. by Fred Commoner
Prove the following theorem: Let p be an odd prime.

If G is a finite nonabelian group such that p is less than or
equal to the least prime dividing |G|, then no automorphism
of G can send more than |G|/p elements of G to their

inverses. There is a nonabelian group G of order p3 and
an automorphism of G sending exactly |G|/p elements of G
to their inverses.

AMM 6059. by S. Baskaran
A group G is called metacyclic if the derived group G′

and the factor group G/G′ are both cyclic. Prove that if
G is a finite metacyclic group and p is the smallest prime
dividing the order of G, then a Sylow p-subgroup of G is
cyclic.

Groups: group presentations

PUTNAM 1976/B.2.
Suppose that G is a group generated by elements A

and B. Also, suppose that A4 = B7 = ABA−1B = 1,
A2 6= 1, B 6= 1.

(a) How many elements of G are of the form C2 with
C in G?

(b) Write each such square as a word in A and B.

CMB P259. by Jerome B. Minkus
Let Gn denote the group generated by a1, a2, . . . , an

subject to the relations

a1a
4
2a3 = a2a

4
3a4 = · · ·

= an−2a
4
n−1an = an−1a

4
na1 = ana

4
1a2 = 1.

Show that Gn is infinite for all n ≥ 6.

AMM 6099. by Jerome Minkus
For n ≥ 3, let Gn denote the group generated by the

elements a1, a2, . . . , an subject to the relations

a1a
−1
2 a3 = a2a

−1
3 a4 = · · · = an−2a

−1
n−1an

= an−1a
−1
n a1 = ana

−1
1 a2 = 1.

Show that
(a) G5 is isomorphic to the binary dodecahedral group

{a, u | a5 = u3 = (au)2},
(b) Gn is nonabelian for all n ≥ 3.

NAvW 502. by J. C. Bioch
Let G be a finite supersoluble non-nilpotent group. If

every proper factor group of G is nilpotent, then prove that
G is metacyclic with presentation:

G = 〈a, b
∣∣ ap = 1, bab−1 = aj , bn = 1;

p prime, 1 < j < p〉,
where n |(p− 1) and jn ≡ 1 (mod p).

Groups: matrices

AMM E2545. by Ron Evans
Let V be an invertible n × n matrix with rational

entries, and let G denote the group of all n × n matrices
with integral entries and determinant 1. Prove that if H
and V HV −1 are subgroups of G of finite index p and q,
respectively, then p = q.

Groups: permutation groups

AMM 6049. by D. E. Knuth
What group is generated by the two cyclic permuta-

tions (1, 2, . . . ,m) and (1, 2, . . . , n) when 1 < m < n?

AMM E2708. by Edward T. H. Wang
Find all n for which the symmetric group Sn has the

following property: If α, β ∈ Sn are n-cycles, then either
〈α〉 = 〈β〉 or 〈α〉 ∩ 〈β〉 = {1}.

CRUX 66. by John Thomas
What is the largest non-trivial subgroup of the group

of permutations on n elements?

Groups: subgroups

AMM 6204.* by F. David Hammer
(a) If all proper subgroups of an infinite abelian group

are free (as abelian groups), then show that the group is
free.

(b) Find a weaker hypothesis for (a).
(c) Delete abelian in (a).

AMM 6205. by Alan McConnell
and Louis Shapiro

Let G be a group with no nontrivial elements of finite
order, and let H be a cyclic subgroup of finite index in G.
Show that G is itself cyclic.

AMM 6221. by F. David Hammer
Recently, Shelah found a group of cardinality ℵ1 with

no proper subgroups of that cardinality. Prove that this
cannot happen with abelian groups. In fact, every uncount-
able abelian group has a proper subgroup of the same car-
dinality.

MM 935. by Qazi Zameeruddin
It is known that the additive group Q of the rational

numbers has no maximal subgroup. Is this statement true
for the multiplicative group Q∗ of nonzero rational num-
bers? If the answer is no, then characterize all maximal
subgroups of Q∗.
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NAvW 506. by R. Jeurissen
Prove or disprove the following statement. If G is a

group with subgroups H and K, and if there are elements
h and k in G such that h−1Hh ⊆ K and k−1Kk ⊆ H, then
H and K are conjugate in G.

PUTNAM 1975/B.1.
In the additive group of ordered pairs of integers (m,n)

[with addition defined componentwise: (m,n) + (m′, n′) =
(m+m′, n+n′)] consider the subgroup H generated by the
three elements

(3, 8), (4,−1), (5, 4).

Then H has another set of generators of the form

(1, b), (0, a)

for some integers a and b with a > 0. Find a.

PUTNAM 1977/B.6.
Let H be a subgroup with h elements in a group G.

Suppose that G has an element a such that for all x in H,
(xa)3 = 1, the identity. In G, let P be the subset of all
products x1ax2a · · ·xna, with n a positive integer and the
xi in H.

(a) Show that P is a finite set.

(b) Show that, in fact, P has no more than 3h2 ele-
ments.

Groups: torsion groups

AMM 6052. by J. R. Gard
If G is a torsion group such that there exists an element

x ∈ G with the property that x and y generate G whenever
y ∈ G is not a power of x, is G finite? What other properties
does G have?

Groups: transformations

AMM E2542. by Ron Evans
Let G be the group generated by the transformations

T and S on the extended complex plane, where zT = −1/z
and zS = z + 2i. Suppose that z0 is fixed by some non-
identity transformation in G. Prove that z0 must lie on the
extended imaginary axis.

AMM 6102. by Barbara Osofsky

Let A and B be nontrivial rotations of R3 about l1 and
l2, respectively, which are axes through (0, 0, 0) such that

A2 = B3 = I

where I is the identity transformation. Hausdorff has shown
that if cos 2θ is transcendental, where θ is the angle between
l1 and l2, then all relations between A and B are generated
by A2 = I and B3 = I. Show that the same is true for
θ = π/4.

AMM 6276. by R. K. Oliver
Let g and h be two screw motions of Euclidean three-

space with positive angles less than π/3 and nonparallel
axes. Show that the group generated by g and h is not
discrete.

MM 1086. by Barbara Turner
Consider the following transformations on 4×4 matri-

ces. Let R move the top row to the bottom and the other
rows cyclically up; let D be the reflection across the main
diagonal; let S be the interchange of the 1st and 2nd rows
followed by the interchange of the 1st and 2nd columns.
What is the order of the group generated by R,D, and S?

Lattices

AMM 6032. by D. J. Johnson
Suppose L and M are distributive lattices. Let [G,≤]

be the partially ordered set of lattice morphisms from L to
M , ordered according to the following rule: f ≤ g if and
only if for all x in L, f(x) ≤ g(x) in M . Is [G,≤] necessarily
a lattice?

AMM E2700. by Richard Stanley
Let L be a finite lattice with minimum element 0 and

maximum element 1. Suppose that for all x 6= 0 in L, the
interval [0, x] contains an even number of elements. Show
that L is complemented, i.e., for all x in L there is a y in L
such that x ∧ y = 0 and x ∨ y = 1.

NAvW 541. by C. B. Huijsmans
and B. de Pagter

Prove that, in an Archimedean Riesz space L, the
following are equivalent:

(1) L is of finite dimension.
(2) Every ideal in L is principal.
(3) Every prime ideal in L is principal.

Loops

MATYC 109. by Dean Jordan
(a) What is the fewest number of elements a set may

contain and be a loop without also being a group?
(b) What is the fewest number of elements a set may

contain and be a commutative loop without also being a
group?

Quaternions

NAvW 431. by L. Kuipers
Let p be an odd prime. Let J be the set of (Hurwitz)

integral quaternions, and let Λ be a complete system of
residues of J (mod p). Let N(a) be the norm of a (a ∈ J).
Let s ∈ Λ, s 6≡ 0 (mod p), and let

t ∈ {1, 2, . . . , p− 1}.
Determine the number of solutions of the system of quater-
nion congruences (in x and f):

N(f) ≡ t (mod p), xf ≡ s (mod p).

Rings: Boolean rings

AMM E2536. by Jacob Brandler

If x6 = x for every element x in the ring R, prove that
R is a Boolean ring. Generalize.

MM 1052. by F. David Hammer
Show that Boolean rings (idempotent commutative

rings with identity) are isomorphic if their multiplicative
semigroups are isomorphic.
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Rings: characteristic

MM 1019. by Daniel Mark Rosenblum
Let R be a ring for which there is an integer n, n > 1,

such that xn = x for each element x of R. Prove that
the characteristic of R is a (square-free) product of distinct
primes p such that (p− 1) |(n− 1).

Rings: commutative rings

TYCMJ 40. by Steven R. Conrad
Assume that R is a ring in which, for each x ∈ R,

x2 − x is contained in the center of R. Prove that R is
commutative.

Rings: finite rings

AMM 6284. by William P. Wardlaw
Let R be a finite ring with more than one element and

with no nonzero nilpotent element. Show that R is a direct
sum of fields.

MM 991. by F. S. Cater
Let a and b be elements of a finite ring such that

ab2 = b. Prove that bab = b.

TYCMJ 65. by Kenneth V. Turner, Jr.
Let x and y be respectively left and right divisors of

zero in a finite ring with xy 6= 0. Prove that xy is both a
left and a right divisor of zero.

Rings: ideals

AMM 6152. by R. Raphael
In some rings one has unique factorization for ideals.

Show that the following limited form of factorization holds
in all rings: If Ij , j = 1, . . . , n, are distinct nonzero ideals in
a ring R, and if aj and bj are positive integers with aj < bj
for each j, then

n∏

j=1

I
aj
j =

n∏

j=1

I
bj
j implies

n∏

j=1

I
aj
j =

n∏

j=1

I
cj
j ,

where cj , j = 1, . . . , n, are any integers satisfying

aj ≤ cj ≤ bj .

In particular,
∏
I
aj
j =

∏
I
aj+1
j . Show by an example that

this is best possible, that is, show that one can have the
products equal when the exponents are not.

DELTA 5.1-3. by Robert C. Davis, Jr.
Let A be the ring of all polynomials f(x) with rational

coefficients such that f(1) is an integer. Let

I = {f(x) ∈ A | f(1) = 0} .
Show that I is an ideal of A that is not finitely generated.

AMM 6180. by L. C. Larson
Let A and B be ideals of a commutative ring R with

unity. Show that {x ∈ R |xB ⊆ xA} is an ideal if R is
either an integral domain or a principal ideal ring, but that
in general it need not be.

Rings: integral domains

AMM 6170. by Paul W. Haggard
Let D be an integral domain with prime characteristic

p, and let x and y be indeterminates. In D[x, y], consider
expansions of (x+ y)n for nonnegative integers n.

(a) If p1 is an odd prime, prove that the expansion of

(x+ y)p1

has an even number, N , of terms.
(b) When and how can n be obtained such that the

expansion of (x+y)n will have a given number, N , of terms?

AMM 6069. by A. R. Charnow
Let R be an integral domain, G a torsion-free group,

and R[G] the group ring of G over R. Let x = r1g1 + r2g2,
ri ∈ R, ri 6= 0, gi ∈ G, g1 6= g2. Prove that x is neither a
zero divisor nor a unit in R[G].

AMM 6116. by S. H. Cox, Jr.
Let A be an integral domain satisfying the following

condition: For every nonzero ideal I of A, there is an epi-
morphism A → A′ of rings such that I and A′ are iso-
morphic A-modules. For example, a principal ideal domain
satisfies the condition with A → A′ the identity A = A′.
Show that each domain satisfying the condition is a princi-
pal ideal domain.

AMM 6264. by William C. Waterhouse
A mathematician once assumed that when he had two

elements with no common factor, he could write 1 as a linear
combination of them. Show that for a Noetherian integral
domain, this assumption implies unique factorization.

Rings: matrices

AMM E2742. by P. M. Gibson
In a ring with identity, find two matrices such that only

the scalar matrices commute with both.

AMM E2528. by L. W. Shapiro
Let R denote the ring of n × n real matrices with the

property that every element not in the first row or on the
main diagonal is 0. How many two-sided ideals does R have?

AMM E2676. by Robert Gilmer
Let R be a ring (not necessarily with identity). We

denote by Rn the ring of n×n matrices over R. Show that
the following are equivalent:

(1) Every ideal of Rn is of the form In, where I is an
ideal of R.

(2) I = IR = RI holds for every ideal I of R.

Rings: nonassociative rings

AMM 6263. by David Pokrass
In a simple nonassociative ring R, let

(a, b, c) = (ab)c− a(bc),

[a, b] = ab− ba,
a ◦ b = ab+ ba.

If R satisfies the identity w ◦ (x, y, z) = 0 and has no ele-
ments of additive order 2, show that R is either associative
or anticommutative, i.e., R satisfies either (x, y, z) = 0 or
x ◦ y = 0 identically.
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Rings: number of idempotents

AMM 6183. by Albert A. Mullin
Let R be a ring with a finite number n of multiplicative

idempotents.
(a) If R is commutative, show that n is a power of 2.
(b) If R has a unit, show that n is even but need not

be a power of 2.
(c) Is there an R for which n is an odd prime?

Rings: polynomials

AMM 6259. by William D. Blair
and James E. Kettner

Let R be a commutative ring with unity and R
[
x, x−1

]
be the ring of Laurent polynomials

f(x) =

n∑

i=−m
aix

i

over R. Find necessary and sufficient conditions on the
coefficients ai of f(x) for f(x) to be invertible.

Rings: power series

AMM 6039. by Robert Gilmer
Let R be an associative ring, and let {Xi}n1 be a finite

set of commuting indeterminates over R. Prove that each
central idempotent of the power series ring R [[X1, . . . , Xn]]
is in R.

Rings: regular rings

CMB P258. by R. Raphael
A ring is regular if for each x there is a y such that

x = xyx. Prove that for regular rings the following are
equivalent: (1) The ideals are totally ordered by inclusion.
(2) The prime ideals are totally ordered by inclusion. (3)
All the ideals are prime.

Rings: subrings

AMM 6134. by Barbara Osofsky
Let R be a ring, not necessarily with identity, and let

Rn be the subring generated by n-fold products of elements
of R. Prove that if R has the descending chain condition
on right ideals, then so does Rn. Does this result hold
if “descending chain condition” is replaced by “ascending
chain condition”?
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Affine spaces

AMM E2779.* by H. Schwerdtfeger

(a) Let A = (a(1) a(2) · · · a(n)) be a nonsingular ma-

trix over a field F , whose columns a(j) represent points in
the n-dimensional affine space Sn. Let π be the hyperplane

passing through the points a(1), . . . , a(n). Let b ∈ Sn, b 6= 0,
and B be the matrix (b b · · · b). Show that the determinant
|A−B| = 0 if and only if b ∈ π.

(b) Generalize (a) to a more general matrix of rank 1,
namely B = (γ1b γ2b · · · γnb), γ1γ2 · · · γn 6= 0, γj ∈ F .

(c) If A is singular and Σ is the subspace of Sn gener-
ated by the columns of A, show that there is no b in Σ such
that |A−B| 6= 0, with B = (b b · · · b).

Determinants: block matrices

AMM E2556. by Leon Gerber
Let A = (a1| · · · |an) and B = (b1| · · · |bn) be two

2n × n real matrices, partitioned into columns. Assume
that n ≥ 3 and that the rank of A does not exceed n − 3.
Let r1, . . . , rn, s1, . . . , sn be arbitrary positive numbers. For
i, j = 1, 2, . . . , n, define

tij =
|ai − bj|2 − r2

i − s2j
2risj

.

Show that det(tij) = 0.

AMM 6057. by Anon
Let A, B, C, and D be n × n matrices such that

CDT = DCT. Prove that∣∣∣∣
A B

C D

∣∣∣∣ = |ADT −BCT|.

Determinants: complex numbers

AMM E2525. by D. Ž. Djoković
Let A be a complex n×n matrix, let A be its complex

conjugate, and let I be the n × n identity matrix. Prove
that det(I +AA) is real and nonnegative.

AMM 6258.* by John S. Lew
Let X = (xjk) be an m× n matrix, where 1 < m < n

and the xjk are algebraically independent indeterminates

over the field C of complex numbers. Let X ′ be the trans-
pose of X. Prove that det(XX ′) is an irreducible polyno-
mial over C.

Determinants: evaluations

AMM E2559. by Hugh L. Montgomery
Determine whether the following matrix is singular or

nonsingular:



51237 79922 55538 39177

46152 16596 37189 82561

71489 23165 26563 61372

44350 42391 91185 64809


 .

AMM E2552. by Philip Castevens
Let A be an n× n real matrix with zeros on the main

diagonal and ±1 off the diagonal. Show that A is nonsin-
gular if n is even, but that A may be singular if n is odd.

AMM E2586. by Walter Egerland
Evaluate detA, where A = (aij) is the (n+1)×(n+1)

matrix defined by

aij = 0 if i− j 6= 0, 2,−2,

aii = λi + λi−1 where λ0 = λn+1 = 0,

ai+2,i = 1, and

ai,i+2 = λiλi+1.

The scalars λi may belong to any commutative ring.

Determinants: identities

AMM E2703. by David Jackson
Let J be the n×n matrix whose entries are all 1’s and

write J = L+U , where L (resp. U) is a lower (resp. upper)
triangular matrix and the diagonal entries of L are zeros.
Let X = diag(x1, . . . , xn), where x1, . . . , xn are variables.
Prove that

det
(
I − (XU)k−1XL

)
=
∑

s≥0

(−1)sask, k = 1, 2, 3, . . . ,

where the aj are defined by

n∏

i=1

1− (txi)
k

1− txi
=
∑

j≥0

ajt
j ,

where t is a new variable.

Determinants: recurrences

FQ B-411. by Bart Rice
A tridiagonal n× n matrix An = (aij) is of the form

aij =

{
2a, (a real) for j = i,

1, for j = i± 1,

0, otherwise.

Let dn = detAn.
(a) Show that (dn) satisfies a second-order homoge-

neous linear recursion.
(b) Find closed-form and asymptotic expressions for

dn.
(c) Derive the combinatorial identity

b(n−1)/2c∑

k=0

(
n

2k + 1

)
(−x)k = (x+ 1)(n−1)/2 sin rn

sin r

for x > 0, r = tan−1√x.

Determinants: symmetric matrices

SIAM 79-3. by A. E. Barkauskas
and D. W. Bange

Find either a closed form solution or a simple re-
currence to evaluate the n × n determinant

∣∣aij
∣∣ where

aij = aji, aii = c+1 (c an integer > 1), a12 = 1, ai,ci+k = 1
for k = 1 to c and ci+ k ≤ n; all other aij = 0.
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Eigenvalues

SIAM 76-20. by L. B. Bushard
Find estimates, as functions of n, on the largest and

smallest eigenvalues of the n× n matrix

An = (aij) : aij =
1

1 + |i− j| ,

i, j = 1, . . . , n.

SIAM 75-15. by E. Wasserstrom
Let

D =

[
d1 0 0

0 d2 0

0 0 d3

]
,

T =

[
2 −1 0

−1 2 −1

0 −1 2

]
,

where d1, d2, and d3 are positive and d3 ≤ d1. Show that
if d3 < d1/3, then there are two other positive diagonal
matrices D1 and D2 such that D, D1, and D2 are distinct
but DT , D1T , and D2T have the same eigenvalues. Show
also that if d3 > d1/3 and D1 is a positive diagonal matrix
distinct from D, then DT and D1T must have different sets
of eigenvalues.

CMB P251. by D. Ž. Djoković
Find the eigenvalues and the eigenvectors of the two-

diagonal matrix A = (aij), where aij = 0 if |i− j| 6= 1 and
ai,i+1 = an+2−i,n+1−i = i (1 ≤ i ≤ n).

SIAM 79-2. by G. Efroymson,
A. Steger, and S. Steinberg

Let Mn denote the n × n matrix whose (j, k) entry
Mn(j, k) is given by

ω(j−1)(k−1)

√
n

, 1 ≤ j, k ≤ n

where ω = e2πi/n. Determine all of the eigenvalues of Mn.

AMM 6168. by Edmond Dale Dixon
Let A be a diagonalizable matrix with eigenvalues

λ1, λ2, . . . such that |λ1| > |λ2| ≥ · · · , and let X be any
vector not in the subspace spanned by the eigenvectors as-
sociated with λ2, λ3, . . . . Let Ei be the vector with 1 in the
ith position and zeros elsewhere. Then show that it is not
necessarily true that Ei · An+1X/Ei · AnX → λi, for each
i, where the denominators are nonzero.

MM Q624. by I. J. Good
Think of a square matrix as placed on a checker-

board, so that the leading diagonal consists entirely of white
squares. Then if the signs of all the entries on black squares
are changed, prove that the eigenvalues are unchanged.

Lattices

AMM 6172.* by Doug Hensley
Give an example, if possible, of two planar lattices of

unit determinant that do not possess a common bounded
measurable fundamental domain. Do any two distinct lat-
tices possess a common fundamental domain?

Linear transformations

AMM 6236. by Antal E. Fekete
We say that two endomorphisms of the complex vec-

tor space Cn are of the same type if there is a bijection
between their respective sets of eigenvalues that maps the
Jordan normal form of one endomorphism into that of the
other. Find a formula determining the number of different
endomorphism types of Cn. Define what is meant by an en-
domorphism type of the real vector space Rn and determine
their number.

AMM 6051.* by Jochem Zowe
Let X be a real vector space, Y an ordered vector

space, and p a sublinear map of X into Y , i.e., p(λx) =
λp(x) and p(x+ x′) ≤ p(x) + p(x′) for all x, x′ ∈ X and all
real nonnegative λ. Does there always exist a linear map T
of X into Y such that Tx ≤ p(x) for all x ∈ X?

AMM S22. by Edward T. H. Wang
and Roy Westwick

Let V and W be two vector spaces over the same
field. Suppose f and g are two linear transformations V →
W such that for every x ∈ V , g(x) is a scalar multiple
(depending on x) of f(x). Prove that g is a scalar multiple
of f .

AMM E2712. by A. Wilansky
Let A be a linear map from real bounded sequences to

the real numbers, such that for each sequence x some sub-
sequence of x converges to A(x). Must A(xy) = A(x)A(y)?

Matrices: 0-1 matrices

AMM E2662. by Edward T. H. Wang
For an n × n (0, 1)-matrix A, let A′ denote the com-

plementary matrix, i.e., A′ = J −A, where J is the matrix
with all entries equal to 1. Define σn = max Σ(AA′), where
Σ(X) denotes the sum of all entries of a matrix X and the
maximum is taken over all n× n (0, 1)-matrices A.

Show that

σn ≥ n3 − n
3

.

Does the equality hold for all n?

AMM E2678. by Edward T. H. Wang
Find the maximum number of 1’s in an n × n (0, 1)-

matrix whose square is again a (0, 1)-matrix.

MM 1065. by H. Kestelman
Let A be an (n+1)×(n+1) matrix; its (1, 1)-th element

is 0 and all others are 1. Find a formula for the elements of
Ak when k ≥ 2.

FQ H-281. by V. E. Hoggatt, Jr.
(a) Consider the matrix equation
(

1 1 0

1 1 1

0 1 1

)n
=

(
An Bn Cn
Dn En Gn
Hn In Jn

)
, n ≥ 1.

Identify An, Bn, Cn, . . ., Jn.
(b) Consider the matrix equation
(

0 1 0

1 0 1

0 1 0

)n
=

(
A′n B′n C′n
D′n E′n G′n
H ′n I ′n J ′n

)
, n ≥ 1.

Identify A′n, B′n, C′n, . . ., J ′n.
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Matrices: adjoints

AMM 6222. by Emilie V. Haynsworth
Let A be an n× n matrix over the complex field. Let

AdjA denote the standard adjoint matrix for A, that is,
AdjA = (Cji), where Cij is the cofactor of aij in A. Prove
that if A+ AdjA = kI, then

(i) A has at most two distinct eigenvalues, λ1 and λ2;
(ii) the Jordan form, J , for A has blocks no larger

than 2× 2, and if λ1 6= λ2, A is diagonalizable;
(iii) if λ1λ2 6= 0, and λ1 has multiplicity m, then

λm−1
1 λn−m−1

2 = 1;

(iv) if λ1 = 0, A 6= 0, n > 2, then λ1 is a simple root

and λn−2
2 = 1;

(v) if S = A + J − kI, then S2 commutes with both

A and J and if S is nonsingular, S−1AS = J ;
(vi) if A is nonnegative and λ1 and λ2 are both posi-

tive, then A−1 is an M -matrix.
Conversely, if properties (i), (ii) and (iii) hold, then

A+ AdjA = kI.

Matrices: block matrices

AMM E2762. by Peter Hoffman
Let A1, . . . , An be k × k matrices over a field F , such

that A = A1 + · · · + An is invertible. Show that the block
matrix B =



A1 A2 . . . An−1 An 0 . . . 0

0 A1 A2 . . . An−1 An
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0

0 . . . 0 A1 A2 . . . An−1 An




has full rank, i.e., rank (B) = mk, where m is the number
of block rows.

Matrices: characteristic polynomial

AMM E2635. by Kirby C. Smith
Let F be a field of characteristic p 6= 0. Let A = CD,

where C is a cyclic p×p matrix over F and D is the diagonal
matrix with diagonal entries 0, 1, 2, . . . , p− 1. Compute the
characteristic polynomial of A. Generalize.

AMM E2711. by Frank Uhlig
Let A and B be m × m matrices over a field. If the

characteristic polynomial of A is irreducible, show that rank
(AB −BA) 6= 1.

MATYC 91. by Richard Gibbs
Let A be a nonsingular matrix with characteristic poly-

nomial

|xI −A| = xn + d1x
n−1 + · · ·+ dn−1x+ dn.

What is the trace of A−1?

Matrices: Hermitian matrices

SIAM 76-8. by W. Anderson, Jr. and G. Trapp
Let A and B be Hermitian positive definite matrices.

Write A ≥ B if A−B is Hermitian positive definite. Show
that

A−1 +B−1 ≥ 4(A+B)−1.

AMM 6072. by Wayne Lawton
Let a1, . . . , an be n distinct complex numbers such that

0 < |ak| < 1 for 1 ≤ k ≤ n. Let B = (bij) be the n × n
Hermitian matrix defined by

bij =
aiaj

(1− aiaj)

for 1 ≤ i, j ≤ n. Prove that B is positive definite and that
the following equality is valid:

max
xl∈C



|x1 + · · ·+ xn|2 :

∑

1≤i,j≤n
bijxixj = 1





=

n∏

k=1

|ak|−2 − 1.

AMM 6061. by Hung C. Li
For any n × n positive semidefinite Hermitian matrix

H, the set

S = {A | tr(AA∗)H ≤ λ}
is convex in A, where A is n × m, X∗ is the complex
conjugate and transpose of X, and tr X is the trace of X.

MM Q644. by John Z. Hearon
Let A be a nonzero matrix of rank one so that A =

ab∗ where a and b denote column vectors and ∗ denotes
conjugate transpose. Show that A is Hermitian if and only
if a is a scalar multiple of b. Given that A is Hermitian,
show that A is positive semidefinite if and only if the inner
product a ∗ b is positive.

Matrices: identity matrix

MM 951. by G. A. Heuer
Let A be a square matrix, some scalar multiple of which

differs from the identity matrix by a matrix of rank one.
Give a simple necessary and sufficient condition that A be
nonsingular, and find A−1 in this case.

TYCMJ 139. by Gregory P. Wene
Find all positive integers n such that if M is an n× n

matrix and I is the n × n identity matrix over the real
numbers, then one of the following is true:

(1) M is invertible,
(2) M − I is invertible,
(3) M is idempotent.

Matrices: maxima and minima

AMM E2555. by T. W. Cusick
Let A = (a1|a2) be a nonsingular 2 × 2 matrix parti-

tioned into columns. Show that

min
A

max
x

(a1 · x)(a2 · x)

detA
=

1

2
,

where the max is over all x in the box |xi| ≤ 1, and the min
is over all such matrices A.

Establish a corresponding result for higher dimensions.
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Matrices: Moore-Penrose inverse

SIAM 76-15. by A. Berman and M. Neumann
A square matrix is monotone if it is nonsingular and

if its inverse is nonnegative. A rectangular matrix is semi-
monotone if its Moore-Penrose inverse is nonnegative. Let
A be a semimonotone matrix of rank r. Prove, or give a
counterexample, that A possesses an r × r monotone sub-
matrix.

Matrices: norms

AMM 6125. by Simeon Reich
For a given n × n matrix A of rank r and an integer

k, 1 ≤ k ≤ r, a best rank k approximation of A is a matrix
A(k) satisfying

‖A−A(k)‖
= inf {‖A−X‖ : X is an n× n matrix of rank k} ,

where ‖A‖ = (tr A∗A)1/2.

Show that if A is normal, then Aj
(k)

is a best rank k

approximation of Aj for all j ≥ 1, but that this is no longer
true for arbitrary A.

AMM 6249. by H. Kestelman
The norm ‖A‖ of a real 2 × 2 matrix A is by defini-

tion the maximum of ‖Ax̂‖ when ‖x̂‖ = 1. If ‖x‖ is the

Euclidean norm
(
xT x

)1/2
, then ‖A‖ ≤ ‖|A|‖, where |A| is

the matrix whose elements are the absolute magnitudes of
those of A. Find necessary and sufficient conditions on an
invertible 2× 2 matrix N in order that ‖A‖ ≤ ‖|A|‖ for all
A when ‖x‖ is defined as the Euclidean norm of Nx.

Matrices: orthogonal matrices

MM 1035. by H. Kestelman
Let A be a real n×n matrix. Do there exist orthogonal

matrices B such that A+B is real orthogonal?

Matrices: permutations

AMM 6171. by R. W. K. Odoni
and J. B. Wilker

Let F be a field, and let n and d be positive integers,
each ≥ 2. Let σ be any permutation of {1, 2, . . . , n}, and
let σ0 be the n-cycle j → j + 1 (mod n). Prove that σ is
a power of σ0 if and only if for every sequence of n d × d
matrices over F , tr

(∏n
j=1Mj

)
= tr

(∏n
j=1Mσ(j)

)
.

AMM E2516. by Morris Newman
and Charles Johnson

Two matrices A and B are permutation-equivalent if
B can be obtained from A by first permuting the rows of A
and then permuting the columns of the resulting matrix.

Call an n×n matrix of 0’s and 1’s a k−k matrix if there
are precisely k 1’s in each row and each column. Show that
if n ≤ 5, then every k− k matrix is permutation-equivalent
to its transpose, but that this is no longer true if n ≥ 6.

Matrices: polynomials

AMM E2597. by R. W. Farebrother
Let j and n be integers such that 0 ≤ j ≤ n, and let

(1− x)j(1 + x)n−j =

n∑

i=0

cij(n)xi.

If C(n) is the matrix (cij(n)), where i, j = 0, 1, . . . , n, show
that

C(n)2 = 2nI,

detC(n) = (−2)n(n+1)/2,

tr C(n) =

{
0, if n is odd,

2n/2, if n is even.

AMM 6006. by Frank Uhlig
Let Ai be a finite family of complex square matrices

that have no eigenvalues in common. Let pi be a family
of real polynomials and define Bi = pi(Ai) for each i. If
each Ai is similar to a real matrix, prove that there is a real
polynomial p such that p(Ai) = Bi for every i.

Matrices: positive definite matrices

AMM 6095. by Anon
Let P , Q, and B be m×m, n×n, and n×m complex

matrices with P and Q positive definite. Show that P −
B∗Q−1B is positive definite if and only if Q− BP−1B∗ is
positive definite.

Matrices: power series

AMM E2734. by Melvin Hausner
Let A = (aij) be a real square matrix such that aij > 0

for i 6= j. Show that all entries of eA are positive.

NAvW 517. by M. L. J. Hautus

Let A and B be n× n matrices. If etA is bounded for
t ≥ 0, show that etA+B is also bounded for t ≥ 0.

Matrices: powers

MM 1017. by Stanley Friedlander
(a) Given an n × n matrix A over the rationals, show

that Ap = I for a prime p > n+ 1 implies A = I.
(b) For each k, 1 < k ≤ n + 1, show that there exists

an n × n non-identity matrix over the rationals such that

Ak = I.

NYSMTJ 61. by Samuel A. Greenspan
and Sidney Penner

Let A be a 2× 2 matrix over the reals, and let n be a
positive integer. Is there an n > 1 such that An = I implies
A = I?

Matrices: products

AMM 6251. by William P. Wardlaw
Let m and n be positive integers. What pairs of ma-

trices C and D, over any field K, have the property that if
A is an m×n matrix over K and B is an n×m matrix over
K such that AB = C, then BA = D?
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Matrices: similar matrices

MM 1058. by H. Kestelman
Is it true that a square matrix that is not a scalar

multiple of the identity is always similar to a matrix with
all nonzero elements?

Matrices: spectral radius

SIAM 76-9. by S. Venit
Let

P =

[
B C

I 0

]
,

be a real, square matrix of order 2n, partitioned into four
n × n blocks. Assume that I and 0 are the identity and
null matrices (of order n), respectively, and that the only
nonzero elements of B and C are given by

bij =
2rj

1 + 2rj

when |i− j| = 1, and

cij =
1− 2rj
1 + 2rj

when i = j (i, j = 1, 2, . . . , n), where the rj are arbitrary
positive numbers.

Show either that the spectral radius of P is less than
1 for all positive integers n, or find a counterexample.

AMM 6209. by Marcel F. Neuts
Let A be a primitive nonnegative matrix of order m,

and let B be a finite real matrix of order m. Denote the
spectral radius of A by ρ. Show that

lim
n→∞

1

n
ρ−(n−1)

n−1∑

ν=0

AνBAn−1−ν

exists and identify the limit.

AMM S13. by H. Kestelman
A nonnegative real matrix A with spectral radius 1 has

the property that for some pair (p, q), the p, q element of Aj

tends to 0 as j → ∞. Show that for some pair (r, s), the

r, s element of Aj is 0 for all positive integers j.

SIAM 75-7. by D. A. Voss

The n× n matrix Dn =
[
dij
]

satisfies

dij =





j(i−n)
n3 , j < i,

(6i2−6in+n)
6n3 , j = i < n,

i(j−n)
n3 , j > i,

0, j = i = n.

Prove or disprove that the spectral radius ρ(Dn) of Dn
satisfies

ρ(Dn) <
1

π2

and

lim
n→∞

ρ(Dn) =
1

π2
.

SIAM 78-12. by P. J. Schweitzer
Investigate the spectral properties of the N×N matrix

Qij = Piδij − PiPj , i, j = 1, 2, . . . , N,

where

Pi ≥ 0,

N∑

i=1

Pi = 1.

SIAM 77-14.* by G. K. Kristiansen
Let P = {prs} be a symmetric matrix having
(1) prs = 0 for |r − s| > 1 and prs > 0 otherwise,
(2) spectral radius 1, and
(3) ps−1,s + ps+1,s ≤ 1 for all s.

Denote by eT the 1× n matrix with all entries 1, and let

I = {δrs}

be the n × n unit matrix. Let c be a nonnegative n × 1

matrix with eT c = 1. Prove or disprove that the matrix

F =
(
I − ceT

)
P

has spectral radius at most equal to 1. If a counterexample
is found, try to minimize the order n.

Matrices: stochastic matrices

AMM E2652. by Jeffrey L. Rackusin
Let A = (aij) be a row-stochastic n× n matrix. Show

that

∑

σ∈Sn

n∏

i=1

(
ai,σ(i)∑n
j=i ai,σ(j)

)
= 1,

where Sn is the symmetric group.

SIAM 75-13.* by M. Golberg
Let P denote an n × n primitive stochastic ma-

trix and let R denote a diagonal matrix with diagonal
(r1, r2, . . . , rn), where 0 ≤ ri ≤ 1. Determine

lim
N→∞

1

N

{
N∑

k=1

(P + R)k

(
1 +

∑n
i=1

ri
n

)k

}
.

Matrices: symmetric matrices

MM 995. by Edward T. H. Wang
Call an n×n matrix (n ≥ 2) R-symmetric if the inter-

change of any two distinct rows yields a symmetric matrix.
Find a characterization of all R-symmetric matrices.

Matrices: unitary matrices

AMM E2741. by H. S. Witsenhausen

Given a complex square matrix A, show that there
exists a unitary matrix U such that U∗AU has all diagonal
entries equal. If A is real, U can be taken real orthogonal.
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Matrix equations

AMM 6162. by Ray Latham
If A = (aij) is the n× n matrix defined by

aij =
1

1− 4(i− j)2
,

and x = (xi) is the unique vector such that Ax = e (the all
1’s vector), show that

n∑

i=1

xi =

(
n+ 1

2

)
.

MM 1040. by H. Kestelman
If A is an m × n matrix that is not invertible, show

that there are infinitely many n×m matrices X satisfying
AXA = A.

CRUX 208. by Kenneth S. Williams
Let a and b be real numbers such that a ≥ b ≥ 0.

Determine a matrix X such that

X2 =

[
a b

b a

]
.

FQ H-252. by V. E. Hoggatt, Jr.
Let An×n be an n × n lower semi-matrix and Bn×n,

Cn×n be matrices such that An×nBn×n = Cn×n. Let
Ak×k, Bk×k, Ck×k be the k × k upper left submatrices
of An×n, Bn×n, and Cn×n. Show that Ak×kBk×k = Ck×k
for k = 1, 2, . . . , n.

Matrix sequences

MM 1038. by Douglas Lewan
Define the following sequence of square matrices:

M(1) = [1], M(2) =

[
2 3

4 5

]
,

M(3) =

[
6 7 8

9 10 11

12 13 14

]
, . . . .

Find the sum of the elements on the main diagonal of M(n).

NAvW 418. by M. L. J. Hautus
For which n× n matrices B does there exist an n× n

matrix A and a sequence of real numbers uk, such that

ukA
k → B (k →∞)?

Normed spaces

AMM 6017. by Albert Wilansky
In a popular text it is proposed to find a strictly smaller

norm for any normed space E by first constructing a strictly
larger norm on E′. Show that this construction must fail.
The new norm must be equivalent to the old. Give a correct
construction.

Vector spaces

ISMJ 13.9.
Let B be a Hamel basis for R considered as a vector

space over Q. Given any function λ:B → R, define the
function fλ:R → R by setting fλ(x) = r1λ(b1) + · · · +
rnλ(bn) where x = r1b1 + · · · + rnbn (ri ∈ Q, bi ∈ B,
i = 1, . . . , n). Show that fλ is additive.

MM 984. by Peter Ørno
Let (b1, b2, . . . , bn) be a nonzero element of Rn. For

which n, 2 ≤ n ≤ 8, is it true that one can choose an
orthogonal basis for Rn from the collection

{(±bπ(1),±bπ(2), . . . ,±bπ(n)) |π ∈ Pn},

where Pn is the set of all permutations of (1, 2, . . . , n)?

AMM E2785. by Stephen M. Gagola, Jr.
A flat X in a vector space V over a field F is defined

to be a coset of a maximal subspace of V . Assume that F
is finite with q elements. If V has dimension n and V \ {0}
is the union of m flats, prove that m ≥ n(q − 1).

AMM 6215. by Ki Hang Kim and Fred Roush
Heawood’s system for the four-color theorem for a map

with n faces amounts to a linear system of rank n− 2 in a
(2n − 4)-dimensional vector space over GF(3). Prove that
for a random rank n system in a 2n-dimensional vector
space over GF(3), the probability that there is at least
one solution vector with no zero component tends to 1 as
n→∞.

156



Number Theory
Abundant numbers Problems sorted by topic Arithmetic progressions: primes

Abundant numbers

AMM 6138. by Harry D. Ruderman
Let p1, p2, . . . be consecutive primes with p1 = 2.
(a) Show that for every n, there is a k for which

n+k∏

i=n

pi

is an abundant number.
(b) Find an upper bound for k in terms of n.

Algorithms

PENT 286. by Kenneth M. Wilke
In Alcatraz Prison an eccentric jailer decided to effect

a “selective release” of the prisoners. The cells are num-
bered consecutively beginning with the number 1. First he
unlocked all the cells. Then after returning to the place of
beginning, he turned the key in the lock of every second
cell. Next he repeated the process by returning to the place
of beginning and turning the key in the lock of every third
cell. The jailer repeats this process and on the ith trip he
turns the key in every ith cell after returning to the place
of beginning at cell number 1. Assuming that Alcatraz has
200 cells and that no prisoner escapes during the process,
how many prisoners are released and what cells do they
occupy?

JRM 739. by Frank Rubin
Write an efficient algorithm to compute the geometric

mean of a list of N positive real numbers. To be efficient,
your algorithm must not use more than a fixed number,
independent of N , of higher functions (roots, exponentials,
logarithms, etc.). The total number of operations must be
at most proportional to N .

If you have access to a computer, test your program
by finding the geometric means of the following two lists:

(a) 1, 2, 3, . . . , 5000.

(b) 21, 3−2, 23, 3−4, 25, . . . , 299, 3−100.

OSSMB G78.1-2.
A given natural number N is a perfect square whose

square root contains 2n+1 digits. Show that when the n+1
high-order digits have been obtained by the usual method,
the remaining n digits may be found by simple division.

Approximations

CRUX 202. by Daniel Rokhsar
Prove that any real number can be approximated

within any ε > 0 as the difference of the square roots of
two natural numbers.

PME 375. by Richard S. Field

Approximate the value of 210000 without using pencil
and paper.

MM Q617. by Norman Schaumberger
and Erwin Just

If a and b are positive real numbers, show that for any
positive integers m and n there is always a rational number
of the form xm/yn between a and b with x and y integers.

Arithmetic operations

MATYC 113. by Mark Butler
What is the largest possible number that can be “car-

ried” from one column to the next when adding n whole
numbers?

SSM 3670. by Herta T. Freitag
Is there an infinitude of triples of nonzero real num-

bers for which addition distributes over multiplication and
multiplication over addition?

ISMJ 11.8.
By inserting parentheses in

1÷ 2÷ 3÷ 4÷ 5÷ 6÷ 7÷ 8÷ 9

the value of the expression can be made 7/10. How? What
are the largest and the smallest values that can be obtained
by insertion of parentheses?

Arithmetic progressions: coprime integers

AMM E2684. by Charles A. Nicol
Let An be the set of positive integers that are less than

n and relatively prime to n. For which n is An an arithmetic
progression?

Arithmetic progressions: geometric progressions

ISMJ 12.18.
Suppose an arithmetic progression and a geometric

progression have positive terms and the first two terms are
the same in the two progressions. Show that any other
term of the arithmetic progression does not exceed the cor-
responding term of the geometric progression.

Arithmetic progressions: maxima and minima

TYCMJ 141. by Thomas E. Elsner
Call (Gi), i = 1, 2, . . ., a “nonarithmetic sequence” if it

is an increasing sequence of positive integers with no three
terms in arithmetic progression. Let (Hi), i = 1, 2, . . ., be
called a “minimal nonarithmetic sequence” if, for each i,
Hi does not exceed the ith term of each “nonarithmetic se-
quence”. Prove or disprove that a “minimal nonarithmetic
sequence” exists.

Arithmetic progressions: primes

JRM 712. by Friend H. Kierstead, Jr.
The longest known arithmetic progression of primes

has 16 terms. Without knowing the common difference of
such a progression, is it possible to infer what some of its
factors must be?

SSM 3697. by Charles W. Trigg
In the decimal system, find a four-term arithmetic pro-

gression of three-digit prime numbers in which the fourth
term is the reverse of the first term.

SSM 3776. by Charles W. Trigg
Find three three-digit prime numbers in arithmetic

progression which contain no duplicated digits.
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AMM E2561. by J. M. Simon
Let (p1, p2, p3) be a prime triplet spaced by the com-

mon interval d. Show that if d is not a multiple of 6, then
p1 = 3 and necessarily the triplet is unique. Discuss the
situation if d is a multiple of 6.

JRM 627. by Henry Larson
What is the longest arithmetic progression of primes

(negative primes permitted) in which no member has more
than two digits?

Arithmetic progressions: ratios

CRUX 114. by Léo Sauvé
An arithmetic progression has the following property:

for any even number of terms, the ratio of the sum of the
first half of the terms to the sum of the second half is always
equal to a constant k.

Show that k is uniquely determined by this property,
and find all arithmetic progressions having this property.

Arithmetic progressions: roots

AMM E2628. by Richard J. Hall
Let a, b, and c be distinct positive integers, at least

two of which are prime. Show that a1/n, b1/n, and c1/n

cannot be terms of an arithmetic progression.

Arithmetic progressions: subsequences

JRM 377. by David L. Silverman
Let S be an increasing sequence of positive integers

that contains arithmetic subsequences of arbitrary length;
that is, for every positive integer n, there is an arithmetic
subsequence of S of length n.

Prove or disprove: S must contain an infinite arith-
metic subsequence.

AMM E2522. by Joel Spencer
An infinite subset

S = {s1, s2, . . .}
of N (s1 < s2 < · · ·) has bounded gaps if (sn+1 − sn) is
bounded. Show that if S has bounded gaps, then it contains
arbitrarily long arithmetic progressions.

Arithmetic progressions: sum of terms

OSSMB G75.2-1.
Two arithmetic progressions P and P ′ are such that

the sum of n terms of P is 2n2 − 5n, and the sum of n
terms of P ′ is n

2 (7n − 3) and there are a number of terms
common to both. Find the first five ordered pairs (k, r) such
that tk of P is equal to tr of P ′.

Arrays

TYCMJ 147. by Charles W. Trigg
In the square array

5 8 7

3 6 9

1 4 2

all but one of the twelve adjacent digit pairs, taken horizon-
tally and vertically, have prime absolute differences. Show
that there is no rearrangement of the digits in which all of
the differences are (a) different, (b) the same, (c) composite,
or (d) prime.

CRUX 345. by Charles W. Trigg
It has been shown that when the nine nonzero digits

are distributed in a square array so that no column, row or
unbroken diagonal has its digits in order of magnitude, the
central digit must always be odd.

(a) Can such a distribution be made for every odd
central digit?

(b) Do any such distributions exist in which odd and
even digits alternate around the perimeter of the array?

OSSMB 76-16.
The integers 1, 2, 3, 4, 5, 6, 7, 8, 9 are arranged in a 3×3

array in such a way that no three numbers in a line (row,
column, or diagonal) occur in order of magnitude (increas-
ing or decreasing). Prove that, in every such arrangement,
the number in the center must be an odd number.

AMM E2732. by Peter Sjögren
It is easy to see that one can label the squares of an

n × n chessboard by integers from 1 to n2 so that the
difference between labels of neighboring squares does not
exceed n. Is this best possible? (Two squares are neighbors
if they share a common side.)

SIAM 79-4.* by K. L. McAvaney
For positive integer n, maximize the number of n × n

matrices each containing all of 1, 2, . . . , n2 such that any
two entries appear simultaneously in at most one row of all
the matrices.

PARAB 329.
Consider the array of natural numbers similar to Pas-

cal’s triangle. If we denote the nth row of the triangle by

an,1, an,2, an,3, . . . , an,n−1, an,n,

then the law of formation is given by

an,1 = an,n = 1

and for 2 ≤ i ≤ n− 1,

an,i = (n− i+ 1)an−1,i−1 + ian−1,i.

Find a simple formula involving n, for the sum Sn of the
nth row, Sn = an,1 + an,2 + an,3 + · · ·+ an,n.

1

1 1

1 4 1

1 11 11 1

1 26 66 26 1

FQ H-254.* by R. Whitney
Find a formula for the row-sums of the Fibonacci-

Pascal type array below.

F1

F1 F1

F1 F2 F1

F1 F3 F3 F1

F1 F4 F6 F4 F1

. . .
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AMM E2534. by C. H. Kimberling
Consider the array of numbers a(j, k) defined for

j, k = 0, 1, . . .

as follows: a(j, 0) = 1 for j = 0, 1, . . .; a(0, k) = 2 for
k = 1, 2, . . .; a(j, k) = a(j, k − 1) + a(j − 1, k) for j, k ≥ 1.
Prove the following:

(a) If p is prime, then p | a(j, p − j + 1) for j =
2, 3, . . . , p− 1.

(b) If j + 2k is prime, then j + 2k divides a(j, k).
(c) If a(j, k) is prime, then a(j, k) divides a(mj,mk)

for m = 1, 2, . . . .

JRM 740. by Frank Rubin
A multiplex cipher uses a number of randomly-chosen

shuffled alphabets, usually 25-30. Encipherment consists of
picking, for each plaintext letter, a letter in the correspond-
ing alphabet a fixed distance away. For instance, the figure
shown shows four five-letter alphabets. Suppose we decide
to use the second letter below each plaintext letter; then
the word BEAD would be enciphered as DBBC.

Breaking the cipher depends upon the fact that in a
randomly-chosen set of alphabets, the set of all letters at a
given distance from a given letter does not contain all the
other 25 letters. In our example the set one down from A
does not contain C; the set two down does not contain D;
and the set three down does not contain E.

Is it possible to make the cipher secure by providing
a set of 25 alphabets in which, for each of the 26 letters at
each distance from 1 to 25, all other letters occur? If not,
what is the minimum number of alphabets required?

A B D E

B D C C

C A A B

D E E A

E C B D

Base systems: cubes

CRUX 157. by Steven R. Conrad
In base fifty, the integer x is represented by CC and x3

is represented by ABBA. If C > 0, express all possible values
of B in base ten.

Base systems: digit permutations

JRM C1. by David L. Silverman
Find the smallest positive integer N such that in base

N there are digits A, B, and C (0 < A < B < C < N)
with the property that all six base-N permutations, ABC,
ACB, BAC, BCA, CAB, and CBA are primes. Generalize
by investigating the 24 permutations of the digits A, B, C,
and D for primality in base N .

SSM 3580. by Charles W. Trigg
In the four-digit integer abcd in base seven,

√
ab = cd.

A permutation of the digits in this integer represents its
equivalent in base ten. Find the integer.

MM 1045. by J. L. Murphy
Define N to be an absolute perfect square, relative to

a given base, if every permutation of the digits of N is a
perfect square in that base. In base ten, 1, 4, and 9 are
obviously absolute perfect squares. Show that these are the
only ones.

Base systems: digit reversals

JRM 657. by John Michael Schram
Consider the equality xyb = yxc, y < x, where x and y

denote digits in both bases b and c (e.g., 214 = 127).
Characterize the values of c that never occur in such

an equality.

JRM 760. by Klaus Lunstroth
Find all 2-digit numbers in all bases such that reversing

the order of the digits multiplies the number by 2.

MSJ 417. by Charles W. Trigg
When the order of the digits of a 4-digit number in

the decimal system is reversed, its equivalent in base 7 is
formed. Furthermore, the square roots of the number in
the two base systems contain the same digits. Identify the
integer.

OSSMB G77.2-2.
(a) Determine the three digit integer in base 7 whose

digits are reversed when expressed in base 9.
(b) Find all three digit integers (base 10) that are n

times the sum of their digits when n = 17. Prove that there
is no such integer for n = 9.

SSM 3595. by R. F. Wardrop
(a) Find three different-digit numbers xyz such that

for each xyz, xyz9 = zyxb for b < 9.
(b) Are there any numbers in base eight such that

xyz8 = zyxb, for b < 8?
(c) How about base seven, six, five, four, and three?

SSM 3600. by Alan Wayne
Find a three-digit numeral in the base sixteen system of

numeration that has the same digits as a decimal numeral,
but in reverse order, and that represents the same positive
integer.

SSM 3631. by Charles W. Trigg
Find a three-digit integer in base five that has the order

of its digits reversed when multiplied by 2. Generalize.

SSM 3679. by R. F. Wardrop
Find all three-digit numbers xyz (base ten) such that

the following holds: xyz (base ten) = zyx (base b) where
2 ≤ b ≤ 9 and x, y, and z are distinct.

SSM 3614. by Charles W. Trigg
In the equation, N − N ′ = M , N is an integer, its

reverse is N ′ < N , and M is a permutation of the digits on
N . For example, in the decimal system 954 = 459 = 495. In
the scale of notation with base four, find a four-digit integer
that is both an M and an N .

PME 348. by Bob Prielipp and N. J. Kuenzi
When the digits of the positive integer N are written

in reverse order, the positive integer N ′ is obtained. Let
N + N ′ = S. Then S is called the sum after one reversal
addition.

Prove that there are infinitely many triangular num-
bers which have a palindromic sum after one reversal addi-
tion in the base b, where b is an arbitrary positive integer
greater than or equal to 2.
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Base systems: divisibility

SSM 3590. by Herta T. Freitag
In the base-ten system of numeration, divisibility of a

number N = anan−1 . . . a2a1a0 by 2 is tested by seeing if
a0 is divisible by 2; for divisibility by 4, one checks a1a0;
and if a2a1a0 is divisible by 8, so is N .

Generalize these criteria for base system b and divisi-
bility by a number m′ where m and t are positive integers
and m is greater than 1.

Base systems: factorials

JRM 598. by Sherry Nolan
Given: anan−1 . . . a2a1 is the factorian representation

of an ·n!+an−1 ·(n−1)!+ . . .+a2 ·2!+a1 ·1!. Uniqueness of
representation is assured by requiring that only the digits
0, 1, 2, . . . , n are allowed in the nth position (from the right).

(a) 1(factorian)=1(decimal). For what other positive
integer value does such an equality hold?

(b) Four is the first integer more efficiently represented
in factorian (20) than in binary (100). For bases 3 through
12 determine at what integer value the factorian system
becomes more efficient than each of these systems.

Base systems: limits

NAvW 507. by L. Kuipers
Let g > 1 be a fixed positive integer. Let the positive

integer x be represented with respect to base g:

x = a1g
n1 + a2g

n2 + · · ·+ atg
nt ,

where
n1 > n2 > · · · > nt ≥ 0,

0 ≤ ai ≤ g − 1 (i = 1, 2, . . . , t).

Let

β(x) =

t∑

i=1

a2
i

and let

B(x) =
∑

y≤x
β(y).

Prove that

B(x) =
(g − 1)(2g − 1)

6

x log x

log g
+O(x), x→∞.

Base systems: maxima and minima

CANADA 1977/3.
OMG 16.2.3.

Let N be an integer whose representation in base b is
777. Find the smallest positive integer b for which N is the
fourth power of an integer.

Base systems: modular arithmetic

SSM 3765. by Alan Wayne
Prove that in any system of numeration with base b

(where b is an integer greater than or equal to 2), if each
digit in turn is multiplied by b−1 and divided by b, then the
resulting set of nonnegative integer remainders is the set of
all digits.

Base systems: number of digits

NYSMTJ 76. by Charles D. Smith

How many digits does 999

have when written
(a) in base nine?
(b) in the decimal system?

Base systems: palindromes

SSM 3712. by Charles W. Trigg
Find two palindromic squares in base 8 each of which

contains every one of the seven nonzero octal digits.

Base systems: pandigital numbers

SSM 3626. by Alan Wayne
Find an integer N , in base 8, which is a multiple of the

cube of three and whose square has the eight octal digits
once each.

JRM 649. by Harry Nelson
List all primes in all bases which are composed of

exactly one of each of the digits in that base.

Base systems: polygonal numbers

PME 415. by Charles W. Trigg

A hexagonal number has the form 2n2 − n. In base
9, show that the hexagonal number corresponding to an n
that ends in 7 terminates in 11.

Base systems: powers

TYCMJ 138. by Warren Page
Given any natural number n, do there exist numbers

B and N in base 10 such that N is a perfect nth power in
every base greater than B?

Base systems: products

JRM 440. by Edmund Charles
“That integer you came up with was three times what

it should have been,” said the Data Reduction Specialist.
“You knew it was written in octal, didn’t you?” replied

the Programmer.
“Oh, I thought it was in duodecimal,” said the D.R.S.
What was the integer?

Base systems: repeating fractions

MM 973. by Robert Cranga

Let N be an odd integer. If the period of N−1 is P in

base b, and if N2 -
(
bP − 1

)
, then prove that the period of

N−n in base b is PNn−1.

MM Q627. by Michael Golomb
It is a curious fact that 80/81 = .9876543210 . . . is

accurate to ten decimal places. Show that if b ≥ 4 is an
integer, then in the base b,

(b− 2 0)/(b− 2 1) = .b− 1 b− 2 . . . 210 . . .

is accurate to b b-places with error less than (b−b)/2.
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Base systems: square roots

SPECT 9.4. by C. J. Knight
What is the representation in base 7 of the square root

of the number whose representation in base 7 is 14,641?

Base systems: squares

SSM 3594. by Charles W. Trigg
In the system of notation with base eleven, find six-

digit numerals of the form abcabc that are squares.

CRUX 197. by Charles W. Trigg
In the octonary system, find a square number that has

the form aaabaaa.

TYCMJ 90. by Charles W. Trigg
A plateau number has the form abb . . . bba with a < b.

In base 8, (33)2 = 1331 is a plateau square. In this same
system, find another plateau square.

OMG 15.3.5.
In base 8, what digits can odd squares end in?

SSM 3610. by Charles W. Trigg
In the decimal system, there are no six-digit numerals

with the form abcabc which are squares. Find the system
of numeration with the smallest base wherein such a square
exists, with a, b, and c being distinct nonzero digits.

JRM 677. by David L. Silverman
Find all integers n in all bases such that the sum of

the digits of n2 is n.

Base systems: sum of digits

NYSMTJ 88. by Alan Wayne
Show that, in every numeration base b, there is a

unique three-digit integer that is (b + 1) times the sum of
its digits.

SSM 3689. by R. F. Wardrop
Find all three-digit numbers abc such that

a + b + c = abcB

where B is a positive integer, 2 ≤ B ≤ 12.

Base systems: triangular numbers

OSSMB 76-12.
Prove that every odd square in base 8 ends in 1, and if

this 1 be cut off, the remaining part is always a triangular
number.

Binomial coefficients: arithmetic progressions

PARAB 414.
Find all positive integers n and k such that the three

binomial coefficients
(
n
k

)
,
(
n
k+1

)
, and

(
n
k+2

)
are in arith-

metic progression.

SPECT 8.8.
Is it possible for three consecutive binomial coefficients

to be
(a) in arithmetic progression,
(b) in geometric progression?

Binomial coefficients: congruences

MM Q650. by Edward T. H. Wang

Prove that for any positive integer n,
(
n
k

)
≡ 0 (mod n)

if gcd(n, k) = 1 and k = 1, 2, . . . , n− 1.

PUTNAM 1977/A.5.
Prove that

(
pa

pb

)
≡
(
a

b

)
(mod p)

for all integers p, a and b with p a prime, p > 0, and
a ≥ b ≥ 0.

Binomial coefficients: divisibility

FQ B-310. by Daniel Finkel
Find some positive integers n and r such that the

binomial coefficient
(
n
r

)
is divisible by n+ 1.

NAvW 396. by P. Erdős
Let n > 6. Show that for some i, with 1 < i ≤ n

2 , the

binomial coefficient
(
n
i

)
is divisible by n.

NAvW 397. by P. Erdős
Show that, for every positive integer k, there is an

nk such that for every n > nk there is an integer `, with
k < ` ≤ n

2 , for which
(
n
`

)
is divisible by

(
n
k

)
.

PARAB 355.
If p is a prime, prove that

(
n
p

)
− bnp c is divisible by p.

Binomial coefficients: finite sums

FQ B-338. by George Berzsenyi
Let k and n be positive integers. Let p = 4k + 1, and

let h be the largest integer with 2h+ 1 ≤ n. Show that

h∑

j=0

pj
(

n

2j + 1

)

is an integral multiple of 2n−1.

FQ H-264. by L. Carlitz
Show that

m−r∑

i=0

(
s+ i

i

)(
m+ n− s− i+ 1

n− s

)
=

n−s∑

i=0

(
r + i

i

)(
m+ n− r − i+ 1

m− r

)
.

FQ H-276. by V. E. Hoggatt, Jr.
Show that the sequence of Bell numbers, {Bi}∞i=0, is

invariant under repeated differencing.

B0 = 1, Bn+1 =

n∑

k=0

(
n

k

)
Bk (n ≥ 0).
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FQ H-269. by George Berzsenyi
The sequences {an}∞n=1 and {bn}∞n=0, defined by

an =

bn/3c∑

k=0

(
n− 2k

k

)
, (n ≥ 1),

and

b2n =

bn/2c∑

k=0

[
n− k

2k

]
,

b2n+1 =

bn−1
2 c∑

k=0

[
n− k
2k + 1

]
, (n ≥ 0)

are obtained as diagonal sums from Pascal’s triangle and
from a similar triangular array of numbers formed by the
coefficients of powers of x in the expansion of (x2 +x+ 1)n,

respectively. (More precisely,
[
n
k

]
is the coefficient of xk

in (x2 + x + 1)n.) Verify that an = bn−1 + bn for each
n = 1, 2, . . . .

SIAM 75-10. by G. E. Andrews
It is known that if

H(m,n) =

m∑

i=0

n∑

j=0

(
i+ j

i

)(
m− i+ j

j

)

·
(
i+ n− j

i

)(
m+ n− i− j

n− j

)
,

then

H(m,n)−H(m− 1, n)−H(m,n− 1) =

(
m+ n

n

)2

.

Prove also that

(2m+ 1)H(m,n) =

(n+m+ 1)

{
2H(m− 1, n) +

(
m+ n

n

)2
}
.

Binomial coefficients: generating functions

FQ B-390. by V. E. Hoggatt, Jr.
Find, as a rational function of x, the generating func-

tion

Gk(x) =

(
k

k

)
+

(
k + 1

k

)
x+

(
k + 2

k

)
x2 + · · ·

+

(
k + n

k

)
xn + · · · , |x| < 1.

Binomial coefficients: maxima and minima

AMM E2640. by James E. Desmond
and William R. Hastings

Prove or disprove: The largest power of 2 that divides
(

2n+1

2n

)
−
(

2n

2n−1

)
, n > 1

is 23n.

Binomial coefficients: number representations

FQ H-261. by A. J. W. Hilton
Show that, if k ≥ 2, n = r+ s, where r ≥ 1, s ≥ 1, and

if the k-binomial representations of n, r, and s are

n =

(
ak
k

)
+

(
ak−1

k − 1

)
+ · · ·+

(
at
t

)

r =

(
bk
k

)
+

(
bk−1

k − 1

)
+ · · ·+

(
bu
u

)

s =

(
ck
k

)
+

(
ck−1

k − 1

)
+ · · ·+

(
cv
v

)

then (
ak
k − 1

)
+

(
ak−1

k − 2

)
+ · · ·+

(
at
t− 1

)

≤
(

bk
k − 1

)
+

(
bk−1

k − 2

)
+ · · ·+

(
bu
u− 1

)

+

(
ck

k − 1

)
+

(
ck−1

k − 2

)
+ · · ·+

(
cv
v − 1

)
.

Binomial coefficients: odd and even

CRUX 90. by Léo Sauvé
(a) Determine, as a function of the positive integer n,

the number of odd binomial coefficients in the expansion of
(a+ b)n.

(b) Do the same for the number of odd multinomial
coefficients in the expansion of (a1 + a2 + · · ·+ ar)

n.

Binomial coefficients: primes

PME 369. by P. Erdős
Determine all solutions of(

n

k

)
=
∏

p≤n
p.

Collatz problem

SSM 3608. by R. F. Wardrop
For any number N0, if N0 is even, divide by 2; if N0

is odd, triple and add 1; thus obtaining N1. Continuing
in this manner either dividing by 2 if even or tripling and
adding 1 if odd, eventually the integer 1 is reached. In this
manner every number Ni can be changed to 1 through a
series of operations.

The successive numbers 12 and 13 each take nine op-
erations to get to 1.

Some possible questions that can be asked are:
(a) Is it ever true that three successive numbers require

the same number of operations to get to 1?
(b) Is it ever true that four successive numbers require

the same number of operations to get to 1?
(c) Find seventeen consecutive numbers less than

10, 000 such that each one takes the same number of op-
erations to get to 1.

(d) Can you find x consecutive numbers such that each
one takes the same number of operations to get to 1, where
x = 18, 19, . . . ?

(e) What is the average number of operations for num-
bers 1− 100, 100− 260, etc?
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CRUX 133.* by Kenneth S. Williams
FUNCT 2.1.4.

Let f be the operation that takes a positive integer n
to 1

2n (if n even) and to 3n+1 (if n odd). Prove or disprove
that any positive integer can be reduced to 1 by successively
applying f to it.

Composed operations

JRM 737. by Frank Rubin
Every positive integer can be generated by successive

applications of the functions factorial, square root, and floor
in some appropriate order to the starting integer N = 3. For

example,
⌊√

(3!)!
⌋

= 26. Let M be the largest intermediate
value to which the factorial function is applied. In the
example, M = 6.

(a) For N = 3, what is the largest value of M which
must occur to achieve the generation of all integers from 1
to 10?

(b) Is there any starting value for N that permits a
smaller maximum value of M in generating all integers from
1 to 10?

Composite numbers

AMM E2800. by B. de la Rosa
Show that an odd positive integer c is composite if and

only if there exists a positive integer a ≤ (c−3)/3 such that

(2a− 1)2 + 8c is a square.

NYSMTJ 93. by Erwin Just
and Sidney Penner

For each positive integer n, show that

1 + 9 + 92 + · · ·+ 9n

is composite.

OSSMB 75-11.
Find 40 consecutive values of x for which x2 + x+ 41

yields only composite numbers.

ISMJ 14.20.
Show that the sequence an2 + bn + c, n = 1, 2, 3, . . .,

where a, b, and c are positive integers with no common
factors, contains infinitely many composite numbers.

MSJ 481.
Prove that there are infinitely many values of n for

which the expression n2 − 39n + 421 yields a composite
number.

AMM E2679. by Solomon W. Golomb
If a positive integer m has a prime factor greater than

3, show that 4m − 2m + 1 is composite.

Continued fractions: convergents

ISMJ 13.1.
Show that the convergents of a continued fraction with

positive integral coefficients are all in lowest terms.

ISMJ 13.2.

Consider the continued fraction:

1 +
12

2 +
32

2 +
52

. . .

Find formulas for the numerators and denominators of the
convergents of continued fractions of this type.

FQ H-308. by Paul Bruckman

Let

[a1, a2, . . . , an] =
pn
qn

=
pn(a1, a2, . . . , an)

qn(a1, a2, . . . , an)

denote the nth convergent of the infinite simple continued
fraction [a1, a2, . . .], n = 1, 2, . . . . Also, define p0 = 1 and
q0 = 0. Further, define

Wn,k = pn(a1, a2, . . . , an)qk(a1, a2, . . . , ak)

− pk(a1, a2, . . . , ak)qn(a1, a2, . . . , an)

= pnqk − pkqn, 0 ≤ k ≤ n .

Find a general formula for Wn,k.

Continued fractions: evaluations

CRUX 163. by Charles Stimler

Evaluate:

2

1 +
3

2 +
4

3 +
5

4 +
6

. . .

.

Continued fractions: identities

SSM 3732. by Herta T. Freitag

Show that

(a)

2

3+

1

4+

1

4+

1

4+
· · · = 1

1+

1

1+

1

1+

1

1+
· · ·

and

(b)

(
1 +

1

2+

1

2+

1

2+
· · ·
)
·
(

1 +
1

1+

1

2+

1

1+

1

2+
· · ·
)

= 2 +
1

2+

1

4+

1

2+

1

4+
· · · .
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Continued fractions: periodic continued fractions

CRUX 349. by R. Robinson Rowe
Solve in positive integers a and b the continued fraction

equation

2

a+
1

a+
1

. . .

−
1

b+
1

b+
1

. . .

= 1.

PME 392. by R. Robinson Rowe
Solve in distinct positive integers:

1

a+
1

b+
1

a+
1

b+
1

. . .

−
3

c+
1

d+
1

c+
1

d+
1

. . .

=
1

2
.

Continued fractions: pi

ISMJ 13.3.
Prove or disprove:

π

4
= 1 +

12

2 +
32

2 +
52

. . .

Continued fractions: radicals

CRUX 227. by W. J. Blundon
It is known that

√
a2 + 1 = 〈a, 2a〉 = a+

1

2a+
1

2a+
1

. . .

for all positive integers a. Solve completely in positive
integers each of the equations

√
a2 + y = 〈a, x, 2a〉 and

√
a2 + y = 〈a, x, x, 2a〉,

where in both cases x 6= 2a.

ISMJ 13.4.
Find the simple continued fraction expansion for

√
3.

Decimal representations

MSJ 498.
Characterize the block of digits that repeat endlessly in

the decimal expansion for fractions of the form n/(10m+1),
where n and m are positive integers.

PARAB 271.
Prove that if the sum of the fractions

1

n
+

1

n+ 1
+

1

n+ 2

(where n is a positive integer) is put in decimal form, it
forms a nonterminating decimal which is periodic after sev-
eral terms.

MATYC 87. by James M. Thelen
Let n be a positive integer, with gcd(n, 10) = 1. Then

1/n has an infinite repeating decimal representation. Show
that the repeating cycle begins immediately after the deci-
mal point.

CANADA 1975/4.
Find a positive number which is such that its decimal

part, its integral part, and the number itself are three terms
in geometric progression.

Determinants: 0-1 matrices

AMM E2588. by Stephen B. Maurer
Let An be the matrix of order (2n − 1)× n, where the

kth row is the binary expression for k. Let Mn = AnA
t
n

(mod 2). If Mn is regarded as a matrix over the integers,
what is its determinant?

Determinants: binomial coefficients

AMM E2729. by John Goth
Evaluate det(A) where A = (aij) is the n × n matrix

given by

aij =

(
im+ j − 1

j

)
, i, j = 1, . . . , n,

m being a fixed positive integer.

MENEMUI 1.3.1. by S. L. Lee
Evaluate∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 · · · 0 0

1
(

2
1

)
1 0 0 · · · 0 0

1
(

3
1

) (
3
2

)
1 0 · · · 0 0

...
...

...
...

...
. . .

...
...

1
(
n−1

1

) (
n−1

2

) (
n−1

3

) (
n−1

4

)
· · ·

(
n−1
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AMM E2709. by R. M. Norton
Let A = (aij), 0 ≤ i, j ≤ n, be a Hankel matrix defined

by

aij =





0, if i+ j is odd,

(i+j
i+j
2

)
, if i+ j is even.

Compute detA.

SIAM 78-15. by R. Shantaram

Define m[2n] =
(

2n
n

)
, n = 0, 1, 2, . . . . Let T (n) be

the n × n matrix whose (i, j) element is m [2(i+ j − 1)],
i, j = 1, 2, . . . , n and S(n) be the (n + 1) × (n + 1) matrix
whose (i, j) element is m [2(i+ j)], i, j = 0, 1, . . . , n. Prove
that

detT (n) = detS(n) = 2n.
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Determinants: congruences

CRUX 324. by Gali Salvatore

In the determinant

∣∣∣∣∣∣∣

6 a 6 b

c 8 d 2

1 e 5 f

g 1 h 1

∣∣∣∣∣∣∣

replace the letters a, b, . . . , h by eight different digits so as to
make the value of the determinant a multiple of the prime
757.

AMM E2683. by Ira Gessel

Let A be the cyclic matrix with (a0, a1, . . . , ap−1) as
first row, p a prime. If the ai are integers, show that

detA ≡ a0 + a1 + · · ·+ ap−1 (mod p).

Determinants: counting problems

AMM 6086. by Raymond M. Redheffer

Let dij be the number of divisors common to i and j.
Prove that the determinant |dij | for 2 ≤ i, j ≤ n equals the
number of square-free integers from 1 to n.

Determinants: factorials

AMM E2747. by H. L. Krall
and Emil Grosswald

(a) Compute the determinant of the matrix A = (aij),
where 0 ≤ i, j ≤ n− 1 and aij = 1/(i+ j + 1)!.

(b) Compute the determinant of the matrix B = (bij),
where

bij = (−1)i+j+12i+j+1/(i+ j + 1)!

for i, j ∈ {1, 2, . . . , n}.

Determinants: identities

SIAM 78-14. by D. Slepian

Denote by R(n,N) the determinant of the (n + 1) ×
(n+ 1) matrix that has

N−1∑

l=0

li+j

for the element in its ith row and jth column, i, j =
0, 1, . . . , n. Here 00 ≡ 1. Show that

R(n,N) =

N−1∑

l0<l1<···<ln
0

n∏

i<j
0

(
li − lj

)2

= Nn+1
n∏

j=1

(j!)4
(
N2 − j2

)n+1−j

(2j)!(2j + 1)!
.

Determinants: solution of equations

TYCMJ 150. by Aron Pinker
Let A1, A2, A3, and A4 be nonzero integers and α a

positive integer that is not a perfect square. Is it possible
that ∣∣∣∣∣∣∣

A1 αA4 αA3 αA2

A2 A1 αA4 αA3

A3 A2 A1 αA4

A4 A3 A2 A1

∣∣∣∣∣∣∣
= 0?

NAvW 533. by R. J. Stroeker
For n ∈ N (n ≥ 3) and x ∈ R, y ∈ R, we define

Fn(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

y 1 0 0 . . .

1 x 1 0 . . .

0 1 x 1 . . .

. . . . . . .

. . . . . . .

. . . 0 1 x 1

. . . 0 0 1 y

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Find all (x, y) ∈ N2 such that Fn(x, y) = 1.

Difference equations

FQ B-389. by Gregory Wulczyn
Find the complete solution, with two arbitrary con-

stants, of the difference equation

(n2 + 3n+ 3)Un+2 − 2(n2 + n+ 1)Un+1

+(n2 − n+ 1)Un = 0.

FQ H-274. by George Berzsenyi
It has been shown that if

Q =

(
0 0 1

0 1 2

1 1 1

)
,

then

Qn =

(
F 2
n−1 Fn−1Fn F 2

n

2Fn−1Fn Fn+1 − Fn−1Fn 2FnFn+1

F 2
n FnFn+1 F 2

n+1

)
.

Generalize the matrix Q to solutions of the difference equa-
tion

Un = rUn−1 + sUn−2,

where r and s are arbitrary real numbers, U0 = 0 and
U1 = 1.

JRM 705. by Friend H. Kierstead, Jr.
Let f(n) = pf(n − 1) + 1, with f(0) = 1, where p is

independent of n. Find an explicit expression for f(n) in
terms of n and p.

FQ B-370. by Gregory Wulczyn
FQ B-383. by Gregory Wulczyn

Solve the difference equation

un+2 − 5un+1 + 6un = Fn.
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Digit problems: arithmetic progressions

CRUX 378. by Allan Wm. Johnson Jr.
(a) Find four positive decimal integers in arithmetic

progression, each having the property that if any digit is
changed to any other digit, the resulting number is always
composite.

(b)* Can the four integers be consecutive?

Digit problems: base systems

OSSMB 75-6. by Michael Webster
Prove that

x1x2x3 . . . xn −
∑n
k=1 xk∑n−2

k=0 (x1 + x2 + x3 + · · ·+ xn−k−1)Rk
= R− 1

where x1x2x3 . . . xn is an n-digit numeral, base R, n ≥ 2.

Digit problems: cancellation

ISMJ 14.11.
A mathematics student complained that he was not

given credit for a correct answer when he cancelled the 6’s in
the fraction 16/64. Find all the fractions less than 1 in value
with 2-digit numerators and denominators for which this
kind of cancellation works. How about 3-digit numerators
and denominators?

PME 365. by Clayton W. Dodge
Find all fractions abc/cde such that cancelling the digit

c yields an equivalent fraction.

Digit problems: consecutive digits

FQ B-364. by George Berzsenyi
Find and prove a formula for the number of positive

integers less than 2n whose base 2 representations contain
no consecutive 0’s.

CRUX 267. by John Veness
Some products, like 56 = 7 · 8 and 17820 = 36 · 495,

exhibit consecutive digits without repetition. Find all such
products c = a · b which exhibit without repetition four,
five,. . . , ten consecutive digits.

Digit problems: counting problems

FUNCT 2.4.2.
There are 700 hymns in a church hymnal. It is required

to print a set of cards, each with one digit on it, so that the
numbers of any four hymns can be displayed on a notice
board. How many cards are required? (Give two answers,
one assuming that an inverted 6 can be used as a 9, the
other without that option.)

SSM 3665. by Alan Wayne
In the sets of decimal integers S1 = {1, 2, . . . , 10},

S2 = {1, 2, . . . , 100}, and S3 = {1, 2, . . . , 1000}, the number
of zero digits in S2 is the same as the number of digits in
S1; and the number of zero digits in S3, is the same as the
number of digits in S2. Show that this equality relation
holds in general.

Digit problems: cubes

CRUX 385. by Charles W. Trigg
In the decimal system, there is a 12-digit cube with

a digit sum of 37. Each of the four successive triads into
which it can be sectioned is a power of 3. Find the cube
and show it to be unique.

Digit problems: cyclic shift

FUNCT 1.1.4.
The left-hand digit of a natural number is removed and

replaced at the right-hand end, and this results in increasing
the original number by fifty percent. Find such a natural
number.

FUNCT 1.2.5.
(a) The right-hand digit of a natural number is to be

removed and replaced at the left-hand end, so increasing
the original number by 50%. Find such natural numbers.

(b) Repeat (a) with 50% replaced by 75%.

ISMJ J11.5.
The last two digits of a six digit number are 4 and 2

respectively. When these two digits are shifted to be the
first two digits the new six digit number is exactly half of
the original. Find the original number.

NYSMTJ 63. by Haralyn Kuckes
Find the smallest positive integer such that, when the

first digit is transposed to the end, the resultant number is
3/2 times the original.

OSSMB 79-2.
Find the smallest positive integer whose value is tripled

if the left-hand digit is transferred to the right-hand end.

Digit problems: digit reversals

ISMJ 13.21.
(a) If 10 ≤ n ≤ 99, show that the number obtained

from n by reversing its digits is given by the formula 10n−
99bn/10c.

(b) For 1 ≤ n ≤ 9999, write a formula for the sum
of the digits of n. This formula may involve the usual
arithmetic operations and also the floor function.

PARAB 369.
Find a 5-digit number which, when divided by 4, yields

another 5-digit number using the same five digits but in the
opposite order.

SSM 3575. by Bob Prielipp and N. J. Kuenzi
SSM 3591. by Bob Prielipp and N. J. Kuenzi

When the digits of the positive integer N are written
in reverse order, the positive integer N ′ is obtained. Let
N + N ′ = S. Then S is called the sum after one reversal
addition. The kth pentagonal number is given by

Pk = k(3k − 1)/2, k = 1, 2, 3, . . . .

Prove that there are infinitely many pentagonal num-
bers that have a palindromic sum after one reversal addi-
tion.
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MSJ 435. by Peter A. Lindstrom
Let abcd be a four-digit numeral, written in base 10,

whose digits a, b, c, and d are such that a > b > c > d.
Reverse the order of the digits to form another four-digit
base ten number, dcba. Show that the sum of the digits of
the differences of these two numbers is 18.

Digit problems: digital roots

CRUX 203. by Charles W. Trigg
Prove or disprove: The digital root of every even per-

fect number greater than 6 is 1.

SSM 3674. by Richard L. Francis
Let S denote the set of positive integers divisible by

7 and having a digital root of 7. Show that S contains
infinitely many squares not ending in zero.

SSM 3779. by Richard L. Francis
Is it true that the digital root of a prime of the form

x3 − y3 is 1 or 7?

Digit problems: distinct digits

CRUX 486. by Gilbert W. Kessler
(a) Find all natural numbers N whose decimal repre-

sentation

N = abcdefghi

consists of nine distinct nonzero digits such that

2|(a− b), 3|(a− b+ c), 4|(a− b+ c− d), . . . ,

9|(a− b+ c− d+ e− f + g − h+ i).

(b) Do the same for natural numbers N = abcdefghij
consisting of ten distinct digits (leading zeros excluded) such
that

2|(a− b), 3|(a− b+ c), . . . ,

10|(a− b+ c− d+ e− f + g − h+ i− j).

OSSMB 79-13.
The digits in the set {0, 1, 2, . . . , 9} can be uniquely

arranged so that, starting from the left, the number formed
by the first k digits is divisible by k for k = 1, 2, . . . , 10.
Find this arrangement.

JRM 671. by Frank Rubin
A used car has a standard 6-digit odometer and a 4-

digit trip odometer. Assuming that the new purchaser will
never reset the trip odometer, how can one determine from
the present settings at what mileage (if ever) the ten digits
will first be all distinct?

OSSMB 77-11.
The digits 0, 1, . . . , 7 can be arranged to form integers

whose sum is 100. Is it possible to form such an arrangement
using the digits 0, 1, 2, . . . , 9? Note that each digit must be
used once and only once.

OSSMB G77.1-1.
Find the sum of all 3-digit numbers that can be formed

from the digits 2, 3, 4, 7, 8, 9 where each number consists
of 3 distinct digits.

Digit problems: divisibility

ISMJ J11.8.
Any three digit number abc is divisible by 7 if and only

if 2a + 3b + c is divisible by 7. Why is this so? Can you
generalize this to a rule for four or more digits?

JRM 596. by Dan Wm. Burns
Let n be any nonnegative integer. Prove that the

number formed by placing 2n and 2n+1 side by side in either
order is a multiple of 3.

Digit problems: division

OMG 14.1.1.
An eight-digit number is divided by a three-digit num-

ber. The quotient is a five-digit number beginning with the
digit 8, and the remainder is 0. Reconstruct the division.

Digit problems: factorials

MM 1075. by Philip M. Dunson
Counting from the right end, what is the 2500th digit

of 10000!?

SSM 3717. by Merrill Barnebey
For what values of n, n > 1, does the expanded form

of n! have exactly n digits?

PARAB 432.
Find all three-digit numbers that are equal to the sum

of the factorials of their digits.

Digit problems: fractions

AMM E2511. by Morris Olitsky
We observe that

1/3 = 0.333333 · · · = 3
[
(0.1) + (0.1)2 + (0.1)3 + · · ·

]

and that

1/7 = 0.142857 · · · = 7
[
(0.02) + (0.02)2 + (0.02)3 + · · ·

]
.

Are there any other positive integers x for which

1

x
= x



∞∑

j=1

(
m10−n

)j



for suitable integers m and n?

CRUX 131. by André Bourbeau

Let p ≥ 7 be a prime number. If p−1 = 0.ȧ1a2 . . . ȧk,
show that the integer

N = a1a2 . . . ak

is divisible by 9.

PME 366. by Richard Field
Let Q = b10n/pc, where p is a prime greater than 5,

and n is the cycle length of the repeating decimal 1/p. Can
Q be a prime?
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Digit problems: juxtapositions

JRM 380. by J. A. H. Hunter
Find a seven-digit number ABCDEFG with the property

that half the square of ABCD plus twice the square of EFG is
equal to ABCDEFG. The digits A through G are not necessarily
distinct.

SSM 3751. by Herta T. Freitag
Consider an n-digit base ten number, n > 1. Write the

same number next to it so as to obtain a 2n-digit number.
Such a number will be called a “2n-number.”

(a) For what values of n, if any, will the set of 2n-
numbers be such that no pair of them is relatively prime?

(b) For what values of n, if any, will the set of 2n-
numbers contain prime numbers?

(c) What about the same questions if numbers are
considered in a numeration system with a different base?

MATYC 101. by Lawrence Sher
Take a 3-digit number, base 10. Repeat the digits

to form a 6-digit number. Which primes, smaller than
15, divide evenly into the 6-digit number? Generalize to
division by any prime of a 2N -digit number constructed as
above.

CRUX 457. by Allan Wm. Johnson Jr.
Here are examples of two n-digit squares whose juxta-

position forms a 2n-digit square:

4 and 9 form 49 = 72,

16 and 81 form 1681 = 412,

225 and 625 form 225625 = 4752.

Is there at least one such juxtaposition for each n =
4, 5, 6, . . .?

Digit problems: leading digits

JRM 786. by Daniel P. Shine
A multiplication table showing the products of all two-

digit numbers contains 8,100 entries. The distribution of the
first digit of these numbers is as follows:

1 1954
2 1481
3 1181
4 952
5 767
6 618
7 494
8 372
9 281
These results may be approximated analytically by

considering real numbers distributed uniformly in the in-
terval [10, 100]. How good is the approximation?

NAvW 455. by J. van de Lune
FUNCT 3.3.5.

For any natural number n, written in the scale of ten,
let f(n) be the first digit of n. For 1 ≤ k ≤ 9, determine
the frequency of the digit k in the sequence (f (2n))n∈N.

CRUX 266.* by Daniel Rokhsar
Let dn be the first digit in the decimal representation

of n!, so that

d0 = 1, d1 = 1, d2 = 2, d3 = 6, d4 = 2, . . . .

Find expressions for dn and
∑n
i=0 di.

Digit problems: matrices

JRM 768. by Peter MacDonald
Using each of the digits 0 through 9 at least once, fill

in a 4 × 4 matrix such that (a) in each row the digit in
the first column times the digit in the fourth column equals
the two-digit number formed from the digits in columns
two and three; and (b) in each column the digit in the first
row times the digit in the fourth row equals the two-digit
number formed from the digits in rows two and three.

Arrange your solutions so that the smallest corner digit
is at the upper left and the next smallest is at the upper
right.

Digit problems: maxima and minima

SPECT 11.8.
PARAB 346.

Arrange the digits 0 to 9 to form five 2-digit numbers
in such a way that the product of these five numbers is
maximal.

ISMJ 14.14.
Form one- and two-digit numbers from the digits from

0 to 9. Use each digit once in doing so. Add the num-
bers. What is the largest and the smallest sum that can be
obtained this way?

Digit problems: missing digits

OMG 18.3.9.
An old invoice showed that 72 turkeys had been pur-

chased for $ ∗ 67.9∗. The first and last digits were illegible.
What were they?

PARAB 431.
Adjoin to the digits 632 three more digits so that the

resulting six-digit number is divisible by each of 7, 8, and 9.

PENT 292. by Léo Sauvé
The number 9,x29,50y,zt7 is known to be divisible by

73 and 137. Determine the digits x, y, z, t and thereby
identify the number.

SSM 3741. by Charles W. Trigg
The product of three consecutive odd integers is given

as 39x, xxx, xx7 (where each x represents a digit, and not
necessarily always the same digit). Find the integers and
supply the missing digits in the product.

Digit problems: multiples

ISMJ 13.25.
Show that for any integer n, there is an integer q such

that the digits of nq (in the decimal notation) are all either
0 or 1.

PARAB 428.
Let n be an integer whose last digit is 7. Show that

some multiple of n has no digit equal to zero.

168



Number Theory
Digit problems: number of digits Problems sorted by topic Digit problems: primes

Digit problems: number of digits

FUNCT 1.3.4.
A large textbook has every page numbered. The

printer used 1,890 digits to number the pages. How many
pages were there?

JRM 604.
An n-digit number in base n is called an “inventory

number” if it tallies its digits accurately in increasing order
of digit. For example 3, 211, 000 is a tally number in base 7,
listing 3 zeros, 2 ones, 1 two, 1 three, 0 fours, 0 fives, and 0
sixes.

Prove that base n has an inventory number if and only
if n is not a factor of 6. What bases have more than one
inventory number?

PARAB 396.
Find a 10-digit number whose first digit tells the num-

ber of zeros that appear in it, whose second digit tells the
number of ones, and so on (thus the tenth digit tells the
number of nines in the number). Is there another such num-
ber?

Digit problems: operations

CRUX 21. by H. G. Dworschak
What single standard mathematical symbol can be

used with the digits 2 and 3 to make a number greater than
2 but less than 3?

CRUX 285. by Robert S. Johnson
Using only the four digits 1, 7, 8, 9 (each exactly

once) and four standard mathematical symbols (each at
least once), construct an expression whose value is 109.

Digit problems: pandigital numbers

SSM 3681. by Joe Dan Austin
Find natural numbers n(2), n(3), . . . , n(11) such that

each n(i):
(a) uses each of the digits 0, 1, 2, . . . , 9 exactly once;
(b) is divisible by i; and
(c) is the largest number satisfying (a) and (b).

CRUX PS5-2.
It has been stated that the number

526315789473684210

is a persistent number, that is, if multiplied by any positive
integer the resulting number always contains the ten digits
0, 1, 2, . . . , 9 in some order with possible repetitions.

(a) Prove or disprove the above statement.
(b) Are there any persistent numbers smaller than the

above number?

Digit problems: permutations

MSJ 455. by Mike Conwill
For how many of the 720 permutations of the digits 1,

2, 5, 6, 7, and 9 is the result a number divisible by 6?

MSJ 465.
Let N and n be positive integers, and suppose that

the base 10 representation of N consists of the following
digits: n 3’s, one 4 and one 6. Prove that there exists a
permutation of the digits of N so that the resulting number
is divisible by 7.

PARAB 404.
ISMJ 10.8.
ISMJ 10.13.

The number 1234567 is not divisible by 11, but 3746512
is. How many different multiples of 11 can be obtained by
appropriately ordering these digits?

MM 1016. by Michael W. Ecker
For n a positive integer, describe all n-digit numbers x

with the property that there exists a permutation y of the
digits of x such that x+ y = 10n.

Digit problems: powers

CRUX 164. by Steven R. Conrad
In the 5-digit decimal number ABCDE (with A 6= 0),

different letters do not necessarily represent different digits.
If this number is the fourth power of an integer, and if
A + C + E = B + D, find the digit C.

Digit problems: primes

PENT 296. by Charles W. Trigg
Using three consecutive digits repeated, form an arith-

metic progression of three-digit primes in the decimal sys-
tem.

JRM 531. by David L. Silverman
Can the numbers 0 through 9 be arranged in a bracelet

in such a way that every pair of adjacent links forms a two-
digit prime or the reversal of one? (The pair 0p will be
considered a two-digit prime if p is a prime digit.)

JRM 570. by Alvin Owen
The smallest positive integer that is not a factor of

any number that has no repeated digits is 100. What is the
smallest prime that is not a factor of any number that has
no repeated digits?

MM 1029. by Murray S. Klamkin
Does there exist any prime number such that if any

digit (in base 10) is changed to any other digit, the resulting
number is always composite?

OSSMB 79-6.
In the multiplication of a three-digit number by a two-

digit number which yields a five digit number, all the digits
are prime, including those that appear in the standard mul-
tiplication algorithm. Find the digits.

MM 953. by Allan W. Johnson, Jr.
An absolute prime is a prime number all of whose

decimal digit permutations are also prime numbers. Show
that no absolute prime number exists that contains three of
the four digits 1, 3, 7, and 9.

Are there any absolute primes of more than three digits
that contain two of the digits 1, 3, 7, and 9?

SSM 3753. by Bob Prielipp
If q is a prime number and

1/q = .a1a2 . . . atat+1at+2 . . . a2t

prove that

at+1at+2 . . . a2t = (q − 1)(a1a2 . . . at) + (q − 2).
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JRM 555. by Henry Larson
(a) There are two different ways of expressing the

prime 809 as the sum of smaller primes with no digit used
more than once, on either side of the equation. One of them
is: 809 = 761 + 43 + 5. Find the other.

(b) Can a similar all-prime equation be written using
all ten digits only once?

(c) If primes are formed using each of the digits 1
through 9, the smallest obtainable sum comes from 89 +
61 + 43 + 7 + 5 + 2. What is the smallest possible sum of
primes using all ten digits?

(d) What is the smallest possible product obtainable
using primes made up of the digits 1 through 9? 0 through
9?

MSJ 420. by John Murphy
An “upside down” prime is a positive prime number

that remains a positive prime number when the paper on
which it is written is turned upside down. Find all upside
down primes smaller than 1,000.

Digit problems: products

ISMJ 10.16.
Prove that if an integer n exceeds 10, the product of

its digits is less than n.

PME 444. by Peter A. Lindstrom
In terms of n, which is the first nonzero digit of

n/2∏

i=1

(i)(n− i+ 1)

for even n ≥ 6?

Digit problems: squares

CRUX 470. by Allan Wm. Johnson Jr.
Construct an integral square of eleven decimal digits

such that, if each digit is increased by unity, the resulting
integer is a square.

CRUX 95. by Walter Bluger
Said a math teacher, full of sweet wine:
“Your house number’s the exact square of mine.”
— “You are tight and see double
Each digit. That’s your trouble,”
These 2-digit numbers you must divine.

MM Q642. by Steven R. Conrad
OSSMB 75-13.

Prove that the numbers 49, 4489, 444889, . . . , ob-
tained by inserting 48 into the middle of the preceding num-
bers, are all perfect squares.

PARAB 352.
How many square numbers are there whose digits,

when written in base 10 notation, contain three hundred
1’s and some number of 0’s?

AMM E2786. by Walter Stromquist
The consecutive integers 31 and 32 have these proper-

ties: The larger one is twice a square, and the sum of the
digits in both numbers is a square.

(a) How many pairs of consecutive integers have the
same properties?

(b) Would there exist such a pair if we used base 3
instead of decimal notation?

(c) Does such a pair exist in any odd base other than
3?

SSM 3685. by Douglas E. Scott
The number 81 has the following interesting property:

“Bisect” the number, obtaining 8 and 1. Add 8 and 1 and
square the result. The answer is the original number 81.
Find two 4-digit and two 6-digit numbers with this property.
Can you generalize the results?

CRUX 443.* by Allan Wm. Johnson Jr.
(a) Here are seven consecutive squares for each of

which its decimal digits sum to a square:

81, 100, 121, 144, 169, 196, 225.

Find another set of seven consecutive squares with the same
property.

(b)* Does there exist a set of more than seven consec-
utive squares with the same property?

ISMJ J11.16.
Find all fractions a/b such that
(i) a/b = 2/7,
(ii) a+ b is a two digit number, and
(iii) a+ b is a perfect square.

SSM 3705. by Alan Wayne
Show that for each positive integer n there is an n-

digit positive integer N such that N2 starts with precisely
n ones.

CRUX 65. by Viktors Linis
Find all natural numbers whose square (in base 10) is

represented by odd digits only.

NYSMTJ OBG9. by Alan Wayne
In the decimal system, find a six-digit, positive integer

whose square ends at the right in eleven times the integer.

PME 457. by R. Robinson Rowe
Defining the last n digits of a square as its n-tail, what

is the longest n-tail consisting of some part of the cardinal
sequence 0, 1, 2, 3, . . . , 9? What is the smallest square with
that n-tail?

Digit problems: sum of cubes

CRUX 407. by Allan Wm. Johnson Jr.
There are decimal integers whose representation in

some number base B = 2, 3, 4, . . . consists of three nonzero
digits whose cubes sum to the integer. For example,

4310 = 2234 = 23 + 23 + 33,

13410 = 2517 = 23 + 53 + 13,

43310 = 6618 = 63 + 63 + 13.

Prove that infinitely many such integers exist.
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Digit problems: sum of digits

CRUX 426. by Charles W. Trigg

There are two positive integers less than 1010 for each
of which

(i) its digits are all alike;
(ii) its square has a digit sum of 37.
Find them and show that there are no others.

OSSMB 76-1.
What is the sum of all the digits occurring in the

numbers from one to a billion?

OSSMB 77-1.
The positive integers x and y add up to z. The sum

of the digits in x is 43 (in the usual base 10 representation)
and the sum of the digits in y is 68. If in performing the
addition of x and y there are exactly five “carries”, what is
the sum of the digits in z?

IMO 1975/4.
OSSMB 76-2.
PARAB 380.

When 44444444 is written in decimal notation, the sum
of its digits is A. Let B be the sum of the digits of A. Find
the sum of the digits of B. (A and B are written in decimal
notation.)

AMM 6077. by H. L. Montgomery
Let s(n) denote the sum of the base 10 digits of

(1974)n. Show that s(n)→∞ as n→∞.

CRUX 430. by Allan Wm. Johnson, Jr.
(a) For n = 1, 8−n equals a decimal fraction whose

digits sum to 8. Prove that 8−n for n = 2, 3, 4, . . . never
again equals a decimal fraction whose digits sum to 8.

(b) The cube of 8 has decimal digits that sum to 8.
For n = 4, 5, 6, . . ., is there another 8n whose decimal digits
sum to 8?

CRUX 228. by Charles W. Trigg
(a) Find four consecutive primes having digit sums

that, in some order, are consecutive primes.
(b) Find five consecutive primes having digit sums that

are distinct primes.

SSM 3573. by Charles W. Trigg
Where

∑
di is the sum of the digits of Ni, the reiter-

ated operation Ni +
∑

di = Ni+1 produces an infinite se-
quence. Find such a sequence in the decimal system wherein
three consecutive terms are palindromes.

SSM 3686. by Charles W. Trigg
Find a prime number such that
(a) the sum of the digits of its square is a square, and
(b) the square of the prime number is also a sum of

five consecutive prime numbers.

CRUX 34. by H. G. Dworschak
Once a bright young lady called Lillian
Summed the numbers from one to a billion.
But it gave her the fidgets
To add up the digits;
If you can help her, she’ll thank you a million.

Digit problems: sum of powers

NYSMTJ 58. by Gary Wernsing
An Armstrong number is an n-digit number equal to

the sum of the nth powers of its digits.
Prove that there are a finite number of Armstrong

numbers.

Digit problems: sum of squares

PENT 304. by Charles W. Trigg
Does any three-digit number, N , equal 11 times the

sum of the squares of its digits?

Digit problems: terminal digits

JRM 764. by John Brinn and Romae Cormier
(a) Characterize the 2-digit numbers that do not occur

as the last two digits of a cube.
(b) Characterize the n-digit numbers that do not occur

as the last n digits of a cube.

PENT 289. by Charles Trigg
Each of the three consecutive integers 4, 5, and 6 ter-

minates its own cube. Find four pairs of larger, consecutive
integers in which each integer terminates its own cube.

FUNCT 2.4.3.
Find the number of 0’s at the end of the number 1000!.

SSM 3597. by Herta T. Freitag
Given that a and b are positive integers such that b

divides a, let Ub be the units digit of b.
(a) If Ub = 0, no prediction can be made about Uq, the

units digit of the quotient q; however if Ub = 5, Uq and Ub
must be of the same parity. Prove this.

(b) State and prove a relationship that predicts Uq for
all other cases.

SSM 3612. by Bob Prielipp
Verify the following rule for multiplying two natural

numbers, each of which has 5 as its units digit:

a5× b5 =
{

(a× b) +
⌊
a+ b

2

⌋}
c

where c = 25 if a+ b is even and c = 75 if a+ b is odd.

AMM E2776. by Alan Wayne
(a) In the decimal system, find all twelve-digit positive

integers n such that n102 ends at the right in the digits of
n.

(b) Is there a corresponding solution to the problem in
numeration systems other than base ten?

CRUX 149. by Kenneth S. Williams
Find the last two digits of 31000.

CRUX 253. by David Fischer
Let x ↑ y denote xy. What are the last two digits of

2 ↑ (3 ↑ (4 ↑ 5))?

JRM 741. by Frank Rubin
(a) Find the eight least significant digits of 79999.

(b) Find the ten least significant digits of 3999999.
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IMO 1978/1.
Given natural numbers m and n with 1 ≤ m < n. In

their decimal representations, the last three digits of 1978m

are equal, respectively, to the last three digits of 1978n.
Find m and n such that m+ n has its least value.

OMG 17.2.3.
If 88888888 is multiplied out, what is the units digit in

the final product?

ISMJ 14.1.
Consider the last (units) digits of the numbers 11 = 1,

22 = 4, 33 = 27, 44 = 256, 55 = 3125, . . . . Show that the
sequence of last digits is periodic with period 20.

PARAB 268.
Prove that 1110 − 1 is divisible by 100.

PARAB 358.
ISMJ 10.5.
ISMJ 14.12.

What are the last two digits of 2273

?

MSJ 496.
Let a1 = 1 and for n > 1 define an = nan−1 . What

are the last two digits of a9?

MSJ 490.
Consider the sequence (an):

6, 76, 376, 9376, 09376, 109376, . . .

and note that for each n = 1, 2, . . ., the product of two
numbers terminating in an is again a number terminating
in an. Find a7.

CANADA 1978/1.

Let n be an integer. If the tens digit of n2 is 7, what
is the units digit of n2?

ISMJ 14.15.
What integer has a square ending in the longest string

of nonzero digits (in base 10)?

CRUX 55. by Viktors Linis
What is the last digit of 1 + 2 + · · ·+n if the last digit

of 13 + 23 + · · ·+ n3 is 1?

Digit problems: triangular numbers

CRUX 274. by Charles W. Trigg
Find triangular numbers of the form abcdef such that

abc = 2def.

Diophantine equations: degree 2

AMM E2624. by Robert M. Hashway
Solve the Diophantine equation

a+ b · 10k = (a+ b)2,

where 0 < a, b < 10k and k ≤ 5.

CANADA 1977/1.
OMG 16.2.1.

If f(x) = x2 +x, prove that the equation 4f(a) = f(b)
has no solutions in positive integers a and b.

FQ B-387. by George Berzsenyi
Prove that there are infinitely many ordered triples of

positive integers (x, y, z) such that

3x2 − y2 − z2 = 1.

IMO 1977/5.
PARAB 367.

Let a and b be positive integers. When a2 + b2 is
divided by a + b, the quotient is q and the remainder is r.
Find all pairs (a, b) such that q2 + r = 1977.

JRM 81a. by D. Silverman

The Diophantine equation
∑N
k=1 x

2
k =

∏N
k=1 xk (xk 6=

0, for all k), has known solutions for n = 1, 3, 4, 5, 7, and
most larger values of n. No solutions are possible for n = 2,
since x2

1 + x2
2 > x1 · x2 for all such x1 and x2.

Find a solution for n = 6 or show that no such solutions
are possible.

MSJ 446.
Solve the following Diophantine equation in positive

integers x and y:

x2 + x+ 29 = y2.

NYSMTJ 83. by Steven R. Conrad
Find all ordered pairs of integers (x, y) such that

4x+ 3y − 8 = xy.

CRUX 153. by Bernard Vanbrugghe
Show that the only positive integers that satisfy the

equation a · b = a+ b are a = b = 2.

MSJ 449. by Steven R. Conrad
Solve the Diophantine equation

x2 + 4x+ y2 = 9.

FQ B-391. by M. Wachtel

Some of the solutions of 5x2 + 1 = y2 in positive
integers x and y are (x, y) = (4, 9), (72, 161), (1292, 2889),
(23184, 51841), and (416020, 930249). Find a recurrence
formula for the xn and yn of a sequence of solutions (xn, yn)
and find

lim
n→∞

xn+1

xn

in terms of α = (1 +
√

5)/2.

FQ B-410. by M. Wachtel

Some of the solutions of 5(x2 + x) + 2 = y2 + y in
positive integers x and y are:

(x, y) = (0, 1), (1, 3), (10, 23), (27, 61).

Find a recurrence formula for the xn and yn of a se-
quence of solutions (xn, yn). Also find lim(xn+1/xn) and

lim(xn+2/xn) as n→∞ in terms of α = (1 +
√

5)/2.

Diophantine equations: degree 3

CANADA 1978/2.
Find all pairs a, b of positive integers satisfying the

equation 2a2 = 3b3.
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CRUX 101. by Léo Sauvé
Show that the cube of any rational number is equal to

the difference of the squares of two rational numbers.

CRUX PS6-1.
Solve the Diophantine equation

x3 + y3 + z3 = (x+ y + z)3.

MM Q611. by Erwin Just
Prove that the only solutions to the Diophantine equa-

tion, x3 − 2 = 6y2, are x = 2, y = ±1.

PUTNAM 1978/B.4.
Prove that for every real number N , the equation

x2
1 + x2

2 + x2
3 + x2

4 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

has a solution for which x1, x2, x3 and x4 are all integers
larger than N .

MSJ 453. by Daniel Flegler
Solve the Diophantine equation

x3 + y3 − 3x2 + 6y2 + 3x+ 12y + 6 = 0.

MSJ 471.
Prove that there are no integers a and b for which the

roots of

x3 + ax2 + 7x+ b = 0

form an arithmetic progression.

SSM 3599. by Robert Fink and Bob Prielipp
Find ten, positive integer solutions of the equation

x3 + y3 + z3 = u3

where (x, y, z, u) = 1 and x ≤ y ≤ z ≤ u ≤ 250.

TYCMJ 80. by Steve Kahn

Prove that if
∑6
i=1 x

3
i = x3

7 has a solution in integers,
then

7∏

i=1

xi ≡ 0 (mod 3).

MATYC 71. by Steve Kahn

Find all primes p for which the equation x3 + y3 = p
has a solution in positive integers.

SSM 3680. by Charles W. Trigg
Are there any prime values of p < 2200 for which the

equation x3 − y3 = p has a solution in positive integers x
and y?

TYCMJ 58. by J. Orten Gadd
Prove or disprove that the only values of the prime, p,

and the integer, k, for which the zeros of x3 +kx+(p−k−1)
are integers are p = 5 and k = −12.

Diophantine equations: degree 4

CMB P255. by M. D. Nutt
Show that for integral A, the diophantine equation

A2x3(x + 2) + 1 = y2 can have only a finite number of
solutions.

CRUX 217. by David R. Stone
Solve the Diophantine equation

n2(n− 1)2 = 4(m2 − 1).

CRUX 496. by E. J. Barbeau
Solve the Diophantine equation

(x+ 1)k − xk − (x− 1)k = (y + 1)k − yk − (y − 1)k

for k = 2, 3, 4 and x 6= y.

FQ B-360. by T. O’Callahan
Show that for all integers a, b, c, d, e, f , g, and h, there

exist integers w, x, y, and z such that

(a2 + 2b2 + 3c2 + 6d2)(e2 + 2f2 + 3g2 + 6h2)

= (w2 + 2x2 + 3y2 + 6z2).

FUNCT 1.4.2.
Show that the only integral values of n making

n4 + n3 + n2 + n+ 1

a perfect square are n = 3, n = 0, and n = −1.

USA 1976/3.
MSJ 441.

Solve the Diophantine equation

a2 + b2 + c2 = a2b2.

USA 1979/1.
Find all nonnegative solutions (apart from permuta-

tions) of the Diophantine equation:

n4
1 + n4

2 + · · ·+ n4
14 = 1, 599.

Diophantine equations: degree 5

PME 440. by Charles W. Trigg

Are there any prime values of p < 105 for which the
equation x5 − y5 = p has a solution in positive integers?
How about x5 + y5 = p?

Diophantine equations: degree 6

MM Q647. by Robert Scherrer
Find all integer solutions, (a, c), of

a4 + 6a3 + 11a2 + ba+ 1 = q
(a2 − 1)(c2 − 1)

a2 + c2
,

where q is the product of arbitrary, nonnegative powers of
alternate primes, i.e.,

q = 2b1 · 5b2 · 11b3 · · · pbn , bi ≥ 0.
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Diophantine equations: degree n

AMM E2532. by Erwin Just
Solve the following Diophantine equations:

(a) xm(x2 + y) = ym+1,

(b) xm(x2 + y2) = ym+1.

AMM E2621. by Barry Powell

Prove that xn + 1 = yn+1 has no solutions in positive
integers x, y, and n, n ≥ 2, with gcd(x, n+ 1) = 1.

AMM E2642. by Antonio Rocha
Let x, y, and z be integers such that

x2 + y2 = z2m, gcd(x, y) = 1,

where m is a positive integer. If 4m − 1 = p is a prime,
show that p |xy.

CRUX 99. by H. G. Dworschak
If a, b, and n are positive integers, prove that there

exist positive integers x and y such that

(a2 + b2)n = x2 + y2.

If a = 3, b = 4, and n = 7, find at least one pair (x, y) of
positive integers that satisfies this equation.

Diophantine equations: exponentials

AMM E2749. by Leo J. Alex
(a) Show that neither of the equations

3a + 1 = 5b + 7c,

5a + 1 = 3b + 7c

has a solution in integers a, b, and c other than a = b = c =
0.

(b) Show that the only solutions to the equation

7a + 1 = 3b + 5c

in integers a, b, and c are (a, b, c) = (0, 0, 0) or (1, 1, 1).

AMM E2750. by A. P. Hillman
Find all solutions in integers a, b, and c of the equation

9 + 5a = 3b + 7c.

CRUX 188. by Daniel Rokhsar
ISMJ 12.30.

Show that the only positive integer solution of the

equation ab = ba, a < b, is a = 2, b = 4.

ISMJ 14.16.
Show that neither 2n − 1 nor 2n + 1 is a cube if n is a

positive integer larger than 1.

JRM 496. by Steven Kahan

Solve for integer m: (m2 − 7)m+1 = (m+ 1)m
2−7.

MATYC 136. by John Annulis

Prove: If n is a positive integer and n1/(n−1) is an
integer, then n = 2.

MATYC 75. by James Chilaka
Find all positive integers n for which there exist posi-

tive integers x and y (x 6= 1, y 6= 1) with 2x − 2 = ny − n.

MM 1012. by Gerald E. Gannon
and Harris S. Shultz

Find all solutions (x, y) of xy = yx−y, where x and y
are positive integers.

NAvW 467. by R. J. Stroeker
Show that the only solution in positive integers of the

equation
xy − yx = x+ y

is x = 2 and y = 5.

NAvW 500. by R. J. Stroeker and R. Tijdeman
Solve the following Diophantine equation in nonnega-

tive integers x, y, z, and w:

3x + 3y = 5z + 5w.

NYSMTJ 66. by Steven R. Conrad
(a) Find the sum of the series

1

2
+
(

1

3
+

2

3

)
+
(

1

4
+

2

4
+

3

4

)
+
(

1

5
+

2

5
+

3

5
+

4

5

)
+ · · ·

+
(

1

100
+

2

100
+

3

100
+ · · ·+ 99

100

)
.

(b) Find all ordered pairs of integers (x, y) such that

xx+y = y4 and yx+y = x.

PME 432. by Erwin Just
Does there exist an integer m for which the equation

m∑

i=0

3ix = 7y

has solutions in positive integers?

TYCMJ 127. by Sidney Penner
Find all rational solutions of yx = xy.

CRUX 219. by R. Robinson Rowe
Find the least integer N which satisfies

N = aa+2b = bb+2a, a 6= b.

CRUX 230. by R. Robinson Rowe
Find the least integer N that satisfies

N = ama+nb = bmb+na

with m and n positive and 1 < a < b.

PARAB 436.
Find all solutions in nonnegative integers x, y of the

equation 3 · 2x + 1 = y2.

TYCMJ 95. by R. S. Luthar
Solve the equation 2x + 1 = y2 in positive integers.

NAvW 421. by O. P. Lossers
Let p be a prime. Consider the Diophantine equation

2n − 3p = x2.

If this equation has two solutions, then determine p.
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PME 423. by Richard S. Field
Find all solutions in positive integers of the equation

ad − bd = cc, where d is a prime number.

PUTNAM 1976/A.3.
Find all integral solutions of the equation

|pr − qs| = 1,

where p and q are prime numbers and r and s are positive
integers larger than unity. Prove that there are no other
solutions.

Diophantine equations: factorials

CRUX 434.* by Harold N. Shapiro
(a) It is not hard to show by Bertrand’s Postulate that

all the solutions in positive integers x, y,m, n of the equation

(m!)x = (n!)y

are given by m = n = 1; and m = n, x = y. Find such a
proof.

(b)* Prove the same result without using Bertrand’s
Postulate or equivalent results from number theory.

MM Q657. by Edward T. H. Wang
Find all solutions to the Diophantine equation

1! + 2! + · · ·+ n! = m2.

CRUX 159. by Viktors Linis
Show that

x! + y! = z!

has only one solution in positive integers, and that

x!y! = z!

has infinitely many for x > 1, y > 1, and z > 1.

Diophantine equations: linear

CRUX 179. by Steven R. Conrad
The equation 5x + 7y = c has exactly three solutions

(x, y) in positive integers. Find the largest possible value of
c.

Diophantine equations: mediants

MSJ 439. by Joseph O’Sullivan
and Sidney Penner

Joe Poorstudent believes that

a

b
+
c

d
=
a+ c

b+ d
.

Are there any positive integers a, b, c, and d for which his
method yields the correct result?

Diophantine equations: radicals

MATYC 108. by Gene Zirkel
If

1−
√

2 +
√

3

1 +
√

2−
√

3
=

√
a+
√
b

2
,

where a and b are both integers, find a+ b. Prove that this
is the only solution.

Diophantine equations: solution in rationals

FQ B-337. by Wray G. Brady
Show that there are infinitely many points with both

x and y rational on the ellipse 25x2 + 16y2 = 82.

MM 968. by Sidney Penner
and H. Ian Whitlock

A point in the plane is called rational if both of its
coordinates are rational numbers. Show that x2 + y2 = 2
has an infinite number of rational solutions.

MSJ 450. by Sidney Penner
Let n be a positive integer and let a/b and c/d represent

rational numbers in lowest terms. If (a/b, c/d) is a solution

of x2 + y2 = n, prove that d = ±b.

CRUX PS2-2.
Determine all pairs of rational numbers (x, y) such that

x3 + y3 = x2 + y2.

FQ H-256. by E. Karst
Find all solutions of
(a) x+ y + z = 22n+1 − 1,

(b) x3 + y3 + z3 = 26n+1 − 1,
simultaneously for n < 5, given that: x, y, and z are
positive rationals; 22n+1 − 1 and 26n+1 − 1 are integers;
and n = log2

√
t, where t is a positive integer.

NAvW 545. by R. J. Stroeker
Determine all solutions in nonzero rationals x and y of

the equation

(
x2 + y

) (
x+ y2

)
= (x− y)3.

PARAB 316.
The rational numbers 169/30 and 13/15 are such that

their sum is the same as their quotient:

169

30
+

13

15
=

13

2
=

169
30
13
15

.

Find all pairs of rational numbers which have this property.

Diophantine equations: systems of equations

AMM E2615. by D. Rameswar Rao
Show that the system of Diophantine equations

x2 + y2 = u2 + v2,

x3 + y3 = u3 + v3

has no solutions in positive integers with (x, y) 6= (u, v).
Prove the same for the system

x2 + y2 = u2 + v2,

x5 + y5 = u5 + v5.
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AMM E2664. by Robert L. Bishop
(a) For a fixed n ≥ 3, describe how one can construct

all solutions of the system of Diophantine equations
(

n∑

i=1

xi

)
− xj = y2

j , 1 ≤ j ≤ n.

(b) For n = 10, find a solution such that the xi are
distinct positive integers and x1 + · · ·+ x10 is minimal.

ISMJ 11.9.
How many quadruples (a, b, c, d) of nonnegative inte-

gers are there such that a+ b = cd and c+ d = ab?

NYSMTJ 71. by Steven R. Conrad
Find all integral solutions of the system:

x+ yz = 6

y + xz = 6

z + xy = 6.

IMO 1976/5.
Consider the system of p equations in q = 2p unknowns

x1, x2, . . . , xq:

a11x1 + a12x2 + · · ·+ a1qxq = 0

a12x1 + a22x2 + · · ·+ a2qxq = 0

· · ·
ap1x1 + ap2x2 + · · ·+ apqxq = 0

with every coefficient aij a member of the set {−1, 0, 1}.
Prove that the system has a solution (x1, x2, . . . , xq) such
that

(1) all xi (j = 1, 2, . . . , q) are integers,
(2) there is at least one value of j for which xj 6= 0,

and
(3) |xj | ≤ q (j = 1, 2, . . . , q).

OMG 18.2.2.
If the sum of two numbers is 8 and the product of

these two numbers is 10, find the sum of the squares of
these numbers.

CMB P245. by D. Rameswar Rao
Show that the system of equations

x2 + y2 = X2 + Y 2

x3 + y3 = X3 + Y 3

has no integer solutions.

Divisibility: consecutive integers

ISMJ J11-13.
Show that in any set of ten consecutive integers there

is at least one integer that is not divisible by 2, 3, 5, or 7.

CRUX 212. by Bruce McColl
Find four consecutive integers that are divisible by 5,

7, 9, and 11 respectively.

Divisibility: cube roots

SSM 3581. by Alan Wayne
Find the set of natural numbers each of which is exactly

divisible by the greatest integer in its cube root.

Divisibility: difference of squares

CRUX 337. by V. G. Hobbes
If p and q are primes greater than 3, prove that p2−q2

is a multiple of 24.

Divisibility: exponentials

AMM E2772. by Robert B. McNeill
Let m be a positive integer. Find all ordered pairs of

positive integers (a, b) for which (a+ b) |
(
a2m + b2m

)
.

CMB P241. by A. Meir and S. K. Sehgal
Characterize those pairs of positive integers (n, α) for

which
p |nα − 1⇒ p |n− 1.

CMB P275. by J. P. Jones
Prove that

105105
10

+ 510510
5

is divisible by 11.

JRM 422. by David L. Silverman
Let An = n100 + 100n (n = 1, 2, 3, 4, . . .).
(a) Prove that 3, 7, 11, and 13 are not factors of An

for any value of n.
(b) Are there infinitely many primes that never divide

An? Are there any greater than 13?

SSM 3635. by Herta T. Freitag
Prove that for all natural numbers n, dividing the

expression 5n+2
[
5n+2 + 6(2 · 3n − 5)

]
+ 36 · 3n(3n − 5) by

64 leaves a remainder of 31.

SSM 3603. by Herta T. Freitag
Let a and b be odd numbers, and let n be any natural

number. Then 2n divides an − bn if and only if 2n divides
a− b. True or false?

AMM E2643. by Harry D. Ruderman
Show that for no integer n > 1, 2n − 1 divides 3n − 1.

MM Q635. by Erwin Just
Prove that for any prime, p, there exists an infinite

number of values of m for which p is a divisor of 2m+1 +
3m − 17.

Divisibility: factorials

TYCMJ 84. by R. S. Luthar
Let p > 3 be a prime. Prove or disprove that b(p −

2)!/pc divides (p− 2)!− 1.

Divisibility: floor function

SSM 3628. by Herta T. Freitag
Prove or disprove that

bn/2c − 3n+ (−1)n − 1

is always divisible by 5.
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Divisibility: geometry

AMM E2653. by Albert A. Mullin
A lattice point (x, y) ∈ Z2 is visible if gcd(x, y) = 1.

Prove or disprove: Given a positive integer n, there exists a
lattice point (a, b) whose distance from every visible point
is at least n.

Divisibility: polynomials

TYCMJ 36. by Aleksandras Zujus
For each integer n > 1, prove that nn − n2 + n − 1 is

divisible by (n− 1)2.

CRUX 87. by H. G. Dworschak
(a) If un = x2n + xn + 1, for which positive integer n

is un divisible by u1?
(b) For which positive integer n does x+ 1

x = 1 imply

xn + 1
xn = 1?

JRM 632. by Diophantus McLeod
Solve these two simultaneous “divisibilities” in positive

integers:
x |(y + 5); y |(x+ 3).

How many solutions are there if the word “positive” is
deleted?

MSJ 463.
Prove that (21n − 3)/4 and (15n + 2)/6 cannot both

be integers for the same positive integer n.

MM 1009. by Sidney Kravitz
Let x, y, and n be positive integers and define f(x) =

x2 − x + 41 and g(y) = y2 − y + 68501. Prove or disprove
that n divides g(y) for some y if and only if n divides f(x)
for some x.

JRM 591. by Kenneth M. Wilke
A problem is stated as follows: “Prove that there exist

infinitely many pairs of positive integers x, y such that x(x+
1) | y(y + 1), x - y, (x + 1) - y, x - (y + 1), (x + 1) - (y + 1)
and find the least such pair.” The solution gives the family:
x = 36k + 14, y = (12k + 5)(18k + 7), k = 0, 1, 2 . . ., with
x = 14, y = 35 as the least pair. The solution further states
“. . . it is easy to show that there are no smaller numbers
with the desired property.”

(a) Find all solution pairs x, y with y ≤ 35. In the
process you will discover that 14, 35 is not, in fact, the
smallest pair with the desired property.

(b) Find a family of solutions (x, y) in which xy <
(36k + 14)(12k + 5)(18k + 7).

OSSMB 75-1.
For what integer a does x2−x+a divide x13 +x+90?

CRUX 107. by Viktors Linis
For which integers m and n is the ratio

4m

2m+ 2n−mn
an integer?

MSJ 474.
Prove that n2 + n+ 1 is a multiple of 19 for infinitely

many integral values of n.

SPECT 8.7. by B. G. Eke

If m and n are odd integers, show that 8 |m2 − n2.

SSM 3757. by Charles W. Trigg

Are there any integer values of n for which n2 − 17 is
exactly divisible by 5n+ 33?

JRM 467. by Les Marvin
What is the largest integer that can divide two succes-

sive numbers of the form n2 + 3?

CRUX 81. by H. G. Dworschak
Which of the following are divisible by 6 for all positive

integers n?
(a) n(n+ 1)(n+ 2)
(b) n(n+ 1)(2n+ 1)

(c) n(n2 + 5)

(d) (n+ 1)2k − (n2k + 2n+ 1), k a positive integer.

ISMJ 12.9.
Show that, for any two integers a and b, the number

(a+ b)(a− b)ab is a multiple of six.

CRUX 35. by John Thomas
Let m denote a positive integer and p a prime. Show

that if p |(m4 −m2 + 1), then p ≡ 1 (mod 12).

ISMJ J11.1.
Prove that if n is an odd number greater than 3, then

n4 − 18n2 + 17 is divisible by 64.

FUNCT 1.3.3. by Rob Saunders
Show that, for all integers a and b,

30 | ab(a2 − b2)(a2 + b2).

CRUX 392. by Stephen R. Conrad

Find all natural numbers n for which n8 − n2 is not
divisible by 504.

PARAB 359.
An infinitely long list is made of all the pairs of integers

m, n for which 23m−10n is exactly divisible by 17. Another
list is made of all the pairs for which 7x + 11y is exactly
divisible by 17. Prove that the two lists are exactly alike.

PARAB 417.
Let a and b be integers. Show that 10a+b is a multiple

of 7 if and only if a− 2b is also.

PME 404. by Bob Prielipp
Let x be a positive integer of the form 24n− 1. Prove

that if a and b are positive integers such that x = ab, then
a+ b is a multiple of 24.

USA 1977/1.
Determine all pairs of positive integers (m,n) such that

1 + xn + x2n + · · ·+ xmn

is divisible by

1 + x+ x2 + · · ·+ xm.
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Divisibility: powers of 2

SSM 3790. by Anton Glaser
and Karl W. Schlecker

Let K(n) = (3n + 1)/(2x) where x is the greatest
integer that will still leave K(n) an integer. Prove that
if n ≡ 3 (mod 10), then K(n) is an odd multiple of 5.

Divisibility: products

SSM 3748. by Charles W. Trigg
Show that the product P of the ten differences of any

five integers is divisible by 288.

Divisibility: triangular numbers

TYCMJ 68. by Sidney Penner
Let f(n) be defined as the least positive integer k such

that n |
∑k
i=1 i. Prove that f(n) = 2n − 1 if and only if

there exists a nonnegative integer m such that n = 2m.

Divisibility: word problems

CRUX 12. by Viktors Linis
There are about 100 apples in a basket. It is possible

to divide the apples equally among 2, 3 and 5 children but
not among 4 children. How many apples are there in the
basket?

Divisors

AMM 6144.* by Carl Pomerance
If n is a natural number, denote by A(n) the arithmetic

mean of the divisors of n.
(a) Prove that the asymptotic density of the set of n,

for which A(n) is an integer, is 1.
(b) Show that for any N there is an integer m such

that A(n) = m has at least N solutions.
(c) If it exists, find the asymptotic density of the set

of integers m for which A(n) = m has a solution.

AMM 6190.* by D. E. Daykin
and D. J. Kleitman

Let n be a square-free integer that is not prime. Let
F be a set of divisors of n such that neither the product of
two elements of F nor n2 divided by such a product is in F .
What is the maximal proportion of the divisors of n that
may lie in F?

SSM 3578. by Robert A. Carman
Show that any number of the form 6n − 1 has factors

a and b such that a+ b is a multiple of 6.

SSM 3623. by Bob Prielipp
It is known that the sum of the reciprocals of the

positive integer divisors of a perfect number is 2.
(a) Find four positive integers such that the sum of the

reciprocals of the positive integer divisors of each of these
numbers is 3.

(b) Find four positive integers such that the sum of the
reciprocals of the positive integer divisors of each of these
numbers is 4.

CRUX 467. by Harold N. Shapiro
Let n1, . . . , nk be given positive integers and form the

vectors (d1, . . . , dk) where, for each i = 1, . . . , k, di is a
divisor of ni. Letting τ(d) = the number of divisors of
d, the number of these vectors is τ(n1)τ(n2) . . . τ(nk). How
many of these have the property that their components are
relatively prime in pairs?

SPECT 9.2. by B. G. Eke
ISMJ 11.18.

A changing room has n lockers numbered 1 to n and
all are locked. An attendant performs the sequence of op-
erations T1, T2, . . . , Tn, where Tk is the operation whereby
the condition of being locked or unlocked is altered in the
case of those lockers (and only those) whose numbers are
divisible by k. Which lockers are unlocked at the end?

Equations

CRUX 307. by Steven R. Conrad
Find the least and greatest values of x such that

xy = nx+ ny,

if n, x, and y are all positive integers.

AMM 6197.* by Manuel Scarowsky
Let p be a prime; let a and b be positive integers; and

let (x0, y0) be a solution of ax+ by = p in positive integers
with x0 minimal, if such exists (otherwise take x0 = 0).
Find an estimate for

∑
a,b x0.

Euler totient: divisors

AMM 6193. by Robert E. Shafer
Given that n is such that 2φ(n) = n−1 (φ is the Euler

totient function), prove
(a) 3 - n;
(b) If p and q are distinct prime divisors of n, then

p 6≡ 1 (mod 2q);
(c) n has at least 11 distinct prime divisors.

AMM 6160. by Robert E. Shafer
(a) If m is the largest odd divisor of n, then with the

exception of (b), prove that

2v(n)mv(m)/2 |φ(an + bn)

for a > b ≥ 1, where v(n) is the number of divisors of n and
φ is the Euler totient function.

(b) If a = 2, b = 1, n = 3dc, c odd, d ≥ 1, then prove
that

2v(n)−1mv(m)/23d−1 |φ(an + bn).

Euler totient: fractions

AMM 6070. by P. Erdős and C. W. Anderson
Where φ(n) is Euler’s totient function, let

Φ(n) =
φ(n)

n
.

Φ:N → (0, 1] densely. For given a, demonstrate that there
are only a finite number of b (coprime with a) such that
Φ(n) = a/b has solutions.

MM Q645. by R. B. Eggleton
Prove that there are infinitely many positive integers

n for which φ(n) = n/3, but none for which φ(n) = n/4,
where φ is Euler’s phi-function.
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Euler totient: inequalities

AMM E2599. by Bernardo Recamán
Are there arbitrarily large positive integersN such that

for all n ≥ N , we have φ(n) ≥ φ(N) while φ(n) ≤ φ(N)
when n ≤ N?

CRUX 458. by Harold N. Shapiro
It is known that, for each fixed integer c > 1, the

equation φ(n) = n − c has at most a finite number of
solutions for the integer n. Improve this by showing that
any such solution, n, must satisfy the inequalities c < n ≤
c2.

AMM E2590. by C. A. Nicol
A natural number n ≥ 2 is said to be φ-subadditive if

φ(n) ≤ φ(k) + φ(n− k)

for 1 ≤ k ≤ n− 1 and φ-superadditive if

φ(n) ≥ φ(k) + φ(n− k)

for 1 ≤ k ≤ n−1 (φ denotes Euler’s totient function). Show
that there exist infinitely many φ-subadditive numbers and
infinitely many φ-superadditive numbers.

Euler totient: primes

AMM E2611. by C. A. Nicol
Based upon the long-standing conjecture that if n ≥ 2

is a natural number and φ(n) |(n − 1) then n is prime,
show that a natural number n ≥ 2 is prime if and only
if φ(n) |(n− 1) and (n+ 1) |σ(n).

Euler totient: quotients

JRM 474. by Les Marvin
What is the necessary and sufficient condition on two

integers that the totient of their quotient equal the quotient
of their totients?

Euler totient: solution of equations

JRM 622. by Les Marvin
Let f(k) be the number of solutions of the equation

φ(n) = k.
(a) Is 4 the only solution to the equation f(k) = k?
(b) Has the sequence {f(k)/k} a limit point other than

zero?

Factorials

PARAB 270.
Find all positive integers between 1 and 100 having the

property that (n− 1)! is not divisible by n2.

CMB P250. by P. Erdős
Write n! = u1u2 · · ·uk, n < u1 < · · · < uk. Prove that

uk ≤ 2n has only a finite number of solutions. Determine
them.

AMM E2623. by Ivan Niven
For which positive integers k is it true that there are

infinitely many pairs of positive integers m and n such that

(m+ n− k)!

m!n!

is an integer?

AMM 6121. by Harry D. Ruderman
For all positive integers a1, a2, . . . , an, the following is

always an integer:

n∏

i=1

(nai)!/

[
n

n∏

i=1

(ai!)

]n−1( n∑

i=1

ai

)
!.

Prove the conjecture for n = 3. Is it true in general?

AMM E2799. by Marlow Sholander
For n a positive integer, let n!! denote the superfacto-

rial
∏n
i=1 i!, and let 0!! = 1. Set

An =
(2n− 1)!!

[(n− 1)!!]4
.

Prove that An is an integral multiple of (2n− 1)!.

TYCMJ 137. by Martin Berman
Let r < n be positive integers and define n1 = n!,

nk+1 = (nk)! (k = 1, 2, . . .), and
(
n
r

)
k

= nk/rk(n− r)k.

Must
(
n
r

)
k

always be an integer?

TYCMJ 70. by Norman Schaumberger
Determine the least possible integer N such that for

all integers n > N ,

(
nn+1

(n+ 1)n

)n
< n! <

(
nn+1

(n+ 1)n

)n+1

.

CRUX 146. by Jacques Marion
Show that there exists no rational function R(z) such

that R(n) = n! for each natural number n.

ISMJ J11.19.
How many perfect squares appear among the numbers

1!, 1! + 2!, 1! + 2! + 3!, . . . , 1! + 2! + 3! + · · ·+ n!?

Factorizations

OMG 18.3.7.
What two whole numbers, neither containing any ze-

ros, will multiply together to equal exactly 1,000,000,000?

CRUX 64. by Léo Sauvé
Decompose 10,000,000,099 into a product of at least

two factors.

FUNCT 1.5.3.
Find the prime factors of

5,679,431,432,056,743,205,685,679,432.

ISMJ J10.10.
In how many ways can 720 be written as a product of

three positive integers different from one?

JRM 767. by Harry Nelson
Find all pairs of consecutive positive integers such that

neither has any prime factors other than 2 or 3.

ISMJ J11-14.
Suppose n is a positive integer whose smallest prime

factor is p and p > 3
√
n. Show that n/p is also a prime.
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JRM 371. by Sidney Kravitz

What is the maximum number of distinct factors that
an integer between one and one million can have, and how
many integers in this range have that many factors?

AMM 6015. by C. W. Anderson

Let n = qa11 qa22 . . . qakk , k > 1, be the prime decompo-
sition of the integer n, and define

Ind(n) = max {ai | 1 ≤ i ≤ k} .

Show that

lim
m→∞

1

m

m∑

k=2

Ind(k) = 1 +

∞∑

n=2

µ(n)

n(n− 1)
= 1.705211 . . . .

CRUX 390. by Gali Salvatore

Show how to find the complete factorization of 238 + 1
using only pencil and paper (no computers), having given
that it consists of four distinct prime factors, none repeated,
one of which is 229.

Farey sequences

ISMJ 13.28.

Suppose all fractions a/b in lowest terms with b ≤ 100
and 0 < a/b < 1 are listed in increasing order and a/b
and c/d are consecutive fractions in this list. Show that
b+ d > 100.

Fermat’s Last Theorem

SSM 3728. by Richard L. Francis

Let A be the set of positive integers not divisible by 5.
Show that x4 + y4 = z4 is not possible if x, y, z ∈ A.

AMM E2631. by Barry Powell

It is known that if p is an odd prime and 3p 6≡ 3
(mod p2), then the equation

xp + yp = zp

has no solution in positive integers x, y, and z not divisible
by p.

Show that this condition is satisfied by all primes p
having the form

p =
1

2

(
32k + 1

)

or

p =
1

2

(
3q − 1

)

with q also an odd prime.

AMM E2771. by Robert Breusch
Let p be a prime and p 6≡ 1 (mod 8). Prove that the

equation x2p+y2p = z2p has no solution in positive integers
x, y, z with xyz 6≡ 0 (mod p).

Fermat’s Little Theorem

CRUX 494.* by Rufus Isaacs
Let rj , j = 1, . . . , k, be the roots of a polynomial with

integral coefficients and leading coefficient 1.
(a) For p a prime, show that

p |
∑

j

(rpj − rj).

(b) Prove or disprove that for any positive integer n,

n |
∑

j


∑

d |n
rdjµ(n/d)


 .

Fermat numbers

TYCMJ 121. by Richard L. Francis

Prove that no Fermat prime (one of the form 22n + 1)
can be the difference of two fifth powers of positive integers.

OMG 15.3.6.
The numbers Φn = 2(2n) + 1 for n = 0, 1, 2, 3, . . . are

called Fermat numbers. Approximately how large is the 6th
Fermat number in scientific notation?

OSSMB 76-11.
You can imagine the tremendous size of F73 = 2273

+1.
Is there enough room in all the books in all the libraries in
the whole world to record this giant number? In answering
this question, assume the generous estimates that there are
1 million libraries, each with 1 million books, each of 1000
pages, each containing 100 lines which can hold 100 digits
apiece.

Fibonacci and Lucas numbers: arrays

FQ H-257. by V. E. Hoggatt, Jr.
Consider this array in which F2n+1, n = 0, 1, 2, . . ., is

written in staggered columns:

1

2 1

5 2 1

13 5 2 1

34 13 5 2 1

Show that:
(a) The row sums are F2n+2.
(b) The rising diagonal sums are Fn+1Fn+2.
(c) If the columns are multiplied by 1, 2, 3, . . . sequen-

tially to the right, then the row sums are F2n+3 − 1.

FQ H-273. by W. G. Brady
Consider this array in which L2n+1, n = 0, 1, 2, . . ., is

written in staggered columns:

1

4 1

11 4 1

29 11 4 1

76 29 11 4 1

Show that:
(a) The row sums are L2n+2 − 2.
(b) The rising diagonal sums are F2n+3 − 1, where

L2n+1 is the largest element in the sum.
(c) If the columns are multiplied by 1, 2, 3, . . . sequen-

tially to the right, then the row sums are L2n+3−(2n+3).

180



Number Theory
Fibonacci and Lucas numbers: congruences Problems sorted by topic Fibonacci and Lucas numbers: golden ratio

Fibonacci and Lucas numbers: congruences

FQ B-365. by Philip Mana
Show that there is a unique integer m > 1 for which in-

tegers a and r exist with Ln ≡ arn (mod m) for all integers
n ≥ 0. Also show that no such m exists for the Fibonacci
numbers.

FQ B-386. by Lawrence Somer
Let p be a prime and let the least positive integer

m with Fm ≡ 0 (mod p) be an even integer 2k. Prove
that Fn+1Ln+k ≡ FnLn+k+1 (mod p). Generalize to other
sequences.

FQ H-280. by Paul S. Bruckman
Prove the congruences:

F3·2n ≡ 2n+2 (mod 2n+3);

L3·2n ≡ 2 + 22n+2 (mod 22n+4), n = 1, 2, 3, . . . .

Fibonacci and Lucas numbers: determinants

FQ H-299. by Gregory Wulczyn
Evaluate:

(a) ∆ =

∣∣∣∣∣∣∣∣∣

F2r F6r F10r F14r F18r

F4r F12r F20r F28r F36r

F6r F18r F30r F42r F54r

F8r F28r F40r F56r F72r

F10r F30r F50r F70r F90r

∣∣∣∣∣∣∣∣∣

(b) D =

∣∣∣∣∣∣∣∣∣

1 L2r+1 L4r+2 L6r+3 L8r+4

1 −L6r+3 L12r+6 L18r+9 L24r+12

1 L10r+5 L20r+10 L30r+15 L40r+20

1 −L14r+7 L28r+14 −L42r+21 L56r+28

1 L18r+9 L36r+18 L54r+27 L72r+36

∣∣∣∣∣∣∣∣∣

(c) D1 =

∣∣∣∣∣∣∣∣∣

1 L2r L4r L6r L8r

1 L6r L12r L18r L24r

1 L10r L20r L30r L40r

1 L14r L28r L42r L56r

1 L18r L36r L54r L72r

∣∣∣∣∣∣∣∣∣

Fibonacci and Lucas numbers: divisibility

FQ B-329. by Herta T. Freitag
Find r, s, and t as linear functions of n such that

2F 2
r − FsFt is an integral divisor of Ln+2 + Ln for n =

1, 2, . . . .

Fibonacci and Lucas numbers: finite sums

FQ H-284. by G. Wulczyn
Show that

(a)

n∑

k=0

(
n

k

)
FrkLrn−rk = 2nFrn,

(b)

n∑

k=0

(
n

k

)
LrkLrn−rk = 2nLrn + 2Lnr ,

(c)

n∑

k=0

(
n

k

)
FrkFrn−rk =

(2nLrn − 2L6nr)

D
.

FQ B-300. by Verner E. Hoggatt, Jr.
Establish a simple, closed form for

L2n+2 −
n∑

k=1

(n+ 3− k)F2k.

FQ B-335. by Herta T. Freitag
Obtain a closed form for

n−k∑

i=0

(Fi+kLi + FiLi+k).

FQ B-368. by Herta T. Freitag
Obtain functions g(n) and h(n) such that

n∑

i=1

iFiLn−1 = g(n)Fn + h(n)Ln

and use the results to obtain congruences modulo 5 and 10.

FQ H-246. by L. Carlitz
Let

F (m,n) =

m∑

i=0

n∑

j=0

Fi+jFm−i+jFi+n−jFm−i+n−j

and

L(m,n) =

m∑

i=0

n∑

j=0

Li+jLm−i+jLi+n−jLm−i+n−j .

Show that

L(m,n)− 25F (m,n) = 8Lm+nFm+1Fn+1.

FQ B-305. by Frank Higgins
Prove that

F8n = L2n

n∑

k=1

L2n+4k−2.

FQ B-306. by Frank Higgins
Prove that

F8n+1 − 1 = L2n

n∑

k=1

L2n+4k−1.

Fibonacci and Lucas numbers: golden ratio

FQ H-310. by V. E. Hoggatt, Jr.

Let α = (1 +
√

5)/2, bnαc = an, and bnα2c = bn.
Clearly, an + n = bn.

(a) Show that if n = F2m+1, then an = F2m+2 and
bn = F2m+3.

(b) Show that if n = F2m, then an = F2m+1 − 1 and
bn = F2m+2 − 1.

(c) Show that if n = L2m, then an = L2m+1 and
bn = L2m+2.

(d) Show that if n = L2m+1, then an = L2m+2 − 1
and bn = L2m+3 − 1.
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Fibonacci and Lucas numbers: identities

FQ B-298. by Richard Blazej
Show that

5F2n+3 · F2n−3 = L4n + 18.

FQ B-339. by Gregory Wulczyn
Establish Cesàro’s symbolic Fibonacci-Lucas identity:

(2u + 1)n = u3n. After the binomial expansion has been
performed, the powers of u are used as either Fibonacci or
Lucas subscripts.

FQ H-288. by G. Wulczyn
Establish the identities:

FkL
2
k+6r+3 − Fk+8r+4L

2
k+2r+1

= (−1)k+1L3
2r+1F2r+1Lk+4r+2

and

FkL
2
k+6r − Fk+8rL

2
k+2r = (−1)k+1L3

2rF2rLk+4r.

FQ H-295. by Gregory Wulczyn
Establish the identities:

FkF
2
k+6r+3 − F 2

k+8r+4Fk+2r+1

= (−1)k+1F 3
2r+1L2r+1Lk+4r+2

and

FkF
2
k+6r − Fk+8rF

2
k+2r = (−1)k+1F 3

2rL2rLk+4r.

FQ B-354. by Philip Mana
Show that

F 3
n+k − L3

kF
3
n + (−1)kFn−k[F 2

n−k + 3Fn+kFnLk] = 0.

FQ B-355. by Gregory Wulczyn
Show that

F 3
n+k − L3kF

3
n + (−1)kF 3

n−k = 3(−1)nFnFkF2k.

FQ B-313. by Verner E. Hoggatt, Jr.
Let

M(x) = L1x+ (L2/2)x2 + (L3/3)x3 + · · · .

Show that the Maclaurin series expansion for eM(x) is

F1 + F2x+ F3x
2 + · · · .

FQ H-279. by G. Wulczyn
Show that

F 4
n+6r − (L4r + 1)(F 4

n+4r − F 4
n+2r)− F 4

n

= F2rF4rF6rF4n+12r,

and

F 4
n+6r+3 + (L4r+2 − 1)(F 4

n+4r+2 − F 4
n+2r+1)− F 4

n

= F2r+1F4r+2F6r+3F4n+12r+6.

Fibonacci and Lucas numbers: infinite series

FQ B-319. by Wray G. Brady
Prove that

1

L2
+

1

L6
+

1

L10
+ · · · = 1√

5

(
1

F2
− 1

F6
+

1

F10
− · · ·

)
.

Fibonacci and Lucas numbers: primes

FQ H-260.* by H. Edgar
Are there infinitely many subscripts, n, for which Fn

or Ln are prime?

Fibonacci and Lucas numbers: recurrences

FQ B-392. by Phil Mana
Let Yn = (2 + 3n)Fn + (4 + 5n)Ln. Find constants h

and k such that

Yn+2 − Yn+1 − Yn = hFn + kLn.

Fibonacci numbers: algorithms

JRM 728. by Frank Rubin
Let Fi denote the ith Fibonacci number. It can be

shown by induction that Fp+q = Fp−1Fq + FpFq+1. Note
that when p = 2, this reduces to the well-known recursion
formula for the Fibonacci sequence. Suppose that the cost
of adding or subtracting two numbers is A, and the cost of
multiplying them is M . Determine the lowest-cost method
for calculating F100 if A = 1 and M = 5, and only F0 = 0
and F1 = 1 are assumed known.

Fibonacci numbers: ancestors

FQ B-304. by Sidney Kravitz
The female bee has two parents but the male bee has

a mother only. Prove that if we go back n generations
for a female bee, she will have Fn male ancestors in that
generation and Fn+1 female ancestors, making a total of
Fn+2 ancestors.

Fibonacci numbers: composite numbers

FQ B-302. by Verner E. Hoggatt, Jr.
Prove that Fn− 1 is a composite integer for n ≥ 7 and

that Fn + 1 is composite for n ≥ 4.

Fibonacci numbers: congruences

NYSMTJ 98. by Norman Gore
Let Fn be the nth Fibonacci number. Prove that, for

any positive integer n,

Fn+10 ≡ Fn + Fn+5 (mod 10).

FQ B-331. by George Berzsenyi
Prove that

F 2
6n+1 ≡ 1 (mod 24).

FQ B-378. by George Berzsenyi
Prove that

F3n+1 + 4nFn+3 ≡ 0 (mod 3)

for n = 0, 1, 2, . . . .

FQ B-351. by George Berzsenyi
Prove that F4 = 3 is the only Fibonacci number that

is a prime congruent to 3 modulo 4.

FQ B-324. by Herta T. Freitag
Determine a constant k such that, for all positive inte-

gers n,
F3n+2 ≡ knFn−1 (mod 5).
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FQ B-379. by Herta T. Freitag
Prove that F2n ≡ n(−1)n+1 (mod 5) for all nonnega-

tive integers n.

FQ B-408.* by Lawrence Somer
Let d ∈ {2, 3, . . .} and Gn = Fdn/Fn. Let p be an

odd prime and z = z(p) be the least positive integer n with
Fn ≡ 0 (mod p). For d = 2 and z(p) an even integer 2k, it
is known that

Fn+1Gn+k ≡ FnGn+k+1 (mod p).

Establish a generalization for d ≥ 2.

FQ H-265. by V. E. Hoggatt, Jr.
Show that

F23·3k−1 ≡ 0 (mod 3k), where k ≥ 1.

FQ H-286. by P. Bruckman
Prove the following congruences:
(a) F5n ≡ 5n.

(b) F5n ≡ L5n+1 (mod 52n+1), n = 0, 1, 2, . . . .

FQ H-250. by L. Carlitz
Show that if

A(n)Fn+1 +B(n)Fn = C(n) (n = 0, 1, 2, . . .),

where the Fn are the Fibonacci numbers and A(n), B(n),
C(n) are polynomials, then

A(n) ≡ B(n) ≡ C(n) ≡ 0.

Fibonacci numbers: continued fractions

FQ H-278. by V. E. Hoggatt, Jr.
Show √

5Fn+2

Fn
=
[
3, 1, 1, . . . , 1︸ ︷︷ ︸

n−1

, 6
]

(Continued fraction notation, cyclic part under bar).

Fibonacci numbers: determinants

FQ H-294. by Gregory Wulczyn
Evaluate:

∆ =

∣∣∣∣∣∣∣∣∣

F2r+1 F6r+3 F10r+5 F14r+7 F18r+9

F4r+2 F12r+6 F20r+10 F28r+14 F36r+18

F6r+3 F18r+9 F36r+15 F42r+21 F54r+27

F8r+4 −F24r+12 F40r+20 F56r+28 F72r+36

F10r+5 F20r+15 F50r+25 F70r+36 F50r+45

∣∣∣∣∣∣∣∣∣

Fibonacci numbers: digit problems

CRUX 264. by Gilbert W. Kessler
Find a formula that gives the number of digits in the

nth Fibonacci number explicitly in terms of n.

Fibonacci numbers: divisibility

NAvW 523. by P. J. van Albada
Let Fi denote the ith Fibonacci number. Prove the

following:
(a) For every k ∈ N, there is a k′ such that k |Fi if and

only if k′ | i.
(b) If k is a prime, k ≡ ±1 (mod 10), then k′ |(k − 1).
(c) If k is a prime, k ≡ ±3 (mod 10), then k′ |(k + 1).

AMM E2539.* by A. Vince
Let Fn denote the nth Fibonacci number. Prove or

disprove that if m2 |Fn, then m |n.

Fibonacci numbers: Euler totient

AMM E2581. by Clark Kimberling
Show that φ(Fn) is divisible by 4 if n ≥ 5.

Fibonacci numbers: finite sums

FQ B-397. by Gregory Wulczyn
Find a closed form for the sum

2s∑

k=0

(
2s

k

)
F 2
n+kt.

NAvW 445. by P. C. G. de Vries
Let Fk be the kth Fibonacci number. Prove that

n∑

k=0

(
n

k

)
Fk =

1

2n
√

5

{(
3 +
√

5
)n

+
(
3−
√

5
)n}

for n = 0, 1, 2, . . . .

FQ B-299. by Verner E. Hoggatt, Jr.
Establish a simple, closed form for

F2n+3 −
n∑

k=1

(n+ 2− k)F2k.

FQ B-343. by Verner E. Hoggatt, Jr.
Establish a simple expression for

n∑

k=1

[
F2k−1F2(n−k)+1 − F2kF2(n−k+1)

]
.

FQ B-356. by Herta T. Freitag
Let

Sn = F2 + 2F4 + 3F6 + · · ·+ nF2n.

Find m as a function of n so that Fm+1 is an integral divisor
of Fm + Sn.

FQ B-398. by Herta T. Freitag
Is there an integer K such that

K − Fn+6 +

n∑

j=1

j2Fj

is an integral multiple of n for all positive integers n?

FQ B-320. by George Berzsenyi
Evaluate the sum:

n∑

k=0

FkFk+2m.

FQ B-321. by George Berzsenyi
Evaluate the sum:

n∑

k=0

FkFk+2m+1.
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FQ H-298. by L. Kuipers
Prove that

F 6
n+1 − 3F 5

n+1F + 5F 3
n+1F

3
n − 3Fn+1F

5
n − F 6

n

= (−1)n;

F 6
n+6 − 14F 6

n+5 − 90F 6
n+4 + 350F 6

n+3 − 90F 6
n+2 − 14F 6

n+1

+F 6
n = (−1)n80;

and

F 6
n+6 − 13F 6

n+5 + 41F 6
n+4 − 41F 6

n+3 + 13F 6
n+2 − F 6

n+1

≡ −40 +
1

2
(1 + (−1)n)80 (mod 144).

Fibonacci numbers: forms

FQ B-341. by Peter A. Lindstrom
Prove that the product F2nF2n+2F2n+4 of three con-

secutive Fibonacci numbers with even subscripts is the
product of three consecutive integers.

FQ B-396. by Paul S. Bruckman
Let Gn = Fn(Fn+1)(Fn+2)(Fn+3)/24. Prove that 60

is the smallest positive integer m such that 10 |Gn implies
10 |Gn+m.

FQ B-409. by Gregory Wulczyn
Let Pn = FnFn+a. Must Pn+6r − Pn be an integral

multiple of Pn+4r − Pn+2r for all nonnegative integers a
and r?

FQ B-318. by Herta T. Freitag

Prove that F 2
4n + 8F2n(F2n + F6n) is a perfect square

for n = 1, 2, . . . .

Fibonacci numbers: generating functions

FQ B-381. by V. E. Hoggatt, Jr.

Let a2n = F 2
n+1 and a2n+1 = Fn+1Fn+2. Find the

rational function that has

a0 + a1x+ a2x
2 + a3x

3 + · · ·

as its Maclaurin series.

Fibonacci numbers: greatest common divisor

FQ B-330. by George Berzsenyi
Let

Gn = Fn + 29Fn+4 + Fn+8.

Find the greatest common divisor of the infinite set of inte-
gers {G0, G1, G2, . . .}.

FQ H-259. by R. Finkelstein
Let p be an odd prime and m an odd integer such that

m 6≡ 0 (mod p). Let Fmp = Fp ·Q. Can gcd(Fp, Q) > 1?

Fibonacci numbers: identities

FQ H-290. by Gregory Wulczyn
Show that

FkF
2
k+6r+3 − F 3

k+4r+2

= (−1)k+1F 2
2r+1(Fk+8r+4 − 2Fk+4r+2)

and

FkF
2
k+6r − F 3

k+4r = (−1)k+1F 2
2r(Fk+8r + 2Fk+4r).

FQ H-266. by G. Berzsenyi
Find all identities of the form

n∑

k=0

(
n

k

)
Frk = snFtn

with positive integral r, s, and t.

FQ B-384. by Gregory Wulczyn
Establish the identity

F 4
n+10 = 55

(
F 4
n+8 − F 4

n+2

)
− 385

(
F 4
n+6 − F 4

n+4

)
+ F 4

n .

FQ B-367. by Gerald E. Bergum
Let α = (1 +

√
5)/2 and suppose n ≥ 1. Prove that

F2n = bαF2n−1c

and

F2n+1 = bα2F2n−1c.

FQ B-323. by J. A. H. Hunter
Prove that

F 2
n+r − (−1)rF 2

n = FrF2n+r.

Fibonacci numbers: inequalities

FQ B-395. by V. E. Hoggatt, Jr.
Let α = (

√
5− 1)/2. For n = 1, 2, 3, . . ., prove that

1/Fn+2 < αn < 1/Fn+1.

Fibonacci numbers: infinite series

JRM 674. by Friend H. Kierstead, Jr.
Let S = 1+1+1/2+1/3+1/5+1/8+ · · ·+1/Fn+ · · ·,

where Fn is the nth Fibonacci number.
Prove that the series converges and find the sum.

Fibonacci numbers: Pell’s equation

FQ H-247. by G. Wulczyn
Show that for each Fibonacci number Fr, there exist

an infinite number of positive nonsquare integers, D, such
that

F 2
r+s − F 2

rD = 1.
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Fibonacci numbers: population problems

FUNCT 1.1.9.
A pair of rabbits is put into an enclosure. They pro-

duce one pair of offspring in the first month and they repro-
duce just once more, producing a second pair of offspring in
the second month.

Similarly, each pair of offspring follows exactly the
same pattern of reproduction, beginning to reproduce one
month after birth. There is no other breeding between other
pairs of rabbits.

Show that the number of pairs produced in a certain
month is equal to the numbers produced during the preced-
ing two months.

Fibonacci numbers: primes

JRM 738. by Frank Rubin
(a) Characterize the Fibonacci numbers for which Fn

is prime and n is composite.
(b) The first composite Fibonacci number for which n

is prime is F19 = 4181 = 37 · 113. Find the next.

SSM 3625. by Bob Prielipp
Prove that every positive integer greater than 3 that

is both a prime number and a Fibonacci number can be
expressed as the sum of two squares of distinct Fibonacci
numbers.

Fibonacci numbers: recurrences

JRM 594. by Henry Larson
Let a1, a2, a3, . . . be an infinite sequence with a1 =

1, a5 = 5, and a12 = 144, subject to the rule that for every
n, an + an+3 = 2an+2.

Prove that it is the Fibonacci sequence.

FQ B-311. by Jeffrey Shallit
Let k be a constant and let (an) be defined by

an = an−1 + an−2 + k, a0 = 0, a1 = 1.

Find
lim
n→∞

(an/Fn).

FQ B-352. by V. E. Hoggatt, Jr.
Let Sn be defined by S0 = 1, S1 = 2, and

Sn+2 = 2Sn+1 + cSn.

For what value of c does Sn = 2nFn+1 for all nonnegative
integers n?

Fibonacci numbers: systems of equations

FQ H-306. by V. E. Hoggatt, Jr.
(a) Prove that the system, S,

a+ b = Fp, b+ c = Fq, c+ a = Fr,

cannot be solved in positive integers if Fp, Fq, and Fr are
positive Fibonacci numbers.

(b) Likewise, show the same for this next system, T :

a+ b = Fp, b+ c = Fq, c+ d = Fr,

d+ e = Fs, e+ a = Ft.

(c) Show that if Fp is replaced by any positive non-
Fibonacci integer, then S and T have solutions.
If possible, find necessary and sufficient conditions for the
following system U to be solvable in positive integers:

a+ b = Fp, b+ c = Fq, c+ d = Fr, d+ a = Fs.

Fibonacci numbers: triangular numbers

FQ B-346. by Verner E. Hoggatt, Jr.
Establish a closed form for

n∑

k=1

F2kTn−k + Tn + 1,

where Tk is the triangular number (k + 2)(k + 1)/2.

Fibonacci numbers: trigonometric functions

FQ B-374. by Frederick Stern
Show that

Fn =
2n+2

5

[
(cos

π

5
)n · sin π

5
· sin 3π

5

+(cos
3π

5
)n · sin 3π

5
· sin 9π

5

]

and

Fn =
(−2)n+2

5

[
(cos

2π

5
)n · sin 2π

5
· sin 6π

5

+(cos
4π

5
)n · sin 4π

5
· sin 12π

5

]
.

FQ B-375. by V. E. Hoggatt, Jr.
Express

2n+1

5

4∑

k=1

[(
cos

kπ

5

)n
· sin kπ

5
· sin 3kπ

5

]

in terms of a Fibonacci number, Fn.

Finite products

SPECT 10.4. by B. G. Eke
PARAB 312.

Suppose the integers a1, a2, . . . , a7 are rearranged to
give b1, b2, . . . , b7. Show that

(a1 − b1)(a2 − b2) · · · (a7 − b7)

is even.

Floor function: exponentials

PENT 274. by R. S. Luthar
Show that b(2 +

√
2)nc is odd, where n is any positive

integer.

Floor function: finite sums

CRUX 166. by Steven Conrad
Prove that for all real x and positive integers k

k−1∑

i=0

⌊
x+

i

k

⌋
= bkxc.

PME 400. by Richard A. Gibbs

Evaluate
∑m
k=1

(⌊
kn
m

⌋
+
⌈
kn
m

⌉)
, where m and n are

positive integers.
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CRUX 216. by L. F. Meyers
For which positive integers n is it true that

(n−1)2∑

k=1

b 3
√
knc =

(n− 1)(3n2 − 7n+ 6)

4
?

TYCMJ 69. by V. N. Murty

Let N = 2 · 10k in which k is an arbitrary positive
integer, and set

S =
⌊
N

6

⌋
+
⌊
N

8

⌋
−
⌊
N

24

⌋
.

Is S/N independent of k?

MM Q628. by Alfred Brousseau
Derive a formula for

m∑

k=1

bkn/mc

in terms of m, n, and d = gcd(m,n).

NAvW 530. by J. van de Lune
For n ∈ N and α ∈ R, let

Sn(α) =

n∑

k=1

(−1)bkαc.

Prove that if α is irrational, then Sn(α) = 0 for infinitely
many n ∈ N.

Floor function: identities

AMM E2752. by Clark Kimberling
Suppose a, b, c, and d are real numbers satisfying

banc+ bbnc = bcnc+ bdnc
for n = 1, 2, . . . .

Prove or disprove that a− c = d− b is an integer.

FQ B-301. by Phil Mana
Let

A(n) =
n2 + 6n+ 12

12
and B(n) =

n2 + 7n+ 12

6
.

Does bA(n)c+ bA(n+ 1)c = bB(n)c for all integers n?

Floor function: inequalities

OMG 14.1.3.
Prove that b5xc+b5yc > b3x+yc+b3y+xc for x, y > 0.

USA 1975/1.
(a) Prove that

b5xc+ b5yc ≥ b3x+ yc+ b3y + xc,
where x, y ≥ 0.

(b) Using (a) or otherwise, prove that

(5m)!(5n)!

m!n!(3m+ n)!(3n+m)!

is integral for all positive integral m and n.

CRUX 150. by Kenneth S. Williams
Find a function f(k) such that

⌊(
3

2

)k⌋
≥ f(k)

with f(k) between 3k−2k

2k
and 3k−2k+2

2k−1
.

Floor function: integrals

MM 994. by Peter Ørno
For n and m positive integers, evaluate

∫ 1

0

(−1)bntc(−1)bmtc dt.

Floor function: iterated functions

AMM E2604. by E. T. H. Wang
Let N0 = {0, 1, 2, . . .}, and let A:N→ N be defined by

A(n) = b2n/3c. For n ∈ N0, let k ∈ N0 be the smallest

integer such that Ak(n) = 0, and define f(n) = k. Find a
formula, as simple as possible, for the function f .

PME 396. by David R. Simonds
Let [m]n denote bm/nc. Prove that

[m]nk = [m]kn

for all m,n, k ∈ N, where [m]kn means [[· · · [m]n · · ·]n]n
(k sets of brackets).

Floor function: maxima and minima

FQ H-296.* by C. Kimberling
Suppose x and y are positive real numbers. Find the

least positive integer n for which
⌊

x

n+ y

⌋
=
⌊
x

n

⌋
.

Floor function: primes

AMM 6212.* by A. A. Mullin
Prove that bπnc is prime for only finitely many positive

integers n.

AMM E2766. by I. Borosh and D. Hensley
Let r be a positive rational number but not an integer.

Prove that there are infinitely many positive integers n such
that bnrc is prime.

FQ B-358. by Philip Mana
Prove that bn2/3c is prime for only finitely many n.

Floor function: sequences

AMM E2777. by I. Borosh,
H. Diamond, M. Gbur, and D. Hensley

Let b/a be a reduced fraction greater than 1. Let
r = r(a, b) denote the number of integers relatively prime
to b in the sequence

⌊
b

a

⌋
,
⌊

2b

a

⌋
, . . . ,

⌊
(a− 1)b

a

⌋
.

State and prove a rule for determining r as a function of a
and b.
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PUTNAM 1979/A.5.
Denote by S(x) the sequence bxc, b2xc, b3xc, . . . .

Prove that there are distinct real solutions α and β of the
equation

x3 − 10x2 + 29x− 25 = 0

such that infinitely many positive integers appear both in
S(α) and in S(β).

AMM E2726. by Roy Streit
Define F (a, b) to be the sequence (c0, c1, c2, . . .), where

cn = ban + bc. Which (a, b) ∈ R2 have the property that
F (x, y) = F (a, b) implies (x, y) = (a, b)?

Floor function: solution of equations

MSJ 479.
Solve the equation

19x+ 16

10
=
⌊

4x+ 7

3

⌋
.

SSM 3687. by Herta T. Freitag
With n being a positive integer, solve the equation

b√nc = bn/2c.

SSM 3696. by Douglas E. Scott
Let k be a positive integer. For what positive integer

values of n does b√nc = bn/kc?

Forms of numbers: decimal representations

PENT 310. by Kenneth M. Wilke
Consider the sequence

10001, 100010001, 1000100010001, . . .

Are there any primes in this sequence?

Forms of numbers: difference of consecutive cubes

FQ H-291. by George Berzsenyi
Prove that there are infinitely many squares that are

differences of consecutive cubes.

Forms of numbers: difference of powers

AMM E2797. by Barry J. Powell
Determine whether or not there are infinitely many

primes p such that for any pair of coprime odd positive
integers x and y with no two of p, x, y, congruent modulo
p, the multiplicity of p in the prime factorization of xp−1 −
yp−1 is odd.

Forms of numbers: difference of squares

TYCMJ 37. by Louis Alpert
Prove that the product of any four consecutive integer

members of an arithmetic progression may be expressed as
the difference of two integer squares.

SSM 3773. by Fred A. Miller
Prove:
(a) The cube of any integer may be expressed as the

difference of two squares of integers;
(b) The cube of any odd integer different from 1 and

−1 can be expressed in two ways as the difference of two
squares of integers;

(c) The difference of the cubes of any two consecutive
integers can be expressed as the difference of two squares of
integers.

Forms of numbers: perfect numbers

SSM 3588. by Bob Prielipp
Show that every perfect number can be expressed

uniquely as the sum of two or more consecutive positive
integers (in increasing order).

Forms of numbers: powers of 2

TYCMJ 97. by Richard L. Francis

Does there exist a positive integer n for which 2n+1−1
and 2n−1(2n − 1) are both cubes?

Forms of numbers: prime divisors

AMM E2725. by Solomon W. Golomb
Given positive integers a and b, show that there exists

a positive integer c such that infinitely many numbers of
the form an + b (n a positive integer) have all their prime
factors less than or equal to c.

Forms of numbers: product of consecutive integers

MSJ 497.
Prove that for no integer n can 49n+ 5 be the product

of consecutive integers.

SPECT 8.6. by B. G. Eke
Show that the product of four consecutive positive

integers cannot be a perfect cube.

CRUX 83. by Léo Sauvé
Show that the product of two, three, or four consecu-

tive positive integers is never a perfect square.

FUNCT 3.1.2.
The product of four consecutive integers is a square.

Find the integers. Do the same for the case of four consec-
utive odd integers.

SSM 3611. by Robert A. Carman
ISMJ 13.12.

Show that the product of four consecutive integers
increased by 1 is a perfect square.

Forms of numbers: squares

AMM E2606. by R. S. Luthar
SSM 3646. by Robert A. Carman

Show that there are infinitely many integers n such
that 2n + 1 and 3n + 1 are both perfect squares, and that
such n’s must be multiples of 40.
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TYCMJ 50. by Aron Pinker
Let k and r be nonnegative integers with r ≤ 5. Prove

that, for some value of m ∈ {25, 225, 625},
500(k + 1)(5k + 2r) +m

is a square.

MM Q643. by Erwin Just
Let m < n be positive integers exactly one of which

is even. Prove that the only integral value of x for which
(x2n − 1)/(x2m − 1) is a perfect square is zero.

Forms of numbers: sum of consecutive cubes

SSM 3782. by Charles W. Trigg
Show that the sum of the cubes of any k consecutive,

positive integers is equal to the difference of two integer
squares. Describe the squares.

PARAB 298.
Find all sets of three consecutive natural numbers such

that the sum of their cubes is divisible by 18.

Forms of numbers: sum of consecutive integers

SSM 3658. by E. D. Bender
The number 75 is the sum of consecutive, positive

integers in five ways: 75 = 37 + 38 = 24 + 25 + 26 =
13 + 14 + 15 + 16 + 17 = 10 + 11 + 12 + 13 + 14 + 15 =
3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12. Prove that there
are infinitely many positive integers each of which is a sum
of consecutive, positive integers in at least three ways.

PARAB 276.
Find all sets of consecutive positive integers whose sum

is 1000.

MATYC 102. by Raymond Maruca
Prove that if S1 and S2 are each sums of n consecutive

positive integers, then S1 and S2 are not relatively prime,
where n > 2.

CANADA 1976/5.
MATYC 90. by Dan Aulicino

Prove that a positive integer is a sum of at least two
consecutive positive integers if and only if it is not a power
of two.

SSM 3615. by Herta T. Freitag
If S(m,n) represents the sum of m successive positive

integers starting with n, how many primes are there in this
sequence?

ISMJ J10.7.
Find five consecutive numbers whose sum is a perfect

square less than 100. Can you find four consecutive numbers
whose sum is a perfect square?

Forms of numbers: sum of consecutive odd integers

CRUX 112. by H. G. Dworschak
OSSMB G75.3-4.
PARAB 405.

Let k > 1 and n be positive integers. Show that there

exist n consecutive odd integers whose sum is nk.

Forms of numbers: sum of consecutive squares

MSJ 423. by Nathaniel Dean
Suppose that x is the largest integer in a set of n + 1

consecutive positive integers, the sum of the squares of
which equals the sum of the squares of the next n con-
secutive positive integers. Express the value of x in terms
of n.

Forms of numbers: sum of cubes

AMM 6232.* by Allan Wm. Johnson, Jr.
Prove or disprove: Given any integer G > 13, there

exist distinct integers xi > 0 such that

G3 =

5∑

i=1

x3
i .

MM Q649. by Norman Schaumberger
Show that every rational number r may be written as

the sum of four or fewer rational cubes.

Forms of numbers: sum of divisors

MM 964. by P. Erdős
Show that every positive integer k, k < n!, is a sum of

fewer than n distinct divisors of n!.

Forms of numbers: sum of factorials

MSJ 478.
Prove that no positive integer can be expressed in two

distinct ways as the sum of two factorials, n! + m!, where
n,m ≥ 1.

Forms of numbers: sum of squared reciprocals

JRM 586. by Friend H. Kierstead, Jr.
It is known that every rational number in

[
0, π2/6− 1

]
can be represented as a finite sum of reciprocals of distinct
squares. Find such a representation for 1

2 ,
(a) with the least number of terms;

(b) with the smallest n, where n2 is the largest denom-
inator.

Forms of numbers: sum of squares

OSSMB G79.2-4.
Show that three times the sum of three squares can be

expressed as the sum of four squares.

MM Q634. by M. S. Klamkin
CRUX PS1-1.

If a, b, c, and d are positive integers where ab = cd,
show that a2 + b2 + c2 + d2 is always composite.

MM Q641. by Erwin Just
If n and k are integers with n > 2 and k ≥ 1, show that

nk can be expressed as the sum of the squares of exactly n
positive integers.

FQ B-328. by Walter Hansell
Show that 6(12 + 22 + 32 + · · ·+ n2) is always a sum

m2 + (m2 + 1) + (m2 + 2) + · · ·+ (m2 + r)

of consecutive integers, of which the first is a perfect square.
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Forms of numbers: sum of two squares

ISMJ 13.15.
Let S be the set of numbers of the form m2 +n2 where

m and n are integers. Let s, t ∈ S.
(a) Show that st ∈ S.

(b) If t 6= 0, show that s/t is of the form x2 +y2 where
x and y are rational numbers.

JRM 590. by Frank Rubin
Some numbers can be expressed as the sum of the

squares of two (not necessarily distinct) positive integers
in several ways.

Let A(n) be the smallest number expressible as a sum
of squares in greater than or equal to n ways. Thus A(1) =
2; A(2) = 50; A(3) = 325. Extend this list through at least
A(10).

MSJ 491.
Let a and b be distinct positive integers. Prove that if

(a2 + b2)/2 is also an integer, then it may be expressed as
the sum of the squares of two integers.

MM 1042. by Henry Klostergaard
Prove that any integer that is the sum of the squares of

two different, nonzero integers is divisible by a prime that
is the sum of the squares of two different, nonzero integers.

Forms of numbers: unit fractions

ISMJ 11.20.
Show that the reciprocal of every integer greater than

1 is the sum of a finite number of terms of the sequence

1

1 · 2 ,
1

2 · 3 ,
1

3 · 4 , . . . ,
1

j · (j + 1)
, . . . .

TYCMJ 73. by Allan Wm. Johnson, Jr.
Let N be an arbitrary positive integer. Is it always

possible to express 1 as a finite sum of reciprocals of distinct
positive integers, each of which is a multiple of N?

USA 1978/3.
An integer n will be called good if we can write

n = a1 + a2 + · · ·+ ak,

where a1, a2, . . . , ak are positive integers (not necessarily
distinct) satisfying

1

a1
+

1

a2
+ · · ·+ 1

ak
= 1.

Given the information that the integers 33 through 73 are
good, prove that every integer ≥ 33 is good.

JRM 477. by E. J. Barbeau
It can be shown that any set of distinct odd positive

integers whose reciprocals add up to one must contain at
least nine members. If no restriction is made on the number
of members of such a set, find the smallest value of n such
that n is the largest denominator.

ISMJ J10.17.
The ancient Egyptians represented 23

25 as 1
2 + 1

3 + 1
15 +

1
50 . Is this the shortest representation of 23/25 in the form

1

a1
+

1

a2
+ · · ·+ 1

an

where a1, a2, . . . , an is a strictly increasing sequence of pos-
itive integers? Is it unique?

CRUX 346. by Leroy F. Meyers
It has been conjectured that every rational number

of the form 4/n where n is an integer greater than 1 can
be expressed as the sum of three or fewer unit fractions
not necessarily distinct. As a partial verification of the
conjecture show that at least 23/24 of such numbers have
the required expansions.

Fractional parts

AMM 6024. by L. Kuipers
If α is rational and different from 0, and β is irrational,

then show that the sequence (bnαcnβ), n = 1, 2, . . . , is
uniformly distributed mod 1.

JRM 681. by Benjamin L. Schwartz
Let 〈x〉 denote the fractional part of x, that is, 〈x〉 =

x− bxc.
(a) For 1 ≤ n ≤ 1000000, find the minimum and max-

imum nonzero values of 〈√n 〉.
(b) For 1 ≤ n < m ≤ 1000000, find the minimum

nonzero value of 〈√m 〉 − 〈√n 〉.

JRM C2. by David L. Silverman
Find the smallest integer N > 30,739, the fractional

parts of whose square root and cube root differ by a positive
number less than 0.0000151.

CRUX 360. by Hippolyte Charles
Let 〈x〉 = x− bxc. Show directly that the set

{〈√n〉 |n = 1, 2, 3, . . .}

is dense in the unit interval (0, 1).

CRUX 269. by Kenneth M. Wilke
Let 〈

√
10〉 denote the fractional part of

√
10. Prove that

for any positive integer n there exists an integer In such that

〈
√

10〉n =
√
In + 1−

√
In.

Fractions

PARAB 393.
ISMJ J10.16.
ISMJ J11.9.

Show that, if n is any integer greater than 2, of the
fractions

1

n
,

2

n
,

3

n
, . . . ,

n− 1

n
,

an even number are in lowest terms.

189



Number Theory
Functional equations Problems sorted by topic Geometry: rectangular parallelepipeds

Functional equations

AMM S3. by Albert A. Mullin
FQ H-287. by A. Mullin

Prove that any strictly positive real-valued arithmeti-
cal function f satisfying the functional equation

f(n+ 1)

n+ 1
+ n =

(n+ 1)f(n)

f(n+ 1)

for every integer n exceeding some prescribed positive in-
teger m is necessarily asymptotic to π(n), the number of
prime numbers not exceeding n.

Gaussian integers

NAvW 457. by G. J. Rieger
Suppose that a + bi and c + di are Gaussian integers.

Give a proof showing that gcd(a+ bi, c+di) = 1 if and only

if gcd
(
a2 + b2, ad− bc, c2 + d2

)
= 1.

AMM 6053. by Raphael Finkelstein
Let a + bi be a Gaussian integer with gcd(a, b) = 1,

and let A + Bi = (a + bi)p, where p is an odd prime. Let
C = max(A,B) and D = min(A,B). Can C/D approach

(1 +
√

5)/2 arbitrarily closely?

Generating functions

FQ B-407. by Robert M. Giuli
Given that

1

1− x− xy =

∞∑

n=0

∞∑

k=0

an,kx
nyk

is a double ordinary generating function for an,k, determine
an,k.

OSSMB G77.1-6.
In the series

−1 + x+ 4x2 + · · ·+ aix
i + · · ·

every coefficient ai is obtained from the three preceding
coefficients as follows:

a0 = −1, a1 = 1, a2 = 4,
ai+3 = 3ai+2 − 3ai+1 + ai, i = 0, 1, 2, . . . .
(a) Prove that the series represents a rational function

with denominator (1− x)3.
(b) By expanding the function, obtain an explicit func-

tion for ai.

Geometry: cubes

JRM 528. by David Y. Hsu
(a) While it is possible to place the integers 0 through

7 at the vertices of a cube in such a way as to make those on
each face total the same value, a similar task with 0 through
3 on a tetrahedron is impossible. Can such a labeling be
made on the three other regular polyhedra?

(b) While it is possible, as in part (a), to place the con-
secutive integers 0 through 7 at the vertices of a cube in such
a way as to have those on each face total the same value,
it is not possible to perform a similar task with 0 through
3 on a square. Can such an equal-facial-sum assignment be
made on cubes in higher dimensional space?

PME 402. by Charles W. Trigg
The first eight nonzero digits are distributed on the

vertices of a cube. Addition of the digits at the extremities
of each edge forms twelve edge-sums. Find distributions
such that every edge-sum is the same as the sum on the
opposite (non-cofacial) edge.

Geometry: cyclic quadrilaterals

AMM E2660. by E. Ehrhart
Find the number of congruence classes of cyclic quadri-

laterals having integral sides and given perimeter n.

AMM E2557. by R. D. Nelson
Find all cyclic quadrilaterals with integral sides, each

of which has its perimeter numerically equal to its area.

Geometry: lattice points

AMM E2570. by J. G. Sunday
Let (m1, n1), (m2, n2), . . . , (mk, nk) be distinct lattice

points with ni ≥ 2mi > 0 for each i, and suppose that no
two of them lie on any line through the origin. Show that
lcm[n1, n2, . . . , nk] ≥ 2k. When can equality occur?

PME 456. by P. Erdős
Is there an infinite path on visible lattice points avoid-

ing all (u, v) where u, v are primes?

Geometry: quadrilaterals

OMG 14.2.3.
One is given a quadrilateral with two consecutive right

angles. What are the lengths of the sides and diagonals if
all are integral length?

Geometry: rectangles

CRUX 435. by J. A. H. Hunter
In rectangle ABDF , point C is on BD, point E is on

DF , AC = 125, CD = 112, DE = 52, and AB, AD, and
AF are also integral. Find EF .

PME 455. by Kenneth M. Wilke
The perimeter of a 6× 4 rectangle equals the area of a

2× 10 rectangle while the area of the 6× 4 rectangle equals
the perimeter of the 2× 10 rectangle also. Show that there
are an infinite number of pairs of rectangles related in the
same way and find all pairs of such rectangles whose sides
are integers.

Geometry: rectangular parallelepipeds

SSM 3719. by Robert A. Carman
Show that if, in a rectangular solid, the lengths of

all face diagonals and the lengths of all edges are positive
integers, then the length of at least one edge is divisible by
11. (Under the given hypothesis, several similar conclusions
can be established. State and prove as many of these as you
can find.)

TYCMJ 86. by Kay Dundas
The volume of an open-top box has been maximized

by turning up the sides of an m × n rectangle after x × x
squares have been cut from each corner. Assume that m
and n are integers with gcd(m,n) = 1. Prove that there
are an infinite number of values of m and n for which x is
rational.
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Geometry: right triangles

PARAB 261.

In a right triangle, the shortest side has length a, the
longest side has length c, and the other side has length b.
If a, b, c are all integers, when does a2 = b+ c?

FUNCT 2.2.4.

Let n be an integer greater than 2. Prove that the
nth power of the length of the hypotenuse of a right triangle
is greater than the sum of the nth powers of the lengths of
the other two sides.

Geometry: semicircles

PME 398. by Richard S. Field

A quadrilateral with consecutive sides A, B, C, 2R is
inscribed in a semicircle of radiusR with one side lying along
the diameter. Find solutions in integers A = B 6= C 6= R
and A 6= B 6= C = R for the sides of the quadrilateral.
Also, find solutions in integers A 6= B 6= C 6= R, or prove
that none exist.

Greatest common divisor

TYCMJ 34. by Bob Jewett

Let A, B, C, and D be integers for which

gcd(A,B,C,D) = 1.

Prove or disprove that, for each integer n,

gcd(An+B,Cn+D) = 1

if and only if each prime divisor of AD−BC is a divisor of
both A and C.

SPECT 7.6. by B. G. Eke

Show that, among any ten consecutive positive inte-
gers, at least one is relatively prime to all the others.

SPECT 10.6. by L. Mirsky

For any positive integers a, b, m, n with gcd(a, b) = 1,
show that

gcd(am − bm, an − bn) = agcd(m,n) − bgcd(m,n).

CRUX 243. by Hippolyte Charles

(a) Find necessary and sufficient conditions for the
greatest common divisor of two positive integers a and b,
a > b, to equal their difference.

(b) Find all pairs of positive integers whose greatest
common divisor equals their difference and whose least com-
mon multiple is 180.

FQ B-412. by Phil Mana

Find the greatest common divisor of the integers in the
infinite set

{29 − 2, 39 − 3, 49 − 4, . . . , n9 − n, . . .}.

AMM E2560. by Richard Madsen
Let n1, . . . , nk be natural numbers. Define d1 = 1 and

di =
gcd(n1, . . . , ni−1)

gcd(n1, . . . , ni)

for i ≥ 2. Show that the d1 · · · dk possible sums

k∑

i=1

aini, ai ∈ {1, 2, . . . , di},

are all distinct modulo n1.

Harmonic series

OSSMB 75-12.
Let S denote the sum of the terms remaining in the

harmonic series upon the deletion of the terms which con-
tain an even digit:

S = 1 +
1

3
+

1

5
+ · · ·+ 1

19
+

1

31
+ · · ·+ 1

39
+

1

51
+ · · · .

Prove that S < 7.

JRM 503. by Les Marvin
From the harmonic series

1 +
1

2
+

1

3
+ . . . ,

every term in which the denominator is divisible by a prime
of two or more digits is deleted. Either sum the series that
remains, or prove that it diverges.

PUTNAM 1975/B.6.
Show that if

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
,

then
(a) n(n+ 1)1/n < n+Hn for n > 1, and

(b) (n− 1)n−1/(n−1) < n−Hn for n > 2.

SPECT 8.5. by Ian D. Macdonald
Let r, s be positive integers with r > s. Prove that

2s∑

k=0

1

r − s+ k
>

2s+ 1

r
,

and deduce that, if n is an integer greater than 1 and

m = 3n−1
2 , then

1 +
1

2
+ · · ·+ 1

m
> n.

IMO 1978/5.
Let {ak} (k = 1, 2, 3, . . . , n, . . .) be a sequence of dis-

tinct positive integers. Prove that for all natural numbers
n,

n∑

k=1

ak
k2
≥

n∑

k=1

1

k
.

PARAB 434.
Show that if N is taken sufficiently large, the sum

1

1
+

1

2
+

1

3
+

1

4
+ · · ·+ 1

N

is larger than 100.
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TYCMJ 44. by Benjamin Burrell
Does

∑∞
k=1

1
k(1+1/2+···+1/k)

converge?

JRM 512. by Robert Walsh
Let

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

For each k = 1, 2, 3, . . . , let Hn(k) be the smallest par-
tial sum that exceeds k and call E(k) = Hn(k) − k the
kth excess. The intuitive guess that E(k) is monoton-
ically decreasing is quickly negated, since E(1) = 0.5,
E(2) = 0.0833, E(3) = 0.0199, but E(4) = 0.0272.

(a) Find the next counterexample [E(n) < E(n+ 1)].
(b) Does the series of excesses converge?

Inequalities: binomial coefficients

AMM 6019. by R. E. Shafer
Prove for all positive integers n that

22n

√
π(n2 + n/2 + 1/8)1/4

<

(
2n

n

)
<

22n

√
(n+ 1/4)π

.

Inequalities: congruences

AMM 6200. by Brian Conrey,
David Leep, and Gerry Myerson

Define
(
a
b

)
r

to be the least positive integer x such

that bx ≡ a (mod r). Let k, m, n be positive integers with
gcd(m,n) = 1, k < n, m < n. Show that

(a) m <
(
k
m

)
n

+
(
k
n

)
m
≤ n;

(b)
(

1
m

)
n

+
(

1
n

)
m

= m+n
2 if and only if n−m = 2.

Thus, for m and n prime, (b) characterizes twin primes.

Inequalities: exponentials

PARAB 269.
(a) Show that for any positive integer n

2 <
(

1 +
1

n

)n
< 3.

(b) Which is larger, 10001000 or 1001999?

AMM 6239. by F. David Hammer
Is the following conjecture true? Let p(x, y) be any

polynomial in x and y; then |xy − yx| ≤ |p(x, y)| has only
finitely many solutions (x, y) in unequal integers not less
than 2.

Inequalities: fractional parts

AMM 6199. by Hugh L. Montgomery
Suppose q ≥ 1 and gcd(a, q) = 1. Set

L =
{
n | 1 ≤ n ≤ q, {an/q} ≤ (n/q)2

}
,

where {θ} = θ − bθc is the fractional part of θ. Show that

∑

n∈L
n−2 ≤ 9/q.

Inequalities: logarithms

MM 986. by P. Erdős
Show that there exists a constant c such that a + b <

n + c lnn, for all positive integers a, b, and n for which
n!/(a!b!) is an integer.

NAvW 463. by P. Erdős
Let qr(n) be the maximum number of integers less than

or equal to n such that the product of at most r of them is
never a square.

(a) Determine q1(n) and q2(n);
(b) Prove that there exists a constant c such that

q3(n) > cn (Conjecture: q3(n) ∼ c′n for some constant
c′);

(c) Prove that there are constants c1 and c2 such that,
for r ≥ 4,

c1
n

logn
< qr(n) < c2

n

logn
.

Inequalities: powers

PARAB 433.
Which is larger, 100300 or 300! ?

Inequalities: powers of 2

CRUX 23. by Léo Sauvé
Determine if there exists a sequence (un) of natural

numbers such that

2un < 2n+ 1 < 21+un

for all positive integers n.

Inequalities: products

PARAB 360.
Suppose a1, a2, . . . , ak and b1, b2, . . . , bk are integers

such that a1 ≥ b1 ≥ 1, a2 ≥ b2 ≥ 1, and so on. Let

a = a1 + a2 + · · ·+ ak,

and
b = b1 + b2 + · · ·+ bk.

(a) Prove that the product

[b1(a1 − b1) + 1] [b2(a2 − b2) + 1]

× · · · × [bk(ak − bk) + 1]

is greater than or equal to a− b+ 1.
(b) Can you determine exactly under what conditions

equality occurs?

Inequalities: radicals

CRUX 84. by Viktors Linis
Prove that for any positive integer n

n
√
n < 1 +

√
2

n
.

Inequalities: simultaneous inequalities

MSJ 421.
Find the smallest positive integers x, y, z, and w that

satisfy the following simultaneous inequalities:

2x < x+ y < x+ z < 2y < x+ w

< y + z < 2z < y + w < z + w < 2w.
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Inequalities: sum and product

ISMJ J10.3.
For what integer values of x, y, and z is it true that

x ≤ x+ y + z ≤ y ≤ xyz ≤ z?

Inequalities: sum of squared differences

IMO 1975/1.
Let xi and yi (i = 1, 2, . . . , n) be real numbers such

that

x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn.

Let (z1, z2, . . . , zn) be any permutation of (y1, y2, . . . , yn).
Prove that

n∑

i=1

(xi − yi)2 ≤
n∑

i=1

(xi − zi)2.

Infinite products

AMM 6012. by Daniel Shanks
Prove the following infinite products over certain sets

of primes p:

∏

p=14k±1

(
1 +

3p2

(p2 − 1)2

)
=

840

817
,

∏

p=18k±1

(
1 +

3p2

(p2 − 1)2

)
=

40

39
.

AMM 6240. by Mihai Eşanu
Let an 6= 0, limn→∞ an = 0. Prove that for every real

number x, there exist sequences (λn), (µn) of integers such
that

x =

∞∑

n=1

λnan =

∞∏

n=1

µnan.

Irrational numbers

SSM 3627. by Charles E. Blanchard
Let x = 0.1001000010000001000000001 . . . .
(a) Express x as a sigma sum.
(b) Does xn − q = 0 have a solution with q a rational

number and n a positive integer?

FQ B-404. by Phil Mana
Let x be a positive irrational number. Let a, b, c, and

d be positive integers with a/b < x < c/d. If a/b < r < x,
with r rational, implies that the denominator of r exceeds
b, we call a/b a good lower approximation for x. If x <
r < c/d, with r rational, implies that the denominator of r
exceeds d, c/d is a good upper approximation for x. Find

all the good lower and upper approximations for (1+
√

5)/2.

FQ B-405. by Phil Mana
Prove that for every positive irrational x, the good

lower approximations and good upper approximations for x
can be put together to form one sequence {pn/qn} with

pn+1qn − pnqn+1 = ±1

for all n. (For definitions see FQ B-404 above.)

Least common multiple

AMM E2686. by Peter L. Montgomery
Show that

(n+ 1) lcm
0≤k≤n

[(
n

k

)]
= lcm[1, 2, . . . , n+ 1].

NAvW 505. by P. Erdős
Let M(n, k) be the least common multiple of the inte-

gers n+ 1, n+ 2, . . . , n+ k. Prove that, for fixed k ≥ 5, the
equation

M(n, k) = M(n+ 1, k)

has a solution n > k. Prove that there exists a number cr
such that, for fixed k > cr, the equation

M(n, k) = M(n+ r, k)

has a solution n > k. Show that both equations have a finite
number of solutions. (Conjecture: M(n, k) 6= M(m, k) for
m ≥ n+ k.)

NAvW 417. by P. Erdős
Let Ln be the least common multiple of the integers

not exceeding n. Let f(n) be the smallest integer k for
which

Ln = a1a2 · · · ak,
with

a1 ≤ a2 ≤ · · · ≤ ak ≤ n.
Prove that

f(n) = π(n)−
(√

2− 1

2

)
π
(√

n
)

+ o
(
π
(√

n
))
,

n→∞.

AMM S21.* by P. Erdős
Let

A(n, k) = (n+ 1)(n+ 2) · · · (n+ k),

B(n, k) = lcm [n+ 1, n+ 2, . . . , n+ k] ,

and

α(n, k) =
A(n, k)

B(n, k)
.

(a) How many distinct values can α(n, k) take for fixed
k?

(b) Do m, n, and k exist with m > n + k − 1 and
α(m, k) = α(n, k)?

CRUX 205. by Steven R. Conrad
Find the least common multiple of the numbers

(29!)(37!) and (23!)(41!).

ISMJ 11.4.
Prove that if the least common multiple of two numbers

is equal to the square of their difference, then their highest
common factor is the product of two consecutive integers.

CANADA 1979/3.
Let a, b, c, d, e be integers such that 1 ≤ a < b < c <

d < e. Prove that

1

lcm[a, b]
+

1

lcm[b, c]
+

1

lcm[c, d]
+

1

lcm[d, e]
≤ 15

16
.
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Legendre symbol

CMB P271. by Kenneth S. Williams
Let p > 3 be an odd prime. Determine N(ε1, ε2, ε3),

the number of integers x (1 ≤ x ≤ p− 3) such that
(
x

p

)
= ε1,

(
x+ 1

p

)
= ε2,

(
x+ 2

p

)
= ε3

where (x/p) denotes Legendre’s symbol and εi = ±1.

CRUX 449. by Kenneth S. Williams
Let p be a prime ≡ 3 (mod 8) and let each of the

numbers α, β, and γ have one of the values ±1. Prove
that the number Np(α, β, γ) of consecutive triples x, x+ 1,
x+ 2 (x = 1, 2, . . . , p− 3) with

(
x

p

)
= α,

(
x+ 1

p

)
= β,

(
x+ 2

p

)
= γ

where
(
x
p

)
is the Legendre symbol, is the same no matter

what values are assigned to α, β, and γ.

AMM E2760. by Kenneth S. Williams
Let p be a prime. If p ≡ 1 (mod 4) let a be the unique

integer such that

p = a2 + b2, a ≡ −1 (mod 4), b even.

Prove that

p−1∑

i=0

(
i3 + 6i2 + i

p

)
=

{
2
(

2
p

)
a, if p ≡ 1 (mod 4),

0, if p ≡ 3 (mod 4),

where
(
n
p

)
is the Legendre symbol.

Limits

NAvW 493. by P. Erdős
Let f(y) denote the maximal value of

∑
a∈S a

−1,
where S denotes a set of relatively prime integers in the
interval

(
y, y2

)
. Prove that

lim
y→∞

f(y) = log 2.

AMM E2807. by Solomon W. Golomb
Let a and r be fixed positive constants with r > 1. For

each positive integer k, there is a smallest positive integer

n = n(k) that satisfies (n+a)k ≤ rnk. Show that limn(k)/k
as k →∞ exists and evaluate this limit.

CRUX 382. by Kenneth S. Williams
Let a, b, c, and d be positive integers. Evaluate

lim
n→∞

a(a+ b)(a+ 2b) · · · (a+ (n− 1)b)

c(c+ d)(c+ 2d) · · · (c+ (n− 1)d)
.

Lucas numbers: binomial coefficients

FQ B-327. by George Berzsenyi
Find all integral values of r and s for which the equality

n∑

i=0

(
n

i

)
(−1)iLri = snLn

holds for all positive integers n.

FQ B-414. by Herta T. Freitag
Let

Sn = Ln+5 +

(
n

2

)
Ln+2 −

n∑

i=2

(
i

2

)
Li − 11.

Determine all n ∈ {2, 3, 4, . . .} for which Sn is (a) prime;
(b) odd.

Lucas numbers: congruences

FQ B-403. by Gregory Wulczyn
Let m = 5n. Show that L2m ≡ −2 (mod 5m2).

FQ H-262. by L. Carlitz
Show that

Lp2 ≡ 1 (mod p2) if and only if Lp ≡ 1 (mod p2).

FQ H-263. by G. Berzsenyi
Prove that L2

2mn ≡ 4 (mod L2
m) for every n,m =

1, 2, 3, . . . .

FQ B-314. by Herta T. Freitag
Show that L2pk ≡ 3 (mod 10) for all primes p ≥ 5.

FQ B-366. by Wray G. Brady
Prove that LiLj ≡ LhLk (mod 5) when i+ j = h+ k.

Lucas numbers: cubes

FQ B-342. by Gregory Wulczyn
Prove that

2L3
n−1 + L3

n + 6L2
n+1Ln−1

is a perfect cube for n = 1, 2, . . . .

Lucas numbers: digit problems

FQ B-382. by A. G. Shannon
Prove that Ln has the same last digit (i.e., units digit)

for all n in the infinite geometric progression 4, 8, 16, 32, . . . .

Lucas numbers: divisibility

FQ B-317. by Herta T. Freitag
Prove that L2n−1 is an exact divisor of L4n−1 − 1 for

n = 1, 2, . . . .

Lucas numbers: sequences

FQ B-406. by Wray G. Brady
Let xn = 4L3n−L3

n. Find the greatest common divisor
of the terms of the sequence x1, x2, x3, . . . .

Lucas numbers: sets

FQ H-304.* by V. E. Hoggatt, Jr.
(a) Show that there is a unique partition of the positive

integers N into two sets, A1 and A2, such that

A1 ∪A2 = N, A1 ∩A2 = ∅,

and no two distinct elements from the same set add up to
a Lucas number.

(b) Show that every positive integer, M , that is not
a Lucas number is the sum of two distinct elements of the
same set.

194



Number Theory
Lucas numbers: sets Problems sorted by topic Modular arithmetic: complete residue systems

FQ B-369. by George Berzsenyi
For all integers n ≥ 0, prove that the set

Sn = {L2n+1, L2n+3, L2n+5}
has the property that if x, y ∈ Sn and x 6= y, then xy+ 5 is
a perfect square. For n = 0, verify that there is no integer z
that is not in Sn and for which {z, L2n+1, L2n+3, L2n+5}
has this property.

Matrices

MM 1063. by D. A. Moran
Let M be an n × n matrix of integers whose inverse

is also a matrix of integers. Prove that the number of odd
entries in M is at least n and at most n2 − n+ 1, and that
these are the best possible bounds.

AMM 6210. by Olga Taussky
Let A be an integral square matrix that is congruent

to the unit matrix I modulo an odd prime number. Then
A either is equal to I or is of infinite order. Give a proof
based on the eigenvalues of A.

Maxima and minima

NAvW 528. by P. Erdős and J. H. van Lint
For fixed k and 1 ≤ i ≤ k, let R(n, i, k) denote the

number of integersm ∈ (n, n+k] such that gcd(m,n+i) = 1.
For n ≥ 0, we define

fk(n) = min
{
R(n, i, k)

∣∣ 1 ≤ i ≤ k
}
.

(a) Determine

lim inf
n→∞

fk(n).

(b) Show that there are constants c1, c2 such that, for
all k,

c1k

log log k
< max

{
fk(n)

∣∣ n ≥ 0
}
<

c2k

log log k
.

CRUX 25. by Viktors Linis

Find the smallest positive value of 36k − 5l where k
and l are positive integers.

CRUX PS8-3.
Let n be a given natural number. Find nonnegative

integers k and l so that their sum differs from n by a natural
number and so that the following expression is as large as
possible:

k

k + l
+

n− k
n− (k + l)

.

IMO 1976/4.
Determine, with proof, the largest number which is the

product of positive integers whose sum is 1976.

JRM 711. by Friend H. Kierstead, Jr.
(a) How should the number 36 be partitioned into in-

teger summands so that the product of the summands is as
large as possible? What is the maximum product?

(b) How should 36 be so partitioned into reals?
(c) Generalize to other real numbers.

NAvW 552. by P. Erdős
Let 1 ≤ a1 < a2 < · · · < ak < n and for 1 ≤ i < j ≤ k

let gcd
(
ai, aj

)
6= 1, ai - aj . Determine the maximal value

of k.

Means

CRUX 77. by H. G. Dworschak
Let An, Gn, and Hn denote the arithmetic, geometric,

and harmonic means of the n positive integers n + 1, n +
2, . . . , n+ n. Evaluate

lim
n→∞

An
n
, lim
n→∞

Gn
n
, lim
n→∞

Hn
n
.

SSM 3759. by Alan Wayne
Find conditions under which the harmonic mean of two

distinct, positive integers is an integer.

SSM 3613. by Alan Wayne
Given two different positive integers, prove that the

arithmetic mean of their harmonic mean and their geometric
mean is less than their arithmetic mean.

Mersenne numbers

SSM 3770. by Richard L. Francis
Show that between any two Mersenne primes, there is

a prime number.

Möbius function

AMM 6108. by Aleksander Ivić
Find all multiplicative functions f(n) such that

f(n2) =
∑

d |n
µ2(d)f

(
n

d

)

and

f2(n) =
∑

d |n
f(d2).

AMM 6235. by Robert J. Anderson
and M. Ram Murty

Let M(x) =
∑
n≤x µ(n), where µ is the Möbius func-

tion. It has been conjectured and supported with numerical
evidence that

∑
n≥xM(n) = O(x log x). Settle this conjec-

ture.

AMM 6035. by Arthur Marshall
For every natural number k, let Nk be the kth number

in natural order of the sequence consisting solely of primes
and the (square-free) products of (two or more) successive
primes. Let µ be the Möbius function. Does the series

∞∑

k=1

µ(Nk)

Nk
lnNk

diverge (positively or negatively), converge, or oscillate?

Modular arithmetic: complete residue systems

AMM E2781. by James Propp
Let S be a set of n integers and m = n(n+1)/2. When

n ≥ 3, can S + S constitute a complete residue set modulo
m?
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Modular arithmetic: coprime integers

MM Q653. by L. Kuipers
Show that if gcd(a, b) = 1, then the set of integers

{ai | 0 ≤ i ≤ r − 1} ∪ {bj | 1 ≤ j ≤ s},
where r + s = a + b, forms a complete set of residues
mod (a+ b).

AMM S9. by M. S. Klamkin and A. Liu
(a) Determine all positive integers n such that

gcd(x, n) = 1

implies that x2 ≡ 1 (mod n).
(b) Determine all positive integers n such that

xy + 1 ≡ 0

(mod n) implies that x+ y ≡ 0 (mod n).

Modular arithmetic: fields

CMB P274. by Kenneth S. Williams
Let p be a prime congruent to 7 modulo 8, so that there

are odd positive integers u and v such that p = u2 − 2v2.
Let T +U

√
p be the fundamental unit of the real quadratic

field Q(
√
p). Prove that

T ≡ 0 (mod 16) ⇐⇒ u ≡ ±1 (mod 8).

Modular arithmetic: groups

AMM E2753. by Haim Rose
Let p be a prime and g = {r1, r2, . . . , rk} be any group

under multiplication modulo p, where the ri are integers
with 0 < ri < p. Let P be the product of all the ri and Q
be the product of those ri satisfying 0 < ri < p/2. Prove:

(a) P ≡ −(−1)k (mod p).
(b) If k = 2h, with h an odd integer, then Q ≡ ±1

(mod p).
(c) If 1 ≤ ri ≤ (p − 1)/2 for 1 ≤ i ≤ k, then P ≡ 1

(mod p). Can this situation actually occur?

(d) If k = 2h, h ≥ 2, then p2 is an integral divisor of
the numerator of the sum

1

r1
+

1

r2
+ · · ·+ 1

rk
.

Modular arithmetic: permutations

MM 948. by Bob Prielipp and N. J. Kuenzi
Let Zn be the ring of integers modulo n. For what

values of n different from 2 do there exist permutations f
and g on Zn such that the pointwise product fg is also a
permutation on Zn?

Modular arithmetic: powers

CRUX 76. by H. G. Dworschak
What is the remainder when 2323 is divided by 53?

AMM E2673. by Haim Rose
Let p = 6n+1 be a prime number, n a positive integer.

An n-residue (mod p) is an integer a such that 0 < a < p
and a ≡ bn (mod p) for some integer b. Prove that the
product of all n-residues (mod p) that are less than p/2 is
congruent to −1 (mod p).

AMM E2798. by Doug Hensley
Prove that there are infinitely many pairs (p, q) of

primes such that (q − 1)/p is an integer k and 2 is a kth
power modulo q.

Modular arithmetic: quadratic congruences

MM 1044. by J. Metzger
Let p be a prime and k a positive integer. The congru-

ence relation (x − a)(x − b) ≡ 0 (mod pk) has the obvious

solutions x ≡ a (mod pk) and x ≡ b (mod pk). When are
these the only solutions?

AMM E2704. by S. Collins,
S. M. Reddy, and N. J. A. Sloane

Find the number of solutions of x2 = x in the ring of
integers modulo n.

Modular arithmetic: reciprocals

OMG 15.3.7.
What is the reciprocal of 3 modulo 5?

Modular arithmetic: solution of equations

AMM E2773. by Michael W. Ecker
What is the number of solutions in Zn of x3 = x?

Modular arithmetic: squares

CMB P254. by D. Ž. Djoković
Let p be a prime, p ≡ 1 (mod 16). Let a be an integer

such that 2a2 ≡ 1 (mod p); it is well known that such
integers exist. Prove that 1 + a is a square mod p.

Modular arithmetic: sum of squares

AMM 6148. by Charles Small
Let s(n) denote the smallest r such that −1 is a sum

of r squares (mod n). Show that s(n) equals:




1, if 4 - n and p - n for all primes p ≡ 3(mod 4),

2, if 4 - n and p |n for some prime p ≡ 3(mod 4),

3, if 4 |n but 8 - n,

4, if 8 |n.

Modular arithmetic: systems of congruences

ISMJ J11.18.
lf the remainder when 100 is divided by d is 4 and the

remainder when 90 is divided by d is 18, what is d?

Multinomial coefficients

FQ B-307. by Verner E. Hoggatt, Jr.
Let

(1 + x+ x2)n = an,0 + an,1x+ an,2x
2 + · · · ,

(where, of course, an,k = 0 for k > 2n). Also let

An =

∞∑

j=0

an,4j , Bn =

∞∑

j=0

an,4j+1,

Cn =

∞∑

j=0

an,4j+2, Dn =

∞∑

j=0

an,4j+3.

Find the relationship of An, Bn, Cn, and Dn to each other.
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Multiplication tables

OMG 15.3.9.

Given the following multiplication table, what is the
value of 7/5?

Normal numbers

AMM 6219. by M. J. Pelling

Construct an uncountable class of real numbers not
normal in the scales of 3 and 5.

Number of divisors

MM 983. by Bernardo Recamán

Are there arbitrarily long sequences of consecutive in-
tegers no two of which have the same number of prime di-
visors?

CMB P264. by P. Erdős

Determine the limit points of d((n+ 1)!)/d(n!), where
d(m) is the number of divisors of m.

CMB P267. by P. Erdős

If tn is an integer and tn > n1/2 show that

lim
n→∞

d((n+ tn)!)

d(n!)
=∞

where d(m) denotes the number of divisors of m.

AMM E2780. by Jim Totten

Let d(n) be the number of (positive integral) divisors
of the natural number n and define S(n) as

∑
d(k), with

the sum taken over all divisors k of n. Determine the values
of n for which n = S(n).

NAvW 499. by J. van de Lune

For any positive integer n, let τ(n) denote the number
of divisors of n. Since τ(n) ≤ n, we have that, for every
n ∈ N, the sequence of τ -iterates of n

n, τ(n), τ (τ(n)) , . . .

becomes eventually constant. Let D(n) be the number of
different integers in this sequence. Prove that

D(n) = O

(
logn

log log n

)
, n→∞.

NAvW 483. by P. Erdős and A. Sárkőzi
Let 1 ≤ a1 < a2 < · · · be an infinite sequence of

integers. Denote by dA(n) the number of divisors of n
among the elements of the sequence. It is easy to see that

∑

n≤x
dA(n) = x

∑

ai≤x

1

ai
+O(x),

i.e., the average value of dA(n) for n ≤ x is

∑

ai≤x

1

ai
+O(1).

Prove that if gcd(ai, aj) = 1 for all pairs (i, j), i 6= j, then

lim
x→∞

max
1≤n≤x

dA(n)
/ ∑

ai≤x

1

ai
=∞.

Number representations: Fibonacci numbers

FQ B-416.* by Gene Jakubowski
and V. E. Hoggatt, Jr.

Prove that every positive integer m has at least one
representation of the form

m =

N∑

j=−N
αjFj ,

with each αj in {0, 1} and αj = 0 when j is an integral
multiple of 3.

PARAB 438.
Prove that every positive integer can be written as the

sum of distinct Fibonacci numbers.

Number representations: fractions

SSM 3636. by Robert A. Carman
Express 883

285444 as the sum of two fractions whose de-
nominators are 881 and 324.

Number representations: Lucas numbers

NYSMTJ 90. by H. O. Eberhart
Let L1 = 1, L2 = 2, and Ln = Ln−1 +Ln−2 for n > 2.

Show that every positive integer can be expressed as a sum
of distinct Li.

Number representations: perfect numbers

MM 954. by Richard L. Francis
Show that any even perfect number greater than 28 can

be represented as the sum of at least two perfect numbers.

Number representations: polygonal numbers

SSM 3784. by William J. O’Donnell
Prove that every pentagonal number greater than one

can be written as the sum of three triangular numbers, two
of which are equal. Triangular numbers, Tn, are positive
integers of the form n(n + 1)/2 and pentagonal numbers,
Pn, are positive integers of the form n(3n− 1)/2.
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Number representations: ratios

SSM 3574. by Charles W. Trigg
In a paperback book of Mathematical Puzzles and

Their Solutions, the following problem appears: “The prod-
uct 1/3 of 60 is represented in a certain number system by
the symbol 15. How would 1/9 of 48 be represented in
that number system?” The given solution in its entirety
is: “Set up the proportion 60/3 : 15 = 48/9 : x where x is
the solution. We are dealing with a system that represents
the quantity 20, which is 1/3 of 60, by the symbol 15, and
therefore every other quantity by a number 3/4 as large as
the number normally used. Note that only 15 and x are in
the new system. The solution is 4.” Do you agree?

Number representations: sets

SSM 3723. by Henry Lulli
Given is a set of five distinct digits. Using each digit

exactly once and one or more of the three operators, addi-
tion, subtraction, and juxtaposition, represent as many of
the numbers from 0 to 20 as you can. Find as many five
digit sets as you can for which it is possible to represent
each of the numbers from 0 to 20.

Number representations: standard symbols

MSJ 454. by Steven R. Conrad
Use four 4’s and standard mathematical symbols to

represent the numbers 73 and 89.

Number representations: unit fractions

PME 371. by I. P. Scalisi
Write 2/n as the sum of 4 (or 6 or 10 or 14) distinct

unit fractions.

Palindromes

CRUX 389. by Kenneth M. Wilke
Prove that all the numbers in the sequence

100001, 10000100001, 1000010000100001, . . .

are composite.

CRUX 31. by Léo Sauvé
A driver cruising on the highway observed that the

odometer of his car showed 15,951 miles. He noticed that
this number is palindromic: it reads the same backward and
forward.

“Curious,” the driver said to himself. “It will be a
long time before that happens again.” But exactly two
hours later the odometer showed a new palindromic number.
What was the average speed of the car in those two hours?

MATYC 79. by Marvin Johnson
Prove that a palindrome with an even number of digits

is divisible by 11.

CRUX 490.* by Michael W. Ecker
Are there infinitely many palindromic primes?

MSJ 425. by John Murphy
An “odd-odd number” is a positive integer all of whose

digits are odd. Find all positive integers from 1 to 10,000
that are prime palindromes but are not odd-odd.

SSM 3662. by R. W. Crittenden
First-class postage is now 13 cents per ounce. Using

postage stamps of various denominations from 1 cent to 9
cents, there are a variety of arrangements you may use to
decorate your envelopes. Two of these arrangements are
noteworthy: 3 cents + 1 cent + 5 cents + 1 cent + 3 cents
and 3 cents + 7 cents + 3 cents since both arrangements de-
pict palindromic prime numbers. List all other palindromic
prime representations of 13 cents worth of postage stamps.
Use any denominations from 1 cent to 9 cents in any com-
binations.

CRUX 439. by Ram Rekha Tiwari
The palindromic number 252 has the property that it

becomes a perfect square when multiplied (or divided) by
7. Are there any other such even palindromic numbers?

MATYC 94. by R. W. Crittenden
SSM 3651. by R. W. Crittenden

The number 698, 896 is the square of 836. Is this
the only square palindrome containing an even number of
digits?

Pandigital numbers

JRM 571. by Sidney Kravitz
The smallest pandigital number x such that 2x, 4x,

and 8x are also pandigital is 0123456789 and the largest is
1234567890. What are the next-smallest and next-largest
such numbers?

Partitions

PUTNAM 1979/A.1.
Find the positive integers n and a1, a2, . . . , an such

that
a1 + a2 + · · ·+ an = 1979

and the product a1a2 · · · an is as large as possible.

CRUX 6. by Léo Sauvé
(a) If n is a given nonnegative integer, how many dis-

tinct nonnegative integer solutions are there for each of the
following equations?

x+ y = n, x+ y + z = n, x+ y + z + t = n.

(b) Use (a) to conjecture and then prove a formula for
the number of distinct nonnegative integer solutions of the
equation

x1 + x2 + · · ·+ xr = n.

AMM 6137. by I. J. Good
Let p(n) denote the number of partitions of n, n =

1, 2, . . . , and let k denote an integer greater than 3. Prove

that ∆kp(n), n = 1, 2, . . . , is a sequence of alternating
terms.

PENT 272. by Charles Trigg
Let Pk(n) be the number of partitions of n into k

unordered parts.
Show that [P2(2n)] [P2(2n+ 1)] is a perfect square.

CRUX 13. by Léo Sauvé
Prove the following: For every sum of p positive inte-

gers (not necessarily distinct) each less than or equal to q,
there exist q positive integers (not necessarily distinct) each
less than or equal to p, with the same sum.
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FQ B-376. by Frank Kocher
and Gary L. Mullen

Find all integers n > 3 such that n−p is an odd prime
for all odd primes p less than n.

CRUX 52. by Viktors Linis
The sum of one hundred positive integers, each less

than 100, is 200. Show that one can select a partial sum
equal to 100.

Pascal’s triangle

PME 451. by Solomon W. Golomb
Find all instances of three consecutive terms in a row

of Pascal’s triangle in the ratio 1 : 2 : 3.

NAvW 432. by H. W. Labbers, Jr.
Let V be the set of odd natural numbers n such that

a regular n-gon can be constructed with ruler and compass.
The number 1 is to be included in V . Place the first 32
elements of V, each written in binary notation, into a column
with the order increasing from top to bottom. Prove that
this forms the first 32 rows of Pascal’s triangle, reduced
modulo 2.

AMM E2775. by Ko-Wei Lih
If we replace even integers by 0 and odd integers by 1

in the ordinary Pascal triangle, we get the following modulo
2 Pascal triangle:

1

1 1

1 0 1

1 1 1 1

1 0 0 0 1

· · · · · · · · ·
Will 1101 or 1011 occur as a consecutive segment in any
row of this modulo 2 Pascal triangle?

Pell numbers

FQ H-275. by Verner E. Hoggatt, Jr.
Let Pn denote the Pell sequence defined by P1 = 1,

P2 = 2, and

Pn+2 = 2Pn+1 + Pn (n ≥ 1).

Consider the array below.

1 2 5 12 29 70 · · · (Pn)

1 3 7 17 41 · · ·
2 4 10 24 · · ·

2 6 14 · · ·
4 8 · · ·

4 · · ·
Each row is obtained by taking differences in the row above.
Let Dn denote the left diagonal sequence in this array; i.e.,
D1 = D2 = 1, D3 = D4 = 2, D5 = D6 = 4, D7 = D8 =
8, . . . .

(a) Show that D2n−1 = D2n = 2n−1 (n ≥ 1).
(b) Show that if F (x) represents the generating func-

tion for {Pn}∞n=1 and D(x) represents the generating func-
tion for {Dn}∞n=1, then

D(x) =
1

1 + x
F
(

x

1 + x

)
.

Perfect numbers

SSM 3583. by Richard L. Francis
If x and y are even perfect numbers, show that x + y

cannot be perfect.

JRM 791. by Friend H. Kierstead, Jr.
Prove that every even perfect number except one is

the sum of the cubes of the first 2n odd integers, for some
positive integer n.

NYSMTJ 84. by Norman Gore
Show that every even perfect number is a sum of con-

secutive integers beginning with unity.

Permutations: derangements

OSSMB 76-5.
The number of “derangements” of n objects is given

by the formula

n!
[
1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!

]

and is often denoted !n and called sub-factorial n. Prove
that

!n ≡ n! (mod n− 1).

NYSMTJ 49. by Bruce King
A derangement is a permutation of the set

S = {1, 2, 3, . . . , n}
in which no number occupies its “natural” position. Let Dn
represent the number of derangements of S. Evaluate

n∑

k=0

(
n

k

)
Dk.

Use D0 = 1.

FUNCT 3.4.3. by Andrew Mattingley
Let Dn denote the number of ways of putting n letters

into n addressed envelopes so that every letter goes into a
wrong envelope. Derive a formula from which Dn may be
calculated.

AMM 6234. by Edward T. H. Wang
Let Dn and Mn denote the derangement number and

the ménage number, respectively. Prove or disprove that
the sequence {Mn/Dn}, n = 4, 5, 6, . . . , is monotonically
increasing and

lim
n→∞

(Mn/Dn) = 1/e.

Permutations: fixed points

MM 979. by Mike Chamberlain
and John Hawkins

Define P (m,n) to be the number of permutations of
the first n natural numbers for which m is the first number
whose position is left unchanged. Clearly P (1, n) = (n−1)!
for all n. Show that for m = 1, 2, . . . , n− 1,

P (m+ 1, n) = P (m,n)− P (m,n− 1).
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Permutations: inequalities

SSM 3749. by F. David Hammer

Let a1, a2, . . . , an be any nonnegative real numbers,
and let b1, b2, . . . , bn be any permutation of these numbers.
Show that for some integer i, ai(1− bi) ≤ 1/4.

Permutations: modular arithmetic

FQ H-309.* by David Singmaster

Let f be a permutation of {1, 2, . . . ,m − 1} such that
the terms i + f(i) are all distinct (mod m). Characterize
and/or enumerate such f .

MM 1002. by Bernardo Recamán
and John Hoyt

(a) For which values of n is it possible to find a permu-
tation [a1, a2, . . . , an] of [0, 1, . . . , n− 1] so that the partial
sums

k∑

i=1

ai, k = 1, 2, . . . , n,

when reduced modulo n, are also a permutation of the
integers [0, 1, . . . , n− 1]?

(b) Find the number of permutations of [0, 1, . . . , n−1]
for n ≤ 12 which solve part (a). Can a general formula for
the number of solutions be found?

Permutations: order

JRM 734. by Frank Rubin

Let L(n) be the largest possible order for a permuta-
tion of n objects.

(a) Find L(100).

(b) What is the smallest value of n for which L(n) is a
multiple of 100?

(c) What is the largest value of n for which L(n) is not
a multiple of 100?

Permutations: powers

JRM 702. by Harry L. Nelson

A power chain is a sequence that is a permutation of
the first n natural numbers, with n > 1, such that the
sum of each pair of adjacent elements is a power. Thus
6− 2− 7− 1− 3− 5− 4 and 8− 1− 7− 2− 6− 3− 5− 4
are power chains for n = 7 and 8, respectively.

(a) Find two other power chains.

(b) Do there exist only four power chains?

Polygonal numbers: consecutive integers

PME 359. by Gregory Wulczyn

Show that there is an infinitude of pairs of consecutive
integers, each pair consisting of a pentagonal number and a
hexagonal number.

Polygonal numbers: formulas

SSM 3571. by Herta Freitag
Note that triangular numbers Tn defined by

Tn = n(n+ 1)/2

are such that differences between successive Ti’s start with
2 and increase by 1 each successive pair. That is, T2−T1 =
2, T3 − T2 = 3, T4 − T3 = 4, etc. For square numbers
Sn, Sn = n2, these differences start with 3, and increase
by 2 each time. In the case of the pentagonal numbers
Rn defined by Rn = n(3n − 1)/2, the first such difference
is 4. This time the increase in these differences is always
3. Continue to define polygonal numbers in this manner
and obtain a general formula applicable to all polygonal
numbers, such that the relationships for triangular numbers,
square numbers, etc., all become special cases. (Let the first
polygonal number always equal 1.)

Polygonal numbers: heptagonal numbers

SSM 3764. by W. J. O’Donnell
and G. E. O’Donnell, Jr.

Heptagonal numbers (denoted HPn) are positive inte-
gers of the form n(5n− 3)/2 for n = 1, 2, 3, . . . . Prove that
HPn ≡ n (mod 5).

Polygonal numbers: hexagonal numbers

SSM 3609. by William J. O’Donnell
Find the smallest hexagonal number Hn = 2n2 − n,

such that both n and Hn are palindromes.

Polygonal numbers: modular arithmetic

FQ B-363. by Herta T. Freitag
Do the sequences of squares Sn = n2 and of pentagonal

numbers Pn = n(3n− 1)/2 have the symmetry property of
reading the same from right to left as they do from left to
right for their residues modulo m?

FQ B-362. by Herta T. Freitag
Let n be an integer greater than one, and let Rn be

the remainder when the triangular number Tn = n(n+1)/2
is divided by m. Show that the sequence R0, R1, R2, . . .
repeats in a block R0, R1, . . . , Rt which reads the same from
right to left as it does from left to right.

Polygonal numbers: octagonal numbers

SSM 3586. by Charles W. Trigg
In the decimal system, show that all octagonal num-

bers En = n(3n−2), having 3 as their units’ digit, terminate
in 33.

SSM 3745. by William J. O’Donnell
Prove that if an octagonal number terminates with the

digit 8, it terminates in 08. Octagonal numbers are integers
of the form n(3n− 2).

Polygonal numbers: pentagonal numbers

SSM 3619. by Randall J. Covill
Find two pentagonal numbers, P ′′ and P ′, such that

P ′′ − P ′ = 605. A pentagonal number is a number of the
form n(3n− 1)/2, where n is a positive integer.
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SSM 3621. by Robert A. Carman
Find a number that is simultaneously triangular, pen-

tagonal, and hexagonal. A triangular number is of the form
n(n+1)/2. A pentagonal number is of the form n(3n−1)/2.
A hexagonal number is of the form n(2n− 1).

PENT 285. by Randall J. Covill
If O = n(3n − 2) is an octagonal number and P =

m(3m − 1)/2 is a pentagonal number and m = n, then P
and O are said to be complements of each other. It can
be easily shown by algebraic manipulation of the formulas
for P and O that, to every difference between an octagonal
number and its complementary pentagonal number, there
corresponds a multiple of 3 that is a unique positive integer.
Show that, for at least one multiple of 3 that is a positive
integer, there is not any corresponding difference between
an octagonal number and its complementary pentagonal
number.

AMM E2618. by Amy J. Phelps
Find all natural numbers that are simultaneously tri-

angular, square, and pentagonal.

SSM 3589. by Robert A. Carman
Find a pair of pentagonal numbers whose sum and dif-

ference are both pentagonal numbers. A pentagonal number
is of the form n(3n− 1)/2.

SSM 3657. by William J. O’Donnell
Prove that no pentagonal number ends in 3, 4, 8, or

9. Pentagonal numbers are positive integers of the form
Pn = n(3n− 1)/2.

Polyhedral numbers

SSM 3644. by William J. O’Donnell
Prove that there are an infinite number of tetrahedral

numbers that are also dodecahedral numbers.

SSM 3616. by Robert A. Carman
Show that every tetrahedral number,

(n/6)(n+ 1)(n+ 2),

is a square only for n = 2k, k ≥ 0.

Polynomials: 2 variables

AMM 6028.* by F. D. Hammer
Is there a polynomial in two variables with integral

coefficients that is a bijection from Z×Z onto Z? If so, how
many such polynomials are there?

Polynomials: 3 variables

FQ B-309. by Phil Mana

Let z2 = xz + y, and let k, m, and n be nonnegative
integers. Prove that:

(a) zn = pn(x, y)z + qn(x, y), where pn and qn are
polynomials in x and y with integer coefficients and pn has
degree n− 1 in x for n > 0.

(b) There are polynomials r, s, and t not all identically
zero and with integer coefficients, such that

zkr(x, y) + zms(x, y) + znt(x, y) = 0.

Polynomials: age problems

OSSMB 78-10.
Professor Adams wrote on the blackboard a polyno-

mial, f(x) with integer coefficients and said, “Today is my
son’s birthday and when we substitute x equal to his age, a,
then f(a) = a. You will also notice that f(0) = p, a prime
number greater than a.” How old is Professor Adams’ son?

Polynomials: congruences

AMM E2763. by Lorraine L. Foster
Let

f(n) = n3 + 396n2 − 111n+ 38.

Prove that the congruence f(n) ≡ 0 (mod 3a) has precisely
nine solutions (mod 3a) for all integers a ≥ 5.

Polynomials: cyclotomic polynomials

NAvW 496. by L. Kuipers
Let p and q be odd distinct primes. Let n be a positive

integer, n ≥ 2. Let Fpnq(x) be the cyclotomic polynomial
of order pnq. Show that, if

Fpnq(x) =

φ(pnq)∑

j=0

cjx
j ,

then cj = (−1)γ if j = αp2 + βpq+ γp uniquely and cj = 0
otherwise. Here α and β are nonnegative integers and γ = 0
or 1. Find also the coefficient of the central term.

Polynomials: degree 2

CRUX 72. by Léo Sauvé
Determine the ordered pair (p, q) such that p and q

(a) are the roots of the equation x2 + px+ q = 0;

(b) each satisfy the equation x2 + px+ q = 0.

MM 923. by Aron Pinker
If r and s are roots of x2 + px + q = 0, where p and

q are integers with q | p2, then prove that (rn + sn)/q is an
integer for n = 2, 3, . . . .

PARAB 426.
Find all pairs (m,n) of integers so that x2 + mx + n

and x2 + nx+m both have integer roots.

Polynomials: degree 5

CRUX 452. by Kenneth M. Wilke
Precocious Percy wrote a polynomial on the black-

board and told his mathematics professor: “This polyno-
mial has my age as one of its zeros.” The professor looked
at the blackboard and thought to himself: “This polynomial
is monic, quintic, has integral coefficients, and is truly an
odd function. If I try 10, I get −29670.”

Find Percy’s age and the polynomial.

Polynomials: evaluations

CRUX 30. by Léo Sauvé
Let a, b, and c denote three distinct integers and let P

denote a polynomial having all integral coefficients. Show
that it is impossible that P (a) = b, P (b) = c, and P (c) = a.

201



Number Theory
Polynomials: inequalities Problems sorted by topic Primes: arithmetic progressions

Polynomials: inequalities

FUNCT 2.5.4.
Let P be a nonconstant polynomial with integer coef-

ficients. If n(P ) is the number of distinct integers k such

that [P (k)]2 = 1, prove that n(P )− deg(P ) ≤ 2.

Polynomials: injections

AMM E2554. by F. David Hammer
Can a polynomial function with integer coefficients be

one-to-one when restricted to the rationals, but not one-to-
one on the reals?

Polynomials: products

AMM S7. by George E. Andrews
and Richard Askey

Let

pn(x) = (x+ 1)(x+ q) · · ·
(
x+ qn−1

)
,

n = 1, 2, . . . , p0(x) = 1. Find the coefficients a(k,m, n)
defined by

pn(x) · pm(x) =

m+n∑

k=0

a(k,m, n) · pk(x).

CANADA 1977/4.
OMG 16.2.4.

Let

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

and

q(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0

be two polynomials with integer coefficients. Suppose that
all the coefficients of the product p(x) · q(x) are even but
not all of them are divisible by 4. Show that one of p(x)
and q(x) has all even coefficients and the other has at least
one odd coefficient.

Polynomials: roots

FQ B-347. by Verner E. Hoggatt, Jr.
Let a, b, and c be the roots of x3 − x2 − x − 1 = 0.

Show that

an − bn
a− b +

bn − cn
b− c +

cn − an
c− a

is an integer for n = 0, 1, 2, . . . .

Powers: differences

SSM 3737. by Alan Wayne
Prove each of the following two propositions:
(a) If two integers differ in absolute value, then the

sum or difference of their reciprocals cannot be an integer.
(b) If r and s are unequal, positive integers, then there

is no integer t, other than zero and one, such that rt−st = t.

Powers: integers

JRM 378. by Diophantus McLeod
Prove that if x1776 and x1975 are both integers, then

so also is x.

Powers: powers of 2

ISMJ 13.8.
Show that if n is a positive integer, there are no positive

integers a and k with k ≥ 2 such that ak = 2n − 1.

CRUX 410.* by James Gary Propp
Are there only finitely many powers of 2 that have no

zeros in their decimal expansions?

AMM E2805. by Wells Johnson
Let the integer r ≥ 0 be given. Show that each of

the numbers
(

22r
)n
− 1 has at least 2r + 1 distinct prime

factors if n > 2r, with the lone exception r = 1, n = 3,
when 43 − 1 = 32 · 7.

SPECT 8.1.
Let n be a positive integer. Show that
(a) if 2n − 1 is prime, then n is prime,
(b) if 2n + 1 is prime, then n must be a power of 2.

Is the converse of (a) true?

Powers: powers of 2 and 3

CRUX 250.* by Gilbert W. Kessler
(a) Find all pairs (m,n) of positive integers such that

|3m − 2n| = 1.

(b) If |3m − 2n| 6= 1, is there always a prime between
3m and 2n?

Powers: radicals

TYCMJ 99. by Alan Wayne
Prove that if a and n are integers, then
(

1

2

)n [(
a+

√
a2 − 4

)n
+
(
a−

√
a2 − 4

)n]

is an integer.

FUNCT 1.1.10.
If (1 +

√
2)n = a+ b

√
2 where a, b, and n are positive

integers, then prove that a is the integer closest to b
√

2.
Use a computer to print a, an approximation to b

√
2,

and the difference between a and b
√

2 as n increases.
Can you generalize the above problem in any way?

Powers: tetration

JRM 732. by Frank Rubin

Let a∗n be defined by a∗n = aa
∗(n−1), with a∗1 = a.

Thus 5∗4 = 5(5(55)).
(a) What is the smallest value of n for which 10∗n

exceeds 3∗(n+ 1)?
(b) For each integer k, what is the largest integer k′

such that k′∗n never exceeds k∗(n+ 1)?

Primes: arithmetic progressions

ISMJ J10.15.
Prove that if a, b, and c are prime numbers greater

than 3 and b− a = c− b, then the number b− a is divisible
by 6.
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Primes: complete residue systems

JRM 672. by Bernardo Recamán
The first two primes, 2 and 3, form a complete residue

system modulo 2, and the first four primes, but not the first
three, form a complete residue system modulo 3. Is there
a prime p > 2 such that the first p primes form a complete
residue system modulo p?

Primes: congruences

SSM 3634. by Bob Prielipp
If p 6= 5 and the numbers p, p + 2, p + 6, and p + 8

are prime, then p ≡ 11 (mod 210) or p ≡ 101 (mod 210) or
p ≡ 191 (mod 210).

Primes: digit permutations

AMM E2718. by Gordon D. Prichett
Find all prime numbers p that have the following two

properties:
(i) All numbers obtained from p by permuting its dig-

its are also prime.
(ii) The sum and the product of the digits of p are also

prime.

Primes: digit reversals

JRM 700. by Les Card
The table shown lists some of the facts known about

reversible primes. The final column, which represents the
number of digits, times the number of reversible primes
having that number of digits, divided by the total number
of primes having that number of digits, has an apparent
minimum of 0.769 at four digits. Is there a proof, or at
least a reasonable argument, that this ratio will never be
less than 0.769, regardless of the number of digits?

Primes: forms of numbers

SSM 3620. by Bob Prielipp
Euler established that every prime number of the form

6k+1 can be expressed as x2+3y2 for some positive integers
x and y. Show that a prime number of the form 6k+ 1 can
be expressed as x2 + 3y2 for some positive integers x and y
if and only if it can be expressed as a2 + ab + b2 for some
positive integers a and b.

CRUX 302. by Leroy F. Meyers
Show that if p is a prime, then p2 + 5 is not a prime.

PARAB 430.
Let p be a prime greater than 3. Show that p2 is one

more than a multiple of 12.

Primes: gaps

JRM 708. by Richard L. Francis
If p is a prime and no other primes occur in the interval

[p− 2k, p+ 2k], where k is an integer, then p will be called
isolated of order k. For example, 211 is of order 5, since
all of the integers except 211 in the interval [201, 221] are
composite; 211 is not of order 6, however, since 199 is prime.

(a) What is the maximum number of isolated primes
of order 3 that can occur in an interval of 50 consecutive
integers?

(b) Such maximal sets of isolated primes actually oc-
cur. What are the elements of any such set?

(c) Same questions for an interval of 100.

JRM 654. by Harry Nelson
What is the most probable difference between consec-

utive primes?

Primes: generators

CRUX 142. by André Bourbeau
Find 40 consecutive positive integral values of x for

which f(x) = x2 + x+ 41 will yield composite values only.

OSSMB 75-4.
Prove that, for all integers x, x2 + x + 41 is never

divisible by any natural number between 1 and 41.

PME 393. by Peter A. Lindstrom

Let f(n) = n2 − n+ 41. Find gcd (f(n), f(n+ 1)).

FUNCT 1.5.4.
Check that x2 − x+ 41 is a prime for x = 1, 2, . . . , 40.

JRM 714. by Harry L. Nelson

It is known that the formula x2 + x + 41 produces
primes for the forty integer values 0 ≤ x ≤ 39 and perhaps
less well known that x2 − 79x + 1601 produces primes for
the eighty values 0 ≤ x ≤ 79. Find a polynomial which
produces primes for more than eighty consecutive integer
values of x.

MM Q623. by Erwin Just
and Norman Schaumberger

It is known that the range of a nonconstant polynomial
function with integral coefficients cannot consist wholly of
primes. The range of the polynomial 2x − 1, however,
contains all the odd primes. Is there a polynomial of degree
greater than 1 whose range contains all the primes?

CRUX 154.* by Kenneth S. Williams
Let pn denote the nth prime, so that p1 = 2, p2 =

3, p3 = 5, p4 = 7, etc. Prove or disprove that the following
method finds pn+1 given p1, p2, . . . , pn.

In a row list the integers from 1 to pn − 1. Corre-
sponding to each r (1 ≤ r ≤ pn − 1) in this list, say
r = pa11 . . . p

an−1

n−1 , put pa12 . . . p
an−1
n in a second row. Let

l be the smallest odd integer not appearing in the second
row. The claim is that l = pn+1.

FQ B-334. by Philip Mana
Define the sequence 11, 17, 29, 53, . . . by u0 = 11 and

un+1 = 2un − 5 for n ≥ 0. Are all the terms prime?

Primes: greatest prime factor

AMM 6135.* by P. Erdős
Denote by P (n) the greatest prime factor of n and set

A(x, y) =
∏

1≤i≤y−x
(x+ i).

An integer n is called exceptional if for some x ≤ n ≤ y,

(P (A(x, y)))2 divides A(x, y), i.e., the greatest prime factor
of A(x, y) occurs with an exponent greater than 1.

Prove that the density of exceptional numbers is 0, and
estimate the number E(x) not exceeding x as well as you
can.
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Primes: pi function

OSSMB 76-15.
The positive integer 10 is “balanced” from the point

of view that half the positive integers between 1 and it are
prime numbers (2, 3, 5, 7) and half are composite numbers
(4, 6, 8, 9). Find all such balanced numbers.

AMM 6153. by Bernardo Mz.-Recamán
Let π(x) denote the number of primes that do not

exceed x. Are there infinitely many integers, such as 2,
4, 6, 8, 30, 33, 100, with the property that π(n) divides n?

Primes: polynomials

CRUX 327. by F. G. B. Maskell

Let pn be the nth prime number. For which n is p2
n+2

also prime?

CRUX 97. by Viktors Linis
Find all primes p such that

p3 + p2 + 11p+ 2

is a prime.

PARAB 277.
Prove that 3 is the only prime value of p for which

p3 + p2 + 11p+ 2 is prime.

CRUX 296. by F. G. B. Maskell

Let p be prime. Show that p4 − 20p2 + 4 is composite.

NYSMTJ 42.
Find all integral values of w for which w4 + 4 is prime.

Primes: powers

AMM 6110.* by David M. Battany
Let p and q be primes, not both even. Let m, n, and

v be integers, m,n ≥ 2, v ≥ 0. Prove that for each value
of v, there exists at most one pair of powers (pm, qn) such
that pm − qn = 2v.

Primes: prime chains

AMM 6189.* by Edward T. H. Wang
Prove or disprove that for each natural number n ≥ 2,

one can arrange the numbers 1, 2, . . . , n in a sequence such
that the sum of any two adjacent terms is a prime.

JRM 566. by Henry Larson
(a) The diagram shows for n = 2, 3, 4, and 5, how the

integers from 1 through n can be arranged sequentially in
such a way that the sum of every pair of adjacent numbers
is prime. Show that “prime chains” exist for n up to 50.

(b) What is the smallest value of n for which there is
no prime chain?

1 − 2

1 − 2 − 3

1 − 4 − 3 − 2

1 − 4 − 3 − 2 − 5

JRM 679. by Randall J. Covill
A prime chain of order n is a sequence containing each

of the integers from 1 to n exactly once, such that the sum of
every pair of adjacent integers is a prime. A prime circle is
a prime chain in which the sum of the first and last integers
is a prime.

Show that any prime circle of order n can be trans-
formed into a prime chain of order n+ 1.

Primes: products

CRUX 246. by Kenneth M. Wilke
Let pi denote the ith prime and let Pn denote the

product of the first n primes. Prove that the number N
defined by

N =
Pn

pipj · · · pr
± pipj · · · pr,

where pipj · · · pr are any of the first n primes, all different,

or unity, is a prime whenever N < p2
n+1.

MM 956. by Arthur Marshall
Let Qm be the product of the first m primes: Q2 = 6,

Q3 = 30, etc. Then, for m ≥ 2, Qm/2 is the product of the

first m− 1 odd primes. Now Q2/2 = 21 + 1 = 22 − 1, while

Q3/2 = 24 − 1. For m > 3, can Qm/2 = 2j ± 1 for some
integer j?

NAvW 466. by H. J. J. te Riele
Let Pk (k ≥ 1) be the product of the first k primes.

Let
(a

(k)
i )

φ(Pk)+1
i=1

be the increasing sequence of positive integers less than or
equal to Pk + 1 that are relatively prime to Pk. Let Nk(d)

be the number of terms a
(k)
i for which

a
(k)
i+1 − a

(k)
i = d.

Determine Nk(d) for d = 2, 4, and 6, in terms of the first k
primes.

Primes: recurrences

AMM E2648. by R. P. Nederpelt,
R. B. Eggleton, and John H. Loxton

(a) Show that there is no infinite sequence of prime
numbers p1, p2, . . . such that pk+1 = 2pk ± 1 for all k.

(b) Find a longest finite sequence p1, p2, . . . , pn of
primes such that pk+1 = 2pk + 1 for 1 ≤ k ≤ n− 1.

Primes: sequences

NAvW 539. by P. Erdős
Let {A1, A2, . . . , An} be a partition of the sequence

of primes into n subsequences. Let A+
ν denote the set

of integers that can be represented as a sum of distinct
elements of Aν . Show that, for at least one value of ν, the
set A+

ν has upper density 1.

Primes: sum of primes

CRUX 249. by Clayton W. Dodge
The positive integers 1, 4, and 6 are not primes and

cannot be written as sums of distinct primes. Prove or
disprove that all other positive integers are either prime or
can be written as sums of distinct primes.
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SSM 3624. by Charles W. Trigg
Among the sums of three consecutive primes greater

than 7 in the decimal system, locate
(a) the smallest nonsquare composite sum;
(b) the smallest multiple of 5;
(c) the integer composed of consecutive digits;
(d) a perfect cube.

Products

MM Q640. by Peter A. Lindstrom
For positive integers n, find the values of

n−1∏

i=0

[n(n+ 1)− i(i+ 1)]

and

(n+ 1)

n−1∏

i=0

[n(n+ 2)− i(i+ 2)].

AMM E2510. by Saul Singer
If n is a natural number, let

Q(n) =

n−1∏

k=1

k2k−n−1.

(a) Show that Q(n) is an integer whenever n is prime.
(b) For which composite n, if any, is Q(n) an integer?

NAvW 441. by P. Erdős
Consider k integers ai with

1 < a1 < a2 < · · · < ak ≤ x,
k > π(x). Prove that the products

k∏

i=1

aαii , 0 ≤ αi, i = 1, 2, . . . , k,

cannot all be different.

AMM E2637. by Armond E. Spencer
If a0, a1, . . . , an−1 are integers, show that

∏

0≤i<j≤n−1

ai − aj
i− j

is also an integer.

CRUX 475. by Hayo Ahlburg
Consider the products

(341 +
2

3
)(205− 2

5
) = 341 · 205, (43 +

2

5
)(31− 2

7
) = 43 · 31,

(781 +
1

2
)(521− 1

3
) = 781 · 521, (57 +

1

3
)(43− 1

4
) = 57 · 43.

Find an infinite set of products having the same property.

Pythagorean triples: area

CRUX 223. by Steven R. Conrad
Find the smallest integer that can represent the area

of two noncongruent primitive Pythagorean triangles.

SSM 3569. by Bob Prielipp
Prove that infinitely many primitive Pythagorean tri-

angles have areas which are multiples of 30.

Pythagorean triples: area and perimeter

MM 1088.* by Alan Wayne
(a) For each integer m ≥ 1, how many Pythagorean

triangles are there that have an area equal to m times the
perimeter? How many of these are primitive?

(b) Can this result be generalized to all triangles with
integer sides and area equal to m times the perimeter?

SSM 3587. by Alan Wayne
(a) Show that, for every natural number m, there is at

least one primitive Pythagorean triangle in which the area
is m times the perimeter.

(b) Find the number of Pythagorean triangles in which
the area is 360 times the perimeter.

Pythagorean triples: arithmetic progressions

SSM 3641. by Irwin K. Feinstein
Prove that the only right triangle with integral sides

and with the sides and area in arithmetic progression is the
3 : 4 : 5 triangle.

Pythagorean triples: counting problems

MM 1007.* by Thomas E. Elsner
It is known that given an integer n, n ≥ 0, there is a

positive integer k, such that k occurs in exactly n distinct
Pythagorean triples (x, y, z), x < y < z, x2 + y2 = z2.

For example, 2n+1 occurs in exactly n Pythagorean triples.
For each n, determine mn = min{k | k occurs in exactly n
Pythagorean triples}.

PENT 298. by H. Laurence Ridge
It is well known that all primitive Pythagorean trian-

gles (PPT) are generated by the formulae

x = 2ab

y = a2 − b2

z = a2 + b2

where a and b are positive integers of opposite parity and
gcd(a, b) = 1.

Let N be an arbitrary positive integer. What are the
necessary and sufficient conditions for N to be a leg (or
hypotenuse) of exactly one PPT?

SSM 3638. by Bob Prielipp
Find infinitely many primitive Pythagorean triples

(x, y, z) such that z = x+ 2.

Pythagorean triples: digit problems

SSM 3752. by Robert A. Carman
The triple (5, 12, 13) is a primitive Pythagorean triple.

So is the triple (15, 112, 113) formed by affixing the same
digit (in this case, a 1) to each member of the first triple.
Prove or disprove that there are no other pairs of primitive
Pythagorean triples that are related in this way.

Pythagorean triples: divisibility

CRUX 437. by Clayton W. Dodge
Find all Pythagorean triangles having the hypotenuse

divisible by 7.
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SSM 3633. by Alan Wayne
Show that if a triangle is primitive Pythagorean, then
(a) the length of one leg is divisible by four,
(b) the length of one leg is divisible by 3,
(c) the length of the hypotenuse is either an odd prime

of the form 4k + 1 or else a product of such primes.

Pythagorean triples: Fibonacci and Lucas numbers

FQ B-402. by Gregory Wulczyn
Show that

(LnLn+3, 2Ln+1Ln+2, 5F2n+3)

is a Pythagorean triple.

Pythagorean triples: generators

SSM 3771. by Bob Prielipp
Show how to generate an infinite sequence of primitive

Pythagorean triangles each having a hypotenuse of length
eight more than the length of one of its legs.

SSM 3742. by Robert A. Carman
Let P = (x, y, z) be a Pythagorean triple. Find a non-

trivial 3×3 matrix T such that PT is always a Pythagorean
triple.

Pythagorean triples: hypotenuse

SSM 3592. by Bob Prielipp
Prove that the hypotenuse of a primitive Pythagorean

triangle is of the form 12k + 1 or 12k + 5.

Pythagorean triples: inequalities

MM Q625. by A. Wilansky
If (a, b, c) is a Pythagorean triple, prove that

(a+ b)/2 < c/
√

2.

Pythagorean triples: inradius

TYCMJ 107. by Abe Simowitz
Prove or disprove that the radius of a circle inscribed in

a Pythagorean triangle is an integral multiple of the greatest
common divisor of the three sides.

Pythagorean triples: inscribed squares

MM 945. by Alan Wayne
Find the smallest Pythagorean triangle in which a

square with integer sides can be inscribed so that an angle
of the square coincides with the right angle of the triangle.

TYCMJ 64. by Aron Pinker
An integer-sided square is inscribed in an integer-sided

right triangle so that a side of the square lies on the hy-
potenuse. What is the smallest possible length of the side
of the square?

Pythagorean triples: odd and even

CRUX 460. by Clayton W. Dodge
Can two consecutive even integers ever be the sides

of a Pythagorean triangle? Show how to find all such
Pythagorean triangles.

MATYC 124. by Charles W. Trigg
Can two consecutive odd integers be the sides of a

Pythagorean triangle?

Pythagorean triples: partitions

AMM E2530.* by F. Loupekine
(a) Show that it is possible to partition the natural

numbers into three classes so that if (x, y, z) is a primitive
Pythagorean triple, then x, y, and z are in different classes.

(b) Can such a partition be made if the above is to
hold for all Pythagorean triples, not just primitive ones?

Pythagorean triples: primes

PME 459. by Bob Prielipp
Prove that every Pythagorean triple (x, y, z) where

both x and z are prime numbers and x ≥ 11 is such that 60
divides y.

SSM 3606. by Bob Prielipp
Prove that any Pythagorean triple (x, y, z) must be of

the form
(
p, [p2 − 1]/2, [p2 + 1]/2

)
, where p is an odd prime

number, whenever both x and z are prime numbers.

Pythagorean triples: reciprocals

JRM 795. by Arnon Boneh
Define the three positive integers a,b, and c as a recip-

rocal Pythagorean triple if a−2 + b−2 = c−2. For example,
156, 65, 60 is a reciprocal Pythagorean triple.

What is the minimal sum of such a triple?

Pythagorean triples: squares

CRUX 5. by F. G. B. Maskell
Prove that if (a, b, c) and (a′, b′, c′) are each primitive

Pythagorean triples, with a > b > c, and a′ > b′ > c′, then
either

aa′ ± (bc′ − cb′) or aa′ ± (bb′ − cc′)

are perfect squares.

Pythagorean triples: systems of equations

CRUX 86. by Viktors Linis
Find all rational Pythagorean triples (a, b, c) such that

a2 + b2 = c2 and a + b = c2.

Quadratic fields

AMM 6270.* by Kenneth S. Williams
Let p be a prime congruent to 1 modulo 8. Let ε2p

denote the fundamental unit of the real quadratic field
Q
(√

2p
)
, and let h(−2p) denote the class number of the

imaginary quadratic field Q
(√−2p

)
. Prove that if the

norm of ε2p is −1, then

h(−2p) ≡ 0 (mod 8), if p ≡ 1 (mod 16),

and

h(−2p) ≡ 4 (mod 8), if p ≡ 9 (mod 16).
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Quadratic reciprocity

CMB P249. by Kenneth S. Williams
Let p be a prime congruent to 1 (mod 4), so that there

are integers a and b such that

p = a2 + b2, a ≡ 1 (mod 4), b ≡ 0 (mod 2).

It is easily proved using the law of quadratic reciprocity
for Jacobi symbols that (ab ) = +1, so that there exists an

integer c such that a ≡ c2 (mod p). Determine ( cp ).

Quadratic residues

NAvW 413. by R. Tijdeman
Let p be a prime and denote by f(p) the number of

pairs of quadratic residue classes that differ by 1. Compute
f(p) for all p.

AMM 6156. by Herbert Knothe
Prove that if a prime p has the form 8n + 7, then the

number of even quadratic residues greater than p/2 is equal
to n+ 1. If a prime p has the form 8n+ 3, then the number
of even quadratic residues less than p/2 is equal to n. Each
residue r is restricted so that 0 ≤ r < p− 1.

AMM 6058. by Larry Taylor
(a) If p ≡ 31 or 39 (mod 40) is prime, and if

a ≡
√

5 + 2

3
and b ≡

√
5− 2

3

are of even order (mod p), prove that either a − 1, a, and
a+ 1 or b− 1, b, and b+ 1 are quadratic nonresidues of p.

(b) If p ≡ 19 (mod 24) is prime, and if

a ≡
√
−1

3

is of even order (mod p), prove that a− 1, a, and a+ 1 are
quadratic nonresidues of p.

FQ H-277. by L. Taylor
If p ≡ +1 (mod 10) is prime and x ≡

√
5 is of even

order (mod p), prove that x− 3, x− 2, x− 1, x, x+ 1, and
x + 2 are quadratic nonresidues of p if and only if p ≡ 39
(mod 40).

FQ H-307. by Larry Taylor
(a) If p ≡ ±1 (mod 10) is prime, x ≡

√
5, and a ≡

2(x−5)
x+7 (mod p), prove that a, a+ 1, a+ 2, a+ 3, and a+ 4

have the same quadratic character modulo p if and only if
11 < p ≡ 1 or 11 (mod 60) and (−2x/p) = 1.

(b) If p ≡ 1 (mod 60), 2x/p = 1, and b ≡ −2(x+5)
7−x

(mod p), then b, b + 2, b + 3, and b + 4 have the same
quadratic character modulo p. Prove that (11ab/p) = 1.

AMM E2627. by Ron Evans
Let m and n be fixed integers greater than 1, n odd.

Suppose n is a quadratic residue modulo p for all sufficiently
large prime numbers p ≡ −1 (mod 2m). Show that n is a
square.

AMM 6094. by Francis Cald
A pair of primes, P and Q, is said to be acquainted

if the set of quadratic residues and the set of quadratic
nonresidues of P are, respectively, a subset of the set of
residues and the set of nonresidues of Q. Is there a positive
constant C such that infinitely many pairs of acquainted
primes exist for which Q− P ≤ C?

Rational expressions

CRUX 319. by Leigh Janes
Find necessary and sufficient conditions for the positive

integer triple (A,B,C) to satisfy

A3 +B3

A3 + C3
=
A+B

A+ C
.

CRUX 91. by Léo Sauvé
If a, a′, b, and b′ are positive integers, show that a

sufficient condition for the fraction a+a′

b+b′ to be irreducible is

|ab′ − ba′| = 1.

Is this condition also necessary?

CRUX 92. by Léo Sauvé
PARAB 429.
PENT 277. by Kenneth M. Wilke

If a is a positive integer, show that the fraction

a3 + 2a

a4 + 3a2 + 1

is irreducible.

Rational numbers

JRM 511. by Steven Cook

E1 : 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, . . .

E2 : 1/2, 1/3, 1/4, 2/3, 1/5, 1/6, 2/5, 3/4, 1/7, 3/5, . . .

Shown above are two different enumerations of the
rationals in (0, 1). Enumeration E1 lists them by increasing
denominator, and for equal denominators, by increasing
numerator. Enumeration E2 lists them by increasing sum of
numerator and denominator and for equal sums of terms, by
increasing numerator. The numbers 1/2, 1/3, and 2/5 have
the same relative position in both numerations. A near miss
occurs at 5/13. Find the next few occurrences of a match.

PARAB 272.
Let m and n be two relatively prime positive integers.

Prove that if the m+ n− 2 fractions

m+ n

m
,

2(m+ n)

m
,

3(m+ n)

m
, · · · , (m− 1)(m+ n)

m
,

m+ n

n
,

2(m+ n)

n
,

3(m+ n)

n
, · · · , (n− 1)(m+ n)

n
,

are plotted as points on the real number line, exactly one
of these fractions lies inside each of the unit intervals

(1, 2), (2, 3), (3, 4), . . . , (m+ n− 2,m+ n− 1).

Rectangles

MSJ 424. by John Murphy
Find the dimensions of all integral-sided rectangles

each of which has its perimeter numerically equal to its area.
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Recurrences: arrays

FQ B-353. by V. E. Hoggatt, Jr.
For k and n integers with 0 ≤ k ≤ n, let A(k, n) be

defined by A(0, n) = 1 = A(n, n), A(1, 2) = c+ 2, and

A(k + 1, n+ 2) = cA(k, n) +A(k, n+ 1) +A(k + 1, n+ 1).

Also let Sn = A(0, n) +A(1, n) + · · ·+A(n, n). Show that

Sn+2 = 2Sn+1 + cSn.

SIAM 78-6. by Peter Shor
A function S(m,n) is defined over the nonnegative

integers by

S(0, 0) = 1,

S(0, n) = S(m, 0) = 0 for m,n ≥ 1,

S(m+ 1, n) = mS(m,n) + (m+ n)S(m,n− 1).

Show that
m∑

n=1

S(m,n) = mm.

AMM E2609. by Glen E. Bredon
Define integers aij , i, j ≥ 1 by ai1 = a1j = 1 and

aij = iai,j−1 + jai−1,j , i, j ≥ 2.

Show that

2n−1∑

i=1

(−1)i−1ai,2n−i ≡ 1 (mod 3).

AMM 6151. by Clarence H. Best
A two-dimensional array is defined according to the

following rule:

a1,1 = 1,

ai,1 = a1,i−1, i > 1,

ai,j = ai+1,j−1 + ai,j−1, j > 1.

(a) Prove that a1,j equals the number of distinct par-
titions of a j-element set.

(b) Choose an nth-order determinant Dn from the up-
per left corner of the array and prove

Dn =
∏

0≤i≤n−1

i! .

Recurrences: finite sums

SSM 3721. by Herta T. Freitag
(a) Let a sequence {ai} be defined by a0 = 0 and

an = an−1 + n for n ≥ 1. Express
∑n
i=0 ai as a binomial

coefficient.
(b) Let a sequence {bi} be defined by b0 = 1 and

bn+1 = bn + Tn+2 for n ≥ 1, where Tk = k(k + 1)/2 is
the kth triangular number. Express

∑n
i=0 bi as a binomial

coefficient.

Recurrences: floor function

JRM 625. by David L. Silverman
Define the sequence A = a0, a1, a2, . . . as follows:
(1) a0 = 0, a1 = 1.

(2) an+1 = an −
⌊

1
2 (an + 1)

⌋
, n > 0,

unless that number has occurred earlier in A, in which case
the minus sign is replaced by a plus sign. Thus the first few
elements of A are 0, 1, 2, 3, 5, 8, 4, 6, 9, 14, 7, . . . .

Prove that:
(a) All elements of A are distinct.
(b) Every positive integer is an element of A.

FQ B-417. by R. M. Grassl and P. L. Mana
Let f(n) be defined by f(0) = 1 = f(1), f(2) = 2,

f(3) = 3, and

f(n) = f(n− 4) + [1 + (n/2) + (n2/12)]

for n ∈ {4, 5, 6, . . .}. Do there exist rational numbers a, b,
c, and d such that

f(n) = [a+ bn+ cn2 + dn3]?

IMO 1976/6.
A sequence {un} is defined by

u0 = 2, u1 = 5/2, un+1 = un(u2
n−1 − 2)− u1

for n = 1, 2, . . . . Prove that for positive integers n,

bunc = 2[2n−(−1)n]/3.

AMM E2619. by Thomas C. Brown
Let a1 = 1 and

an+1 = an + b√an c
for n = 1, 2, . . . . Show that an is a square if and only if

n = 2k + k − 2 for some positive integer k.

Recurrences: fractions

PUTNAM 1979/A.3.
Let x1, x2, x3, . . . be a sequence of nonzero real num-

bers satisfying

xn =
xn−2xn−1

2xn−2 − xn−1
for n = 3, 4, 5, . . . .

Establish necessary and sufficient conditions on x1 and x2
for xn to be an integer for infinitely many values of n.

Recurrences: generalized Fibonacci sequences

JRM 537. by Les Marvin
In the diagram below, each row is a Fibonacci-type

sequence in which the (n + 2)-nd term is the sum of the
nth term and the (n + 1)-st. The kth row is the sequence
that begins with the numbers 1, k. Consider the sequence
of elements along the main diagonal, 1, 2, 4, 9, 17, 33, 61, . . . .
What is the limiting ratio of successive terms?

1 1 2 3 5 8 13

1 2 3 5 8 13 21

1 3 4 7 11 18 29

1 4 5 9 14 23 37

1 5 6 11 17 28 45
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FQ H-302. by George Berzsenyi
Let c be a constant and define the sequence (an) by

a0 = 1, a1 = 2, and an = 2an−1 + can−2 for n ≥ 2.
Determine the sequence (bn) for which

an =

n∑

k=0

(
n

k

)
bk.

FQ H-248. by F. D. Parker
Prove that, if a sequence {y0, y1, . . .} satisfies the equa-

tion
yn = yn−1 + yn−2,

and if y0 and y1 are integers, then there exists an integer N
such that

y2
n − yn−1yn+1 = N(−1)n.

Furthermore show that N cannot be of the form 4k+2, and
show that 4N terminates in 0, 4, or 6.

FQ H-285. by V. E. Hoggatt, Jr.
Consider two sequences {Hn}∞n=1 and {Gn}∞n=1 such

that
(i) gcd(Hn, Hn+1) = 1,
(ii) gcd(Gn, Gn+1) = 1,
(iii) Hn+2 = Hn+1 +Hn, n ≥ 1, and
(iv) Hn+1 +Hn−1 = sGn, n ≥ 1, where s is indepen-

dent of n.
Show that s = 1 or s = 5.

FUNCT 1.1.7. by Christopher Stuart
Show that if Un is the nth term of any Fibonacci

sequence, then

U2
n − U2

n−2 = Un−1(2Un−1 + Un−4).

FQ H-305.* by Martin Schechter
For fixed positive integers, m and n, define a Fibonacci-

like sequence as follows:

S1 = 1, S2 = m, Sk =

{
mSk−1 + Sk−2, if k is even,

nSk−1 + Sk−2, if k is odd.

(a) Show that if j | k then Sj |Sk and in fact that
gcd(Sq, Sr) = Sgcd(q,r).

(b) Show that the sequences such that (m,n) = (1, 4)
and (m,n) = (1, 8) have only the element 1 in common.

JRM 766. by Anthon K. Whitford
Define the generalized Fibonacci sequence by Gn+m =

Gn +Gn+m−1, G1 = G2 = · · · = Gm = 1.
(a) Derive an expression for the sum of the first n

terms.
(b) Find the limiting value of Gn+1/Gn as n ap-

proaches infinity.

TYCMJ 48. by Warren Page
For any two real numbers, a and b, let f0 = 0, f1 = a,

f2 = b, and fk+2 = fk+1 + fk (k = 1, 2, . . . , 8). Prove that

10∑

i=0

(fi − r)2 ≥ 1430ab

for every real number r.

PENT 311. by Kenneth M. Wilke
A teacher of mathematics propounded the following

addition problem: Two numbers are selected at random and
each succeeding number equals the sum of the two preceding
numbers until a list of ten numbers is reached; e.g., starting
with 365 and 142, the list to be added by the class was

365+142+507+649+1156+1805+2961+4766+7727+12493.

Just as the teacher told the class to add these numbers,
young Leslie Morely announced the sum to be 32571. As-
tounded, the teacher verified the correctness of Leslie’s an-
swer with a pocket calculator. Assuming that Leslie per-
formed this feat mentally, how did he do it?

MM 1013. by James Propp
Let the sequence (Sn) be defined by

S1 = a, S2 = a+ b, and Sn+1 = Sn + Sn−1, for n ≥ 2,

where a and b are distinct positive integers.
Define a hole of (Sn) as an integer that is not express-

ible as a sum of distinct terms of (Sn). Find a general
formula for J(k), the number of holes of (Sn) between Sk
and Sk+1.

FQ B-336. by Herta T. Freitag
Let Q0 = 1 = Q1 and Qn+2 = 2Qn+1 + Qn. Show

that 2(Q2
2n − 1) is a perfect square for n = 1, 2, 3, . . . .

Recurrences: inequalities

PARAB 317.
Let a and b be positive integers and define a1 =

√
ab,

b1 = 1
2 (a+ b), a2 =

√
a1b1, b2 = 1

2 (a1 + b1), . . . . Thus, in

general, an+1 =
√
anbn, bn+1 = 1

2 (an + bn). Show that

|bn − an| ≤ |b− a|
2n

for each positive integer n.

Recurrences: limits

FQ B-345. by Frank Higgins
Let r > s > 0. Find limn→∞ Pn, where Pn is defined

by P1 = r+s and Pn+1 = r+s−(rs/Pn) for n = 1, 2, 3, . . . .

FQ B-344. by Frank Higgins
Let c and d be real numbers. Find limn→∞ xn, where

xn is defined by x1 = c, x2 = d, and

xn+2 = (xn+1 + xn)/2 for n = 1, 2, 3, . . . .

Recurrences: modular arithmetic

NAvW 420. by Hosia W. Labbers, Jr.
For all n ≥ 0, m ≥ 0, the Ackermann function A(n,m)

is recursively defined by the equations

A(0,m) = m+ 1,

A(n+ 1, 0) = A(n, 1),

A(n+ 1,m+ 1) = A (n,A(n+ 1,m)) .

Prove that for each k there exists N(k) such that

A(n, n) ≡ A
(
n′, n′

)
(mod k)

for all n, n′ ≥ N(k).
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Recurrences: multiplicative Fibonacci sequences

FQ H-300.* by James L. Murphy
Given two positive integers A and B relatively prime,

form a multiplicative Fibonacci sequence (Ai) with A1 = A,
A2 = B, and Ai+2 = AiAi+1. Now form the sequence of
partial sums (Sn) where

Sn =

n∑

i=1

Ai.

(Sn) is a subsequence of the arithmetic sequence (Tn) where
Tn = A + nB, and by Dirichlet’s theorem we know that
infinitely many of the Tn are prime. Does such a sparse
subsequence (Sn) of the arithmetic sequence A + nB also
contain infinitely many primes?

Recurrences: order 1

AMM S18. by V. E. Hoggatt, Jr.
and P. L. Mana

Let {an} be defined by a1 = 1, an+1 = 2 + an if n is
in An = {a1, a2, . . . , an}, and an+1 = 1 + an if n is not in
An. Also let a0 = 0. For integers k and n with 0 ≤ k ≤ n,
let
[
n
k

]
= an − ak − an−k. Prove that:

(a) There are an infinite number of integers m such

that
[
m
k

]
= 1 for 0 < k < m.

(b) There are an infinite number of integers r such that[
r−s+t
t

]
=
[
s
t

]
for 0 ≤ t ≤ s ≤ r.

MM 1079. by James Propp
Define a0 = 1 and an+1 = (an − 2)/an for n ≥ 0.
(a) Show that the set {an |n = 0, 1, 2, . . .} is un-

bounded.
(b) There exists a real number α such that {n | an ≥

1} = {bkαc | k = 0, 1, 2, . . .}. Find α.
(c) Find the closure of the set defined in part (a).

PARAB 388.
Let a list of integers a1, a2, . . . , an be defined in suc-

cession by

an+1 = a2
n − an + 1 and a1 = 2.

Show that the integers are pairwise relatively prime.

PARAB 389.
Let a list of integers a1, a2, . . . , an be defined in suc-

cession by

an+1 = a2
n − an + 1 and a1 = 2.

Show that for N sufficiently large,
∣∣∣ 1

a1
+

1

a2
+ · · ·+ 1

an
− 1

∣∣∣ < 1

1010

for all n > N .

Recurrences: order 2

TYCMJ 56. by Joseph Rothschild
Let the sequence of integers (ai), i = 1, 2, . . . , be de-

fined by an = an−1 + 2an−2 + 4n, with a0 = −4 and
a1 = −5. Determine an as a function of n.

CANADA 1976/2.
Suppose

n(n+ 1)an+1 = n(n− 1)an − (n− 2)an−1

for every positive integer n ≥ 1. Given that a0 = 1, a1 = 2,
find

a0

a1
+
a1

a2
+
a2

a3
+ · · ·+ a50

a51
.

FQ H-297. by V. E. Hoggatt, Jr.
Let P0 = P1 = 1, Pn(λ) = Pn−1(λ)−λPn−2(λ). Show

lim
n→∞

Pn−1(λ)

Pn(λ)
=

1−
√

1− 4λ

2λ
=

∞∑

n=0

Cn+1x
n,

where Cn is the nth Catalan number. Note that the coef-
ficients of Pn(λ) lie along the rising diagonals of Pascal’s
triangle with alternating signs.

Recurrences: order 3

FQ B-359. by R. S. Field
Find the first three terms T1, T2, and T3 of a Tribonacci

sequence of positive integers for which

Tn+3 = Tn+2 + Tn+1 + Tn and

∞∑

n=1

(
Tn
10n

)
=

1

T4
.

PME 445. by Richard S. Field
A “Tribonacci-like” integer sequence {An} is defined

in which m1Ai + m2Ai+1 + m3Ai+2 = Ai+3 (A0 = A1 =
A2 = 1; m1, m2, m3 are arbitrary integers).

A particular sequence of this kind is found (m1 = −1,
m2 = 5, m3 = 5) which appears to yield only perfect
squares, viz.: 1, 1, 1, 9, 49, 289, 1681, . . . .

(a) Prove that, for this particular sequence, the suc-
cessive terms continue to be perfect squares.

(b) Can other values of m1, m2, and m3 be found
which result in the same property; namely, a sequence of
perfect squares?

Recurrences: rates of divergence

DELTA 5.2-1. by R. C. Buck
DELTA 6.1-1. by R. C. Buck

Let x1 = 1 and xn+1 = xn +
(

1
xn

)3
for n ≥ 1. Prove

that limn→∞ xn = ∞ and that, in fact, xn approaches
infinity more slowly than 3

√
n.

Recurrences: square roots

AMM 6196. by Daniel Shanks
(a) Let −5 < x0 < 0 and let

xn =





√
xn−1 + 5, if n 6≡ 0 (mod 4),

−√xn−1 + 5, if n ≡ 0 (mod 4).

Identify the numbers toward which x4m, x4m+1, x4m+2,
and x4m+3 converge as m→∞.

(b) Let p be a prime for which (5|p) = +1, so that
√

5
exists modulo p. Show that

(15± 6
√

5 |p) = +1, or −1,

according as p ≡ ±1 (mod 15) or p ≡ ±4 (mod 15), respec-
tively.

(c) What is the relation between problems (a) and
(b)?
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Recurrences: sum of digits

OSSMB 78-15.
OSSMB 79-17. by Greg Bennett

From an arbitrary initial positive integer a0, a sequence
{an} is constructed by alternately performing the two op-
erations:

(1) adding the digits,
(2) raising to the kth power, k an arbitrary but fixed

integer (k ≥ 2), with either (1) or (2) used first.
Determine whether every such sequence {an} eventu-

ally cycles.

Recurrences: systems of recurrences

JRM 784. by Friend H. Kierstead, Jr.
Let p1 = q1 = 1; pn+1 = pn + qn; qn+1 = 2pn + qn.

Find a relation between pn and qn.

Repdigits

CRUX 339.* by Steven R. Conrad

Is
(

37
2

)
= 666 the only binomial coefficient

(
n
r

)
whose

decimal representation consists of a single digit repeated k
times for k ≥ 3?

MM 1046. by Daniel J. Aulicino
For an arbitrary positive integer k, consider the dec-

imal integer h consisting of m copies of k followed by n
zeros. Show that for each positive integer x, there exist an
m,m 6= 0, and an n such that x divides h.

SSM 3582. by Bob Prielipp
Prove that, given any odd number q not divisible by 5,

and any single digit d, 1 ≤ d ≤ 9, there is a number of the
form ddd . . . d that is divisible by q.

TYCMJ 93. by Dan Aulicino
Let k be a nonzero decimal digit and n a positive

integer. Prove that there exists an integer m such that n |m
and the decimal representation of m consists of a block of
digits, each equal to k followed by a block of zeros.

PARAB 321.
The following factorizations of numbers are true:

12 = 3 · 4;

1122 = 34 · 33;

111222 = 334 · 333;

11112222 = 3334 · 3333.

Can this scheme be continued indefinitely?

JRM 756. by Daniel P. Shine
(a) What is the smallest integer composed of 2n iden-

tical digits that is the product of two n-digit integers?
(b) What is the smallest such integer that has an n-

digit prime factor?
(c) Is there any such integer that has two n-digit prime

factors?

JRM 676. by Joseph D. Thompson
Let Dn denote the digit D repeated n times. For exam-

ple, 84 = 8888. Let S(n) = D1 + D2 + D3 + · · ·+ Dn.
(a) Show that there is at least one nonzero value of D

such that for infinitely many values of n, S(n) contains at
most two different digits.

(b) Let φ represent the final four digits of S(n), and
let D = 1. Find all S(n) such that φ = n and φ is divisible
by 9.

Repunits

PENT 316. by Randall J. Covill

A Fermat number has the form 22k + 1 for any integer
k > 0. Are any Fermat numbers also repunits?

PENT 320. by Michael W. Ecker
Define a permuted repunit pair (PRP) to be a pair of

positive integers x, y with x > y such that
(1) the decimal digits of x and y are permutations of

one another; and
(2) x+ y = a repunit.
If n is the number of ones in a given repunit, for which

values of n do corresponding PRP’s exist? For a given
integer n for which PRP’s exist, find the PRP (x, y) such
that the product xy is a maximum.

FUNCT 1.4.4.
Prove that no number in the sequence

11, 111, 1111, 11111, . . .

is the square of an integer.

ISMJ 12.8.
ISMJ 14.13.

Let A be the 2n-digit number whose digits are all 1’s
and let B be the n-digit number whose digits are all 2’s.
Show that A−B is a perfect square.

Riemann zeta function

NAvW 429. by H. Jager
Let f(x) denote the number of ordered pairs (m,n) of

positive integers satisfying 1 < m < n ≤ x, gcd(m,n) = 1,

m2 ≡ 1 (mod n). Prove that

f(x) =
1

ζ(2)
x log x

+
1

ζ(2)

{
2γ − 1− 2ζ′(2)

ζ(2)
− ζ(2)− 1

2
log 2

}
x

+ O(x
1
2 log x), (x→∞),

where ζ is Riemann’s zeta-function and γ is Euler’s con-
stant.

Sequences: binary sequences

AMM E2544. by Harvey Cohn
Consider the sequence of words formed by “Fibonac-

cian juxtaposition”: w1 = 0, w2 = 1, wn+2 = wnwn+1 for
n ≥ 1. Form the sequence S by

S = w1w2w3w4 . . . = 010110101101 . . . .

Now let

α =
1

2

(√
5− 1

)

and define
tn = bnαc − b(n− 1)αc

for n = 1, 2, . . . . Form the sequence T = t1t2t3 . . . . Show
that the sequences S and T are identical. Generalize.
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Sequences: binomial coefficients

AMM S1. by George Pólya
Consider the composite integer n and the three se-

quences (
n

1

)
,

(
n

2

)
, . . . ,

(
n

n− 1

)
,

[
n

2

]
,

[
n

3

]
, . . . ,

[
n

n− 1

]
,

{
n

2

}
,

{
n

3

}
, . . . ,

{
n

n− 1

}
,

(binomial coefficients, Stirling numbers of the first and sec-
ond kind, respectively).

Prove that each sequence contains a term not divisible
by n.

Sequences: consecutive integers

JRM 502. by Michael Lauder
Let n be any positive integer. Show that there exists a

sequence of consecutive positive integers such that for each
element k in the sequence, at least n other elements in the
sequence share divisors with k that are greater than 1.

Sequences: counts

NAvW 515. by N. G. de Bruijn
Let n1, n2, . . . and m1,m2, . . . be sequences of elements

of N. Show the existence of

a1, a2, . . . ∈ N

such that, for every k ∈ N, there are exactly nk values of
i ∈ N with ai = k and exactly mk values of j ∈ N with∣∣aj+1 − aj

∣∣ = k.

Sequences: density

NAvW 473. by J. van de Lune
For n ∈ N, let β(n) denote the largest square-free

divisor of n. Let α ∈ (0, 1). Prove that the natural density
of the integers m, having the property β(m) ≤ mα, is zero.

Sequences: digits

PARAB 421.
In the sequence 19796 . . . , each digit after 6 is the sum

of the preceding four digits. Show that . . . 1979 . . . turns up
again in the sequence, but that . . . 1980 . . . never occurs at
all.

MSJ 468.
Beginning with 2 and 7, the sequence of numbers 2, 7,

1, 4, 7, 4, 2, 8, . . . is constructed by multiplying successive
pairs of its members and adjoining the result as the next
one or two members of the sequence depending on whether
the product is a 1- or a 2-digit number. Prove that the digit
6 appears an infinite number of times in the sequence.

Sequences: divisibility

SPECT 9.8. by B. G. Eke
Let S1 denote the sequence of positive integers, and

define the sequence Sn+1 in terms of Sn by adding 1 to
those integers in Sn that are divisible by n. Determine those
integers n with the property that the first n− 1 integers in
Sn are n.

Sequences: family of sequences

CRUX 355.* by James Gary Propp
Given a finite sequence A = (an) of positive integers,

we define the family of sequences

A0 = A; Ai = (br), i = 1, 2, 3, . . . ,

where br is the number of times that the rth lowest term of
Ai−1 occurs in Ai−1.

For example, if A = A0 = (2, 4, 2, 2, 4, 5), then A1 =
(8, 2, 1), A2 = (1, 1, 1), A3 = (3), and A4 = (1) = A5 =
A6 = . . . .

The degree of a sequence A is the smallest i such that
Ai = (1).

(a) Prove that every sequence considered has a degree.
(b) Find an algorithm that will yield, for all integers

d ≥ 2, a shortest sequence of degree d.
(c) Let A(d) be the length of the shortest sequence of

degree d. Find a formula, recurrence relation, or asymptotic
approximation for A(d).

(d) Given sequences A and B, define C as the concate-
nation of A and B. Find sharp upper and lower bounds on
the degree of C in terms of the degrees of A and B.

MM 1047. by James Propp
Given an infinite sequence A = (an) of positive inte-

gers, we define a family of sequences Ai, where A0 = A
and Ai = (br) for i = 1, 2, 3, . . ., where br is the number
of times that the rth lowest term of Ai−1 occurs in Ai−1.
For example, if A = A0 = {1, 2, 2, 3, 3, 3, 4, 4, 4, 4 . . .}, then
A1 = {1, 2, 3, 4, . . .} and A2 = {1, 1, 1, 1, . . .}.

(a) Find a nondecreasing sequence A such that the
sequences Ai are all distinct.

(b) Let T = (tn) be the unique nondecreasing sequence
containing all the positive integers which has the property
that T1 = T0. Define U = (un) and V = (vn) so that for
all n, un = t2n−1 and vn = t2n. Are the sequences Ui and
Vi all distinct?

Sequences: finite sequences

OSSMB 75-16.
For certain natural numbers n, it is possible to con-

struct a sequence in which each of the numbers 1, 2, 3, . . . , n
occurs twice, the second occurrence of the number r being
r places beyond its first occurrence. Prove that such a se-
quence cannot exist unless n is congruent to 0 or 1 (mod 4).

OSSMB 77-18.
Let S = {a1, a2, . . . , an} be a sequence of length n

where each ai is chosen from {1, 2, 3, . . . , k}, and denote by
Ms the maximum term in the sequence.

Show that
∑

Ms = kn+1 − {1n + 2n + 3n + · · ·+ (k − 1)n}

where the sum is taken over all such sequences.
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ISMJ 14.3.
Suppose 0 < n1 < n2 < · · · < n15 are integers.

Assume that nrns = nrs whenever r 6= s and rs ≤ 15.

(a) Show n3 < n2
2.

(b) If n2 = 2, show that n15 = 15.

JRM 619. by Alfred H. Tannenburg
Let points x1, x2, . . . , xn be selected in [0, 1) in such

a way that x1 and x2 lie in different halves of the interval;
x1, x2, and x3 lie in different thirds; and in general, for k =
2, 3, . . . , n, the points x1, x2, . . . , xk lie in different kths of
[0, 1). It is well known that such a selection is possible only
if n ≤ 17.

Selections (0, 1/2), (0, 2/3, 1/3), and (0, 3/4, 1/2, 1/4)
satisfy the above conditions for n = 2, 3, 4, respectively, and
in each case the sum of the n values is minimal among all
such selections. Extend this list of minimal selections up to
the case n = 17.

Sequences: floor function

CMB P243. by L Kuipers
Let k be an integer ≥ 1 and let β1, β2, . . . , βk be k

irrational numbers. Let the real numbers α1, α2, . . . , αk and
1 be linearly independent over the rationals. Prove that the
sequence

([nα1]β1 + [nα2]β2 + · · ·+ [nαk]βk), n = 1, 2 . . .

is uniformly distributed mod 1 if and only if the numbers

α1β2 + · · ·+ αkβk, α1, α2, . . . , αk, 1

are linearly independent over the rationals.

FQ B-349. by Richard M. Grassl
Let a0, a1, a2, . . . be the sequence 1, 1, 2, 2, 3, 3, . . .; i.e.,

let an = b1 + (n/2)c. Give a recursion formula for the an
and express the generating function

∞∑

n=0

anx
n

as a quotient of polynomials.

Sequences: inequalities

JRM 673. by David L. Silverman
Define a cool sequence as a sequence of positive integers

for which the sum of the square roots of the first n+1 terms
is less than the nth term for every n. An example of a cool
sequence is 32, 42, 52, . . . . One such sequence a1, a2, . . . will
be considered cooler than another such sequence b1, b2, . . .
if ak < bk for some k and ai ≤ bi for all i.

(a) Prove that there is a coolest sequence, that it begins
6, 10, 14 . . ., and give the first ten terms.

(b) Can the sequence be represented by a closed for-
mula?

JRM 788. by David L. Silverman
Define a kool sequence as a sequence of positive integers

for which the sum of the square roots of the first 2n terms
is less than or equal to the nth term for every n. One such
sequence a1, a2, . . . will be considered kooler than another
such sequence b1, b2, . . . if ak < bk for some k and ai ≤ bi
for all i. What is the koolest sequence?

Sequences: law of formation

MATYC 74. by J. Kapoor
Find the nth term of 16, 20, 50, 105, 196, 336, . . . .

OMG 14.1.2.
What is the rule of formation for the sequence: 0, 1,

10, 2, 100, 11, 1000, 3, 20, 101, 10000, 12, 100000, 1001,
110, 4, 1000000, 21, . . . ?

SSM 3787. by Charles W. Trigg
How are the following two sequences related: 1, 2, 9,

64, 7776, . . . and 1, 8, 81, 1024, 15625, 279936, . . . ?

JRM 790. by Joseph D. Thompson
Given the sequence: 1, 484, 36926037, . . .
(a) Find the fourth member of the sequence.
(b) Find the number of digits in the fifth through ninth

members.

CRUX 16. by Léo Sauvé
For n = 1, 2, 3, . . ., the finite sequence Sn is a per-

mutation of 1, 2, 3, . . . , n, formed according to a law to be
determined. According to this law, we have

S1 = (1)

S2 = (1, 2)

S3 = (1, 3, 2)

S4 = (4, 1, 3, 2)

...........

S9 = (8, 5, 4, 9, 1, 7, 6, 3, 2)

Discover a law of formation which is satisfied by the above
sequences, and then give S10.

IMO 1978/3.
It shall be assumed that the set of all positive integers

is the union of two disjoint subsets {f(1), f(2), . . . , f(n), . . .}
and {g(1), g(2), . . . , g(n), . . .}, where

f(1) < f(2) < · · · < f(n) < · · · ,
g(1) < g(2) < · · · < g(n) < · · · ,

and
g(n) = f(f(n)) + 1 for n = 1, 2, . . . .

Determine f(240).

MM 961. by Erwin Schmid
The sequence 110, 111, 112, . . . of integral powers of the

number 11, reduced modulo 50 (i.e. 1, 11, 21, 31, 41, 1, . . .)
is in both geometric and arithmetic progression. What is
the law of formation for such sequences?

CRUX 326. by Harry D. Ruderman
If the members of the set

S = {2x3y|x, y are nonnegative integers}
are arranged in increasing order we get the sequence begin-
ning

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, . . . .

(a) What is the position of 2a3b in the sequence in
terms of a and b?

(b) What is the nth term of the sequence in terms of
n?
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FQ B-340. by Philip Mana
Characterize a sequence whose first 28 terms are: 1779,

1784, 1790, 1802, 1813, 1819, 1824, 1830, 1841, 1847, 1852,
1858, 1869, 1875, 1880, 1886, 1897, 1909, 1915, 1920, 1926,
1937, 1943, 1948, 1954, 1965, 1971, 1976.

Sequences: limits

AMM 6271. by Michael Barr
For positive integers n, define

an =
n− 1

n
+

(n− 1)(n− 2)

n2
+ · · ·+ (n− 1)!

nn−1
,

bn =
n

n+ 1
+

n2

(n+ 1)(n+ 2)
+ · · ·+ nn−1

(n+ 1) · · · (2n− 1)
.

(a) Prove that for all n > 1, 0 < bn − an < 1.
(b) Prove or disprove that

lim
n→∞

(bn − an) =
2

3

and that

bn − an − 2

3
= O

(
1

n

)
.

Sequences: monotone sequences

CRUX 474. by James Propp
Suppose (sn) is a monotone increasing sequence of

natural numbers satisfying ssn = 3n for all n. Determine
all possible values of s1979.

NAvW 422. by J. van de Lune
For n ∈ N and s ∈ C, we define

Qn(s) =

n−1∑

k=0

(−1)k(n− k)s.

Prove that if s ∈ N and s ≥ 2, then n−sQn(s) is decreasing
(in n).

IMO 1975/2.
PARAB 378.

Let a1, a2, a3, · · · be an infinite increasing sequence of
positive integers. Prove that for every p ≥ 1 there are
infinitely many am which can be written in the form

am = xap + yaq

with x and y positive integers and q > p.

MM 1008. by P. Erdős
and Melvyn B. Nathanson

(a) Let (an) be an increasing sequence of positive in-
tegers and let Sn = a1 + a2 + · · · + an. Show that if
lim an/n > 2 +

√
2, then for all n sufficiently large there

exists a perfect square between Sn and Sn+1.

(b) If lim an/n = 2 +
√

2 and the above conclusion

fails, then show that lim an/n =∞.

MATYC 133. by Ely Stern and Leo Chosid
Find the least positive integer N for which

F (n) =
n+ 1

n
· 1
n
√
n

is monotone increasing for n > N .

MM 1073.* by James Propp
Let A and B be the unique nondecreasing sequences of

odd integers and even integers, respectively, such that for
all n ≥ 1, the number of integers i satisfying Ai = 2n − 1
is An and the number of integers i satisfying Bi = 2n
is Bn. That is, A = (1, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 9, 9, . . .)
and B = (2, 2, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, . . .). Is the difference
|An −Bn| bounded?

Sequences: partitions

OSSMB 75-18.
Divide N into groups, as follows: (1), (2, 3), (4, 5, 6),

(7, 8, 9, 10), (11, 12, 13, 14, 15), . . . . Delete every second
group. Prove that the sum of the elements in the first k
groups that remain is k4.

PENT 318. by Charles W. Trigg
Find the sum of the integers in the nth group, where

the groups are given by: (1), (2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12),
(13, 14, 15, 16, 17, 18, 19, 20, 21, 22), . . . .

SSM 3763. by Fred A. Miller
The series of natural numbers is divided into groups 1,

(2+3+4), (5+6+7+8+9), (10+11+12+13+14+15+16),
. . . . Find the sum of the numbers in the nth group.

Sequences: products

FQ H-271.* by R. Whitney
Define the binary dual, D, as follows:

D =

{
t =

n∏

i=0

(ai + 2i); ai ∈ {0, 1}; n ≥ 0

}
.

Let D denote the complement of D, with respect to the
set of positive integers. Form a sequence, {Sn}∞n=1, by

arranging D in increasing order. Find a formula for Sn.

Sequences: rational numbers

OSSMB 78-9. by David Ash
A sequence {cn} of rational numbers, cn = an/bn,

an, bn positive integers with gcd (an, bn) = 1 is defined as
follows:

(0) a1 = 5, a2 = 7, b1 = 7, b2 = 10,
(1) for all n, anbn+1 − an+1bn = 1,
(2) for all n, an+1 ≥ bn,
(3) for all n, an+1 is the smallest positive integer sat-

isfying (1) and (2). Find the limit of the sequence {cn}.

Sequences: runs

AMM 6281.* by Clark Kimberling
If A = (1, a1, a2, . . .) is a sequence of 1’s and 2’s, let

B = (1, b1, b2, . . .), where bn is the length of the nth max-
imal string of identical symbols in A. If B = A, then A
must be (1, 2, 2, 1, 1, 2, 1, 2, 2, 1, . . .). By a run is meant a fi-
nite subsequence of consecutive terms of A. Its complement
is obtained by interchanging all 1’s and 2’s.

Prove or disprove:
(a) The complement of every run is also a run.
(b) Every run occurs infinitely many times.
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Sequences: subsequences

PARAB 331.
Suppose that n2 + 1 boys are lined up shoulder-to-

shoulder in a straight line. Show that it is always possible to
select n+1 boys to take one pace forward so that, going from
left to right, their heights are either increasing or decreasing.

Sequences: sum of consecutive terms

MSJ 483.
A student preparing for a mathematics contest to be

held in eleven weeks solves at least one problem every day
but no more than twelve a week. Prove that during this
preparation there is at least one set of consecutive days in
which the student solves exactly twenty problems.

OSSMB 77-10.
Let n1, n2, . . . , n30 be a sequence of positive integers

whose sum is at most 48. We say that an integer k is
attainable if for some i and j (i ≤ j) we have ni + ni+1 +
· · · + nj = k. Find all k that are attainable for every such
sequence of n’s.

OSSMB 77-9.
A doctor wishing to test a new medication, gives a test-

patient a batch of 48 pills and instructs him to take pills over
a 30-day period. The patient is at liberty to distribute the
pills however he likes, subject to the condition that he take
at least one pill each day. Show that there is some stretch of
consecutive days for which the total number of pills taken
over those days is 11.

CRUX PS3-2.
Prove that from any row of n integers one may always

select a block of adjacent integers whose sum is divisible by
n.

IMO 1977/2.
OSSMB 77-12.
PARAB 365.

In a finite sequence of real numbers the sum of any
seven successive terms is negative, and the sum of any eleven
successive terms is positive. Determine the maximum num-
ber of terms in the sequence.

Sequences: trees

ISMJ 10.12.
An increasing sequence of integers starting with 1 has

the property that if n is a member of the sequence then
both 3n and n+ 7 are also members of the sequence. Also,
all the members are generated from just the first member
1. Determine all the positive integers that are not members
of the sequence.

Series: alternating series

MATYC 84. by Gary Baldwin
Evaluate ∞∑

n=0

(−1)n

3n(2n+ 1)
.

OSSMB G76.3-5.
Find the sum of n terms of the series

5

1 · 2 −
3

2 · 3 +
9

3 · 4 −
7

4 · 5 +
13

5 · 6 −
11

6 · 7 +
17

7 · 8 − · · · .

Series: arithmetic progressions

MATYC 111. by Gene Zirkel
Let ai be the ith term of an arithmetic progression

consisting of n terms, n ≥ 2. Select an integer k, such that
0 ≤ k ≤ n− 2. Show that

n∑

i=1

aki (−1)i−1

(
n− 1

i− 1

)
= 0.

Series: binomial coefficients

CRUX 183. by Viktors Linis
If x+ y = 1, show that

xm+1
n∑

j=0

yjCjm+j + yn+1
m∑

i=0

xiCin+1 = 1

holds for all m, n = 0, 1, 2, . . . .

MM 1049. by Edward T. H. Wang

For nonnegative integers n, let Ln =
(

2n
n

)
/(n + 1).

Prove that
n∑

k=0

LkLn−k = Ln+1.

TYCMJ 116. by V. N. Murty
Assume r and n are nonnegative integers and r ≤ n.

Evaluate:
n∑

i=0

(−1)i
(
n

i

)
(n− i)r.

SSM 3758. by Herta T. Freitag
Prove that for each positive integer n,

n∑

i=1

(−1)i−1

(
n

i

)
=

n∑

k=2

n∑

i=k

(−1)i
(
n

i

)
.

FQ H-253. by L. Carlitz
Show that

k∑

t=0

(
(β − 1)n+ t+ 1

t

) n−k−1∑

j=0

(
n− k − 1

j

)

·
j∑

m=0

(−1)n+m+k+1
(
j

m

)

·
n+m−t−j−1∑

r=0

(
j

n+m− j − t− r − 1

)(
2j + r − 1

r

)

= 2n−k−1
(
βn

k

)
,

where β is an arbitrary complex number and n and k are
positive integers, k < n.

AMM E2685. by Ronald Evans
If p is an odd prime, show that

p−1∑

i=0

(−1)i
(
p2 − p
pi

)
≡ pp−1 (mod pp).
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AMM E2770. by Warren Page
Let n and N be fixed positive integers, and let

Sk =

n∑

m=1

mk

for k = 1, 2, . . . , N . Prove

(a)

N∑

h=1

h∑

k=1

(
h+ 1

k

)
Sk

=
n+ 1

n

[
(n+ 1)N+1 − (N + 1)n− 1

]

and

(b)

N∑

h=1

h∑

k=1

(−1)h
(
h+ 1

k

)
Sk

=

{
n+1
n+2

[
(n+ 1)N+2 + 1

]
, for odd N ,

(n+1)2

n+2

[
(n+ 1)N − 1

]
, for even N .

CRUX 368. by Lai Lane Luey
Let a and n be integers with a ≥ n ≥ 0, c any constant,

and

f(a) =

a∑

k=0

(−1)k
(
a

k

)
(a− k + c)n.

Prove that f(a) = 0 if a > n and f(n) = n!.

MATYC 76. by Etta Mae Whitton
Prove that

n∑

k=0

(−1)k
(
n

k

)
(x− k)n = n! .

FQ H-255. by L. Carlitz
Show that

2m∑

j=0

2n∑

k=0

(−1)j+k
(

2m

j

)(
2n

k

)(
2m+ 2n

j + k

)(
2m+ 2n

2m− j + k

)

= (−1)m+n (3m+ 3n)!(2m)!(2n)!

m!n!(m+ n)!(2m+ n)!(m+ 2n)!
.

FQ B-380. by Dan Zwillinger
Let a, b, and c be nonnegative integers. Prove that

n∑

k=1

(
k + a− 1

a

)(
n− k + b− c

b

)
=

(
n+ a+ b− c
a+ b+ 1

)
.

SIAM 79-13. by T. V. Narayana
and M. Özsoyoglu

Prove that

n∑

i=1

i
m− n+ 2i+ 1

m+ n+ 1

(
m+ n+ 1

n− i

)

=

n∑

i=1

i2i−1m− n+ i

m+ n− i

(
m+ n− i

m

)

where m, n are integral with m > n > 0.

AMM 6123.* by E. G. Kundert
Let s be any integer ≥ 2, and let εi be the following

function defined on the integers:

εi =





0, if i ≡ 0, 6

1, if i ≡ 2, 4, 7, 11

−1, if i ≡ 1, 5, 8, 10 (mod 12)

2, if i ≡ 9

−2, if i ≡ 3.

Show that the following identity holds:

∑

1≤i,j≤s
εiεj

(
j + 1

s− i

)(
s+ 1

j + 1

)
3bi/2c+bj/2c−b(s−2)/2c = −3εs.

TYCMJ 124. by Norman Schaumberger
Assume that a > 1 is an integer. Prove that

∞∑

n=a

1(
n
a

) =
a

a− 1
.

SIAM 75-4. by P. Barrucand
Let

A(n) =
∑

i+j+k=n

n!2

i!2j!2k!2
,

where i, j, and k are nonnegative integers, and let

B(n) =

n∑

m=0

(
n

m

)3

.

Prove that

A(n) =

n∑

m=0

(
n

m

)
B(m).

FQ H-283. by D. Beverage
For n ≥ 0, find a closed form for

∞∑

k=0

(
n+ k

n

)(
1

2

)n+k

, n ≥ 0.

FQ H-272. by L. Carlitz
Show that

m∑

j=0

(
r

j

)(
p

m− j

)(
q

m− j

)(
p+ q −m+ j

j

)

is symmetric in p, q, and r.

Series: congruences

MM Q656. by Warren Page
For each positive integer n, show that either

n∑

k=1

k ≡ 1 (mod 5) or

n∑

k=1

k2 ≡ 0 (mod 5).
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Series: digit problems

AMM E2533. by E. S. Pondiczery
Calculate to an accuracy of 1% the sum of the recip-

rocals of the 8,877,690 positive integers whose decimal rep-
resentations contain no repeated digits.

AMM E2675. by R. P. Boas
If n is a positive integer, let f(n) be the number of

zeros in the decimal representation of n. For which values
of a > 0 is the following series convergent:

∑

n≥1

af(n)

n2
?

CRUX 377. by Michael W. Ecker
For n = 1, 2, 3, . . ., let f(n) be the number of zeros in

the decimal representation of n, and let

F (p) =

∞∑

n=1

f(n)

np
.

Find the real values of p for which the series F (p) converges.

AMM E2529. by S. W. Golomb
Let Nk(n) denote the number of “digits” in the base k

representation of the natural number n. Show that if

Sk =

∞∑

n=1

1

n (Nk(n))2
,

then Sk ∼ A log k for some constant A. Find A and estimate
the error term.

Series: divisibility

TYCMJ 67. by Richard Johnsonbaugh
Let x and ai (i = 0, 1, 2, . . . , k) be arbitrary integers.

Prove or disprove that
∑k
i=0 ai(x

2 + 1)3i is divisible by

x2±x+1 if and only if
∑k
i=0(−1)iai is divisible by x2±x+1.

Series: factorials

TYCMJ 66. by B. Bernstein
Find a closed form expression for

∞∑

n=1

n3

(2n+ 1)!
.

SSM 3762. by Fred A. Miller
Find the sum of the following infinite series:

2

1!
+

3

2!
+

6

3!
+

11

4!
+

18

5!
+ · · · .

SSM 3785. by William T. Bailey
Find the sum of the following infinite series:

1 +
12

2!
+

22

3!
+

32

4!
+

42

5!
+ · · · .

MM 985. by Jeffrey Shallit
Let

Qk =
1

(k + 2)!
+

2

(k + 3)!
+

3

(k + 4)!
+ · · · .

Show that Qk is transcendental for all positive integers k,
but rational for k = 0.

OSSMB G78.2-2.
Find the value of the series

2 +
5

2!3
+

5 · 7
3!32

+
5 · 7 · 9

4!33
+

5 · 7 · 9 · 11

5!34
+ · · ·

by first getting an equivalent binomial form (1− a)b.

FUNCT 2.5.2.
Observe that the value of

1

2!
+

2

3!
+

3

4!
+ · · ·+ n

(n+ 1)!

is 1
2 , 5

6 , 23
24 , for n = 1, 2, 3, respectively. Guess the general

law and prove your guess.

PARAB 293.
Determine all positive integers n such that

1! + 2! + 3! + · · ·+ n!

is a perfect square.

FQ H-270. by L. Carlitz
Sum the series

∑

a,b,c

xaybzc

(b+ c− a)!(c+ a− b)!(a+ b− c)! ,

where the summation is over all nonnegative a, b, c such
that

a ≤ b+ c, b ≤ c+ a, c ≤ a+ b.

MM 999. by Joseph Silverman
Let (ai) and (bi), i = 1, 2, . . . , k, be natural numbers

arranged in nondecreasing order. For which values of k is it
true that

k∑

i=1

(ai!) =

k∑

i=1

(bi!)

implies ai = bi for all i?
What is the corresponding result if the two sequences

are strictly increasing?

Series: floor function

FQ B-350. by Richard M. Grassl
Let an = b1 + (n/2)c. Find a closed form for

n∑

k=0

an−k(ak + k)

(a) in which n is even, and
(b) in which n is odd.
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CRUX 160. by Viktors Linis
Evaluate 

109∑

n=1

n−2/3

 .

MM Q661. by J. Phipps McGrath
A professor wishes to add up the integral parts of the

numbers lnn for the first 109 positive integers n. Show the
professor how to simply evaluate his sum.

AMM E2758. by Bruce C. Berndt
and Ronald J. Evans

Let c and d be relatively prime positive integers of
opposite parity and define

F (d, c) =

c−1∑

j=1

(−1)j+1+bdj/cc.

Prove that F (d, c) + F (c, d) = 1.

FQ B-377. by Paul S. Bruckman
For all real numbers a ≥ 1 and b ≥ 1, prove that

bac∑

k=1

⌊
b
√

1− (k/a)2
⌋

=

bbc∑

k=1

⌊
a
√

1− (k/b)2
⌋
.

Series: geometric series

SSM 3720. by N. J. Kuenzi
Prove that, for each real number q and for each positive

integer n,

1 + q + q2 + · · ·+ qn−1 =

n∑

i=1

(
n

i

)
qn−i(1− q)i−1.

MM Q615. by Joseph A. Wehlen
Let q be any positive integer except an integral power

of 10. Let 10a be the integral power of 10 satisfying the
inequality

10a > q > 10a−1.

Expand 1/q as the sum of an infinite geometric series whose
first term and ratio depend on only q and 10a.

Series: identities

SSM 3778. by Herta T. Freitag
Verify that for each positive integer n

(
n∑

i=1

(2i− 1)

)2

=

n∑

i=1

(4i3 − 6i2 + 4i− 1).

Series: inequalities

PME 339. by P. Erdős
Let a1 < a2 < · · · be a sequence of integers such that

gcd(ai, aj) = 1 and ai+2 − ai+1 ≥ ai+1 − ai. Prove that∑
1
ai
<∞.

AMM 6247. by Mihály Bencze
Let α > 1, m > 1, and n > 1 with m and n integers.

Prove that

nm−1∑

k=1

αk
⌊
m
√
k
⌋
≤ (n− 1)

αn
m − α(n/2)m

α− 1
.

CRUX 459. by V. N. Murty
If n is a positive integer, prove that

∞∑

k=1

1

k2n
≤ π2

8
· 1

1− 2−2n
.

CMB P273. by Mihály Bencze
If s > 1, show that

∑

p

1

ps
≤ −sζ

′(s)
ζ(s)

≤
∑

p

1

ps/2

where the sum extends over all positive prime numbers and
ζ is the Riemann zeta function.

FQ H-258. by L. Carlitz
Sum the series

S =
∑

xaybzctd,

where the summation is over all nonnegative a, b, c, d such
that

2a ≤ b+ c+ d,

2b ≤ a+ c+ d,

2c ≤ a+ b+ d,

2d ≤ a+ b+ c.

CRUX 108. by Viktors Linis
Prove that, for all integers n ≥ 2,

n∑

k=1

1

k2
>

3n

2n+ 1
.

Series: infinite series

FQ H-282. by H. W. Gould and W. E. Greig
Prove that

∞∑

n=1

α2n

α4n − 1
=

∞∑

k=1

1

α2k − 1
,

where k is odd and α = (1 +
√

5)/2, and determine which
series converges the faster.

MM 1048. by P. Erdős
Let (ak) be an increasing sequence of positive integers

with ak+1/ak → 1 as k →∞. Prove that

∞∑

k=1

(ak − 1)2

a1 · · · ak

is irrational. What happens if it is not assumed that
ak+1/ak → 1 but the series converges?
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PME 360. by P. Erdős and Ernst Straus
Denote by An the least common multiple of the inte-

gers from 1 to n, and denote by d(n) the number of divisors
of n.

(a) Prove that
∑∞
n=1

1
An

is irrational.

(b) Prove that
∑∞
n=1

d(n)
An

is irrational.

(c) Prove that
∑∞
n=1

f(n)
An

is irrational, where f(x) is

a polynomial with integer coefficients.

Series: least common multiple

NAvW 551. by P. Erdős
If 1 < a1 < a2 < · · · is a sequence of integers such

that, for some c ∈ (0, 1) and all x,

card {ai | ai ≤ x} > cx,

then show that

∞∑

k=1

lcm [a1, a2, . . . , ak]

a1a2 · · · ak

is irrational.

Series: limits

MM 974. by John P. Hoyt

Let ni = n(n−1) · · · (n−i+1). For k a positive integer,
evaluate

lim
n→∞

n∑

i=1

ni

(2n+ k)i
.

AMM E2784. by F. S. Cater
For each positive integer n and each positive number

x, let Fn(x) = 0 if x < (n+ 1)−1, and let

Fn(x) = k−1
[
(n+ 1)−1 + 2(n+ 2)−1 + · · ·+ k(n+ k)−1

]

if x ≥ (n+ 1)−1, where k is the largest integer satisfying

(n+ 1)−1 + (n+ 2)−1 + (n+ 3)−1 + · · ·+ (n+ k)−1 ≤ x.
Let

F (x) = lim
n→∞

Fn(x)

for x > 0. Determine the function F (x). Is the convergence
of Fn(x) uniform in x? Find supF (x) and sup [F (x)/x].

Series: logarithms

NAvW 538. by P. Erdős
Let (an)n∈N be an increasing sequence of natural num-

bers such that
∞∑

n=1

n−2 log log an

is convergent. Let σ (ak) be the sum of the reciprocals of
the divisors of ak that do not divide any ai with i < k.

Show that
∞∑

k=1

k−1σ (ak)

is convergent.

Series: multinomial coefficients

FQ H-289. by L. Carlitz
Show that∑

r+s+t=λ

(r, s, t)(m− 2r, n− 2s, p− 2t)

=
∑

i+j+k+u=λ

(−2)i+j+k(i, j, k, u)

× (m− j − k, n− k − i, p− i− j)
whenever m+ n+ p ≥ 2λ, where

(m1,m2, . . . ,mk) =
(m1 +m2 + · · ·+mk)!

m1!m2! · · ·mk!
.

Series: multiples

CRUX 53. by Léo Sauvé
Show that the sum of all positive integers less than 10n

and relatively prime to 2 and 5 equals 20n2.

PARAB 285.
ISMJ J11.10.

Find the sum of all the numbers from 1 to 300 that are
multiples of 3 or 5 or 7.

Series: permutations

CRUX 69. by Léo Sauvé
Does there exist a permutation n 7→ an of the natural

numbers such that the series
∞∑

n=1

an
n2

converges?

Series: polynomials

AMM 6010. by L. Carlitz

Coefficients c
(k)
m,n are defined by means of

(1 + x)m(1− x)n =

m+n∑

k=0

c
(k)
m,nx

k (m ≥ 0, n ≥ 0).

Show that

m+n∑

k=0

(
c
(k)
m,n

)2

=
(2m)!(2n)!

m!n!(m+ n)!
.

Series: power series

FQ H-301. by Verner E. Hoggatt, Jr.
Let A0, A1, A2, . . ., An, . . . be a sequence such that

the nth differences are zero (that is, the Diagonal Sequence
terminates). Show that, if

A(x) =

∞∑

i=0

Aix
i,

then

A(x) =
1

1− x ·D
(

x

1− x
)
,

where

D(x) =

∞∑

i=0

dix
i and di = ∆iA0.
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Series: powers

FUNCT 3.5.3. by Y.-T. Yu
Set

Sr(n) =

n∑

k=1

kr.

When does n divide S1(n)? S2(n)? S3(n)? Can the result
be generalized?

Series: powers of 2

CRUX 447. by Viktors Linis
The number

n∑

k=1

2k

k

is represented as an irreducible fraction pn/qn.
(a) Show that pn is even.
(b) Show that if n > 3 then pn is divisible by 8.
(c) Show that for every natural number k there exists

an n such that all the numbers pn, pn+1, . . . are divisible by

2k.

Series: primes

AMM 6016.* by C. J. Moreno
Let D(n) be the function defined by D(n) =

∏
p,

where the product runs over those primes p such that p− 1
divides 2n. Find an asymptotic formula for the function

∑

n≤x
D(n).

PME 384. by R. S. Luthar
Discuss the convergence or divergence of the series

∞∑

n=1

n

p2
n

where pn is the nth prime.

Series: Stirling numbers

FQ H-268. by L. Carlitz
Put

Sn(x) =

n∑

k=0

{
n

k

}
xk,

where
{
n
k

}
denotes the Stirling number of the second kind

defined by

xn =

n∑

k=0

{
n

k

}
x(x− 1) · · · (x− k + 1).

Show that{
xSn(x) =

∑n
j=0(−1)n−j

(
n
j

)
Sj+1(x)

Sn+1(x) = x
∑n
j=0

(
n
j

)
Sj(x).

More generally, evaluate the coefficients c(n, k, j) in the
expansion

XkSn(x) =

n+k∑

j=0

c(n, k, j)Sj(x) (k, n ≥ 0).

Series: subseries

MM 1025. by W. C. Waterhouse
Let (an) be a sequence of positive real numbers with∑

an =∞ and
∑

a2
n <∞. For a given C > 0, the sequence

(mi) of positive integers is such that
∑

an > C, the sum
being over those n such that mi < n ≤ mi+1.

(a) Prove that there is a sequence (pi) with mi < pi ≤
mi+1, such that

∑
api <∞.

(b) Show by an example that
∑

api need not converge
for all such (pi).

Series: sum of squares

OSSMB G76.2-6.
Sum the series

12 − 22 + 32 − 42 + 52 − 62 +− · · ·+ (−1)n−1n2

without recourse to the formula for the sum of the squares
of the natural numbers.

Series: unit fractions

CRUX 49. by H. G. Dworschak
Evaluate

1− 1

5
+

1

7
− 1

11
+ · · ·+ 1

6n− 5
− 1

6n− 1
+ · · · .

AMM 6194. by Erwin Just
and Norman Schaumberger

Let N be an arbitrary integer larger than 6, and let
{ai}, i = 1, 2, . . . ,m, denote the set of positive composite
integers less than N that are not powers of primes. Prove
that

m∑

i=1

1

ai

is not an integer.

NAvW 516. by P. Erdős
Let a1, a2, . . . be an increasing sequence of positive

integers such that
∑

a−1
i is convergent. Prove that for every

i there are infinitely many sets of ai consecutive integers
that are not divisible by any aj with j > i.

OSSMB 76-17.
In the evaluation of

1

9
+

1

99
+

1

999
+ · · ·

as a decimal, what is the digit in the 37th decimal place?

PUTNAM 1978/B.2.
Express

∞∑

n=1

∞∑

m=1

1

m2n+mn2 + 2mn

as a rational number.

SSM 3774. by Fred A. Miller
Find the sum of the following infinite series:

1

1 · 2 · 3 +
1

3 · 4 · 5 +
1

5 · 6 · 7 + · · · .
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JRM 762. by R. Robinson Rowe
Evaluate

[ ∞∑

n=0

1

(2n)!

]2 −
[ ∞∑

n=0

1

(2n+ 1)!

]2
.

IMO 1979/1.
Let p and q be natural numbers such that

p

q
= 1− 1

2
+

1

3
− 1

4
+ · · · − 1

1318
+

1

1319
.

Prove that p is divisible by 1979.

SIAM 76-5. by D. J. Newman
To determine positive integers a1, a2, . . . , an such that

Sn ≡
n∑

i=1

1

ai
< 1

and Sn is a maximum, it is conjectured that at each choice
one picks the smallest integer still satisfying the inequality
constraint. Is this conjecture true?

AMM E2719. by John S. Lew
For a fixed positive integer m, let Sm be the sum of

the series

±1± 1

3
± 1

5
± 1

7
± 1

9
± · · · ,

where the first m terms have sign +, the next m terms have
sign −, then the succeeding m terms have sign +, etc.

Evaluate S2 and S3.

AMM E2743. by Peter Ungar
Evaluate

lim
m,n→∞

m∑

i=1

n∑

j=1

(−1)i+j

i+ j
.

AMM 6105. by Harry D. Ruderman
Prove that the following series converges:

∞∑

n=1

(−1)bn
√

2c

n
.

Estimate its value.

JRM 652. by E. J. Barbeau
Call the product of two distinct primes a semiprime.

Unity can be represented as the sum of distinct unit frac-
tions with semiprime denominators. Find the shortest such
representation.

MM 1015.* by Allan W. Johnson, Jr.
Show that for n ≥ 5 there are 2n+ 1 distinct, positive,

odd, square-free integers whose reciprocals add to one.

SSM 3643. by John Hudson Tiner
Does the infinite series

1

1
+

1

1 + 3
+

1

1 + 3 + 5
+

1

1 + 3 + 5 + 7
+ · · ·

converge or diverge?

Sets: arithmetic means

PARAB 354.
Prove that it is possible to select 2k different numbers

a1, . . . , a2k from the set {0, 1, 2, . . . , 3k − 1} in such a way
that none of the a’s is the arithmetic mean of any other two.

Sets: arithmetic progressions

AMM E2730. by R. L. Graham
Describe all finite sets A of real numbers with the

property that any two elements of A belong to some three-
term arithmetic progression in A.

PME 389.* by P. Erdős
Find a sequence of positive integers 1 ≤ a1 < a2 < · · ·

that omits infinitely many integers from every arithmetic
progression (in fact it has density 0), but which contains all
but a finite number of terms of every geometric progression.
Prove also that there is a set S of real numbers that omits
infinitely many terms of any arithmetic progression, but
contains every geometric progression (disregarding a finite
number of terms).

Sets: closed under product

NAvW 392. by F. Beukers
Let S be a subset of N. A number p ∈ S, p 6= 1, is called

an S-prime when p cannot be written as the product of two
smaller elements of S. Let A be the set of multiplicatively
closed subsets S of N such that every element of S has a
unique factorization in S-primes (up to the order of the
factors).

Prove or disprove:

∀S1∈A∀S2∈A [S1 ∩ S2 ∈ A] .

Sets: density

TYCMJ 111. by Michael W. Ecker
Define the density of a subset A of the natural numbers

by d(A) = limn→∞An/n (provided this limit exists), where
An is the number of elements of A which do not exceed n.
What is the range of d?

AMM 6217.* by M. J. Pelling
Let B be a subset of the nonnegative integers having

positive density. Is it always true that there is an infinite
subset X of B and an infinite sequence k1 < k2 < · · · of
integers such that all the translates X + ki ⊆ B?

Sets: divisibility

IMO 1977/3.
PARAB 366.

Let n be a given integer > 2, and let Vn be the set
of integers 1 + kn, where k = 1, 2, . . . . A number m ∈
Vn is called indecomposable in Vn if there do not exist
numbers p, q ∈ Vn such that pq = m. Prove that there
exists a number r ∈ Vn that can be expressed as the product
of elements indecomposable in Vn in more than one way.
(Products which differ only in the order of their factors will
be considered the same.)
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MSJ 462. by P. Erdős
ISMJ 13.26.

Prove that in any selection of 51 of the first 100 positive
integers, there exists at least one pair of integers for which
one member of the pair divides the other. Prove that 51
cannot be replaced by any smaller number.

OSSMB 79-12.
(a) Prove that, given any 52 integers, there exist two

whose sum or whose difference is divisible by 100.
(b) Prove that, given a set of 100 integers with none

divisible by 100, there exists a subset, the sum of whose
elements is divisible by 100.

MSJ 492.
Let S and T be subsets of {1, 2, 3, . . . , n} such that the

number of elements of S plus the number of elements of T is
greater than n. Prove that some member of S is relatively
prime to some member of T .

CRUX 26. by Viktors Linis
Given n integers. Show that one can select a subset

of these numbers and insert plus or minus signs so that the
number obtained is divisible by n.

MSJ 495.
Let N be a nonempty set consisting of n positive in-

tegers. Prove that there exists a nonempty subset M of N
such that the sum of the elements of M is divisible by n.

MSJ 500.
Let N be a set containing n positive integers. What

is the smallest value of n which will ensure that one can
always pick four elements of N whose sum is divisible by 4?

NYSMTJ OBG2. by Erwin Just

Let k be a positive integer, n = 2k, and let S be a set
consisting of 2n − 1 integers. Prove that there is a subset
T of S, such that T has exactly n elements and the sum of
the elements of T is divisible by n.

MM Q620. by Sidney Penner
Let S be the set of the first n positive integers, let r be

an integer and let T = S ∪ {r}. Prove that there exists an
integer in T such that its removal results in a set in which
the sum of its elements is divisible by n.

Sets: family of sets

MM 1037. by James Propp
Let n ≥ 3 and let A1, A2, . . . , An be nonempty sets of

positive integers with the property that a ∈ Ai and b ∈ Ai+1
implies a + b ∈ Ai+2, where we identify An+1 as A1 and
An+2 as A2.

(a) If 1 ∈ A1 and 2 ∈ A2, find an integer that belongs
to at least two of the sets.

(b) Is it possible for A1, A2, . . . , An to be pairwise dis-
joint?

Sets: irrational numbers

AMM 6161. by Clark Kimberling
For 0 < r < 1, let S(r) be the set of integers n such that

one and only one integer lies in the open interval (nr, nr+r).
Prove or disprove that r is irrational if and only if, for every
positive integer M , the set S(r) contains a complete residue
system modulo M .

Sets: maxima and minima

AMM E2638. by Robert McNaughton
Call a set of positive integers a clique if no two of its

elements are relatively prime. Call a member of a clique
a leader if it is not a proper multiple of another member
of the clique. Construct a maximal clique with infinitely
many leaders. (The set of all cliques is partially ordered by
inclusion.)

Sets: n-tuples

AMM E2546. by Richard Stanley
Let n be a positive integer, and let S be a set of n-

tuples of nonnegative integers with the property that if
(a1, . . . , an) ∈ S and if 0 ≤ bi ≤ ai for i = 1, 2, . . . , n,
then (b1, . . . , bn) ∈ S. Let H(m) be the number of elements
of S whose coordinates sum to m. Prove that H(m) is a
polynomial in m for m sufficiently large.

Sets: partitions

JRM 651. by David L. Silverman
(a) What is the largest value of n such that the integers

1, 2, . . . , n can be partitioned into disjoint sets in such a way
that if a, b, and c are in arithmetic progression, then a, b,
and c are neither in the same set nor all in different sets?

(b) What is the largest value of n if the condition that
a, b, and c be in arithmetic progression is replaced by the
condition that a+ b = c?

SPECT 8.4.
Is it possible to partition the integers 1, 2, . . . , 13 into

two subsets such that neither subset possesses three integers
in arithmetic progression?

PARAB 294.
Given a positive integer n, find (in terms of n) the

largest N such that the set of integers

S = {n, n+ 1, n+ 2, . . . , N}

can be split up into two subsets A and B such that A∪B =
S; and the difference x − y between any two elements x, y
of one of the sets A, B is in the other set.

NYSMTJ 41. by Norman Schaumberger
and Erwin Just

A set S consists of 14 integers, not necessarily distinct.
Whenever any one of the integers is deleted from the set, the
remaining 13 integers can be partitioned into three subsets
in such a manner that the subsets have equal sums.

(a) Prove that each member of S is divisible by 3.
(b) Is it possible that some member of S is not equal

to zero?

CRUX 226. by David L. Silverman
The positive integers are divided into two disjoint sets

A and B. A positive integer is an A-number if and only if
it is the sum of two different A-numbers or of two different
B-numbers. Find A.
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CRUX 342.* by James Gary Propp
For fixed n ≥ 2, the set of all positive integers is parti-

tioned into the (disjoint) subsets S1, S2, . . . , Sn as follows:
for each positive integer m, we have m ∈ Sk if and only if
k is the largest integer such that m can be written as the
sum of k distinct elements from one of the n subsets.

Prove that m ∈ Sn for all sufficiently large m.

CRUX 473.* by A. Liu
The set of all positive integers is partitioned into the

(disjoint) subsets T1, T2, T3, . . . as follows: for each positive
integer m, we have m ∈ Tk if and only if k is the largest
integer such that m can be written as the sum of k distinct
elements from one of the subsets. Prove that each Tk is
finite.

JRM 567. by David L. Silverman
(a) Prove that the positive integers can be divided into

two disjoint sets such that the sum of two members of the
same set is never prime.

(b) Prove that the above division is unique.
(c) Prove that the positive integers have a unique divi-

sion into two disjoint sets with the property that a positive
integer is a Fibonacci number if and only if it is not the sum
of two distinct members of the same set.

Sets: polynomials

AMM E2804.* by Harry D. Ruderman
Let k be a positive integer and Sk be the set of integers

j expressible in the form

j = k|ab|+ a+ b,

where a and b run through the nonzero integers. Find the
cardinality of the set of positive integers not in Sk.

CRUX 294. by Harry D. Ruderman
Prove that there are infinitely many integers that can-

not be expressed in the form 3ab+ a+ b, where a and b are
nonzero integers.

CRUX 403. by Kenneth S. Williams
Let N0 = {0, 1, 2, . . .} and set

A1 = {3m2 + 6mn+ 3n2 + 2m+ 3n+ 1 : m,n ∈ N0},
A2 = {3m2 + 6mn+ 3n2 + 4m+ 5n+ 2 : m,n ∈ N0},
A3 = {3m2 + 6mn+ 3n2 + 5m+ 6n+ 3 : m,n ∈ N0},
A4 = {3m2 + 6mn+ 3n2 + 6m+ 7n+ 4 : m,n ∈ N0},
A5 = {3m2 + 6mn+ 3n2 + 7m+ 8n+ 5 : m,n ∈ N0},
A6 = {3m2 + 6mn+ 3n2 + 9m+ 10n+ 8 : m,n ∈ N0},
so that

A1 = {1, 6, 7, 17, 18, 19, 34, 35, 36, 37, 57, 58, 59, 60, 61, . . .},
A2 = {2, 9, 10, 22, 23, 24, 41, 42, 43, 44, . . .},
A3 = {3, 11, 12, 25, 26, 27, 45, 46, 47, 48, . . .},
A4 = {4, 13, 14, 28, 29, 30, 49, 50, 51, 52, . . .},
A5 = {5, 15, 16, 31, 32, 33, 53, 54, 55, 56, . . .},
A6 = {8, 20, 21, 38, 39, 40, 62, 63, 64, 65, . . .}.
Prove or disprove that

(a) the elements of Ai are all distinct for 1 ≤ i ≤ 6;
(b) Ai ∩Aj = ∅ for 1 ≤ i < j ≤ 6;
(c) {0} ∪A1 ∪A2 ∪A3 ∪A4 ∪A5 ∪A6 = N0.

MSJ 487.
On a mathematics examination, each participant’s

score, S, will be calculated by the formula S = 4C−W+30,
where C is the number of correct and W is the number of
wrong answers marked on the 30 multiple choice problems.
(Answers left blank are not penalized). Find the six scores
between 0 and 150 that are impossible to attain on the
exam.

Sets: prime divisors

AMM E2644. by Solomon W. Golomb
and Lloyd R. Welch

Let An = run + svn, n ≥ 0, where r, s, u, and v are
integers, psuv 6= 0, u 6= ±v, and let Pn be the set of prime
divisors of An. Show that the union of all the Pn is infinite.

SPECT 11.1. by H. J. Godwin
The prime factorizations of r + 1 positive integers

(r ≥ 1) together involve only r primes. Prove that there is
a subset of these integers whose product is a perfect square.

Sets: subsets

ISMJ 12.24.
What is the largest subset of the 1,000 numbers be-

tween 1 and 1,000 that has no relatively prime pair?

OSSMB 78-4.
A sequence {bn} is defined by requiring that bn is the

number of subsets of {1, 2, . . . , n} having the property that
any two different elements of the subset differ by more than
1. Show that for all n, bn+2 = bn+1+bn and then determine
b10.

Sets: sum of elements

PUTNAM 1978/A.1.
OSSMB 79-3.

Let A be any set of 20 distinct integers chosen from
the arithmetic progression 1, 4, 7, . . . , 100. Prove that there
must be two distinct integers in A whose sum is 104.

SSM 3602. by William J. O’Donnell
(a) Find two sets of three consecutive prime numbers

such that the sum of the elements of the sets are the squares
of two consecutive prime numbers.

(b) Can you find three sets of three consecutive prime
numbers such that the sums of the elements of the sets are
the squares of three consecutive prime numbers?

AMM E2526. by Paul Smith
Call a set {a1, . . . , an} of positive integers sum-distinct

if the 2n possible sums
∑

εiai (with εi = 0 or 1) are all

distinct. Clearly, for any n, the set {1, 2, 4, . . . , 2n−1} is an
n-element sum-distinct set. Do n-element sum-distinct sets
exist with ai < 2n−1 for every i?

PARAB 403.
CRUX 3. by H. G. Dworschak
OSSMB 78-14.

Given any set of ten distinct, positive integers each less
than 100, show that there are two subsets of this set having
no elements in common such that the sums of the numbers
in the subsets are equal.
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JRM 383. by Victor G. Feser
What is the largest possible number of distinct integers

(not necessarily positive) such that the sum of every pair
is prime (also not necessarily positive)? How many such
maximal sets are there?

CRUX 85. by Viktors Linis
Find n natural numbers such that the sum of any

number of them is never a square.

MM 934. by Erwin Just
From the first kn positive integers, choose a subset,

K, consisting of (k − 1)n + 1 distinct integers. Prove that
at least one member of K is the sum of k members (not
necessarily distinct) of K.

PME 356. by Erwin Just
From the set of integers contained in [1, 2n], a subset

K consisting of n+ 2 integers is chosen. Prove that at least
one element of K is the sum of two other distinct elements
of K.

TYCMJ 91. by Sidney Penner
Let A be an arbitrary subset of N, and define A =

A ∪ {ai + aj |ai, aj ∈ A}. Prove or disprove that for any

B ⊂ N, there exists a nonempty A ⊂ N such that A ⊂ B or
A ⊂ N\B.

Sets: triples

NAvW 428. by P. Erdős

Let
{
Ak
∣∣ k ∈ N

}
be a system of triples on the integers

such that every pair occurs in at most one triple, i.e., |Ak| =
3 and

∣∣Ai ∩Aj
∣∣ ≤ 1 if i 6= j. Denote by f(n) the number

of triples contained in {1, 2, . . . , n}. It is known that there
is such a system for which

lim sup
n→∞

n−2f(n) =
1

6
.

Prove that there is a constant c such that for all sys-
tems

lim inf
n→∞

n−2f(n) ≤ 1

6
− c.

Sets: unit fractions

AMM E2689. by L.-S. Hahn
Is there a nonempty finite set S of positive integers

that satisfies the following properties?
(i) n ∈ S ⇒ n− 1 ∈ S or n+ 1 ∈ S;
(ii)

∑
n∈S 1/n is an integer.

Square roots

PME 452. by Tom M. Apostol
Given integers m > n > 0, let

a =
√
m+

√
n, b =

√
m−√n.

If m − n is twice an odd integer, prove that both a and b
are irrational.

MSJ 473.
Prove that there are no positive integers x and y for

which
√

1978 =
√
x+
√
y.

PME 427. by Jackie E. Fritts

If a, b, c, and d are integers, with u =
√
a2 + b2,

v =
√

(a− c)2 + (b− d)2, and w =
√
c2 + d2, then prove

that
√

(u+ v + w)(u+ v − w)(u− v + w)(−u+ v + w)

is an even integer.

Squares

OSSMB G78.1-1.
(a) Find the sequence of square numbers which when

divided by 7 leave a remainder 4.
(b) Find a natural number that is greater than 3 times

the integral part of its square root by 1. Show that only
two such numbers exist.

OSSMB 77-3.
Find all perfect squares that differ by 1 from a power

of 2.

OSSMB 77-5.
Prove that n = 13 is the greatest integer n that makes

48 + 411 + 4n a perfect square.

FUNCT 1.1.2.
Find a rational number for which the square, when

increased or decreased by 5, remains a square.

CRUX 111. by H. G. Dworschak
Prove that, for all distinct rational values of a, b, and

c, the expression

1

(b− c)2
+

1

(c− a)2
+

1

(a− b)2

is a perfect square.

Sum and product

ISMJ 12.27.
The integers a and b are relatively prime. Prove that

a+ b and ab are also relatively prime. Is it true that if a+ b
and ab are relatively prime, then a and b also are?

CRUX 172. by Steven R. Conrad
Find all sets of five positive integers whose sum equals

their product.

NYSMTJ 39. by Alan Wayne
Show that, for every integer n > 1, there exist n

positive integers whose sum equals their product.

Sum of consecutive odd integers

SSM 3699. by Herta T. Freitag
Let n be a given positive integer. If S1 denotes the

sum of the odd, positive integers smaller than n, and S2
represents the analogous sum comprised of even, positive
integers, determine |S1 − S2|.
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Sum of divisors: almost perfect numbers

AMM E2571.* by Sidney Kravitz
A number n is perfect-plus-one (pp1) if σ(n) = 2n− 1.

It is known that if n = 2k, then n is pp1, but it is not known
if there are any other pp1 numbers.

Discuss the situation for pp2 numbers, i.e., numbers n
for which σ(n) = 2n− 2.

PUTNAM 1976/B.6.
Let σ(N) denote the sum of all the positive integral

divisors of N , including 1 and N . A positive integer N is
called quasiperfect if σ(N) = 2N + 1. Prove that every
quasiperfect number is the square of an odd integer.

Sum of divisors: density

AMM 6020.* by C. W. Anderson
and Dean Hickerson

A pair of distinct numbers (k,m) is called a friendly
pair (k is a friend of m) if Σ(k) = Σ(m), where Σ(n) =
σ(n)/n, where σ(n) is the sum of the divisors of n. Show
that almost all numbers have friends, i.e., the natural
(asymptotic) density of numbers with friends is unity. Show
that the density of solitary numbers (numbers without
friends) is zero.

AMM 6065. by C. W. Anderson
Where φ:N→ N is Euler’s totient function, it is known

that the natural density of φ(N) ⊂ N is zero — in symbols,
d[φ(N)] = 0. Where σ:N → N is the sum of the divisors
function, demonstrate that d[σ(N)] = 0.

Sum of divisors: divisibility

MATYC 73. by James M. Thelen
MATYC 77. by James Thelen

Let n be the product of k distinct odd primes. Prove

that the sum of the divisors of n is divisible by 2k.

Sum of divisors: evaluations

MM Q614. by Rod Cooper
Find the sum of all distinct positive divisors of the

number 104,060,401.

Sum of divisors: iterated functions

AMM 6064. by H. W. Lenstra, Jr.
For a nonnegative integer m, let s(m) denote the sum

of those divisors d of m for which 1 ≤ d < m. Prove that
for every integer t ≥ 1 there exists an m such that

m < s(m) < s2(m) < · · · < st(m).

Here s2(m) = s(s(m)), and so on.

Sum of divisors: number of divisors

AMM E2543. by C. W. Anderson
Show that there exists a constant k > 0 such that if

x = σ(n)/n is sufficiently large, then

τ(n) > 2exp kx.

Show also that there exist n for which τ(n) is arbitrarily
large, but for which σ(n)/n is arbitrarily close to unity.

CRUX 465. by Peter A. Lindstrom
For positive integer n, let σ(n) = the sum of the di-

visors of n and τ(n) = the number of divisors of n. Show
that if σ(n) is a prime then τ(n) is a prime.

AMM 6048.* by H. M. Edgar
A positive integer n is said to be harmonic if the ratio

nτ(n)

σ(n)

is again integral.
(a) Are there any harmonic numbers other than the

number 1 that are perfect squares?
(b) Do there exist infinitely many harmonic numbers?

Sum of divisors: perfect numbers

PME 349. by R. Sivaramakrishnan
If 2n (n ≥ 1) is the highest power of 2 dividing an even

perfect number m, prove that σ(m2) + 1 ≡ 0 (mod 2n+1).

AMM 6036. by Carl Pomerance
If n is a natural number, let σ(n) denote the sum of

the divisors of n, S(n) the set of prime divisors of n, and
ω(n) the cardinality of S(n). Clearly, if n is an even perfect
number, then S(n) = S (σ(n)) and ω(n) = 2. Prove the
converse.

Sum of divisors: prime factorizations

CRUX 187. by André Bourbeau
If m = 2n · 3 · p, where n is a positive integer and p is

an odd prime, find all values of m for which σ(m) = 3m.

Sum of divisors: products

FQ B-303. by David Singmaster
What relation holds between σ(mn) and σ(m)σ(n)?

FQ B-326. by David Zeitlin
Prove that

σ(mn) > 2
√
σ(m)σ(n) for m > 1 and n > 1.

Sum of divisors: sets

MM 982. by Roy DeMeo Jr.
AMM 6107. by Roy E. DeMeo Jr.

Let σ(n) be the sum of all the positive divisors of the
positive integer n, including 1 and n. Let A denote the set of
all rational numbers of the form σ(n+ 1)/σ(n). Determine
the closure of A in the set of real numbers.

Sum of powers

PARAB 373.
For which values of n is 1n + 2n + 3n + 4n divisible by

5?

PENT 295. by Kenneth M. Wilke

Let Sk = 1k + 2k + · · · + nk where n is an arbitrary
positive integer and k is an odd positive integer. Under
what conditions is Sk divisible by

S1 =
n(n+ 1)

2

for all positive integers n?
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NAvW 485. by L. Kuipers
Let p and 4p+1 be odd primes. If, for nonzero pairwise

prime integers a, b, and c, we have ap + bp + cp = 0, then
precisely one of the integers a, b, c is divisible by 4p + 1.
Prove this, and also that precisely one of the integers a, b,
c is divisible by p.

Triangles: 60 degree angle

MM Q654. by George Berzsenyi
Find all acute triangles with integral sides and a 60◦

angle in which the sides adjacent to the 60◦ angle differ by
unity.

Triangles: 120 degree angle

AMM E2566. by Edvard Kramer
A triplet (a, b, c) of natural numbers is an obtuse

Pythagorean triplet if a, b, and c are the sides of a tri-
angle ABC with 6 C = 120◦. Such a triplet is primitive if
gcd(a, b, c) = 1.

(a) Show that each positive integer except 1, 2, 4,
and 8 can appear as the smallest member of an obtuse
Pythagorean triplet.

(b) What positive integers can appear in primitive ob-
tuse Pythagorean triplets?

Triangles: area

CRUX 290. by R. Robinson Rowe
Find a 9-digit integer A representing the area of a

triangle of which the three sides are consecutive integers.

JRM 495. by Michael R. W. Buckley
Define an artful number as an integer that can be the

area of a rational triangle. Thus 1, 2, and 3 are artful, being
the areas, respectively, of a (3/2, 5/3, 17/6), a (5/6, 29/6, 5),
and a (5/2, 5/2, 3) triangle. What, if any, is the smallest
artless number?

Triangles: area and perimeter

SSM 3669. by Alan Wayne
Find all of the acute triangles whose sides are positive

integers and whose area is four times the perimeter.

Triangles: base and altitude

AMM E2687. by Ronald Evans
Does there exist a triangle with rational sides whose

base is equal to its altitude?

Triangles: consecutive integers

MM 1023. by Steven R. Conrad
Call a triangle super-Heronian if it has integral sides

and integral area, and the sides are consecutive integers.
Are there infinitely many distinct super-Heronian triangles?

Triangles: counting problems

SSM 3649. by Alan Wayne
Find formulas for:
(a) the number of triangles with integer sides and

perimeter 12k − 4, and
(b) the number of such triangles which are isosceles.

SSM 3700. by Douglas E. Scott

Find an algorithm or formula that will give the total
number of isosceles triangles (an equilateral triangle counts
as isosceles) having integer sides and a given perimeter P .

PARAB 325.

The sides of a triangle have lengths a, b, c, where a,
b, c are integers and a ≤ b ≤ c. If c is given, show that
the number of different triangles is (c+ 1)2/4 or c(c+ 2)/4
according to whether c is odd or even, respectively.

MM 1077. by Henry Klostergaard

Show that the number of integral-sided right triangles
whose ratio of area to semiperimeter is pm, where p is a
prime and m is a positive integer, is m + 1 if p = 2 and
2m+ 1 if p 6= 2.

Triangles: geometric progressions

ISMJ 11.7.

For what values of the common ratio can three succes-
sive terms of a geometric progression of positive numbers
be the lengths of the sides of a triangle?

Triangles: isosceles triangles

TYCMJ 131. by Alan Wayne

The lengths of the sides of an isosceles triangle are
integers, and its area is the product of the perimeter and a
prime. What are the possible values of the prime?

Triangles: nonisosceles triangles

AMM E2668. by Ron Evans
and I. Martin Isaacs

Find all nonisosceles triangles with two or more ratio-
nal sides and with all angles rational (measured in degrees).

Triangles: obtuse triangles

SSM 3727. by Douglas E. Scott

Find two or more obtuse triangles such that

(a) their sides have integral length;

(b) their perimeters are the same;

(c) their areas are the same; and

(d) the perimeter in each instance is one-fourth the
area.

Triangles: perimeter

SSM 3703. by Douglas E. Scott

Find an algorithm or a formula that will give the sides
of the

(a) most acute

(b) most obtuse, and

(c) equilateral or most nearly equilateral isosceles tri-
angles having integer sides and a given perimeter.
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Triangles: primes

JRM 630. by Les Marvin
“Pay attention,” said the Wizard to his three appren-

tices. “Each of you has noted that numbers have been inked
on the foreheads of the other two. I have penned on each
of your foreheads a prime number, and the three numbers
form the sides of a triangle with prime perimeter. The first
apprentice to deduce his number will succeed me as Wizard
when I retire. In an hour I will return and ask if anyone
can tell me his number. If no one can, you may use that
information an hour later when I return a second time. I’ll
rematerialize every hour until my successor has proved him-
self.”

But the Wizard was mistaken. After several returns
his apprentices were still producing only frustrated, baffled
looks. Impatiently he asked his Familiar how many addi-
tional returns would be needed.

“You can keep returning forever,” purred the Familiar,
“and you will still not know your successor. How did you
happen to choose those primes?”

“All were chosen randomly among the primes less than
100,000. Why do you ask?” said the Wizard.

“Very curious. Since one of the numbers is 5, the other
two happen to be the smallest that make it impossible for
any of the apprentices to deduce his number.”

What were the other two numbers?

Triangles: right triangles

JRM 494. by Michael R. W. Buckley
An APT number is an integer that can be the area of

a Pythagorean rational triangle, i.e., a right triangle with
rational sides. What is the smallest APT number?

Triangles: scalene triangles

SSM 3722. by Richard L. Francis
Can a scalene triangle have side measures, each of

which is an even perfect number?

Triangles: similar triangles

JRM 595. by Archimedes O’Toole
Call two triangles “almost congruent” if two sides of

one triangle are equal, respectively, to two sides of the other,
and the triangles are similar, but not congruent. If a pair
of almost congruent triangles has sides all of which are
integers, what is the smallest possible value for the least
of these integers?

Triangular numbers: counting problems

FQ B-385. by Herta T. Freitag
Let Tn = n(n + 1)/2. For how many positive integers

n does one have both 106 < Tn < 2 · 106 and Tn ≡ 8
(mod 10)?

Triangular numbers: forms of numbers

ISMJ 10.11.
Show that any triangular number can be expressed as

the difference between two triangular numbers.

PUTNAM 1975/A.1.
Supposing that an integer n is the sum of two triangu-

lar numbers,

n =
a2 + a

2
+
b2 + b

2
,

write 4n + 1 as the sum of two squares, 4n + 1 = x2 + y2,
and show how x and y can be expressed in terms of a and
b. Show that, conversely, if 4n+ 1 = x2 + y2, then n is the
sum of two triangular numbers. [Of course, a, b, x, y are
understood to be integers.]

Triangular numbers: identities

MATYC 82. by John M. Samoylo
If x is any positive integer and y is the sum of the

integers from 1 to x, show that x3 = y2 − (y − x)2.

FQ B-393. by V. E. Hoggatt, Jr.

Let Tn =
(
n+1

2

)
, P0 = 1, Pn = T1T2 · · ·Tn for n > 0,

and
[
n
k

]
= Pn/PkPn−k for integers k and n with 0 ≤ k ≤ n.

Show that

[
n

k

]
=

1

n− k + 1

(
n

k

)(
n+ 1

k + 1

)
.

Triangular numbers: palindromes

SSM 3572. by Robert A. Carman
Show that the triangular number T111... (2n ones) is

always a palindrome.

Triangular numbers: polynomials

SSM 3640. by Herta T. Freitag
What, if anything, do the following have in common:
(a) The number of terms in (a+ b+ c)m, m a nonneg-

ative integer.
(b) The number of differently shaped rectangles (or

squares) of integral sides that may be drawn on an n by
n checkerboard.

(c) Triangular numbers.
(d) The sum of the cubes of the first n consecutive

positive integers.

Triangular numbers: series

FQ B-371. by Herta T. Freitag
Let

Sn =

Fn∑

k=1

k∑

j=1

Tj ,

where Tj is the triangular number j(j + 1)/2. Does each of
n ≡ 5 (mod 15) and n ≡ 10 (mod 15) imply that Sn ≡ 0
(mod 10)?

FQ B-372. by Herta T. Freitag
Let

Sn =

Fn∑

k=1

k∑

j=1

Tj .

Does Sn ≡ 0 (mod 10) imply that n is congruent to either
5 or 10 modulo 15?
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SSM 3729. by Herta T. Freitag

When f(i) = 0 and k = 1,
∑n
i=1(−1)f(i)ik =∑n

i=1 i = n(n + 1)/2 which is the nth triangular number.

Determine f(i) so that
∑n
i=1(−1)f(i)i2 will be a triangular

number.

SSM 3647. by Gregory Wulczyn
Prove that

∑n
r=1(2r − 1)3 is a triangular number for

each positive integer n.

FQ B-388. by Herta T. Freitag
Let Tn = n(n+ 1)/2. Show that

T1 + T2 + T3 + · · ·+ T2n−1

= 12 + 32 + 52 + · · ·+ (2n− 1)2

and express these equal sums as a binomial coefficient.

Triangular numbers: squares

MM Q633. by J. D. Baum
The sum of the first eight positive integers is 36, a

perfect square. Are there any other values of k for which
the sum of the first k positive integers is a perfect square?
Are there infinitely many k?

Triangular numbers: sum of squares

FQ B-400. by Herta T. Freitag
Let Tn = n(n + 1)/2. For which positive integers n is

T 2
1 + T 2

2 + · · ·+ T 2
n an integral multiple of Tn?

Twin primes

JRM 797. by Sidney Kravitz
Three consecutive positive integers are of the form

p, 2an, q, with p, n, and q prime.
(a) What is the value of n?
(b) For what values of a less than 48 does this occur?

PME 340. by Charles W. Trigg
The arithmetic mean of the twin primes 17 and 19 is

the heptagonal number 18. Heptagonal numbers have the
form n(5n − 3)/2. Are there any other twin primes with a
heptagonal mean?

MATYC 96. by Charles W. Trigg
The arithmetic mean of the twin primes 3 and 5 is the

tetrahedral number 4. Tetrahedral numbers have the form
n(n + 1)(n + 2)/6. Are there any other twin primes that
have a tetrahedral mean?

SSM 3735. by Richard L. Francis
A pair of twin primes is two prime numbers which differ

by two, and an initial prime is a prime having 1 as its
leftmost digit. Show that if one number of a set of twin
primes is an initial prime, so is the other.

MM Q648. by J. D. Baum
Show that if p and q are twin primes (q = p + 2) and

if pq − 2 is also prime, then p is uniquely determined.

MATYC 78. by John M. Samoylo
For all pairs of twin primes other than 3 and 5, show

that the sum of the number between any pair of twin primes
and the primes themselves is divisible by 18.
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Arrays

CRUX 387. by Harry D. Ruderman
A group of N people lock arms to dance in a circle the

traditional Israeli Hora. After a break they lock arms to
dance a second round. Let P (N) be the probability that
for the second round no dancer locks arms with a dancer
previously locked to in the first round. Find limN→∞ P (N).

Bingo

MATYC 70. by Gene Zirkel
During an evening, 23 games of bingo were played.

Each game ended when exactly nine of the 75 numbers had
been called. Of the 207 numbers called that evening, what
is the probability that only 74 different numbers had been
called; i.e., that exactly one number was never called.

PME 419. by Michael W. Ecker
Seventy-five balls are numbered 1 to 75, and are par-

titioned into sets of 15 elements each as follows:

B = {1, . . . , 15}, I = {16, . . . , 30}, N = {31, . . . , 45},
G = {46, . . . , 60}, and O = {61, . . . , 75},

as in Bingo.
Balls are chosen at random, one at a time, until one of

the following occurs: At least one from each of the sets B,
I, G, O has been chosen, or four of the chosen numbers are
from the set N , or five of the numbers are from one of the
sets B, I, G, O.

Find the probability that, of these possible results, four
N ’s are chosen first.

Biology

JRM 384. by Michael R. Buckley
The Anableps is a South American flatfish with a cou-

ple of curious characteristics. Its two eyes are really four —
divided horizontally so that it has binocular vision above
and below water level simultaneously. But its advantage in
reconnaissance capability is offset by the frustration it ex-
periences in locating a mate, for its two sexes are also really
four. A left-handed male can mate only with a right-handed
female and a right-handed male only with a left-handed fe-
male. But that is the Anableps’ problem. Here are yours:

(a) How many Anableps must one capture to ensure at
least a 50% chance of having a mateable pair?

(b) What is the probability of having at least m sepa-
rate and disjoint mateable pairs in n randomly chosen An-
ableps?

(c) What is the probability of having at least m mate-
able pairs in n randomly chosen Anableps if polygamy and
polyandry are permitted?

AMM E2636. by D. E. Knuth
A pair of microbes was recently discovered that re-

produce in a very peculiar way. The male microbe (a
diphage) has two receptors on its surface, and the female (a
triphage) has three receptors. When a culture of diphages
and triphages is irradiated with a psi-particle, exactly one
of the receptors absorbs the particle (each receptor being
equally likely). If it was a diphage, it changes to a triphage;
but if it was a triphage, it splits into two diphages.

Give a simple formula for the average number of
diphages present if we begin with a single diphage and irra-
diate the culture n times with psi-particles.

Birthdays

CRUX 195. by John Karam
(a) How many persons would have to be in a room for

the odds to be better than 50% that three persons in the
room have the same birthday?

(b) In the Quebec-based lottery Loto-Perfecta, each
entrant picks six distinct numbers from 1 to 36. If, at
the draw, his six numbers come out in some order (dans
le désordre) he wins a sum of money; if his numbers come
out in order (dans l’ordre), he wins a larger sum of money.
How many entries would there have to be for the odds to
be better than 50% that two persons have picked the same
numbers (i) dans le désordre, (ii) dans l’ordre?

Cards

JRM C3. by David L. Silverman
The 52 playing cards are shuffled and dealt out in a

row. What is the probability that no three adjacent cards
are of the same suit?

AMM E2645. by Jerrold W. Grossman
A deck of N cards is shuffled according to the following

scheme. The cards, labeled 1 through N , are placed in
order in a row. Independent random integers r1, . . . , rN are
chosen successively, 1 ≤ ri ≤ N , and after the choice of
each ri the card then in position i is interchanged with the
card then in position ri. What is the probability that card
s ends up in position t after the shuffle is complete?

MM 1022. by Joe Dan Austin
We have n cards numbered 1 though n. Find the

expected number of drawings needed to put the cards in
order by each of the following strategies:

(a) The shuffled cards are drawn without replacement
until card 1 is drawn. The remaining n−1 cards are shuffled
and drawn without replacement until card 2 is drawn. This
process is continued until all the cards are drawn and put
in linear order.

(b) A card, say card k, is drawn from the shuffled
deck. The remaining cards are shuffled and drawn without
replacement until either card k − 1 or card k + 1 is drawn.
We identify card 1− 1 as card n and card n+ 1 as card 1.
This process is continued until all the cards are drawn and
put in circular order.

JRM 782. by R. S. Johnson
“Here is a deck of cards for you to examine,” I said to

Harry. After a moment he replied, “They’re not all here,
but all of the suits seem to be well represented. What comes
next?” I instructed him to spread the cards face-down on
the table. “Now,” I said, “I’ll bet two hundred dollars
against one of yours that you can’t pick at random, and
turn over, four hearts in succession.” When Harry’s first
two picks were hearts, I began to worry, especially since
the odds for the third card by itself were only four to one
against him. However, he flipped a spade and paid me a
dollar. Checking the discards, Harry observed, “I see that
you removed almost a quarter of the deck and that you were
on pretty safe ground.”

How many cards did I remove, how many were hearts,
and what were the total odds against Harry for the entire
exercise?
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USA 1975/5.
A deck of n playing cards, which contains three aces,

is shuffled at random (it is assumed that all possible card
distributions are equally likely). The cards are then turned
up one by one from the top until the second ace appears.
Prove that the expected (average) number of cards to be
turned up is (n+ 1)/2.

Cauchy distribution

AMM 6164. by Ignacy I. Kotlarski
Let the random variable Z1 = X follow the Cauchy

distribution with the probability density function

f(x) =
[
π(1 + x2)

]−1
,

x ∈ R. Show that for n = 2, 3, . . . , the random variables

Z2 =
2X

1−X2
,

Z3 =
3X −X3

1− 3X2
,

Z4 =
4X − 4X3

1− 6X2 +X4
,

...

Zn =

(
n
1

)
X −

(
n
3

)
X3 +

(
n
5

)
X5 − · · ·

1−
(
n
2

)
X2 +

(
n
4

)
X4 −

(
n
6

)
X6 + · · ·

, . . .

also follow the same Cauchy distribution.

Coin tossing

FUNCT 3.2.6.
I toss three coins. I argue that the probability of them

all falling heads is
(

1
2

)3
= 1

8 . The probability that they all

fall tails is also 1
8 so that the probability of them all falling

alike is 1
8 + 1

8 = 1
4 . My friend argues differently. If three

coins are thrown up, at least two must come down alike;
the probability that the third coin comes down the same as
the other two is 1

2 , as it has an equal chance of being like
or unlike. Who is correct?

SIAM 77-11. by Danny Newman
If one tosses a fair coin until a head first appears, then

the probability that this event occurs on an even numbered
toss is exactly 1/3. For this procedure, the expected number
of tosses equals 2. Can one design a procedure, using a
fair coin, to give a success probability of 1/3 but have the
expected number of tosses be less than 2?

TYCMJ 103. by Richard Johnsonbaugh
A fair coin is flipped n times. Let E be the event “a

head is obtained on the first flip”, and let Fk be the event
“exactly k heads are obtained”. For which pairs (n, k) are
E and Fk independent?

CRUX 265. by David Wheeler
A game involves tossing a coin n times. What is the

probability that two heads will turn up in succession some-
where in the sequence of throws?

PME 370. by David L. Silverman
Able, Baker, and Charlie take turns cyclically, in that

order, tossing a coin until three successive heads or three
successive tails appear. With what probabilities will the
game terminate on Able’s turn? On Baker’s?

Coloring problems

AMM 6229.* by David W. Erbach
Suppose that the plane is tiled with regular hexagons

in the customary manner. Color each black or white inde-
pendently with probability 1/2. What is the expected size
of a connected monochromatic component? What is the
probability that there is an infinite component?

Conditional probability

PARAB 306.
I post a letter to a friend. There is a probability of 4/5

that the letter will reach its destination. If he received the
letter, he would send me a reply. What is the probability
that he received the letter if I receive no reply?

FUNCT 1.3.7.
Of three prisoners, Mark, Luke, and John, two are to

be executed, but Mark does not know which two. He there-
fore asks the jailer, “Since either Luke or John are certainly
going to be executed, you will give me no information about
my own chances if you give me the name of one man, either
Luke or John, who is going to be executed.”

Accepting this argument, the jailer truthfully replied
“Luke will be executed.” Thereupon, Mark felt happier be-
cause, before the jailer replied, his own chances of execution
were 2/3; but afterwards there are only two people, himself
and John, who could be the one not to be executed, and so
his chance of execution is only 1/2.

Is Mark right to feel happier?

JRM 530. by Les Marvin
“Will the weather be good tomorrow, or should I post-

pone my next labor?” asked Hercules of the Oracle of
Apollo, after completing his twelfth labor. “Good,” said
the Oracle, who had established a 2/3 record of accuracy.
“Good,” agreed the Oracle of Hermes, who had a 5/8 ac-
curacy record. “Bad,” said the Oracle of Zeus with a 7/9
accuracy record. Confused, Hercules postponed his 13th la-
bor, as it turned out, forever. Did he act properly in light
of the predictions, which, you may assume, were entirely
independent of each other, as were the records of the three
oracles? What was the probability of good weather, given
that good weather and bad weather were equally likely at
that time of year?

Density functions

SIAM 79-6.* by L. B. Klebanov
Let f(x), g(x) be two probability densities on R1 with

g(x) > 0. Suppose that the condition

∫ ∞

−∞
(u− c)

n∏

j=1

f
(
xj − u

)
g(u) du = 0

holds for all x1, x2, . . . , xn such that
∑n
j=1 xj = 0 where

n ≥ 3 and c is some constant. Prove that

f(x) =
1√
2πσ

exp

{
− (x− a)2

2σ2

}
.
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Dice problems: independent trials

FUNCT 1.3.5.

A die is thrown until a 6 is obtained. What is the
probability that 5 was not thrown, meanwhile?

TYCMJ 136. by Michael W. Ecker

Assume that it is required to throw a pair of dice and
obtain a total of 5, or a 5 on at least one of the dice. What
is the expected number of throws required for this to occur?

Dice problems: loaded dice

MM 1011. by Richard A. Gibbs

CRUX 118. by Paul Khoury

FUNCT 3.3.1.

Is it possible to load a pair of dice so that the proba-
bility of rolling each possible sum is 1/11?

JRM 588. by Ray Lipman

It is known that no tampering with a pair of dice (as-
suming that it affects them independently) can make the
totals 2, 3, . . . , 12 occur with equal frequency. By assigning
arbitrary probabilities to the twelve faces (the two dice need
not be loaded in the same way), determine the loading that
makes the frequencies of the various totals “most equal”:
For purposes of this problem an assignment A1 of probabil-
ities to the twelve faces is considered to make the frequencies
of the totals “more equal” than another assignment A2 if,
among the eleven relative frequencies of the various totals,
the largest discrepancy from 1/11 under A1 is less than that
under A2.

Dice problems: matching problems

PME 407. by Ben Gold,
John M. Howell, and Vance Stine

Two sets of n dice are rolled (n = 1, 2, 3, 4, 5, 6). What
is the probability of k matches (k = 0, 1, . . . , n)?

Dice problems: n-sided dice

JRM 506. by Osias Bain

Let p(k, n) be the probability that in k tosses of a fair
n-sided die, each face that has come up at all has come up
at least twice.

(a) Determine P1(n), the least K such that p(k, n) is
strictly increasing in k for k ≥ K.

(b) Determine P2(n), the least K such that p(k, n) ≥
1/2 for all k ≥ K.

USA 1979/3.

Given three identical n-faced dice whose correspond-
ing faces are identically numbered with arbitrary integers.
Prove that if they are tossed at random, the probability
that the sum of the bottom three face numbers is divisible
by three is greater than or equal to 1/4.

Dice problems: number of occurrences

CRUX PS4-1.

What is the probability of an odd number of sixes
turning up in a random toss of n fair dice?

Dice problems: octahedral dice

SSM 3598. by Charles W. Trigg

Two octahedrons are converted into octahedral dice by
distributing the digits from 1 to 8 on the faces of each one
and in the same order. As with cubical dice, when they
are rolled, the ‘point’ made is the sum of the digits on the
two uppermost faces when the dice come to rest on a flat
horizontal surface.

Construct a table showing the probabilities of occur-
rence of the various ‘points’ that can be made with two
octahedral dice, assuming that both dice are symmetrical
and have uniform density.

Digit problems

SIAM 76-16. by A. Feldstein and R. Goodman

Fix an integer β ≥ 2, and letA be a positive normalized
floating point number represented in base β. For an integer
n ≥ 2, consider the probability pn(a) that the nth digit of
A is the integer a, where 0 ≤ a ≤ β − 1. Let A be chosen
at random from the logarithmic distribution, then

pn(a) = logβ

βn−1−1∏

m=βn−2

βm+ a+ 1

βm+ a
for n ≥ 2

and limn→∞ pn(a) = 1/β.

It is of interest to analyze ∆n, the deviation from
uniform distribution, given for n ≥ 2 by

∆n ≡ max
0≤a≤β−1

∣∣∣∣pn(a)− 1

β

∣∣∣∣

= max

(
pn(0)− 1

β
,

1

β
− pn(β − 1)

)
.

We conjecture that:

(a) ∆n = pn(0)− 1
β ,

(b) limn→∞ βn∆n exists and equals
(β−1)2

2β ln β .

SSM 3570. by Charles W. Trigg

(a) If a 10-digit integer in the decimal system is chosen
at random, what is the probability that it will contain ten
distinct digits?

(b) If an r-digit integer in the scale of notation with
base r is chosen at random, what is the probability that it
will contain r distinct digits?

CRUX 50. by John Thomas

(a) Show that 2n can begin with any sequence of digits.

(b) Let N be an r-digit number. What is the proba-
bility that the first r digits of 2n represent N?
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Distribution functions

AMM 6115. by L. Franklin Kemp, Jr.
Let F1(x1), F2(x2), . . . , Fn(xn) be n probability dis-

tribution functions (d.f.’s). If H(x1, x2, . . . , xn) is any
n-dimensional d.f. with marginals Fi(xi), then an earlier
solution showed that mini Fi(xi) is an n-dimensional d.f.
such that H(x1, x2, . . . , xn) ≤ mini Fi(xi). What is the
n-dimensional d.f. that bounds any H(x1, x2, . . . , xn) from
below?

SIAM 78-4.* by C. L. Mallows
Find the symmetric cumulative distribution function

G(x) satisfying dG(0) = α, 0 < α < 1 that minimizes the
integral

If =

∫ ∞

−∞

(
f ′(x)

)2
f(x)

dx,

where f(x) is the convolution

f(x) =

∫ ∞

−∞
φ(x− u) dG(u),

with φ(u) the standard Gaussian density

φ(u) = (2π)−1/2 exp
[
−1

2
u2
]
.

It is believed that G is a step function, so that

f(x) =
∑

pjφ
(
x− gj

)
,

with g−j = −gj , p−j = pj > 0, p0 = α.

Distribution problems

SSM 3601. by Joe Dan Austin
Ten people enter an elevator that is to make 13 stops.

Assume that the 10 people select their exit independently
and that each stop has the same probability of being se-
lected. Find

(a) the probability that at least two people exit at the
same stop and

(b) the probability that exactly two people exit at the
same stop.

AMM E2515. by C. L. Mallows
A careless file clerk has documentsD1, D2, . . . , Dd that

should go respectively into files F1, F2, . . . , Fd; instead he
places them independently, at random, into a total of f files

(f ≥ d ≥ 1) so that each of the fd possible arrangements
is equally likely. Show that the event that some nonempty
subset S of the files F1, F2, . . . , Fd can be made to have
the correct contents by redistributing within S the union of
their contents, has probability d/f .

Examinations

OSSMB 79-10.
In answering general knowledge questions, all answer-

able with yes or no, the teacher’s probability of being correct
is α and a student’s probability of being correct is β or γ
according to whether the student is male or female. If the
probability of a randomly chosen student’s answer agreeing
with the teacher’s is 1/2, find the ratio of the number of
males to females in the class.

Gambler’s ruin

JRM 631. by David L. Silverman
Three players compete in a game of chance in which

on each play, each player’s chance of winning is directly
proportional to his current holding. The stake on each
play is the holding of the player with the smallest current
(positive) number of chips. The game continues until two
players have been eliminated. If the players start with
respective holdings of 1, 2, and 3 chips, what is each player’s
chance of emerging with all six chips?

JRM 423. by David L. Silverman
Gamblers B and C, holding a total of 7 chips between

them, are engaged in a series of games that will terminate
when one player has won all 7 chips. Each game offers
each player a 50 − 50 chance of success, and the stakes for
each game are determined by the poorer (in chips) player
— from one chip apiece to a mutual wager of the poorer
player’s entire fortune. At any juncture, if B holds the
majority of chips, C will make the mutual wager on the
next game one chip. But if C holds the majority of chips, B
will wager all his chips on the next game. At a stage when
the bold player B holds n chips (n = 1, 2, 3, 4, 5, 6), what is
the probability Pn that he will eventually ruin the cautious
player C? Generalize.

Game theory: card games

MM 1066. by Eric Mendelsohn
and Stephen Tanny

Consider the following children’s game (“clock”): k
copies of well-shuffled cards numbered 1, 2, 3, . . . , L are dis-
tributed in boxes labeled 1, 2, 3, . . . , L, with exactly k cards
per box. At the start of the game, the top card in box 1 is
drawn. If the value of this card is j (j = 1, 2, 3, . . . , L) we
proceed to box j, draw the top card and go to the box so
numbered, draw the top card, and so on. The objective of
the game (a ‘win’) is to draw all cards from every box before
being directed to an empty box. Characterize all winning
distributions of cards, and find the probability of a win.

SPECT 11.3.
The rules for the card game of Clock Patience are as

follows:
Shuffle the pack of cards and deal them into thirteen

piles of four labeled A,2,3,4,5,6,7,8,9,10,J,Q,K. To play, take
away the top card of the K pile (say it is 5), then the top
card of the 5 pile (say it is J), then the top card of the J pile,
and so on. The game proceeds until the fourth K is taken,
and the game is said to ‘come out’ if, when the fourth K is
taken, all the original piles are empty.

(a) What is the probability that a game comes out?
(b) Assume that, after dealing, the bottom cards on

the piles form a rearrangement of A,2,3,4,5,6,7,8,9,10,J,Q,K.
Show that this game comes out if and only if this rearrange-
ment is a cyclic rearrangement.

Game theory: coin tossing

SPECT 7.4. by T. J. Fletcher
Two players, A and B, begin with capital of p and

q units respectively. They gamble by tossing a coin. At
each toss, one unit of capital is transferred from the loser
to the winner of that toss. The game continues until one
or the other is bankrupt. Compare A’s and B’s chances of
winning.
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JRM 463. by Fred Walbrook
Two players each have two coins, one of which is foreign

and is considered in terms of its exchange value in cents.
Each tosses both his coins, and the point total he receives
is the value, if any, of his coins that come up heads. The
player with the larger point total wins his opponent’s coins.
In the event of a tie, the players toss again. The game
is fair in the sense that each player’s chance of winning is
proportional to his holdings. One player has a nickel, the
other a penny. The two foreign coins have the same value.
What is that value?

JRM 675. by J. Sennetti
The St. Petersburg game is played between a player

and a banker. An admission fee is charged to the player,
who then tosses a coin until heads comes up. If heads
first appears on the nth toss, the banker pays the player
2n dollars.

(a) What admission fee should be charged to make the
game fair?

(b) Suppose the rules are modified so that the game

cannot exceed k tosses; i.e. the banker pays 2k after the
kth toss, regardless of the outcome. What then is the fair
admission price?

Game theory: dice games

MM 1071. by Joseph Browne
Player A rolls n+1 dice and keeps the highest n. Player

B rolls n dice. The higher total wins, with ties awarded to
Player B.

(a) For n = 2, show that Player A wins and find his
probability of winning.

(b) Find the smallest value of n for which Player B
wins.

CRUX 333. by R. Robinson Rowe
The World War I COOTIE, lousy vector of trench

fever, popularized a simple but hilarious game by that
name in the early 1920’s. Five or more players each with
pad and pencil, cast a single die in turn. Rolling a 6, a
player sketched a “body” on the pad and on later turns
added a head with a 5, four legs with a 4, the tail with
a 3. Having the head, he could add two eyes with a 2
and a proboscis or nose with a 1. Having all six he yelled
“COOOOOTIEEEEE!” and raked in the pot.

What was the probability of capturing a COOTIE in
just six turns?

MATYC 92. by Michael Brozinsky
Find the expected number of throws in the game of

craps.

CRUX 409. by L. F. Meyers
In a certain bingo game for children, each move consists

in rolling two dice. One of the dice is marked with the
symbols B, I, N, G, O, and *, and the other die is marked
with 1, 2, 3, 4, 5, and 6. A disadvantage of this form of
bingo, in comparison with the adult form of the game, is
that a combination (such as B3) may appear repeatedly.
What is the expected number of the move at which the first
repetition occurs in each of these cases:

(a) all 36 combinations (B1 through *6) are considered
to be different (and equally likely)?

(b) all 36 combinations (B1 through *6) are considered
to be equally likely, but the six combinations containing *
are considered to be the same?

Game theory: selection games

PME 403. by David L. Silverman
Two players play a game of “Take It or Leave It” on

the unit interval (0, 1). Each player privately generates a
random number from the uniform distribution, and either
keeps it as his score or rejects it and generates a second num-
ber which becomes his score. Neither player knows, prior
to his own play, what his opponent’s score is or whether it
is the result of an acceptance or a rejection.

The scores are compared and the player with the higher
score wins $1 from the other.

(a) What strategy will give a player the highest ex-
pected score?

(b) What strategy will give a player the best chance of
winning?

(c) If one player knows that his opponent is playing so
as to maximize his score, how much of an advantage will he
have if he employs the best counterstrategy?

JRM 499. by David L. Silverman
There are two players, Giver and Taker. There are two

unlocked strongboxes to which only Giver has the key. The
boxes are such that their contents are visible, but whether
they are locked or not can only be determined by trying to
open them.

The game begins with both boxes empty. Unseen by
Taker, Giver has selected one box which he has locked,
leaving the other unlocked. Taker then tries to open one
of the boxes. If he picks the unlocked box, he receives its
contents, and the game is over. If he picks the locked box,
Giver adds a dollar to the unlocked box. Taker leaves the
room, and Giver again causes one of the boxes to be locked
and one unlocked. Taker reenters the room and chooses
again. The game continues until the unlocked box is chosen.

Assuming that Taker plays optimally to maximize, and
Giver to minimize Taker’s winnings, how much, on the av-
erage, will Taker win?

Game theory: TV game shows

JRM 769. by Harry Nelson
On the hypothetical TV game show Stump the Panel,

three panelists try to match four husbands with their four
wives. Those couples whom the first panelist identifies cor-
rectly are eliminated and receive nothing. Those remaining
are then matched up by the second panelist. Those correctly
matched receive $50 and are eliminated. Finally the third
panelist tries to match those left. If they are now correctly
matched, they receive $100, and if not, $1, 000.

Assuming pure guessing on the part of the panelist
among those arrangements still possible, what is the proba-
bility that the $1, 000 prize will be won? What are a couple’s
expected winnings?

PME 355. by John M. Howell
On the TV game show called “Who’s Who?”, four

panelists try to match the occupations of four contestants
with signs marking their occupations. If the first panelist
matches correctly, the contestants get nothing and the game
is over. If the second panelist succeeds in matching cor-
rectly, the contestants get $25. If the second panelist fails
but the third succeeds, the contestants get $50. If the fourth
panelist matches after the third fails, the contestants get
$75. If there is no match, the contestants win $100. What
is the expected value of the contestants’ winnings? Assume
pure guessing and that no panelist repeats a previous ar-
rangement.
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Geometry: boxes

SSM 3783. by Stephen J. Ruberg
Suppose that the volume V of a box with a square

base is chosen randomly from the chi-square distribution
with two degrees of freedom. In addition, let the length S
of a side of the base be chosen randomly and independent
of V according to the following procedure: S = |T |, where
T is chosen from the normal distribution with mean zero
and standard deviation one. What is the probability that
the height H of the box exceeds 400?

Geometry: circles

MATYC 98. by Philip Cheifetz
A large number of people are asked to draw a chord at

random inside a circle of given radius R. After the chords
are drawn, an equilateral triangle is inscribed in the circle.
Deduce from probability considerations what percentage of
the chords may be expected to be longer than the side of
the triangle.

OSSMB G76.1-6. by T. C. Simmonds
(a) Three tangents, no two parallel, are drawn at ran-

dom to a given circle. Show that the odds are 3 to 1 against
the circle being inscribed (as opposed to being escribed) in
the triangle formed by the tangents.

(b) If a triangle is formed by joining three points taken
at random on the circumference of a circle, with the restric-
tion that no pair of them be diametrically opposite one an-
other, prove that the odds are 3 : 1 against it being acute
angled.

Geometry: concyclic points

JRM 509. by Les Marvin
Points are selected at random on the circumference of

the unit circle until the inscribed polygon that they deter-
mine encloses the center of the circle. It is known that the
average (or statistically expected) number of points selected
is five. Verify this with a Monte Carlo program, using the
simplest program gimmick you can devise to enable the com-
puter to tell when the center of the circle has been “netted”.

Geometry: convex hull

AMM 6230. by Gérard Letac
Let X(t) be the perimeter length of the convex hull of

b(s)0≤s≤t, where b is the standard brownian motion in the
Euclidean plane. Compute E(X(t)).

Geometry: discs

OSSMB 77-2.
A disc of diameter 1 is tossed at random onto a coordi-

nate plane. What is the probability that it covers a lattice
point?

Geometry: point spacing

SIAM 76-4. by Iwao Sugai
Two points are chosen at random, uniformly with re-

spect to area, one each from the two plane regions

0 ≤ x2 + y2 ≤ a2

and
(a− b)2 ≤ x2 + y2 ≤ a2,

respectively. Find the probability that the distance between
the two points is at most b (0 < b < a).

AMM E2629. by David P. Robbins
Two points are chosen at random (uniform distribu-

tion) in the box |x| ≤ a, |y| ≤ b, |z| ≤ c of R3. What is the
expected distance between them?

SIAM 78-8. by Timo Leipälä
Determine
(a) the probability density,
(b) the mean, and
(c) the variance

for the Euclidean distance between two points which are
independently and uniformly distributed in a unit cube.

NAvW 556. by J. van de Lune
For any n ∈ N, let ρ(n) be the mathematical expecta-

tion of the distance between two independent random points
in the n-dimensional unit cube. Determine

lim
n→∞

n−
1
2 ρ(n).

MM 946. by M. H. Hoehn
Two points are selected at random on the boundary of

a unit square. What is the expected value of the length of
the line segment joining the points?

Geometry: polygons

AMM E2594.* by David P. Robbins
Suppose that a1, a2, . . . , an are vectors corresponding

to the edges of an oriented regular polygon. Since their sum
is 0, an object undergoing displacements by each of these
vectors in some order traces out a closed polygon. If this
order is chosen at random, what is the probability that the
polygon does not intersect itself?

Geometry: polyhedra

CRUX 499. by Jordi Dou
A certain polyhedron has all its edges of unit length.

An ant travels along the edges and, at each vertex it reaches,
chooses at random a new edge along which to travel (each
edge at a vertex being equally likely to be chosen). The
expected (mean) length of a return trip from one vertex
back to it is 6 for some vertices and 7.5 for the other vertices.

Calculate the volume of the polyhedron.

AMM 6149. by Gérard Letac
A bug runs along the edges of a regular dodecahedron

with constant speed: one edge per unit of time. At time
0 the bug is on some vertex A; at time n (n an integer)
it chooses randomly one of the three possible edges. If pn
is the probability that the bug is on A at time n, then it
is trivial to compute p0 = 1, p1 = 0, p2 = 1/3, p3 = 0,
p4 = 5/27, . . . . Determine the generating function

∞∑

n=0

pns
n

of the sequence (pn).
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Geometry: quadrilaterals

NAvW 452. by O. Bottema
Let P1 < P2 < P3 be three distinct points selected at

random from the open interval (0, 1). Find the probability
that a convex, inscribable (in a circle) quadrilateral can be
formed having side lengths P1, P2−P1, P3−P2, and 1−P3.
Also find the probability without the convexity restriction.

Geometry: rectangles

JRM 713. by William C. Reil
The lengths and widths of two rectangles are chosen

randomly in the interval (0, 1).
(a) What is the probability that one will fit completely

within the other?
(b) What is the probability that the one with the

smaller area has the larger perimeter?

Geometry: squares

JRM 620. by Susan Laird
Four points are selected at random in a unit square.

What is the probability that they are the vertices of a convex
quadrilateral?

JRM 683. by Daniel P. Shine
A point is chosen at a random position in a unit square.

On the average:
(a) How far is it from the center of the square?
(b) How far is it from the lower left corner of the

square?
(c) How far is it from the nearest corner of the square?
(d) Substitute a circle of unit area for the square. How

far is it from the center of the circle?

Geometry: triangles

SSM 3767. by N. J. Kuenzi and Bob Prielipp
Suppose an isosceles triangle with two sides of length a

is formed by randomly selecting the length of the third side
from the set of all possible lengths. Find the probability
that the triangle formed is obtuse.

Independent trials

PME 395. by Joe Dan Austin
Assume that n independent Bernoulli experiments are

made with p = P [success], 1−p = P [failure], and 0 < p < 1.
Intuitively it seems that P [success on the first trial | exactly
one success] is always less than P [success on the first trial |
at least one success]. Verify directly that this is indeed the
case.

MM 1070. by Thomas E. Elsner
and Joseph C. Hudson

Let p1+p2+· · ·+pk = 1 be a sum of k ≥ 2 probabilities
and let Mn for n = 1, 2, . . ., be the multinomial distribution
based on these probabilities and n trials. Event An occurs
if, during the n trials, no possible outcome of the experiment
occurs in two consecutive trials. Find the sum

∞∑

n=1

P (An).

What are the convergence criteria for this sum to exist?

AMM E2705. by Clark Kimberling
For an experiment having m equally probable out-

comes, find the expected number of independent trials for
k consecutive occurrences of at least one of these outcomes.

Inequalities

CRUX 484. by Gali Salvatore
Let A and B be two independent events in a sample

space, and let XA, XB be their characteristic functions. If
F = XA+XB , show that at least one of the three numbers

a = P (F = 2), b = P (F = 1), c = P (F = 0)

is not less than 4/9.

TYCMJ 152. by Daniel Gallin
Let Ei (i = 1, 2, . . . , n) be events in a probability

space. Prove that max
{

0,
∑n
i=1 P (Ei)− n+ 1

}
gives the

best lower bound for P
(⋂n

i=1Ei
)
, given any n prescribed

values pi = P (Ei), 0 ≤ pi ≤ 1, (i = 1, 2, . . . , n).

PUTNAM 1976/B.3.
Suppose that we have n events A1, . . . , An, each of

which has probability at least 1 − a of occurring, where
a < 1/4. Further suppose that Ai and Aj are mutually
independent if |i − j| > 1, although Ai and Ai+1 may be
dependent. Assume as known that the recurrence uk+1 =
uk−auk−1, u0 = 1, u1 = 1−a, defines positive real numbers
uk for k = 0, 1, . . . . Show that the probability of all of
A1, . . . , An occurring is at least un.

SIAM 78-16. by L. A. Shepp
and A. M. Odlyzko

Let X1, X2, . . . , Xn be independent random variables
and let Yi = fi (Xi) where fi(x) ↑, i = 1, 2, . . . , n. Prove or
disprove that if

A = {X1 +X2 + · · ·+Xi ≥ 0, i = 1, 2, . . . , n}

and

B = {Y1 + Y2 + · · ·+ Yi ≥ 0, i = 1, 2, . . . , n} ,

then P (A |B) ≥ P (A).

AMM 6050. by D. E. Knuth
Suppose X1, X2, Y1, . . . , Ym+n are independent ran-

dom variables, where X1 and X2 have common distribution
F and the random variables Y1, . . . , Ym+n have common
distribution G. Prove that

P
[
X1 + max(Y1, . . . , Ym) ≤ X2 + max(Ym+1, . . . , Ym+n)

]

lies in the closed interval [1/2, n/(m+ n)] when m ≤ n and
G is differentiable.

Jury decisions

FUNCT 3.1.1.
Two people of a 3-person jury each independently ar-

rive at a correct decision with probability p. The third per-
son flips a coin. The decision of the majority is final. What
is the probability of the jury’s reaching a correct decision?
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Number theory

TYCMJ 57. by Martin Berman
From a set of n counters numbered 0, 1, 2, . . . , n − 1,

(n ≥ 2), a counter is removed at random, replaced, and
then a counter is removed a second time at random.

(a) What is the probability that the numbers on the
two counters satisfy the congruence x+ y ≡ xy (mod n)?

(b) Show that the maximum probability occurs when
n = 2.

TYCMJ 135. by Gino T. Fala
Let k be a positive integer consisting of n−1 digits. For

m ≥ n let Sm be the set of positive integers consisting of m
digits. A number is chosen at random from Sm. Denote by
Pm(k) the probability that the selected number is divisible
by k.

(a) Determine Pm(k).
(b) Determine limm→∞ Pm(k).

CRUX 43. by André Bourbeau
In a 3×3 matrix, the entries aij are randomly selected

integers such that 0 ≤ aij ≤ 9. Find the probability that
(a) the three-digit numbers formed by each row will be

divisible by 11;
(b) the three-digit numbers formed by each row and

each column will be divisible by 11;

JRM 559. by Diophantus McLeod
A positive integer n is selected at random. What is the

probability that n is a factor of 13 + 23 + · · · + n3 but not
of 12 + 22 + · · ·+ n2?

MM 970. by Martin Berman
A plus or minus sign is assigned randomly to each of

the numbers 1, 2, 3, . . . , n. What are the probabilities that
the sum of the signed numbers is positive, negative, and
zero?

PENT 306. by Kenneth M. Wilke
If n is a positive integer selected at random, what is

the probability that

(2n+ 1)(3n2 + 3n− 1)

15

is an integer?

Order statistics

ISMJ 10.10.
Using the methods described in an article about high

jumping, find for any number y the probability that the
runner-up (second highest jump) in n attempts is larger
than y.

Permutations

TYCMJ 54. by John P. Hoyt
Let (i1, i2, . . . , in) be a random rearrangement of the

first n natural numbers 1, 2, . . . n, where n ≥ 3. What is
the probability that, for each k, ik ≥ k − 3?

Random variables

AMM 6195. by Andreas N. Philippou
For j = 1, 2, . . . and n ≥ j, let Xnj and Xj be random

variables defined on a probability space (Ω, A, P ). Assume
that supj E|Xj |r <∞ (r > 0), where E denotes expectation
under P . Show that

max
[
E|Xnj −Xj |r, 1 ≤ j ≤ n

]
→ 0,

if and only if

max
{
P
[
|Xnj −Xj | > ε

]
, 1 ≤ j ≤ n

}
→ 0

and
max

[
E|Xnj |r − E|Xj |r, 1 ≤ j ≤ n

]
→ 0.

AMM 6031. by I. I. Kotlarski
Let φ be a periodic function on R with period 2π, given

by

φ(t) = 1−

√
|t|
π

(
2− |t|

π

)
, t ∈ [−π, π].

Prove that φ is a characteristic function of a real random
variable X, and find its probability structure.

Let X1, X2, . . . , Xn, . . . be a collection of independent
identically distributed random variables, all distributed ac-
cording to the characteristic function given above. Let

Yn =
(X1 +X2 + · · ·+Xn)

n

and

Zn =
(X1 +X2 + · · ·+Xn)

n2
.

Show that Yn does not have a limiting distribution, while
the limit distribution of Zn is the stable distribution with
exponent 1/2.

SIAM 76-18. by A. A. Jagers
Let φ be a nonnegative function defined on [0,∞) with

φ(0) = 0. Let F be the class of all nonnegative random
variables X such that 0 < E(Xs) < ∞ for all s > 0. For
X ∈ F , s > 0, put

qx(s) =

[
E (φ(X)s)

E(Xs)

]1/s

.

(a) Prove that if φ is convex, then qx is nondecreasing
for each X ∈ F .

(b) Determine a necessary and sufficient condition on
φ in order that qx is nondecreasing for each X ∈ F .

AMM 6103. by Gérard Letac
Let (Xn)∞n=1 be a sequence of independent, identically

distributed random variables, valued in a real vector space
E of finite dimension d. Let Y be a random linear form on
E such that limn→∞ Y (Xn) exists almost surely. If d = 1,
it is easily proved that either Y = 0 almost surely or Xn =
constant almost surely. What happens if d > 1?

AMM 6114. by R. M. Norton
Let Z1 = XY , where X and Y are independent stan-

dard normal random variables, and let Z1 and Z2 be in-
dependent and identically distributed. Derive the density
function f(x) of Z1 + Z2.
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AMM 6104. by Leonard W. Deaton
Let X and Y be independent normal random variables

with means µ1 and µ2 and variances σ2
1 and σ2

2 , respectively.
Let

f(z) =
σ1σ2

π
(
σ2

1 + σ2
2z

2
) , −∞ < z <∞.

Is f the probability density function of Z = X/Y ?

AMM 6030. by David Griffeath
Let X and Y be jointly distributed real random vari-

ables. Consider the following conjecture: If X, Y , X + Y ,
and X−Y are all identically distributed, then X = 0 almost
surely. Prove or disprove the conjecture in the following
cases:

(a) if X is square-integrable;
(b) if X is integrable;
(c) in general.

AMM 6174. by Barthel W. Huff
A family F = {Xλ|λ ∈ Λ} of random variables is said

to be uniformly integrable if

lim
α→∞

sup
λ
E|Xλ| · I[|Xλ|≥α] = 0,

where IA is the indicator function of the event A. One
sufficient condition for uniform integrability is that there
exists a random variable Y such that |Xλ| ≤ Y a.s., for all
λ, and EY <∞. A weaker sufficient condition is that there
exists a nonnegative random variable Y such that

P [|Xλ| ≥ α] ≤ P [Y ≥ α] ,

for all α > 0, for all λ and EY <∞. Is the converse to the
weaker condition true?

Random vectors

AMM 6175. by Ignacy I. Kotlarski
Let

(X1, X2, . . . , Xn)

be an n-dimensional real random vector. Consider the ran-
dom polynomial of order n, n = 2, 3, . . . , on the complex
plane

Pn(λ) = (λ−X1)(λ−X2) · · · (λ−Xn), λ ∈ Z,

and define

Zn =
1

i

Pn(i)− (−1)nPn(−i)
Pn(i) + (−1)nPn(−i) , n = 2, 3, . . . .

Show that if one of the Xk is independent from the others
and follows the Cauchy distribution

P (Xk ≤ x) =
1

2
+

1

π
arctanx, x ∈ R,

then all the Zn are real random variables having the same
Cauchy distribution.

AMM 6207. by Ignacy I. Kotlarski
Let X and Y be two independent (2n+2)-dimensional

normal random vectors with means 0 and positive definite
variance covariance matrices C and C−1, respectively (n =
0, 1, . . .). Find the distribution of their inner product Z =
X · Y .

Relative motion

SIAM 76-13. by L. K. Arnold,
L. Dodson, and L. Rosen

Two ships A and B are cruising along straight line
paths in a planar ocean at constant speeds u and v, re-
spectively. If B’s direction is a random variable uniformly
distributed over (0, 2π], then the expected speed of B rela-
tive to A is given by

z =

∫ 2π

0

{
u2 + v2 − 2uv cos θ

}1/2 dθ

2π
.

We have found that

z = x+ .27y2/x,

where x = max(u, v), y = min(u, v), is a fair approximation
to z. More precisely, |z− z| ≤ .25 knots for u, v = 0(.25)40.
Prove or disprove the latter error bound for all u, v between
0 and 40.

Selection problems: distribution problems

JRM 379. by Harry L. Nelson
Admiring the wit of his court jester, the King decided

to exercise it by subjecting him to a test. Four bags would
be brought up from the treasury, containing four gold, four
silver, four copper, and four zinc coins, respectively.

The King would randomly pick four of the sixteen
coins, unobserved by the Jester, put these four coins in his
pocket, summon the Jester and hand him two of the coins,
randomly pulled from his pocket. The Jester, after looking
at the two sample coins, would then attempt to guess the
nature of the two coins left in the King’s pocket (that is,
“Zinc, Zinc” or “Gold, Zinc,” with the order of the two
metals in the latter case irrelevant).

“What do I get, Sire, if I guess right?” asked the Jester.
“All four of the coins from my original random selec-

tion.”
“And what do I get if I miss completely or guess half

right?”
“The chance to repeat the experiment a year from

now.”
“What random process will you use, Sire, to obtain the

four coins?”
“A random selection is a random selection, Sirrah!”
“Yes, Sire, but two different selection schemes, both

random, could result in quite different probability distribu-
tions. Two natural schemes that occur to me are to mix all
16 coins together and pull out four at random, or to choose
randomly four times one of the four bags, with replacement
of the chosen bag after each of the first three picks. The four
coins would be determined by the number of times the var-
ious bags were picked. Thus if you picked the gold coin bag
once and the zinc coin bag three times, your pocket sam-
ple would consist of one gold and three zinc coins. Another
scheme that occurs to me . . .”

“You try our patience, Jester. You may choose be-
tween your two schemes. Tell the Chancellor of the Exche-
quer to fetch the bags.”

Which scheme should the Jester choose in order to
maximize his probability of making a correct guess?

If the King had decreed instead that the Jester need
only guess correctly the number of different metals repre-
sented in the pocket sample of four, which scheme would
give the Jester the better chance of guessing correctly?

In both the above variants and under each of the two
schemes, what are the Jester’s optimal guesses if the relative
values of gold, silver, copper, and zinc coins are 4:3:2:1?
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OMG 17.2.1.

A prisoner is given ten green balls, ten red balls, and
two identical boxes. He is told that an executioner, while
blindfolded, will randomly select one of the two boxes and
will then randomly withdraw one ball from the box selected.
If the ball drawn is green, the prisoner will be set free; but
if the ball drawn is red, the prisoner will die. If the prisoner
arranges the balls in the boxes so that he will have the best
chance for survival, find the probability of his survival.

Selection problems: horse racing

AMM 6041. by S. W. Golomb

There are n horses in a “random” horse race, in which
all n! orders of finish are equally probable a priori. A
gambler is allowed to select k horses, to finish first, second,
. . . , kth.

(a) What is the probability Qn(k, i) that exactly i of
his k selections will finish among the first k?

(b) What is the probability Pn(k, i) that exactly i of
his k selections will finish in the precise positions predicted
for them?

Selection problems: limits

NAvW 509. by J. H. van Lint
and N. J. A. Sloane

After serving French fries for many years, Heinz has
become an expert. If you ask for, say, 27 French fries, he
reaches in and scoops out almost exactly 27. He is so good
now that he always gets within one of the number you want.
It turns out that if one asks for a number of French fries,
then Heinz picks uniformly from the admissible subsets.
Assume that there are n French fries, and you ask for a
number picked at random between 0 and n. Let Pn be the
probability that Heinz scoops out exactly the number you
ask for. Determine limn→∞ Pn.

Selection problems: points

NAvW 480. by O. Bottema

Two points are chosen at random and independently,
on a line segment s. The distribution of each random point
is uniform with respect to length. Determine the probability
that an acute triangle can be constructed whose sides are
equal to the three parts into which s is divided.

JRM 650. by Daniel P. Shine

Four birds land at random positions on a finite length
of wire. Upon landing, each bird looks at its nearest neigh-
bor.

(a) What is the probability that a bird picked at ran-
dom is looking at another bird that is looking at it?

(b) What is the probability if there are n birds, with
n > 4?

TYCMJ 96. by Milton H. Hoehn

On a line segment of length l, n points are selected
at random. What is the expected value of the sum of the
distances between all pairs of these points?

Selection problems: sets

AMM 6155. by Milton P. Eisner
Let {x1, x2, . . . , xk} be a set of numbers. Define the

width of the set to be mini6=j{|xi − xj |}. Suppose the k
numbers are selected at random from the set {1, 2, . . . , n}.
Find the expected value of the width of the resulting set if
the numbers are chosen without replacement.

Selection problems: socks

JRM 621. by Friend H. Kierstead, Jr.
Individual socks from N distinguishable pairs are re-

moved one by one from a dryer. Every time the second
member of a pair is removed, it is matched immediately with
its mate and the two are rolled together and set aside. What
is the expected maximum number of unmatched socks?

Selection problems: sum of squares

AMM 6187. by Ronald Evans
Let X1, X2, . . . be a sequence of random numbers, uni-

formly distributed in [0, 1], and let N be minimal such that
∑

1≤i≤N
X2
i > 1.

Show that the expected value of N is

eπ/4
(

1 +

∫ 1

0

e−πt
2/4 dt

)
.

Selection problems: sums

AMM E2696. by William P. Wardlaw
(a) If numbers are drawn randomly (using uniform dis-

tribution with replacements) from the set {1, 2, . . . , n} until
their sum first exceeds n, what is the expected number of
draws?

(b) Solve the same problem for numbers selected from
the set {0, 1, . . . , n− 1}, until their sum exceeds n− 1.

MATYC 122. by Gene Zirkel
A sequence of real numbers, x1, x2, x3, . . . , xn, are

picked at random from the interval [0, 1]. This random se-
lection is continued until their sum exceeds one and is then
stopped. It is known that the expected value of the number
N of reals chosen is given by EN = e.

What is EN if we instead continue until the sum ex-
ceeds two?

Selection problems: unit interval

PME 429. by Richard S. Field
Let P denote the product of n random numbers se-

lected from the interval (0, 1). Is the expected value of P
greater or less than the expected value of the nth power of
a single number randomly selected from the interval (0, 1)?

Selection problems: urns

SSM 3648. by Wayne Wild
An urn contains r red balls and b blue ones. The num-

bers r and b are such that if two balls are chosen simul-
taneously at random, the probability that they will be of
opposite color is 1/2. Characterize the numbers r and b.

238



Probability
Selection problems: urns Problems sorted by topic Sports

CRUX 117. by Paul Khoury
The sultan said to Ali Baba: “Here are two urns, a

white balls and b black balls. Distribute the balls in the
urns, then I shall make the urns indistinguishable. To save
your life, you must select one black ball.” How can Ali Baba
maximize his chances?

AMM E2722.* by Clark Kimberling
A ball is drawn from an urn containing one red ball and

one green ball. If it is red, it is returned to the urn with
one additional red ball and one additional green ball, but
if it is green, no balls are put into the urn. After the first
drawing, subsequent drawings take place following the same
rules. Find the probability that the urn always contains at
least one green ball.

JRM 623. by Mark Wetzel
An urn starts with one red and one green marble,

and successive random samples are taken from it consisting
of one marble, the sampling process terminating when a
red marble is drawn. Determine the expected number of
samples and the most probable number of samples if, after a
green marble is drawn, it is replaced, together with another:

(a) green marble;
(b) red marble.

AMM E2724. by Harry Lass
An urn contains k1 white balls, k2 red balls, and k3

blue balls. The balls are withdrawn one at a time at random
without replacements until all balls of one color (red, white,
or blue) have been removed.

(a) Determine the probability that all white balls are
removed first.

(b) Determine the expected number of trials until all
balls of some one color have been removed.

FUNCT 3.2.4.
A bag contains three red balls and five white ones.

Balls are drawn at random from the bag without replace-
ment, until all have been withdrawn. Show that the proba-
bility of getting a red ball on any particular draw is 3/8.

ISMJ 12.4.
Two boxes each contain three beads, one has 2 white

and 1 red, the other 1 white and 2 red. A player chooses a
box at random and a bead is taken at random from it. Hav-
ing observed the color of the bead, the player may choose a
second bead at random from the same box (without replac-
ing the first) or from the other box. Find the probability
that the second bead is red for each of the four strategies
described in the article in the issue containing this problem.

Sequences

NAvW 489. by A. J. Bosch and D. A. Overdijk
Given are n different symbols. Let β be a finite se-

quence of these symbols. A machine produces these symbols
successively such that every symbol has probability 1/n to
be produced. The machine operates such that it stops as
soon as a tail piece of the produced sequence equals β. The
expectation of the length of the produced sequence will be
denoted by µ and the variance by σ2.

Prove:
(a) µ =

∑
`∈L n

`,

(b) σ2 = µ2 −
∑
`∈L(2`− 1)n`,

where the set L is defined as follows: L = {` ∈ N | there
exists an initial piece of β with length ` that is also a tail
piece of β}.

AMM 6146. by Edward J. Wegman
and Anton Glaser

Sir Francis Bacon assigned the 24 letters of the alpha-
bet (j and u were absent) to the first 24 five-bit strings from
00000 to 10111. The word “Bacon” would appear as

00001 00000 00010 01101 01100

and this in turn could be hidden in a covertext of at least
25 letters, such as

00 00 10 000 00 00 1001 10 101 100

↓↓ ↓↓ ↓↓ ↓↓↓ ↓↓ ↓↓ ↓↓↓↓ ↓↓ ↓↓↓ ↓↓↓
To be, or not to be, that is the question.

Here, “0” was replaced by one type style (in this case Ro-
man) and “1” by another (in this case, italic). Thus, the
4,500,000 letters of the First Folio may be interpreted as a
string of 4,500,000 binary digits.

What is the probability that the message “Bacon wrote
this” appears in the First Folio “by accident” if

(a) the probability of a letter’s being Roman is 1/2?
(b) the probability of a letter’s being italic is 1/10?

Sets

AMM 6248. by Milton P. Eisner
Let the set S = {1, 2, . . . ,mn}, where m and n are pos-

itive integers, be partitioned randomly into n subsets each
with m elements. For 0 ≤ k ≤ n, what is the probability
P (m,n, k) that exactly k of these subsets have the property
of consisting of m consecutive integers?

Slide rules

JRM 592. by Les Marvin
Two randomly selected numbers are to be multiplied

together on a slide rule. What is the probability that, in
lining up the index, the C scale must be moved to the left
rather than to the right?

Sports

JRM 441. by Sidney Kravitz
Two baseball teams play in a World Series in which

the first team to win four games wins the series. If the
teams have an equal likelihood of winning any game, what
is the probability that the series will run 4 games, 5 games,
6 games, and 7 games?

JRM 573. by Harry Nelson
Suppose two opposing pitchers both throw balls and

unhittable strikes randomly but with ball or strike equally
probable. Because of the low expectation of a run in any half
inning, chances are high that the game will end with a score
of 1−0 after extra innings. In any event, determine both the
expected and the most probable number of innings. When
a game ends with t outs in the home half of the nth inning
(n > 8), the game is considered to have lasted n − 1

2 + t
6

innings.

PME 373. by Joe Dan Austin
Assume that the number of shots at the goal in a

hockey game is a random variable Y that has a Poisson
distribution with parameter λ. Each shot is either blocked
or is a goal. Assume each shot is independent of the other
shots and p = P [a shot is blocked] for each shot. Find
the probability that there are exactly k goals in a game for
k = 0, 1, 2, . . . .
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JRM 387. by Travis Fletcher
Server, against his perennial tennis opponent, has two

serves in his arsenal — a hard one that is very effective if it
lands and a soft one that lands with greater reliability but
is not as effective when it does. Assume that the hard serve
lands fairly with probability 1/2 and when it does, Server
has a 3/4 chance of winning the point. Assume that the soft
serve lands fairly 3/4 of the time, and let the probability be
p that if the soft serve lands safely, Server will win the point.

With the usual tennis allowance of two serves, Server
has four possible serving strategies, unambiguously denoted
HH, HS, SH, and SS.

For what ranges of p are each of the four serving strate-
gies optimal?

Statistics

MATYC 115. by Ronald McCuiston
Prove that if the X-scores are all the same, then rs =

0.5 where rs is the Spearman Rank Correlation Coefficient.

MSJ 467.
Two teachers, working independently of one another,

communicate to the publisher that their classes found 64
and 55 mistakes respectively in the same textbook. Com-
parison shows that exactly 40 of the mistakes were found
by both classes. Estimate the number of mistakes that re-
mained unnoticed by either of them.

JRM 376. by Richard S. Field Jr.
In 1900 the man-made, land-locked, freshwater Lake

Stochastica was stocked with fish of several different species,
no two species from the same “family” (in the sense of
common usage, as opposed to the taxonomic sense). In
other words, if any trout were stocked, they were all of the
same species. Unfortunately, no records were kept as to
the number of different species stocked, so the only upper
bound we may assume in estimating the number of species
presently in the lake is 750, which we will suppose is the
number of distinct freshwater fish “families” on the planet.
We know nothing about the relative proportions with which
the original fish were stocked, nor do we know about the
probable rate of growth of one species vis-a-vis another in
the unusual environment of Lake Stochastica.

We do have reason to believe that the fish population
has reached stability, both in absolute size and in relative
proportion of species, because the Bureau of fisheries, us-
ing valid mark-sampling techniques in 1950, 1960, and 1970,
found on each occasion that the estimated total fish popula-
tion as well as the relative proportion of the various species
was the same. Unfortunately, all records about the dis-
tinct species observed were lost, and all that remains is the
Bureau’s estimate that the total fish population of Lake
Stochastica between 1950 and 1970 had peaked out at one
million. Fortunately, the Lake has been protected from pol-
lution, so the estimate of one million is still valid.

Recently, a research team from Piscator Magazine took
a random sample of 1000 fish from the Lake, using methods
that ensured that every one of the million fish, regardless
of age, size, or habits peculiar to its species, had an equal
chance of being netted. The sample consisted of 300 bass,
350 catfish, 200 gar, 150 perch, and 100 salmon. Had the
sample been ten times as large, perhaps more than five
species would have been netted, but Piscator’s budget is
limited. Using the data at hand, is there a statistically
valid method for arriving at a “best” estimate of the total
number of different fish species in Lake Stochastica?

MATYC 117. by Richard Gibbs
Suppose the scores on an exam are ranked as follows:

score 100 95 94 93 91 89 86 83 80

rank 1 3 5.5 7 8.5 11.5 14 15.5 18.5

How many scored 83? How many scored higher than 83?

Stochastic processes

SIAM 78-7. by John Haigh
Given a Poisson process P of rate λ whose succes-

sive points are P1, P2, . . . , construct a process Q as follows.
Let U1, U2, . . . be a sequence of independent identically dis-
tributed random variables taking values in [0, 1] and inde-
pendent of P , and let the point Qn of Q be placed in the
interval [Pn, Pn+1] so as to divide the interval in the ratio
Un : 1− Un. Find necessary and sufficient conditions for Q
to be a Poisson process.

JRM 480. by David L. Silverman
A point moves on an infinite rectangular lattice. At

each stage, it moves with equal probability to one of the
rookwise adjacent vertices that has not been previously oc-
cupied. With probability one it will eventually be stymied,
although the potential number of moves prior to the stymie
is obviously unbounded. Estimate the average duration of
such a random walk.

Student’s t-distribution

AMM 6092. by Ignacy Kotlarski
LetX1 andX2 be two independent Student distributed

random variables with 1 and 3 degrees of freedom, respec-
tively. Define

Y =
1

2
X1

√
3 +

1

2
X2.

Show that the probability density functions of X1, X2, Y
satisfy the relation

fY (y) =
1

2
fX1

√
3(y) +

1

2
fX2

(y)

almost everywhere on R.
Can this analogy be generalized to

Y = a1X1 + a2X2 + · · ·+ anXn,

where X1, . . . , Xn are independent, Student distributed
with 1, 3, . . . , 2n− 1 degrees of freedom, and a1, a2, . . . , an
are constants?

Tournaments

JRM 568. by Michael Lauder

Al, Bob, Carl, and Don were the four quarterfinalists
in a Pong Tournament. They were paired off for the two
semifinal matches. Then the two winners played in the finals
for the championship, while the two semifinal losers played
a consolation match for third place. I had a hunch that Al
would meet Bob in the tournament and would beat him,
but when I asked Al if my hunch had been right, he said
no. Assuming he told me the truth, what is the probability
that Bob won the tournament?
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Transportation

CRUX 68. by H. G. Dworschak
It takes 5 minutes to cross a certain bridge and 1000

people cross it in a day of 12 hours, all times of day be-
ing equally likely. Find the probability that there will be
nobody on the bridge at noon.

SIAM 75-8. by L. J. Dickson
The city has only one hospital and all ambulances are

based there. Streets are so crowded that any ambulance on
duty, whether going or returning, strikes and injures pedes-
trians at an average of one per mile. More precisely, an
ambulance traveling over a stretch of ∆x miles always has
the probability exp(−∆x) of injuring nobody and the prob-
ability zero of hitting more than one person at once. Each
downed pedestrian is picked up by a different ambulance.

A man at a distance d miles from City Hospital has a
heart attack and calls for an ambulance.

(a) Find the probability Pk(d) that exactly k pedestri-
ans will be injured by all of the ambulances.

(b) What is the expected value of k?

MM 1034. by Marlow Sholander
We are familiar with the standard clover-leaf inter-

change [CLI] which has, inside the four ramps for making
right-hand turns, the arrangement whereby left-hand turns
are achieved by turning right into lanes which outline the
four leaf clover. Your car approaches the CLI from the
south. A mechanism has been installed so that at each
point where there exists a choice of directions, the car turns
to the right with fixed probability r.

(a) If r = 1/2, find P (emerge from CLI going west).
(b) Which r maximizes P in (a)?

Waiting times

PENT 313. by Michael W. Ecker
Joe and Moe plan to meet for lunch at the pizza parlor

between noon and 1:00 PM but they can’t decide what time
to meet. Joe suggested that whoever arrives first should
wait 10 minutes for the other before leaving.

Moe likes Joe’s suggestion but he wonders if a 10-
minute wait will guarantee that they will have at least an
even chance of meeting for lunch. Assuming each of Joe’s
and Moe’s times of arrival are random, what is the minimum
time the first to arrive must wait to guarantee that their
probability of having lunch together is at least 1/2?
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Alphametics: animals

JRM 514. by Michael R. W. Buckley
Solve the alphametic:

CLEAR + LAKES + LURE + LARGE = DRAKES.

where DRAKES is as large as possible.

Alphametics: chess moves

JRM 639. by Michael Keith
Solve the chess alphametic

(B− B6) + (K− R6) + (B− B5) + (K− R7)

+ (B− Q5) + (K− R8) + (O− O) = MATE

where the numbers which already appear may be reused,
the dash stands for a digit, (O− O) represents the castling
move, and Q ≥ 3 × B. Can anyone come up with a chess
alphametic having DRAW as its solution?

JRM 721. by Michael Keith
Solve the chess alphametic

(K− f4) + (P− c5) + (P− d5) + (P− f5)

+ (K− g5) + (P− f4) + (P− f3) = QZAP

where the numbers which already appear may be reused and
the dash stands for a digit.

Alphametics: Christmas

JRM 413. by Sidney Kravitz
Solve the alphametic:

TOYS + NOEL + SANTA = CLAUS

where the prime interest of many children will be in their
TOYS.

Alphametics: congruences

JRM 456. by Randall J. Covill
Find the smallest positive integral values of S, P, O,

T, and I such that the following is true (the * indicates
multiplication):

S ∗ P ∗ O ∗ T ≡ 0 (mod 462)

I ∗ S ≡ 0 (mod 12)

T ∗ O ∗ P ∗ S ≡ 3 (mod 5).

Alphametics: constructions

JRM 707. by Saburo Tamura
There are 2,401 unique-solution decimal cryptarithms

of the form 3 digits + 3 digits = 4 digits. For example,
EEL + OWL = ODDY.

(a) How many decimal cryptarithms are there of the
form 3 digits + 1 digit = 4 digits?

(b) How many of them have unique solutions?
(c) How many of these are realizable with English

words?

Alphametics: cubes

PME 381. by Clayton W. Dodge
Solve the following alphametics:

ICE
3 = ICYWHEEE

ICE
3 = ICYOHOH.

Alphametics: division

JRM 403. by R. S. Johnson
Solve the alphametic: NEST/EDEN = .UNSAIDUNSAID . . .

OSSMB 77-8.
Each letter below represents a different digit, where

THA − TZE = TB, TBY − TZE = BK, BKE − TZE = EKZ, and
EKZR− EAZY = EBB. Find the digits.

THAYER

IRA
= EEEY

SSM 3645. by Alan Wayne
Solve the long division alphametic:
MY)JUG(IS

NO
MUG
MUG.

SSM 3654. by Alan Wayne
Solve the long division alphametic:
ED)OIL(UP

AN
EEL
EEL.

Alphametics: doubly true

JRM 436. by Sidney Kravitz
Solve the alphametic:

EEN + TVEIR + TRE + VIER = DIECI

where the sum of the digits of TRE is 10.

JRM 414. by Herman Nijon
Solve the alphametic:

TWINTIG + TWINTIG + DERTIG + DERTIG = HONDERD

where TWINTIG is not divisible by 3, but DERTIG is divisible
by 3.

JRM 415. by Herman Nijon
Solve the alphametic:

TWENTY + TWENTY + THIRTY + THIRTY = HUNDRED.

CRUX 491. by Alan Wayne
Solve the alphametic:

UN + DEUX + DEUX + DEUX + DEUX + DEUX = ONZE.

JRM 749. by Masazumi Hanazawa
Solve the alphametic:

ONE + TWO + TWO + THREE + THREE = ELEVEN.
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CRUX 481. by Herman Nyon
Solve the alphametic

DEUX + DEUX + DEUX + TROIS + TROIS = DOUZE

where DEUX is divisible by 2 and DOUZE is divisible by 8.

NYSMTJ 91. by Alan Wayne
Solve the alphametic:

12(UNIT) = TWELVE.

JRM 368. by Michael R. Buckley
Solve the alphametic:

ONE + ONE = TWO.

What is the lowest base in which this alphametic has
a unique solution?

SSM 3618. by Charles W. Trigg
In each of two different bases, there is a solution of the

doubly-true cryptarithm:

ONE + ONE = TWO

in which the digits uniquely represented by the letters, in
some order, are consecutive. Find the two solutions and
show that there are no others involving consecutive digits
in any base.

JRM 584. by Michael Keith
Solve the alphametic:

UNO + UNO = DOS.

This alphametic has a unique solution in one and only
one positive base b. Find b and show that it is indeed unique.

CRUX 341. by Herman Nyon
Solve the alphametic

TROIS + TROIS + SEPT + SEPT = VINGT

where SEPT is divisible by 7.

JRM 398. by Steven Kahan
Solve the alphametic:

ELEVEN + THREE + TWO + TWO + TWO = TWENTY.

JRM 399. by Steven Kahan
Solve the alphametic:

ELEVEN + THREE + TWO + TWO + ONE + ONE = TWENTY

where THREE is divisible by 3.

JRM 400. by Steven Kahan
Solve the alphametic:

ELEVEN+THREE+ONE+ONE+ONE+ONE+ONE+ONE = TWENTY

where THREE is divisible by 3.

JRM 437. by Sidney Kravitz
The following alphametic was published earlier:

NINE
EIGHT
THREE
TWENTY

Solve the alphametic where these numbers are vertical:
T

ETW
NIHE
IGRN
NHET
ETEY

In both alphametics, the sum of the digits of TWENTY
is 20 and only nine of the ten digits are used; the missing
digit is the same in both cases.

JRM 486. by Steven Kahan
Solve the alphametic:

SEVEN + FIVE + FIVE + ONE + ONE + ONE = TWENTY

where SEVEN is divisible by 7.

JRM 576. by R. S. Johnson
Solve the alphametic:

EIGHT + THREE + THREE + THREE + THREE = TWENTY

where EIGHT, THREE, and TWENTY are all divisible by 83.

JRM 612. by Herman Nijon
Solve the alphametic:

CUATRO + CUATRO + CUATRO + CUATRO + CUATRO = VEINTE.

JRM 691. by Masazumi Hanazawa
Solve the alphametic:

THREE + THREE + THREE + ELEVEN = TWENTY.

CRUX 281. by Alan Wayne
JRM 725. by Gordon S. Lessells

Solve the alphametic

HUIT + HUIT + HUIT = DOUZE + DOUZE.

JRM 719. by Dave Millar
Solve the alphametic:

TEN + NINES + LESS + SIXTY = THIRTY

where NINES is divisible by 9.

PME 391. by Clayton W. Dodge
Solve the alphametic:

TWELVE + NINE + NINE = THIRTY

where NINE is divisible by 9.

JRM 693. by Herman Nijon
Solve the alphametic:

ZEVEN + DRIE + TIEN + TIEN = DERTIG.
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JRM 578. by Michael R. W. Buckley
TYCMJ 142. by Alan Wayne

Solve the alphametic:

COUPLE + COUPLE = QUARTET.

NYSMTJ 37. by Alan Wayne
Solve the simultaneous cryptarithms:

TWO + TWO = FOUR

TWO× W = FOUR.

JRM 418. by Steven Kahan
Solve the alphametic:

FOURTEEN + SEVEN + TEN + TEN = FORTYONE.

JRM 458. by Steven Kahan
Solve the alphametic:

FOURTEEN + FIVE + FIVE + FIVE + FIVE

+ FIVE + ONE + ONE = FORTYONE

where FOURTEEN is divisible by 7.

JRM 665-3. by Jay Stevens
Solve the alphametic:

FOURTEEN + ELEVEN + 16(ONE) = FORTYONE.

JRM 543. by Herman Nijon
Solve the alphametic:

7(SEVEN) = FORTY9

where SEVEN is divisible by 7.

JRM 665-2. by Dave Millar
Solve the alphametic:

FORTY + NINE + IS + SEVEN = SEVENS.

JRM 727. by Frank Rubin
Solve the alphametic

SEVEN× SEVEN = FORTYNINE

in the smallest possible base.

JRM 774. by Hans Havermann
Solve the alphametic:

ONE + ONE + ONE + ONE = FOUR + ONE = FIVE.

JRM 409. by Brian R. Barwell
Solve the alphametic:

25(TWO) = FIFTY.

JRM 459. by Steven Kahan
Solve the alphametic:

SEVEN + SEVEN + THREE + THREE + TEN + TEN + TEN = FIFTY

where SEVEN is divisible by 7.

JRM 636. by Dave Millar
Solve the alphametic:

FIVE + TIMES + TEN + IS = FIFTY

where FIVE is divisible by 5 and TEN is divisible by 10.

JRM 641. by Alf D. Seider
Solve the alphametic:

2(NINETEEN) + FIVE + FIVE + SIX + ONE + ONE = FIFTYSIX

where SIX is even.

JRM 432. by Steven Kahan
Solve the alphametic:

6(EIGHT + TWO) = SIXTY

where EIGHT is divisible by 8.

JRM 746. by Herman Nijon
Solve the alphametic:

DOZEN + DOZEN + DOZEN + DOZEN + DOZEN = SIXTY

where DOZEN is divisible by 12, and so is its digital sum.

JRM 583. by Jay Stevens
Solve the alphametic:

2(FIFTEEN) + 3(SEVEN) + TEN = SIXTYONE.

JRM 544. by Herman Nijon
Solve the alphametic:

8(EIGHT) = SIXTY4.

JRM 492. by Anton Pavlis
Solve the alphametic:

WE + ADD + 3AND4 = SEVEN.

CRUX 451.
Solve the alphametic

TWENTY + TWENTY + THIRTY = SEVENTY,

where THIRTY is divisible by 30.

JRM 364. by S. Kahan
Solve the alphametic:

SIXTEEN + THIRTY + SIX + SIX + SIX + SIX = SEVENTY

where SEVENTY is even.

JRM 525. by Steven Kahan
Solve the alphametic:

TWENTY + 4(ELEVEN) + THREE + THREE = SEVENTY.

JRM 526. by Steven Kahan
Solve the alphametic:

TWENTY + 4(ELEVEN) + SIX = SEVENTY.

JRM 608. by Michael R. W. Buckley
Solve the alphametic:

5(ELEVEN) + SEVEN + SEVEN + HALF + HALF = SEVENTY.

JRM 726. by Alf D. Seider
Solve the alphametic:

FIFTEEN + FIFTEEN + 10(THREE) + TEN = SEVENTY.
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JRM 750. by Kenneth Vasa
Solve the alphametic:

SIXTEEN + TWENTY + 3(TEN) + TWO + TWO = SEVENTY

where SEVENTY is even.

JRM 516. by Frank Rubin
FQ B-312. by J. A. H. Hunter

Solve the alphametic:

THREE + TWO + ONE + ONE + ONE = EIGHT.

JRM 517. by Frank Rubin
Solve the alphametic:

THREE + TWO + TWO + ONE = EIGHT.

FQ B-316. by J. A. H. Hunter
Solve the alphametic

TWO + THREE + THREE = EIGHT

where none of the digits is an 8.

JRM 369. by A. G. Bradbury
Solve the alphametic:

THEN + TEST + EIGHT + TIMES + TEN = EIGHTY

where EIGHTY is even.

JRM 611. by Masazumi Hanazawa
Solve the alphametic:

TWENTY + TWENTY + TWENTY + TEN + TEN = EIGHTY.

JRM 640. by T. Rosler
Solve the alphametic:

16(FIVE) = EIGHTY.

JRM 665-1. by Masazumi Hanazawa
Solve the alphametic:

TEN + TEN + TEN + TEN + TWENTY + TWENTY = EIGHTY.

JRM 775. by Masazumi Hanazawa
Solve the alphametic:

THREE+ THREE+ FIVE+ NINE+ THIRTY+ THIRTY = EIGHTY.

CRUX 261. by Alan Wayne
Solve the alphametic

UN + DEUX + DEUX + DEUX + DEUX = NEUF.

JRM 613. by Edwin Floyd
Solve the alphametic:

TPIA + TPIA + TPIA = ENNEA.

JRM 692. by Edwin E. Floyd
Solve the alphametic:

TRIA + DVO + DVO + DVO = NOVEM.

JRM 433. by Steven Kahan
Solve the alphametic:

ELEVEN + SIXTY + SEVEN + SEVEN + FIVE = NINETY.

JRM 485. by Steven Kahan
Solve the alphametic:

FIFTY + SEVEN + SEVEN + EIGHT + EIGHT + TEN = NINETY

where SEVEN is divisible by 7.

JRM 776. by Jay Stevens
Solve the alphametic:

SIXTY + 3(EIGHT) + THREE + THREE = NINETY

where NINETY is even.

Alphametics: elements

JRM 520. by Herman Nijon
Solve the alphametic:

OXYGEN + XENON + ARGON + NEON = NATURE.

Alphametics: equations

OSSMB 77-15. by Stephen Maulsby
Each letter in the arithmetic operations below repre-

sents a different digit. Find these digits.

ABCD − DGB = AKJA

÷ + −
AE × EJ = DCCH

= = =

FGH + DBK = ABC

Alphametics: food

CRUX 351. by Sidney Kravitz
Solve the alphametic

GRAPE + APPLE = CHERRY.

CRUX 381. by Sidney Kravitz
Solve the alphametic

BETTE + TOMATE = OIGNON.

JRM 717. by Sidney Kravitz
Solve the alphametic:

PEPPER + PARSNIP = SPINACH.

JRM 720. by Ronald J. Lancaster
Solve the alphametic:

A + TREAT + CARTER + PEANUT = BUTTER.

Alphametics: letters

JRM 723. by Herman Nijon
Solve the alphametic:

ALPHA + BETA + GAMMA = OMEGA

where OMEGA is largest.

Alphametics: money

JRM 779. by Gordon S. Lessells
Solve the alphametic:

5(POUND) = DOLLAR + DOLLAR.
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Alphametics: multiplication

CRUX 321. by Alan Wayne
Solve the alphametic

ONE× ONE = BYGONE.

CRUX 471. by Alan Wayne
Solve the alphametic:
WE
DO
TAM
HAT
TRIM

ISMJ 14.8.
Solve the alphametic:

9× HATBOX = 4× BOXHAT.

JRM 615. by Alan Wayne
Solve the alphametic:
WE)GOT(US

AN
OUT
OUT

JRM 669. by Rosann Hyler
It might seem that over 8000 different solutions to

the following alphametic should be possible. However, the
alphametic is

(NOT)(8∗∗∗) = VALUED

when zero is allowed only as an asterisk and 8 may be
reused.

JRM 752. by Frank Rubin
Solve the alphametic:

NINE× FOR× EVER = GOGOGOGOGO.

SSM 3673. by Alan Wayne
Solve the following two alphametics:
(a) A× DIVA = AVID
(b) I× SPOT = TOPS.

SSM 3739. by Alan Wayne
What might be said about De Moivre:

HE× IS = BIG + FOR = TRIG.

Regard the preceding pattern as an arithmetic multiplica-
tion of integers in the decimal system in which each digit
has been replaced by one and only one letter, with different
digits being replaced by different letters. Restore the digits.

SSM 3750. by Alan Wayne
Solve the alphametic:

DEED× DEED = EDUCATOR.

JRM 695. by T. Rosler
Solve the alphametic:

RUM× RUM = DRINKS.

JRM 522. by T. Marlow
Solve the alphametic:

EAST× S = WEST.

JRM 523. by T. Marlow
Solve the alphametic:

WEST× S = EAST.

PENT 280. by Kenneth M. Wilke
Solve the cryptarithm:

THAT = (AH)(HA).

CRUX 241. by John J. McNamee
Solve the alphametic

(HE)(EH) = WHEW.

Alphametics: names

JRM 718. by A. G. Bradbury
Solve the alphametic:

THEN + THE + LION + ATE + LITTLE = ALBERT.

FQ B-322. by Sidney Kravitz
Solve the alphametic

ARKIN + ALDER + SALLE = ALLADI.

where 6 does not appear.

JRM 402. by Anton Pavlis
Solve the alphametic:

SEND + ONE + TO = ANTON.

CRUX 105. by Walter Bluger
INA BAIN declared once at a meeting
That she’d code her full name (without cheating),
Then divide, so she reckoned,
The first name by the second,
Thus obtaining five digits repeating.

JRM 374. by Walter Bluger
When asked for her phone number and date of birth,

Ina Bain replied: “If each distinct letter stands for a partic-
ular but different digit, then my phone number is given by
the seven letters of my name. If you divide INA by BAIN, a
fraction in its lowest terms, you get a decimal with a 5-digit
repeating cycle which shows the day, month, and the last
two digits of the year of my birth, in that order.”

What was Ina’s birth date?

JRM 548. by Fred Pence
Solve the alphametic:

BAT-
MAN
AND

ROBIN

where ROBIN is prime, and the - represents a digit.

JRM 404. by R. S. Johnson
Solve the alphametic:

THE + MATH + BIBLE + BY + MR + ALBERT = BEILER.

JRM 747. by Ronald J. Lancaster
Solve the alphametic:

MEET + A + PEANUT + FARMER + MR = CARTER.
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JRM 770b. by Eva L. Milbouer
Solve the alphametic:

MANET + MONET = COROT

where COROT is as great as can be.

JRM 515. by Leslie E. Card
Solve the alphametic:

FORD + AND + SADAT = CONFER.

CRUX 236. by Viktors Linis
Solve the alphametic

GAUSS− DIED = 1855.

CRUX 238. by Clayton W. Dodge
Solve the alphametic

CARL + 1777 = GAUSS

where both 1 and 7 are represented among the letters.

CRUX 239. by Clayton W. Dodge
Solve the alphametic

CARL + 1777 + 1855 = GAUSS

where each of the digits 1, 5, 7, and 8 is represented by a
letter.

CRUX 240. by Clayton W. Dodge
Solve the alphametic

CARL× F = GAUSS.

JRM 610. by A. G. Bradbury
Solve the alphametic:

SOON + HOLMES + WE + TEST = WATSON.

CRUX 301. by Herman Nyon
Solve the alphametic

HUNTER− TRIGG = DIGITS.

where there are two solutions and the sum of the digits of
HUNTER and TRIGG in one solution are equal, respectively,
to the sum of the digits of TRIGG and HUNTER in the other
solution.

JRM 686. by A. G. Bradbury
Solve the alphametic:

AYE + AYE + CARRY + ON = JEEVES

where “CARRY ON” may sound a little odd to some ears, but
these are not odd words. Any fan of Bertie Wooster in P.
G. Wodehouse’s many stories would readily confirm this!

CRUX 431. by Alan Wayne
The following decimal alphametic is dedicated to Er-

win Just, Problem Editor of the Two-Year College Math-
ematics Journal, who modestly refused to publish it in his
own journal:

YES + YES + JUST = ERWIN.

ERWIN is, of course, unique.

JRM 429. by Leslie E. Card
Solve the alphametic:

RECMATH + SALUTES = MADACHY

in base 12.

JRM 449. by Steven Kahan
Solve the alphametic:

NELSON + STARTS + AS + AN = EDITOR.

JRM 663. by A. G. Bradbury
Solve the alphametic:

OMARS + RUBY + HAT + A = BEAUTY.

where the use of base 11 is recommended, and the largest
possible RUBY is sought.

JRM 455. by Leslie E. Card
Solve the alphametic:

POLK + TAFT + FORD + FOOL = PROOF.

NYSMTJ 65. by Janet Locke
Solve the following alphametic:

FOR + EITHER + FORD + OR + CARTER = ACHEER.

JRM 581. by Alan Wayne
Solve the alphametic:

ALAN + WAYNE = SOLVER

where SOLVER is odd.

Alphametics: numbers

JRM 577. by Herman Nijon
Solve the alphametic:

SQUARE + SQUARE + CUBE + CUBE + CUBE = NUMBERS.

JRM 609. by Peter MacDonald
Solve the alphametic:

ONES + ZEROES = BINARY.

Alphametics: phrases

CRUX 251. by Robert S. Johnson
Solve the alphametic

SPRING + RAINS + BRING + GREEN = PLAINS.

JRM 416. by Anton Pavlis
Solve the alphametic:

ON
MOON

NO
GREEN
CHEESE

JRM 417. by Frank Rubin
Solve the alphametic:
HE
IS
HUB
OF
LAB
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JRM 743. by Ronald J. Lancaster
Solve the alphametic:

COME + ONE + COME + ALL + HAVE + A = BALL

where BALL is prime.

JRM 616. by Les Marvin
Solve the alphametic:

ANOTHER + ROTTEN + ENCODED = ADDITION.

In what bases, if any, can this be solved?

PME 433. by Clayton W. Dodge
Solve the alphametic:

PAY + MY = BILL

where BILL is divisible by 4.

JRM 405. by Derrick Murdoch
Solve the alphametic:

BRIDE + RIDES + UNDER = BRIDGE.

JRM 428. by A. G. Bradbury
Solve the alphametic:

CHOOSE + CHESS + OR = BRIDGE

where neither game is ODD.

JRM 450. by A. G. Bradbury
Solve the alphametic:

BITTER + SWEET + WISE = CHOICE

where CHOICE is odd.

JRM 662. by Ronald J. Lancaster
Solve the alphametic:

SMOKE + MAKES + ME = CHOKE.

JRM 524. by A. G. Bradbury
Solve the alphametic:

DO + NOT + SAY = DIE

where the three-letter words form a regular magic square.

JRM 745. by A. G. Bradbury
Solve the alphametic:

LET + THREE + LITTLE + MAIDS = DISMISS.

MATYC 95. by Sarah Brooks
Solve the alphametic

PEACE + HERE + ON = EARTH.

JRM 753. by Robert Gladman
Solve the alphametic:

ABLE + WAS + I + ERE + I + SAW = ELBA

(a) Find a solution in which ELBA is prime both forward
and backward.

(b) Find a solution in which more than four of the
seven words are prime.

(c) Find a solution in which both WAS and SAW are
prime.

JRM 435. by Donna Kossy
Solve the alphametic:

LAZY− WEEK = END.

JRM 547. by R. S. Johnson
Solve the alphametic:

SCIENTIFIC + AMERICAN + MASTER + CREATES

+ FRENETIC + INTEREST + IN + IMF + METRIC

+ TENS + STATE = FANTASTICA.

JRM 687. by Michael R. W. Buckley
Solve the alphametic:

SCIENCE + FACT + SCIENCE = FICTION.

JRM 614. by Hank Venetas
Solve the alphametic:

THAT + THAT + THAT + THATS + ALL = FOLKS.

where FOLKS is largest.

JRM 549. by Michael R. W. Buckley
Solve the alphametic:

THESE + THREE + FLEAS = FREEZE.

where FLEAS is odd.

JRM 582. by J. A. H. Hunter
Solve the alphametic:

ALORS + ALORS + NOUS + NOUS = LAVONS.

JRM 484. by R. S. Johnson
Solve the alphametic:

PASSES + AT + AHHS + LASSIES + PLEASE

+ LASSIES + WITH = GLASSES.

JRM 488. by Eva L. Milbouer
JRM 489.
JRM 490.

Solve the independent alphametics:

(1)

(2)

(3)

ADAM + AND + EVE + ATE + THE = SNAKE,

THE + SNAKE + IS + IN + THE = GRASS,

ALAS + ALAS + ALAS + CRAB = GRASS.

Clue: the number A increases in value from (1) to (2) to (3).

JRM 688. by Anton Pavlis
Solve the alphametic:

DOG + EATS + DOG + IS = GREED.

JRM 406. by Derrick Murdoch
Solve the alphametic:

GROOM + GOES + UNDER = GROUND

where BRIDE is odd.

JRM 366. by A. G. Bradbury
Solve the alphametic:

CATCH + THE + STOLEN = LAUNCH.
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JRM 574. by John W. Harris
Solve the alphametic:

MIX + FUN + AND = MATH

where FUN is largest.

CRUX 441. by Sunder Lal and Léo Sauvé
Solve the alphametic

ASHA + GOT + THE = MEDAL.

JRM 439. by Anton Pavlis
Solve the alphametic:

THE + BEST + SYSTEM = METRIC.

JRM 551. by Frank Rubin
Solve the alphametic:

DAD + SEND + MORE = MONEY.

JRM 552. by Frank Rubin
Solve the alphametic:

I + SENT + HIM + MORE = MONEY.

JRM 553. by Frank Rubin
Solve the alphametic:

SEND + YET + MORE = MONEY.

JRM 460. by Sidney Kravitz
Solve the alphametic:

741776 + THE + BIRTH + OF + A + FREE = NATION.

JRM 689. by J. A. H. Hunter
Solve the alphametic:

SO + SEEMS + NO + END + TO + MANS = NEEDS

where NEEDS is prime.

CRUX 401. by Herman Nyon
Solve the alphametic

HAPPY + NEW + YEAR = ∗1979
where the eight letters and the asterisk represent nine dis-
tinct nonzero digits and YEAR is divisible by 7.

JRM 606. by Frank Rubin
Solve the alphametic:

A + STITCH + IN + TIME = SAVES9.

JRM 605. by Ronald J. Lancaster
Solve the alphametic:

JRM + THE + FUN = ONE.

JRM 744. by A. G. Bradbury
Solve the alphametic:

HEAR + YE + HEAR + YE + SAVOY = OPERAS.

JRM 754. by H. Everett Moore
Solve the alphametic:

CAMP + DAVID = PEACE

where PEACE is greatest.

JRM 518. by Paul E. Boymel
Solve the alphametic:

CALM + AREA + LESS + MASS = MAGIC

where E = MC2.

JRM 519. by Herman Nijon
Solve the alphametic:

EARTH + AIR + FIRE + WATER = NATURE.

JRM 491. by Anton Pavlis
Solve the alphametic:

POLICE + ARREST + ASSIST = PEOPLES.

JRM 575. by Peter MacDonald
Solve the alphametic:

ALPHA + METIC = PLEASE

where PLEASE is odd.

JRM 408. by Michael R. W. Buckley
Solve the alphametic:

EVEN + ODD = PRIME.

There are nine different digits, so find a solution in
base 9 where ODD is odd, EVEN is even, and PRIME is prime.

JRM 482. by Michael R. W. Buckley
Solve the alphametic:

VERY + EASY = PUZZLE

where the power of negative thinking will help to solve this
PUZZLE in the greatest base possible. This provides an op-
portunity for comments on modern methods of mathematics
instruction.

JRM 431. by R. S. Johnson
Solve the alphametic:

TO + BE + OR + NOT + TO + BE + THAT + IS + THE = ????

Each ? stands for the same digit which may already be
represented by one of the other letters in the alphametic.

CRUX 391. by Allan Wm. Johnson Jr.
Solve the alphametic

A + SUN + DRIED + GRAPE = RAISIN

where P > U.

JRM 633. by A. G. Bradbury
Solve the alphametic:

MEN + SEE + MINI + SKIRTS = RETURN.

JRM 401. by Anton Pavlis
Solve the alphametic:

SEND + SIX + RED = ROSES.

JRM 742. by Patrick Costello
Solve the alphametic:

STAR + WARS + WHAT + A = SIGHT.
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JRM 367. by Anton Pavlis
Solve the alphametic:

FULL + VALUE + FOR = SILVER.

JRM 461. by Anton Pavlis
Solve the alphametic:

SOME + SAW + A + HOLY = SMOKE.

JRM 661. by Ronald J. Lancaster
Solve the alphametic:

OK + NO + JOKE + DO + NOT = SMOKE

where SMOKE is our prime objective.

JRM 542. by J. A. H. Hunter
Solve the alphametic:

NOT + TOO + EASY + TO = SOLVE.

JRM 690. by Ronald J. Lancaster
Solve the alphametic:

HATE + TO + DO + 55 + NEED + TO = SPEED

where the digit 5 may not be used again.

JRM 778. by W. A. Robb
Solve the alphametic:

NOSY + PORTER + TOO + NOSY + WRITES + WRY = STORIES

where the PERSON is odd.

JRM 660. by Bob Vinnicombe
Solve the alphametic:

FISN + N + CHIPS = SUPPER.

JRM 580.
Solve the alphametic:

MARS + TRIP + HIS + PRIME = TARGET.

CRUX 331. by J. A. H. Hunter
Solve the alphametic

WELL + WELL + A + NEW = TITLE

where TITLE is odd.

JRM 365. by J. A. H. Hunter
Solve the alphametic:

PETER + PETTLE + PEDDLES + PEWTER = POODLES

where POODLES are odd.

JRM 453. by Michael R. W. Buckley
Solve the alphametic:

BLOKE + SMOKES + BLOKE = CROAKS

where the Surgeon General has determined that alphametic
solving is addictive (but not as odd as these SMOKES must
be).

JRM 550. by Steven Kahan
Solve the alphametic:

PETER + PIPER + PICKS + PICKLED = PEPPERS

where PETER is odd.

JRM 773. by A. G. Bradbury
Solve the alphametic:

NO + PIANO + TUNA + IS + NOT + A + FISH = SOPHIA.

SSM 3576. by Alan Wayne
In the addition

THIS + ADDS + TO = TOTAL

each letter uniquely represents a decimal digit. What is the
TOTAL?

JRM 481. by A. G. Bradbury
Solve the alphametic:

WE + END + THE + NEW + MATH = TREND

where TREND is prime.

JRM 487. by Michael Keith
Solve the alphametic:

DOUBLE + DOUBLE + TOIL = TROUBLE.

JRM 771. by John A. McCallum
Solve the alphametic:

JOHN + DONNE + AND + ANNE + DONNE + ARE = UNDONE.

JRM 635. by Herman Nijon
Solve the alphametic:

THE + STATE + OF + THE = UNION.

JRM 748. by Anton Pavlis
Solve the alphametic:

MORE + POWER + MORE = WORRY.

Alphametics: places

JRM 452. by Michael R. W. Buckley
Solve the alphametic:

UNION + SOUTH = AFRICA

in base 11.

JRM 397. by Alister W. Macintyre
Solve the alphametic:

FIFTY + STATES = AMERICA.

JRM 451. by Michael R. W. Buckley
Solve the alphametic:

UNITED + STATES = AMERICA

in base 11.

JRM 634. by Gordon S. Lessells
Solve the alphametic:

LAGOS + CAIRO = ACCRA.

where CARGO is the largest that can be transported from
LAGOS to CAIRO via ACCRA.
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CRUX 421. by Sidney Kravitz
Solve the independent alphametics

UNITED + STATES = CANADA,

UNITED + STATES + AND = CANADA,

THE + UNITED + STATES + AND = CANADA,

LES + ETATS + UNIS + ET = CANADA.

JRM 777. by Sidney Kravitz
Solve the alphametic:

FINLAND + IRELAND = DENMARK.

JRM 668. by Peter H. Mabey
Solve the alphametic:

(IRELAND + IRA)÷ 2 = STRIFE.

JRM 438. by Anton Pavlis
Solve the alphametic:

CANOE + RIDE + TO + SCENIC = ONTARIO.

CRUX 461. by R. Robinson Rowe
Solve the alphametic

C + DODGE + MAINE = ORONO,

where DODGE is largest.

JRM 638. by Anton Pavlis
Solve the alphametic:

QUEBEC + ELECTED = TROUBLE.

CRUX 311. by Sidney Kravitz
Solve the alphametic

OTTAWA + CALGARY = TORONTO.

Alphametics: planets

JRM 724. by Peter J. Martin
Solve the alphametic:

PLUTO + SATURN + URANUS + NEPTUNE = PLANETS.

Alphametics: radicals

CRUX 277. by R. Robinson Rowe
Solve the simultaneous alphametics

√
EUREKA = UEA

3
√
EUREKA = RT

and find the value of

4
√
EUREKA.

CRUX 411. by Alan Wayne
Solve the alphametic

√
PASSION = KISS.

Alphametics: simultaneous alphametics

JRM 412. by Michael Keith
Solve the alphametic:

READ + J + REC + MATH = NEAT!

where READ + T = an integral power of N.

MSJ 433. by Alan Wayne
Solve the simultaneous alphametics:

ONE + ONE + W = TWO

E× ONE = TWO.

SSM 3607. by Alan Wayne
Solve the Arabic-Roman cryptarithmic system:

TWO + TWO + TWO = SIX

VI + VI = XII.

Each letter represents just one decimal digit, and different
letters represent different digits.

JRM 666. by Michael R. W. Buckley
JRM 667.

Solve the simultaneous alphametics:

PENNY + PENNY + PENNY + PENNY + PENNY = NICKEL.

PENNY× V = NICKEL.

Alphametics: squares

CRUX 201. by Clayton W. Dodge
Solve the alphametic

LEO
2 = SUAVE.

CRUX 211. by Clayton W. Dodge
Solve the alphametic

FGB
2 = MASKEL

where FGB is divisible by 9.

CRUX 221. by Clayton W. Dodge
Solve this alphametic

CW
2 = TRI.GG,

where the solution does not contain the digit 1.

PENT 297. by Charles W. Trigg
The number RETIRE is a perfect square in the decimal

system with −RE + TI = RE. Each letter represents a dif-
ferent digit and the sum of three digits equals the fourth.
What is this square number?

Alphametics: states

JRM 454. by Leslie E. Card
Solve the alphametic:

OHIO + IOWA + UTAH = GUAM.

JRM 483. by Leslie E. Card
Solve the alphametic:

SAMOA + IDAHO = TEXAS.
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MATYC 105. by Pat Boyle
Solve the alphametic:

CAL + ORE + WASH + WEST = COAST

where CAL and ORE are prime.

JRM 457. by R. S. Johnson
Solve the alphametic:

DEVIL + AS + NEW + EVE + IS + ALIVE + AND

+ WELL + IN + VEGAS = NEVADA.

Alphametics: story problems

JRM 643. by R. S. Johnson
My name is OTO TOTA and my good friend INA BAIN

encouraged me to pose this problem. I live in LA, which
happens to be a factor of both my names. My first name
divided by my surname produces the repeating decimal frac-
tion .TATLO. Coincidentally, this repeating group gives the
day, month, and year of my young son Tatlo’s birth. Can
you discover the date?

Alphametics: words

ISMJ 14.6.
Solve the cryptarithm:

Y + Y + Y = MY.

ISMJ 14.7.
Solve the alphametic:

ON + ON + ON + ON = GO.

JRM 411. by R. S. Johnson
Solve the alphametic:

SAD + DAD + DAL + JIM + NUN + LAM + SIN = SHIN.

where both NUN and SIN are prime.

JRM 521. by R. S. Johnson
Solve the alphametic:

H0000 + ALIPHATIC + LITHAEMIA + PIECEMEAL + HEMATITIS

+ APATHETIC + MALACHITE + EPILEPTIC + TIMELIMIT

+ IMPLICATE + CLIMACTIC = ALPHAMETIC.

JRM 637. by Underwood Dudley
Solve the alphametic:

STABLE + TABLE + ABLE = ATBEST.

JRM 642. by Michael R. W. Buckley
Show that there is a unique solution in a unique base

when
LILS + OILS = SPOIL.

JRM 644. by Ronald J. Lancaster
Consider the alphametic:

HELL + HELL + · · ·+ HELL = HEAVEN.

How many HELL’s must be endured before one arrives
at HEAVEN?

JRM 670. by Frank Rubin
Solve the alphametic:

(OLD) (DOG)
(HER) = (SHY)

JRM 694. by Peter MacDonald
Solve the alphametic:

18(ADD) = TOTAL.

JRM 697. by Hank Venetas
A beau, hoping to kindle the passions of his lady, de-

posits half a dozen rare red ROSES on her doorstep each day.
Assuming that rare quantities are indeed odd, how many
must be delivered in order to insure a total ROMANCE? That
is, solve

ROSES + ROSES + · · ·+ ROSES = ROMANCE

where the number of summands, currently unspecified, must
be a multiple of six.

JRM 716. by Michael R. W. Buckley
Solve the alphametic:

COLOR + COLOR + COLOR + COLOR = ENOUGH

where no zeros are allowed.

NYSMTJ 99. by Alan Wayne
Restore the digits in the decimal alphametic to answer

the question, “Where was it done?”

MADE + MEAD = 2961.

SSM 3691. by Alan Wayne
This might be a possible Dutch treat:

MADE + MEAD = EDAM.

Interpret the above to be an addition problem in the decimal
system, where each letter corresponds uniquely to a digit
and conversely. Restore the digits.

SSM 3726. by Al White
Solve the alphametic:

MADE− MEAD = EDAM

in base b. For which values of b does this problem have
exactly one solution?

PENT 287. by Randall J. Covill
Solve the alphametic:

SUBTEND + ADDEND = ANSWERS

in base 14 where E 6= 0.

SSM 3718. by Alan Wayne
Solve the alphametic:

TITHE + TITHE = FIFTH.

SSM 3780. by Alan Wayne
“What is the sound?”

ON + ONE + NOTE + ONE = 6943.

Regard the preceding as an addition in which each letter
corresponds in a one-to-one manner with a decimal digit.
Restore the digits and the letters in order to answer the
question.
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SSM 3708. by Alan Wayne
Solve the alphametic:

LIVE + VILE = EVIL.

TYCMJ 88. by Alan Wayne
Solve the independent alphametics:
(a) ETNA + NEAT = ANTE, and
(b) ANTE + NEAT = ETNA.

JRM 407. by Sidney Kravitz
Solve the alphametic:

PISCES + TAURUS = SCORPIO.

JRM 430. by Garry Crum
Solve the alphametic:

BISHOP + BISHOP = KNIGHTS.

CRUX 361. by R. Robinson Rowe
Find MATH in the two-stage alphametic:
MH · M · AT/H = MATH

MATH

Axxx
xxxxx
xxxxx
xxxxx
xxMATHxx

in which the x’s need not be distinct from M, A, T, or H.

JRM 607. by Fred Pence
Solve the alphametic:

NBC + ABC = CBS.

where NBC is the PRIME network in this problem, but each
network manages to avoid a zero.

JRM 722. by Martinus Ngantung
Solve the alphametic:

MAN + WOMAN = CHILD

where CHILD is as small as possible, and his birthdate is
C/HI/LD.

JRM 546. by A. G. Bradbury
Solve the alphametic:

DING + DONG + DING + DONG + BELLS = SOUND

where SOUND is as small as possible.

JRM 545. by Les Marvin
Solve the alphametic:

QUARK + QUARK + QUARK = BARYON

where these tiny particles are, of course, as small as they
can be!

Arrays

JRM 443. by David L. Silverman
Remove the A, 2, 3, . . . , 9 of spades, hearts, and dia-

monds from a pack of playing cards. Counting the ace as
one, is it possible to arrange these 27 cards in nine groups
of three in such a way that each group of three

(a) contains a spade, a heart, and a diamond and
(b) has a square total?
Is it possible if requirement (a) is removed?

SSM 3650. by E. J. Ulrich
The letters a, b, c, d, e, f , g, h, n, m are arranged

around a pentagon. Replace each letter by a number from
1 through 10 (using each number but once) so that the
totals of the three numbers on each of the five sides of the
pentagon will all be the same. Call this common total T .

(a) What is the minimum value for T?
(b) What is the maximum value for T?
(c) Are solutions possible for all integers between these

two?

JRM 420. by P. MacDonald
Using some or all of the calculator numerals 0, 1, 2, 5,

6, 8, 9, create a 3× 3 array such that:
(a) the center row contains no zeros;
(b) when the top number (3 digits) is added to the mid-

dle number (3 digits), the result equals the bottom number;
(c) when the page is turned upside down, (b) is true

again.

PME 377. by Charles W. Trigg
From the following square array of the first 25 positive

integers, choose five, no two from the same row or column,
so that the maximum of the five elements is as small as
possible.

2 13 16 11 23

15 1 9 7 10

14 12 21 24 8

3 25 22 18 4

20 19 6 5 17

CRUX 22. by H. G. Dworschak
Show how to make the row-sums equal by moving just

two of the numbers in the matrix
(

1 2 7 9

3 4 5 8

)
.

Chess tours

PARAB 283.
A king moves on an 8×8 chessboard so that in 64 moves

it goes through all squares, on the last move returning to
its original position. Furthermore, if the circuit is drawn
by joining the center points of consecutive positions with
straight line segments, the path obtained does not cross
itself. Prove that at least 28 of the moves have been either
horizontal or vertical.

OMG 14.2.2.
Is it possible for a knight in chess to start at one corner

of a chessboard and move to the opposite corner landing
exactly once on each square of the board?
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Chessboard problems: coloring problems

NYSMTJ 68. by Alvin J. Paullay
and Sidney Penner

Each square of a 4 × 6 chessboard is colored black
or white so that the four distinct corner squares of every
rectangle formed by the horizontal and vertical lines of the
board are not the same color. Show that any such coloring
has the same number — namely 12 — of squares of each
color.

USA 1976/1.
OMG 15.1.3.

(a) Suppose that each square of a 4 × 7 chessboard is
colored either black or white. Prove that with any such
coloring, the board must contain a rectangle (formed by
the horizontal and vertical lines of the board) whose four
distinct unit corner squares are all of the same color.

(b) Exhibit a black-white coloring of a 4 × 6 board in
which the four corner squares of every rectangle are not all
of the same color.

AMM 6211.* by Alvin J. Paullay
and Sidney Penner

Suppose that each square of an n × n chessboard is
colored either black or white. A square, formed by the
horizontal and vertical lines of the board, will be called
chromatic if its four distinct corner squares are all of the
same color.

(a) Exhibit a black and white coloring of a 9×9 board
in which every such square, as described above (there are
204) is not chromatic.

(b) Find the smallest n, say s, such that with any such
coloring, every s×s board must contain a chromatic square.

PARAB 292.
The plane is divided (like a chessboard) into congruent

squares. A finite number of squares are colored black, the
others (infinitely many) remain white. After 1 second, the
squares change their color according to the following rule:

If the upper and right neighbors of a given square, S,
have the same color, then S takes this color (irrespective
of whether it had this color already or not); if they have
opposite colors, then the color of S remains unchanged.
This process is repeated after 2 seconds, 3 seconds, . . . .

Describe the eventual coloring of all squares and prove
your assertion.

Chessboard problems: counting problems

JRM 703. by Sidney Kravitz
A typesetter who works for a chess magazine sets up

chessboard diagrams by placing square type molds in an
8 × 8 array. He has a mold that shows a black king on a
black square, another for a black king on a white square,
etc. He also has molds for unoccupied black squares and
unoccupied white squares. Taking account of all the possi-
bilities, however unusual, allowed by chess rules, how many
molds must he have so that he can compose any chess dia-
gram arising from a legitimate game?

AMM 6096. by Jan Mycielski
A set of cells of a chessboard is called connected if a

rook can visit the whole set without moving over cells that
are not in the set. Set s = ann

2 and let 2s be the number of
connected subsets for a chessboard of size n×n. Prove that
the sequence a1, a2, . . . converges and estimate its limit.

Chessboard problems: covering problems

ISMJ 14.5.

A rectangle m inches by n inches is drawn where m
and n are odd integers. The rectangle is divided into mn
one inch boxes that are alternately colored red and black,
like a chessboard. The four corners are colored black. We
have

(mn−1)
2 1-inch × 2-inch dominoes and one 1-inch ×

1-inch square half-domino.

(a) Show that if the half-domino is on a red square,
it is not possible to cover the rest of the rectangle with
dominoes.

(b) Show that if the half-domino is placed on a black
square, then it is possible to cover the rest of the rectangle
with dominoes, regardless of which black square we start
with.

Chessboard problems: deleted squares

AMM E2665. by Sidney Penner

A partial chessboard is a chessboard from which
squares have been removed so that

(a) it is impossible to place even one domino on the
remaining board; and

(b) the replacement of a single deleted square, regard-
less of its location, makes it possible to place a domino on
the board. (A domino covers two squares having a common
side.)

It is easy to see that for an 8 × 8 partial chessboard,
the minimum number of deleted squares is 32. What is the
maximum number?

Chessboard problems: distribution problems

PARAB 415.

Thirty-two counters are placed on a chessboard so that
there are four in every row and four in every column. Show
that it is always possible to select eight of them so that there
is one of the eight in each row and one in each column.

JRM C6. by Ray Lipman

Although there are actually six different ways of plac-
ing two checkers on different squares of a 2 × 2 board, if
we consider two arrangements the same if they are reflec-
tions and/or rotations of each other, there are only two
arrangements: rookwise adjacent and bishopwise adjacent.
Similarly, instead of nine ways of placing a single checker on
a 3 × 3 board, there are, topologically, only three: middle,
corner, or side. The (k,N)-entry in the matrix below (which
has two questionable entries) gives f(k,N), the number of
topologically distinct ways of placing k checkers on different
squares of an N×N board (k = 1, 2, 3, 4 and N = 1, 2, 3, 4):




1 1 3 3

0 2 8 20

0 1 16 43?

0 1 23 77?


 .

Devise a program to extend the matrix to values of
both k and N up to 10.
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Chessboard problems: maxima and minima

AMM E2605. by Andreas P. Hadjipolakis
Consider a chessboard of odd order n (n ≥ 5). Assign

label m to a cell of the chessboard if it can be reached by the
knight in m steps starting from the central cell, and this m
is minimal. Determine the number K(n;m) of cells labeled
m.

Chessboard problems: n queens problem

AMM E2698. by Paul Monsky
Let An be an n×n chessboard. The n queens problem

(placing n counters on An so that no two lie in any row,
column, or diagonal) admits solutions for all n 6= 2 or 3.

Let Bn be the “chessboard” obtained from An by iden-
tifying opposite sides so that the resulting surface is a torus.
(Now, every diagonal of Bn consists of n squares.)

(a) For which values of n does there exist a solution of
the n queens problem on Bn?

(b) If n satisfies (a), then a solution of (a) gives, by
cyclic permutation, n superimposable solutions to the n
queens problem on An. Do there exist n superimposable
solutions (for An) for other values of n?

Chessboard problems: paths

TYCMJ 145. by Sidney Penner
A checker is placed in the upper left-hand corner of an

(n+ 1)×n checkerboard. It begins a tour by making moves
diagonally until it reaches an edge. At this point, it makes a
right-angle turn and the process continues until the checker
reaches a corner, after which the tour is complete. What is
the number of moves for a complete tour?

Chessboard problems: probability

CRUX 446. by R. Robinson Rowe
An errant knight stabled at one corner of an N × N

chessboard is “lost”, but home happens to be at the diago-
nally opposite corner. If he moves at random, what is the
probable number of moves he will need to get home (a) if
N = 3 and (b) if N = 4?

JRM C7. by Les Marvin
A knight starts at the corner of a standard 8×8 chess-

board and moves successively, at each stage randomly and
with equal probability choosing his next square from the
ones legally available. Let E equal the expected number
of moves required to visit each of the 64 squares at least
once. The best bounds I have at the moment for E are
64 < E <∞. Determine E to 3-place decimal accuracy.

JRM 425. by David L. Silverman
A white knight and a black knight are situated on

diagonally opposite corners of a 3 × 3 square. In turn,
starting with White, they move randomly until (inevitably)
Black captures White. What is the expected number of
Black moves to achieve capture?

Cryptarithms: alphabet

SSM 3593. by Alan Wayne
Restore the following addition in which each letter rep-

resents precisely one decimal digit, and different letters rep-
resent different digits.

ABCDEFGHIJ + ABCDEFGHIJ = BDFIACEGHJ.

SSM 3622. by Alan Wayne
Solve the system

(CJ)F = ABCD

(CJ)E = EFGHIJ

in which each letter represents one and only one decimal
digit, and different letters represent different digits.

Cryptarithms: chess moves

JRM 434. by Mike Keith
The ten distinct digits are distributed among the ten

symbols
P,−, K, B, R, Q, x, I, W, N

(the 3’s and 4’s already given can be reused) and the chess
moves given by the alphametic — in proper order as shown
— yield a unique, legal game, ending, as is indicated by the
total, in white checkmate.

(P− K4) + (P− K4) + (B− B4) + (P− R4)

+ (Q− B3) + (P− R4) + (QxP) = (IWIN)

Cryptarithms: encrypted messages

CRUX 215. by David L. Silverman
Convert the expression given below from mathemat-

ics to English, thereby obtaining the perfect scansion and
rhyme scheme of a limerick:

12 + 144 + 20 + 3
√

4

7
+ 5(11) = 92 + 0.

Cryptarithms: hand codes

OMG 17.3.2.
Some children developed the following coding system

for numbers: both hands down = 0; one hand up = 1; both
hands up = 2; one hand up, both hands down = 3; one
hand up, one hand up = 4; etc. What number would be
represented by one hand up, one hand up, both hands up,
one hand up?

Cryptarithms: powers

SSM 3639. by Alan Wayne
Find the five-digit decimal integer ABCCA whose Cth

power is the fifteen-digit integer CCCCCDEBFEGFGFA.

Cryptarithms: products

NYSMTJ 70.
In the cryptarithm A(BC) = D(CB), each letter repre-

sents a distinct decimal digit. If A < D, find all solutions.

Cryptarithms: skeletons

JRM 579. by A. G. Bradbury
Solve the skeleton:
TAJ)MAHAL(AT

****
****
AG*R

*A
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JRM 698. by Nobuyuki Yoshigahara
Solve the skeleton

∗∗∗∗∗∗
∗∗∗ = 1978

where the digits ∗ are to be distinct. Find an appropriate
alphametic to fit the skeleton.

JRM 780. by A. G. Bradbury
Solve the skeleton:
FOUR)SIXTEEN(FOUR

IS**

*****

*****

****

FO*R

**FUN

*****

***

JRM 410. by Michael R. W. Buckley
Solve the skeleton:

YES

YES

***

***

***

BREED

JRM 585. by Frank Rubin
Solve the skeleton:

***A***

× PROBLEM

******P

******R

******O

******B

******L

******E

*POMPOM

**************

JRM 617. by J. A. H. Hunter
Solve the skeleton:

****

× **7*

*****

****

****

********

where the digit 7 appears but once.

JRM 664. by J. A. H. Hunter
Solve the skeleton:

RUN

RUN

****

SEE

***
BRAWL

JRM 781. by Frank Rubin
In base 14, solve the skeleton:

EIGHT
TWO

*****
*****
*****
SIXTEEN

CRUX 371. by Charles W. Trigg
Solve the skeleton:

EASY
MATHEMATICS

M***S
A***C
H***I
S***T
Y***A
I***M
T***E
C***H
S***T
Y***A
I***M
I*************S

JRM 696. by Frank Rubin
Solve the skeleton:

* *√
* * * *
* *

* *
* *

Cryptarithms: tournaments

MENEMUI 1.1.3. by K. Unsworth
Four football teams A, B, C, and D are going to play

each other once. The figures written in the incomplete table
below give part of the situation when some of the matches
have been played. The digits from 0 to 9 are replaced by
letters, and each letter stands for the same digit wherever
it appears; different letters stand for different digits.

Goals
Played Won Lost Drawn For Against Pts.

A x k h p

B h m m

C p x h k t m

D k

Two points are given for a win, and one point to each
side in a drawn match. List the matches played and the
score in each match.

Logic puzzles: Caliban puzzles

OMG 18.2.3.
The manager, the accountant, the teller and the audi-

tor at a local bank are Mr. Smith, Mr. Brown, Mr. Jones
and Mr. Foster, but I can never remember who is who. I
do know that:

1) Mr. Brown is taller than the auditor or the teller.
2) The manager lunches alone.
3) Mr. Jones plays bridge with Mr. Smith.
4) The tallest of the four plays basketball.
5) Mr. Foster lunches with the auditor and the teller.
6) Mr. Smith is older than the auditor.
7) Mr. Brown plays no sports.
Determine which job each man performs.
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PARAB 335.
A school held a special examination to decide which

student in year 12 was best overall in the subjects of English,
History, French, Mathematics, and Science. Five students
— Alan, Barbara, Charles, David, and Evonne — sat for
five papers, one in each of these five subjects. To simplify
matters, the top student in a paper was given 5 marks,
the next student was given 4 marks, and so on; the last
student in a paper being awarded 1 mark (fortunately, no
two students tied in any of the papers). When the marks for
each student were collected, the following facts were noted:

(1) Alan had an aggregate mark of 24.
(2) Charles had obtained the same mark in four out of

the five subjects.
(3) Evonne, the mathematician, had topped Mathe-

matics, although she only came in third in Science.
(4) The students’ aggregate marks were in alphabetical

order, and no two students had the same aggregate.
What we want to know is:
(a) What was Barbara’s mark in Mathematics?
(b) How many of the five students obtained the same

mark in at least four out of the five subjects? (Charles was
one of these!)

PARAB 384.
When the fire alarm went off, the six patrons in the

restaurant all hurriedly seized a coat. Safely outside, they
discovered that no one had his own. The coat that Alf had
belonged to the man who had seized Bert’s. The owner
of the coat grabbed by Colin held a coat which belonged
to the man who was holding Dave’s coat. If the man who
had seized Ern’s coat was not the owner of that grabbed by
Fred, who borrowed Alf’s coat? Whose coat did Alf seize?

Logic puzzles: incomplete information

PENT 309. by Richard A. Gibbs
Once upon a time in a far away kingdom there lived

many married couples. It came to the attention of the King
(himself unmarried) that there were some unfaithful wives
in his kingdom and he issued the following decree:

“It has come to my attention that there are unfaithful
wives in my kingdom. If a husband discovers that his wife
is unfaithful, he may slay her without punishment provided
he does so on the day of the discovery.”

Now, it so happens that if a man’s wife were unfaithful
he would be the only husband not to know it. Further,
husbands never talk among themselves about the fidelity of
their wives, and an unfaithful wife is clever enough not to
be caught by her husband.

Well, following the King’s decree, a month passed with-
out incident. Then, on the 40th day, 40 unfaithful wives
were slain; all that were in the kingdom.

The King was amazed! He summoned his Math Wizard
for consultation and told him what had happened. The
Wizard said, “That’s not at all amazing.” Prove that the
Wizard knew that all unfaithful wives in the kingdom would
be slain on the same day.

CRUX 357. by Leroy F. Meyers
In a certain multiple-choice test, one of the questions

was illegible, but the choice of answers was clearly printed.
Determine the true answer(s).

(a) All of the below.
(b) None of the below.
(c) All of the above.
(d) One of the above.
(e) None of the above.
(f) None of the above.

MM 1051. by A. K. Austin
A game involves a quizmaster and two players, X and

Y . The quizmaster chooses an ordered pair of real numbers
(x, y) and tells x to player X and y to player Y . The
quizmaster also tells the players that (x, y) is in the set A =
{(xi, yi) | i = 1, 2, . . . , n}. The quizmaster then asks X and
Y alternately if they know (x, y). Find a characterization of
the set A that guarantees that either X or Y will eventually
know (x, y).

FUNCT 1.2.6.
A person A is told the product xy and a person B is

told the sum x + y of two integers x and y, where 2 < x
and y < 200. Person A knows that B knows the sum, and
B knows that A knows the product. The following dialogue
develops:

A: I do not know (x, y).
B: I could have told you so!
A: Now I know (x, y).
B: So do I.

What is (x, y)?

MM 977. by David J. Sprows
Let x and y be two integers with 1 < x < y and

x+ y ≤ 100. Suppose Ms. S. is given the value of x+ y and
Mr. P. is given the value of xy.

(a) Mr. P. says: “I don’t know the values of x and y.”
(b) Ms. S. replies: “I knew that you didn’t know the

values.”
(c) Mr. P. responds: “Oh, then I do know the values

of x and y.”
(d) Mr. S. exclaims: “Oh, then so do I.”

What are the values of x and y?

ISMJ 13.19.
I have two different integers larger than 1. I inform

Sam and Pam of this fact and I tell Sam the sum of my two
numbers and I tell Pam their product. The following dialog
then occurs:

Pam: I can’t determine the numbers.
Sam: The sum is less than 23.
Pam: Now I know the numbers.
Sam: Now I know the numbers, too.

What are the numbers?

CRUX 400. by Andrejs Dunkels
In the false bottom of a chest which had belonged to

the notorious pirate Captain Kidd was found a piece of
parchment with instructions for finding a treasure buried
on a certain island. The essence of the directions was as
follows.

“Start from the gallows and walk to the white rock,
counting your paces. At the rock turn left through a right
angle and walk the same number of paces. Mark the spot
with your knife. Return to the gallows. Count your paces
to the black rock, turn right through a right angle and walk
the same distance. The treasure is midway between you and
the knife.”

However, when the searchers got to the island they
found the rocks but no trace of the gallows remained. After
some thinking they managed to find the treasure anyway.
How?
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JRM 685. by David L. Silverman
“Bah! There are less than 100 doubloons here. How

do you propose to divide them?”
“Let one of us take φ of them, then the other takes

φ of what’s left, and so on until they are all taken,” said
Silverbeard.

“Fine, but who gets the first pick?”
“Oh, you take it,” said Silverbeard, knowing that he

would get the most. How many doubloons were there?

JRM 469. by David K. Orndoff
In the Secret Word game, one player writes down a

word of five different letters and his opponent attempts to
guess it by posing candidate words of the same type which
are scored according to the number of letters they have in
common with the secret word (not necessarily in the same
position). After 12 cracks at my opponent’s word, he has
scored me as follows: VOICE LYMPH DWARF JUMPY
TWIGS CHAMP and EQUIP all scored 1, JUNKS SWORD
BLACK and FLUNK got 2, and BOXED scored zero. I have
sufficient information now. What is the word?

Logic puzzles: labeled boxes

FUNCT 1.4.5.
A repair shop has three boxes, one containing left-foot

bicycle pedals, another containing right-foot bicycle pedals,
and a third containing both left- and right-foot pedals. La-
bels describe the contents of the boxes. A naughty customer
changed all the labels around. You are allowed to inspect
one pedal from one box. Which box should you choose from
in order to identify which box is which?

Logic puzzles: liars and truthtellers

FUNCT 1.2.4.
Three golfers named Tom, Dick, and Harry are walking

to the clubhouse. The first man in line says, “The guy in the
middle is Harry.” The man in the middle says, “I’m Dick.”
The last man says, “The guy in the middle is Tom.” Tom,
the best golfer of the three, always tells the truth. Dick
sometimes tells the truth, while Harry, the worst golfer,
never does. Figure out who is who.

JRM 392. by Victor Reyes
On the Island of Kyensahbay the natives are divided

into two tribes — the Blues, who always tell the truth, and
the Reds, who never do. Twelve of them met me at the
jetty, and because their names were too exotic to remember
I labeled them with the letters from A to L. Since none wore
his tribal colors, I made it a point to ask each during the
first day of my governorship about the composition of my
staff. I received the following replies:

A: H and I are Blues.
B: A and L are Blues.
C: B and G are Blues.
D: E and L are Blues.
E: C and H are Blues.
F: D and I are Blues.
G: E and J are Reds.
H: F and K are Reds.
I: G and K are Reds.
J: A and C are Reds.
K: D and F are Reds.
L: B and J are Reds.
I was quickly able to determine which of them to doubt

and which to believe. Can you do likewise?

JRM 792. by Randall J. Covill
The police have detained three suspects who know each

other very well. The police know that one of the suspects
always lies, one sometimes lies, and one never lies. How can
they most easily determine which is which?

Logic puzzles: relationships

ISMJ 13.7.
No family has more than four children in a certain

school. One day when all the boys are in school, they
answer a questionnaire that includes the question: How
many brothers have you in the school? In the report put
out by the school this statement appears:

“216 boys have no brother or two brothers in the
school.

195 boys have one or three brothers in the school.”
Can this statement be correct?

OMG 16.1.10.
If in a certain diagram “→” means “-” is brother of

“-”, how is A related to B?

Logic puzzles: statements

FUNCT 2.4.1.
Simplify the following statement:
“If Monday is a public holiday, then I will not go to

the beach, or I will stay at home, or I will neither stay at
home nor go to the beach.”

FUNCT 1.1.6.
The blackboard has been filled with 100 statements, as

follows:
“Exactly one of these statements is incorrect.
Exactly two of these statements are incorrect.

...

Exactly one hundred of these statements are incor-
rect.”

Which (if any) of the 100 statements is correct?

MM 931. by Alan Wayne
In a list of n statements, the rth statement is, for

r = 1, 2, . . . , n, “The number of false statements in this
list is greater than r.” Determine the truth value of each
statement.

Logic puzzles: switches

AMM S17. by Leonard Gillman
When the upstairs switch is in one position, the down-

stairs switch turns the stairway light on and off as it should,
but when the upstairs switch is in the other position, the
stairway light remains off irrespective of the position of the
downstairs switch. Which is the defective switch?

Logic puzzles: transportation

OMG 15.2.1.
A man must transport a fox, a goose, and a sack of

corn over a river in a boat that will hold only him and one
of the fox, goose, or sack of corn. He cannot leave the fox
and goose, or the goose and corn alone together or one will
eat the other. How does he accomplish his task?
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Logic puzzles: yes or no questions

PARAB 345.
During a trial, three different witnesses A, B, and C

were called one after the other, and asked the same ques-
tions. In each case, each witness answered “yes” or “no”,
and the following facts were noted:

(1) All questions answered “yes” by both B and C were
also answered “yes” by A;

(2) Every question answered “yes” by A was also an-
swered “yes” by B;

(3) Every question answered “yes” by B was also an-
swered “yes” by at least one of A and C.

Show that the witnesses A and B agreed in their an-
swers to all questions.

Magic configurations: gnomon magic squares

SSM 3629. by Charles W. Trigg
In a 3×3 array there is a 2×2 array in each corner. The

other five cells form an L-shaped gnomon. If the sum of the
elements in each of the four corners is the same, this sum
is said to be the magic sum of the gnomon magic square.
Such a square is

1 6 7

8 5 2

3 4 9

with a magic sum of 20.
Rearrange the nine digits to form a gnomon magic

square with magic sum of 16.

Magic configurations: hexagons

NYSMTJ 79. by Bernard G. Hoerbelt
The minor diagonals of a regular hexagon are drawn,

forming a figure with 13 regions. Six dashed lines are drawn
through the center of the hexagon, parallel to the sides and
diagonals of the hexagon. Six more dashed lines are drawn
connecting the midpoints of adjacent edges of the hexagon.
Place the integers from 1 to 13 in the 13 regions so that the
sum of every triple along each of the dashed lines is 21.

Magic configurations: magic pentagrams

JRM 385. by Vance Revennaugh
Can the ten vertices of the pentagram shown be labeled

with the integers from 1 to 10 in such a way that the sum
of the four labels along each of the five edges is the same,
thus qualifying it to be called a pentacle, that is, a magic
pentagram?

CRUX 145. by Walter Bluger
A pentagram is a set of 10 points consisting of the

vertices and the intersections of the diagonals of a regular
pentagon with an integer assigned to each point. The penta-
gram is said to be magic if the sums of all sets of 4 collinear
points are equal.

Construct a magic pentagram with the smallest possi-
ble positive primes.

Magic configurations: magic squares

ISMJ 14.23.
Nine numbers are placed in a 3 × 3 array to form a

magic square (the three row sums, three column sums, and
two diagonal sums are each equal to some number S). Prove
that S is three times the central number. Show that the
conditions of the problem cannot be met if the nine numbers
are all of the numbers from 1 to 10 except 7.

MSJ 430. by Donald Baker
Fill in the five missing entries in the following 3 × 3

array to form an additive magic square.

17 − 22

− − −
13 − 19

SSM 3632. by Bob Prielipp
An n×n magic multiplication square is an n×n array

in which the product of the entries of each diagonal, in each
row, and in each column are all the same. Prove that there
are infinitely many 3 × 3 magic multiplication squares, all
of whose entries are positive integers.

PARAB 301.
The numbers 27, 20, 25, 22, 24, 26, 23, 28, and 21 are

arranged in a 3× 3 magic square.

27 20 25

22 24 26

23 28 21

By moving the digits (and using no other operation), find
9 numbers in 3 rows and 3 columns such that, when the
numbers in any row or column or diagonal are multiplied
together, you get the same answer.

CRUX 359. by Charles W. Trigg
Construct a third-order additive magic square that

contains three prime elements and has a magic constant
of 37.

MM 943. by Charles W. Trigg
Early in his reign as Emperor of the West, Charle-

magne ordered a pentagonal fort to be built at a strategic
point of his domain. As good luck charms, he had a third or-
der magic square with all prime elements engraved on each
wall. The five magic squares were different from each other,
but they had the same magic constant — the year in which
the fort was completed. The fort proved its ability to resist
attack midway through his reign.

On this evidence, reconstruct the magic squares.
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PENT 319. by Charles W. Trigg
Use the basic nine-digit third-order magic square to

generate eight other third-order magic squares that have
a common magic constant. Each new square is to have
nine distinct elements, and at least three elements are to be
prime in five of the new squares.

PME 364. by Charles W. Trigg
Show that there is only one third-order magic square

with positive prime elements and a magic constant of 267.

CRUX 399. by Gilbert W. Kessler
A prime magic square of order 3 is a square array of 9

distinct primes in which the three rows, three columns, and
two main diagonals all add up to the same magic constant.
What prime magic square of order 3 has the smallest magic
constant

(a) when the 9 primes are in arithmetic progression;
(b) when they are not.

JRM 569. by Greg Fitzgibbon
Sidney Kravitz coined the term and the concept “tal-

isman square” to designate a square array of numbers such
that any two neighboring elements (i.e., kingwise adjacent
elements) differ by at least some constant. There exist 4×4
squares whose elements are the numbers 1, 2, . . . , 16 that
are both magic and talismanic with talisman constant 2.

(a) Display all 24 such squares.
(b) What is the maximum possible talismanic constant

for an n×n magic talisman square consisting of the numbers
1, 2, . . . , n2?

CRUX 482. by Allan Wm. Johnson Jr.
Construct a fourth-order magic square composed of

distinct 2-digit primes, four of which are situated as shown:

− 17 89 −
− − − −
− − − −
− 19 79 −

Magic configurations: triangles

OSSMB 76-13.
The numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 are arranged in a

triangular pattern, as shown:

a

b i

c h

d e f g.

If the sum of the numbers along each side of the triangle is
20, prove that the number 5 must go in a corner.

Mazes

OMG 14.3.1.
In a maze of connected straight lines, how can you tell

if a point is inside or outside a closed figure without tracing
a path?

AMM 6163. by John Myhill
Devise an algorithm for escaping from a connected,

countably infinite, locally finite maze. “Countably infinite”
means the number of edges and nodes is ℵ0, “locally finite”
means only a finite number of edges meet at each node.
“Algorithm” means this: You are lost in the middle of
the maze, having no idea of where the exit is. Your only
possibility of escape, therefore, is to devise a tour that
will take you through every node of the maze after a finite
number of steps. In order to keep track of your route, you
are given an everlasting pencil and an infallible eraser; at
each node, and at the roadside of each road near the node,
is a board on which you can write and erase. However, you
have only a finite alphabet to write with, and there is a
fixed bound on how many characters you can write on the
boards. (In particular, then, you cannot keep on any board
a record of how many times you have passed it.) Your field
of vision is limited to being able to see, from any node, what
is written on the board at that node and what is written on
the nearby roadside boards.

Can this procedure be altered to solve the locally
infinite case?

Polyominoes: coloring problems

JRM 386. by C. R. Gossett
Using various combinations of Red, White, and Blue

(R, W, B), there are 18 linear Union Jack (or, if you prefer,
“Old Glory”) tromino types. One of each type has been
placed in the 6×9 diagram shown. Determine the placement
of each of the 18 trominoes, using, not a trial-and-error
approach, but a direct line of inference that will ensure your
solution is unique.

Polyominoes: dominoes

CRUX 328. by Charles W. Trigg
A set of 2k(k+1) dominoes each 2×1, can be arranged

to form a square with an empty 1× 1 space in the center.
(a) Show that for all k there is an arrangement such

that no straight line can divide the ensemble into two parts
without cutting a domino.

(b) Is it always possible to arrange the dominoes so
that the ensemble can be separated into two parts by a
straight line that cuts no domino?

ISMJ 12.31.
Show that if 18 1 × 2 dominoes are arranged to form

a 6 × 6 square, then there is a line that divides the square
into two rectangles without cutting any domino.

Polyominoes: maxima and minima

CRUX 276. by Sidney Penner
How many unit squares must be deleted from a 17 ×

22 checkerboard so that it is impossible to place a 3 × 5
polyomino on the remaining portion of the board?
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CRUX 282. by Erwin Just and Sidney Penner
On a 6×6 board we place 3×1 trominoes until no more

trominoes can be accommodated. What is the maximum
number of squares that can be left vacant?

CRUX 429. by M. S. Klamkin and A. Liu
On a 2n× 2n board we place n× 1 polyominoes (each

covering exactly n unit squares of the board) until no more
n × 1 polyominoes can be accommodated. What is the
maximum number of squares that can be left vacant?

NYSMTJ 77. by Erwin Just
and Sidney Penner

On a 5 × 5 board, we place 3 × 1 triominoes until no
more triominoes can be accommodated.

(a) What is the minimum number of squares that can
be left vacant?

(b) What is the maximum number of squares that can
be left vacant?

Polyominoes: pentominoes

JRM 470. by Makoto Arisawa
Let a pair of pentominoes, juxtaposed to form a de-

comino, be called a doublet. If two doublets are congruent,
let the constituent pentomino pairs be connected by the
double arrow — thus V Y ↔ PT . There are many amusing
and challenging exercises based on the doublet concept. In
the present one, let us ignore congruent doublets in which
the two doublets share a common pentomino or in which
one or both doublets use the same pentomino twice. Using
only congruences in which four distinct pentominoes are in-
volved and, otherwise, employing as many or as few of the
66 distinct doublets as you wish, but including each of the
12 pentominos at least once, what is the shortest closed
doublet chain of the form AB ↔ CD ↔ EF ↔ . . . ↔ AB
you can construct?

JRM 391. by Michael Keith
The twelve different pentominoes are divided into two

sets of six each and, placing each pentomino on a square
grid, the two sets are arranged to form two congruent, con-
nected figures having a single hole.

Diagrams using this division of the pentominoes or
other divisions, with two sets of six each, can be used to
create alternative patterns sharing a hole area of 17, but
no arrangement has been discovered to date that yields a
larger hole. Is 17 the maximum possible?

JRM 426. by Michael Keith
The twelve different pentominoes are divided into two

sets of six each and, placing each pentomino on a square
grid, the two sets are arranged to form two congruent, con-
nected figures having one or more holes. What is the max-
imum number of holes that these figures can contain?

Polyominoes: tiling

PME 358. by Sidney Penner
and H. Ian Whitlock

From a 2n + 1 × 2n + 1 checkerboard, in which the
corner squares are black, two black squares and one white
square are deleted. If the deleted white square and at least
one of the deleted black squares are not edge squares, prove
that the reduced board can be tiled with 2× 1 dominoes.

MM 969. by Veit Elser
A cube can be unfolded into a polyomino of order six

in the form of a Latin cross.
(a) Show that five congruent Latin crosses can cover

the surface of the cube without overlap.
(b) Can the surface of the cube be covered with seven

congruent polygons?

JRM 600. by Andrew L. Clarke
What is the smallest rectangle that can be tiled using

only U-shaped and T-shaped pentominoes?

MSJ 477.
Consider an n×n chessboard whose four corner squares

have been removed. For what values of n can this board be
covered by “L”-shaped pieces having 3 squares on the long
side and 2 squares on the short side?

PARAB 336.
You are given an 8 × 8 chessboard and 16 tiles in the

shape of a “T” where each of the four squares in the T-shape
is the same size as the squares of the chessboard.

(a) Can the chessboard be completely covered with
these tiles?

(b) If one of the T-shaped tiles were replaced by a
square tile which just covers four of the chessboard squares,
can the chessboard be completely covered by these 16 tiles?

In each case, you must either show how to cover the
board, or prove that it is impossible.

TYCMJ 78. by Sidney Penner
Assume that a single square is deleted from a 2n× 2n

checkerboard in which 3 - n. Prove that it is possible to tile
the resultant board with right trominoes.

JRM 381. by Mark A. Ricci
Can a patio of dimensions 10 feet × 11 feet, from one

of whose ten-foot sides two 1-square-foot areas have been
removed at the corners, be tiled with 36 1-foot × 3-foot
stones?

AMM E2595. by Sidney Penner

Consider (2n+ 1)2 hexagons arranged in a “diamond”
pattern, the kth column from the left and also from the
right consisting of k hexagons, 1 ≤ k ≤ 2n+1. Show that if
n 6≡ 1 (mod 3) and the center hexagon is deleted, then the
remaining hexagons can be tiled by trominoes.

Puzzles: block puzzles

PARAB 338.
You are given 216 blocks, each of dimensions 1×1×8.

Is it possible to build a cube of dimensions 12×12×12 with
these blocks?

JRM 759. by Makoto Arisawa
Most recreational mathematicians are familiar with the

two cubes whose faces are numbered so as to be able to
display any day of the month from 01 to 31. How should
the faces of four cubes be numbered so as to be able to
display as many years as possible from 1979 on?
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AMM E2596.* by Mark A. Spikell

Given is a collection of Cuisenaire rods having dimen-
sion 1× 1× a, where the length a belongs to a finite set A
of positive integers and the number of rods of length a may
be supposed to be unlimited for each a ∈ A. For which s
can a 1× s× s square be constructed from this collection?

Puzzles: crossnumber puzzles

JRM 473. by Michael R. W. Buckley

Solve the crossnumber puzzle below.

Across:

A. The square of H down.

D. E across plus a factor of H down.

E. The sum of all the digits in the puzzle.

G. The sum of the digits in C down.

I. The sum of the digits in K across.

K. The square of C down.

Down:

A. The root mean square of C down and H down.

B. A multiple of G across.

C. A prime.

F. H down less one of its factors.

H. A palindrome.

J. The sum of the digits in A across.

JRM 704. by Harry L. Nelson

Within the puzzle shown, all numbers formed from
the various digits reading across are in the decimal system,
while all numbers reading down are in the octal system.
Capital letters in the clues represent positive integers.

ACROSS (decimal) DOWN (octal)

a. AB a. G · (A+Z)E +Z ·FE +X

b. CE b. E + F +G

f. D · ZZ +B c. Y + Y

h. FG + E d. ED + E

f. C +B

g. Y

JRM 798. by Nobuyuki Yoshigahara

Fill in the diagram shown with distinct 2-, 3-, and 4-
digit numbers that are perfect squares, none of which start
with 0.

JRM 678. by Sidney Kravitz

In this puzzle, the 63 squares are to be filled with
one decimal digit each. Each horizontal group sums to the
number to its right, and each vertical group sums to the
number shown below it. Each sum is made up of distinct
nonzero summands.

Puzzles: peg solitaire

MM 952. by F. D. Hammer

The object of a familiar puzzle is to interchange the
positions of n white and n black pegs on a linear board of
2n+1 positions, where the empty position initially separates
all the white pegs from all the black pegs. One is allowed to
jump pegs of opposite color, but never of the same color. A
white (black) peg may move to the right (left) to an adjacent
empty position.

Show that the transfer is always possible and establish
a lower bound on the number of moves that is less than
2n(n+ 1).
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Puzzles: picture puzzles

PME 458. by Charles W. Trigg
and Leon Bankoff

Translate the following sketch into a mathematical
term. [Other similar puzzles appear in this problem.]

Puzzles: sliding tile puzzles

JRM 471. by Makoto Arisawa
The sliding puzzle shown admits two interpretations:
(a) Show that if it is interpreted as consisting of one

unengraved tile and two vacant cells, all positions fall into
the same class.

(b) Assuming, on the other hand, that there are two
untraversible spaces and one vacant cell, determine the
number of positional classes.

Riddles

CRUX 151. by Léo Sauvé
Identify the speaker and thereby solve the riddle:

METAPHORS

I’m a riddle in nine syllables,
An elephant, a ponderous house,
A melon strolling on two tendrils.
O red fruit, ivory, fine timbers!
This loaf’s big with its yeasty rising.
Money’s new-minted in this fat purse.
I’m a means, a stage, a cow in calf.
I’ve eaten a bag of green apples,
Boarded the train there’s no getting off.

SYLVIA PLATH (1932− 1963)

From Crossing the Water.

Shunting problems

PARAB 275.
A straight railway line has two sidings with part AB,

common to both sidings, long enough to contain either of
the two wagons X and Y but not both at once. The loco-
motive L is too long to go on AB.

The wagons X and Y are initially uncoupled, one on
each siding. How can the positions of X and Y be inter-
changed? (The couplings can be connected or disconnected
only while the locomotive and wagons are stationary.)

PARAB 333.
Two trains A and B are traveling in opposite directions

on a line with a single track and wish to pass with the help
of a siding. The siding will only take one car or one engine
at a time and can only be entered from the right. If train A
to the left of the siding has 3 cars and one engine and train
B to the right of the siding has 4 cars and one engine, how
can they pass with the minimum number of moves?

Word problems

JRM 656. by Harry Nelson
If the integers from 1 to 5000 are listed in equivalence

classes according to the number of characters (including
blanks and hyphens) needed to write them out in full in
correct English, there are exactly 40 such nonempty classes.
For example, class 4 contains FOUR, FIVE, and NINE.
Similarly, class 42 contains the nine members 3373, 3377,
3378, 3773, 3777, 3778, 3873, 3877, and 3878.

There is only one such class that contains exactly one
member. What is it?

Words

CRUX 61. by Léo Sauvé
Find autological adjectives other than those given in

the article on page 55 of this issue.

JRM 751. by Michael R. W. Buckley
Four words, each an anagram of the same set of five dif-

ferent letters, are missing from the following rhyme: Should
her renown as a cook be at −−−−− , −−−−’− −−−−−
− − − − − the cake. The same four words, when appro-
priately arranged, form an alphametic which has a unique
solution. Find that solution.
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Chains

AMM 6220. by Mohammad Ismail
A collection K of sets is called a chain (resp. antichain)

if for any A,B ∈ K, either A ⊆ B or B ⊆ A (resp.
for any A,B ∈ K, A 6⊂ B and B 6⊂ A). Let ω1 be
the first uncountable ordinal. Does there exist a family
P = {Kα : α < ω1} of collections of subsets of a set X
satisfying the following conditions?

(a) Each Kα is an infinite countable antichain.
(b) If α < β < ω1, then every member of Kβ is con-

tained in some member of Kα and no member of Kα is
contained in any member of Kβ .

(c) If P∗ = ∪α<ω1Kα, then every chain and every
antichain in P∗ is countable.

Mappings

AMM 6128. by Martin Schechter
and Peter Borwein

Let 2ω be the set of all sequences with entries 0 or 1,
and let Nω be the set of all sequences with entries from the
nonnegative integers. Can one construct a bijection f from
2ω onto Nω with the property that for any sequence X in
2ω, one can compute the first n entries of f(X) given only
the first m entries of X (where m may depend on X and
n)?

FQ B-333. by Phil Mana
Let Sn be the set of ordered pairs of integers (a, b)

with both 0 < a < b and a + b ≤ n. Let Tn be the set of
ordered pairs of integers (c, d) with both 0 < c < d < n
and c + d ≤ n. For n ≥ 3, establish at least one bijection
between Sn and Tn+1.

AMM 6266. by Leopoldo Nachbin
It is easily shown that every countable set S has the

following property:
(P) Given any function f :S × S → R+, there exists

a function g:S → R+ such that f(x, y) ≤ g(x)g(y) for all
x, y ∈ S.

It can be shown that (P) fails if the cardinal number of
S is at least equal to that of the continuum. Can it be shown
without the Continuum Hypothesis that (P) fails when S is
uncountable?

Power set

MATYC 86. by Joseph Griffin
Given are sets A and B, with B having 24 more subsets

than A. How many elements are in each set?

Relations

OSSMB 79-7.
Let S be a set and let R be a relation holding or not

holding between every ordered pair of distinct elements of
S. Suppose R satisfies the following conditions:

(a) If a, b are distinct elements of S, then aRb or bRa
holds, but not both.

(b) If a, b, c are distinct elements of S such that aRb
and bRc hold, then cRa holds.

Find the maximum number of elements in S.

Subsets

MM 924. by J. Michael McVoy
and Anton Glaser

How many n-tuples, (S1, . . . , Sn), exist with

S1 ⊆ S2 ⊆ · · · ⊆ Sn ⊆ V,

where V is a set of k elements?

CRUX 82. by Léo Sauvé
Let E be a finite set containing n elements. The fol-

lowing facts are well known and easy to prove.
(a) The number of subsets of E is 2n.
(b) The number of relations of the form A ⊆ B, where

A ⊆ E and B ⊆ E, is (2n)2 = 4n.
How many of the relations in (b) are true?

AMM E2666. by Peter Frankl
Let S be a finite set, and let P be the set of all subsets

of S. For A ⊂ P and B ⊂ P, define A ∗ B to be the subset
of P consisting of subsets X ⊂ S such that X ⊂ A ∪ B for
some A ∈ A and B ∈ B.

If |A|+ |B| > 2k, prove that |A ∗ B| ≥ 2k.

CMB P242. by P. Frankl
Let A be a set of subsets of {1, 2, . . . , n} such that

|A1 ∪A2 ∪A3 ∪A4| ≤ n− 2

whenever A1, A2, A3, A4 ∈ A. Prove that | A | ≤ 2n−2.

AMM E2792. by Robert Patenaude
Let U be a finite set. Characterize those collections

C of subsets of U with the following property: There is a
unique subset R of U such that the number of sets in C
which R intersects is odd.

AMM 6022. by Neal Felsinger
Given a collection X of subsets of S, no one containing

another, let C(X) consist of all minimal subsets of S that
intersect every member of X. Show that if S is infinite,
C(X) does not necessarily exist.

ISMJ 14.4.
Let X and Y be subsets of a finite set F .
(a) Show that X 4 Y = X 4 Z implies Y = Z, where

X 4 Y = (X ∪ Y ) \ (X ∩ Y ).
(b) Suppose F is a family of subsets of F that is closed

under 4 (i.e., X 4 Y is in F whenever both X and Y are;
thus X4X ∈ F for each X ∈ F). Given X ∈ F and a ∈ X,
show that a is in exactly half of the elements of F .

Symbolic logic

AMM 6272. by P. Olin and Kenneth W. Smith

Given: There is a complete, ℵ1-categorical theory T of
first-order logic such that the direct product T × T is not
ℵ1-categorical. Are there complete first-order theories T1,
T2 with T1 the theory of a finite model, T2 ℵ1-categorical,
and T1×T2 not ℵ1-categorical? If so, find such a pair T1, T2

with the cardinality of the model of T1 as small as possible.
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AMM 6139. by D. P. Munro
Consider a first-order predicate calculus and all the

relational structures appropriate to that calculus.

(a) Let P1, . . . , Pk be a finite collection of mutually
exclusive and exhaustive axiomatizable properties (so every
relational structure has exactly one of the properties Pi).
Must any of the Pi be in fact finitely axiomatizable, and if
so, how many?

(b) As for (a), but with a countably infinite collection
of mutually exclusive and exhaustive axiomatizable proper-
ties.

NAvW 391. by J. F. A. K. van Benthem
Let L be a first-order language with the usual logical

signs (but without identity). Identify all logically equivalent
sentences in L; let f(L) be the cardinality of the set thus
obtained. Let m(L) be the cardinality of the set of all
complete L-theories.

(a) Give the values of f and m for the following logics:
Ln1 : only unary predicate-letters, viz. A1, . . . , An (n ≥ 1).
L2: only unary predicate-letters, countably many.
L3: exactly one (and binary) predicate-letter (R).
L4: only the identity-sign (=).

(b) Which connections exist between f(L) and m(L)
for arbitrary logics L?
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Analytic geometry

PARAB 319.

A rectangular box has sides of length x, y, and z, where
x, y, z are different numbers. The perimeter of the box is
p = 4(x+ y + z), its surface area is

s = 2(xy + yz + zx),

and the length of its main diagonal is d =
√
x2 + y2 + z2.

Show that the length of the shortest side is less than
1
4p−
√
d2− 1

2 s

3 and the length of the longest side is greater

than
1
4p+
√
d2− 1

2 s

3 .

NYSMTJ 64. by Robert Exner

Let a solid cube have one vertex at (0, 0, 0) and let
its diagonal from that vertex be along the positive z-axis.
If the positive z-axis passes through the sun, what shadow
does the cube cast on the xy-plane?

AMM E2576. by Robert L. Helmbold

Given any unit vector n = (n1, n2, n3), what is the
area A(n) of the orthogonal projection of the ellipsoid

(
x

a

)2

+
(
y

b

)2

+
(
z

c

)2

= 1

onto a plane perpendicular to n?

TYCMJ 132. by R. S. Luthar

Let k be a nonzero constant, and let P be the set of
planes with the property that the sum of the reciprocals of
the x, y, and z intercepts equals k. Prove or disprove that
the members of P contain a common point.

SSM 3761. by Gregory Wulczyn

Find positive numbers r, s, and t that maximize the
volume of the rectangular parallelepiped having one vertex
at the origin and opposite diagonal vertex at (r, s, t), subject
to the constraint that (r, s, t) lies on the plane x

a + y
b + z

c = 1
with a, b, and c all positive.

NYSMTJ 86. by Robert Exner

If one looks at the paraboloid

z = ax2 + by2, a > 0, b > 0,

from a viewpoint in the first octant, what kind of curve on
the paraboloid outlines the silhouette?

AMM E2563. by J. Th. Korowine

Let f1 and f2 be nonnegative periodic functions of
period 2π, and let h > 0. Let P1(θ) and P2(θ) be the
points whose cylindrical coordinates are (f1(θ), θ, 0) and
(f2(θ), θ, h), respectively. Find integrals for the volume and
surface area of the solid bounded by the planes z = 0, z = h,
and the lines P1(θ)P2(θ).

Boxes

JRM 390. by R. Robinson Rowe

Given are three rectangular boxes that can be nested
in two ways. Box A just fits diagonally in Box B, which
just fits diagonally in Box C. Alternately, using the same
storage space, Boxes A and B fit snugly side by side in Box
C, which is one meter long. Neglecting thickness of the box
material, find the length and breadth of each box.

Complexes

AMM E2584. by H. S. M. Coxeter

Describe an infinite complex of congruent isosceles tri-
angles extending systematically throughout 3-dimensional
Euclidean space in such a way that each side of every tri-
angle belongs to just two other triangles.

Convexity

AMM E2617. by Eugene Ehrhart

A convex body is cut by three parallel planes. If the
three sections thus produced have the same area, show that
the portion of the body lying between the two outside planes
is a cylinder. Does the same conclusion follow if instead we
are given that the three sections have the same perimeter?

JRM 507. by Susan Laird

Without consulting Man, the two most advanced races
in the universe divided it up between them. The Riss staked
out the part they wanted, taking care to consolidate their
empire by claiming the line AB whenever the points A and
B lay in their territory. The more peaceful Prott were
content with the large, unclaimed portion left to them, even
though the Riss got the larger share in the sense that a
randomly traveling spaceship was more likely, at any given
time, to find itself in Riss rather than Prott territory.

Accepting this as true metahistory, prove that space is
finite.

Covering problems

PUTNAM 1975/B.2.

In 3-dimensional Euclidean space, define a slab to be
the open set of points lying between two parallel planes.
The distance between the planes is called the thickness of
the slab. Given an infinite sequence S1, S2, . . . of slabs
of thicknesses d1, d2, . . ., respectively, such that

∑∞
i=1 di

converges, prove that there is some point in the space which
is not contained in any of the slabs.
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Cubes

ISMJ 12.26.
Consider a line ` joining the midpoints of opposite

edges of a cube. A cube has four diagonals. Show that
` is perpendicular to two of them.

SSM 3693. by Charles W. Trigg
An antiprism is a polyhedron with two regular n-gons

(the parallel bases) connected by 2n isosceles triangles. The
regular octahedron is an antiprism with n = 3. The regular
icosahedron consists of an antiprism capped on each base
with a pentagonal pyramid.

(a) Show that a cube can be viewed as an antiprism
with two pyramidal caps.

(b) Find the relative volumes of the antiprism and the
cube.

(c) Find the relative surface areas of the antiprism and
the cube.

(d) Describe the midsection of the antiprism and find
its area in terms of an edge of the cube.

Curves

CRUX 367. by Viktors Linis
(a) A closed polygonal curve lies on the surface of a

cube with edge of length 1. If the curve intersects every
face of the cube, show that the length of the curve is at
least 3

√
2.

(b) Formulate and prove similar theorems about (i) a
rectangular parallelepiped, (ii) a regular tetrahedron.

Cylinders

AMM E2728. by J. G. Mauldon
Let a, b, c, and d be radii of four mutually externally

tangent right circular cylinders whose axes are parallel to
the four principal diagonals of a cube. Characterize all
quadruples (a, b, c, d) that arise in this way.

NYSMTJ 46.
Prove that the intersection of a right circular cylinder

and a plane, neither parallel with nor perpendicular to the
axis of the cylinder, is an ellipse.

OMG 17.1.3.
A roller has an outer casing of circumference 150 cm

and an inner casing of circumference 125 cm. It contains a
small cylinder of circumference 60 cm which is free to roll
around inside. How many revolutions will the small cylinder
make if the roller is pushed a distance of 18 m?

JRM 629. by Archimedes O’Toole
A sphere rests on the bottom of a cylindrical container

of radius r. What is the minimum volume of liquid required
to immerse the sphere?

Dissection problems

FUNCT 2.2.2.
You can clearly cut a 3× 3× 3 cube up into 27 cubes,

each 1 × 1 × 1, using 6 cuts. What is the smallest number
of cuts that you can use to achieve the same result, perhaps
by rearranging the parts after each cut?

JRM 783. by Harry L. Nelson
(a) Is there a solid from which 27 one-inch cubes can

be cut in less than five cuts?
(b) What is the minimum largest dimension of a solid

out of which 27 one-inch cubes can be cut in less than six
cuts?

JRM 787. by Scott Kim
A torus is defined to be any shape which has exactly

one hole through it. A rectangular torus is a right rectan-
gular prism with a rectangular hole drilled through it. The
hole need not be centered, but the edges of the hole must
be parallel to the edges of the prism.

(a) Cut a cube into exactly two unlinked tori.
(b) Cut a cube into exactly five rectangular tori.

SSM 3672. by William K. Viertel
Using a plane parallel to the base, show how to cut a

hemisphere into two parts of equal volume.

JRM 498. by Robert Walsh
The seam of a baseball divides the spherical surface

into two congruent regions. Prove or disprove: A great circle
is the only curve on a spherical surface having the above
property and the additional property that the shortest route
on the sphere between any two points of the same region lies
entirely in that region.

Lattice points

MM 927. by Roy Dubisch
Pick’s formula for the area of polygonal regions whose

vertices are lattice points is 1
2 b+ i−1 where b is the number

of lattice points on the boundary and i is the number of
lattice points in the interior. Show that no such formula
exists for the volume of polyhedra whose vertices are lattice
points even if we allow as variables, in addition to b and
i, e = the number of edges, f = the number of faces, and
i′ = the number of lattice points in the interior of the faces.

Lines

AMM E2769. by Harry D. Ruderman
Let λ and λ′ be (not necessarily coplanar) lines in

space. On each of these lines, set up a real number co-
ordinate system, with possibly different units of length. Let
XX ′ be the line segment joining a point X on λ to the point
X ′ on λ′ with the same coordinate. Describe how to obtain
X such that XX ′ has minimal length for all such segments.

Locus

NAvW 414. by O. Bottema
Determine the locus of the points with equal distances

to three skew edges of a cube.

IMO 1978/2.
Let P be a point inside a given sphere. Three mutually

perpendicular rays from P intersect the sphere at points U ,
V and W ; Q denotes the vertex diagonally opposite to P in
the parallelepiped determined by PU , PV and PW . Find
the locus of Q for all such triads of rays from P .
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CRUX 497. by Ferrell Wheeler
Given is a cube of edge length a with diagonal CD,

face diagonal AB, and edge CB. Points P and Q start at
the same time from A and C, respectively, move at constant
rates along AB and CD, respectively, and reach B and D,
respectively, at the same time. Find the area of the surface
swept out by segment PQ.

Maxima and minima

CRUX 113. by Léo Sauvé
If ~u = (b, c, a) and ~v = (c, a, b) are two nonzero vectors

in Euclidean 3-space, what is the maximum value of the
angle between ~u and ~v? When is this value attained?

AMM E2757.* by Harry D. Ruderman
Let a, b, and c be three lines in R3. Find points A, B,

and C on a, b, and c, respectively, such that AB+BC+CA
is a minimum.

PME 367. by R. Robinson Rowe
A box of unit volume consists of a square prism topped

by a pyramid. Find the side of the square base and heights
of the prism and pyramid to minimize the surface area.

OSSMB 77-13.
Find the maximum volume and minimum total edge

length among all rectangular solids having fixed surface area
S. Show that these extreme values are attained by, and only
by, the cube.

OMG 16.1.3.
If a cable spool is 1 meter wide, has an inner radius

of 1/2 meter and an outer radius of 1 meter, what is the
maximum possible length of nylon rope of radius 1 cm that
can be wound on the spool?

CRUX 394. by Harry D. Ruderman
A wine glass has the shape of an isosceles trapezoid

rotated about its axis of symmetry. If R, r, and h are the
measures of the larger radius, smaller radius, and altitude
of the trapezoid, find r : R : h for the most economical
dimensions.

USA 1976/4.
If the sum of the lengths of the six edges of a trirect-

angular tetrahedron PABC is S, determine its maximum
volume.

Octahedra

MM 929. by Charles W. Trigg
Show that there are only two octahedrons with equi-

lateral triangular faces.

MM Q632. by F. David Hammer
A tetrahedron and an octahedron are built from a

common stock of equilateral triangles. The tetrahedron
holds a quart; what does the octahedron hold?

Packing problems

TYCMJ 100. by Sidney Penner
A 3-brick is a 3 × 1 × 1 rectangular parallelepiped.

Assume that a 7×7×7 cube has been packed with 3-bricks
and a single unit cube which is not located on the periphery.
Prove that the unit cube must be located in the center.

IMO 1976/3.

A rectangular box can be filled completely with unit
cubes. If one places as many cubes as possible, each with
volume 2, in the box, so that their edges are parallel to
the edges of the box, one can fill exactly 40% of the box.
Determine the possible dimensions of all such boxes.

JRM 646. by Harry Nelson

A rectangular box with integer dimensions H ≤ W ≤
L can be packed with more than WL cylindrical cans of
height 5 and diameter 1. What is the smallest possible
volume? What is the smallest possible surface area? Other
such boxes can be packed with more than HWL spheres of
diameter 1. Find those with the smallest possible volume
and surface area.

PARAB 361.

A number of blocks, each 2 cm×2 cm×1 cm, have been
fitted snugly together to make a solid 20 cm high. (The top
dimensions of the solid are, say, m cm× n cm.) A straight
line, parallel to the 20 cm sides, pierces the solid from top to
bottom. Prove that the straight line cannot pierce exactly
one of the blocks.

JRM 733. by Frank Rubin

A cube is inscribed in a sphere. A second sphere is
tangent externally to the cube at the center of one face and
internally to the first sphere. A set of n identical spheres
are tangent to the face of the cube, the first sphere, and the
second sphere. What is the maximum value of n?

Paper folding

PME 460. by Barbara Seville

The dihedral angle of a cube is 90◦. The other four
Platonic solids have dihedral angles which are approxi-
mately 70◦31′43.60′′, 109◦28′16.3956′′, 116◦33′54.18′′, and
138◦11′22.866′′. How closely can these angles be con-
structed with straightedge and compass? Can good approx-
imations be accomplished by paper folding? If so, how?

CRUX PS2-3.

Three unequal disjoint circles are given on a large (pla-
nar) card. If the centers of the circles are collinear, show
that it is always possible to fold the card along two straight
lines such that the three circles lie on a common sphere.

CRUX 375. by M. S. Klamkin
A convex n-gon P of cardboard is such that if lines are

drawn parallel to all the sides at distances x from them so
as to form within P another polygon P ′, then P ′ is similar
to P . Now let the corresponding consecutive vertices of P
and P ′ be A1, A2, . . . , An and A′1, A

′
2, . . . , A

′
n respectively.

From A′2, perpendiculars A′2B1, A
′
2B2 are drawn to A1A2,

A2A3 respectively, and the quadrilateral A′2B1A2B2 is cut
away. Then quadrilaterals formed in a similar way are cut
away from all the other corners. The remainder is folded
along A′1A

′
2, A
′
2A
′
3, . . . , A

′
nA
′
1 so as to form an open polyg-

onal box of base A′IA
′
2 . . . A

′
n and of height x. Determine the

maximum volume of the box and the corresponding value
of x.
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AMM E2630. by Edward T. Ordman
Suppose that a polyhedral model (made, say, of card-

board) is slit along certain edges and unfolded to lie flat in
the plane. The cuts may not be made so as to disconnect
the figure. Now suppose that the resulting plane figure is
again folded up to make a polyhedron (folding is allowed
only on the original lines). The new polyhedron is not nec-
essarily congruent to the original one. Find some interesting
examples.

CRUX 140. by Dan Pedoe
A paper cone is cut along a generator and unfolded

into a plane sheet of paper. What curves in the plane do
the originally plane sections of the cone become?

ISMJ J10.13.
For what tetrahedra is it true that if the three faces

are folded out and down to lie flat in the plane of the base
the resulting plane figure is a triangle?

Pentahedra

CRUX 182. by Charles W. Trigg
A framework of uniform wire is congruent to the edges

of the pentahedron in the previous problem. If the resis-
tance of one side of the square is 1 ohm, what resistance
does the framework offer when the longest edge is inserted
in a circuit?

CRUX 181. by Charles W. Trigg
A polyhedron has one square face, two equilateral tri-

angular faces attached to opposite sides of the square, and
two isosceles trapezoidal faces, each with one edge equal to
twice a side, e, of the square. What is the volume of this
pentahedron in terms of a side of the square?

Plane figures

PME 420. by Herbert Taylor
Given four lines through a point in 3-space (no three

of the lines in a plane), find four points, one on each line,
forming the vertices of a parallelogram.

PUTNAM 1977/B.2.
Given a convex quadrilateral ABCD and a point O not

in the plane of ABCD locate point A′ on line OA, point B′

on line OB, point C′ on line OC, and point D′ on line OD
so that A′B′C′D′ is a parallelogram.

PUTNAM 1975/A.6.
Let P1, P2 and P3 be the vertices of an acute-angled

triangle situated in 3-dimensional space. Show that it is
always possible to locate two additional points P4 and P5
in such a way that no three of the points are collinear
and so that the line through any two of the five points is
perpendicular to the plane determined by the other three.

Points in space

CANADA 1976/6.
NYSMTJ 75. by Sidney Penner

If A, B, C and D are four points in space, such that

6 ABC = 6 BCD = 6 CDA = 6 DAB = π/2,

prove that A, B, C and D lie in a plane.

USA 1975/2.
Let A, B, C and D denote four points in space and

AB the distance between A and B, and so on. Show that

AC2 +BD2 +AD2 +BC2 ≥ AB2 + CD2.

Polyhedra: combinatorial geometry

JRM 763. by Frank R. Bernhart
A simple polyhedron is a polyhedron on which exactly

three faces meet at every vertex. Prove that if every face of
a simple polyhedron is a 3n-gon, the number of vertices is
divisible by four.

OSSMB 75-8. by Murray Klamkin
Show that in every simple polyhedron there always

exist two pairs of faces that have the same number of edges.

ISMJ 12.21.
Euler proved his formula by considering how many

edges and faces were added to a polyhedron (or its map)
when a vertex was added. Can you reproduce his proof?

CRUX 336. by Viktors Linis
Prove that if in a convex polyhedron there are four

edges at each vertex then every planar section which does
not pass through any vertex is a polygon with an even
number of sides.

Polyhedra: convex polyhedra

PARAB 385.
Let v be the number of vertices of a convex polyhedron,

e the number of edges, and f the number of faces.
(a) Show that, for any convex polyhedron, 3f ≤ 2e

and 3v ≤ 2e.
(b) Is it possible to cut a potato into a convex polyhe-

dron having exactly seven edges?

CRUX 93. by H. G. Dworschak
Is there a convex polyhedron having exactly seven

edges?

CRUX 121. by Léo Sauvé
For which n is there a convex polyhedron having ex-

actly n edges?

Polyhedra: pentagons

CRUX 73. by Viktors Linis
Is there a polyhedron with exactly ten pentagons as

faces?

Polyhedra: spheres

PME 352. by Charles W. Trigg
The edges of a semi-regular polyhedron are equal. The

faces consist of eight equilateral triangles and six regular
octagons. In terms of the edge e, find the diameters of the
following spheres:

(a) the sphere touching the octagonal faces,
(b) the circumsphere, and
(c) the sphere touching the triangular faces.

Polyhedra: squares

AMM E2740.* by Victor Pambuccian
Show that if P is a convex polyhedron, one can find a

square all of whose vertices are on some three faces of P , as
well as a square whose vertices are on four different faces of
P .
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Projective geometry

NAvW 460. by O. Bottema
In a projective 3-space S, a tetrahedron T and a plane

U , not passing through any vertex of T , are given. To define
a Euclidean metric in S, the plane U is taken as the plane at
infinity and a suitable conic K in U as the isotropic conic.
How should K be chosen so that T is

(a) orthocentric;
(b) equifacial;
(c) regular?

NAvW 469. by O. Bottema
In a projective 3-dimensional space, a (nonsingular)

quadric Q is given. Determine the (nonsingular) tetrahedra
with their vertices on Q and their faces tangent to Q.

NAvW 491. by O. Bottema
and J. T. Groenman

In 3-dimensional projective space, a tetrahedron

A = A1A2A3A4

and two points P and Q are given. The line AiP intersects
the opposite face of A at Bi; the line BiQ intersects the
opposite face of B (= B1B2B3B4) at Ci. Show that the
four lines AiCi are generators of a hyperboloid.

NAvW 536. by O. Bottema
In projective 3-spaces, a tetrahedron A1A2A3A4 and

four points P , Q, R, S, not on one of its faces, are given.
Let AiP , AiQ, AiR, AiS meet the opposite face at Pi, Qi,
Ri, Si (i = 1, 2, 3, 4). The planes P2P3P4, P3P4P1, P4P1P2,
and P1P2P3 are denoted by U1, U2, U3, and U4 respectively,
and the planes analogously associated with Q, R, and S by
Vi, Wi, and Ti.

If U1, V1, W1, T1 pass through one point, show that the
same holds for Ui, Vi, Wi, Ti (i = 2, 3, 4). Show furthermore
that this takes place if and only if P , Q, R, S are on a Cayley
cubic surface with double points at Ai.

NAvW 546. by O. Bottema
In a projective 3-space, the tetrahedron A1A2A3A4

is taken as the fundamental tetrahedron of a projective
coordinate system; αi is the face opposite Ai. In αi, the
point Bi = (ai1, ai2, ai3, ai4), i = 1, 2, 3, 4, is given, such
that aij + aji = 0, aij 6= 0 if i 6= j, and

a12a34 + a13a42 + a14a23 = 0.

Show that the quadruple of lines AiBi is parabolic, and
determine the Plücker coordinates of the unique transversal.

Pyramids

MM Q621. by Charles W. Trigg
Show that in a square pyramid with all edges equal,

a dihedral angle formed by two triangular faces is twice a
dihedral angle at the base.

KURSCHAK 1979/1.
The base of a convex pyramid is a polygon with an

odd number of sides, its lateral edges are all of the same
length, and the angles between its neighboring lateral faces
are also equal. Prove that the base of the pyramid is a
regular polygon.

Rectangular parallelepipeds

ISMJ J11.4.
If the sides of a rectangular box are increased by 2, 3,

and 4 inches, respectively, it becomes a cube and its volume
is increased by 827 cubic inches. Find the dimensions of the
box.

SSM 3584. by Robert A. Carman

If (a, b, c) is a Pythagorean triple, a2 + b2 = c2, then

prove that the rectangular solid with edges (ab)2, (ac)2, and

(bc)2 has its major diagonal equal to c4 − a2b2.

TYCMJ 134. by Norman Schaumberger
Let A be the surface area of a rectangular paral-

lelepiped, V be the volume, and d be the diagonal. Prove

that 2d2 ≥ A ≥ 6V 2/3.

Regular tetrahedra

CRUX 245. by Charles W. Trigg
Find the volume of a regular tetrahedron in terms of its

bimedian b. (A bimedian is a segment joining the midpoints
of opposite edges.)

USA 1978/4.
(a) Prove that if the six dihedral angles of a given

tetrahedron are congruent, then the tetrahedron is regular.
(b) Is a tetrahedron necessarily regular if five dihedral

angles are congruent?

CRUX PS5-3.
In a regular (equilateral) triangle, the circumcenter O,

the incenter I, and the centroidG all coincide. Conversely, if
any two of O, I,G coincide, the triangle is equilateral. Also,
for a regular tetrahedron, O, I, and G coincide. Prove or
disprove the converse result that if O, I, and G all coincide
for the tetrahedron, the tetrahedron must be regular.

PME 425. by Charles W. Trigg
Without using its altitude, compute the volume of a

regular tetrahedron by the prismoidal formula.

Right circular cones

FUNCT 1.1.3. by A. Nesbit
Prove that the volume of a frustum of a cone is ob-

tained by either of the rules:
(a) To the areas of the two ends of the frustum add

the square root of their product; multiply the result by 1/3
of the perpendicular height.

(b) To the product of the diameters of the two ends,
add the sum of their squares; multiply this sum by the
height, and again by 0.2618.

JRM 785. by R. Robinson Rowe
The Burr brothers, Tim and Lum, felled a tree and

slashed off the branches, leaving a cone-shaped log, then
lopped off the spindle top, leaving the trunk truncated
where its diameter was six inches. Guessing it was his share,
Tim cut off the next 19 feet, but when Lum cut off an equal
volume from the butt end, it was only 7 feet long. This left
a two-foot-long chunk, which they split up for stove wood.
What was the diameter of the log at the butt end?
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PARAB 410.
Mount Zircon is shaped like a perfect cone whose base

is a circle of radius 2 miles, and the straight line paths up
to the top are all 3 miles long. From a point A at the
southernmost point of the base, a path leads to B, a point
on the northern slope and 2/5 of the way to the top. If AB
is the shortest path on the mountainside joining A to B,
find

(a) the length of the whole path AB, and
(b) the length of the path between P and B, where P

is a point on the path at which it is horizontal.

CANADA 1977/5.
OMG 16.2.5.

A right circular cone of base radius 1 cm and slant
height 3 cm is given. Suppose P is a point on the circum-
ference of the base and the shortest path from P around
the cone and back to P is drawn. What is the minimum
distance from the vertex V to this path?

Skew quadrilaterals

MM Q630. by M. S. Klamkin
and M. Sayrafiezadeh

Suppose a skew quadrilateral ABCD, with diagonal
AC perpendicular to diagonal BD, is transformed into the
quadrilateral A′B′C′D′ so that the corresponding lengths
of the sides are preserved. Prove that A′C′ is perpendicular
to B′D′.

USA 1977/4.
Prove that if the opposite sides of a skew quadrilateral

are congruent, then the line joining the midpoints of the
two diagonals is perpendicular to these diagonals, and con-
versely, if the line joining the midpoints of the two diagonals
of a skew quadrilateral is perpendicular to these diagonals,
then the opposite sides of the quadrilateral are congruent.

Solids of revolution

CRUX 436. by R. Robinson Rowe
The following method is used to approximate an oval

using four circular sectors. Two nonoverlapping sectors that
are symmetric about the horizontal diameter of a given cir-
cle are each translated vertically towards one another by
equal distances small enough to allow their four bound-
ing radii to continue to extend past their intersection by
amounts R1 and R2 on the left- and right-hand sides, re-
spectively. The other two sectors in the approximation have
radii R1 and R2.

Determine the radii of the four circular sectors in terms
of the angles these radii make with the horizontal and the
lengths of the horizontal and vertical diameters of the con-
structed figure.

Space curves

AMM 6087. by Nathaniel Grossman
A loxodrome on a Riemannian surface is a curve meet-

ing members of a specified one-parameter family of curves
at a constant angle. For example, a torus has two special
families, the meridians and the parallels, each defining the
same family of loxodromes. Prove that a loxodrome on a
torus is either periodic or dense.

MM 962. by Curt Monash
Consider the space curve, C(t), defined by

C(t) = (tk, tm, tn) for t ≥ 0 and k,m, and n integers.

(a) Show that if (k,m, n) equals (1, 2, 3) or (−2,−1, 1),
then C(t) does not contain four coplanar points.

(b) Show that for (k,m, n) equal to (1, 3, 4), C(t) does
contain four coplanar points.

(c) Find a characterization of (k,m, n) so that C(t)
does not contain four coplanar points.

MM 981. by Steven Jordan
Show that if a smooth curve in R3 has the property

that each principal normal line passes through a fixed point,
then the curve must be an arc of a circle.

Spheres

OMG 16.1.9.
A hole of length 6 m is drilled through a sphere of ra-

dius greater than 3 m. What is the volume of the remaining
material?

CRUX 453. by Viktors Linis
In a convex polyhedron each vertex is of degree 3 (i.e.

is incident with exactly 3 edges) and each face is a polygon
which can be inscribed in a circle. Prove that the polyhe-
dron can be inscribed in a sphere.

PENT 303. by Charles W. Trigg
Show that the ratio of the volume of a sphere to the

volume of its inscribed regular octahedron is π.

AMM E2694. by I. J. Schoenberg
Let Π be a prism inscribed in the sphere S of unit

radius and center O. The base of Π is a regular n-gon of
radius r. For each face F of Π, drop a directed perpendicular
from O and let AF be the point where it intersects S. Let
Π∗ be the polyhedron obtained by adding to Π, for each
face F , the pyramid of base F and apex AF .

For which values of r is Π∗ convex?

CRUX PS6-2.
Given are two points, one on each of two given skew

lines. Prove that there exists a unique sphere tangent to
each of the two given points.

CRUX 500. by H. S. M. Coxeter
Let 1, 2, 3, 4 be four mutually tangent spheres with

six distinct points of contact 12, 13, . . ., 34. Let 0 and 5 be
the two spheres that touch all the first four. Prove that the
five “consecutive” points of contact 01, 12, 23, 34, 45 all lie
on a sphere (or possibly a plane).

Spherical geometry

PARAB 305.
An airplane leaves a town of latitude 1◦ S, flies x km

due South, then x km due East, then x km due North. He
is then 3x km due East of his starting point. Find x.

USA 1979/2.
Let S be a great circle with pole P . On any great circle

through P , two points A and B are chosen equidistant from
P . For any spherical triangle ABC (the sides are great circle
arcs), where C is on S, prove that the great circle arc CP
is the angle bisector of angle C.
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Surfaces

OMG 16.1.8.
If a 3 m high statue takes 5 liters of paint to cover,

how much will be needed to cover a 30 cm high copy?

Tetrahedra: altitudes

NAvW 513. by O. Bottema
It is known that the four altitudes of a tetrahedron T

are generators of a hyperboloid. Determine their cross ratio
in terms of the six dihedral angles of T .

Tetrahedra: dihedral angles

CANADA 1979/2.
Prove that the sum of the dihedral angles of a tetrahe-

dron is not constant.

Tetrahedra: faces

CRUX 478. by Murray S. Klamkin
Prove that if the circumcircles of the four faces of a

tetrahedron are mutually congruent, then the circumcenter
O of the tetrahedron and its incenter I coincide.

CRUX 330. by M. S. Klamkin
It is known that if any one of the following three condi-

tions holds for a given tetrahedron then the four faces of the
tetrahedron are mutually congruent (i.e., the tetrahedron is
isosceles):

1. The perimeters of the four faces are mutually equal.
2. The areas of the four faces are mutually equal.
3. The circumcircles of the four faces are mutually con-

gruent.
Does the condition that the incircles of the four faces

be mutually congruent also imply that the tetrahedron is
isosceles?

Tetrahedra: family of tetrahedra

NAvW 514. by O. Bottema
A tetrahedron A1A2A3A4 with A2A3 = a, A3A1 = b,

A1A2 = c, A1A4 = a1, A2A4 = b1, A3A4 = c1 is called
harmonic (or isodynamic) if aa1 = bb1 = cc1 = k. Given a
nonequilateral triangle A1A2A3 with sides a, b, and c, show
that there exists a set of harmonic tetrahedra A1A2A3A4,
and determine the upper and lower bound of k.

Tetrahedra: incenter

NAvW 526. by O. Bottema
and J. T. Groenman

A tetrahedron A1A2A3A4 is given; αi is the face op-
posite Ai, I is the center of the inscribed sphere, and Bi its
tangent point on αi (1 ≤ i ≤ 4). The point Pi on IBi is
defined by IPi = d, where d is given (−∞ ≤ d ≤ ∞).

Show that the four lines AiPi are hyperbolic.

Tetrahedra: inscribed spheres

MM Q616. by C. W. Trigg
The faces of a tetrahedron and a hexahedron (triangu-

lar dipyramid) are congruent equilateral triangles. What is
the ratio of the radii of their inscribed spheres?

Tetrahedra: maxima and minima

JRM 532. by R. S. Field Jr.
Of all plane sections of a regular tetrahedron, which

one has the maximum perimeter?

Tetrahedra: octahedra

PME 386. by Charles W. Trigg
Show that the volume of Kepler’s Stella Octangula (a

compound of two interpenetrating tetrahedrons) is three
times that of the octahedron that was stellated.

Tetrahedra: opposite edges

AMM S12. by M. S. Klamkin
CRUX PS4-3.

If a, a1; b, b1; and c, c1 denote the lengths of the three
pairs of opposite sides of an arbitrary tetrahedron, prove
that a+a1, b+ b1, and c+ c1 satisfy the triangle inequality.

CRUX 94. by H. G. Dworschak
If, in a tetrahedron, two pairs of opposite edges are

orthogonal, is the third pair of opposite sides necessarily
orthogonal?

Tetrahedra: planes

NAvW 451. by O. Bottema
Let T = A1A2A3A4 be a given tetrahedron, and let

Mij denote the midpoint of AiAj . Determine the convex
polyhedron P bordered by the twelve planes AiMjkMj`,
where i, j, k, ` is a permutation of 1, 2, 3, 4. Determine the
volume of P if that of T is unity.

Tetrahedra: triangular pyramids

SPECT 10.2.
A pyramid on a triangular base has the length of each

sloping side 1 and the length of each base side
√

2. The
point P is a point on the base, distance d1, d2, d3 from the
base vertices. Determine the distance of P from the apex
of the pyramid.

Triangles

AMM E2727. by David P. Robbins
Two triangles A1A2A3 and B1B2B3 in R3 are equiv-

alent if there exist three different parallel lines p1, p2, and
p3 and rigid motions σ and τ such that σ(Ai) and τ(Bi) lie
on pi (i = 1, 2, 3).

Find necessary and sufficient conditions for equivalence
of two triangles.
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Banach spaces

NAvW 440. by D. van Dulst
Let X be a Banach space, and let B denote its unit

ball. If X is nonreflexive, show that there exists an ε > 0
with the property that, for no weakly compact set K ⊂ X,
we have B ⊂ K + εB.

AMM 6283. by Gordon R. Feathers
It is well known that a strongly closed convex subset

of a Banach space is weakly closed. Is the same true of a
strongly closed star-shaped subset?

Cantor set

AMM 6213. by C. G. Mendez
Let G be an open dense subset of the Cantor set C. Is

the boundary ∂G of G countable?

Compactifications

AMM 6124.* by Thomas E. Elsner
Let Y be a compactification of a completely regular

space X. Is there a base B for Y such that the smallest
algebra of sets containing B has no element in Y \X?

Composed operations

AMM 6260. by Eric Langford
If X is a subset of a topological space S, then it is

known that there can be formed at most six new sets by
repeated formations of closures and interiors iterated in any
order. It is also known that if we further allow the formation
of unions, then no more than six new sets can be generated
for a maximum total of thirteen. Given that we start withX
and the additional six sets described in the first sentence,
what is the minimum number of new sets that can occur
when we further allow unions?

Connected sets

JRM 445. by Michael R. W. Buckley
Define a tetrad as the union of four closed, simply con-

nected regions such that each of the six pairs of regions
shares a boundary of positive measure. It is simple to con-
struct a tetrad that is, itself, simply connected. It is also
simple to exhibit tetrads in which the four component re-
gions are congruent, in which, however, the tetrads them-
selves are not simply connected.

(a) Can a simply connected tetrad with four congruent
component regions be constructed?

(b) Failing this, can a sequence of tetrads with four
congruent components be exhibited in which the ratio of
hole area to tetrad area approaches zero?

(c) Failing this, what is the greatest lower bound on
the ratio of hole area to tetrad area for a tetrad with four
congruent components?

JRM 684. by Frank Rubin
Define a tetrad as the union of four closed, simply con-

nected regions such that each of the six pairs of regions
shares a boundary of positive measure. It is possible to
construct tetrads that are simply connected and which are
composed of four congruent component regions. Is it possi-
ble to construct such a tetrad which in addition is convex?

MM 932. by R. A. Struble
Is there a topology for the set of real n-tuples, other

than the Euclidean topology, relative to which the family of
connected sets is exactly the usual one?

CRUX 186. by Leroy F. Meyers
Let A, B, C, and D be the subsets of the plane R2

having, respectively, both coordinates rational, both coor-
dinates irrational, exactly one coordinate rational, and both
or neither coordinates rational. Which of these sets is/are
connected?

Euclidean plane

AMM 6122. by Albert A. Mullin
Does there exist a compact set S ⊂ E2 such that for

each x ∈ E2 \ S, there exist precisely two nearest points of
S? Clearly, S cannot be convex.

Function spaces

AMM 6093. by Richard Johnsonbaugh
Let X be a completely regular Hausdorff space, and

let C(X) denote all real-valued continuous functions on X
with the topology of uniform convergence on compact sets.
Let F be a continuous nonzero linear functional on C(X).
Prove that there exists a smallest compact set K with the
property that if f = 0 on K, then F (f) = 0.

AMM 6113. by Claudia Simionescu
Let X be a compact metric space, and let F be a

real finitely additive set function not of bounded variation.
Let TF be the set of Riemann-Stieltjes integrable functions.
Then TF is of first category in C(X). Can this result be
improved to show that TF is nowhere dense?

AMM 6257. by Jan Mycielski
Let X be the space of continuous nondecreasing func-

tions f : [0, 1] → [0, 1] having f(0) = 0 and f(1) = 1 and
with the distance function d(f, g) = max |f(x)− g(x)| over
0 ≤ x ≤ 1. Let Y be the subset of all f in X such that f
is strictly increasing and the length of f is 2. Prove that
X \ Y is meager in X.

Functions

AMM 6181.* by J. M. Arnaudies
Let n be an integer larger than 2, and A0, A1, . . . , An

be n single-valued real functions defined and continuous on
a given topological Hausdorff space T . Suppose that for all
t ∈ T , the 2-form

A0x
n +A1x

n−1y + · · ·+Any
n

(where the Ai take their values for t) defines n real distinct
lines in the two-dimensional real projective space.

Give a characterization of those spaces T such that
for any choice of the Ai, there necessarily exists a system
of continuous functions (P1, Q1, P2, Q2, . . . , Pn, Qn), real-
valued, defined on T , satisfying the formal equality,

A0x
n +A1x

n−1y + · · ·+Any
n

= (P1x+Q1y)(P2x+Q2y) · · · (Pnx+Qny).

Graph of a function

AMM 6255. by Adam Riese
Let f :R → R be a function whose graph, considered

as a subset of R2, is both closed and connected. Prove that
f is continuous. What can be said when f :Rm → Rn?
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Hilbert spaces

CMB P257. by S. Zaidman
Let V and H be two Hilbert spaces and V a vector

subspace of H with v 6= H. Suppose the inclusion map i :
V → H is continuous and that V is dense in H. Then there
is a function v : [−1, 1]→ V such that i ◦ v : [−1, 1]→ H is
continuous, but v itself is not continuous.

NAvW 554. by A. A. Jagers and H. Th. Jongen
Let H be a separable Hilbert space and P be the set

of all positive, semidefinite Hermitian operators from the
whole of H into H. To each convex cone F in P , we may
associate a topology τF on H such that (H, τF ) is a locally
convex topological vector space: Take

{{
x ∈ H

∣∣ (Ax, x) < 1
} ∣∣∣ A ∈ F

}

as a neighborhood base at 0 for τF . If

F =
{
A ∈ P

∣∣ dimA(H) <∞
}
,

then τF is the weak topology on H; if F consists of all
nuclear A ∈ P , then τF is called the S-topology; if F = P ,
then τF is just the norm topology. Prove that τF is equal
to the bounded weak topology if F consists of all compact
A ∈ P .

Knots

JRM 444. by Horace W. Hinkle
It is simple enough to tie up a rectangular box with

string and then tie the loose ends together. Is it possible,
however, to do the job with a single rubber band of suitable
size with each of the six faces of the box having two segments
of the band intersecting in an over-and-under knot rather
than in a simple cross-over?

Locally convex spaces

AMM 6029.* by P. P. Carreras
Let E[t] be a linear space provided with a separated

locally convex topology t. Show that E[t] is bornological
if and only if every absolutely convex bornivorous and al-
gebraically closed subset of E[t] is a t-neighborhood of the
origin.

NAvW 471. by D. van Dulst
Give an example of a locally convex Hausdorff space

that is separable but contains a nonseparable linear sub-
space.

Metric spaces

FUNCT 1.2.3.
If X is a Cartesian plane and, for all points P,Q ∈ X,

d(P,Q) =

{
0, if P = Q,

1, if P 6= Q,

verify that d is a metric on X. Describe the open balls
B((0, 0); 2) and B((0, 0); 1/2) in this metric space. Verify
that every subset of the metric space is open.

FUNCT 1.2.2.
If X is a Cartesian plane and, for all points P,Q ∈ X,

d(P,Q) is defined as |x − u| + |y − v|, where (x, y) are the
coordinates of P and (u, v) those of Q, verify that d is a
metric on X. Draw the open ball B((0, 0); 1) in this metric
space.

AMM S8. by R. Johnsonbaugh
Call a function f from a metric space (M,d) into itself

a weak contraction map if whenever x, y ∈ M with x 6= y,
we have

d (f(x), f(y)) < d(x, y).

(a) Give an example of a weak contraction map on a
complete metric space with no fixed point.

(b) Show that even on a compact metric space a weak
contraction map need not be a contraction map; i.e., it need
not satisfy d (f(x), f(y)) ≤ cd(x, y) for 0 < c < 1.

(c) Prove that a weak contraction map on a compact
metric space has a unique fixed point.

AMM 6081. by T. S̆alát
Let (X, d) be a metric space. We call f :X → R

quasicontinuous at x0 if for each positive ε and δ there exists
an open sphere

S(x1, δ1) = {x : d(x, x1) < δ1} ⊂ S(x0, δ),

such that

f [S(x1, δ1)] ⊂ (f(x0 − ε), f(x0 + ε)) .

Does there exist a metric space of first category and with no
isolated points that allows a quasicontinuous function that
is nowhere continuous?

AMM 6063. by H. J. Marcum
Let S be the set of all circles in the plane provided

with the Hausdorff metric ρ induced by the usual Euclidean
metric d, i.e.,

ρ(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

where d(a,B) = inf {d(a, b) | b ∈ B} denotes the distance
from the point a to the set B.

Let z:S → R2 be the function that to each circle A
assigns its center z(A). Prove that d(z(A), z(B)) ≤ ρ(A,B)
for all A,B ∈ S.

AMM 6126. by Harold Reiter

Let X be a metric space, and let (2X , D) be the as-
sociated space of compact subsets, with the Hausdorff met-
ric. Let S be a zero-dimensional collection of compact zero-
dimensional sets. Prove or disprove that ∪{C |C ∈ S} is
zero-dimensional.

AMM S16. by I. J. Schoenberg
Characterize the closed sets S of the complex plane

such that d(z + w) ≤ d(z) + d(w) for all complex numbers
z and w, where d(z) denotes the Euclidean distance from z
to S.

AMM 6275. by S. Foldes and E. Howorka
Let r be a metric on Rn giving the same topology as the

usual Euclidean metric d. Let I(r), I(d) denote their groups
of isometries. The following conjecture has not yet been
settled: If I(r) contains an isomorphic copy of I(d), then
I(r) ∼= I(d). Show that I(d) ⊆ I(r) implies I(r) = I(d).
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AMM 6025. by S. F. Wong and B. B. Winter
Let (X, d) be a metric space, T an arbitrary subset of

X, and t an arbitrary element of T . As usual,

d(t, A) = inf {d(t, a) | a ∈ A}
is −∞ if A = ∅; ∂T and T c are, respectively, the boundary
and the complement of T .

(a) Is it always true that d(t, x) < d(t, ∂T ) implies
x ∈ T? If not, find a condition on (X, d) that is necessary
and sufficient for the validity of this implication.

(b) Is it always true that d(t, ∂T ) = d(t, T c)? If not,
find a condition on (X, d) that is necessary and sufficient
for the validity of this equality.

Product spaces

AMM 6023. by S. J. Sidney
If for each k in the uncountable index set K, Ik denotes

a copy of [0, 1] and Uk denotes the copy of (0, 1] contained
therein, prove or disprove that

∏
k Uk is a Borel set in the

compact space
∏
k Ik.

Separation properties

AMM E2806. by F. S. Cater
AMM 6274. by F. S. Cater

Let S denote a topological space in which every com-
pact set is closed, and let x and y be distinct points of S.

(a) Prove that x and y have disjoint neighborhoods if
each of x and y has a countable local base.

(b) Show by example that x and y need not have dis-
joint neighborhoods if each element of S, other than x, has
a countable local base.

Sets

AMM E2614. by Frank Siwiec
A set A ⊂ Rn is called a g-set if there is a countable

family {Un|n = 1, 2, . . .} of open sets containing A with the
property that for each open set G ⊃ A, there is a Un with
A ⊂ Un ⊂ G. Which subsets of Rn are g-sets?

AMM 6188. by F. S. Cater
Do there exist complementary subsets A and B of the

set of irrational numbers such that for any open intervals I
and J in the real line,

(a) A ∩ I and B ∩ J are not homeomorphic in the
Euclidean topology;

(b) there is a one-to-one continuous function mapping
A ∩ I onto B ∩ J?

AMM 6014. by C. H. Kimberling
Does there exist an uncountable set of real numbers all

of whose closed subsets are countable?

AMM 6261. by Hugh Noland
Let S be an uncountable set of real numbers, and let

A be a countable subset of S. Must there exist an open set
U , containing A, such that S \ U is uncountable?

CRUX 59. by John Thomas
Find the shortest proof to the following proposition:

every open subset of R is a countable disjoint union of open
intervals.

AMM E2613. by D. E. Knuth
and the Mayagüez Problems Group

Partition the real line R into a countable union of
compact subsets.

PUTNAM 1975/B.4.

Does there exist a subsetB of the unit circle x2+y2 = 1
such that

(1) B is topologically closed, and
(2) B contains exactly one point from each pair of

diametrically opposite points on the circle?

Subspaces

PME 372. by Sidney Penner
Prove the following theorem: Let (X1, τ1) and (X2, τ2)

be topological spaces and let f be a function from a subset
of X1 into X2. The function f is continuous in the relative
topology on its domain if and only if, for every a ∈ τ2, there
exists b ∈ τ1 such that

(1) Dom f ∩ b ⊂ f−1(a), and

(2) If c ⊂ a ∩ Range f , then f−1(c) ⊂ Dom f ∩ b.

AMM 6147. by Richard Johnsonbaugh
Can a normal, separable space possess a closed, un-

countable, discrete subspace?

Surfaces

AMM 6141.* by Dennis Johnson
and Herbert Taylor

Can the Borromean rings be drawn without crossing
on a surface of genus 2?

AMM E2585. by Jan Mycielski
Prove that for every triangulation of a two-dimensional

closed surface, the average number of edges meeting at a
vertex approaches 6 in the limit as the number of triangles
used approaches infinity.

Topological groups

AMM 6246. by L. Washington and W. Parry
Let G be a compact Hausdorff topological group. Show

that the only group homomorphism (not assumed continu-
ous) from G to the integers is the trivial one.

Topological vector spaces

AMM 6009. by J. A. Goldstein
Let X be a finite dimensional topological vector space

whose topology is given by a metric d. Let T be a surjective
isometry on X such that T0 = 0. If d is invariant, i.e., if

d(p, q) = d(p− q, 0)

for all p, q ∈ X, so that X is a Fréchet space, then T is
necessarily linear. Must T still be linear if the assumption
that d is invariant is dropped? What if dimX = 1?

Unit interval

AMM E2768. by Jim Fickett
Is there a subset E of [0, 1] with E and [0, 1]\E home-

omorphic?

AMM 6282. by David P. Robbins
Exhibit a homeomorphism between the metric space of

rational numbers r with 0 < r < 1 and that of rationals t
with 0 ≤ t ≤ 1.
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Approximations

AMM E2693. by Alexandru Lupaş

Find a rational function

f(x) =
P (x)

Q(x)
,

where P (x) and Q(x) are polynomials with integral coeffi-
cients of degree at most 6, which is a good approximation
to arctanx on [0, 1]. More precisely, we want

g(x) = arctanx− f(x)

to satisfy 0 ≤ g(x) < ε for x ∈ [0, 1] and ε to be small (such
approximations exist if ε = 0.000033).

FUNCT 1.2.7.

A very good approximate method of calculating sinx
for x between 0 and π/2 is by means of the formula

sinx ≈ x(1− 0.16605x2 + 0.00761x4).

Use a calculator or a computer to make your own table of
sinx, and compare it with published tables.

OSSMB G77.2-4.

Show that tanπ/10 is a root of the equation

5x4 − 10x2 + 1 = 0.

Hence calculate tanπ/10 to two decimal places.

Calculator problems

NYSMTJ 55. by Bruce King

Suppose you are using a calculator and need to find
tan−1 x, but the calculator will give only sin−1 x and
cos−1 x. How can you find tan−1 x?

Determinants

AMM E2589. by Joe Sunday

Let d1, . . . , dn be distinct integers > 1. If

aij = sin2
(
jπ

di

)

for 1 ≤ i, j ≤ n, show that det(aij) 6= 0.

CRUX 462. by Hippolyte Charles

Let A, B, and C be the angles of a triangle. Show that

∣∣∣∣∣∣∣∣∣

tan A
2 cosA 1

tan B
2 cosB 1

tan C
2 cosC 1

∣∣∣∣∣∣∣∣∣
= 0.

Fallacies

FUNCT 2.3.4.
Spot the fallacy: Since

cos2 x = 1− sin2 x,

it follows that

1 + cosx = 1 + (1− sin2 x)
1
2 ;

that is,

(1 + cosx)2 =
{

1 + (1− sin2 x)
1
2

}2

.

In particular, when x = π, we have

(1− 1)2 =
{

1 + (1− 0)
1
2

}2

,

0 = (1 + 1)2 = 4.

Identities: constraints

CRUX 234. by Viktors Linis

If sin 2nπ
13 = ± sin π

13 , prove that

cos
π

13
cos

2π

13
cos

4π

13
· · · cos

2n−1π

13
= ± 1

2n

CRUX 103. by H. G. Dworschak
If

cosα

cosβ
+

sinα

sinβ
= 1,

prove that
cos3 β

cosα
+

sin3 β

sinα
= 1.

DELTA 5.1-1. by R. S. Luthar
If cos θ + cosφ + cosψ = sin θ + sinφ + sinψ = 0,

evaluate

cos 3(θ − φ) + cos 3(φ− ψ) + cos 3(ψ − θ).

OSSMB G76.2-3.
(a) Given that

(1 + sinA)(1 + sinB)(1 + sinC) = cosA cosB cosC 6= 0,

evaluate
(1− sinA)(1− sinB)(1− sinC).

(b) Given that in 4ABC
(a+ b+ c)(b+ c− a) = 3bc,

find 6 A.

TYCMJ 120. by K. R. S. Sastry
Let sinA + cosB = P and cosA + sinB = Q, where

P and Q are not both zero and P 2 + Q2 ≤ 4. Express in
terms of P and Q the values of

(a) sin(A+B),
(b) cos(A+B),
(c) sin(A−B), and
(d) cos(A−B).

OSSMB G79.2-5.
Given A = tan−1 1

7 , B = tan−1 1
3 (A, B acute), show

that cos 2A = sin 4B.
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OSSMB G78.1-6.
If tanA and tanB are the roots of the equation

x2 + cx+ d = 0,

show that

sin2(A+B) + c sin(A+B) cos(A+B) + d cos2(A+B) = d.

Identities: cos

PME 397. by J. S. Frame
If cj = 2 cos(jπ/n), prove that

n∏

j=1

(1 + 3c4j ) = (3n − 3n/2 · 2 cos(5πn/6) + 1)2,

and more generally that

n∏

j=1

(t4 + c4j ) = (xn + x−n − zn − z−n)2 = F 2
n(t),

where Fn(t)/F1(t) is a polynomial in t2 with integral coef-
ficients, and

x = uu ≥ 1, z = u/u, and u+ u−1 = teπi/4.

Identities: inverse trigonometric functions

MATYC 132. by Warren Page
Show that

csc−1(
√
n+ 2) + sec−1(

√
n+ 1) + tan−1(

√
n+ 1)

− tan−1(
√
n) = 2

[
cot−1(2) + cot−1(3)

]

for every natural number n.

PME 399. by Jack Garfunkel
Show that

arcsin
(
x− 3

3

)
+ 2 arccos

√
x

6
=
π

2
, (3 ≤ x ≤ 6).

Identities: multiple angles

OSSMB 76-9.
If f denotes the function that gives cos 17x in terms of

cosx, that is,
cos 17x = f(cosx),

show that
sin 17x = f(sinx).

Identities: sin

OSSMB 78-8. by Neal E. Reid
Let θn = π/(n+1). Prove that, for any positive integer

n,

sin θn · sin 2θn · sin 3θn · · · · · sinnθn =

√
2n+ 1

2n
.

OSSMB G79.1-4.
(a) Prove that for all A and B,

sin(A+B) sin(A−B) = sin2A− sin2B.

(b) Prove that for any triangle ABC,

(b2 − c2) cotA+ (c2 − a2) cotB + (a2 − b2) cotC = 0.

Identities: sin and cos

OMG 17.3.8.
Given that cos θ = A cos3 θ + B cos θ holds for every

real number θ, determine the values of A and B.

OMG 18.1.6.
Prove the identity

(1 + tanA+ cotA)2 =
(sinA · cosA+ 1)2

sin2A · cos2A
.

Identities: tan

CRUX 222. by Bruce McColl
Prove that

tan
π

11
tan

2π

11
tan

3π

11
tan

4π

11
tan

5π

11
=
√

11.

ISMJ 11.5.
Prove that

tan
π

20
− tan

3π

20
+ tan

5π

20
− tan

7π

20
+ tan

9π

20
= 5.

TYCMJ 128. by Mangho Ahuja
Prove that

tan
π

14

(
cos

π

14
+ cos

3π

14
+ cos

5π

14

)
=

1

2
.

Inequalities: cos

SIAM 77-19. by P. Barrucand
Let

F1(θ) =

∞∑

n=1

cosn θ cosnθ − cos2n θ

n (1− 2 cosn θ cosnθ + cos2n θ)
,

F2(θ) =

∞∑

n=1
n≡1(mod 2)

cosn θ cosnθ − cos2n θ

n (1− 2 cosn θ cosnθ + cos2n θ)
.

It is conjectured that F1(θ) and F2(θ) are negative for

0 < θ <
π

2
.

Inequalities: Huygens

CRUX 115. by Viktors Linis
Prove the following inequality of Huygens:

2 sinα+ tanα ≥ 3α, 0 ≤ α < π

2
.

CRUX 167. by Léo Sauvé
Prove that

α >
3 sinα

2 + cosα

for 0 < α < π/2.

CRUX 303. by Viktors Linis
Prove that

2 sinhx+ tanhx ≥ 3x, x ≥ 0.
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Inequalities: sin

AMM E2720. by Ralph P. Boas

Show that sin2 x < sin
(
x2
)

for 0 < x ≤ (π/2)1/2.

CRUX 306. by Irwin Kaufman
Solve the following inequality:

sinx sin 3x >
1

4
.

PUTNAM 1978/A.5.
Let 0 < xi < π for i = 1, 2, . . . , n and set

x =
x1 + x2 + · · ·+ xn

n
.

Prove that
n∏

i=1

sinxi
xi

≤
(

sinx

x

)n
.

Inequalities: sin and cos

CRUX 36. by Léo Sauvé
If m and n are positive integers, show that

sin2m θ cos2n θ ≤ mmnn

(m+ n)m+n
,

and determine the values of θ for equality to hold.

IMO 1977/4.
Four real constants a, b, A and B are given, and

f(θ) = 1− a cos θ − b sin θ −A cos 2θ −B sin 2θ.

Prove that if f(θ) ≥ 0 for all real θ, then

a2 + b2 ≤ 2 and A2 + B2 ≤ 1.

Inequalities: sin and tan

MM 1082. by C. S. Gardner
Prove that tan sinx > sin tanx for 0 < x < π/2.

Inequalities: tan

NAvW 521. by M. E. Muldoon
Prove that

tan t

t
< 2−

(
1− t2

) 1
2 , 0 < t ≤ 1.

Inequalities: tan and cot

OSSMB G76.1-4.
Show that tan 3a cot a cannot lie between 1/3 and 3.

Inequalities: tan and sec

AMM E2739. by Marvin C. Papenfuss
Prove that

x sec2 x− tanx ≤ 8π2x3

(π2 − 4x2)
2
, 0 ≤ x < π

2
.

MM Q652. by Murray S. Klamkin
Show that

n∑

i=1

(1 + tanαi) ≤
√

2

n∑

i=1

secαi

when secαi > 0. When does equality hold?

Infinite products

PARAB 425.
Show that 2 cosx+ 1 = 4 cos2 1

2x− 1. Find

lim
n→∞

(
2 cos

x

2
− 1
)(

2 cos
x

22
− 1
)
· · ·
(

2 cos
x

2n
− 1
)
.

OSSMB 75-17.
Prove that

cos
x

2
· cos

x

4
· cos

x

8
· cos

x

16
· · · = sinx

x
.

Infinite series

MM Q629. by Norman Schaumberger
Show that

∞∑

k=1

tan−1 1

2k2
=
π

4
.

DELTA 5.2-3. by Charles R. McConnell
Show that

−1

2
log(1− 2x cos 3θ + x2)

= x cos 3θ +
x2 cos 6θ

2
+
x3 cos 9θ

2
+ · · · .

For what real values of x and θ is this equation valid?

AMM 6241. by Robert Baillie
Prove that

∞∑

n=1

sin(n)

n
=

∞∑

n=1

(
sin(n)

n

)2

=
π − 1

2

and
∞∑

n=1

sin2(n)

n4
=

(π − 1)2

6
.

PME 363. by Robert C. Gebhardt

Does
∑∞
k=1

sin k
k converge, and if so, to what?

CRUX 235. by Viktors Linis
Prove Gauss’ Theorema Elegantissimum: If

f(x) = 1+
1

2
· 1
2
x2 +

1

2
· 1
2
· 3
4
· 3
4
x4 +

1

2
· 1
2
· 3
4
· 3
4
· 5
6
· 5
6
x6 + · · · ,

show that

sinφf(sinφ)f ′(cosφ) + cosφf(cosφ)f ′(sinφ)

=
2

π sinφ cosφ
.

MM 1039. by M. B. Gregory
and J. M. Metzger

Evaluate
∞∑

k=1

1

k2
tan

kπ

m
tan

kπ

n
.

TYCMJ 63. by Norman Schaumberger

For which values of k will
∑∞
n=1 tank(1/n) converge?
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SIAM 77-18. by A. M. Liebetrau
Show that

∞∑

j=1

α−6
j

[
sinαj − sinhαj
cosαj + coshαj

]2

=
1

80
,

where the αj ’s are the positive solutions to the equation

(cosα)(coshα) + 1 = 0.

Numerical evaluations

OSSMB 76-18.
Evaluate cos 20◦ · cos 40◦ · cos 80◦.

SSM 3702. by Tony To
Prove:

(cos 54◦ + cos 18◦) tan 18◦ = sin 30◦.

CRUX 305. by Bruce McColl

How many distinct values does cos( 1
3 sin−1 α) have?

What is the product of these values?

PENT 317. by John A. Winterink
Arc ABC of a circle has a measure of 150◦ and its

center is at D. If AB = 3 and BC = 2, what is the value of
cot( 1

2
6 BDC)?

OSSMB G79.3-2.
From the top of a hill, the angle of depression of a point

D on the level plain below is 30◦, and from the point three
quarters of the way down the hill, the angle of depression
of D is 15◦. Find the tangent of the angle of inclination of
the hill.

Recurrences

FQ B-308. by Philip Mana
(a) Let cn = cos(nθ) and find the integers a and b such

that cn = acn−1 + bcn−2 for n = 2, 3, . . . .
(b) Let r be a real number such that cos(rπ) = p/q,

with p and q relatively prime positive integers and q not in
{1, 2, 4, 8}. Prove that r is not rational.

Series

MM 1036. by Joseph Silverman
If a0, a1, . . . , aN are complex numbers such that

|aN | >
N−1∑

k=0

|ak|,

show that
N∑

n=0

an cosnθ = 0

has at least 2N solutions for 0 ≤ θ < 2π.

Solution of equations: arctan

JRM 789. by Hans Havermann

Let θn =
∑n
i=1 tan−1

(
1/
√
i
)
. Do there exist three

positive integers (p, q, r) such that θp = θq + 2πr?

Solution of equations: sin and cos

CRUX 369. by Hippolyte Charles
Find all real solutions of the equation

sin(π cosx) = cos(π sinx).

MSJ 493.
Find all real values of x that satisfy the equation

sin10 x+ cos10 x = 29/64.

NYSMTJ 69.
by 11th year Honors Class at Benjamin N. Cardozo H.S.

Find sin 2θ if sin6 θ + cos6 θ = 2/3.

OSSMB G78.3-5.
(a) A statue standing on top of a 25 foot pillar sub-

tends an angle θ whose tangent is .125 at a point 60 feet
from the foot of the pillar. Find the height of the statue.

(b) Determine a and b such that

−3 + 4 cos2 θ

1− 2 sin θ
= a+ b sin θ.

OSSMB G79.3-1.
Find all values of x that satisfy the equation

sinx+ 2 sinx cos(a− x) = sin a

where a is a real constant.

SSM 3715. by Herta T. Freitag
Find a positive integer n such that cosn2 equals

2 cosn sin 4n, where degree measure is being used.

MSJ 452. by Steven R. Conrad
Find the degree-measure of the least positive angle that

satisfies
sin 6x+ cos 4x = 0.

MATYC 120. by Marc Glucksman
Find the condition(s) for which the equation

a sin θ + b cos θ = c,

0 ≤ θ < 2π, has exactly one root.

PME 385. by John T. Hurt
Find all α and β such that

sinα = tan(α− β) + cosα tanβ.

Solution of equations: tan

TYCMJ 125. by Milton H. Hoehn
Determine all values of x ∈ (0, π) that satisfy

tanx = tan 2x tan 3x tan 4x.

PME 418. by Robert C. Gebhardt
Find all angles θ other than zero such that

tan 11θ = tan 111θ = tan 1111θ = tan 11111θ = · · · .
Solution of equations: tan and sec

NYSMTJ 78. by Norman Schaumberger
Find all θ such that

(tan θ + sec θ)1/3 + (tan θ − sec θ)1/3 = 1.
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Systems of equations

TYCMJ 115. by Thomas E. Elsner
Find all positive integer coefficients A 6= B for which

the system

cosAt+ cosBt = 0

A sinAt+B sinBt = 0

has solutions.

Triangles

NYSMTJ 82. by Madelaine Bates
Show that the area of triangle ABC is numerically

equal to its perimeter if and only if

a+ b− c = 4(cotC + cscC).

NYSMTJ 97. by Norman Schaumberger
If A, B, and C are the angles of a triangle and K is its

area, show that

a2 + b2 + c2 = 4K(cotA+ cotB + cotC).

TYCMJ 143. by K. R. S. Sastry
Let AD, BE, and CF be the medians of triangle ABC.

Prove that

cot 6 DAB + cot 6 EBC + cot 6 FCA
= 3(cotA+ cotB + cotC).

OSSMB G75.1-6.
Given the triangle ABC, where a+ b = 2c, show that

cot
A

2
+ cot

B

2
= 2 cot

C

2
.

SSM 3786. by Fred A. Miller
If D is the midpoint of side BC of triangle ABC, the

measure of angle BAD is θ, and the measure of angle CAD
is φ, show that

cot θ − cotφ = cotB − cotC.

NYSMTJ 100. by Bertram Kabak
If A, B, and C are the angles of a triangle and

cosA

a
=

cosB

b
=

cosC

c
,

show that the triangle is equilateral.

CRUX 423. by Jack Garfunkel
In a triangle ABC whose circumcircle has unit diame-

ter, let ma and ta denote the lengths of the median and the
internal angle bisector to side a, respectively. Prove that

ta ≤ cos2 A

2
cos

B − C
2

≤ ma.

TYCMJ 49. by Alan Wayne
In triangle ABC, determine the maximum value of

sinA+ sinB + sinC

cot A2 + cot B2 + cot C2
.

TYCMJ 118. by Norman Gore
Triangles ABC and DEF are inscribed in the same

circle. Prove that

sinA+ sinB + sinC = sinD + sinE + sinF

if and only if the perimeters of the triangles are equal.

TYCMJ 72. by Clyde A. Bridger
In the triangle ABC with sides a > b > c, prove or

disprove that

(
a− b
c

+
b− c
a

+
c− a
b

)(
c

a− b +
a

b− c +
b

c− a
)

= 1− 8 sin
(
A

2

)
sin
(
B

2

)
sin
(
C

2

)
.

OSSMB G77.1-4.
The bisectors of the interior angles of 4ABC make

angles of α, β, γ with the sides a, b, c respectively. Prove
that

a sin 2α+ b sin 2β + c sin 2γ = 0.

TYCMJ 109. by Bertram Kabak
Let K denote the area and R the circumradius of tri-

angle ABC with angle A 6= π/3. Prove that

K =
4R2(sin2A+ sinB sinC)− b2 − c2

2 cscA− 4 cotA
.

CRUX 126. by Viktors Linis
Show that, for any triangle ABC,

|OA|2 sinA+ |OB|2 sinB + |OC|2 sinC = 2K,

where O is the center of the inscribed circle and K is the
area of 4ABC.

CRUX 27. by Léo Sauvé
Given a triangle with angles A, B, and C, it is easy to

verify that if A = B = 45◦, then

cosA cosB + sinA sinB sinC = 1.

Does the converse proposition hold?

NYSMTJ 80. by Bertram Kabak
If A, B, and C are the angles of a triangle, show that

sin2 C = sin2A+ sin2B − 2 sinA sinB cosC.

OSSMB G76.2-4.
Show that in any triangle ABC,

(b− c) cos
A

2
= a sin

B − C
2

.

TYCMJ 47. by Bertram Kabak

Prove that if
∑3
i=1Ai = π, then

3∑

i=1

sin2Ai = 2

3∑

i=1

sinAi · sinAi+1 · cosAi+2

(A4 = A1, A5 = A2).
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SSM 3734. by Ralph King and Joseph Stangle
Given two sides a and b and their included angle C in

triangle ABC, prove that

tanA =
a sinC

b− a cosC
.

CRUX 268. by Gali Salvatore
Show that in 4ABC, with a ≥ b ≥ c, the sides are in

arithmetic progression if and only if

2 cot
B

2
= 3(tan

C

2
+ tan

A

2
).

CRUX 493.* by R. C. Lyness
(a) Let A, B, and C be the angles of a triangle. Prove

that there are positive x, y, and z, each less than 1/2,
simultaneously satisfying

y2 cot
B

2
+ 2yz + z2 cot

C

2
= sinA,

z2 cot
C

2
+ 2zx+ x2 cot

A

2
= sinB,

x2 cot
A

2
+ 2xy + y2 cot

B

2
= sinC.

(b) In fact, 1/2 may be replaced by a smaller k > 0.4.
What is the least value of k?

OSSMB G76.1-3.
A triangle ABC is such that 3AB = 2AC. A point D

on BC is such that BD = 2DC and AD = BC. Show that

tan
6 ADB

2
=

√
5

19
.

MM Q636. by Richard L. Francis
Does there exist a triangle such that the tangents of

its angles are of the form x, 1 + x, and 1− x?

OMG 18.2.5.
In any triangle ABC,
(a) prove

a2 + b2 − c2
a2 + c2 − b2 =

tanB

tanC
.

(b) If a : b : c = 4 : 5 : 6, find tanA : tanB.

(c) If tanB = 2 tanC, prove a2 + 3c2 = 3b2.

SSM 3740. by Fred A. Miller
Let ABC be a triangle having a right angle at C.

Construct a perpendicular to AB at A meeting line BC
at E. Also construct a perpendicular to AB at B meeting
line AC at D. Prove that

(a) the tangent of angle CED is equal to the cube of
the tangent of angle BAC and

(b) the area of triangle ECD is equal to the area of
triangle ABC.

PENT 293. by Kenneth M. Wilke
On a trigonometry test, one question asked for the

largest angle of the triangle having sides 21, 41, and 50.
L. A. Z. Thinker, a student, obtained the answer as follows:

Let C denote the desired angle, then

sinC =
50

41
= 1.2195.

But sin 90◦ = 1 and .2195 = sin 12◦40′48′′. Therefore
C = 90◦ + 12◦40′48′′ = 102◦40′48′′ which is correct.

Find another triangle having this property that is not
similar to the given triangle.

281



PROBLEM  CHRONOLOGY
Use this section to

• determine where a given problem was originally published
• determine where to find the solution
• find all references to a given problem from a specific journal.

We list every problem or solution that was published during the years 1975–1979 in a journal problem column that
is covered by this index. For each proposed problem, we list the volume and page number where the proposal
can be found. The list is sorted first by journal abbreviation, and then by problem number within that journal. If a
journal has more than one problem column, the problems in each column are grouped together. The page
reference is presented in the form:

vol(year)page
or vol(year/issue)page

where vol is the volume number (if known),
year is the year of the volume,
issue is the issue number in which the problem appears, and
page is the page number where the problem appears.

The issue number will be included if the magazine numbers each issue beginning with page number 1 (instead of
consecutively numbering throughout the year).

For each problem that was proposed during the years 1975–1979, we list references (in the problem columns) to
all corrections, comments, and solutions to this problem. The page number reference is followed by a single
character code that describes the nature of the reference. The codes are explained in the following table:

Code Description
a acknowledgment (out of order solvers list)
c comment
r reprint of a previously published problem
s solution
v version (correction to original problem proposal)
w problem has been withdrawn
x partial solution

Lists of solvers names are not usually referenced unless they appear out of order from their usual place of
appearance in the journal, either immediately after the solution or at the end of the problem column in which the
solution is published. This might happen for late solutions. The code “s” appears for a generalization as well as a
normal solution. If a problem has multiple parts, sometimes solutions by different authors are given for each part.
These are still considered solutions (code “s”) as opposed to partial solutions (code “x”). Code “x” is reserved for
the case where a complete solution is not known (at the time of publication), and a partial solution is being printed.

For a given problem, the references appear in chronological order. When making bibliographic references to
these solutions, you should go back to the original source to get the complete list of page numbers. We have
attempted to locate all references to problems published during the selected years, even if these references
occurred later than 1979. All journals through January 1992 have been searched for references to problems that
were originally published prior to 1980. We have also given the page numbers for all solutions or comments
published during 1975–1979, even if the original problem was first published prior to 1975.

To find solutions to contest problems, consult the Citation Index (page 423).
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JOURNALS COVERED 
BY THE CHRONOLOGY
Abbreviation
AMM
CMB
CRUX
DELTA
FQ
FUNCT
ISMJ
JRM
MATYC
MENEMUI
MM
MSJ
NAvW
NYSMTJ
OMG
OSSMB
PARAB
PENT
PME
SIAM
SPECT
SSM
TYCMJ

Name
The American Mathematical Monthly
Canadian Mathematical Bulletin
Crux Mathematicorum
Delta
The Fibonacci Quarterly
Function
Indiana State Mathematics Journal
Journal of Recreational Mathematics
The MATYC Journal
Menemui Matematik
Mathematics Magazine
The Mathematics Student Journal
Nieuw Archief voor Wiskunde
The New York State Mathematics Teachers’ Journal
Ontario Mathematics Gazette
Ontario Secondary School Mathematics Bulletin
Parabola
The Pentagon
The Pi Mu Epsilon Journal
SIAM Review
Mathematical Spectrum
School Science and Mathematics
The Two-Year College Mathematics Journal
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Problem Chronology
AMM 2797 1975–1979 AMM 6018

AMM
Problem Proposal References
2797 88(1981)149v
3189 96(1989)260s
3834 85(1978)836c
3887 90(1983)486s 94(1987)1019c
3951 85(1978)836c
4003 85(1978)836c
4052 82(1975)1016s 85(1978)836c
4306 85(1978)836c
4444 85(1978)836c
4538 85(1978)836c
4555 85(1978)836c
4603 97(1990)937s
4638 85(1978)836c
4664 85(1978)836c
4744 85(1978)836c
5124 83(1976)662s 85(1978)836c
5297 88(1981)295s
5314 82(1975)672s 85(1978)836c
5385 83(1976)662s 85(1978)836c
5405 82(1975)1017s 85(1978)836c
5413 82(1975)85c 85(1978)836c

89(1982)279c
5415 85(1978)836c
5427 82(1975)673s 85(1978)836c
5437 83(1976)818s 85(1978)836c
5499 87(1980)65s
5540 90(1983)135s
5575 82(1975)674s 85(1978)836c
5589 83(1976)141s 85(1978)836c
5608 85(1978)500s, 836c
5643 82(1975)677s 85(1978)836c
5670 82(1975)677s 85(1978)836c
5687 82(1975)767c, 767s 83(1976)572v

85(1978)836c
5723 83(1976)62s, 64s 85(1978)836c
5735 97(1990)937s
5773 82(1975)943s 85(1978)836c
5790 89(1982)215s
5794 88(1981)214s
5861 82(1975)767x 88(1981)150s
5871 82(1975)530x 83(1976)573c

85(1978)829s
5872 85(1978)834c 90(1983)403s
5878 82(1975)678c
5880 82(1975)857s
5881 85(1978)834c
5884 85(1978)834c 87(1980)66s
5888 85(1978)834c 87(1980)583s
5889 85(1978)834c
5893 85(1978)835c
5895 82(1975)531s
5897 82(1975)532s
5910 85(1978)835c
5917 85(1978)835c
5927 85(1978)835c
5931 82(1975)86s
5932 82(1975)86s
5933 82(1975)87s, 768c
5934 82(1975)184s
5935 82(1975)88s
5936 82(1975)185s 83(1976)65s
5937 82(1975)308s
5938 82(1975)185s
5939 82(1975)533s
5940 82(1975)186s
5941 82(1975)309s
5942 82(1975)186s, 768s
5943 82(1975)309s
5944 82(1975)310s
5945 82(1975)410s

5946 82(1975)310s
5947 82(1975)411s
5948 82(1975)413s
5949 82(1975)536s
5950 82(1975)414s
5951 82(1975)679c
5952 82(1975)679s, 680s 83(1976)819c
5953 83(1976)574s
5954 85(1978)835c
5955 82(1975)415s
5956 85(1978)835c
5957 82(1975)770s
5958 82(1975)858s
5959 82(1975)859s
5960 82(1975)859s
5961 82(1975)861s
5962 82(1975)943s
5963 82(1975)861s
5964 82(1975)944c
5965 82(1975)944s
5966 82(1975)945s
5967 82(1975)1018s
5968 82(1975)1020s
5969 82(1975)1020s
5970 83(1976)65s
5971 83(1976)66s
5972 83(1976)67s
5973 83(1976)142c, 142x
5974 83(1976)143s
5975 83(1976)144s
5976 83(1976)145s
5977 83(1976)206s
5978 83(1976)206s
5979 83(1976)207s
5980 85(1978)835c 88(1981)540v
5981 83(1976)209s
5982 83(1976)209s
5983 83(1976)293c, 293x, 294c
5984 83(1976)294s
5985 83(1976)295s
5986 83(1976)295s
5987 83(1976)297s
5988 83(1976)386s
5989 83(1976)749c
5990 83(1976)387s
5991 85(1978)835c
5992 83(1976)388s
5993 83(1976)749s
5994 83(1976)389s
5995 83(1976)390s
5996 85(1978)283s
5997 83(1976)490s
5998 83(1976)491s
5999 83(1976)492s 84(1977)62s
6000 83(1976)492s
6001 83(1976)493c
6002 83(1976)494s
6003 83(1976)575s
6004 83(1976)575s
6005 85(1978)835c
6006 82(1975)84 83(1976)576s
6007 82(1975)84 83(1976)663s
6008 82(1975)84 83(1976)664s
6009 82(1975)84 83(1976)666s
6010 82(1975)84 83(1976)666s, 667s
6011 82(1975)85 83(1976)750s
6012 82(1975)183 83(1976)751s
6013 82(1975)183 83(1976)752s
6014 82(1975)183 83(1976)752s
6015 82(1975)183 83(1976)820s
6016 82(1975)184 83(1976)820c
6017 82(1975)184 83(1976)821s
6018 82(1975)307 83(1976)821s
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Problem Chronology
AMM 6019 1975–1979 AMM 6160

6019 82(1975)307 84(1977)63s
6020 82(1975)307 84(1977)65c
6021 82(1975)307 84(1977)66s
6022 82(1975)308 84(1977)67s
6023 82(1975)308 84(1977)67s 90(1983)136s, 487c
6024 82(1975)409 85(1978)835c 87(1980)68s
6025 82(1975)409 84(1977)141s
6026 82(1975)409 84(1977)142s
6027 82(1975)409 84(1977)143s
6028 82(1975)410 85(1978)835c
6029 82(1975)410 85(1978)835c
6030 82(1975)528 84(1977)143s
6031 82(1975)528 84(1977)144s
6032 82(1975)529 84(1977)222s
6033 82(1975)529 84(1977)223s
6034 82(1975)529 84(1977)224s
6035 82(1975)529 84(1977)225s
6036 82(1975)671 84(1977)226s 85(1978)830s
6037 82(1975)671 84(1977)226s
6038 82(1975)671 84(1977)301s
6039 82(1975)671 84(1977)301s
6040 82(1975)672 84(1977)302s
6041 82(1975)672 84(1977)302s
6042 82(1975)766 84(1977)303s
6043 82(1975)766 84(1977)304s 92(1985)363s
6044 82(1975)766 84(1977)392s 87(1980)583c
6045 82(1975)766 84(1977)394s
6046 82(1975)766 84(1977)395s
6047 82(1975)766 84(1977)396s
6048 82(1975)856 84(1977)397c
6049 82(1975)856 84(1977)397s
6050 82(1975)856 85(1978)687s
6051 82(1975)857 84(1977)492x
6052 82(1975)857 84(1977)492s 87(1980)68s
6053 82(1975)857 84(1977)493s
6054 82(1975)941 84(1977)494s
6055 82(1975)942 85(1978)600s
6056 82(1975)942 84(1977)494s
6057 82(1975)942 84(1977)495s, 496s

94(1987)1020c
6058 82(1975)942 84(1977)576s
6059 82(1975)942 84(1977)577s
6060 82(1975)1016 85(1978)390x
6061 82(1975)1016 84(1977)577s
6062 82(1975)1016 84(1977)578x 88(1981)152s

89(1982)503c
6063 82(1975)1016 84(1977)579s
6064 82(1975)1016 84(1977)580s
6065 82(1975)1016 84(1977)580s
6066 83(1976)62 84(1977)660s
6067 83(1976)62 84(1977)661s
6068 83(1976)62 84(1977)661s
6069 83(1976)62 84(1977)662s
6070 83(1976)62 84(1977)662s
6071 83(1976)62 83(1976)572v 84(1977)663s
6072 83(1976)140 84(1977)744s
6073 83(1976)140 84(1977)745s
6074 83(1976)140 84(1977)746s
6075 83(1976)141 84(1977)747s
6076 83(1976)141 85(1978)835c 88(1981)152s
6077 83(1976)141 84(1977)747s
6078 83(1976)205 84(1977)829s, 830c
6079 83(1976)205 84(1977)748s
6080 83(1976)205 85(1978)503s, 503x
6081 83(1976)205 84(1977)830s
6082 83(1976)205 85(1978)503s 86(1979)597c
6083 83(1976)205 84(1977)830s
6084 83(1976)292 84(1977)832s
6085 83(1976)292 84(1977)833s
6086 83(1976)292 85(1978)54s
6087 83(1976)293 85(1978)284s
6088 83(1976)293 85(1978)55s
6089 83(1976)293 87(1980)495c

6090 83(1976)385 85(1978)122s
6091 83(1976)385 85(1978)55s
6092 83(1976)385 85(1978)123s
6093 83(1976)386 85(1978)56s
6094 83(1976)386 85(1978)57s
6095 83(1976)386 85(1978)59s
6096 83(1976)489 85(1978)124s
6097 83(1976)489 85(1978)286s
6098 83(1976)489 85(1978)125s
6099 83(1976)489 85(1978)204s
6100 83(1976)490 85(1978)205s
6101 83(1976)490 85(1978)126s
6102 83(1976)572 85(1978)504s
6103 83(1976)572 85(1978)205s
6104 83(1976)573 85(1978)206s
6105 83(1976)573 85(1978)207s
6106 83(1976)573 85(1978)208s
6107 83(1976)573 85(1978)287s
6108 83(1976)661 85(1978)289s
6109 83(1976)661 85(1978)291s
6110 83(1976)661
6111 83(1976)661 85(1978)390s
6112 83(1976)661 85(1978)391s
6113 83(1976)661 85(1978)392s
6114 83(1976)748 85(1978)392s
6115 83(1976)748 85(1978)393s
6116 83(1976)748 85(1978)505s
6117 83(1976)748 85(1978)505s
6118 83(1976)748 85(1978)506s
6119 83(1976)748
6120 83(1976)817 85(1978)601s
6121 83(1976)817 85(1978)602s
6122 83(1976)817 85(1978)603s
6123 83(1976)817
6124 83(1976)818
6125 83(1976)818 87(1980)495s 89(1982)503c

91(1984)60s
6126 84(1977)61 85(1978)604s
6127 84(1977)62 85(1978)604s
6128 84(1977)62 85(1978)688s 86(1979)597s
6129 84(1977)62 85(1978)689s
6130 84(1977)62 85(1978)689s
6131 84(1977)62 85(1978)690s
6132 84(1977)140 85(1978)690s
6133 84(1977)140 85(1978)771s
6134 84(1977)141 85(1978)771s
6135 84(1977)141
6136 84(1977)141 85(1978)772s 87(1980)225c
6137 84(1977)141 85(1978)830s, 831c 87(1980)495c

88(1981)215c
6138 84(1977)221 85(1978)772s
6139 84(1977)221 85(1978)831s
6140 84(1977)221 88(1981)296s 89(1982)603c
6141 84(1977)221
6142 84(1977)222 85(1978)773s
6143 84(1977)222 85(1978)774s
6144 84(1977)299
6145 84(1977)300 85(1978)832s
6146 84(1977)300 85(1978)833s
6147 84(1977)300 86(1979)60s
6148 84(1977)300 86(1979)61s
6149 84(1977)301 86(1979)61s
6150 84(1977)391 86(1979)63s
6151 84(1977)391 86(1979)64s
6152 84(1977)391 86(1979)66s
6153 84(1977)392 86(1979)132s
6154 84(1977)392 86(1979)133s
6155 84(1977)392 86(1979)133s
6156 84(1977)491 86(1979)134s
6157 84(1977)491
6158 84(1977)491
6159 84(1977)491 86(1979)135s
6160 84(1977)491 86(1979)598s
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AMM 6161 1975–1979 AMM E1445

6161 84(1977)491 86(1979)136s
6162 84(1977)575 86(1979)227s
6163 84(1977)575 86(1979)228s
6164 84(1977)575 86(1979)229s
6165 84(1977)575 86(1979)229s
6166 84(1977)576 88(1981)296s
6167 84(1977)576 86(1979)230s
6168 84(1977)659 86(1979)312s
6169 84(1977)659 88(1981)447s
6170 84(1977)659 86(1979)231s
6171 84(1977)660 86(1979)312s
6172 84(1977)660
6173 84(1977)660 86(1979)312s
6174 84(1977)743 86(1979)313s
6175 84(1977)743 86(1979)314s
6176 84(1977)744 86(1979)314s
6177 84(1977)744 86(1979)399s
6178 84(1977)744 86(1979)400s
6179 84(1977)744 87(1980)826s
6180 84(1977)828 86(1979)401s
6181 84(1977)828
6182 84(1977)828 86(1979)510s
6183 84(1977)829 85(1978)389v 86(1979)510s
6184 84(1977)829 87(1980)827s
6185 84(1977)829 87(1980)759s
6186 85(1978)53
6187 85(1978)53 87(1980)583s
6188 85(1978)53 88(1981)447s
6189 85(1978)54
6190 85(1978)54
6191 85(1978)54 89(1982)134s
6192 85(1978)121 86(1979)598c, 598s
6193 85(1978)121 86(1979)710s
6194 85(1978)122 86(1979)511s
6195 85(1978)122 86(1979)710s
6196 85(1978)122 86(1979)794s
6197 85(1978)122
6198 85(1978)203 86(1979)710s
6199 85(1978)203 87(1980)226s
6200 85(1978)203 87(1980)140s
6201 85(1978)203 86(1979)869s
6202 85(1978)203 86(1979)870s
6203 85(1978)203 87(1980)68s
6204 85(1978)282
6205 85(1978)282 85(1978)828v 87(1980)227s
6206 85(1978)282 88(1981)215s
6207 85(1978)282 88(1981)153s
6208 85(1978)283 87(1980)228s
6209 85(1978)283 87(1980)141s
6210 85(1978)389 87(1980)228s
6211 85(1978)389 87(1980)229x
6212 85(1978)389
6213 85(1978)389 89(1982)279s
6214 85(1978)389
6215 85(1978)390 87(1980)309s
6216 85(1978)499
6217 85(1978)499
6218 85(1978)500 89(1982)134x 90(1983)408s
6219 85(1978)500 87(1980)141s
6220 85(1978)500 87(1980)310s
6221 85(1978)500 87(1980)310s
6222 85(1978)599 87(1980)760s
6223 85(1978)600 86(1979)795s
6224 85(1978)600 87(1980)828x, 829x 89(1982)704s
6225 85(1978)600 87(1980)311s
6226 85(1978)600 86(1979)796s
6227 85(1978)600 87(1980)311s
6228 85(1978)686 86(1979)870s
6229 85(1978)686
6230 85(1978)686 87(1980)142s
6231 85(1978)686 87(1980)676s
6232 85(1978)686 87(1980)312c
6233 85(1978)686 87(1980)408s

6234 85(1978)770 87(1980)829s, 830s
6235 85(1978)770 87(1980)761s
6236 85(1978)770 88(1981)69s 89(1982)65s
6237 85(1978)770 87(1980)496s
6238 85(1978)770 87(1980)409s
6239 85(1978)770 87(1980)410s
6240 85(1978)828 87(1980)410s
6241 85(1978)828 87(1980)496s, 497s
6242 85(1978)828 87(1980)411s
6243 85(1978)828 87(1980)498s
6244 85(1978)828 87(1980)676s, 677c
6245 85(1978)828 87(1980)584s
6246 86(1979)59 87(1980)584s
6247 86(1979)59 87(1980)761s
6248 86(1979)59 87(1980)584s
6249 86(1979)59 87(1980)831s
6250 86(1979)60 87(1980)679s
6251 86(1979)60 88(1981)154s
6252 86(1979)131 87(1980)832s
6253 86(1979)132 87(1980)762s
6254 86(1979)132 87(1980)679s
6255 86(1979)132 87(1980)679s 89(1982)704c
6256 86(1979)132 90(1983)487s
6257 86(1979)132 88(1981)216s
6258 86(1979)226
6259 86(1979)226 88(1981)448s
6260 86(1979)226 87(1980)680s
6261 86(1979)226 88(1981)70s
6262 86(1979)226 88(1981)71s
6263 86(1979)226 88(1981)154s
6264 86(1979)311 88(1981)449s
6265 86(1979)311 87(1980)763s
6266 86(1979)311 88(1981)216s
6267 86(1979)398 88(1981)69s
6268 86(1979)398 88(1981)217s
6269 86(1979)399 88(1981)72s
6270 86(1979)509
6271 86(1979)509 88(1981)217s
6272 86(1979)509 88(1981)353s
6273 86(1979)596 88(1981)354s
6274 86(1979)597 88(1981)219s 90(1983)60a
6275 86(1979)597 88(1981)355s
6276 86(1979)709 88(1981)356s
6277 86(1979)709 88(1981)449s
6278 86(1979)709 88(1981)541s
6279 86(1979)793 88(1981)542s 90(1983)488s
6280 86(1979)793 88(1981)623s
6281 86(1979)793
6282 86(1979)869 88(1981)357s
6283 86(1979)869 88(1981)624s
6284 86(1979)869 89(1982)136s

Problem Proposal References
E435 83(1976)813s 85(1978)836c
E570 83(1976)285c 85(1978)836c
E585 83(1976)134s 85(1978)836c
E604 82(1975)400r
E966 83(1976)378r 84(1977)568s

85(1978)836c
E984 83(1976)567c 84(1977)739c

87(1980)303c
E1030 82(1975)1010s, 1011s

85(1978)836c
E1073 82(1975)72r 83(1976)135s

85(1978)836c
E1075 83(1976)54s 85(1978)836c
E1150 85(1978)836c
E1243 84(1977)58c, 567c 86(1979)593c,

914v
E1255 82(1975)661c 84(1977)652s

85(1978)836c
E1298 82(1975)661s 85(1978)836c
E1445 82(1975)73r
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AMM E1822 1975–1979 AMM E2571

E1822 83(1976)53r 84(1977)569s
85(1978)836c

E1847 85(1978)836c
E2003 89(1982)274x
E2125 83(1976)567s
E2289 85(1978)835c 87(1980)489s
E2331 82(1975)1012c, 1012s

85(1978)836c
E2344 82(1975)937s 85(1978)836c
E2349 83(1976)54s 85(1978)836c
E2372 84(1977)387c
E2384 83(1976)285s 85(1978)836c
E2392 83(1976)380s 84(1977)59c

85(1978)836c
E2401 83(1976)198s 85(1978)836c
E2428 82(1975)401c
E2432 85(1978)835c
E2434 82(1975)402c, 402s
E2438 85(1978)835c
E2440 82(1975)74s, 75s, 76c

84(1977)567c
E2446 82(1975)77s
E2447 82(1975)78s, 80c
E2448 82(1975)80s
E2450 82(1975)81s, 82c
E2451 82(1975)83s
E2452 82(1975)169c 83(1976)568s
E2453 82(1975)170s
E2454 82(1975)171s, 172s
E2455 82(1975)173s
E2456 82(1975)301s
E2457 82(1975)175s, 176s
E2458 82(1975)302s
E2459 82(1975)178s, 181c
E2460 82(1975)303s
E2461 82(1975)304s, 305c
E2462 85(1978)835c 92(1985)360s
E2463 82(1975)305s, 306s
E2464 82(1975)403s, 404s
E2465 82(1975)405s, 406s
E2466 82(1975)406s
E2467 82(1975)407s, 408s
E2468 83(1976)288c 84(1977)59c
E2469 82(1975)521s
E2470 82(1975)523s
E2471 82(1975)523s
E2472 82(1975)525s
E2473 82(1975)526s, 527s
E2474 82(1975)527s
E2475 82(1975)662s
E2476 82(1975)663x
E2477 82(1975)664s
E2478 82(1975)667s, 668s
E2479 82(1975)668s, 669c
E2480 82(1975)670s
E2481 82(1975)1013s
E2482 82(1975)757s, 757v
E2483 82(1975)758s, 759s
E2484 82(1975)761c, 761s
E2485 82(1975)762s
E2486 82(1975)852s
E2487 82(1975)764s
E2488 82(1975)765s 89(1982)757s
E2489 82(1975)853c, 853s
E2490 82(1975)854s
E2491 82(1975)854c, 854s
E2492 82(1975)855s
E2493 82(1975)855s
E2494 85(1978)835c
E2495 82(1975)168v, 938s
E2496 82(1975)939s
E2497 82(1975)939c, 939s
E2498 83(1976)382s

E2499 82(1975)1015s
E2500 82(1975)1015s
E2501 82(1975)940s, 940v
E2502 82(1975)941s
E2503 83(1976)58s, 59s
E2504 83(1976)289s
E2505 83(1976)59s
E2506 83(1976)60c, 60s
E2507 83(1976)61s
E2508 83(1976)200s
E2509 83(1976)136s
E2510 82(1975)73 83(1976)137s, 138s
E2511 82(1975)73 83(1976)291s
E2512 82(1975)73 83(1976)139s
E2513 82(1975)73 83(1976)140s
E2514 82(1975)73 83(1976)200c, 200s
E2515 82(1975)74 83(1976)201s
E2516 82(1975)168 83(1976)201s, 202s
E2517 82(1975)168 83(1976)204s
E2518 82(1975)169 83(1976)291s
E2519 82(1975)169 83(1976)382s
E2520 82(1975)169 83(1976)383s
E2521 82(1975)169 85(1978)835c
E2522 82(1975)300 83(1976)384s
E2523 82(1975)300 83(1976)384s, 385c
E2524 82(1975)300 83(1976)741s
E2525 82(1975)300 83(1976)483s
E2526 82(1975)300 83(1976)484s 88(1981)539c
E2527 82(1975)301 83(1976)485s
E2528 82(1975)400 83(1976)486s
E2529 82(1975)400 83(1976)487s
E2530 82(1975)400 85(1978)835c
E2531 82(1975)400 83(1976)488s
E2532 82(1975)400 83(1976)569s
E2533 82(1975)401 83(1976)570c, 570s
E2534 82(1975)520 83(1976)571s
E2535 82(1975)520 83(1976)657s
E2536 82(1975)521 83(1976)657s
E2537 82(1975)521 83(1976)658s
E2538 82(1975)521 83(1976)659s
E2539 82(1975)521 83(1976)742c
E2540 82(1975)659 83(1976)659s
E2541 82(1975)659 83(1976)660s
E2542 82(1975)660 83(1976)743s
E2543 82(1975)660 83(1976)744s
E2544 82(1975)660 83(1976)745s
E2545 82(1975)660 83(1976)747s
E2546 82(1975)756 83(1976)813s
E2547 82(1975)756 83(1976)814s
E2548 82(1975)756 83(1976)815s
E2549 82(1975)756 83(1976)815s
E2550 82(1975)756 83(1976)815s
E2551 82(1975)756 83(1976)816s, 817c
E2552 82(1975)851 84(1977)60s
E2553 82(1975)851 84(1977)60s
E2554 82(1975)851 84(1977)61s
E2555 82(1975)851 84(1977)135s
E2556 82(1975)852 84(1977)136s
E2557 82(1975)852 84(1977)137s
E2558 82(1975)936 84(1977)138c, 138s
E2559 82(1975)936 84(1977)140s
E2560 82(1975)936 84(1977)140s
E2561 82(1975)936 84(1977)217s
E2562 82(1975)937 84(1977)218s
E2563 82(1975)937 84(1977)218s
E2564 82(1975)1009 84(1977)219s, 654s
E2565 82(1975)1009 84(1977)220s
E2566 82(1975)1010 84(1977)220s, 221c
E2567 82(1975)1010 84(1977)570s
E2568 82(1975)1010 84(1977)295s
E2569 82(1975)1010 84(1977)296c
E2570 83(1976)53 84(1977)296s
E2571 83(1976)53 84(1977)297c
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AMM E2572 1975–1979 AMM E2717

E2572 83(1976)53 84(1977)298s
E2573 83(1976)54 84(1977)298s, 299s
E2574 83(1976)54 84(1977)387s
E2575 83(1976)133 84(1977)388s
E2576 83(1976)133 84(1977)388s
E2577 83(1976)133 84(1977)389s
E2578 83(1976)133 84(1977)390s
E2579 83(1976)133 84(1977)487s
E2580 83(1976)133 84(1977)488s
E2581 83(1976)197 84(1977)488s
E2582 83(1976)197 84(1977)489s
E2583 83(1976)198 84(1977)571s
E2584 83(1976)198 84(1977)489s, 490s
E2585 83(1976)198 84(1977)490s
E2586 83(1976)198 84(1977)572s
E2587 83(1976)284 84(1977)572s
E2588 83(1976)284 84(1977)573s
E2589 83(1976)284 84(1977)574s
E2590 83(1976)284 84(1977)654s
E2591 83(1976)284 84(1977)655s
E2592 83(1976)285 84(1977)656s
E2593 83(1976)378 84(1977)739s
E2594 83(1976)379 85(1978)835c
E2595 83(1976)379 84(1977)657s
E2596 83(1976)379 85(1978)835c
E2597 83(1976)379 84(1977)657s, 658s
E2598 83(1976)379 84(1977)659s
E2599 83(1976)482 84(1977)740s
E2600 83(1976)482 84(1977)741s
E2601 83(1976)482 84(1977)741s, 742s
E2602 83(1976)482 84(1977)742s
E2603 83(1976)483 84(1977)743s
E2604 83(1976)483 84(1977)821s
E2605 83(1976)566 84(1977)822s
E2606 83(1976)566 84(1977)823s
E2607 83(1976)566 84(1977)824s
E2608 83(1976)567 85(1978)835c 88(1981)148s
E2609 83(1976)567 84(1977)825s, 826c
E2610 83(1976)567 85(1978)198s
E2611 83(1976)656 85(1978)199s
E2612 83(1976)656 85(1978)199s
E2613 83(1976)656 84(1977)827s
E2614 83(1976)657 85(1978)48s
E2615 83(1976)657 85(1978)49s
E2616 83(1976)657 85(1978)50s
E2617 83(1976)740 85(1978)51s
E2618 83(1976)740 85(1978)51s
E2619 83(1976)740 85(1978)52c, 52s
E2620 83(1976)740 85(1978)117s
E2621 83(1976)741 85(1978)118s
E2622 83(1976)741 85(1978)119s
E2623 83(1976)812 85(1978)119s
E2624 83(1976)812 85(1978)120s
E2625 83(1976)812 85(1978)121s
E2626 83(1976)812 85(1978)200s
E2627 83(1976)812 85(1978)201s
E2628 83(1976)813 85(1978)202s
E2629 84(1977)57 85(1978)277s
E2630 84(1977)57 85(1978)279s
E2631 84(1977)57 85(1978)279s
E2632 84(1977)57 85(1978)280s
E2633 84(1977)58 85(1978)281s
E2634 84(1977)58 85(1978)282s
E2635 84(1977)134 85(1978)385s
E2636 84(1977)134 85(1978)386s
E2637 84(1977)134 85(1978)386s
E2638 84(1977)135 85(1978)387s
E2639 84(1977)135 85(1978)388s
E2640 84(1977)135 85(1978)388s
E2641 84(1977)216 85(1978)496s
E2642 84(1977)216 85(1978)497s
E2643 84(1977)217 85(1978)497s
E2644 84(1977)217 85(1978)497s

E2645 84(1977)217 85(1978)498s
E2646 84(1977)217 85(1978)499s
E2647 84(1977)294 85(1978)594s
E2648 84(1977)294 85(1978)595c, 595s
E2649 84(1977)294 85(1978)596s 86(1979)504a
E2650 84(1977)294 85(1978)597s
E2651 84(1977)295 85(1978)598s
E2652 84(1977)295 84(1977)567v 85(1978)765s
E2653 84(1977)386 85(1978)599s
E2654 84(1977)386 85(1978)766s
E2655 84(1977)386 85(1978)682s
E2656 84(1977)386 85(1978)766s
E2657 84(1977)386 85(1978)683s
E2658 84(1977)387 86(1979)504s
E2659 84(1977)486 85(1978)767s
E2660 84(1977)487 85(1978)683s
E2661 84(1977)487 85(1978)685s
E2662 84(1977)487 85(1978)685s
E2663 84(1977)487 85(1978)686s
E2664 84(1977)487 85(1978)768s
E2665 84(1977)567 85(1978)769s
E2666 84(1977)567 85(1978)824s
E2667 84(1977)567 85(1978)825s
E2668 84(1977)568 85(1978)825s
E2669 84(1977)568 85(1978)825s
E2670 84(1977)568 85(1978)826s
E2671 84(1977)651 85(1978)827c, 827s
E2672 84(1977)651 86(1979)56s
E2673 84(1977)652 86(1979)57s
E2674 84(1977)652 86(1979)57s
E2675 84(1977)652 86(1979)58s
E2676 84(1977)652 86(1979)58s
E2677 84(1977)738 86(1979)394s
E2678 84(1977)738 86(1979)506s
E2679 84(1977)738 86(1979)59s
E2680 84(1977)738 86(1979)128s
E2681 84(1977)738 86(1979)129s
E2682 84(1977)738 86(1979)223s
E2683 84(1977)820 86(1979)129s
E2684 84(1977)820 86(1979)130s
E2685 84(1977)820 86(1979)130s
E2686 84(1977)820 86(1979)131s
E2687 84(1977)820 86(1979)785s
E2688 84(1977)820
E2689 85(1978)47 86(1979)224s
E2690 85(1978)48 86(1979)308s
E2691 85(1978)48 86(1979)225s
E2692 85(1978)48 86(1979)394s, 395s
E2693 85(1978)48 86(1979)308s
E2694 85(1978)48 86(1979)506s
E2695 85(1978)116 86(1979)309s
E2696 85(1978)116 86(1979)507s
E2697 85(1978)116 86(1979)225s
E2698 85(1978)116 86(1979)309s
E2699 85(1978)117 86(1979)310s
E2700 85(1978)117 86(1979)311s
E2701 85(1978)197 86(1979)396s
E2702 85(1978)197
E2703 85(1978)198 86(1979)397s
E2704 85(1978)198 86(1979)398s
E2705 85(1978)198 86(1979)398s
E2706 85(1978)198 86(1979)593s
E2707 85(1978)276 86(1979)508s
E2708 85(1978)276 86(1979)594s
E2709 85(1978)276 86(1979)55v, 703s, 704s
E2710 85(1978)276 86(1979)594s
E2711 85(1978)277 86(1979)595s
E2712 85(1978)277 86(1979)704s, 705s
E2713 85(1978)384
E2714 85(1978)384 86(1979)596s
E2715 85(1978)384 86(1979)705s 87(1980)304s
E2716 85(1978)384 89(1982)594s
E2717 85(1978)384
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AMM E2718 1975–1979 CMB P241

E2718 85(1978)384 86(1979)509s
E2719 85(1978)495 86(1979)787s 91(1984)143a
E2720 85(1978)495 86(1979)706s, 707c, 707s
E2721 85(1978)496 86(1979)865s
E2722 85(1978)496 86(1979)708c
E2723 85(1978)496 86(1979)788s, 789s
E2724 85(1978)496 86(1979)708s
E2725 85(1978)593 86(1979)790s
E2726 85(1978)593 87(1980)61s
E2727 85(1978)594 86(1979)791s 90(1983)55s
E2728 85(1978)594 86(1979)792s
E2729 85(1978)594 87(1980)137s
E2730 85(1978)594 86(1979)866s
E2731 85(1978)681 86(1979)866s
E2732 85(1978)681 86(1979)867s
E2733 85(1978)682 86(1979)868s
E2734 85(1978)682 86(1979)869s
E2735 85(1978)682 87(1980)577s
E2736 85(1978)682 89(1982)131s
E2737 85(1978)764 87(1980)305s
E2738 85(1978)764 87(1980)61s, 62c
E2739 85(1978)765 87(1980)62s
E2740 85(1978)765 92(1985)591x
E2741 85(1978)765 87(1980)63s
E2742 85(1978)765 87(1980)63s
E2743 85(1978)823 87(1980)221s
E2744 85(1978)823 86(1979)503v 88(1981)705s
E2745 85(1978)824 87(1980)222s
E2746 85(1978)824 87(1980)64s
E2747 85(1978)824 86(1979)592v 87(1980)305s

90(1983)59a
E2748 85(1978)824 87(1980)138s
E2749 86(1979)55 87(1980)138s
E2750 86(1979)55 87(1980)138s
E2751 86(1979)56 88(1981)291s
E2752 86(1979)56 89(1982)757c, 757s
E2753 86(1979)56 87(1980)139s
E2754 86(1979)56 87(1980)139s
E2755 86(1979)127 87(1980)222s
E2756 86(1979)128 87(1980)223s
E2757 86(1979)128
E2758 86(1979)128 87(1980)405s
E2759 86(1979)128
E2760 86(1979)128 87(1980)223s
E2761 86(1979)222 87(1980)224s
E2762 86(1979)223 87(1980)405s 88(1981)350c, 350s

90(1983)59a
E2763 86(1979)223 90(1983)56s 91(1984)204c
E2764 86(1979)223 87(1980)306s
E2765 86(1979)223 87(1980)307s
E2766 86(1979)223 87(1980)406s
E2767 86(1979)307 87(1980)490s
E2768 86(1979)307 87(1980)406s
E2769 86(1979)307 87(1980)308s
E2770 86(1979)307 87(1980)491s
E2771 86(1979)308 87(1980)407s
E2772 86(1979)308 88(1981)350s
E2773 86(1979)393 87(1980)492s
E2774 86(1979)393
E2775 86(1979)393 87(1980)578s, 579s
E2776 86(1979)393 87(1980)493s
E2777 86(1979)393 87(1980)494s
E2778 86(1979)393 87(1980)580s
E2779 86(1979)503
E2780 86(1979)503 88(1981)764s 90(1983)59a
E2781 86(1979)503 87(1980)580s 90(1983)59a
E2782 86(1979)503 87(1980)581s 90(1983)59a
E2783 86(1979)504 87(1980)581s 90(1983)59a
E2784 86(1979)504 88(1981)209s
E2785 86(1979)592 87(1980)672s
E2786 86(1979)592 87(1980)672s
E2787 86(1979)592 87(1980)673s
E2788 86(1979)592 87(1980)673s

E2789 86(1979)592 87(1980)674s
E2790 86(1979)593 87(1980)755s
E2791 86(1979)702 87(1980)675s
E2792 86(1979)702 87(1980)756s 90(1983)59a
E2793 86(1979)703 88(1981)707s
E2794 86(1979)703 87(1980)756c
E2795 86(1979)703 87(1980)757s
E2796 86(1979)703 87(1980)824s
E2797 86(1979)785 88(1981)149s
E2798 86(1979)785 87(1980)824s
E2799 86(1979)785 87(1980)825s 89(1982)334c

91(1984)143a
E2800 86(1979)785 87(1980)825s
E2801 86(1979)785
E2802 86(1979)785 88(1981)67s
E2803 86(1979)864 88(1981)149s
E2804 86(1979)864
E2805 86(1979)864 88(1981)68s
E2806 86(1979)864 88(1981)210s 90(1983)59a
E2807 86(1979)865 88(1981)68s
E2808 86(1979)865 88(1981)211s

Problem Proposal References
S1 86(1979)54 87(1980)134s
S2 86(1979)55 87(1980)134c, 134s
S3 86(1979)55 87(1980)136s
S4 86(1979)127 87(1980)219s
S5 86(1979)127 87(1980)219s
S6 86(1979)222 87(1980)302s
S7 86(1979)222 87(1980)403s
S8 86(1979)222 87(1980)487s
S9 86(1979)306 87(1980)488s
S10 86(1979)306 87(1980)575s
S11 86(1979)392 87(1980)753s
S12 86(1979)392 87(1980)576s
S13 86(1979)392 87(1980)670s
S14 86(1979)503 90(1983)335s
S15 86(1979)503 87(1980)670s
S16 86(1979)591 87(1980)754s
S17 86(1979)591 87(1980)822s, 823s
S18 86(1979)592 88(1981)64s, 65s
S19 86(1979)702 88(1981)147s
S20 86(1979)702 88(1981)207s
S21 86(1979)784 88(1981)443x
S22 86(1979)863 88(1981)348s
S23 86(1979)863 88(1981)537s

CMB
Problem Proposal References
P169 25(1982)506c
P191 22(1979)520s, 521c
P207 23(1980)118s
P212 25(1982)506c
P217 19(1976)380s
P222 18(1975)616s
P223 18(1975)618s
P226 19(1976)250s
P227 18(1975)619s
P228 18(1975)619s
P229 19(1976)122s
P230 19(1976)123s, 123v
P231 19(1976)381s
P232 20(1977)148s
P233 19(1976)251s
P234 19(1976)124s
P235 23(1980)382s
P236 19(1976)124s
P237 20(1977)149s
P238 19(1976)252s
P239 20(1977)520s
P240 20(1977)518s
P241 18(1975)615 19(1976)382s
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P242 18(1975)615 20(1977)274s
P243 18(1975)615 22(1979)248s
P244 18(1975)616 20(1977)150s
P245 18(1975)616 20(1977)274s
P246 19(1976)121 22(1979)250s
P247 19(1976)121 20(1977)520s
P248 19(1976)121 20(1977)276s
P249 19(1976)122 22(1979)251s
P250 19(1976)249 22(1979)122s
P251 19(1976)249 20(1977)522s
P252 19(1976)249 22(1979)252s
P253 20(1977)517 22(1979)252s, 253c
P254 19(1976)380 20(1977)523s
P255 19(1976)379 22(1979)253s
P256 19(1976)379 20(1977)522s
P257 20(1977)147 20(1977)517v 22(1979)386s
P258 20(1977)147 20(1977)517v, 523s 22(1979)125a
P259 20(1977)147 22(1979)387s
P260 20(1977)147 22(1979)388s
P261 20(1977)148 20(1977)524s 22(1979)125a
P264 20(1977)273 22(1979)122s
P265 20(1977)273 20(1977)525s
P266 20(1977)273 20(1977)517v 22(1979)389s
P267 20(1977)518 22(1979)123s
P268 20(1977)518 25(1982)506c
P269 20(1977)518 22(1979)125s
P270 22(1979)121 23(1980)119v, 120s, 121s, 253a
P271 22(1979)121 23(1980)122s
P272 22(1979)121 23(1980)124s, 125s
P273 22(1979)247 23(1980)249s
P274 22(1979)248 23(1980)249s
P275 22(1979)248 23(1980)250s
P276 22(1979)248 23(1980)251s 25(1982)508a, 508c
P277 22(1979)385 25(1982)506c
P278 22(1979)386 23(1980)507x 24(1981)252s
P279 22(1979)386 23(1980)508s
P280 22(1979)386 23(1980)509s
P281 22(1979)519 24(1981)127s, 256a

CRUX
Problem Proposal References
1 1(1975)3 1(1975)12s
2 1(1975)3 1(1975)12s
3 1(1975)3 1(1975)14c, 14s
4 1(1975)3 1(1975)15s
5 1(1975)3 1(1975)15s
6 1(1975)3 1(1975)17s, 27a
7 1(1975)4 1(1975)18s
8 1(1975)4 1(1975)19s
9 1(1975)4 1(1975)19s
10 1(1975)4 1(1975)20c, 20s, 49c
11 1(1975)7 1(1975)27s
12 1(1975)7 1(1975)27s
13 1(1975)7 1(1975)27s
14 1(1975)7 1(1975)28s
15 1(1975)8 1(1975)28s
16 1(1975)8 1(1975)29s
17 1(1975)8 1(1975)29s, 30s
18 1(1975)8 1(1975)31s, 32s 2(1976)42c, 69c
19 1(1975)8 1(1975)32s
20 1(1975)8 1(1975)33s, 34s
21 1(1975)11 1(1975)40c, 40s, 58a
22 1(1975)11 1(1975)40s, 58a
23 1(1975)11 1(1975)41c, 41s
24 1(1975)11 1(1975)42s
25 1(1975)11 1(1975)42s, 43c, 43s, 58c
26 1(1975)12 1(1975)43s
27 1(1975)12 1(1975)44s
28 1(1975)12 1(1975)44s
29 1(1975)12 1(1975)45s, 46c
30 1(1975)12 1(1975)46s
31 1(1975)25 1(1975)58s

32 1(1975)25 1(1975)59c, 59s
33 1(1975)25 1(1975)60s
34 1(1975)25 1(1975)60c, 60s
35 1(1975)25 1(1975)61s
36 1(1975)25 1(1975)61s
37 1(1975)26 1(1975)62c, 62s
38 1(1975)26 1(1975)64c, 64s
39 1(1975)26 1(1975)64s, 65c, 65s 2(1976)7s
40 1(1975)26 1(1975)66s
41 1(1975)38 1(1975)72c, 72s
42 1(1975)38 1(1975)73s
43 1(1975)38 1(1975)73x, 85s
44 1(1975)38 1(1975)74s
45 1(1975)39 1(1975)74s 6(1980)213s
46 1(1975)39 1(1975)75c, 75s
47 1(1975)39 1(1975)76s
48 1(1975)39 1(1975)77s
49 1(1975)39 1(1975)77s
50 1(1975)39 1(1975)78s, 80c
51 1(1975)48 1(1975)86s 2(1976)7a
52 1(1975)48 1(1975)87s
53 1(1975)48 1(1975)88s 2(1976)7a
54 1(1975)48 1(1975)89s
55 1(1975)48 1(1975)89s 2(1976)7a
56 1(1975)48 1(1975)89s, 90c
57 1(1975)49 1(1975)56v, 91s
58 1(1975)49 2(1976)43s
59 1(1975)49 1(1975)91s, 92c, 92s
60 1(1975)49 1(1975)92s
61 1(1975)56 1(1975)98s 2(1976)26a
62 1(1975)56 1(1975)99s 2(1976)7a
63 1(1975)56 1(1975)99s
64 1(1975)57 1(1975)100s
65 1(1975)57 1(1975)100s 2(1976)7a, 69s
66 1(1975)57 1(1975)100s
67 1(1975)57 1(1975)101s
68 1(1975)57 1(1975)101s
69 1(1975)57 1(1975)102s
70 1(1975)57 1(1975)102s
71 1(1975)71 2(1976)8s
72 1(1975)71 2(1976)9s
73 1(1975)71 2(1976)9s
74 1(1975)71 2(1976)10s
75 1(1975)71 2(1976)10s, 11c, 11s, 172a
76 1(1975)71 2(1976)12s
77 1(1975)71 2(1976)12s
78 1(1975)72 2(1976)13s, 14c
79 1(1975)72 2(1976)15s, 16c, 16v
80 1(1975)72 2(1976)17c, 17s
81 1(1975)84 2(1976)26s, 27c
82 1(1975)84 2(1976)27s
83 1(1975)84 2(1976)28c, 28s 9(1983)278c
84 1(1975)84 2(1976)29s
85 1(1975)84 2(1976)29s, 30s
86 1(1975)84 2(1976)30s
87 1(1975)84 2(1976)32s
88 1(1975)85 2(1976)33c, 33s 5(1979)48c
89 1(1975)85 2(1976)33s, 34c
90 1(1975)85 2(1976)34s, 36c 8(1982)279s
91 1(1975)97 2(1976)44s, 69a
92 1(1975)97 2(1976)44s, 45c, 69a
93 1(1975)97 2(1976)45s, 46c, 111s

10(1984)293s
94 1(1975)97 2(1976)25v, 46s, 47s
95 1(1975)97 2(1976)47s, 48s
96 1(1975)97 2(1976)48s
97 1(1975)97 2(1976)48s, 49c, 69a
98 1(1975)97 2(1976)49c, 49s
99 1(1975)98 2(1976)50s, 51s, 52c, 69s
100 1(1975)98 2(1976)52s, 53c
101 2(1976)5 2(1976)72c, 72s
102 2(1976)5 2(1976)73s, 74s
103 2(1976)5 2(1976)74s, 75s
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104 2(1976)5 2(1976)76s
105 2(1976)5 2(1976)77s, 78c
106 2(1976)6 2(1976)78s, 79s
107 2(1976)6 2(1976)79s, 80c
108 2(1976)6 2(1976)80s, 81s
109 2(1976)6 2(1976)81s, 83c
110 2(1976)6 2(1976)84s, 85s, 87c 14(1988)16s
111 2(1976)25 2(1976)95c, 95s, 111a
112 2(1976)25 2(1976)96c, 96s
113 2(1976)25 2(1976)97s
114 2(1976)25 2(1976)98s
115 2(1976)25 2(1976)98c, 98s, 112c, 112s, 137s,

138c
116 2(1976)25 2(1976)100s
117 2(1976)26 2(1976)100s
118 2(1976)26 2(1976)101s
119 2(1976)26 2(1976)102s
120 2(1976)26 2(1976)103s, 104s, 139c
121 2(1976)41 2(1976)113s, 114s
122 2(1976)41 2(1976)114s, 115c, 115s, 116c
123 2(1976)41 2(1976)116s, 117s, 118c, 119c
124 2(1976)41 2(1976)119s
125 2(1976)41 2(1976)120s, 121c, 121s, 139c
126 2(1976)41 2(1976)123s, 172a
127 2(1976)41 2(1976)124c, 124s, 125c, 140c,

221c
128 2(1976)41 2(1976)125s, 126c, 141a
129 2(1976)42 2(1976)126s, 127c
130 2(1976)42 2(1976)128s 3(1977)44s
131 2(1976)67 2(1976)141c, 141s, 172a
132 2(1976)67 2(1976)142s, 143c, 172c

3(1977)11c
133 2(1976)67 2(1976)144c, 147c, 148c, 149c,

221c
134 2(1976)68 2(1976)151c, 151s, 152c, 173s,

174s, 222c, 222s 3(1977)12c, 44c
135 2(1976)68 2(1976)153s, 154c, 154s, 223c

3(1977)45c
136 2(1976)68 2(1976)155c, 155s
137 2(1976)68 2(1976)156s, 157c
138 2(1976)68 2(1976)157s, 158c
139 2(1976)68 2(1976)158s
140 2(1976)68 3(1977)13s, 46c
141 2(1976)93 2(1976)175s
142 2(1976)93 2(1976)175s, 176s, 177c

3(1977)106c
143 2(1976)93 2(1976)178s, 180c
144 2(1976)94 2(1976)181s
145 2(1976)94 2(1976)181c, 182c, 225c

3(1977)16c, 18c, 67s
146 2(1976)94 2(1976)182s
147 2(1976)94 2(1976)183c, 183s
148 2(1976)94 2(1976)183s, 184c
149 2(1976)94 2(1976)184s 3(1977)47c, 47s
150 2(1976)94 2(1976)185s, 186c
151 2(1976)109 2(1976)195s
152 2(1976)109 2(1976)196s
153 2(1976)110 2(1976)196s, 197c, 197s

3(1977)19c, 19s
154 2(1976)110 2(1976)159v, 197s, 198c, 226c

3(1977)20c, 108c, 191c, 191s
155 2(1976)110 2(1976)199s 3(1977)22c
156 2(1976)110 2(1976)199s
157 2(1976)110 2(1976)200s, 201c
158 2(1976)111 2(1976)201s
159 2(1976)111 2(1976)202c, 202s
160 2(1976)111 2(1976)203c, 203s 3(1977)23c
161 2(1976)135 2(1976)226s
162 2(1976)135 2(1976)226s, 227c
163 2(1976)135 2(1976)228s
164 2(1976)135 2(1976)230c, 230s
165 2(1976)135 2(1976)230s, 231c, 231s
166 2(1976)136 2(1976)231s, 232c

167 2(1976)136 3(1977)23s
168 2(1976)136 2(1976)233s
169 2(1976)136 2(1976)234c, 234s
170 2(1976)136 2(1976)170v 3(1977)25s, 26c
171 2(1976)170 3(1977)26s
172 2(1976)170 3(1977)28s, 29c
173 2(1976)171 3(1977)47c, 68s
174 2(1976)171 3(1977)48s
175 2(1976)171 3(1977)49s, 50c
176 2(1976)171 3(1977)30s, 69c
177 2(1976)171 3(1977)50s, 52c, 132c, 133s
178 2(1976)171 3(1977)53c, 53s
179 2(1976)171 3(1977)54s, 55c
180 2(1976)172 3(1977)56s
181 2(1976)193 3(1977)57c, 57s 4(1978)37a
182 2(1976)193 3(1977)58s
183 2(1976)193 3(1977)69s
184 2(1976)193 3(1977)70s
185 2(1976)194 3(1977)70s, 71s 4(1978)37a
186 2(1976)194 3(1977)71s
187 2(1976)194 3(1977)72c, 72s
188 2(1976)194 3(1977)73c, 73s
189 2(1976)194 3(1977)74c, 75c, 193c, 252c

4(1978)37a 15(1989)75s
190 2(1976)194 3(1977)76s
191 2(1976)219 3(1977)77s, 78s
192 2(1976)219 3(1977)79c, 79s, 80c
193 2(1976)219 3(1977)81s
194 2(1976)219 3(1977)82c, 82s
195 2(1976)220 3(1977)84s, 87s, 195c
196 2(1976)220 3(1977)108s
197 2(1976)220 3(1977)108s, 156c
198 2(1976)220 3(1977)111s
199 2(1976)220 3(1977)112s, 113s, 114c, 299c
200 2(1976)220 3(1977)133s, 228c
201 3(1977)9 3(1977)136c, 136s
202 3(1977)9 3(1977)137s, 138c
203 3(1977)9 3(1977)138s, 140c
204 3(1977)10 3(1977)140s, 141c
205 3(1977)10 3(1977)142s, 196a
206 3(1977)10 3(1977)143c, 143s
207 3(1977)10 3(1977)144c, 144s
208 3(1977)10 3(1977)157s, 158c
209 3(1977)10 3(1977)159s
210 3(1977)10 3(1977)160s, 163c, 163s, 196c, 197s

4(1978)13c, 16c, 193c
211 3(1977)42 3(1977)164c, 164s
212 3(1977)42 3(1977)165c, 165s
213 3(1977)42 3(1977)166s
214 3(1977)42 3(1977)166s
215 3(1977)42 3(1977)167s, 168c, 168s, 198a
216 3(1977)42 3(1977)170s, 198c
217 3(1977)43 3(1977)172s
218 3(1977)43 3(1977)172s
219 3(1977)43 3(1977)173s, 175c
220 3(1977)43 3(1977)175c, 175s
221 3(1977)65 3(1977)199s, 200s
222 3(1977)65 3(1977)200s, 201c, 201s
223 3(1977)65 3(1977)202s, 203c
224 3(1977)65 3(1977)203s, 203v
225 3(1977)65 3(1977)204s, 205s
226 3(1977)66 3(1977)205s, 206c
227 3(1977)66 3(1977)228s, 230c
228 3(1977)66 3(1977)230s
229 3(1977)66 3(1977)231s
230 3(1977)66 3(1977)233s, 234c, 235c
231 3(1977)104 3(1977)236s, 237c
232 3(1977)104 3(1977)238s, 240c, 240s

4(1978)17s
233 3(1977)104 3(1977)253s
234 3(1977)104 3(1977)154v, 257s, 258c, 299a
235 3(1977)105 3(1977)258s
236 3(1977)105 3(1977)260s
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237 3(1977)105 3(1977)261s
238 3(1977)105 3(1977)262s
239 3(1977)105 3(1977)263s
240 3(1977)105 3(1977)264s, 299c 4(1978)18a,

37c
241 3(1977)130 3(1977)265c, 265s, 299a
242 3(1977)130 3(1977)266s, 267s
243 3(1977)130 3(1977)268s
244 3(1977)130 4(1978)19s
245 3(1977)130 4(1978)21s
246 3(1977)131 4(1978)22c, 22s
247 3(1977)131 4(1978)24s, 38c
248 3(1977)131 3(1977)154v 4(1978)27c, 27s,

102c
249 3(1977)131 4(1978)28s, 29c
250 3(1977)132 4(1978)39s, 40c, 40s 5(1979)17x
251 3(1977)154 4(1978)42s, 43c
252 3(1977)154 4(1978)44s, 47c
253 3(1977)154 4(1978)49s, 50c
254 3(1977)155 4(1978)50s
255 3(1977)155 4(1978)52c, 52s
256 3(1977)155 4(1978)53x, 103s, 161a
257 3(1977)155 4(1978)54s
258 3(1977)155 4(1978)56s
259 3(1977)155 4(1978)57c, 57s
260 3(1977)155 4(1978)58s, 59c 9(1983)81c
261 3(1977)189 4(1978)67s, 68c, 69c
262 3(1977)189 4(1978)70s
263 3(1977)189 4(1978)71s
264 3(1977)189 4(1978)73s
265 3(1977)190 4(1978)74s, 75c, 104a
266 3(1977)190 4(1978)75x
267 3(1977)190 4(1978)76s, 77c, 104s
268 3(1977)190 4(1978)78s, 79c
269 3(1977)190 4(1978)79s, 80c, 81c, 82c

6(1980)45c
270 3(1977)190 4(1978)82s
271 3(1977)226 4(1978)85s
272 3(1977)226 4(1978)86s, 87c
273 3(1977)226 4(1978)87s
274 3(1977)226 4(1978)88s
275 3(1977)227 4(1978)105s
276 3(1977)227 4(1978)107s, 108c
277 3(1977)227 4(1978)109s
278 3(1977)227 4(1978)110c, 110s
279 3(1977)227 4(1978)110s
280 3(1977)227 4(1978)111s, 112c
281 3(1977)250 4(1978)113s
282 3(1977)250 4(1978)114s, 115c, 135a
283 3(1977)250 4(1978)195s
284 3(1977)250 4(1978)115s, 116s
285 3(1977)251 4(1978)116s, 117s, 118s
286 3(1977)251 4(1978)119s, 120c
287 3(1977)251 4(1978)135s, 136c, 138c
288 3(1977)251 4(1978)136s
289 3(1977)251 4(1978)139c, 139s, 140c
290 3(1977)251 4(1978)142s, 144c 11(1985)222c
291 3(1977)297 4(1978)147s, 148s
292 3(1977)297 4(1978)148s, 149c
293 3(1977)297 4(1978)150s
294 3(1977)297 4(1978)161s, 162c
295 3(1977)297 4(1978)162s, 163c, 163s
296 3(1977)297 4(1978)164s
297 3(1977)298 4(1978)165s, 167c
298 3(1977)298 4(1978)167s
299 3(1977)298 4(1978)170s
300 3(1977)298 4(1978)172s, 173c
301 4(1978)11 4(1978)174c, 174s
302 4(1978)11 4(1978)176s
303 4(1978)11 4(1978)177s
304 4(1978)11 4(1978)178c, 178s
305 4(1978)11 4(1978)180s, 227a
306 4(1978)12 4(1978)196s, 197c

307 4(1978)12 4(1978)198c, 198s
308 4(1978)12 4(1978)199s
309 4(1978)12 4(1978)200s
310 4(1978)12 4(1978)202s, 203s, 204c
311 4(1978)35 4(1978)204s, 205c
312 4(1978)35 4(1978)205s, 207c
313 4(1978)35 4(1978)207s, 208s
314 4(1978)35 4(1978)209s
315 4(1978)35 4(1978)227s
316 4(1978)36 4(1978)228s, 229s
317 4(1978)36 4(1978)230s
318 4(1978)36 4(1978)231s, 233s
319 4(1978)36 4(1978)235c, 235s
320 4(1978)36 4(1978)238s
321 4(1978)65 4(1978)252c, 252s 5(1979)18a
322 4(1978)65 4(1978)254s 5(1979)18a
323 4(1978)65 4(1978)255c, 255s 5(1979)18a
324 4(1978)66 4(1978)257s
325 4(1978)66 4(1978)258s 5(1979)18a, 49c
326 4(1978)66 5(1979)18s
327 4(1978)66 4(1978)260s 5(1979)18a
328 4(1978)66 4(1978)260s
329 4(1978)66 4(1978)262s
330 4(1978)67 4(1978)263s
331 4(1978)100 4(1978)265s
332 4(1978)100 4(1978)267c, 267s, 285a

5(1979)18a
333 4(1978)101 4(1978)269c, 269s
334 4(1978)101 4(1978)285s
335 4(1978)101 4(1978)287s
336 4(1978)101 4(1978)288c, 288s
337 4(1978)101 4(1978)289s
338 4(1978)101 4(1978)290s, 291s 5(1979)23a
339 4(1978)102 4(1978)292c
340 4(1978)102 4(1978)293s, 294c, 294s
341 4(1978)133 4(1978)296s, 297s
342 4(1978)133 6(1980)319x
343 4(1978)133 4(1978)298x
344 4(1978)133 5(1979)23s
345 4(1978)134 5(1979)25s
346 4(1978)134 5(1979)26s, 29c, 30c

10(1984)294c
347 4(1978)134 4(1978)191v 5(1979)50s
348 4(1978)134 5(1979)50s, 51s, 52s
349 4(1978)134 5(1979)53s
350 4(1978)135 5(1979)54s
351 4(1978)159 5(1979)54s
352 4(1978)159 5(1979)55c, 55s
353 4(1978)159 5(1979)56s
354 4(1978)159 5(1979)57s, 58c, 59s
355 4(1978)160 5(1979)78x, 79x, 80c, 168c
356 4(1978)160 5(1979)80s, 82c
357 4(1978)160 5(1979)83s
358 4(1978)161 5(1979)84s
359 4(1978)161 5(1979)85s
360 4(1978)161 5(1979)87s, 88c
361 4(1978)191 5(1979)88c, 88s
362 4(1978)191 5(1979)89s, 90c
363 4(1978)191 5(1979)111s
364 4(1978)192 5(1979)113s
365 4(1978)192 5(1979)115s
366 4(1978)192 5(1979)117c, 117s
367 4(1978)192 5(1979)118s
368 4(1978)192 5(1979)134s
369 4(1978)192 5(1979)135s
370 4(1978)193 5(1979)135s
371 4(1978)224 5(1979)136s, 137c
372 4(1978)224 5(1979)138s
373 4(1978)225 5(1979)139s
374 4(1978)225 5(1979)140s
375 4(1978)225 5(1979)142s
376 4(1978)225 5(1979)143s, 145c
377 4(1978)226 5(1979)146c, 146s
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378 4(1978)226 5(1979)147s, 148c, 148s
379 4(1978)226 5(1979)149s, 150c
380 4(1978)226 5(1979)171s
381 4(1978)250 5(1979)172s
382 4(1978)250 5(1979)172s, 173s
383 4(1978)250 5(1979)174s, 175c, 175s
384 4(1978)250 5(1979)176s, 178c
385 4(1978)250 5(1979)178s, 179c
386 4(1978)251 5(1979)179s, 180x
387 4(1978)251 6(1980)47x, 114s, 285a
388 4(1978)251 5(1979)201s, 202c
389 4(1978)251 5(1979)202s, 203c, 203s
390 4(1978)251 5(1979)205s, 206c
391 4(1978)282 5(1979)207s, 208c
392 4(1978)282 5(1979)208s, 209c
393 4(1978)283 5(1979)210s, 211c
394 4(1978)283 5(1979)229s
395 4(1978)283 5(1979)232s
396 4(1978)283 5(1979)233s, 234c
397 4(1978)283 5(1979)234s, 235s
398 4(1978)284 5(1979)235s
399 4(1978)284 5(1979)237s, 239c, 241c
400 4(1978)284 5(1979)243s, 294c
401 5(1979)14 5(1979)267c, 267s
402 5(1979)15 5(1979)267s, 268c
403 5(1979)15 5(1979)269s
404 5(1979)15 5(1979)270s
405 5(1979)15 5(1979)272s
406 5(1979)16 5(1979)273s
407 5(1979)16 5(1979)273s, 275c
408 5(1979)16 5(1979)295s 9(1983)114c
409 5(1979)16 5(1979)277s
410 5(1979)17 5(1979)296c, 298c
411 5(1979)46 5(1979)299s, 300s
412 5(1979)47 5(1979)300s, 301s 6(1980)214a
413 5(1979)47 5(1979)302s, 303c
414 5(1979)47 5(1979)304s, 305s, 306c
415 5(1979)47 5(1979)306s, 307c
416 5(1979)47 5(1979)307s
417 5(1979)47 5(1979)309s
418 5(1979)48 6(1980)17s, 18c
419 5(1979)48 6(1980)19s
420 5(1979)48 6(1980)21s
421 5(1979)76 6(1980)23s
422 5(1979)76 6(1980)24s, 25c
423 5(1979)76 6(1980)26s
424 5(1979)77 6(1980)27s, 28c
425 5(1979)77 6(1980)29s
426 5(1979)77 6(1980)30s
427 5(1979)77 6(1980)31s, 49c
428 5(1979)77 6(1980)50s
429 5(1979)77 6(1980)51s
430 5(1979)78 6(1980)52s, 53c
431 5(1979)107 6(1980)55s
432 5(1979)108 6(1980)57s
433 5(1979)108 6(1980)58s
434 5(1979)108 6(1980)59x
435 5(1979)108 6(1980)60s
436 5(1979)109 6(1980)61s, 62c
437 5(1979)109 6(1980)63c, 63s, 64c
438 5(1979)109 6(1980)79s
439 5(1979)109 6(1980)81s
440 5(1979)110 6(1980)83s
441 5(1979)131 6(1980)84s, 85c
442 5(1979)131 6(1980)86s
443 5(1979)132 6(1980)88x
444 5(1979)132 6(1980)90s
445 5(1979)132 6(1980)92s
446 5(1979)132 6(1980)94s
447 5(1979)132 6(1980)115s
448 5(1979)133 6(1980)117s
449 5(1979)133 6(1980)118s
450 5(1979)133 6(1980)120s, 214c

451 5(1979)166 6(1980)122s
452 5(1979)166 6(1980)123c, 123s
453 5(1979)166 6(1980)124s
454 5(1979)166 6(1980)125s
455 5(1979)167 6(1980)127s
456 5(1979)167 6(1980)128s
457 5(1979)167 6(1980)155s
458 5(1979)167 6(1980)158s
459 5(1979)167 6(1980)158s
460 5(1979)167 6(1980)160s
461 5(1979)199 6(1980)161s
462 5(1979)199 6(1980)162c, 162s
463 5(1979)199 6(1980)163s
464 5(1979)200 6(1980)185s, 186s
465 5(1979)200 6(1980)188s, 216a
466 5(1979)200 6(1980)189c, 189s, 252a
467 5(1979)200 6(1980)191s
468 5(1979)200 6(1980)192s
469 5(1979)200 6(1980)193s
470 5(1979)201 6(1980)194s
471 5(1979)228 6(1980)196s 7(1981)240a
472 5(1979)228 6(1980)196s
473 5(1979)229 6(1980)197c
474 5(1979)229 6(1980)198s
475 5(1979)229 6(1980)216s
476 5(1979)229 6(1980)217s
477 5(1979)229 6(1980)218s, 285a
478 5(1979)229 6(1980)219s 11(1985)189c, 190c

13(1987)151c
479 5(1979)229 6(1980)220s
480 5(1979)229 6(1980)222s
481 5(1979)264 6(1980)222s
482 5(1979)265 6(1980)223s
483 5(1979)265 6(1980)227s, 285a
484 5(1979)265 6(1980)253s, 285c
485 5(1979)265 6(1980)256s
486 5(1979)266 6(1980)258s
487 5(1979)266 6(1980)259s
488 5(1979)266 6(1980)260s, 261s, 262s
489 5(1979)266 6(1980)263s, 288a
490 5(1979)266 6(1980)288c
491 5(1979)291 6(1980)290s, 291c 7(1981)20c
492 5(1979)291 6(1980)291s 7(1981)50s, 117a,

277c 8(1982)79c
493 5(1979)291 6(1980)294x 7(1981)51c
494 5(1979)291 6(1980)297x
495 5(1979)291 7(1981)20s
496 5(1979)291 6(1980)323s
497 5(1979)293 6(1980)324s
498 5(1979)293 6(1980)325s
499 5(1979)293 6(1980)327s
500 5(1979)293 6(1980)328s, 329s

Problem Proposal References
PS1–1 5(1979)13 5(1979)44s 6(1980)310s
PS1–2 5(1979)13 5(1979)44s
PS1–3 5(1979)13 5(1979)45s
PS2–1 5(1979)13 5(1979)66s
PS2–2 5(1979)13 5(1979)67s
PS2–3 5(1979)13 5(1979)67s
PS3–1 5(1979)13 5(1979)106s
PS3–2 5(1979)14 5(1979)106s
PS3–3 5(1979)14 5(1979)106s
PS4–1 5(1979)44 5(1979)129s
PS4–2 5(1979)44 5(1979)130s
PS4–3 5(1979)44 5(1979)130s
PS5–1 5(1979)66 5(1979)162s
PS5–2 5(1979)66 5(1979)163s
PS5–3 5(1979)66 5(1979)164s
PS6–1 5(1979)105 5(1979)197s
PS6–2 5(1979)105 5(1979)198s
PS6–3 5(1979)105 5(1979)198s
PS7–1 5(1979)259 5(1979)289s
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PS7–2 5(1979)259 5(1979)290s
PS7–3 5(1979)259 5(1979)290s
PS8–1 5(1979)288 6(1980)11s
PS8–2 5(1979)289 6(1980)12s
PS8–3 5(1979)289 6(1980)13s

DELTA
Problem Proposal References
4.2–1 5(1975)45s
4.2–2 5(1975)46s
4.2–3 5(1975)47s
4.2–4 5(1975)47s
5.1–1 5(1975)48 5(1975)94s
5.1–2 5(1975)48 5(1975)95s
5.1–3 5(1975)48 5(1975)95s
5.2–1 5(1975)96 6(1976)92s
5.2–2 5(1975)96 6(1976)93s
5.2–3 5(1975)96 6(1976)43s
6.1–1 6(1976)44 6(1976)92s
6.1–2 6(1976)44 6(1976)93s
6.1–3 6(1976)45 6(1976)93s
6.1–4 6(1976)45 6(1976)93s
6.2–1 6(1976)94
6.2–2 6(1976)94
6.2–3 6(1976)94

FQ
Problem Proposal References
B–141 13(1975)370c
B–274 13(1975)95c, 95s 14(1976)94c
B–275 13(1975)95s
B–276 13(1975)96s
B–277 13(1975)96s
B–278 13(1975)96s
B–279 13(1975)96v, 286s
B–280 13(1975)191s
B–281 13(1975)191s
B–282 13(1975)192s
B–283 13(1975)192s
B–284 13(1975)192c
B–285 13(1975)192s
B–286 13(1975)286s
B–287 13(1975)286s
B–288 13(1975)287s
B–289 13(1975)287s
B–290 13(1975)287s
B–291 13(1975)288s
B–292 13(1975)374s
B–293 13(1975)374s
B–294 13(1975)375s
B–295 13(1975)375s
B–296 13(1975)376s
B–297 13(1975)377s
B–298 13(1975)94 14(1976)94s
B–299 13(1975)94 14(1976)94s
B–300 13(1975)94 14(1976)94s
B–301 13(1975)94 14(1976)95s
B–302 13(1975)94 14(1976)95s
B–303 13(1975)95 14(1976)96s
B–304 13(1975)190 14(1976)188s
B–305 13(1975)190 14(1976)189s
B–306 13(1975)190 14(1976)189s
B–307 13(1975)190 14(1976)190s
B–308 13(1975)190 14(1976)191s
B–309 13(1975)191 14(1976)191s
B–310 13(1975)285 14(1976)287s
B–311 13(1975)285 14(1976)287s
B–312 13(1975)285 14(1976)287s
B–313 13(1975)285 14(1976)288s
B–314 13(1975)285 14(1976)288s

B–316 13(1975)373 14(1976)470s
B–317 13(1975)373 14(1976)471s
B–318 13(1975)373 14(1976)471s
B–319 13(1975)373 14(1976)472s
B–320 13(1975)373 14(1976)472s
B–321 13(1975)373 14(1976)472s
B–322 14(1976)93 15(1977)94s
B–323 14(1976)93 15(1977)94s
B–324 14(1976)93 15(1977)95s
B–325 14(1976)93 15(1977)95s
B–326 14(1976)93 15(1977)95s
B–327 14(1976)93 15(1977)95s
B–328 14(1976)188 15(1977)190s
B–329 14(1976)188 15(1977)190s
B–330 14(1976)188 15(1977)191s
B–331 14(1976)188 15(1977)191s
B–332 14(1976)188 15(1977)191s
B–333 14(1976)188 15(1977)192s
B–334 14(1976)286 15(1977)286s
B–335 14(1976)286 15(1977)286s
B–336 14(1976)286 15(1977)286s
B–337 14(1976)286 15(1977)286s
B–338 14(1976)286 15(1977)287s
B–339 14(1976)286 15(1977)288s
B–340 14(1976)470 15(1977)376s
B–341 14(1976)470 15(1977)376s
B–342 14(1976)470 15(1977)376s
B–343 14(1976)470 15(1977)376s
B–344 14(1976)470 15(1977)377s
B–345 14(1976)470 15(1977)377s
B–346 15(1977)93 16(1978)89s
B–347 15(1977)93 16(1978)89s
B–348 15(1977)93 16(1978)90s
B–349 15(1977)93 16(1978)90s
B–350 15(1977)93 16(1978)91s
B–351 15(1977)94 16(1978)91s
B–352 15(1977)189 16(1978)185s
B–353 15(1977)189 16(1978)185s
B–354 15(1977)189 16(1978)185s
B–355 15(1977)189 16(1978)186s
B–356 15(1977)189 16(1978)186s
B–357 15(1977)189 16(1978)186s
B–358 15(1977)285 16(1978)474s
B–359 15(1977)285 16(1978)474s
B–360 15(1977)285 16(1978)474s
B–361 15(1977)285 16(1978)475s
B–362 15(1977)285 16(1978)475s
B–363 15(1977)285 16(1978)476s
B–364 15(1977)375 16(1978)563s
B–365 15(1977)375 16(1978)563s
B–366 15(1977)375 16(1978)563s
B–367 15(1977)375 16(1978)564s
B–368 15(1977)375 16(1978)564s
B–369 15(1977)375 16(1978)565s
B–370 16(1978)88 17(1979)91s
B–371 16(1978)88 17(1979)91s 18(1980)85c
B–372 16(1978)88 17(1979)92s
B–373 16(1978)88 17(1979)92s
B–374 16(1978)88 17(1979)93s
B–375 16(1978)89 17(1979)93s
B–376 16(1978)184 17(1979)185s
B–377 16(1978)184 17(1979)185s
B–378 16(1978)184 17(1979)185s
B–379 16(1978)184 17(1979)186s
B–380 16(1978)184 17(1979)186s
B–381 16(1978)184 17(1979)187s
B–382 16(1978)473 17(1979)282c, 282s
B–383 16(1978)473 17(1979)283c
B–384 16(1978)473 17(1979)283s
B–385 16(1978)473 17(1979)283s
B–386 16(1978)473 17(1979)284c, 284s
B–387 16(1978)473 17(1979)284c, 284s
B–388 16(1978)562 17(1979)370s
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B–389 16(1978)562 17(1979)371s
B–390 16(1978)562 17(1979)371s
B–391 16(1978)562 17(1979)372s
B–392 16(1978)562 17(1979)373s
B–393 16(1978)562 17(1979)373s
B–394 17(1979)90 18(1980)85s
B–395 17(1979)90 18(1980)86s
B–396 17(1979)90 18(1980)87s
B–397 17(1979)90 18(1980)87c, 87s
B–398 17(1979)90 18(1980)88s
B–399 17(1979)90 18(1980)89s, 89v
B–400 17(1979)184 18(1980)187s
B–401 17(1979)184 18(1980)187s
B–402 17(1979)184 18(1980)188s
B–403 17(1979)184 18(1980)188s
B–404 17(1979)184 18(1980)188s
B–405 17(1979)184 18(1980)189s
B–406 17(1979)281 18(1980)274s
B–407 17(1979)281 18(1980)274s
B–408 17(1979)281 18(1980)275c
B–409 17(1979)281 18(1980)275s
B–410 17(1979)282 18(1980)275s
B–411 17(1979)282 18(1980)276s
B–412 17(1979)369 18(1980)371s
B–413 17(1979)369 18(1980)371s
B–414 17(1979)369 18(1980)372s
B–415 17(1979)369 18(1980)372c
B–416 17(1979)370 18(1980)372c
B–417 17(1979)370 18(1980)373s

Problem Proposal References
H–91 29(1991)186v, 187s
H–123 16(1978)189c
H–125 27(1989)95c
H–152 26(1988)284s
H–179 14(1976)88v
H–188 13(1975)370c
H–206 13(1975)370c
H–211 16(1978)154s 26(1988)90s, 283c
H–213 16(1978)165s 26(1988)91s
H–215 26(1988)285s
H–216 13(1975)90s
H–217 13(1975)91s
H–218 13(1975)92s
H–219 13(1975)185s
H–220 13(1975)187s
H–221 13(1975)188s
H–223 13(1975)370s
H–225 16(1978)569v 17(1979)95s
H–226 13(1975)281s
H–227 13(1975)370s
H–229 13(1975)371s
H–230 14(1976)89s
H–231 14(1976)89s
H–232 14(1976)90s
H–233 14(1976)90s
H–234 14(1976)182s
H–235 14(1976)184s
H–236 14(1976)184s
H–237 14(1976)92v, 186s
H–238 14(1976)282s
H–239 13(1975)370v 14(1976)283s
H–240 14(1976)284s
H–241 13(1975)370c 14(1976)285s
H–243 14(1976)285s
H–244 14(1976)466s
H–245 13(1975)89 14(1976)468s
H–246 13(1975)89 14(1976)469s
H–247 13(1975)89 15(1977)89s
H–248 13(1975)89 15(1977)90s
H–249 13(1975)185 15(1977)91s
H–250 13(1975)185 15(1977)92s
H–251 13(1975)185 15(1977)185s

H–252 13(1975)281 15(1977)187s
H–253 13(1975)281 15(1977)188s
H–254 13(1975)281 17(1979)288r
H–255 13(1975)369 15(1977)281s
H–256 13(1975)369 15(1977)374s
H–257 13(1975)369 15(1977)283s
H–258 14(1976)88 15(1977)284s 16(1978)96a
H–259 14(1976)88 15(1977)284s 16(1978)96a
H–260 14(1976)88 17(1979)288r
H–261 14(1976)182 15(1977)371s
H–262 14(1976)182 15(1977)372s 16(1978)96a
H–263 14(1976)182 15(1977)373s 16(1978)96a
H–264 14(1976)282 16(1978)92s
H–265 14(1976)282 16(1978)94s, 189a
H–266 14(1976)282 16(1978)94s, 189a
H–267 14(1976)466 15(1977)192v 16(1978)190s
H–268 14(1976)466 16(1978)191s, 569a
H–269 15(1977)89 16(1978)478s
H–270 15(1977)89 16(1978)479s, 569a
H–271 15(1977)89 16(1978)480v 17(1979)288r
H–272 15(1977)185 16(1978)567s
H–273 15(1977)185 16(1978)568s
H–274 15(1977)281 17(1979)95s, 192a
H–275 15(1977)281 17(1979)191s
H–276 15(1977)371 17(1979)287s
H–277 15(1977)371 22(1984)91s
H–278 16(1978)92 17(1979)375s 18(1980)96a
H–279 16(1978)92 17(1979)376s 18(1980)96a
H–280 16(1978)92 17(1979)377s 18(1980)96a
H–281 16(1978)188 18(1980)91s, 192a 19(1981)191a
H–282 16(1978)188 18(1980)93s
H–283 16(1978)188 18(1980)94s, 192a 19(1981)191a
H–284 16(1978)188 18(1980)191s 19(1981)384c
H–285 16(1978)477 18(1980)281s
H–286 16(1978)477 18(1980)281s
H–287 16(1978)477 26(1988)283s
H–288 16(1978)477 18(1980)282s
H–289 16(1978)477 18(1980)283s
H–290 16(1978)566 18(1980)285s
H–291 16(1978)566 18(1980)286s
H–292 16(1978)566 18(1980)286s
H–293 16(1978)566 18(1980)287s
H–294 16(1978)567 18(1980)280v, 375s 20(1982)288a
H–295 17(1979)94 18(1980)281v, 376s
H–296 17(1979)94 18(1980)377x
H–297 17(1979)94 18(1980)378s
H–298 17(1979)94 18(1980)379s
H–299 17(1979)189 19(1981)94s
H–300 17(1979)189
H–301 17(1979)190 19(1981)96s
H–302 17(1979)286 19(1981)190s
H–303 17(1979)286 19(1981)191s
H–304 17(1979)286
H–305 17(1979)286 19(1981)191x
H–306 17(1979)287 26(1988)286s
H–307 17(1979)374 25(1987)285s 26(1988)90c
H–308 17(1979)374 19(1981)382s
H–309 17(1979)374
H–310 17(1979)375 19(1981)383s, 384c

FUNCT
Problem Proposal References
1.1.1 1(1977/1)23 1(1977/3)25s
1.1.2 1(1977/1)29 1(1977/3)28s
1.1.3 1(1977/1)30 1(1977/4)8s
1.1.4 1(1977/1)30 1(1977/2)31s
1.1.5 1(1977/1)30 1(1977/3)28s
1.1.6 1(1977/1)30 1(1977/3)28s
1.1.7 1(1977/1)30 1(1977/4)9s
1.1.8 1(1977/1)30 1(1977/4)11s
1.1.9 1(1977/1)30 1(1977/4)9s
1.1.10 1(1977/1)30 1(1977/4)13s, 15c
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1.2.1 1(1977/2)23 1(1977/4)22s
1.2.2 1(1977/2)29 1(1977/5)27s
1.2.3 1(1977/2)29 1(1977/4)22s
1.2.4 1(1977/2)30 1(1977/3)27s
1.2.5 1(1977/2)30 1(1977/3)27s, 27v
1.2.6 1(1977/2)31 2(1978/1)19s 4(1980/3)27c
1.2.7 1(1977/2)31 1(1977/5)27s 3(1979/1)28s
1.3.1 1(1977/3)6 1(1977/4)31s
1.3.2 1(1977/3)29 2(1978/3)11s
1.3.3 1(1977/3)29 1(1977/5)27s
1.3.4 1(1977/3)29 1(1977/4)31s
1.3.5 1(1977/3)30 1(1977/4)31s 1(1977/5)28s
1.3.6 1(1977/3)30 1(1977/5)29s
1.3.7 1(1977/3)30 1(1977/5)29s
1.4.1 1(1977/4)32 1(1977/5)29s
1.4.2 1(1977/4)32 1(1977/5)30s
1.4.3 1(1977/4)32 1(1977/5)31s
1.4.4 1(1977/4)32 1(1977/5)31s
1.4.5 1(1977/4)32 1(1977/5)32s
1.5.1 1(1977/5)32 3(1979/1)28s
1.5.2 1(1977/5)32 2(1978/2)7s
1.5.3 1(1977/5)32 2(1978/1)28s
1.5.4 1(1977/5)32 2(1978/3)29s
2.1.1 2(1978/1)32 2(1978/5)28s 3(1979/1)21c
2.1.2 2(1978/1)32 2(1978/5)29s
2.1.3 2(1978/1)32 2(1978/5)29s
2.1.4 2(1978/1)32 2(1978/3)30s, 32c
2.2.1 2(1978/2)7 2(1978/3)30s
2.2.2 2(1978/2)7 2(1978/3)30s
2.2.3 2(1978/2)27 2(1978/3)31s
2.2.4 2(1978/2)27 3(1979/1)28s 3(1979/2)29s
2.3.1 2(1978/3)25 2(1978/5)31s
2.3.2 2(1978/3)32 3(1979/1)30r 3(1979/3)27s
2.3.3 2(1978/3)32 2(1978/4)31s
2.3.4 2(1978/3)32 2(1978/5)32s
2.3.5 2(1978/3)32 2(1978/5)30s
2.4.1 2(1978/4)32 3(1979/1)29s
2.4.2 2(1978/4)32 3(1979/1)29s
2.4.3 2(1978/4)32 3(1979/1)29s
2.4.4 2(1978/4)32 3(1979/1)29s 3(1979/3)27c
2.5.1 2(1978/5)20 3(1979/3)29s
2.5.2 2(1978/5)32 3(1979/2)29s
2.5.3 2(1978/5)32 3(1979/2)30s
2.5.4 2(1978/5)32 3(1979/3)29s
3.1.1 3(1979/1)30 3(1979/4)27s
3.1.2 3(1979/1)30 3(1979/4)28x 3(1979/5)26s
3.1.3 3(1979/1)30 3(1979/3)30s
3.1.4 3(1979/1)30 3(1979/2)30s
3.1.5 3(1979/1)30 3(1979/4)28s
3.1.6 3(1979/1)31 3(1979/4)29s
3.2.1 3(1979/2)31 3(1979/4)29s
3.2.2 3(1979/2)31 3(1979/5)26s
3.2.3 3(1979/2)31 3(1979/4)27c 3(1979/5)26s
3.2.4 3(1979/2)31 3(1979/5)27s
3.2.5 3(1979/2)31 3(1979/4)30s
3.2.6 3(1979/2)31 3(1979/4)30s
3.2.7 3(1979/2)32 3(1979/5)27s
3.2.8 3(1979/2)32 3(1979/5)28s
3.3.1 3(1979/3)30 3(1979/5)28s
3.3.2 3(1979/3)32 4(1980/2)27s
3.3.3 3(1979/3)32 3(1979/5)28s
3.3.4 3(1979/3)32 3(1979/5)29s
3.3.5 3(1979/3)32 5(1981/1)27v 5(1981/3)16s
3.4.1 3(1979/4)32 4(1980/2)30s 4(1980/3)29c
3.4.2 3(1979/4)32 4(1980/1)28s
3.4.3 3(1979/4)32 4(1980/1)28s
3.5.1 3(1979/5)30 4(1980/1)30s
3.5.2 3(1979/5)30 4(1980/3)28s
3.5.3 3(1979/5)30 4(1980/3)30s
3.5.4 3(1979/5)30 4(1980/3)30s

ISMJ
Problem Proposal References
9.13 10(1975/1)7s
9.14 10(1975/1)8s
10.1 10(1975/1)6 10(1975/2)6s
10.2 10(1975/1)6
10.3 10(1975/1)6 10(1975/2)7s
10.4 10(1975/1)6 10(1975/4)5s
10.5 10(1975/1)6 10(1975/2)8s
10.6 10(1975/2)5 10(1975/3)6s
10.7 10(1975/2)5 10(1975/3)7s
10.8 10(1975/2)5
10.9 10(1975/2)5
10.10 10(1975/2)6 10(1975/3)8s
10.11 10(1975/3)4 10(1975/4)6s
10.12 10(1975/3)4 10(1975/4)6s 11(1976/1)8a
10.13 10(1975/3)4
10.14 10(1975/3)4
10.15 10(1975/3)4 10(1975/4)7s
10.16 10(1975/4)8 11(1976/1)8s
10.17 10(1975/4)8 11(1976/1)8s
11.1 11(1976/1)7
11.2 11(1976/1)7 11(1976/2)9s
11.3 11(1976/1)7 11(1976/2)10s
11.4 11(1976/1)7 11(1976/2)11s
11.5 11(1976/1)8 11(1976/2)11s
11.6 11(1976/2)7 11(1976/3)6s
11.7 11(1976/2)7 11(1976/3)6s
11.8 11(1976/2)7 11(1976/3)7s
11.9 11(1976/2)7 11(1976/3)8s
11.10 11(1976/2)7
11.11 11(1976/3)2 11(1976/4)7s
11.12 11(1976/3)2
11.13 11(1976/3)2 11(1976/4)7s
11.14 11(1976/3)2
11.15 11(1976/3)2 11(1976/4)8s
11.16 11(1976/4)5
11.17 11(1976/4)5
11.18 11(1976/4)5
11.19 11(1976/4)5
11.20 11(1976/4)5
12.1 12(1977/1)5 12(1977/2)6s
12.2 12(1977/1)5 12(1977/2)7s
12.3 12(1977/1)5 12(1977/2)7s
12.4 12(1977/1)5 12(1977/2)7s
12.5 12(1977/1)5 12(1977/2)8s
12.6 12(1977/1)5 12(1977/2)9s
12.7 12(1977/1)5 12(1977/2)9s
12.8 12(1977/1)5 12(1977/2)10s
12.9 12(1977/1)5 12(1977/2)10s
12.10 12(1977/1)5 12(1977/2)10s
12.11 12(1977/2)6 12(1977/3)5s
12.12 12(1977/2)6 12(1977/3)5s
12.13 12(1977/2)6 12(1977/3)6s
12.14 12(1977/2)6 12(1977/3)6s
12.15 12(1977/2)6 12(1977/3)6s
12.16 12(1977/2)6
12.17 12(1977/2)6 12(1977/3)7s
12.18 12(1977/2)6 12(1977/3)7s
12.19 12(1977/3)4
12.20 12(1977/3)4 12(1977/4)6s
12.21 12(1977/3)4 12(1977/4)7s
12.22 12(1977/3)5
12.23 12(1977/3)5
12.24 12(1977/3)5
12.25 12(1977/3)5
12.26 12(1977/3)5 12(1977/4)7s
12.27 12(1977/3)5 12(1977/4)7s
12.28 12(1977/4)5
12.29 12(1977/4)5 13(1978/1)9s
12.30 12(1977/4)5 13(1978/1)10s
12.31 12(1977/4)5
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12.32 12(1977/4)6
13.1 13(1978/1)9
13.2 13(1978/1)9 13(1978/2)6s
13.3 13(1978/1)9 13(1978/2)7s
13.4 13(1978/1)9 13(1978/2)7s
13.5 13(1978/1)9 13(1978/2)7s
13.6 13(1978/1)9 13(1978/2)7s
13.7 13(1978/1)9
13.8 13(1978/1)9
13.9 13(1978/2)5
13.10 13(1978/2)5
13.11 13(1978/2)5 13(1978/3)6s
13.12 13(1978/2)5 13(1978/3)7s
13.13 13(1978/2)5
13.14 13(1978/2)5 13(1978/3)7s
13.15 13(1978/2)5
13.16 13(1978/2)5
13.17 13(1978/2)5
13.18 13(1978/2)5
13.19 13(1978/3)6 13(1978/4)6s
13.20 13(1978/3)6 13(1978/4)6s
13.21 13(1978/3)6 13(1978/4)7s
13.22 13(1978/3)6 13(1978/4)7s
13.23 13(1978/3)6 13(1978/4)8s
13.24 13(1978/4)5 14(1979/1)7s
13.25 13(1978/4)5 14(1979/3)7s 14(1979/4)1c
13.26 13(1978/4)5 14(1979/3)7s
13.27 13(1978/4)5 14(1979/3)8s
13.28 13(1978/4)5 14(1979/3)8s
14.1 14(1979/1)6 14(1979/2)6s
14.2 14(1979/1)6 14(1979/2)7s
14.3 14(1979/1)6 14(1979/2)7s
14.4 14(1979/1)6 14(1979/3)6s
14.5 14(1979/1)7 14(1979/2)8x 14(1979/3)6s
14.6 14(1979/2)6 14(1979/3)3s
14.7 14(1979/2)6 14(1979/3)3s
14.8 14(1979/2)6 14(1979/3)3s
14.9 14(1979/3)4s
14.10 14(1979/3)4s
14.11 14(1979/2)6
14.12 14(1979/2)6 14(1979/3)4s
14.13 14(1979/2)6 14(1979/3)5s
14.14 14(1979/2)6 14(1979/3)5s
14.15 14(1979/3)2
14.16 14(1979/3)2
14.17 14(1979/3)3
14.18 14(1979/3)3
14.19 14(1979/3)3
14.20 14(1979/4)4
14.21 14(1979/4)4
14.22 14(1979/4)4
14.23 14(1979/4)4
14.24 14(1979/4)4

Problem Proposal References
J9.20 10(1975/1)6s
J10.1 10(1975/1)6 10(1975/2)6s
J10.2 10(1975/1)6 10(1975/2)6s
J10.3 10(1975/1)6
J10.4 10(1975/1)6 10(1975/4)2s
J10.5 10(1975/1)6
J10.6 10(1975/2)5 10(1975/3)4s
J10.7 10(1975/2)5 10(1975/3)5s
J10.8 10(1975/2)5 10(1975/3)5s
J10.9 10(1975/2)5 10(1975/3)6s
J10.10 10(1975/2)5 10(1975/3)6s
J10.11 10(1975/3)3 10(1975/4)2s
J10.12 10(1975/3)3 10(1975/4)3s
J10.13 10(1975/3)3 10(1975/4)4s
J10.14 10(1975/3)4
J10.15 10(1975/3)4
J10.16 10(1975/4)8
J10.17 10(1975/4)8

J11.1 11(1976/1)6 11(1976/2)8s
J11.2 11(1976/1)6 11(1976/2)8s
J11.3 11(1976/1)6
J11.4 11(1976/1)6 11(1976/2)9s
J11.5 11(1976/1)6 11(1976/2)9s
J11.6 11(1976/2)7 11(1976/3)3s
J11.7 11(1976/2)7 11(1976/3)3s 12(1977/2)6s
J11.8 11(1976/2)7 11(1976/3)4s
J11.9 11(1976/2)7 11(1976/3)4c, 4v
J11.10 11(1976/2)7 11(1976/3)5s, 6s
J11.11 11(1976/3)2 11(1976/4)5s
J11.12 11(1976/3)2 11(1976/4)6s
J11–13 11(1976/3)2
J11.13 11(1976/4)6s
J11–14 11(1976/3)2
J11.14 11(1976/4)6s, 7c
J11.15 11(1976/3)2 11(1976/4)7s
J11.16 11(1976/4)4 12(1977/1)5s 12(1977/2)6a
J11.17 11(1976/4)5
J11.18 11(1976/4)5 12(1977/1)6s
J11.19 11(1976/4)5
J11.20 11(1976/4)5 12(1977/1)6s

JRM
Problem Proposal References
43 8(1976)53x
50 8(1976)55s
58 9(1977)127r, 129x 10(1978)131c
71 9(1977)138s 20(1988)301s
75 8(1976)56s
81a 9(1977)130 10(1978)131s
89 8(1976)59s
92 8(1976)61s
96 8(1976)62s
98 9(1977)139c
112 8(1976)145c 9(1977)208c
117 9(1977)32s
120 9(1977)37s
121 9(1977)38s
126 9(1977)209r
162 9(1977)209c
163 9(1977)41s, 42s
164 8(1976)145c 9(1977)216s
166 8(1976)146s 10(1978)316c
167 9(1977)209c
170 8(1976)147s
175 9(1977)42s
177 8(1976)148s
180 9(1977)141s, 142s, 143s
184 9(1977)45s
185 9(1977)45s, 144s 10(1978)132c

13(1981)141c
198 8(1976)149s
201 9(1977)48c, 50c 10(1978)56c,

316c
202 9(1977)53s, 54s
210 9(1977)54s, 56s
211 9(1977)56s
212 9(1977)58a, 58s, 59c, 60c, 79c
213 9(1977)294r
214 9(1977)218s
216 9(1977)145s 10(1978)316c
217 9(1977)146s
218 8(1976)236c
227 9(1977)147s
228 9(1977)294r
229 9(1977)295r
230 9(1977)295r
232 8(1976)150s, 151s
242 9(1977)220s 10(1978)316c
246 9(1977)61s
247 9(1977)62s
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249 9(1977)63s 10(1978)316c
251 9(1977)64s
258 9(1977)65s
260 9(1977)222s 10(1978)316c
261 9(1977)66s
262 9(1977)66s
281 12(1980)291s
288 9(1977)223s
291 9(1977)224s
294 9(1977)299s
296 8(1976)66s
297 8(1976)66s
298 8(1976)66s 9(1977)151v
299 8(1976)66s
300 8(1976)66s
303 10(1978)58s
306 9(1977)300s 10(1978)316c
309 9(1977)303x 10(1978)160a
311 9(1977)304s
313 9(1977)305s
314 9(1977)306s
315 9(1977)307s
316 10(1978)59s
317 9(1977)308s 10(1978)240a
318 8(1976)67s
319 8(1976)151s
320 8(1976)67s, 68s
321 8(1976)69s
322 8(1976)70s
323 9(1977)308s
324 8(1976)70s, 237c
325 8(1976)70s
326 8(1976)71s
327 8(1976)71s
328 8(1976)71s
329 8(1976)71s
330 8(1976)151s
331 8(1976)151c, 151s
332 8(1976)152s
333 8(1976)152s
334 8(1976)152s
335 8(1976)153s
336 8(1976)153s
337 8(1976)153s
338 8(1976)153s
339 8(1976)153s
340 8(1976)154s
341 9(1977)310s
342 9(1977)310s
343 9(1977)311s
344 9(1977)312s
345 9(1977)312s 10(1978)160a
346 8(1976)155s
347 9(1977)314s
348 9(1977)314s
349 9(1977)315s
350 9(1977)316s
351 9(1977)317s 10(1978)316c
352 9(1977)318s
353 11(1979)47r 12(1980)57x
354 9(1977)319s
355 10(1978)62s
356 10(1978)62s
357 8(1976)155s
358 8(1976)155s
359 8(1976)156s
360 8(1976)156s
361 8(1976)156s
362 8(1976)156s
363 8(1976)156s
364 8(1976)44 9(1977)68s
365 8(1976)44 9(1977)68s
366 8(1976)44 9(1977)69s

367 8(1976)45 9(1977)69s
368 8(1976)45 9(1977)70c, 70s
369 8(1976)45 9(1977)71s
370 8(1976)46 9(1977)72s
371 8(1976)47 9(1977)72s
372 8(1976)47 11(1979)48c
373 8(1976)47 11(1979)49s
374 8(1976)47 9(1977)73s
375 8(1976)47 9(1977)74s
376 8(1976)48 9(1977)151c
377 8(1976)49 9(1977)75s
378 8(1976)49 9(1977)75s, 76s
379 8(1976)49 10(1978)65s
380 8(1976)50 9(1977)76s
381 8(1976)50 9(1977)77s, 78c
382 8(1976)136 10(1978)66s
383 8(1976)137 10(1978)67s
384 8(1976)137 10(1978)68s
385 8(1976)137 10(1978)288s
386 8(1976)137 10(1978)133s
387 8(1976)138 10(1978)134s
388 8(1976)138 11(1979)49r 12(1980)60s
389 8(1976)139 10(1978)135s
390 8(1976)140 10(1978)290s
391 8(1976)140 10(1978)137s
392 8(1976)141 10(1978)140s, 240a
393 8(1976)141 10(1978)291s
394 8(1976)141 10(1978)140s
395 8(1976)141 10(1978)142s, 320a
396 8(1976)141 10(1978)142s
397 8(1976)143 9(1977)226s
398 8(1976)143 9(1977)226s 10(1978)160a
399 8(1976)143 9(1977)227s 10(1978)160a
400 8(1976)143 9(1977)227s 10(1978)160a
401 8(1976)143 9(1977)227s
402 8(1976)143 9(1977)227s
403 8(1976)144 9(1977)228c 10(1978)240a
404 8(1976)144 9(1977)228s
405 8(1976)144 9(1977)228s
406 8(1976)144 9(1977)229s
407 8(1976)144 9(1977)229s
408 8(1976)144 9(1977)229s
409 8(1976)227 9(1977)229s
410 8(1976)227 9(1977)229s
411 8(1976)227 9(1977)229c
412 8(1976)227 9(1977)230s 10(1978)160a
413 8(1976)228 9(1977)230s
414 8(1976)228 9(1977)152v, 230s 10(1978)160a
415 8(1976)228 9(1977)230s
416 8(1976)228 9(1977)152v, 231s 10(1978)160a
417 8(1976)228 9(1977)231s
418 8(1976)228 9(1977)231s
419 8(1976)229 10(1978)214s
420 8(1976)229 10(1978)215s
421 8(1976)230 10(1978)72s
422 8(1976)230 9(1977)152v, 209r 10(1978)216s
423 8(1976)231 10(1978)217s 12(1980)94c
424 8(1976)231 10(1978)217s
425 8(1976)231 10(1978)218s
426 8(1976)231 10(1978)219s
427 8(1976)232 10(1978)292c
428 8(1976)308 9(1977)282s
429 8(1976)308 9(1977)282s 10(1978)240a
430 8(1976)308 9(1977)282s
431 8(1976)308 9(1977)282s
432 8(1976)309 9(1977)283s
433 8(1976)309 9(1977)283s
434 8(1976)309 9(1977)283s
435 8(1976)309 9(1977)283s 10(1978)160a
436 8(1976)309 9(1977)284s
437 8(1976)309 9(1977)284s 10(1978)208c
438 8(1976)310 9(1977)284s
439 8(1976)310 9(1977)284s 10(1978)160a
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440 8(1976)311 10(1978)293s
441 8(1976)311 10(1978)294s
442 8(1976)311 10(1978)295s
443 8(1976)312 10(1978)296s 12(1980)115c
444 8(1976)312 11(1979)50c 12(1980)60s
445 8(1976)312 10(1978)297s
446 8(1976)313 10(1978)298s
447 8(1976)313 10(1978)298s
448 8(1976)313 11(1979)51s
449 9(1977)21 10(1978)42s
450 9(1977)21 10(1978)42s
451 9(1977)21 10(1978)42s
452 9(1977)21 10(1978)42s
453 9(1977)21 10(1978)43s, 240a
454 9(1977)22 10(1978)43s
455 9(1977)22 10(1978)43s
456 9(1977)22 10(1978)43s
457 9(1977)22 10(1978)43s
458 9(1977)22 10(1978)44s
459 9(1977)22 10(1978)44s
460 9(1977)23 10(1978)44s
461 9(1977)23 10(1978)44s
462 9(1977)24 11(1979)52s
463 9(1977)24 10(1978)72s
464 9(1977)25 10(1978)73s
465 9(1977)25 11(1979)54s
466 9(1977)25 10(1978)74s
467 9(1977)25 10(1978)74s, 160a
468 9(1977)26 10(1978)143r
469 9(1977)26 10(1978)75s, 240a
470 9(1977)26 10(1978)144s
471 9(1977)27 11(1979)56s
472 9(1977)27 10(1978)76s
473 9(1977)28 10(1978)77s
474 9(1977)28 10(1978)146s
475 9(1977)28 10(1978)146c
476 9(1977)29 10(1978)77s, 160a
477 9(1977)30 10(1978)47s
478 9(1977)31 10(1978)49r
479 9(1977)31 10(1978)49r
480 9(1977)31 10(1978)50s
481 9(1977)125 10(1978)116s, 240a, 320a
482 9(1977)125 10(1978)116s, 240a, 320a
483 9(1977)125 10(1978)117s, 240a, 320a
484 9(1977)125 10(1978)117s, 240a, 320a
485 9(1977)126 10(1978)117s, 240a
486 9(1977)126 10(1978)117s, 240a
487 9(1977)126 10(1978)118s, 240a, 320a
488 9(1977)126 10(1978)118s, 240a, 320a
489 9(1977)126 10(1978)118s, 240a, 320a
490 9(1977)126 10(1978)118s, 240a, 320a
491 9(1977)126 10(1978)118s, 240a
492 9(1977)126 10(1978)118s, 240a
493 9(1977)130 10(1978)147s
494 9(1977)131 10(1978)220s
495 9(1977)132 10(1978)221c 11(1979)145c
496 9(1977)132 10(1978)148s, 240a
497 9(1977)132 10(1978)148s 12(1980)94c
498 9(1977)132 10(1978)149s
499 9(1977)132 10(1978)150s
500 9(1977)133 10(1978)152s
501 9(1977)133 10(1978)153s
502 9(1977)133 11(1979)146r 12(1980)159s
503 9(1977)134 10(1978)154s, 240a, 320a
504 9(1977)134 10(1978)155s, 240a, 320a
505 9(1977)134 10(1978)156s 12(1980)94c
506 9(1977)134
507 9(1977)135 11(1979)146c
508 9(1977)136 10(1978)120r
509 9(1977)136 10(1978)121s
510 9(1977)136 10(1978)122r
511 9(1977)137 10(1978)122s, 320a
512 9(1977)137 10(1978)123s, 320a

513 9(1977)137 10(1978)125s, 316v
514 9(1977)206 10(1978)206s, 320a
515 9(1977)206 10(1978)207s, 320a
516 9(1977)206 10(1978)207s, 320a
517 9(1977)206 10(1978)207s, 320a
518 9(1977)206 10(1978)207s, 320a
519 9(1977)207 10(1978)207s, 320a
520 9(1977)207 10(1978)207s, 320a
521 9(1977)207 10(1978)207s, 320a
522 9(1977)207 10(1978)208s, 320a
523 9(1977)207 10(1978)208s, 320a
524 9(1977)207 10(1978)208s, 320a
525 9(1977)207 10(1978)208s, 320a
526 9(1977)207 10(1978)208s, 320a
527 9(1977)210 10(1978)221s, 320a
528 9(1977)210 10(1978)223s, 240a 11(1979)58s
529 9(1977)211 10(1978)223s
530 9(1977)212 10(1978)225s 12(1980)94c
531 9(1977)212 10(1978)225s
532 9(1977)212 10(1978)226s
533 9(1977)212 10(1978)226r 11(1979)218s
534 9(1977)212 10(1978)227s
535 9(1977)213 10(1978)229s
536 9(1977)213 10(1978)230s
537 9(1977)213 10(1978)230s, 240a
538 9(1977)214 10(1978)232s, 320a
539 9(1977)214 10(1978)232r
540 9(1977)214 10(1978)233s
541 9(1977)215 10(1978)235c, 235s, 240a
542 9(1977)280 10(1978)276s, 320a
543 9(1977)280 10(1978)276s
544 9(1977)280 10(1978)276s
545 9(1977)280 10(1978)276s
546 9(1977)280 10(1978)277s
547 9(1977)281 10(1978)277s
548 9(1977)281 10(1978)277s
549 9(1977)281 10(1978)277s
550 9(1977)281 10(1978)277s
551 9(1977)281 10(1978)278s
552 9(1977)281 10(1978)278s
553 9(1977)281 10(1978)278s
554 9(1977)295 10(1978)300s
555 9(1977)296 10(1978)302s
556 9(1977)296 10(1978)303s
557 9(1977)296 11(1979)59s
558 9(1977)296 10(1978)304s
559 9(1977)297 10(1978)306s
560 9(1977)297 10(1978)306s
561 9(1977)297 10(1978)307s
562 9(1977)297 10(1978)308s
563 9(1977)297 10(1978)309s
564 9(1977)298 10(1978)310s
565 9(1977)298 10(1978)311s
566 9(1977)298 10(1978)311c, 311s
567 9(1977)298 10(1978)314s
568 9(1977)298 11(1979)147s
569 9(1977)286 10(1978)279x
570 9(1977)286 10(1978)280s 12(1980)299s
571 9(1977)287 10(1978)281s
572 9(1977)287 10(1978)281r
573 9(1977)287 10(1978)282c 11(1979)132s
574 10(1978)40 11(1979)31s
575 10(1978)40 11(1979)31s
576 10(1978)40 11(1979)31s
577 10(1978)40 11(1979)31s
578 10(1978)41 11(1979)31s
579 10(1978)41 11(1979)32s
580 10(1978)41 11(1979)32s
581 10(1978)41 11(1979)32s
582 10(1978)41 11(1979)32s
583 10(1978)41 11(1979)33s
584 10(1978)41 11(1979)33s
585 10(1978)42 11(1979)33s
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586 10(1978)45 11(1979)43s
587 10(1978)46 11(1979)137r
588 10(1978)46 11(1979)45s
589 10(1978)46 11(1979)46s
590 10(1978)46 11(1979)137s
591 10(1978)51 10(1978)316v 11(1979)64r

12(1980)62s
592 10(1978)52 11(1979)64s
593 10(1978)52 11(1979)65s
594 10(1978)52 11(1979)65s
595 10(1978)52 11(1979)66s
596 10(1978)52 11(1979)66s
597 10(1978)53 11(1979)67s
598 10(1978)53 11(1979)69s
599 10(1978)53 11(1979)70s
600 10(1978)54 11(1979)70r 12(1980)63s
601 10(1978)54 11(1979)71s 12(1980)64s
602 10(1978)54 11(1979)75s
603 10(1978)55 11(1979)76s
604 10(1978)55 11(1979)76s
605 10(1978)114 11(1979)124s 12(1980)51a
606 10(1978)114 11(1979)124s 12(1980)51a
607 10(1978)114 11(1979)125s 12(1980)51a
608 10(1978)114 11(1979)125s 12(1980)51a
609 10(1978)115 11(1979)125s 12(1980)51a
610 10(1978)115 11(1979)125s 12(1980)51a
611 10(1978)115 11(1979)125s 12(1980)51a
612 10(1978)115 11(1979)125s 12(1980)51a
613 10(1978)115 11(1979)126s 12(1980)51a
614 10(1978)115 11(1979)126s
615 10(1978)116 11(1979)126s
616 10(1978)116 11(1979)126s
617 10(1978)116 11(1979)126s
618 10(1978)119 11(1979)139s
619 10(1978)119 11(1979)140c
620 10(1978)120 11(1979)141s
621 10(1978)120 11(1979)143s
622 10(1978)120 11(1979)144r 12(1980)160x
623 10(1978)127 11(1979)149s
624 10(1978)128 11(1979)150s
625 10(1978)128 11(1979)304x
626 10(1978)128 11(1979)151s
627 10(1978)128 11(1979)152s
628 10(1978)129 11(1979)220s
629 10(1978)129 11(1979)152s 12(1980)80a
630 10(1978)129 11(1979)154s
631 10(1978)129 11(1979)156s
632 10(1978)130 11(1979)157s
633 10(1978)204 11(1979)209s 12(1980)50a
634 10(1978)204 11(1979)209s 12(1980)50a
635 10(1978)204 11(1979)209s 12(1980)50a
636 10(1978)204 11(1979)210s 12(1980)50a
637 10(1978)204 11(1979)210s 12(1980)50a
638 10(1978)204 11(1979)210s 12(1980)50a
639 10(1978)204 11(1979)210s 12(1980)50a
640 10(1978)204 11(1979)210s 12(1980)50a
641 10(1978)206 11(1979)210s 12(1980)50a
642 10(1978)206 11(1979)211s 12(1980)50a
643 10(1978)206 11(1979)211s 12(1980)50a
644 10(1978)206 11(1979)211s
645 10(1978)210 11(1979)223s
646 10(1978)210 11(1979)224s
647 10(1978)211 11(1979)226s
648 10(1978)211 11(1979)226s
649 10(1978)211 11(1979)227s
650 10(1978)211 11(1979)227s
651 10(1978)211 11(1979)229s
652 10(1978)212 11(1979)230c
653 10(1978)212 11(1979)230s
654 10(1978)212 11(1979)231c 12(1980)222c
655 10(1978)212 11(1979)232x
656 10(1978)213 11(1979)233s
657 10(1978)213 11(1979)233s

658 10(1978)213 11(1979)234s
659 10(1978)213 11(1979)235s
660 10(1978)274 11(1979)296s 12(1980)50a, 217a
661 10(1978)274 11(1979)296s 12(1980)50a, 217a
662 10(1978)274 11(1979)296s 12(1980)50a, 217a
663 10(1978)274 11(1979)297s 12(1980)50a, 135a,

217a
664 10(1978)275 11(1979)297s 12(1980)50a, 217a
665 12(1980)50a, 217a
665–1 10(1978)275 11(1979)297s
665–2 10(1978)275 11(1979)297s
665–3 10(1978)275 11(1979)297s
666 10(1978)275 11(1979)298s 12(1980)50a, 217a
667 10(1978)275 11(1979)298s 12(1980)50a, 217a
668 10(1978)275 11(1979)298s 12(1980)50a, 217a
669 10(1978)275 11(1979)298s 12(1980)50a, 217a
670 10(1978)276 11(1979)298s 12(1980)50a, 217a
671 10(1978)283 11(1979)306s
672 10(1978)283 11(1979)307s
673 10(1978)284 11(1979)308s 12(1980)80a
674 10(1978)284 11(1979)309s, 320c 12(1980)80a,

240a
675 10(1978)284 11(1979)309s
676 10(1978)284 11(1979)310s 12(1980)80a
677 10(1978)284 11(1979)310r 12(1980)300s
678 10(1978)284 11(1979)311s 12(1980)80a
679 10(1978)285 11(1979)312s
680 10(1978)285 11(1979)312r
681 10(1978)286 11(1979)313s 12(1980)80a
682 10(1978)286 11(1979)314s 12(1980)80a
683 10(1978)287 11(1979)315s
684 10(1978)287 11(1979)316c
685 10(1978)287 11(1979)317s
686 11(1979)28 12(1980)47s, 134a, 217a
687 11(1979)28 12(1980)47s, 134a
688 11(1979)28 12(1980)47s, 134a
689 11(1979)28 12(1980)48s, 134a
690 11(1979)29 12(1980)48s, 134a
691 11(1979)29 12(1980)48s, 134a
692 11(1979)29 12(1980)48s, 134a
693 11(1979)29 12(1980)48s, 134a
694 11(1979)29 12(1980)48s, 134a
695 11(1979)30 12(1980)49s, 134a
696 11(1979)30 12(1980)49s, 134a
697 11(1979)30 12(1980)49s, 134a
698 11(1979)30 12(1980)49s, 50s, 134a, 217a
699 11(1979)35 12(1980)65s
700 11(1979)35 12(1980)66c
701 11(1979)35 12(1980)67c
702 11(1979)36 12(1980)67s
703 11(1979)36 12(1980)68s
704 11(1979)36 12(1980)69s
705 11(1979)37 12(1980)70s, 240a
706 11(1979)37 12(1980)70s
707 11(1979)37 12(1980)71s
708 11(1979)37 12(1980)72s
709 11(1979)38 12(1980)73x
710 11(1979)38 12(1980)74s
711 11(1979)38 12(1980)75s, 240a
712 11(1979)38 12(1980)75s
713 11(1979)38 12(1980)141s
714 11(1979)39
715 11(1979)39 12(1980)77s, 240a, 291a
716 11(1979)122 12(1980)132s, 217a, 291a
717 11(1979)122 12(1980)132s, 217a, 291a
718 11(1979)122 12(1980)132s, 217a, 291a
719 11(1979)122 12(1980)133s, 217a, 291a
720 11(1979)123 12(1980)133s, 217a, 291a
721 11(1979)123 12(1980)133s, 291a
722 11(1979)123 12(1980)133s, 217a, 291a
723 11(1979)123 12(1980)133s, 217a, 291a
724 11(1979)123 12(1980)133s, 217a, 291a
725 11(1979)124 12(1980)134s, 217a, 291a
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726 11(1979)124 12(1980)134s, 217a, 291a
727 11(1979)124 12(1980)134s
728 11(1979)127 12(1980)145s
729 11(1979)128 12(1980)145s
730 11(1979)128 12(1980)146s
731 11(1979)128 12(1980)147s
732 11(1979)128 12(1980)149s
733 11(1979)129 12(1980)150s
734 11(1979)129 12(1980)151x
735 11(1979)129 12(1980)152s
736 11(1979)129 12(1980)153s
737 11(1979)130 12(1980)154s
738 11(1979)130 12(1980)155s
739 11(1979)130 12(1980)156s
740 11(1979)131 12(1980)157c
741 11(1979)131 12(1980)158s 13(1981)160a
742 11(1979)207 12(1980)214s, 291a
743 11(1979)207 12(1980)214s, 291a
744 11(1979)207 12(1980)214s, 291a
745 11(1979)207 12(1980)215s, 291a
746 11(1979)207 12(1980)215s, 291a
747 11(1979)208 12(1980)215s, 291a
748 11(1979)208 12(1980)215s, 291a
749 11(1979)208 12(1980)215s, 291a
750 11(1979)208 12(1980)215s, 291a
751 11(1979)208 12(1980)216s, 291a
752 11(1979)208 12(1980)216s, 291a
753 11(1979)209 12(1980)216s, 291a
754 11(1979)209 12(1980)216s, 291a
755 11(1979)213 12(1980)222s
756 11(1979)214 12(1980)223s, 320a
757 11(1979)214 12(1980)224c, 224x
758 11(1979)214 12(1980)227c
759 11(1979)214 12(1980)227s
760 11(1979)214 12(1980)228s, 320a
761 11(1979)215 12(1980)228s, 320a
762 11(1979)215 12(1980)229s, 320a
763 11(1979)215
764 11(1979)215 12(1980)230x, 320a
765 11(1979)215 12(1980)230s
766 11(1979)215 12(1980)231s
767 11(1979)216 12(1980)232s
768 11(1979)216 12(1980)232s
769 11(1979)216 12(1980)233s, 235s
770a 11(1979)216 12(1980)235s
770b 11(1979)294 12(1980)289s 13(1981)55a
771 11(1979)294 12(1980)289s 13(1981)55a, 136a
772 11(1979)294 12(1980)289s 13(1981)55a
773 11(1979)295 12(1980)289s
774 11(1979)295 12(1980)289s 13(1981)55a
775 11(1979)295 12(1980)289s 13(1981)55a, 136a
776 11(1979)295 12(1980)290s 13(1981)55a, 136a
777 11(1979)295 12(1980)290s 13(1981)55a
778 11(1979)295 12(1980)290s 13(1981)55a, 136a
779 11(1979)295 12(1980)290s 13(1981)55a, 136a
780 11(1979)296 12(1980)290s 13(1981)55a
781 11(1979)296
782 11(1979)299 12(1980)302s
783 11(1979)300 12(1980)302x
784 11(1979)300 12(1980)304s 13(1981)80a, 160a
785 11(1979)300 12(1980)304s 13(1981)80a, 160a
786 11(1979)300 12(1980)305s
787 11(1979)301 12(1980)306s
788 11(1979)301 12(1980)307s
789 11(1979)301 13(1981)300s, 320a
790 11(1979)302 12(1980)310s 13(1981)80a, 160a
791 11(1979)302 12(1980)311s
792 11(1979)302 12(1980)311s
793 11(1979)302 12(1980)312s 13(1981)80a, 160a
794 11(1979)302 12(1980)314s 13(1981)80a, 160a
795 11(1979)303 12(1980)315s 13(1981)80a, 160a
796 11(1979)303 12(1980)315s
797 11(1979)303 12(1980)316s 13(1981)80a

798 11(1979)303 12(1980)317s 13(1981)80a, 160a

Problem Proposal References
C1 8(1976)233 9(1977)233s
C2 8(1976)234 9(1977)235s, 237s
C3 8(1976)234 9(1977)238s
C4 8(1976)234 9(1977)239s
C5 8(1976)305 10(1978)47r
C6 8(1976)306 9(1977)289s 10(1978)160a
C7 8(1976)306 9(1977)290s
C8 8(1976)306 9(1977)291c, 291s
C9 8(1976)306 9(1977)292s

MATYC
Problem Proposal References
56 9(1975/1)50s
57 9(1975/1)50s
58 9(1975/1)51s
59 9(1975/1)51s
60 9(1975/1)52s
61 9(1975/2)51s
62 9(1975/2)52s
63 9(1975/2)52s
64 9(1975/2)53s
65 9(1975/3)45s
66 9(1975/3)47s
67 9(1975/3)47s
68 9(1975/3)49s
69 9(1975/3)50s 11(1977)142s
70 9(1975/1)49 10(1976)43s, 201c 14(1980)155s
71 9(1975/1)49 10(1976)44s
72 9(1975/1)49 10(1976)45s
73 9(1975/1)49 10(1976)45s
74 9(1975/2)51 10(1976)122s
75 9(1975/2)51 10(1976)123s
76 9(1975/2)51 10(1976)124s
77 9(1975/2)51 10(1976)124s
78 9(1975/3)45 10(1976)201s
79 9(1975/3)45 10(1976)201s
80 9(1975/3)45 10(1976)202s
81 9(1975/3)45 10(1976)203s
82 10(1976)43 11(1977)63s, 145c
83 10(1976)43 11(1977)64s, 65s
84 10(1976)43 11(1977)67s
85 10(1976)43 11(1977)67s
86 10(1976)122 11(1977)143s
87 10(1976)122 11(1977)144s
88 10(1976)122 11(1977)144s
89 10(1976)122 11(1977)144s
90 10(1976)122 11(1977)145s
91 10(1976)200 11(1977)222s
92 10(1976)200 11(1977)222s
93 10(1976)200 11(1977)223s
94 10(1976)200 11(1977)224s
95 10(1976)200 11(1977)224s
96 11(1977)63 12(1978)78s
97 11(1977)63 12(1978)79s
98 11(1977)63 12(1978)79s
99 11(1977)63 12(1978)80s
100 11(1977)63 12(1978)80s
101 11(1977)142 12(1978)174s
102 11(1977)142 12(1978)175s
103 11(1977)142 12(1978)175s
104 11(1977)142 12(1978)176s
105 11(1977)221 12(1978)254s
106 11(1977)221 12(1978)255s
107 11(1977)221 12(1978)256s, 256v
108 11(1977)221 12(1978)256s
109 11(1977)222 13(1979)65s
110 12(1978)78 13(1979)67s 14(1980)155c
111 12(1978)78 13(1979)68s
112 12(1978)78 13(1979)69s
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113 12(1978)78 13(1979)69s
114 12(1978)78 13(1979)70s
115 12(1978)173 13(1979)136s
116 12(1978)173 13(1979)137s
117 12(1978)173 13(1979)137s
118 12(1978)173 13(1979)138s
119 12(1978)173 13(1979)138s
120 12(1978)253 13(1979)215s
121 12(1978)253 13(1979)216s
122 12(1978)253 13(1979)217s
123 12(1978)253 13(1979)218s
124 12(1978)254 13(1979)219s
125 13(1979)64 14(1980)73s
126 13(1979)64 14(1980)74s
127 13(1979)64 14(1980)75s
128 13(1979)65 14(1980)75s
129 13(1979)65 14(1980)76s
130 13(1979)135 14(1980)156s
131 13(1979)135 14(1980)157s
132 13(1979)135 14(1980)157s
133 13(1979)135 14(1980)233s
134 13(1979)136 14(1980)234s
135 13(1979)214 14(1980)235s
136 13(1979)214 14(1980)236s
137 13(1979)214 14(1980)237s
138 13(1979)214 15(1981)72s
139 13(1979)215 15(1981)73s

MENEMUI
Problem Proposal References
0.2.1 1(1979/1)54s
0.2.2 1(1979/1)56s
0.3.1 1(1979/1)57s
0.3.2 1(1979/1)58s
1.1.1 1(1979/1)52
1.1.2 1(1979/1)53 1(1979/3)58s
1.1.3 1(1979/1)53 1(1979/2)47s 1(1979/3)58a
1.2.1 1(1979/2)46
1.2.2 1(1979/2)46 1(1979/3)59s
1.3.1 1(1979/3)56
1.3.2 1(1979/3)56
1.3.3 1(1979/3)57

MM
Problem Proposal References
643 56(1983)112s
879 48(1975)300a
880 48(1975)53s, 300a
881 48(1975)54s
882 48(1975)54s, 301c, 302c
883 48(1975)55s
884 48(1975)56s
885 48(1975)57s
886 48(1975)58c, 301c
888 48(1975)300a
889 48(1975)300a
893 48(1975)301a
894 48(1975)117s, 301a
895 48(1975)118s, 301a
896 48(1975)119c, 301a
897 48(1975)120s
898 48(1975)120s
899 48(1975)121s
900 48(1975)121s
901 48(1975)182s
902 48(1975)183s
903 48(1975)184s
905 48(1975)184s
906 48(1975)185s, 301a
907 48(1975)186s

908 48(1975)241s
909 48(1975)241s
910 48(1975)242s
911 48(1975)244s
912 48(1975)245s
913 48(1975)246s
914 48(1975)247s 49(1976)254c, 254s
915 48(1975)295s, 296s
916 48(1975)297s
917 48(1975)297s
918 48(1975)298s
919 48(1975)299s
920 48(1975)300s
921 48(1975)300s
922 48(1975)51 49(1976)44s
923 48(1975)51 49(1976)45s
924 48(1975)51 49(1976)46s
925 48(1975)51 49(1976)46s
926 48(1975)51 49(1976)46s
927 48(1975)51 49(1976)47s
928 48(1975)52 49(1976)48s
929 48(1975)115 49(1976)97s
930 48(1975)115 49(1976)97s
931 48(1975)115 49(1976)98s
932 48(1975)115 49(1976)99s
933 48(1975)115 49(1976)100s
934 48(1975)116 49(1976)100s, 254c, 254s
935 48(1975)116 49(1976)255s
936 48(1975)116 49(1976)101s 59(1986)179c
937 48(1975)180 49(1976)150s
938 48(1975)180 49(1976)151s
939 48(1975)180 49(1976)152s
940 48(1975)180 49(1976)152s
941 48(1975)181 49(1976)153s
942 48(1975)181 49(1976)153s
943 48(1975)181 49(1976)212s
944 48(1975)181 49(1976)214s
945 48(1975)238 49(1976)215s
946 48(1975)238 49(1976)215s
947 48(1975)238 49(1976)216s
948 48(1975)238 49(1976)217s
949 48(1975)238 49(1976)218s
950 48(1975)239 49(1976)256s
951 48(1975)239 49(1976)256s
952 48(1975)239 49(1976)257s
953 48(1975)239 50(1977)100s
954 48(1975)293 49(1976)257s
955 48(1975)293 50(1977)47s
956 48(1975)293 49(1976)258s
957 48(1975)293 50(1977)103s, 104c
958 48(1975)293 50(1977)49s
959 48(1975)294 50(1977)50s, 212c
960 48(1975)294 50(1977)52s
961 48(1975)294 50(1977)52s
962 48(1975)294 50(1977)165s
963 49(1976)43 50(1977)53s
964 49(1976)43 50(1977)104s
965 49(1976)43 50(1977)166s
966 49(1976)43 50(1977)166s 59(1986)52c
967 49(1976)43 50(1977)167s
968 49(1976)44 50(1977)168s
969 49(1976)44 50(1977)169s
970 49(1976)95 50(1977)213s
971 49(1976)95 50(1977)214s
972 49(1976)95 50(1977)215s
973 49(1976)95 49(1976)211v 50(1977)215s
974 49(1976)95 50(1977)216s
975 49(1976)96 50(1977)266s
976 49(1976)96 50(1977)267s
977 49(1976)96 50(1977)268s
978 49(1976)149 50(1977)268s
979 49(1976)149 50(1977)269s
980 49(1976)149 50(1977)270s
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981 49(1976)149 50(1977)271s
982 49(1976)149 50(1977)271s
983 49(1976)149 51(1978)70s
984 49(1976)150 51(1978)195c, 195s
985 49(1976)150 49(1976)211v 51(1978)70s
986 49(1976)150 51(1978)196s
987 49(1976)150 51(1978)71s
988 49(1976)211 51(1978)71s
989 49(1976)211 51(1978)72s
990 49(1976)211 51(1978)128s
991 49(1976)211 51(1978)129s
992 49(1976)211 51(1978)129s
993 49(1976)212 51(1978)130s
994 49(1976)212 51(1978)130s
995 49(1976)212 51(1978)130s
996 49(1976)252 51(1978)196s
997 49(1976)252 51(1978)198s, 199c, 199s
998 49(1976)252 51(1978)199s
999 49(1976)252 51(1978)200s
1000 49(1976)253 51(1978)201s
1001 49(1976)253 51(1978)246s
1002 49(1976)253 51(1978)247s
1003 50(1977)46 51(1978)247c, 247s
1004 50(1977)46 51(1978)248s
1005 50(1977)46 51(1978)249s
1006 50(1977)46 51(1978)306s
1007 50(1977)46
1008 50(1977)99 56(1983)113s
1009 50(1977)99 51(1978)307s
1010 50(1977)99 51(1978)307s
1011 50(1977)99 51(1978)308s
1012 50(1977)99 52(1979)48s
1013 50(1977)163 52(1979)48c, 48s
1014 50(1977)163 50(1977)221v 52(1979)318s

58(1985)244c
1015 50(1977)164
1016 50(1977)164 52(1979)49s
1017 50(1977)164 52(1979)49s
1018 50(1977)164 52(1979)50s
1019 50(1977)164 52(1979)50s
1020 50(1977)164 52(1979)51s
1021 50(1977)211 52(1979)51s
1022 50(1977)211 52(1979)52s
1023 50(1977)211 52(1979)53s
1024 50(1977)211 52(1979)53s
1025 50(1977)265 52(1979)53s
1026 50(1977)265 52(1979)55s
1027 50(1977)265 52(1979)114s
1028 50(1977)265 52(1979)180s
1029 51(1978)69 52(1979)180s, 182c
1030 51(1978)69 52(1979)115s
1031 51(1978)69 52(1979)116s
1032 51(1978)69 52(1979)117s
1033 51(1978)127 52(1979)182s
1034 51(1978)127 52(1979)183c, 183s
1035 51(1978)127 52(1979)259s
1036 51(1978)127 52(1979)260s
1037 51(1978)128 52(1979)319s 58(1985)244c
1038 51(1978)128 52(1979)319s
1039 51(1978)193 52(1979)260s, 261s
1040 51(1978)193 52(1979)261s, 262s
1041 51(1978)193 52(1979)262s 58(1985)244c
1042 51(1978)193 52(1979)263s
1043 51(1978)193 52(1979)320c, 320s
1044 51(1978)194 52(1979)263s
1045 51(1978)194 52(1979)264s
1046 51(1978)194 52(1979)264s
1047 51(1978)194 52(1979)265s
1048 51(1978)245 52(1979)321s 58(1985)244c
1049 51(1978)245 52(1979)322s
1050 51(1978)245 52(1979)322s
1051 51(1978)245 53(1980)50s
1052 51(1978)245 53(1980)50s

1053 51(1978)245 53(1980)51s
1054 51(1978)305 53(1980)52s
1055 51(1978)305 53(1980)53s
1056 51(1978)305 53(1980)54s
1057 51(1978)305 53(1980)113s, 114s
1058 52(1979)46 53(1980)114s
1059 52(1979)46 53(1980)115s
1060 52(1979)46 53(1980)116s
1061 52(1979)46 53(1980)116s
1062 52(1979)46 53(1980)117s
1063 52(1979)47 53(1980)181s
1064 52(1979)47 53(1980)181s, 183s
1065 52(1979)47 53(1980)184s
1066 52(1979)113 53(1980)184s
1067 52(1979)113 53(1980)185s
1068 52(1979)113 53(1980)186c, 186x
1069 52(1979)113 53(1980)245s
1070 52(1979)113 53(1980)245s
1071 52(1979)114 53(1980)247x 54(1981)141s
1072 52(1979)179 53(1980)247s
1073 52(1979)179
1074 52(1979)258 53(1980)248s
1075 52(1979)258 53(1980)249s
1076 52(1979)258 53(1980)249s
1077 52(1979)258 53(1980)250s
1078 52(1979)258 53(1980)251s
1079 52(1979)258 53(1980)301s
1080 52(1979)316 53(1980)302s
1081 52(1979)316 53(1980)302s
1082 52(1979)316 53(1980)302s
1083 52(1979)316 53(1980)303s
1084 52(1979)317 54(1981)85s
1085 52(1979)317 53(1980)303s
1086 52(1979)317 53(1980)304s
1087 52(1979)317 53(1980)304s
1088 52(1979)317 54(1981)36x

Problem Proposal References
Q608 48(1975)52 48(1975)58s
Q609 48(1975)52 48(1975)58s
Q610 48(1975)52 48(1975)58s
Q611 48(1975)52 48(1975)58s
Q612 48(1975)52 48(1975)58s
Q613 48(1975)52 48(1975)58s
Q614 48(1975)116 48(1975)122s
Q615 48(1975)116 48(1975)122s
Q616 48(1975)116 48(1975)122s
Q617 48(1975)116 48(1975)122s
Q618 48(1975)117 48(1975)122s
Q619 48(1975)117 48(1975)122s
Q620 48(1975)181 48(1975)186s
Q621 48(1975)182 48(1975)186s
Q622 48(1975)182 48(1975)186s
Q623 48(1975)182 48(1975)186s
Q624 48(1975)182 48(1975)186s
Q625 48(1975)240 48(1975)248s
Q626 48(1975)240 48(1975)248s
Q627 48(1975)240 48(1975)248s
Q628 48(1975)295 48(1975)302s
Q629 48(1975)295 48(1975)302s
Q630 48(1975)295 48(1975)303s
Q631 49(1976)44 49(1976)48s
Q632 49(1976)44 49(1976)48s
Q633 49(1976)96 49(1976)101s
Q634 49(1976)96 49(1976)101s
Q635 49(1976)150 49(1976)154s
Q636 49(1976)150 49(1976)154s
Q637 49(1976)150 49(1976)154s
Q638 49(1976)212 49(1976)218s
Q639 49(1976)212 49(1976)218s
Q640 49(1976)253 49(1976)258s
Q641 49(1976)253 49(1976)258s
Q642 49(1976)253 49(1976)258s
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Q643 50(1977)47 50(1977)53s
Q644 50(1977)47 50(1977)53s
Q645 50(1977)164 50(1977)169s
Q646 50(1977)164 50(1977)169s
Q647 50(1977)164 50(1977)169s
Q648 50(1977)164 50(1977)169s
Q649 50(1977)266 50(1977)271s
Q650 50(1977)266 50(1977)271s
Q651 51(1978)128 51(1978)130s
Q652 51(1978)128 51(1978)130s
Q653 51(1978)194 51(1978)201s
Q654 51(1978)194 51(1978)201s
Q655 51(1978)246 51(1978)249s
Q656 52(1979)47 52(1979)55s
Q657 52(1979)47 52(1979)55s
Q658 52(1979)114 52(1979)117s
Q659 52(1979)114 52(1979)117s
Q660 52(1979)179 52(1979)184s
Q661 52(1979)179 52(1979)184s
Q662 52(1979)259 52(1979)265s
Q663 52(1979)317 52(1979)323s
Q664 52(1979)317 52(1979)323s

MSJ
Problem Proposal References
406 22(1975/1)6s
407 22(1975/1)6s
408 22(1975/1)7s
409 22(1975/1)7s
410 22(1975/1)7s
411 22(1975/2)6s
412 22(1975/2)6s
413 22(1975/2)7s
414 22(1975/2)7s
415 22(1975/1)5v 22(1975/2)7c

22(1975/3)6s
416 22(1975/1)5 22(1975/3)6s
417 22(1975/1)5 22(1975/3)6s
418 22(1975/1)5 22(1975/3)7s
419 22(1975/1)5 22(1975/3)7s
420 22(1975/1)5 22(1975/3)7s
421 22(1975/2)5 22(1975/4)5s
422 22(1975/2)5 22(1975/4)5s
423 22(1975/2)5 22(1975/4)6s
424 22(1975/2)5 22(1975/4)6s
425 22(1975/2)5 22(1975/4)7s
426 22(1975/3)5 23(1976/1)6s
427 22(1975/3)5 23(1976/1)7s
428 22(1975/3)5 23(1976/1)7s
429 22(1975/3)5 23(1976/1)7s
430 22(1975/3)5 23(1976/1)7s
431 23(1976/1)8 23(1976/3)8s
432 23(1976/1)8 23(1976/3)8s
433 23(1976/2)8 23(1976/4)8s
434 23(1976/2)8 23(1976/4)8s
435 23(1976/3)8 24(1977/1)4s
436 23(1976/3)8 24(1977/1)4s
437 23(1976/4)8 24(1977/2)5s
438 23(1976/4)8 24(1977/2)6s
439 24(1977/1)4 24(1977/3)5s
440 24(1977/1)4 24(1977/3)5c, 5s
441 24(1977/2)5 24(1977/4)2s
442 24(1977/2)5 24(1977/4)2s
443 24(1977/3)5 25(1978/1)4s
444 24(1977/3)5 25(1978/1)4s
445 24(1977/4)2 25(1978/2)4s
446 24(1977/4)2 24(1977/4)2c 25(1978/2)4s
447 25(1978/1)4 25(1978/5)4s
448 25(1978/1)4 25(1978/5)4s
449 25(1978/2)4 25(1978/6)4s
450 25(1978/2)4 25(1978/6)4s
451 25(1978/3)4 25(1978/7)2s

452 25(1978/3)4 25(1978/7)2s
453 25(1978/4)4 25(1978/8)2s
454 25(1978/4)4 25(1978/8)2s
455 25(1978/5)4 26(1979/1)2s
456 25(1978/5)4 26(1979/1)3s
457 25(1978/6)4 26(1979/2)3s
458 25(1978/6)4 26(1979/2)3s
459 25(1978/7)2 26(1979/3)3s
460 25(1978/7)2 26(1979/3)3s
461 25(1978/8)2 26(1979/3)3s
462 25(1978/8)2 26(1979/4)3s
463 26(1979/1)2 26(1979/6)2s
464 26(1979/1)2 26(1979/6)2s 27(1980/1)5c
465 26(1979/1)2 26(1979/6)2c, 2s
466 26(1979/1)2 26(1979/6)2s, 3c 27(1980/1)5c
467 26(1979/1)2 26(1979/6)3s 27(1980/1)5c
468 26(1979/2)2 26(1979/7)2c, 2s
469 26(1979/2)2 26(1979/7)2c, 2s
470 26(1979/2)2 26(1979/7)2s, 2v
471 26(1979/2)2 26(1979/7)2s
472 26(1979/2)2 26(1979/7)3c, 3s 27(1980/1)5c
473 26(1979/3)2 26(1979/8)2s
474 26(1979/3)2 26(1979/8)2c, 2s
475 26(1979/3)2 26(1979/8)2c, 2s
476 26(1979/3)2 26(1979/8)2s, 3c 27(1980/1)5c
477 26(1979/3)2 26(1979/8)3c, 3s 27(1980/1)5c
478 26(1979/4)2 27(1980/1)5c, 5s
479 26(1979/4)2 27(1980/1)5s
480 26(1979/4)2 27(1980/1)5c, 5s
481 26(1979/4)2 27(1980/1)6s
482 26(1979/4)2 27(1980/1)5c, 6s
483 26(1979/5)2 27(1980/1)5c 27(1980/2)3s
484 26(1979/5)2 27(1980/2)3s
485 26(1979/5)2 27(1980/2)3s
486 26(1979/5)2 27(1980/2)4s
487 26(1979/5)2 27(1980/2)4s
488 26(1979/6)2 27(1980/1)5c 27(1980/3)2s
489 26(1979/6)2 27(1980/1)5c 27(1980/3)2s
490 26(1979/6)2 27(1980/3)3s
491 26(1979/6)2 27(1980/1)5c 27(1980/3)3s
492 26(1979/6)2 27(1980/1)5c 27(1980/3)3s
493 26(1979/7)2 27(1980/1)5c 27(1980/3)4s
494 26(1979/7)2 27(1980/3)4s
495 26(1979/7)2 27(1980/3)4s
496 26(1979/7)2 27(1980/3)4s
497 26(1979/7)2 27(1980/3)4s
498 26(1979/8)2 27(1980/1)5c 27(1980/4)3s
499 26(1979/8)2 27(1980/4)3s
500 26(1979/8)2 27(1980/1)5c 27(1980/4)3s, 4s
501 26(1979/8)2 27(1980/1)5c 27(1980/4)4s
502 26(1979/8)2 27(1980/4)4s

NAvW
Problem Proposal References
372 23(1975)83s
373 23(1975)84s, 85s, 86c
374 23(1975)86s
375 23(1975)88s, 89c
376 23(1975)89s
377 23(1975)90s
378 23(1975)246s
379 23(1975)92s
380 23(1975)248s
381 23(1975)94s
382 23(1975)178s, 179s
383 23(1975)180s
384 23(1975)181s, 182c
385 24(1976)81s
386 24(1976)82s, 83s, 84c
387 23(1975)183s, 184s
388 23(1975)190s
389 23(1975)191s
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390 23(1975)193s
391 23(1975)79 24(1976)190s
392 23(1975)79 23(1975)249s
393 23(1975)80 23(1975)250s
394 23(1975)80 23(1975)251s
395 23(1975)80 24(1976)192s
396 23(1975)81 23(1975)252s
397 23(1975)81 23(1975)252s
398 23(1975)81 24(1976)194s
399 23(1975)82 23(1975)254s, 255s
400 23(1975)82 23(1975)257s
401 23(1975)173 24(1976)84s
402 23(1975)173 24(1976)87s
403 23(1975)174 24(1976)88c, 88s
404 23(1975)174 24(1976)89s, 90s
405 23(1975)174 24(1976)93s
406 23(1975)175 24(1976)95s, 96s
407 23(1975)175 24(1976)98s
408 23(1975)176 24(1976)100s
409 23(1975)176 24(1976)101s
410 23(1975)176 24(1976)103s
411 23(1975)176 24(1976)104s
412 23(1975)176 24(1976)106s
413 23(1975)176 24(1976)107c, 107s, 189c
414 23(1975)242 24(1976)195s, 196s
415 23(1975)242 24(1976)198s, 201c
416 23(1975)242 24(1976)202s, 203c, 204s
417 23(1975)243 25(1977)89s
418 23(1975)243 24(1976)205s
419 23(1975)243 24(1976)206s, 207c
420 23(1975)244 24(1976)210s
421 23(1975)244 24(1976)211s
422 23(1975)244 24(1976)212s, 273c, 273s
423 23(1975)245 24(1976)213s
424 24(1976)77 24(1976)275s, 276c
425 24(1976)77 24(1976)276s
426 24(1976)78 24(1976)277s, 278s, 279c
427 24(1976)78 24(1976)279s
428 24(1976)78 25(1977)190s
429 24(1976)78 25(1977)192s
430 24(1976)79 24(1976)280s
431 24(1976)79 24(1976)281s
432 24(1976)79 24(1976)282s
433 24(1976)80 24(1976)283s
434 24(1976)80 24(1976)284s
435 24(1976)80 24(1976)285s
436 24(1976)184 25(1977)90s, 92c
437 24(1976)184 25(1977)426s
438 24(1976)185 25(1977)428s
439 24(1976)185 25(1977)429s
440 24(1976)185 25(1977)93s
441 24(1976)185 25(1977)93s, 94s
442 24(1976)186 25(1977)431s
443 24(1976)186 25(1977)95s
444 24(1976)187 25(1977)95s
445 24(1976)187 25(1977)97s
446 24(1976)187 25(1977)98s, 99s
447 24(1976)187 25(1977)100s, 101s
448 24(1976)270 25(1977)193s
449 24(1976)270 25(1977)194s
450 24(1976)270 25(1977)196s
451 24(1976)271 25(1977)197s
452 24(1976)271 25(1977)198s
453 24(1976)271 25(1977)199s
454 24(1976)272 25(1977)200s
455 24(1976)272 25(1977)201c, 201s
456 24(1976)272 25(1977)202s
457 24(1976)272 25(1977)204s
458 25(1977)86 26(1978)352s
459 25(1977)86 25(1977)434c, 434s
460 25(1977)87 25(1977)436s
461 25(1977)87 25(1977)438s
462 25(1977)87 25(1977)439s

463 25(1977)87 25(1977)441s
464 25(1977)88 25(1977)442c, 442s
465 25(1977)88 25(1977)443s
466 25(1977)88 25(1977)444s
467 25(1977)88 25(1977)445s
468 25(1977)186 26(1978)235s, 236c
469 25(1977)186 26(1978)237s
470 25(1977)187 26(1978)238s
471 25(1977)187 26(1978)241s
472 25(1977)187 26(1978)242s, 243c, 243s
473 25(1977)187 26(1978)244s
474 25(1977)187 26(1978)245s
475 25(1977)188 26(1978)246s, 248c
476 25(1977)188 26(1978)248c, 250s
477 25(1977)189 26(1978)251s
478 25(1977)423 26(1978)354s
479 25(1977)423 26(1978)356s
480 25(1977)424 26(1978)357s
481 25(1977)424 26(1978)358s
482 25(1977)424 26(1978)359s, 360c
483 25(1977)424 26(1978)361s, 362s
484 25(1977)425 26(1978)363s
485 25(1977)425 26(1978)363s
486 25(1977)425 26(1978)364s
487 25(1977)425 26(1978)365s
488 26(1978)231 26(1978)465s
489 26(1978)231 27(1979)271s
490 26(1978)232 26(1978)466s
491 26(1978)232 26(1978)468s
492 26(1978)232 26(1978)469s, 470s
493 26(1978)232 26(1978)470s
494 26(1978)232 26(1978)471s
495 26(1978)233 27(1979)274s
496 26(1978)233 26(1978)472s
497 26(1978)233 26(1978)474s
498 26(1978)233 26(1978)474s
499 26(1978)234 26(1978)475s
500 26(1978)234 26(1978)476s
501 26(1978)348 27(1979)136s
502 26(1978)348 27(1979)137s
503 26(1978)349 27(1979)137s
504 26(1978)349 27(1979)138s
505 26(1978)349 27(1979)140s
506 26(1978)350 27(1979)142s, 143s
507 26(1978)350 27(1979)143s
508 26(1978)350 27(1979)145s, 146s
509 26(1978)350 27(1979)147s
510 26(1978)351 27(1979)148s
511 26(1978)351 27(1979)150s
512 26(1978)462 27(1979)275s
513 26(1978)462 28(1980)119s, 120c
514 26(1978)463 27(1979)277s
515 26(1978)463 28(1980)120s
516 26(1978)463 27(1979)278s
517 26(1978)463 27(1979)279s, 280c
518 26(1978)463 27(1979)132v, 280s
519 26(1978)464 27(1979)282s
520 26(1978)464 27(1979)282s
521 26(1978)464 27(1979)283s
522 26(1978)464 27(1979)283s, 284s
523 27(1979)132 27(1979)412s
524 27(1979)132 27(1979)414s
525 27(1979)133 27(1979)415s
526 27(1979)133 27(1979)415s
527 27(1979)133 27(1979)417s
528 27(1979)133 28(1980)205s, 206c
529 27(1979)134 27(1979)418s, 419s, 420s
530 27(1979)134 28(1980)207s
531 27(1979)134 27(1979)421s
532 27(1979)134 28(1980)207s
533 27(1979)135 27(1979)422s, 423s
534 27(1979)267 28(1980)122s
535 27(1979)267 28(1980)123s, 124s
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536 27(1979)267 28(1980)125s
537 27(1979)268 28(1980)127s, 129s
538 27(1979)268
539 27(1979)268
540 27(1979)268 28(1980)130c, 130s
541 27(1979)268 28(1980)131c, 131s, 205a
542 27(1979)269 28(1980)132s
543 27(1979)269 28(1980)133s
544 27(1979)269 28(1980)134s, 135c
545 27(1979)270 28(1980)136s, 137c
546 27(1979)408 28(1980)209s
547 27(1979)408 28(1980)211s
548 27(1979)408 28(1980)213s, 214c
549 27(1979)409 28(1980)214s
550 27(1979)409 28(1980)215s, 216c
551 27(1979)409 29(1981)106s
552 27(1979)409 29(1981)107s
553 27(1979)410 28(1980)216s
554 27(1979)410 29(1981)108s
555 27(1979)410 28(1980)218s
556 27(1979)410 28(1980)219s
557 27(1979)411 28(1980)220c, 220s
558 27(1979)411 28(1980)221s

NYSMTJ
Problem Proposal References
27 25(1975)171s
28 25(1975)21s
29 25(1975)21s
30 25(1975)22s
31 25(1975)22c, 55r, 125s
32 25(1975)22c, 56s
33 26(1976)151r 27(1977)54s
34 25(1975)56s, 126s
35 25(1975)126s
36 25(1975)57s
37 25(1975)20 25(1975)127s
38 25(1975)20 25(1975)127c, 127s
39 25(1975)20 25(1975)171s
40 25(1975)20 25(1975)172s 26(1976)150c

27(1977)100s
41 25(1975)55 25(1975)172s
42 25(1975)55 25(1975)172s
43 25(1975)55 25(1975)173s 26(1976)150c
44 25(1975)56 26(1976)19s
45 25(1975)124 26(1976)19s
46 25(1975)124 26(1976)97s
47 25(1975)124 26(1976)98s
48 25(1975)170 26(1976)99s, 150c
49 25(1975)170 26(1976)100s, 101c
50 25(1975)170 26(1976)151c, 151s
51 25(1975)170 26(1976)152x
52 26(1976)18 26(1976)152c 27(1977)51s
53 26(1976)18 26(1976)150c 27(1977)52s
54 26(1976)18 26(1976)152c 27(1977)52x

28(1978)157s
55 26(1976)96 27(1977)53s
56 26(1976)96 27(1977)53s
57 26(1976)97 27(1977)54c, 101s
58 26(1976)97 27(1977)54c, 98c, 137s

28(1978)53c
59 26(1976)151 27(1977)101s
60 26(1976)151 27(1977)102s 28(1978)53s
61 26(1976)151 27(1977)102s
62 27(1977)54 27(1977)137s
63 27(1977)54 27(1977)137s
64 27(1977)54 27(1977)136r 28(1978)78s, 82s
65 27(1977)54 27(1977)138s
66 27(1977)98 28(1978)54s
67 27(1977)99 28(1978)52r, 152s
68 27(1977)99 28(1978)55s
69 27(1977)99 28(1978)56c, 56s

70 27(1977)99 28(1978)56s
71 27(1977)136 28(1978)83s
72 27(1977)136 28(1978)83s
73 27(1977)136 28(1978)84s
74 28(1978)52 28(1978)152s
75 28(1978)52 28(1978)153s
76 28(1978)52 28(1978)154s
77 28(1978)53 28(1978)155s
78 28(1978)77 29(1979)57s
79 28(1978)77 29(1979)58s, 59s
80 28(1978)78 29(1979)60s
81 28(1978)78 29(1979)60s
82 28(1978)78 29(1979)61s
83 28(1978)150 29(1979)84s
84 28(1978)151 29(1979)85s
85 28(1978)151 29(1979)85s, 86s
86 28(1978)151 29(1979)88s
87 29(1979)56 29(1979)146s
88 29(1979)57 29(1979)147s
89 29(1979)57 29(1979)147s
90 29(1979)57 29(1979)148s
91 29(1979)57 29(1979)150s
92 29(1979)83 30(1980)55s
93 29(1979)83 30(1980)55s
94 29(1979)83 30(1980)56s
95 29(1979)84 30(1980)57s
96 29(1979)145 30(1980)170s
97 29(1979)145 30(1980)170s
98 29(1979)145 30(1980)171s
99 29(1979)145 30(1980)172s
100 29(1979)145 30(1980)173s

Problem Proposal References
OBG1 27(1977)99 27(1977)103s
OBG2 27(1977)136 27(1977)138s
OBG3 28(1978)53 28(1978)57s
OBG4 28(1978)78 28(1978)85s
OBG5 28(1978)78 28(1978)85s
OBG6 28(1978)151 28(1978)157s
OBG7 29(1979)57 29(1979)61s
OBG8 29(1979)84 29(1979)88s
OBG9 29(1979)146 29(1979)150s

OMG
Problem Proposal References
14.1.1 14(1975/1)42
14.1.2 14(1975/1)42
14.1.3 14(1975/1)42
14.2.1 14(1975/2)30
14.2.2 14(1975/2)30
14.2.3 14(1975/2)30
14.3.1 14(1975/3)44
14.3.2 14(1975/3)44
14.3.3 14(1975/3)44
15.1.1 15(1976/1)51
15.1.2 15(1976/1)52
15.1.3 15(1976/1)52
15.2.1 15(1976/2)66 15(1976/3)61s
15.2.2 15(1976/2)66 15(1976/3)61s
15.2.3 15(1976/2)66 15(1976/3)61s
15.3.1 15(1976/3)59
15.3.2 15(1976/3)59
15.3.3 15(1976/3)60
15.3.4 15(1976/3)60
15.3.5 15(1976/3)60
15.3.6 15(1976/3)60
15.3.7 15(1976/3)60
15.3.8 15(1976/3)60
15.3.9 15(1976/3)60
15.3.10 15(1976/3)60
16.1.1 16(1977/1)64
16.1.2 16(1977/1)64
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16.1.3 16(1977/1)64
16.1.4 16(1977/1)64
16.1.5 16(1977/1)64
16.1.6 16(1977/1)64
16.1.7 16(1977/1)64
16.1.8 16(1977/1)64
16.1.9 16(1977/1)64
16.1.10 16(1977/1)65
16.2.1 16(1977/2)51
16.2.2 16(1977/2)51
16.2.3 16(1977/2)52
16.2.4 16(1977/2)52
16.2.5 16(1977/2)52
16.2.6 16(1977/2)52
16.2.7 16(1977/2)53
17.1.1 17(1978/1)59 17(1978/3)59s
17.1.2 17(1978/1)59 17(1978/3)59s
17.1.3 17(1978/1)59 17(1978/3)60s
17.1.4 17(1978/1)59 17(1978/3)60s
17.1.5 17(1978/1)59 17(1978/3)60s
17.1.6 17(1978/1)59 17(1978/3)60s
17.1.7 17(1978/1)59 17(1978/3)60s
17.1.8 17(1978/1)59 17(1978/3)60s
17.1.9 17(1978/1)59 17(1978/3)61s
17.2.1 17(1978/2)58
17.2.2 17(1978/2)58
17.2.3 17(1978/2)58
17.2.4 17(1978/2)58
17.2.5 17(1978/2)58
17.2.6 17(1978/2)58
17.2.7 17(1978/2)58
17.2.8 17(1978/2)58
17.2.9 17(1978/2)58
17.3.1 17(1978/3)58
17.3.2 17(1978/3)58
17.3.3 17(1978/3)58
17.3.4 17(1978/3)58
17.3.5 17(1978/3)58
17.3.6 17(1978/3)59
17.3.7 17(1978/3)59
17.3.8 17(1978/3)59
17.3.9 17(1978/3)59
18.1.1 18(1979/1)56 18(1979/1)60s
18.1.2 18(1979/1)56 18(1979/1)60s
18.1.3 18(1979/1)56 18(1979/1)60s
18.1.4 18(1979/1)56 18(1979/1)60s
18.1.5 18(1979/1)56 18(1979/1)60s
18.1.6 18(1979/1)56 18(1979/1)60s
18.1.7 18(1979/1)56 18(1979/1)60s
18.1.8 18(1979/1)57 18(1979/1)60s
18.1.9 18(1979/1)57 18(1979/1)61s
18.2.1 18(1979/2)61 18(1979/2)66s
18.2.2 18(1979/2)62 18(1979/2)66s
18.2.3 18(1979/2)62 18(1979/2)66s
18.2.4 18(1979/2)62 18(1979/2)66s
18.2.5 18(1979/2)62 18(1979/2)66s
18.2.6 18(1979/2)62 18(1979/2)66s
18.2.7 18(1979/2)62 18(1979/2)67s
18.2.8 18(1979/2)63 18(1979/2)67s
18.2.9 18(1979/2)63 18(1979/2)67s
18.3.1 18(1979/3)65 18(1979/3)67s
18.3.2 18(1979/3)65 18(1979/3)67s
18.3.3 18(1979/3)65 18(1979/3)67s
18.3.4 18(1979/3)65 18(1979/3)67s
18.3.5 18(1979/3)65 18(1979/3)67s
18.3.6 18(1979/3)65 18(1979/3)68s
18.3.7 18(1979/3)65 18(1979/3)68s
18.3.8 18(1979/3)65 18(1979/3)68s
18.3.9 18(1979/3)65 18(1979/3)68s

OSSMB
Problem Proposal References
74–11 11(1975/1)23s
74–12 11(1975/1)24c
74–13 11(1975/1)18s
74–14 11(1975/1)20s, 24a
74–15 11(1975/1)20s, 24a
74–16 11(1975/1)21s 11(1975/3)23c
74–17 11(1975/1)21s, 24a
74–18 11(1975/1)22s, 24a
75–1 11(1975/1)16 11(1975/2)18s, 19s
75–2 11(1975/1)16 11(1975/2)20s
75.2–7 12(1976/1)16s
75.2–8 12(1976/1)16s
75.2–9 12(1976/1)17s
75.2–10 12(1976/1)18s
75.2–11 12(1976/1)18s
75.2–12 12(1976/1)19s
75–3 11(1975/1)16 11(1975/2)20s, 21s
75.3–13 12(1976/1)19s
75.3–14 12(1976/1)20s
75.3–15 12(1976/1)21s
75.3–16 12(1976/1)22s
75.3–17 12(1976/1)22s
75.3–18 12(1976/1)23s
75–4 11(1975/1)16 11(1975/2)22s
75–5 11(1975/1)16 11(1975/2)23s
75–6 11(1975/1)16 11(1975/2)24s
75–7 11(1975/2)18
75–8 11(1975/2)18
75–9 11(1975/2)18
75–10 11(1975/2)18
75–11 11(1975/2)18
75–12 11(1975/2)18
75–13 11(1975/3)22
75–14 11(1975/3)22
75–15 11(1975/3)22
75–16 11(1975/3)22
75–17 11(1975/3)23
75–18 11(1975/3)23
76–1 12(1976/1)15 12(1976/2)20s
76–2 12(1976/1)15 12(1976/2)20s
76–3 12(1976/1)15 12(1976/2)21s
76–4 12(1976/1)15 12(1976/2)22s
76–5 12(1976/1)15 12(1976/2)23s
76–6 12(1976/1)15 12(1976/2)24s
76–7 12(1976/2)19 12(1976/3)21s
76–8 12(1976/2)19 12(1976/3)21s
76–9 12(1976/2)19 12(1976/3)22s
76–10 12(1976/2)19 12(1976/3)23s
76–11 12(1976/2)19 12(1976/3)24s
76–12 12(1976/2)19 12(1976/3)24s
76–13 12(1976/3)20 13(1977/1)20s
76–14 12(1976/3)20 13(1977/1)21s
76–15 12(1976/3)20 13(1977/1)21s
76–16 12(1976/3)20 13(1977/1)22s
76–17 12(1976/3)20 13(1977/1)22s
76–18 12(1976/3)20 13(1977/1)24s
77–1 13(1977/1)19 13(1977/2)21s
77–2 13(1977/1)19 13(1977/2)21s, 22s
77–3 13(1977/1)19 13(1977/2)22s
77–4 13(1977/1)19 13(1977/2)23s
77–5 13(1977/1)19 13(1977/2)19v
77–6 13(1977/1)19 13(1977/2)24s
77–7 13(1977/2)19
77–8 13(1977/2)19
77–9 13(1977/2)19
77–10 13(1977/2)19
77–11 13(1977/2)20
77–12 13(1977/2)20
77–13 13(1977/3)19 14(1978/1)16s
77–14 13(1977/3)19 14(1978/1)16s
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77–15 13(1977/3)19 14(1978/1)17s
77–16 13(1977/3)19 14(1978/1)17s
77–17 13(1977/3)19 14(1978/1)18s
77–18 13(1977/3)19 14(1978/1)19s
78–1 14(1978/1)15 14(1978/2)23s
78–2 14(1978/1)15 14(1978/2)24s
78–3 14(1978/1)15 14(1978/2)22r 14(1978/3)18s
78–4 14(1978/1)15 14(1978/2)22r 14(1978/3)18s
78–5 14(1978/1)15 14(1978/2)22r 14(1978/3)19s
78–6 14(1978/1)15 14(1978/2)24s
78–7 14(1978/2)22 14(1978/3)19s
78–8 14(1978/2)22 14(1978/3)19s
78–9 14(1978/2)23 14(1978/3)20s
78–10 14(1978/3)17 15(1979/1)21s
78–11 14(1978/3)17 15(1979/1)21s
78–12 14(1978/3)17 15(1979/1)22s
78–13 14(1978/3)17 15(1979/1)22s
78–14 14(1978/3)17 15(1979/1)23s
78–15 14(1978/3)17 15(1979/1)23s
79–1 15(1979/1)20 15(1979/2)18s
79–2 15(1979/1)20 15(1979/2)18s
79–3 15(1979/1)20 15(1979/2)18s
79–4 15(1979/1)20 15(1979/2)19s
79–5 15(1979/1)20 15(1979/2)20s
79–6 15(1979/1)20 15(1979/2)21s
79–7 15(1979/2)17 16(1980/1)11s
79–8 15(1979/2)17 16(1980/1)12s
79–9 15(1979/2)17 16(1980/1)13s
79–10 15(1979/2)17 16(1980/1)14s
79–11 15(1979/2)17 16(1980/1)14s
79–12 15(1979/2)17 16(1980/1)14s
79–13 15(1979/3)23 16(1980/1)15s
79–14 15(1979/3)23 16(1980/1)15s
79–15 15(1979/3)23 16(1980/1)16s
79–16 15(1979/3)23 16(1980/1)17c
79–17 15(1979/3)23 16(1980/1)17s
79–18 15(1979/3)23 16(1980/1)17s

Problem Proposal References
G75.1–1 11(1975/1)7 11(1975/1)11s
G75.1–2 11(1975/1)7 11(1975/1)11s
G75.1–3 11(1975/1)7 11(1975/1)11s, 12s
G75.1–4 11(1975/1)7 11(1975/1)13s
G75.1–5 11(1975/1)7 11(1975/1)14s
G75.1–6 11(1975/1)7 11(1975/1)14s
G75.2–1 11(1975/2)6 11(1975/2)11s
G75.2–2 11(1975/2)6 11(1975/2)11s
G75.2–3 11(1975/2)6 11(1975/2)12s
G75.2–4 11(1975/2)6 11(1975/2)13s
G75.2–5 11(1975/2)6 11(1975/2)14s
G75.2–6 11(1975/2)6 11(1975/2)15s
G75.3–1 11(1975/3)12 11(1975/3)18s
G75.3–2 11(1975/3)12 11(1975/3)18s
G75.3–3 11(1975/3)12 11(1975/3)19s
G75.3–4 11(1975/3)12 11(1975/3)20s
G75.3–5 11(1975/3)12 11(1975/3)20s
G75.3–6 11(1975/3)12 11(1975/3)21s
G76.1–1 12(1976/1)6 12(1976/1)10s
G76.1–2 12(1976/1)6 12(1976/1)11s
G76.1–3 12(1976/1)6 12(1976/1)11s
G76.1–4 12(1976/1)6 12(1976/1)12s
G76.1–5 12(1976/1)6 12(1976/1)12s
G76.1–6 12(1976/1)6 12(1976/1)13s
G76.2–1 12(1976/2)7 12(1976/2)11s
G76.2–2 12(1976/2)7 12(1976/2)11s
G76.2–3 12(1976/2)7 12(1976/2)12s
G76.2–4 12(1976/2)7 12(1976/2)13s
G76.2–5 12(1976/2)7 12(1976/2)13s
G76.2–6 12(1976/2)7 12(1976/2)14s
G76.2–7 12(1976/2)7 12(1976/2)14s
G76.3–1 12(1976/3)7 12(1976/3)13s
G76.3–2 12(1976/3)7 12(1976/3)13s
G76.3–3 12(1976/3)7 12(1976/3)14s

G76.3–4 12(1976/3)7 12(1976/3)15s
G76.3–5 12(1976/3)7 12(1976/3)15s
G76.3–6 12(1976/3)7 12(1976/3)16s
G77.1–1 13(1977/1)5 13(1977/1)13s
G77.1–2 13(1977/1)5 13(1977/1)13s
G77.1–3 13(1977/1)5 13(1977/1)13s
G77.1–4 13(1977/1)5 13(1977/1)14s
G77.1–5 13(1977/1)5 13(1977/1)15s
G77.1–6 13(1977/1)5 13(1977/1)16s
G77.2–1 13(1977/2)9 13(1977/2)10s
G77.2–2 13(1977/2)9 13(1977/2)10s
G77.2–3 13(1977/2)9 13(1977/2)14s
G77.2–4 13(1977/2)9 13(1977/2)15s
G77.2–5 13(1977/2)9 13(1977/2)16s
G77.2–6 13(1977/2)9 13(1977/2)17s
G77.3–5 14(1978/1)2v
G78.1–1 14(1978/1)2 14(1978/1)3s
G78.1–2 14(1978/1)2 14(1978/1)4s
G78.1–3 14(1978/1)2 14(1978/1)4s
G78.1–4 14(1978/1)2 14(1978/1)5s
G78.1–5 14(1978/1)2 14(1978/1)5s
G78.1–6 14(1978/1)2 14(1978/1)7s
G78.2–1 14(1978/2)13 14(1978/2)14s
G78.2–2 14(1978/2)13 14(1978/2)14s
G78.2–3 14(1978/2)13 14(1978/2)14s
G78.2–4 14(1978/2)13 14(1978/2)15s
G78.2–5 14(1978/2)13 14(1978/2)16s
G78.3–1 14(1978/3)7 14(1978/3)7s
G78.3–2 14(1978/3)7 14(1978/3)8s
G78.3–3 14(1978/3)7 14(1978/3)8s
G78.3–4 14(1978/3)7 14(1978/3)9s
G78.3–5 14(1978/3)7 14(1978/3)10s
G78.3–6 14(1978/3)7 14(1978/3)10s
G79.1–1 15(1979/1)6 15(1979/1)7s
G79.1–2 15(1979/1)6 15(1979/1)8s
G79.1–3 15(1979/1)6 15(1979/1)9s
G79.1–4 15(1979/1)6 15(1979/1)10s
G79.1–5 15(1979/1)6 15(1979/1)11s
G79.1–6 15(1979/1)6 15(1979/1)11s
G79.2–1 15(1979/2)9 15(1979/2)10s
G79.2–2 15(1979/2)9 15(1979/2)10s
G79.2–3 15(1979/2)9 15(1979/2)10s
G79.2–4 15(1979/2)9 15(1979/2)10s
G79.2–5 15(1979/2)9 15(1979/2)10s
G79.2–6 15(1979/2)9 15(1979/2)11s
G79.2–7 15(1979/2)9 15(1979/2)11s
G79.2–8 15(1979/2)9 15(1979/2)11s
G79.3–1 15(1979/3)12 15(1979/3)12s
G79.3–2 15(1979/3)12 15(1979/3)13s
G79.3–3 15(1979/3)12 15(1979/3)13s
G79.3–4 15(1979/3)12 15(1979/3)13s
G79.3–5 15(1979/3)12 15(1979/3)14s
G79.3–6 15(1979/3)12 15(1979/3)14s

PARAB
Problem Proposal References
251 11(1975/1)20s 11(1975/2)34a
252 11(1975/1)20s 11(1975/2)34a
253 11(1975/1)21s 11(1975/2)34a
254 11(1975/1)21s
255 11(1975/1)22s 11(1975/2)34a
256 11(1975/1)23s 11(1975/2)34a
257 11(1975/1)23s 11(1975/2)34a
258 11(1975/1)24s 11(1975/2)34a
259 11(1975/1)24s 11(1975/2)34a
260 11(1975/1)25s
261 11(1975/1)18 11(1975/2)27s
262 11(1975/1)18 11(1975/2)27s
263 11(1975/1)18 11(1975/2)28s
264 11(1975/1)18 11(1975/2)28s
265 11(1975/1)19 11(1975/2)29s
266 11(1975/1)19 11(1975/2)30s
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267 11(1975/1)19 11(1975/2)31s
268 11(1975/1)19 11(1975/2)31s
269 11(1975/1)19 11(1975/2)32s
270 11(1975/1)20 11(1975/2)32s
271 11(1975/1)20 11(1975/2)9c, 33s
272 11(1975/1)20 11(1975/2)34s
273 11(1975/2)25 11(1975/3)20s 12(1976/1)32a
274 11(1975/2)25 11(1975/3)21s
275 11(1975/2)25 11(1975/3)22s 12(1976/1)32a
276 11(1975/2)26 11(1975/3)22s 12(1976/1)32a
277 11(1975/2)26 11(1975/3)22s 12(1976/1)32a
278 11(1975/2)26 11(1975/3)23s 12(1976/1)32a
279 11(1975/2)26 11(1975/3)23s 12(1976/1)32a
280 11(1975/2)26 11(1975/3)23s
281 11(1975/2)26 11(1975/3)24s 12(1976/1)32a
282 11(1975/2)26 11(1975/3)24s 12(1976/1)32a
283 11(1975/2)26 11(1975/3)25s
284 11(1975/2)27 11(1975/3)25s
285 11(1975/3)18 12(1976/1)25s 12(1976/3)32a
286 11(1975/3)18 12(1976/1)25s 12(1976/3)32a
287 11(1975/3)18 12(1976/1)25s 12(1976/3)32a
288 11(1975/3)19 12(1976/1)26s 12(1976/3)32a
289 11(1975/3)19 12(1976/1)27s 12(1976/3)32a
290 11(1975/3)19 12(1976/1)27s 12(1976/3)32a
291 11(1975/3)19 12(1976/1)28s 12(1976/3)32a
292 11(1975/3)19 12(1976/1)29s 12(1976/3)32a
293 11(1975/3)19 12(1976/1)30s 12(1976/3)32a
294 11(1975/3)20 12(1976/1)30s 12(1976/3)32a
295 11(1975/3)20 12(1976/1)31s 12(1976/3)32a
296 11(1975/3)20 12(1976/1)32s 12(1976/3)32a
297 12(1976/1)22 12(1976/2)29s 12(1976/3)32a
298 12(1976/1)22 12(1976/2)29s
299 12(1976/1)22 12(1976/2)30s
300 12(1976/1)22 12(1976/2)30s
301 12(1976/1)23 12(1976/2)31s
302 12(1976/1)23 12(1976/2)31s
303 12(1976/1)23 12(1976/2)32s
304 12(1976/1)23 12(1976/2)33s
305 12(1976/1)23 12(1976/2)34s 12(1976/3)32a
306 12(1976/1)24 12(1976/2)34s 12(1976/3)32a
307 12(1976/1)24 12(1976/2)35s 12(1976/3)32a
308 12(1976/1)24 12(1976/2)36s 12(1976/3)32a
309 12(1976/2)26 12(1976/3)26s
310 12(1976/2)26 12(1976/3)26s
311 12(1976/2)26 12(1976/3)26s
312 12(1976/2)26 12(1976/3)27s
313 12(1976/2)27 12(1976/3)27s
314 12(1976/2)27 12(1976/3)28s
315 12(1976/2)27 12(1976/3)29s
316 12(1976/2)27 12(1976/3)29s
317 12(1976/2)27 12(1976/3)30s 13(1977/1)36a
318 12(1976/2)28 12(1976/3)30s 13(1977/1)36a
319 12(1976/2)28 12(1976/3)31s
320 12(1976/2)28 12(1976/3)32s
321 12(1976/3)23 13(1977/1)27s
322 12(1976/3)23 13(1977/1)28s
323 12(1976/3)23 13(1977/1)28s
324 12(1976/3)23 13(1977/1)28s
325 12(1976/3)24 13(1977/1)29s
326 12(1976/3)24 13(1977/1)29s
327 12(1976/3)24 13(1977/1)30s
328 12(1976/3)24 13(1977/1)31s
329 12(1976/3)24 13(1977/1)31s 13(1977/2)36a
330 12(1976/3)25 13(1977/1)32s
331 12(1976/3)25 13(1977/1)34s
332 12(1976/3)25 13(1977/1)35s
333 13(1977/1)24 13(1977/3)27s
334 13(1977/1)24 13(1977/3)28s
335 13(1977/1)25 13(1977/3)29s
336 13(1977/1)25 13(1977/3)30s
337 13(1977/1)25 13(1977/3)31s 14(1978/1)36a
338 13(1977/1)25 13(1977/3)31s 14(1978/1)36a
339 13(1977/1)26 13(1977/3)32s 14(1978/1)36a

340 13(1977/1)26 13(1977/3)33s 14(1978/1)36a
341 13(1977/1)26 13(1977/3)34s 14(1978/1)36a
342 13(1977/1)26 13(1977/3)35s 14(1978/1)36a
343 13(1977/1)27 13(1977/3)35s 14(1978/1)36a
344 13(1977/1)27 13(1977/3)36s 14(1978/1)26s,

36a
345 13(1977/2)34 14(1978/1)30s
346 13(1977/2)34 14(1978/1)30s
347 13(1977/2)34 14(1978/1)30s
348 13(1977/2)35 14(1978/1)31s
349 13(1977/2)35 14(1978/1)31s
350 13(1977/2)35 14(1978/1)32s
351 13(1977/2)35 14(1978/1)32s
352 13(1977/2)35 14(1978/1)33s
353 13(1977/2)35 14(1978/1)33s
354 13(1977/2)35 14(1978/1)34s
355 13(1977/2)36 14(1978/1)35s
356 13(1977/2)36 14(1978/1)35s
357 13(1977/3)25 14(1978/2)31s, 32c
358 13(1977/3)25 14(1978/2)32s
359 13(1977/3)25 14(1978/2)32s
360 13(1977/3)25 14(1978/2)33s
361 13(1977/3)26 14(1978/2)34s
362 13(1977/3)26 14(1978/2)34s
363 13(1977/3)26 14(1978/2)36s
364 13(1977/3)26 14(1978/2)36s
365 13(1977/3)26 14(1978/2)38s
366 13(1977/3)27 14(1978/2)38s
367 13(1977/3)27 14(1978/2)39s
368 13(1977/3)27 14(1978/2)40s
369 14(1978/1)28 14(1978/3)29s
370 14(1978/1)28 14(1978/3)30s
371 14(1978/1)28 14(1978/3)30s
372 14(1978/1)28 14(1978/3)31s
373 14(1978/1)28 14(1978/3)31s
374 14(1978/1)28 14(1978/3)32s
375 14(1978/1)29 14(1978/3)33s
376 14(1978/1)29 14(1978/3)33s
377 14(1978/1)29 14(1978/3)34s
378 14(1978/1)29 14(1978/3)34s
379 14(1978/1)29 14(1978/3)35s
380 14(1978/1)29 14(1978/3)36s
381 14(1978/2)30 15(1979/1)28s
382 14(1978/2)30 15(1979/1)29s 15(1979/2)44a
383 14(1978/2)30 15(1979/1)29s 15(1979/2)44a
384 14(1978/2)30 15(1979/1)30s 15(1979/2)44a
385 14(1978/2)30 15(1979/1)31s 15(1979/2)44a
386 14(1978/2)30 15(1979/1)32s 15(1979/2)44a
387 14(1978/2)30 15(1979/1)32s
388 14(1978/2)31 15(1979/1)33s 15(1979/2)44a
389 14(1978/2)31 15(1979/1)34s 15(1979/2)44a
390 14(1978/2)31 15(1979/1)34s 15(1979/2)44a
391 14(1978/2)31 15(1979/1)35s
392 14(1978/2)31 15(1979/1)35s
393 14(1978/3)28 15(1979/2)37s, 38s

15(1979/3)39a
394 14(1978/3)28 15(1979/2)38s 15(1979/3)39a
395 14(1978/3)28 15(1979/2)38s, 39s
396 14(1978/3)28 15(1979/2)39s 15(1979/3)39a
397 14(1978/3)28 15(1979/2)40s 15(1979/3)39a
398 14(1978/3)29 15(1979/2)40s, 41s

15(1979/3)39a
399 14(1978/3)29 15(1979/2)41s 15(1979/3)39a
400 14(1978/3)29 15(1979/2)42s 15(1979/3)40s
401 14(1978/3)29 15(1979/2)42s
402 14(1978/3)29 15(1979/2)43s 15(1979/3)39a
403 14(1978/3)29 15(1979/2)43s
404 14(1978/3)29 15(1979/2)44s
405 15(1979/1)26 15(1979/3)32s
406 15(1979/1)26 15(1979/3)33s
407 15(1979/1)26 15(1979/3)33s
408 15(1979/1)26 15(1979/3)34s
409 15(1979/1)26 15(1979/3)34s
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PARAB 410 1975–1979 PME 341

410 15(1979/1)27 15(1979/3)35s
411 15(1979/1)27 15(1979/3)36s
412 15(1979/1)27 15(1979/3)36s
413 15(1979/1)27 15(1979/3)37s
414 15(1979/1)28 15(1979/3)38s
415 15(1979/1)28 15(1979/3)38s
416 15(1979/1)28 15(1979/3)39s
417 15(1979/2)36
418 15(1979/2)36
419 15(1979/2)36
420 15(1979/2)36
421 15(1979/2)36
422 15(1979/2)36
423 15(1979/2)36
424 15(1979/2)37
425 15(1979/2)37
426 15(1979/2)37
427 15(1979/2)37
428 15(1979/2)37
429 15(1979/3)31
430 15(1979/3)31
431 15(1979/3)31
432 15(1979/3)31
433 15(1979/3)31
434 15(1979/3)31
435 15(1979/3)31
436 15(1979/3)31
437 15(1979/3)31
438 15(1979/3)31
439 15(1979/3)32
440 15(1979/3)32

Problem Proposal References
Q415 16(1980/1)22s

PENT
Problem Proposal References
262 34(1975)105s
263 34(1975)106s, 107c
264 34(1975)108s
265 34(1975)109s, 110c
266 34(1975)110s, 111s
267 35(1975)34s
268 35(1975)35s, 36s
269 35(1975)36s
270 35(1975)37s
271 35(1975)38s
272 34(1975)103 35(1976)98s
273 34(1975)103 35(1976)99s
274 34(1975)103 35(1976)99c, 99s
275 34(1975)104 35(1976)100s
276 34(1975)104 35(1976)101s, 102c
277 35(1975)33 36(1976)32s, 33c
278 35(1975)33 36(1976)33s
279 35(1975)33 36(1976)34s
280 35(1975)33 36(1976)35s
281 35(1975)34 36(1976)35s
282 35(1976)97 36(1977)94s
283 35(1976)97 36(1977)95s
284 35(1976)97 36(1977)96s
285 35(1976)97 36(1977)97s
286 35(1976)98 36(1977)98s
287 36(1976)31 37(1977)27s
288 36(1976)31 37(1977)28s
289 36(1976)31 37(1977)29s, 30c
290 36(1976)31 36(1977)93c 37(1977)32s
291 36(1976)32 36(1977)93c 37(1977)33s, 34s
292 36(1977)93 37(1978)83s, 84c, 84s
293 36(1977)93 37(1978)85c, 85s
294 36(1977)93 37(1978)86s
295 36(1977)94 37(1978)87s
296 36(1977)94 37(1978)88s

297 37(1977)26 37(1978)82v 38(1978)28c
38(1979)80s

298 37(1977)26 38(1978)28s
299 37(1977)26 38(1978)30c, 30s
300 37(1977)26 38(1978)31s
301 37(1977)27 38(1978)32s
302 37(1978)82 38(1979)80s
303 37(1978)82 38(1979)81s
304 37(1978)82 38(1979)81s
305 37(1978)82 38(1979)82s
306 37(1978)83 38(1979)83s
307 38(1978)26 39(1979)32s
308 38(1978)27 39(1979)34s
309 38(1978)27 39(1979)35s
310 38(1978)27 39(1979)36s
311 38(1978)27 39(1979)38s
312 38(1979)78 39(1980)102s
313 38(1979)79 39(1980)103s
314 38(1979)79 39(1980)105s 40(1980)46a

40(1981)114c
315 38(1979)79 39(1980)105s, 107s 40(1980)46a

40(1981)114c
316 38(1979)79 39(1980)108s
317 39(1979)30 40(1980)38s 40(1981)114c
318 39(1979)30 40(1980)40s
319 39(1979)30 40(1980)41s
320 39(1979)31 40(1980)43s
321 39(1979)31 40(1980)44s

PME
Problem Proposal References
120 7(1983)609r
136 7(1983)609r
144 7(1983)610r
190 7(1983)610r
213 7(1984)673c, 673s, 673v
239 7(1983)610r 8(1984)44c
278 7(1983)610r
292 6(1975)107s, 108s
294 6(1975)193c
297 7(1980)206c
298 6(1975)192s
304 6(1975)122a
313 6(1975)109s
314 6(1975)109s
315 6(1975)110s
316 6(1975)111s
317 6(1975)112s
318 6(1975)113s
319 6(1975)115s, 116s, 117c, 118c
320 6(1975)118s
321 6(1975)119s
322 6(1975)119s
323 6(1975)120s
324 6(1975)121s
325 6(1975)122s
326 6(1975)180s, 181s 6(1976)244c
327 6(1975)182s
328 6(1975)183s
329 6(1975)184s
330 6(1975)185s
331 6(1975)186s, 187c, 187s
332 6(1975)188s
333 6(1975)188s
334 6(1975)189s
335 6(1975)190s
336 6(1975)191s
337 6(1975)191s
338 6(1975)104 6(1976)228s, 324a
339 6(1975)104 6(1976)230s
340 6(1975)104 6(1976)231s
341 6(1975)105 6(1976)232s, 309c
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PME 342 1975–1979 SIAM 74–21

342 6(1975)105 6(1976)233s
343 6(1975)105 6(1976)236s
344 6(1975)105 6(1976)237s
345 6(1975)106 6(1976)239s
346 6(1975)106 6(1976)240s
347 6(1975)106 6(1976)242s
348 6(1975)106 6(1976)242s
349 6(1975)106 6(1976)243s
350 6(1975)177 6(1976)310s
351 6(1975)178 6(1976)311s
352 6(1975)178 6(1976)312s
353 6(1975)178 6(1976)313s
354 6(1975)178 6(1976)314s
355 6(1975)178 6(1976)315c, 315s 6(1977)381c
356 6(1975)179 6(1976)316s
357 6(1975)179 6(1976)317s
358 6(1975)179 6(1976)317s
359 6(1975)179 6(1976)320s, 320v
360 6(1975)179 6(1976)321s 6(1977)381c
361 6(1975)180 6(1976)323s, 323v, 324c
362 6(1976)226 6(1977)368s, 369s
363 6(1976)227 6(1977)370s, 436s
364 6(1976)227 6(1976)309s 6(1977)371s

6(1978)501c
365 6(1976)227 6(1977)372s, 373c, 374c
366 6(1976)227 6(1977)374s, 435s, 436c
367 6(1976)227 6(1977)375s
368 6(1976)227 6(1977)376s
369 6(1976)227 6(1977)377s
370 6(1976)227 6(1977)378s
371 6(1976)227 6(1977)378s, 379s
372 6(1976)228 6(1977)379s
373 6(1976)228 6(1977)380s
374 6(1976)306 6(1977)421s
375 6(1976)306 6(1977)422s
376 6(1976)306 6(1977)423s, 424s
377 6(1976)306 6(1977)425s
378 6(1976)306 6(1977)426s
379 6(1976)308 6(1977)427s
380 6(1976)308 6(1977)427s
381 6(1976)308 6(1977)428s 6(1978)559c
382 6(1976)308 6(1977)429s
383 6(1976)308 6(1977)431s, 432s
384 6(1976)308 6(1977)434s
385 6(1976)309 6(1977)435s
386 6(1977)364 6(1978)485s, 486c
387 6(1977)365 6(1978)486s, 559c
388 6(1977)365 6(1978)488s
389 6(1977)366 6(1978)488c, 559c
390 6(1977)366 6(1978)489s
391 6(1977)366 6(1978)490s
392 6(1977)366 6(1978)491s, 559a
393 6(1977)366 6(1978)492s
394 6(1977)366 6(1978)493s, 559a
395 6(1977)367 6(1978)495s, 559a
396 6(1977)367 6(1978)496s, 559a
397 6(1977)367 6(1978)497s
398 6(1977)367 6(1978)499s, 500s
399 6(1977)417 6(1978)542s, 543s
400 6(1977)417 6(1978)544s, 545s
401 6(1977)417 6(1978)546s 6(1979)619c
402 6(1977)418 6(1978)550s
403 6(1977)418 7(1983)611r 8(1984)45s
404 6(1977)419 6(1978)551s
405 6(1977)419 6(1978)542v, 551c 7(1979)76s
406 6(1977)419 6(1978)552s, 553c, 554c
407 6(1977)419 6(1978)554s 8(1985)182c
408 6(1977)419 6(1978)555s
409 6(1977)419 6(1978)557s
410 6(1977)420 6(1978)557s
411 6(1977)421 6(1978)558s, 559s
412 6(1978)481 6(1979)620s
413 6(1978)481 6(1979)621s

414 6(1978)482 6(1979)623s
415 6(1978)482 6(1979)624s
416 6(1978)482 6(1979)625s
417 6(1978)483 6(1979)626s
418 6(1978)483 6(1979)627s
419 6(1978)483 6(1979)628c 7(1983)611r

8(1984)46s
420 6(1978)483 6(1979)628s, 629s
421 6(1978)483 6(1979)631s
422 6(1978)484 6(1979)632s
423 6(1978)484 6(1979)615v 7(1980)134s

7(1981)266c 7(1983)611r
424 6(1978)484 6(1979)633s
425 6(1978)539 7(1979)61s
426 6(1978)539 7(1979)62s
427 6(1978)539 7(1979)63s
428 6(1978)540 7(1979)64s
429 6(1978)540 7(1979)65s
430 6(1978)540 7(1979)67s
431 6(1978)540 7(1979)68s
432 6(1978)540 7(1979)69s
433 6(1978)540 7(1979)70s
434 6(1978)541 7(1979)73s
435 6(1978)541 7(1979)73s
436 6(1978)542 7(1979)74s
437 6(1978)542 7(1979)75s
438 6(1979)615 7(1980)135c, 190s 7(1981)267s
439 6(1979)616 7(1980)136s
440 6(1979)616 7(1980)137s
441 6(1979)616 7(1980)137s
442 6(1979)616 7(1980)139s
443 6(1979)617 7(1980)139s
444 6(1979)617 7(1980)140s
445 6(1979)617 7(1980)141s
446 6(1979)618 7(1980)143s
447 6(1979)618 7(1980)145s
448 6(1979)619 7(1980)146s
449 7(1979)57 7(1980)191s
450 7(1979)57 7(1980)191s
451 7(1979)58 7(1980)192s
452 7(1979)58 7(1980)193s, 194s
453 7(1979)58 7(1980)195s
454 7(1979)58 7(1980)195s
455 7(1979)58 7(1980)196s
456 7(1979)58 7(1980)197c 7(1981)262v

7(1983)612r
457 7(1979)58 7(1980)197s, 198c
458 7(1979)59 7(1980)199s
459 7(1979)59 7(1980)200s
460 7(1979)60 7(1980)201s
461 7(1979)60 7(1980)203s

SIAM
Problem Proposal References
63–9 27(1985)447c 28(1986)234c
71–19 25(1983)403s
73–2 18(1976)492c, 492s
74–3 17(1975)171s
74–4 17(1975)172s
74–5 17(1975)174s, 175c, 175s
74–8 17(1975)687s
74–9 17(1975)690s, 691c
74–10 17(1975)691s, 693c
74–12 23(1981)102s
74–13 17(1975)693s
74–14 17(1975)694s
74–16 17(1975)695s
74–17 18(1976)119s
74–18 18(1976)120s
74–19 18(1976)121s
74–20 18(1976)123s
74–21 18(1976)126s
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74–22 18(1976)130s
75–1 17(1975)167 18(1976)299s, 300c, 763a

19(1977)148a
75–2 17(1975)167 18(1976)300s, 301s
75–3 17(1975)168 18(1976)302s, 303c, 763a

19(1977)148a
75–4 17(1975)168 18(1976)303s
75–5 17(1975)169 18(1976)764c, 764s
75–6 17(1975)169
75–7 17(1975)169 18(1976)305s
75–8 17(1975)565 18(1976)493s 19(1977)737a
75–9 17(1975)565 18(1976)494s
75–10 17(1975)566 18(1976)496s 19(1977)565a
75–11 17(1975)566 18(1976)497s
75–12 17(1975)566 18(1976)497c, 498c, 498s, 500s

19(1977)334c
75–13 17(1975)567
75–14 17(1975)567 18(1976)501x
75–15 17(1975)567 18(1976)503c, 503s 19(1977)148a
75–16 17(1975)685 18(1976)766s
75–17 17(1975)685 18(1976)767s, 768c
75–18 17(1975)686 18(1976)769s, 770c 19(1977)148a
75–19 17(1975)686 19(1977)738s
75–20 17(1975)686 18(1976)306v, 770s, 772c
75–21 17(1975)687 18(1976)773c, 773s
76–1 18(1976)117 19(1977)149s, 149x, 335c, 744c

20(1978)184c
76–2 18(1976)117 19(1977)150s
76–3 18(1976)117
76–4 18(1976)118 19(1977)153s
76–5 18(1976)118 19(1977)155s
76–6 18(1976)118 19(1977)155s
76–7 18(1976)294
76–8 18(1976)295 19(1977)329s, 330s, 331c
76–9 18(1976)295 19(1977)331s
76–10 18(1976)296 19(1977)148v, 332x, 737a

20(1978)183a
76–11 18(1976)296 19(1977)334s
76–12 18(1976)296
76–13 18(1976)489 19(1977)565s, 737a 20(1978)183a
76–14 18(1976)489 19(1977)567v, 567x
76–15 18(1976)490 19(1977)568s
76–16 18(1976)490 23(1981)104s
76–17 18(1976)491 19(1977)740s 20(1978)856c
76–18 18(1976)762 19(1977)742s
76–19 18(1976)762 20(1978)184s, 863a
76–20 18(1976)762 19(1977)742s
76–21 18(1976)763
76–22 18(1976)763 19(1977)743s 20(1978)183a
77–1 19(1977)146 20(1978)186s, 856c, 863v
77–2 19(1977)146 20(1978)187s, 863v
77–3 19(1977)147 20(1978)189c, 189s
77–4 19(1977)147 20(1978)190s
77–5 19(1977)148
77–6 19(1977)328 20(1978)396x 22(1980)102v, 373v
77–7 19(1977)328 20(1978)398s
77–8 19(1977)329 20(1978)595c, 595s
77–9 19(1977)329 20(1978)400c, 400s 21(1979)140a
77–10 19(1977)329 20(1978)400s
77–11 19(1977)563 20(1978)597c, 597s
77–12 19(1977)563 20(1978)598c, 598s, 599c

21(1979)140a, 258a
77–13 19(1977)564 20(1978)599s
77–14 19(1977)564 20(1978)857x
77–15 19(1977)564 20(1978)601c, 601s, 604a

21(1979)140a
77–16 19(1977)736 20(1978)858s 21(1979)140a
77–17 19(1977)736 20(1978)859c, 859s
77–18 19(1977)736 20(1978)860s, 862c
77–19 19(1977)737 21(1979)140c, 141s
77–20 19(1977)737 20(1978)862s
78–1 20(1978)181
78–2 20(1978)182 21(1979)143s, 144c

78–3 20(1978)182 21(1979)145s, 146c, 258a
78–4 20(1978)183
78–5 20(1978)183 21(1979)146s
78–6 20(1978)394 21(1979)258s, 259c, 259s, 260c
78–7 20(1978)394 21(1979)560s
78–8 20(1978)394 21(1979)261s, 263c
78–9 20(1978)395
78–10 20(1978)593 21(1979)397s 22(1980)102a
78–11 20(1978)593 21(1979)398s
78–12 20(1978)594 21(1979)398s
78–13 20(1978)594 21(1979)562x
78–14 20(1978)594 21(1979)400s
78–15 20(1978)594 21(1979)401s 22(1980)102a
78–16 20(1978)855 21(1979)564s
78–17 20(1978)855 21(1979)565s
78–18 20(1978)855 21(1979)567s, 568s
78–19 20(1978)855 21(1979)568s
78–20 20(1978)856 21(1979)569s
79–1 21(1979)139
79–2 21(1979)139 22(1980)99s 23(1981)105c
79–3 21(1979)139 22(1980)100s
79–4 21(1979)139
79–5 21(1979)140 22(1980)101s 23(1981)113a
79–6 21(1979)256 21(1979)256c
79–7 21(1979)256 22(1980)230s 23(1981)113a
79–8 21(1979)257 22(1980)231s
79–9 21(1979)257 22(1980)232s
79–10 21(1979)257 21(1979)257c 22(1980)234s
79–11 21(1979)395 22(1980)364s
79–12 21(1979)395 22(1980)366s
79–13 21(1979)396 22(1980)369s 23(1981)113a
79–14 21(1979)396 22(1980)369s
79–15 21(1979)396 22(1980)373s
79–16 21(1979)559 22(1980)504x
79–17 21(1979)559
79–18 21(1979)559 22(1980)508s, 509s
79–19 21(1979)559 22(1980)509s
79–20 21(1979)560 22(1980)503s, 504c

SPECT
Problem Proposal References
6.3 7(1975)69c
6.5 7(1975)68s
6.6 7(1975)68s
6.7 7(1975)69s
6.8 7(1975)69s
7.1 7(1975)31 7(1975)102s 8(1976)34c
7.2 7(1975)31 7(1975)103s
7.3 7(1975)31 7(1975)103s
7.4 7(1975)67 8(1976)34s
7.5 7(1975)67 8(1976)34s
7.6 7(1975)67 8(1976)34s
7.7 7(1975)102 8(1976)64s
7.8 7(1975)102 8(1976)65s
7.9 7(1975)102 8(1976)65s
8.1 8(1976)33 8(1976)92s
8.2 8(1976)33 8(1976)92s
8.3 8(1976)33 8(1976)93s
8.4 8(1976)64 9(1977)33s
8.5 8(1976)64 9(1977)33s
8.6 8(1976)64 9(1977)34s
8.7 8(1976)92 9(1977)64s
8.8 8(1976)92 9(1977)65s
8.9 8(1976)92 9(1977)65s
9.1 9(1977)32 9(1977)98s
9.2 9(1977)32 9(1977)98s
9.3 9(1977)32 9(1977)98s
9.4 9(1977)64 10(1978)32s
9.5 9(1977)64 10(1978)32s
9.6 9(1977)64 10(1978)33s
9.7 9(1977)97 10(1978)64s
9.8 9(1977)97 10(1978)64s
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9.9 9(1977)97 10(1978)65s
10.1 10(1978)31 10(1978)97s
10.2 10(1978)31 10(1978)97s
10.3 10(1978)31 10(1978)97v, 99s 11(1979)29c,

64s
10.4 10(1978)63 11(1979)28s
10.5 10(1978)63 11(1979)29s
10.6 10(1978)63 11(1979)29s
10.7 10(1978)97 11(1979)61s
10.8 10(1978)97 11(1979)61s
10.9 10(1978)97 11(1979)62s
11.1 11(1979)28 11(1979)100s
11.2 11(1979)28 11(1979)101s
11.3 11(1979)28 11(1979)101s
11.4 11(1979)61 12(1980)27s
11.5 11(1979)61 12(1980)27s
11.6 11(1979)61 12(1980)27s
11.7 11(1979)100 12(1980)61s
11.8 11(1979)100 12(1980)62s
11.9 11(1979)100 12(1980)62s

SSM
Problem Proposal References
680A 75(1975)563a
680B 78(1978)621s
2496 75(1975)743a
2547 79(1979)80s
2617 77(1977)621s
2928 79(1979)445c
3489 78(1978)714c, 714s
3513 75(1975)199a
3515 75(1975)199a
3517 75(1975)199a
3526 75(1975)199a
3529 75(1975)199a
3530 75(1975)199a
3531 75(1975)199a, 293c
3535 75(1975)199a
3537 75(1975)199a
3541 75(1975)473a
3543 75(1975)199a
3544 75(1975)199s
3545 75(1975)200s
3546 75(1975)201s
3547 75(1975)201s
3548 75(1975)202s
3549 75(1975)202s
3550 75(1975)294s, 381a, 386a, 473a
3551 75(1975)294c, 294s, 381a
3552 75(1975)296s, 381a
3553 75(1975)296s, 381a, 473a, 563c
3554 75(1975)382s
3555 75(1975)382s, 473a, 743a
3556 75(1975)383s, 473a
3557 75(1975)383s, 473a, 563a
3558 75(1975)383s, 473a
3559 75(1975)384s, 473a
3560 75(1975)385s, 473a
3561 75(1975)385s, 473a
3562 75(1975)474s, 563a
3563 75(1975)474s
3564 75(1975)475s
3565 75(1975)475s, 563a
3566 75(1975)476s, 563a
3567 75(1975)476s, 563a
3568 75(1975)204 75(1975)564s
3569 75(1975)204 75(1975)564s
3570 75(1975)204 75(1975)565s, 743a
3571 75(1975)204 75(1975)565s 76(1976)170a
3572 75(1975)204 75(1975)566c, 566s, 743a
3573 75(1975)204 75(1975)567s, 743a
3574 75(1975)297 75(1975)653s

3575 75(1975)297 75(1975)654s 76(1976)261a, 622c
3576 75(1975)297 75(1975)655s, 743a 76(1976)261a,

623c
3577 75(1975)297 75(1975)655s, 743a 76(1976)261a
3578 75(1975)298 75(1975)656s
3579 75(1975)298 75(1975)656c 76(1976)624s
3580 75(1975)386 75(1975)743s 76(1976)439a
3581 75(1975)386 75(1975)744s
3582 75(1975)386 75(1975)744s
3583 75(1975)387 75(1975)568v, 744s
3584 75(1975)387 75(1975)568v, 745s 76(1976)261a
3585 75(1975)387 75(1975)746s
3586 75(1975)477 76(1976)82s, 170a, 442a
3587 75(1975)477 76(1976)83s, 442a, 528c
3588 75(1975)477 76(1976)84s, 442a
3589 75(1975)477 76(1976)84c, 170a, 442a
3590 75(1975)477 76(1976)84s, 442a
3591 75(1975)478 76(1976)85s, 170a, 442a
3592 75(1975)568 76(1976)170s, 261a, 534a
3593 75(1975)568 76(1976)171s, 261a, 265a, 439a
3594 75(1975)568 76(1976)172s, 261a, 528c, 534a
3595 75(1975)568 76(1976)172s, 261a, 445a, 528c
3596 75(1975)568 76(1976)173s, 261a, 265a, 439a,

442a
3597 75(1975)657 76(1976)174s, 262s
3598 75(1975)657 76(1976)262s, 439a, 445a, 534a
3599 75(1975)657 76(1976)263s, 529c, 534a
3600 75(1975)657 76(1976)264s, 445a
3601 75(1975)657 76(1976)264s
3602 75(1975)658 76(1976)264s
3603 75(1975)658 76(1976)265s, 445a, 534a
3606 75(1975)747 76(1976)439s, 534a
3607 75(1975)747 76(1976)440s, 533a, 534a
3608 75(1975)747 76(1976)441s, 534a, 716c
3609 75(1975)748 76(1976)441s, 534a, 623c
3610 75(1975)748 76(1976)441s, 534a
3611 75(1975)748 76(1976)442s, 534a
3612 76(1976)85 76(1976)442s, 533a, 534a
3613 76(1976)85 76(1976)443s, 533a, 534a, 627a,

715c
3614 76(1976)86 76(1976)444s, 534a
3615 76(1976)86 76(1976)444s, 534a
3616 76(1976)86 76(1976)444c, 534a
3617 76(1976)86 76(1976)444c, 529s
3618 76(1976)174 76(1976)531s
3619 76(1976)175 76(1976)532s, 627a 77(1977)358a
3620 76(1976)175 76(1976)533s
3621 76(1976)175 76(1976)625s 77(1977)354c
3622 76(1976)175 76(1976)626s 77(1977)358a
3623 76(1976)175 76(1976)626s
3624 76(1976)266 76(1976)627s 77(1977)358a
3625 76(1976)266 76(1976)717s 77(1977)82a, 174a
3626 76(1976)266 76(1976)717s 77(1977)82a
3627 76(1976)266 76(1976)718x
3628 76(1976)266 76(1976)718s 77(1977)82a
3629 76(1976)266 77(1977)78s
3630 76(1976)445 77(1977)79s
3631 76(1976)445 77(1977)79s, 358a
3632 76(1976)445 77(1977)80s, 532c
3633 76(1976)445 77(1977)82s
3634 76(1976)446 77(1977)170s
3635 76(1976)446 77(1977)170s
3636 76(1976)446 77(1977)171s, 268a
3637 76(1976)446 77(1977)172s
3638 76(1976)446 77(1977)173s, 268a
3639 76(1976)446 77(1977)265s, 358a
3640 76(1976)446 77(1977)265s
3641 76(1976)446 77(1977)266s
3642 76(1976)527 77(1977)266s
3643 76(1976)527 77(1977)267s
3644 76(1976)527 77(1977)355s
3645 76(1976)527 77(1977)355s, 449a
3646 76(1976)528 77(1977)356s
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3647 76(1976)528 77(1977)357s
3648 76(1976)621 77(1977)357s, 449a
3649 76(1976)621 77(1977)444s
3650 76(1976)621 77(1977)445s
3651 76(1976)622 77(1977)446s
3652 76(1976)622 77(1977)447s
3653 76(1976)622 77(1977)447s, 536a
3654 76(1976)714 77(1977)533s 78(1978)358a
3655 76(1976)714 77(1977)533s
3656 76(1976)714 77(1977)534s
3657 76(1976)715 77(1977)535s
3658 76(1976)715 77(1977)535s
3659 76(1976)715 77(1977)536s
3660 77(1977)77 77(1977)622s
3661 77(1977)77 77(1977)623s
3662 77(1977)77 77(1977)624s
3663 77(1977)78 77(1977)625s
3664 77(1977)78 77(1977)626s
3665 77(1977)78 77(1977)626s
3666 77(1977)169 77(1977)714s
3667 77(1977)169 77(1977)715s
3668 77(1977)169 77(1977)715s
3669 77(1977)169 77(1977)716s
3670 77(1977)170 77(1977)716s
3671 77(1977)170 77(1977)717s
3672 77(1977)263 78(1978)82c, 82s
3673 77(1977)263 78(1978)83s
3674 77(1977)263 78(1978)84s
3675 77(1977)263 78(1978)84s
3676 77(1977)264 78(1978)85s
3677 77(1977)264 78(1978)86s
3678 77(1977)353 78(1978)171s
3679 77(1977)353 78(1978)172s
3680 77(1977)353 78(1978)172s 79(1979)712c
3681 77(1977)353 78(1978)174s
3682 77(1977)353 78(1978)174s, 533c
3683 77(1977)354 78(1978)176s
3684 77(1977)443 78(1978)354s
3685 77(1977)443 78(1978)355s
3686 77(1977)443 78(1978)356s
3687 77(1977)443 78(1978)356s
3688 77(1977)444 78(1978)356s, 357s
3689 77(1977)444 78(1978)357s, 449a
3690 77(1977)530 78(1978)444s
3691 77(1977)530 78(1978)445s, 537a
3692 77(1977)531 78(1978)446s
3693 77(1977)531 78(1978)447s, 537a
3694 77(1977)531 78(1978)447s
3695 77(1977)531 78(1978)448s
3696 77(1977)620 78(1978)534s
3697 77(1977)620 78(1978)534s
3698 77(1977)620 78(1978)535s
3699 77(1977)621 78(1978)536s
3700 77(1977)621 78(1978)536s
3701 77(1977)621 78(1978)622s
3702 77(1977)713 78(1978)623s, 624s
3703 77(1977)713 78(1978)624s
3704 77(1977)713 78(1978)626s
3705 77(1977)714 78(1978)626s
3706 77(1977)714 78(1978)714s
3707 77(1977)714 78(1978)715s
3708 78(1978)81 78(1978)716s
3709 78(1978)81 78(1978)717s
3710 78(1978)81 78(1978)717s
3711 78(1978)82 79(1979)81c, 81s
3712 78(1978)82 79(1979)82s
3713 78(1978)82 79(1979)83s
3714 78(1978)170 79(1979)84s
3715 78(1978)170 79(1979)86s
3716 78(1978)170 79(1979)173s
3717 78(1978)170 79(1979)173s, 174s
3718 78(1978)170 79(1979)174s
3719 78(1978)171 79(1979)175s

3720 78(1978)353 79(1979)175s
3721 78(1978)353 79(1979)260s
3722 78(1978)353 79(1979)261s
3723 78(1978)354 79(1979)261s
3724 78(1978)354 79(1979)262s
3725 78(1978)354 79(1979)264s
3726 78(1978)443 79(1979)356s
3727 78(1978)443 79(1979)356s 81(1981)439c
3728 78(1978)443 79(1979)357s, 358s
3729 78(1978)443 79(1979)358s, 528c
3730 78(1978)444 79(1979)358s
3731 78(1978)444 79(1979)360s
3732 78(1978)532 79(1979)446s, 529c
3733 78(1978)533 79(1979)447s
3734 78(1978)533 79(1979)448s
3735 78(1978)533 79(1979)449s
3736 78(1978)533 79(1979)449s, 712c
3737 78(1978)533 79(1979)450s
3738 78(1978)620 79(1979)529s
3739 78(1978)620 79(1979)529s 80(1980)80a
3740 78(1978)620 79(1979)530s, 531s
3741 78(1978)621 79(1979)532s, 717a
3742 78(1978)621 79(1979)532s
3743 78(1978)621 79(1979)533s
3744 78(1978)712 79(1979)713s
3745 78(1978)712 79(1979)713s
3746 78(1978)712 79(1979)714s
3747 78(1978)713 79(1979)716s
3748 78(1978)713 79(1979)716s
3749 78(1978)713 79(1979)717s
3750 79(1979)79 80(1980)77s
3751 79(1979)79 80(1980)78s
3752 79(1979)79 80(1980)78s
3753 79(1979)80 80(1980)78s
3754 79(1979)80 80(1980)79s
3755 79(1979)80 80(1980)79s
3756 79(1979)172 80(1980)174s
3757 79(1979)172 80(1980)174s
3758 79(1979)172 80(1980)175s
3759 79(1979)172 80(1980)176s
3760 79(1979)173 80(1980)176s
3761 79(1979)173 80(1980)176s
3762 79(1979)259 80(1980)264s
3763 79(1979)259 80(1980)264s
3764 79(1979)259 80(1980)265s
3765 79(1979)259 80(1980)265s
3766 79(1979)259 80(1980)266s
3767 79(1979)260 80(1980)267s
3768 79(1979)355 80(1980)350s
3769 79(1979)355 80(1980)351s
3770 79(1979)355 80(1980)352s
3771 79(1979)355 80(1980)353s
3772 79(1979)356 80(1980)353s
3773 79(1979)356 80(1980)355s
3774 79(1979)444 80(1980)442s
3775 79(1979)444 80(1980)443s, 444s
3776 79(1979)444 80(1980)444s
3777 79(1979)444 80(1980)446s
3778 79(1979)445 80(1980)446s
3779 79(1979)445 80(1980)447s
3780 79(1979)527 80(1980)526s
3781 79(1979)527 80(1980)527s
3782 79(1979)528 80(1980)528s, 710s
3783 79(1979)528 80(1980)528s
3784 79(1979)528 80(1980)529s
3785 79(1979)528 80(1980)529s
3786 79(1979)711 80(1980)710s
3787 79(1979)711 80(1980)711s
3788 79(1979)711 80(1980)712s
3789 79(1979)711 80(1980)712s, 714s
3790 79(1979)712 80(1980)715s
3791 79(1979)712 80(1980)715s
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Problem Chronology
TYCMJ 17 1975–1979 TYCMJ 155

TYCMJ
Problem Proposal References
17 6(1975/1)33s
18 6(1975/1)33s
19 6(1975/1)34s
20 6(1975/1)34s
21 6(1975/2)32s
22 6(1975/2)32s
23 6(1975/2)33s
24 6(1975/2)34s
25 6(1975/3)35s
26 6(1975/3)35s
27 6(1975/3)36s
28 6(1975/3)37s
29 6(1975/4)25s
30 6(1975/4)26s
31 6(1975/4)26s
32 6(1975/4)27s
33 6(1975/1)32 7(1976/1)29s
34 6(1975/1)32 7(1976/1)30s
35 6(1975/1)32 7(1976/1)31s
36 6(1975/1)32 7(1976/1)31s
37 6(1975/2)31 7(1976/2)50s, 50v
38 6(1975/2)31 7(1976/2)51s
39 6(1975/2)31 7(1976/2)52s
40 6(1975/2)31 7(1976/2)53s
41 6(1975/2)31 7(1976/2)53s
42 6(1975/3)34 7(1976/3)48s
43 6(1975/3)34 7(1976/3)49s
44 6(1975/3)34 7(1976/3)49s
45 6(1975/3)35 7(1976/3)50s
46 6(1975/3)35 7(1976/4)34s
47 6(1975/4)24 7(1976/4)35s
48 6(1975/4)24 7(1976/4)36s
49 6(1975/4)24 7(1976/4)37c, 37s
50 6(1975/4)24 8(1977)43s
51 6(1975/4)25 8(1977)44s
52 6(1975/4)25 7(1976/2)49v 8(1977)44v, 45s
53 6(1975/4)25 8(1977)46s
54 7(1976/1)28 8(1977)96s
55 7(1976/1)28 8(1977)97s
56 7(1976/1)28 8(1977)98s, 99s
57 7(1976/1)28 8(1977)100s
58 7(1976/1)28 8(1977)178s
59 7(1976/1)29 8(1977)179s
60 7(1976/1)29 8(1977)180s
61 7(1976/2)49 8(1977)181s, 181v
62 7(1976/2)49 8(1977)241s
63 7(1976/2)49 8(1977)241s
64 7(1976/2)49 8(1977)242s
65 7(1976/2)50 8(1977)243s
66 7(1976/2)50 8(1977)243s
67 7(1976/3)47 8(1977)293s
68 7(1976/3)47 8(1977)293s
69 7(1976/3)47 8(1977)294s
70 7(1976/3)47 8(1977)295s
71 7(1976/3)47 9(1978)41c, 41s
72 7(1976/3)48 9(1978)42s
73 7(1976/4)33 9(1978)43s, 43v
74 7(1976/4)33 9(1978)44c, 44s
75 7(1976/4)33 9(1978)45s
76 7(1976/4)33 9(1978)96s
77 7(1976/4)33 9(1978)97s
78 7(1976/4)33 9(1978)98s
79 8(1977)42 9(1978)99s
80 8(1977)42 9(1978)100c, 100s
81 8(1977)42 9(1978)177s
82 8(1977)42 9(1978)177s, 178s
83 8(1977)43 9(1978)178s
84 8(1977)95 9(1978)180s
85 8(1977)95 9(1978)181s
86 8(1977)95 9(1978)237s

87 8(1977)95 9(1978)238s
88 8(1977)96 9(1978)239s
89 8(1977)96 9(1978)240s
90 8(1977)177 9(1978)242s
91 8(1977)177 9(1978)298s
92 8(1977)177 9(1978)298s
93 8(1977)177 9(1978)299s
94 8(1977)177 9(1978)300s, 300v
95 8(1977)178 9(1978)301s
96 8(1977)240 10(1979)53s
97 8(1977)240 10(1979)54s
98 8(1977)240 10(1979)55s
99 8(1977)240 10(1979)56s
100 8(1977)240 10(1979)57s
101 8(1977)292 10(1979)128c, 128s
102 8(1977)292 10(1979)129s
103 8(1977)292 10(1979)130s
104 8(1977)292 10(1979)131s
105 8(1977)293 10(1979)211s
106 9(1978)40 10(1979)213s
107 9(1978)40 10(1979)214s
108 9(1978)40 10(1979)215s
109 9(1978)40 10(1979)216s
110 9(1978)41 10(1979)217s
111 9(1978)95 10(1979)294s
112 9(1978)95 10(1979)295s
113 9(1978)95 10(1979)296s
114 9(1978)95 10(1979)297s
115 9(1978)95 10(1979)298s
116 9(1978)176 10(1979)360s
117 9(1978)176 10(1979)361s
118 9(1978)176 10(1979)363s
119 9(1978)176 10(1979)363s
120 9(1978)177 10(1979)366s
121 9(1978)236 11(1980)62s
122 9(1978)236 11(1980)63s
123 9(1978)236 11(1980)64s
124 9(1978)236 11(1980)65s
125 9(1978)236 11(1980)132s
126 9(1978)297 11(1980)133s
127 9(1978)297 11(1980)134s
128 9(1978)297 11(1980)135s
129 9(1978)297 11(1980)137s
130 9(1978)297 10(1979)210v 11(1980)138c, 138s

13(1982)71a
131 10(1979)52 11(1980)209s
132 10(1979)53 11(1980)210s
133 10(1979)53 11(1980)211s
134 10(1979)53 11(1980)212s
135 10(1979)53 11(1980)213s
136 10(1979)127 11(1980)276s
137 10(1979)127 11(1980)277s
138 10(1979)127 11(1980)278s
139 10(1979)127 11(1980)278s
140 10(1979)128 11(1980)279s
141 10(1979)210 11(1980)337s
142 10(1979)211 11(1980)337s
143 10(1979)211 11(1980)338s
144 10(1979)211 11(1980)339s
145 10(1979)211 11(1980)340s
146 10(1979)293 12(1981)64s
147 10(1979)293 12(1981)64s
148 10(1979)294 12(1981)65s
149 10(1979)294 12(1981)66s
150 10(1979)294 12(1981)67s
151 10(1979)359 12(1981)155s
152 10(1979)359 12(1981)157s
153 10(1979)359 12(1981)158s, 159s
154 10(1979)360 12(1981)160s
155 10(1979)360 12(1981)162s, 213a
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AUTHOR  INDEX
Use this section to

• locate problems proposed by a given author
• find all published works (problems, solutions, or comments) by a given author

that appear in a journal problem column covered by this index
• determine if an author proposed a problem without submitting a solution
• find the names of prominent problem proposers or problem solvers

In this section, we list the name of every person who has published a problem, solution or comment during the
years 1975–1979 (in one of the columns covered by this index). We also list the name of every person who has
published a solution or comment to a problem published in one of those years even if this solution appeared later
than 1979. All journal issues through January 1992 have been scanned for solutions to problems covered by this
index.

We have attempted to group together variant names under the longest name given, for example, works by
M. Klamkin, M. S. Klamkin, and Murray Klamkin will appear under Murray S. Klamkin. We have also attempted to
consolidate names when a nickname or variant spelling is used. Thus problems by Joe Konhauser would be listed
under Joseph Konhauser. Similarly, shortened names such as Tom/Thomas, Chris/Christopher, Mike/Michael,
etc. will appear using the longer name. Each reference to a problem, solution, or comment published by this
person follows the author’s name. It is given in the form

JNL  prob   vol(year/issue)page code

where JNL is the abbreviation of the journal name
prob is the problem number
vol is the volume number of the issue (if known)
year is the year of publication
/issue is given if the periodical numbers its pages beginning with page 1 in every issue
page is the page number where the reference begins
code is a single character code specifying the type of reference as listed below:

Code Description
c comment
p problem proposal
s solution
x partial solution

To save space, we have omitted duplicate information from the reference list. For example, the journal name is
listed just once per author. The journal name and problem number are given in boldface. Thus, a boldface
problem number with no immediately preceding journal name refers to the last journal name listed. Similarly, if no
volume or year information is listed for a reference, scan backwards for the last listed volume and year
information for the journal in question. Multiple page number references in the same volume of a journal are
separated by commas. References to different volumes in a given journal are separated by semicolons. An aster-
isk after a problem number indicates that the author submitted the problem without submitting a solution. For a
given journal, the references are listed chronologically.
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Thus, for example, an author entry of

AMATYC C–3 4(1982/1)54p, A–3 57s; 4(1983/2) B–2 67c. TYCMJ 128 11(1980)135s.

means that the author proposed problem C–3 in the AMATYC Review on page 54 of issue number 1 of volume 4
(published in 1982) and had his solution to problem A–3 published on page 57 of that same issue. In issue 2 of
the 1983 volume (vol. 4), he had a comment to problem B–2 published on page 67.  In the Two-Year
College Mathematics Journal (TYCMJ), he had a solution to problem 128 published on page 135 of volume 11
published in 1980.

Only references to published material are indexed. If a person is listed in a solver’s list or editor’s comment
indicating that he has solved a certain problem, his name will not appear in this author index unless his solution or
comment was actually printed in the journal.

Works published under a pseudonym are indexed under that pseudonymic name.
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Djoković, Dragomir Ž.
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Erdős, Paul AMM 5413 82(1975)85c; E2505

83(1976)59s, 6070 62p, 5983 294c, 6016
820c; 6135* 84(1977)141p, E2651 295p;
6090 85(1978)122s, E2626 200s; S21
86(1979)784p. CMB P244 18(1975)616p,
P222 616s; P247 19(1976)121p, P250 249p;
P264 20(1977)273p, P265 273p, P267
518p, P268 518p, P239 520s, P247 520s;
P250 22(1979)122s, P267 123s. JRM 502
12(1980)159s, 622 160x, 654 222c. MM 949
48(1975)238p; 964 49(1976)43p, 986
150p; 1008 50(1977)99p; 983 51(1978)70s,
1048 245p; 1029 52(1979)180s; 1008
56(1983)113s. MSJ 462 25(1978/8)2p.
NAvW 396 23(1975)81p, 397 81p, 387 183s,
417 243p, 397 252s; 428 24(1976)78p, 441
185p; 463 25(1977)87p, 417 89s, 483 424p;
493 26(1978)232p, 505 349p, 483 361s,
516 463p, 493 470s; 528 27(1979)133p,
538 268p, 539 268p, 551 409p, 552
409p; 528 28(1980)205s, 528 206c; 551
29(1981)106s. OSSMB 75-5 11(1975/1)16p;
75-5 11(1975/2)23s; 76-8 12(1976/3)21s.
PME 339 6(1975)104p, 360 179p, 298
192s; 369 6(1976)227p, 360 321s; 389
6(1977)366p, 406 419p; 456 7(1979)58p.

Erhart, John V. AMM 5998 83(1976)491s.
Erickson, Scott MSJ 425 22(1975/4)7s.
Erlebach, Lee AMM E2585 84(1977)490s; E2696

86(1979)507s; E2780 88(1981)764s.
SIAM 79-5 21(1979)140p.
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Sjögren, Peter AMM E2732 85(1978)681p.
Skalsky, Michael AMM 6092 85(1978)123s; E2724

86(1979)708s.
Slater, Gary SPECT 11.8 12(1980)62s.
Slater, Michael AMM 6011 82(1975)85p; 6101

83(1976)490p; E2755 86(1979)127p, E2756
128p, E2802 785p.

Slawinski, Chris AMM 6238 87(1980)409s.
Slepian, D. SIAM 78-14 20(1978)594p.
Sloan, Bob MSJ 474 26(1979/8)2s.
Sloane, N. J. A. AMM E2704 85(1978)198p. NAvW 509

26(1978)350p.
Sloyan, Sister Stephanie

SSM 3695 78(1978)448s.
Sloyan, Stephanie AMM E2793 88(1981)707s. PME 442

7(1980)139s, 454 195s, 461 203s. SSM 3747
79(1979)716s; 3777 80(1980)446s.
TYCMJ 128 11(1980)135s.

Small, Charles AMM 6148 84(1977)300p.
Small, R. D. SIAM 75-14 18(1976)501x.
Smid, L. J. NAvW 374 23(1975)86s.
Smiley, M. F. AMM 6095 85(1978)59s.
Smit, I. H. NAvW 511 26(1978)351p.
Smith, Charles D. NYSMTJ 76 28(1978)52p, 76 154s.
Smith, D. Hammond

CMB P236 19(1976)124s.
Smith, David A. MM 1024 50(1977)211p.
Smith, Dianne MSJ 406 22(1975/1)6s.
Smith, Emily ISMJ 14.2 14(1979/2)7s; 14.7

14(1979/3)3s.
Smith, Gene AMM 6268 86(1979)398p.
Smith, Gordon C. FUNCT 2.5.1 2(1978/5)20p.
Smith, J. Denmead

AMM 6038 84(1977)301s.
Smith, J. Philip SSM 3684 78(1978)354s.
Smith, J. Phillip SSM 3778 80(1980)446s.
Smith, J. R. AMM 5940 82(1975)186s.
Smith, James C. AMM E2697 86(1979)225s.
Smith, Jerry E. SSM 3715 79(1979)86s.
Smith, Karl J. JRM 202 9(1977)54s. MATYC 80

10(1976)202s.
Smith, Kenneth W.

AMM 6272 86(1979)509p; 6272
88(1981)353s.

Smith, Kirby C. AMM E2635 84(1977)134p.
Smith, Malcolm A.

CRUX 434 6(1980)59x.
Smith, Michael AMM 6213 89(1982)279s.
Smith, Paul AMM E2526* 82(1975)300p. FQ B-283

13(1975)192s; B-390 17(1979)371s.
MATYC 114 13(1979)70s.

Smith, Philip SSM 3642 76(1976)527p; 3738
78(1978)620p.

Smith, Robert A. JRM 71 9(1977)138s.
Smith, Scott MM 943 49(1976)212s.

347



Author Index
Smyth, C. J. 1975–1979 Sutton Jr., Robert A.

Smyth, C. J. AMM 5931 82(1975)86s.
Snow, Wolfe AMM E2465 82(1975)405s; 6004

83(1976)575s.
Sokolowsky, Dan AMM 6060 82(1975)1016p. CRUX 120

2(1976)139c, 171 170p, 134 174s; 171
3(1977)26s, 220 43p, 225 65p, 248 131p, 206
143s, 210 160s, 270 190p; 320 4(1978)36p,
248 102c, 288 136s, 352 159p, 309 200s, 383
250p; 433 5(1979)108p, 444 132p, 487 266p;
483 6(1980)227s, 342 319x.

Solomon, Arthur R.
AMM 6128 85(1978)688s. SSM 3766
80(1980)266s, 3778 446s.

Solomon, Daniel MSJ 415 22(1975/3)6s.
Solomon, Marius AMM E2663 84(1977)487p. MM 972

49(1976)95p; 1010 50(1977)99p.
Solomon, Marvin AMM 6128 85(1978)688s.
Somer, Lawrence FQ B-386 16(1978)473p; B-408

17(1979)281p, B-382 282s, B-385 283s;
H-285 18(1980)281s.

Somos, Michael AMM E2506 83(1976)60c.
Soni, K. NAvW 462 25(1977)439s.
Sorensen, Lars ISMJ J11.5 11(1976/2)9s; J11.7

11(1976/3)3s.
Soules, George W. AMM 6162 86(1979)227s.
Spangler, Carl PME 436 6(1978)542p.
Spearman, Blair AMM E2766 87(1980)406s. TYCMJ 80

9(1978)100s; 121 11(1980)62s.
Spellman, John AMM E2766 87(1980)406s.
Spencer, Armond E.

AMM E2637 84(1977)134p.
Spencer, Joel A. AMM E2522 82(1975)300p, E2465 406s.

CRUX 420 5(1979)48p, 428 77p; 420
6(1980)21s.

Spencer, Martin SPECT 8.1 8(1976)92s.
Spencer, Thomas AMM 6041 84(1977)302s.
Spikell, Mark A. AMM E2596* 83(1976)379p.
Spinetto, R. D. SIAM 76-7* 18(1976)294p.
Sprague, R. JRM 71 9(1977)138s.
Sprinkhuizen-Kuyper, I. G.

NAvW 503 27(1979)137s.
Sprows, David J. MM 977 49(1976)96p.
Spruck, J. AMM E2801 86(1979)785p.
Srivastava, H. M. SIAM 75-17* 17(1975)685p.
St. Olaf College Problem Solving Group, the

AMM 6054 84(1977)494s; E2803
88(1981)149s. MM 987 51(1978)71s.

Stahl, Saul AMM 5953 83(1976)574s.
Stam, A. J. NAvW 404 24(1976)90s.
Stanford Statistics Problem Solving Group, the

AMM 6031 84(1977)144s.
Stangle, Joseph SSM 3734 78(1978)533p.
Stanley, Richard AMM E2540 82(1975)659p, E2546 756p;

E2540 83(1976)659s, E2546 813s; 6154
84(1977)392p; E2700 85(1978)117p, E2701
197p; E2794 87(1980)756c.

Stark, J. M. MM 1006 51(1978)306s; 1057 53(1980)113s,
1067 185s.

Starke, Emory P. AMM E2434 82(1975)402c; E2392
83(1976)380s, E984 567c, E2533 570c.
MM 1042 52(1979)263s.

Staum, Richard AMM 6155 86(1979)133s.
Steck, G. P. AMM 5942 82(1975)768s.
Steger, A. SIAM 79-2 21(1979)139p.
Steger, William F. MATYC 57 9(1975/1)50s.
Steiger, Gary MSJ 434 23(1976/2)8p.
Stein, Alan H. AMM E2661 85(1978)685s.
Steinberg, S. SIAM 79-2 21(1979)139p.
Steinlage, R. AMM E2720 86(1979)707c.
Stelman, Mike MSJ 473 26(1979/8)2s.

Stenger, Allen AMM E2483 82(1975)758s; E2518
83(1976)291s, 5984 294s, E2520 383s, E2523
384s; E2655 85(1978)682s, E2656 766s;
E2675 86(1979)58s.

Stern, Ely MATYC 110 13(1979)67s, 133 135p.
Stern, Frederick FQ B-374 16(1978)88p.
Steutel, F. W. AMM 5999 84(1977)62s. NAvW 416

24(1976)204s, 422 273s; 454 25(1977)200s,
455 201s.

Stevens, Jay JRM 583 10(1978)41p, 665-3 275p; 776
11(1979)295p.

Stevens, Richard S.
AMM E2584 84(1977)490s.

Stimler, Charles CRUX 163 2(1976)135p. MSJ 438
24(1977/2)6s.

Stine, Vance PME 407 6(1977)419p.
Stock, Daniel L. TYCMJ 39 7(1976/2)52s.
Stolarsky, K. B. SIAM 75-19 17(1975)686p.
Stone, David R. CRUX 176 3(1977)30s, 217 43p, 149

47c, 149 47s, 190 76s, 194 82c, 194 82s,
205 142s, 208 157s, 219 173s, 216 198c,
230 234c, 293 297p; 272 4(1978)86s; 430
6(1980)52s, 437 64c.

Stott, P. PARAB 335 13(1977/3)29s, 336 30s, 338
31s, 341 34s; 349 14(1978/1)31s, 351 32s.

Straffin, Philip D. AMM E2641 84(1977)216p. CRUX 334
4(1978)101p, 334 285s. MM 1005
51(1978)249s.

Strauch, Oto AMM 6038 82(1975)671p; 6090
83(1976)385p.

Straus, Ernst G. AMM 6094 85(1978)57s; E2746 87(1980)64s.
JRM 654 12(1980)222c. NAvW 387
23(1975)183s. PME 360 6(1975)179p; 339
6(1976)230s, 360 321s; 438 6(1979)615p; 438
7(1980)190s.

Strauss, F. B. AMM 5981 83(1976)209s; E2641
85(1978)496s; E2737 87(1980)305s.

Streif, Vince CRUX 333 4(1978)269s.
Streit, Roy AMM E2726* 85(1978)593p.
Stretton, William MATYC 83 11(1977)65s; 134 13(1979)136p.
Strikwerda, J. SIAM 78-18 21(1979)568s.
Stroeker, R. J. NAvW 446 24(1976)187p; 467 25(1977)88p,

446 99s; 500 26(1978)234p, 500 476s; 533
27(1979)135p, 545 270p, 529 420s.

Strommen, Randy ISMJ J11.1 11(1976/2)8s; J11.10
11(1976/3)5s.

Stromquist, Walter
AMM E2786 86(1979)592p.

Struble, R. A. MM 932 48(1975)115p.
Stuart, Christopher

FUNCT 1.1.7 1(1977/1)30p; 1.1.7
1(1977/4)9s; 1.3.5 1(1977/5)28s; 1.2.6
2(1978/1)19s.

Stump, Robert A. PENT 320 40(1980)43s, 321 44s.
Sturm, Jacob AMM E2467 82(1975)407s.
Stuyvesant High School class M82H

AMM 6238 87(1980)409s.
Subbarao, M. V. AMM E2457 82(1975)176s.
Sugai, Iwao SIAM 76-4 18(1976)118p; 76-4

19(1977)153s.
Sulek, Robert TYCMJ 45 6(1975/3)35p; 59 7(1976/1)29p;

45 7(1976/3)50s.
Sullivan, John J. NYSMTJ 73 27(1977)136p; 85 29(1979)86s.
Suna, Lester TYCMJ 45 6(1975/3)35p; 59 7(1976/1)29p;

45 7(1976/3)50s.
Sunday, Joe G. AMM E2570 83(1976)53p, E2589 284p.
Sung, Chen-Han AMM 6118 85(1978)506s.
Sute, Max SSM 3577 75(1975)297p.
Sutton Jr., Robert A.

TYCMJ 85 9(1978)181s; 109 10(1979)216s;
132 11(1980)210s.

348



Author Index
Svendsen, K. 1975–1979 Trigg, Charles W.

Svendsen, K. PARAB 394 15(1979/2)38s, 399 41s, 400
42s.

Swafford, Jane O. SSM 3607 76(1976)440s, 3611 442s.
Sweet, M. AMM 6162 86(1979)227s.
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TITLE  INDEX
Use this section to

• locate a problem from a keyword that appears in the title of the problem
• peruse the titles of problems that appear in this index.

Many journal problem columns assign a title to a published problem or solution. In this section, we present a
keyword in context (KWIC) permuted index to these titles. Each title appears multiple times, once for each major
word in the title. The entire title is given to provide contextual information to aid you in locating the desired item. A
bullet (•) appears between the end of the title and the beginning of the title in the cyclic permutation.

For example: the title “Axiomatic Characterization of Distance” could appear in the title index three times, listed
once for “Axiomatic”, once for “Characterization” and once for  “Distance”. The three references would appear as
follows:

The title entries are alphabetized. Mathematical expressions beginning with a roman letter appear next to other 
words beginning with that letter. Other mathematical expressions appear at the beginning of the list.

Preceding each title is a reference to the problem that title is associated with. This reference consists of the jour-
nal abbreviation followed by the problem number. In the example above, “MM 1126” refers to problem 1126 from 
Mathematics Magazine. The list of journal abbreviations can be found on page 17.

All titles for problems that appeared in the years 1975–1979 in one of the problem columns covered by this index 
are listed (if the title appeared with a contribution that was published prior to 1992). All titles accompanying solu-
tions and comments published in the years 1975–1979 are also given.

The journals that regularly assign titles to their problems are:

Consult page 17 for a more complete list of journal abbreviations.
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MM 1126
MM 1126
MM 1126

Axiomatic Characterization of Distance
Characterization of Distance • Axiomatic
Distance • Axiomatic Characterization of

abbreviation
AMM
FQ
JRM
MATYC
MM
SIAM
TYCMJ

journal
The American Mathematical Monthly
The Fibonacci Quarterly
Journal of Recreational Mathematics
The MATYC Journal
Mathematics Magazine
SIAM Review
The Two-Year College Mathematics Journal



Once you have located a problem that you are interested in, you can click the problem number to
look up references to that problem in the Chronology section of this index (page 282).

Entries beginning with uninteresting words have been suppressed from the listing. The words suppressed are:

a at from into of the v
am be i iv on there was
an but ii is or this which
and by iii it than those with
as for in its that to

See also:

• the keyword index to look for problems containing a given word in the statement of the problem
• the subject index to look for problems related to a given topic
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AMM 6091 Γn to Cm • Mapping from

AMM 5878 Γ(n)(1)

AMM 6002
∫ x

0
(x− t)p−1 ln Γ(t) dt

TYCMJ 151
∫ x

1
g(t)dt =

∫ xy
y

g(t)dt • The g That Solves

AMM E2670
(
xe−x − ye−y

)
/
(
e−x − e−y

)
• An Inequality

for
AMM E2491

[√
n
]

a Divisor of n? • When is

AMM 5871 ∂f/∂x = ∂f/∂y • The Equation
AMM 6070 φ(n)/n = a/b • Counting b for which

AMM E2783 φ(z2) = φ(z)2 • The Functional Equation
AMM 6090 φ-Convergence
AMM 6160 φ(m) • Divisors of
AMM S3 π(n) • Asymptotic to

AMM 6044 Π = 833

AMM 6044 Π 6= 833

AMM 6019 π • Algebraic Inequalities for
JRM 589 π • Approximating

AMM 5983 π • Rational Approximations to
√

2 and
AMM E2773

∏
(x − ai) ≡ 0 • The Polynomial Congruences

xk ≡ x,
AMM E2529 ψ(x) • An Application of
AMM 5955 Q→ Q Differentiable Functions • On

AMM 6105 Σ(−1)bnα/
√

2cn−1

AMM 6107 σ(n+ 1)/σ(n) • The Closure of
AMM E2543 σ(n)/n versus τ(n)
AMM E2493 σ(n) = 2n

AMM 5949 σ(n)/n • Density of
AMM 5962 σ-compact • A Separable Hausdorff Space not

AMM 6083 Σrp/r(p+r),Σr(−1)r−1
(
p
r

)
/r • The Functions

AMM 6243
∑

(−1)nn−1 logn • The Classical Series

AMM 6247
∑

αk
[
m
√
k
]
• Sum of the Form

AMM 6035
∑

µ(n) logn/n • A Subseries of

AMM 6127
∑

ζ(n)xn for x rational

AMM E2791
∑

an,
∑

a3
n • The Series

AMM E2791
∑

a3
n • The Series

∑
an,

AMM E2780
∑

d(k), k ≤ n • Sum of Number of Divisors

AMM 5952
∑

1
n3 sin(nπθ)

and Γ
(

8
9

)

AMM E2782
∑∞
n k−2 • Bounds for

AMM E2543 τ(n) • σ(n)/n versus
AMM 6108 τ(n) • Multiplicative Identities for
JRM 474 θ Function Again • The Euler
TYCMJ 108 4-Biangle • Sinusoidal Slide of a
AMM E2704 Z/nZ • Idempotent Elements in
AMM E2503 ζ(4) • A Geometric Characterization of

AMM E2789 ζk • Triangles with Vertices at Roots of Unity
AMM E2772 a+ b • Divisibility of a2m + b2m by
AMM E585 — A Tough Nut has been Cracked • Miquel

Point
TYCMJ 134 (a + b + c)/3 and (abc)1/3 • Interpolating

((ab+ bc+ ca)/3)1/2 Between
TYCMJ 107 a+b−c of Pythagorean Triplets • The Diameter
AMM 6007 a.e. • Arc Length when f ′ = 0
AMM E2440 A.P.-Free Permutations
FQ B-328 A. P. • Sum of Squares as
FQ B-309 an = aFn + Fn−1 • An Analogue Of
MM 1017 Ap = I
AMM E2772 a2m + b2m by a+ b • Divisibility of
AMM 6251 AB = C Imply BA = D? • When Does
TYCMJ 154 AB • Inequality for Triangles and for Trace

TYCMJ 134 ((ab+ bc+ ca)/3)1/2 Between (a+ b+ c)/3 and

(abc)1/3 • Interpolating

TYCMJ 134 (abc)1/3 • Interpolating ((ab + bc + ca)/3)1/2

Between (a+ b+ c)/3 and
AMM 6011 Abelian Group • Equal Sum Partitions in an
MM 1045 Absolute Perfect Squares
MM 953 Absolute Primes
AMM E2718 Absolute Primes • A Subclass of the
AMM 6138 Abundant Numbers of the Form

pipi+1pi+2 . . . pi+n
AMM E2535 Acceleration with Constant Direction
JRM 773 Accent Accident • An
JRM 773 Accident • An Accent
SIAM 75-8 Accident Probability
AMM 6094 “Acquainted” Primes
FQ B-398 Added Ingredient • The
AMM E2549 Adding Edges to Get an Euler Path
JRM 359 Addition • A Lo-o-ong
MATYC 113 Addition • Carrying in
JRM 776 Addition • Even More Simple
JRM 775 Addition • More Simple
JRM 774 Addition • Simple
TYCMJ 88 Addition • Volcanic
TYCMJ 120 Addition Laws • Trigonometric
TYCMJ 71 Addition Laws Property
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Title Index
Addition 1975–1979 Another

AMM 6092 Addition of ‘Student’ Random Variables
AMM 5948 Additive Sequences • Relatively Prime
AMM 6256 Additive Set Functions of Bounded Variation
AMM S16 Additive Subsemigroups • Closed Complex
JRM 635 Address • Presidential
AMM 6222 Adjoint • Relations Between a Matrix and Its
FQ H-213 Adjusted Pascal • An
JRM 777 Affair • International
AMM E2736 Affine Plane • A Recurring Sequence of Points

in the
AMM 5790 Affine Spaces • Collinearity Preserving Maps in
AMM E2658 Again • Legendre Polynomials
JRM 364 Again • One of Those True Alphametics
MM 1071 Again • Roll the Dice
JRM 474 Again • The Euler θ Function
MATYC 81 — Again • When Wrong is Right
MATYC 81 Again • When Wrong is Right —
JRM 794 Age • Grandfather’s
JRM 393 Age Problem • Still Another
JRM 352 Age Problem! • Another Confounded
FQ H-306 Aged • Middle
JRM 659 Ages • The Children’s
MATYC 107 Ain’t Necessarily So • It
MATYC 74 Ain’t Necessarily So! • It
FQ H-246 Al • Fib, Luc, Et
AMM 5124 Algebra • A Banach
AMM 6097 Algebra Generated by Symmetric Functions •

Polynomial
AMM 5982 Algebra Generators
AMM 6019 Algebraic Inequalities for π
AMM E2616 Algebraic Integers • Approximation by
AMM 5931 Algebraic Integers • The Conjugates of
AMM 6169 Algebras • Injective Lie
AMM 5972 all x in a Ring • Minimum n, xn = x for
JRM 416 All Along • We Knew It
AMM 6014 All Closed Subsets Countable • Uncountable

Sets with
SIAM 75-14 All Roots of a Complex Polynomial •

Simultaneous Iteration towards
JRM 383 All Sums Prime
JRM 98 Allowed • No Sums
FQ B-358 Almost Always Composite
JRM 595 Almost Congruent Triangles
JRM 416 Along • We Knew It All
AMM E2645 Along a Row • Shuffling
JRM 723 Alphabetic Alphametic • An
JRM 460 Alphametic • A Bicentennial
JRM 521 Alphametic • A Cockney
JRM 357 Alphametic • A Dual
FQ B-316 Alphametic • A Fibonacci
JRM 608 Alphametic • A Fractionally True
JRM 461 Alphametic • A Hot
JRM 417 Alphametic • A Multiplication
JRM 361 Alphametic • A Soupy
JRM 409 Alphametic • A Two-True
JRM 723 Alphametic • An Alphabetic
JRM 434 Alphametic • An Amazing Chess
JRM 436 Alphametic • An International
JRM 418 Alphametic • Another True
FQ B-312 Alphametic • Doubly-True Fibonacci
FQ B-322 Alphametic • Front Page
JRM 483 Alphametic • Geographical
JRM 670 Alphametic • High-Powered
JRM 487 Alphametic (Macbeth) • Shakespearean
JRM 481 Alphametic — Old Math • New
JRM 430 Alphametic Chess
JRM 707 Alphametic Patterns
JRM 482 Alphametic Really So Easy? • Is This
JRM 437 Alphametic With A Twist • A Doubly True
JRM 363 Alphametic! • This is ‘Sum’
JRM 459 Alphametics • Arithmetically Correct
JRM 458 Alphametics • Arithmetically Correct

JRM 455 Alphametics • Definitely Non-Canadian
JRM 454 Alphametics • Definitely Non-Canadian
JRM 400 Alphametics • Doubly True
JRM 398 Alphametics • Doubly True
JRM 399 Alphametics • Doubly True
JRM 525 Alphametics • Two Doubly True
JRM 526 Alphametics • Two Doubly True
JRM 485 Alphametics • Two More True
JRM 486 Alphametics • Two More True
JRM 433 Alphametics • Two True
JRM 432 Alphametics • Two True
JRM 364 Alphametics Again • One of Those True
JRM 402 Alphametics Composer • Rewards For
JRM 401 Alphametics Composer • Rewards For
JRM 415 Alphametics In Two Languages • Two True
JRM 414 Alphametics In Two Languages • Two True
JRM 749 Alphametic – 1 • Arithmetic
JRM 750 Alphametic – 2 • Arithmetic
JRM 297 Also Doubly True
JRM 334 Also True
AMM E2646 Alternating Sum of Certain Chords
TYCMJ 61 Altitudes • Sum of a Series of
FQ B-371 Always • No, No, Not
JRM 491 Always Appreciated • Not
FQ B-358 Always Composite • Almost
JRM 434 Amazing Chess Alphametic • An
AMM E2537 Ambiguous Functional Equation • An
JRM 484 American High Hopes Society • The
AMM E2752 [an] + [bn] = [cn] + [dn] • The Equation
JRM 384 Anableps • The
JRM 687 Analog
FQ B-309 Analogue Of an = aFn + Fn−1 • An
FQ B-347 Analogue of the F ’s • A Third-Order
AMM S1 Analogues of a Binomial Coefficient Property •

Converse and
TYCMJ 19 Analogy Carried Too Far • An
JRM 170 Analysis • Retrograde
SIAM 78-12 Analysis of a Matrix • Spectral
TYCMJ 119 Analysis of an Approximate Trisection • Error
AMM 6166 Analytic Characterization of Convexity
MATYC 57 Analytic Concern • An
AMM 6045 Analytic Functions
AMM 5995 Analytic Functions of Bounded Operators
AMM 6071 Analytic Mappings of the Unit Disk on a

Convex Domain
FQ H-213 Ancient One • Another
MM 967 Angle Bisectors
JRM 509 Angler’s Problem • The
MM 913 Angles • Convergent
TYCMJ 75 Angles That Can Be Trisected
JRM 699 Anniversary Party • The
AMM 4052 Annulus • Bound for ez in an
AMM E2674 Another • One Regular n-simplex Inscribed in
JRM 393 Another Age Problem • Still
FQ H-213 Another Ancient One
TYCMJ 123 Another Arithmetic Mean Inequality
AMM E2472 Another Binomial Coefficient Summation
MM 949 Another Butterfly Problem
JRM 217 Another Coin Game
JRM 352 Another Confounded Age Problem!
FQ H-265 Another Congruence
FQ B-300 Another Convolution
AMM E2589 Another Determinant
JRM 710 Another Grazing Problem
JRM 594 Another Imposter
FQ B-345 Another Limit
FQ B-278 Another Lucas-Fibonacci Congruence
JRM 643 Another Repeater
AMM E2481 Another Solution in Rationals
JRM 550 Another Tongue Twister
AMM E2517 Another Triangle Inequality
JRM 418 Another True Alphametic
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Title Index
Answer 1975–1979 Balancing

FQ H-296 Answer • Bracket Your
JRM 716 Answered • Question
AMM 6220 Antichains • Chains and
MM 902 Antigens
AMM E2499 Appearance • A Problem of Pappus — Final
AMM E2460 Appearance of Integers in Pythagorean Triples
JRM 669 Appearances are Deceiving
AMM 6031 Application • A Random Walk
FQ B-392 Application of (E2 − E − 1)2 • Half-Way
AMM E2529 Application of ψ(x) • An
AMM E2587 Application of Brouwer’s Fixed Point Theorem

• An
AMM E2592 Application of Cayley’s Theorem • An
AMM E2642 Application of Gaussian Integers • An
TYCMJ 35 Application of Lucas’ Theorem • An
AMM E2643 Application of Quadratic Reciprocity • An
FQ B-298 Application of the Binet Formulas • An
TYCMJ 87 Application of the Method of Deficient Means
TYCMJ 84 Application of Wilson’s Theorem
AMM E2624 Applied • Chinese Remainder Theorem
TYCMJ 116 Applied to Occupancy • Inclusion and

Exclusion
FQ B-360 Applying Quaternion Norms
JRM 491 Appreciated • Not Always
JRM 630 Apprentices • The Three
JRM 556 Approach • The Closest
AMM S4 Approaching Equal Folds
JRM 698 Appropriate Sentiment Requested
SIAM 78-1 Approximate Invariance of Disc Averages
TYCMJ 119 Approximate Trisection • Error Analysis of an
AMM 6165 Approximated by Their Mean Values •

Functions
JRM 589 Approximating π
AMM E2459 Approximating Pi with Series-Parallel Circuits
SIAM 76-13 Approximation • An Average Relative Speed
AMM E2616 Approximation by Algebraic Integers
AMM 6240 Approximation by Terms of a Null Sequence
AMM 6125 Approximation for a Matrix • Best Rank-k
FQ B-283 Approximation of cosπ/6 and sinπ/6 •

Rational
TYCMJ 70 Approximation of n! • Rational Number
AMM E2693 Approximation to Arctan • A Rational
SIAM 74-19 Approximation to Special Functions •

One-sided
FQ B-404 Approximations • Golden
FQ B-405 Approximations • Good Rational
AMM 5983 Approximations to

√
2 and π • Rational

AMM E2467 Approximations to Exponential Functions •
Polynomial

FQ B-391 Approximations to Root Five
JRM 494 APT Numbers
SIAM 77-4 Arbitrary Functions • Solutions to Linear

Partial Differential Equations Involving
AMM E2489 Arc Length and Functional Composition
AMM 6007 Arc Length when f ′ = 0 a.e.
MM 981 Arc of a Circle • An
AMM 6074 Arc of a Monotonic Function • Length of
AMM E2693 Arctan • A Rational Approximation to
JRM 669 are Deceiving • Appearances
FQ H-310 Are the Greatest Integers • Fibonacci and

Lucas
MATYC 126 Area • Perimeter and
JRM 744 Area • To The Aria
AMM E2456 Area Enclosed by a Jordan Curve
TYCMJ 79 Area of a Cevian Triangle
AMM E2514 Area of a Convex Polygon
AMM E2576 Area of a Projection of an Ellipsoid
AMM E2563 Area of a Solid • Volume and Surface
JRM 464 Area Problem • A Maximum
TYCMJ 146 Area Property of Medial n-gons • Least
MM 955 Area Triangle • Maximum
MATYC 134 Areas • Equal

AMM E2790 Areas • Filling an Open Set with Squares of
Specified

TYCMJ 109 Areas of Cocyclic Triangles
JRM 395 Arena • The
AMM E2556 Argument • A Rank
AMM 6053 Arguments of Powers of Gaussian Integers •

Density of
JRM 744 Aria Area • To The
MM 961 Arithmetic • Geometric and
JRM 768 Arithmetic • Matrix
JRM 749 Arithmetic Alphametic – 1
JRM 750 Arithmetic Alphametic – 2
SIAM 76-5 Arithmetic Conjecture • An
JRM 719 Arithmetic Lesson
TYCMJ 123 Arithmetic Mean Inequality • Another
JRM 627 Arithmetic Progression • Primes in
AMM E2766 Arithmetic Progression • Primes in an
AMM E2628 Arithmetic Progression • Roots in
FQ B-389 Arithmetic Progression • Transformed
AMM E2684 Arithmetic Progression • Units of Z/(n) in
JRM 712 Arithmetic Progression II • Primes in
AMM E2730 Arithmetic Progressions • Finite Sets and
AMM E2522 Arithmetic Progressions in Sequences with

Bounded Gaps
AMM E2725 Arithmetic Sequence • Bounded Prime Factors

for Terms in an
JRM 459 Arithmetically Correct Alphametics
JRM 458 Arithmetically Correct Alphametics
FQ H-229 Array • A Triangular
JRM 495 Artful Numbers
JRM 581 Artist • Signed by the
JRM 770b Artistry
JRM 347 Assistant • The Metalworker’s
SIAM 78-20 Associated Simplexes • A Volume Inequality

for a Pair of
AMM E1822 Associated with Two Segments • A Locus
AMM 6238 Associativity • Verifying
AMM 6263 Associativity in a Ring
FQ H-217 Assumption • Prime
JRM 407 Astrologers • For The
JRM 580 Astronaut’s Dream • An
SIAM 79-5 Asymptotic Behavior of a Sequence
AMM 6271 Asymptotic Behavior of Sequences Involving en

and n!
AMM S3 Asymptotic to π(n)
SIAM 74-20 Attraction • Gravitational
JRM 560 Auctions • Long
AMM 6026 Automorphism • Number of Elements in a

Group Inverted by an
AMM 6277 Automorphisms • Commuting
AMM 5943 Automorphisms • Transitive
AMM 5938 Automorphisms in a Field • On

Order-Preserving
TYCMJ 46 Average Characterization of Linear Functions •

An
SIAM 75-12 Average Distance • An
AMM E2629 Average Distance between Two Points in a Box
SIAM 78-8 Average Distance in a Unit Cube
SIAM 76-13 Average Relative Speed Approximation • An
AMM E2585 Average Vertex-Degree for Triangulated

Surfaces
SIAM 78-1 Averages • Approximate Invariance of Disc
FQ B-344 Averaging Gives G. P.’s
AMM 5941 Avoiding the Axiom of Choice
AMM 5941 Axiom of Choice • Avoiding the
AMM 6139 Axiomatizable Properties in a First-Order

Predicate Calculus • Finitely
AMM E2289 Axioms • Equivalent Sets of
JRM 686 Aye-Aye, Bertie
AMM 6251 BA = D? • When Does AB = C Imply
AMM 6146 Bacon Write Shakespeare’s Plays? • Did
MM 914 Balancing Weights
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Title Index
Balls 1975–1979 Both

AMM 5427 Balls and an Intersecting Line • Three
AMM 6224 Balls by Weighings • Determining Heavy and

Light
AMM E2724 Balls of Three Colors • An Urn With
AMM E2722 Balls of Two Colors • An Urn with
AMM 5124 Banach Algebra • A
AMM 6283 Banach Space • Star-Shaped Subsets of
AMM 6203 Banach Spaces • Ranges in
AMM 5937 Barreled Space • Norms in a
JRM 727 Base • Trace the
JRM 517 Base Nine • A Pair in
JRM 516 Base Nine • A Pair in
JRM 498 Baseball • Geodesics on a
JRM 441 Baseball Probability
JRM 573 Baseball Problem • A
AMM E2806 Bases • Disjoint Neighborhoods and Countable

Local
AMM 6274 Bases • Disjoint Neighborhoods and Countable

Local
AMM 6184 Bases for Piecewise Continuous Functions
AMM 6268 Bases in Towers of Fields • Relative Integral
JRM 440 Basic Misunderstanding • A
JRM 584 Basics
JRM C1 Basics • Down to the
MM 984 Basis • Orthogonal
AMM 6278 Basis • Translation Invariance Hamel
SIAM 78-2 Basis Polynomials • Two Recurrence Relations

for Hermite
JRM 298 Bath • The Mud
JRM 770a Batman
JRM 326 Beans! • Just
AMM S15 Beckenbach’s Monotonic Integral Functional
FQ B-304 Bee It • So
AMM E585 been Cracked • Miquel Point — A Tough Nut

has
SIAM 79-5 Behavior of a Sequence • Asymptotic
AMM E2675 Behavior Of A Series
AMM 6271 Behavior of Sequences Involving en and n! •

Asymptotic
AMM E2599 Behavior of the Totient Function • Erratic
MM 1024 Behind • Percentage vs. Games
AMM E2568 Bernoulli Differential Equation • A
AMM 5575 Bernstein-type Operators • Some
JRM 686 Bertie • Aye-Aye,
MATYC 98 Bertrand’s Paradox
AMM 5794 Bessel Equation • Solution to
SIAM 77-20 Bessel Function Equal to its Derivative? •

When is the Modified
SIAM 76-10 Bessel Function Series • A
SIAM 76-11 Bessel Function Summation • A
SIAM 79-18 Bessel Functions • A Sum of
JRM 502 Best • No Sequence is
MM 986 Best Constant? • The
TYCMJ 48 Best Fibonacci Number • The
JRM 456 Best Friend • Man’s
AMM 6125 Best Rank-k Approximation for a Matrix
JRM 504 Best Vantage Point • The
JRM 92 Better Sequence • A

TYCMJ 134 Between (a + b + c)/3 and (abc)1/3 •
Interpolating ((ab+ bc+ ca)/3)1/2

AMM 6222 Between a Matrix and Its Adjoint • Relations
AMM E2769 Between Lines in R3 • Distance
AMM 6063 Between the Centers of Two Spheres •

Distance
AMM E2629 between Two Points in a Box • Average

Distance
JRM 344 Bibliopegist’s Puzzle • The
JRM 378 Bicentennial • A Tribute to the Coming United

States
JRM 460 Bicentennial Alphametic • A
JRM 397 Bicentennial Coming!
FQ B-340 Bicentennial Sequence

TYCMJ 42 Bichromatic Hexagons • Complete
FQ H-298 Big Six • The
AMM E2542 Bigger Group Does the Job • A
AMM 6128 Bijection 2ω ↔ Nω

FQ B-333 Bijection in Z+ × Z+

AMM 6100 Bijections on R • Continuous
JRM 660 Bill of Fare
JRM 120 Billiard Table • The Circular
JRM 121 Billiard Table Revisited • The Circular
JRM 348 Billiard Table Theme • A New Wrinkle on the

Old
TYCMJ 43 Binary Operation • A Noncommutative
AMM E2579 Binary Operation in the Plane • A
TYCMJ 81 Binary Operations on Rational Numbers
AMM E2671 Binary Trees • Labelings of
FQ B-298 Binet Formulas • An Application of the
MATYC 70 Bingo
MATYC 70 Bingo – But Not Too Often
TYCMJ 24 Binomial Coefficient Identity • A
AMM S1 Binomial Coefficient Property • Converse and

Analogues of a
AMM E2384 Binomial Coefficient Summation • A Difficult
AMM E2472 Binomial Coefficient Summation • Another
AMM E2685 Binomial Coefficients • A Congruence for a

Sum of
AMM E2681 Binomial Coefficients • An Identity with
AMM E2686 Binomial Coefficients • LCM of
AMM E2640 Binomial Coefficients • Powers of Two and
FQ B-310 Binomial Coefficients • Special
FQ B-394 Binomial Coefficients • Triple Products and
FQ B-380 Binomial Convolution
MM 1055 Binomial Distribution
AMM 6170 Binomial Expansion Modulo a Prime • The

Number of Terms in a
FQ B-338 Binomial Expansions • Difference of
MM 912 Binomial Identities
AMM E2601 Binomial Sum and Legendre Polynomials
AMM E2565 Bipartite Graph • Regularizing a
AMM 6079 Bipartite Graphs
AMM E2795 Bipartite Graphs • Properties of Regular
AMM E2003 Birds • Watched
JRM 650 Birds on a Wire
MATYC 135 Birthday, Miss Cohen • Happy
MM 967 Bisectors • Angle
JRM 718 Blackpool Zoo • From
JRM 729 Blind Man’s Keys • The
JRM 96 Blind Penney-Ante
AMM E2762 Block Matrix Equal to a Kronecker Product •

A
AMM E2762 Block Matrix Not Equal to a Kronecker

Product • A
FQ B-363 Blocks • Overlapping Palindromic
AMM 5992 Blocks in a Hermitian Matrix • Sum of
TYCMJ 93 Blocks of Digits
JRM 412 Blowing Our Own Horn
SIAM 78-9 Board of Directors Problem • A Variant of

Silverman’s
JRM C4 Board of Directors’ Problem • The
JRM 724 Bodies • Heavenly
AMM E2714 Bodies • Intersection of Moving Convex
AMM 6098 Bodies • Maximally Symmetric Convex
AMM 6089 Bodies in n-space • Convex
AMM E2617 Body • Three Parallel Sections of a Convex
SIAM 77-3 Bohr • A Definite Integral of N.
JRM 423 Bold vs. Cautious
MM 1052 Boolean Rings • Isomorphic
AMM E2536 Boolean Rings • When xm = x Defines
AMM 6023 Borel Sets in a Product Space
AMM 6023 Borel Subsets of a Product Space
AMM 6023 Borel Subsets of a Product Space
AMM E2448 Both Positive Semi-definite • A Matrix and its

Matrix of Reciprocals
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Title Index
Bound 1975–1979 Characterization

MM 952 Bound • A Constant
AMM 4052 Bound for ez in an Annulus
AMM E2622 Bound for an Integral • An Upper
AMM 6237 Bound on Zeros of a Polynomial
AMM 6025 Boundary of a Set • Distance to the
TYCMJ 148 Boundary of a Triangle • Centroid of the
AMM E2522 Bounded Gaps • Arithmetic Progressions in

Sequences with
AMM 5995 Bounded Operators • Analytic Functions of
AMM E2725 Bounded Prime Factors for Terms in an

Arithmetic Sequence
AMM 6256 Bounded Variation • Additive Set Functions of
SIAM 77-7 Boundedness Condition • A
AMM E2782 Bounds for

∑∞
n k−2

AMM E2447 Bounds for k-Satisfactory Sequences
SIAM 74-9 Bounds for the Zero of a Polynomial
AMM E2629 Box • Average Distance between Two Points in

a
AMM E2555 Box • Indefinite Quadratic Form on a
TYCMJ 86 Box Construction • Integer Calculus
JRM 390 Box Nesting • Two-Way
AMM E1255 Brachistochrone Paths • Broken-Line
FQ B-417 Bracket Function • Not a
MM 915 Bracket Function Equality
FQ H-296 Bracket Your Answer
JRM 358 “Bread” for the Sweets
AMM E2524 Brick Packing Problem • A
TYCMJ 100 Brickery Trickery
JRM 211 Bricks • Tricks With
MM 944 Bridge Problem • An Old
AMM E1255 Broken-Line Brachistochrone Paths
AMM E2587 Brouwer’s Fixed Point Theorem • An

Application of
FQ H-152 Brush the Dust Off
JRM C8 Brute Force Problem? • A
JRM 477 Brute Force Program • A
JRM 609 Buffs • For Computer
SIAM 78-17 Bunyan’s Washline • Paul
MM 949 Butterfly Problem • Another
AMM 6091 Cm • Mapping from Γn to
AMM 6042 C∞ Functions Vanishing Outside [0, 1]
JRM 527 Cab on a Continuum
JRM 728 Calculations • Fibonacci
AMM E2509 Calculator Efficiently • Using a
JRM 420 Calculator Sums
AMM 6139 Calculus • Finitely Axiomatizable Properties in

a First-Order Predicate
MM 1067 Calculus • Shortest Chord sans
AMM 5988 Calculus • Zeros in the Fractional
TYCMJ 86 Calculus Box Construction • Integer
JRM 759 Calendar • The Four-Cube
JRM 313 Calendar Girl Revisited • The
JRM 419 Calendar Problem • A
JRM 634 Call • Port of
FUNCT 3.5.2 Camera • Manikato and the TV
JRM 553 Camp Correspondence
JRM 552 Camp Correspondence
JRM 551 Camp Correspondence
JRM 375 Can • Cruise of the Sidewinder, or How to

Tack in a Tin
AMM E2572 Can a Derivative be Differentiable at a Limit

Point of its Discontinuities?
TYCMJ 55 Can a Number be Equal to its Logarithm?
TYCMJ 75 Can Be Trisected • Angles That
JRM 646 Cans • Packing Grapefruits and Grapefruit

Juice
AMM 6213 Cantor Set • Subsets of the
JRM 548 Caped Crusaders
JRM 421 Carbon Carbonate Collation • Comprehensive
JRM 421 Carbonate Collation • Comprehensive Carbon
TYCMJ 89 Card • Magic
SIAM 76-17 Card Shuffle • A Reverse

AMM 6221 Cardinal Numbers • Groups and
AMM E2666 Cardinality of a Set of Subsets • An Estimate

for the
JRM 757 Cards • Equi-Spaced
MM 1022 Cards • Ordering
AMM E2515 Careless File Clerk • The
JRM C7 Carlo Problem • A Monte
JRM 480 Carlo Problem • A Monte
TYCMJ 19 Carried Too Far • An Analogy
MATYC 113 Carrying in Addition
AMM E2647 Case of the Jordan Curve Theorem • An

Elementary
JRM 639 Castle Mate
MM 1049 Catalan Numbers
AMM E2799 Catalan Numbers • Superfactorials and
AMM 6272 Categorical Theories • Complete
JRM 346 Caterer • The Numiphobic
AMM 6164 Cauchy Random Variables
JRM 423 Cautious • Bold vs.
AMM E2592 Cayley’s Theorem • An Application of
AMM 6096 Cells of a Chessboard • Connected
AMM E2793 Center • Inversion of the Incenter,

Circumcenter, Nine-points
MM 900 Centerfold • Not a
AMM 3887 Centers • Circles with Collinear
AMM 3887 Centers • Three Circles with Collinear
MM 898 Centers in a Triangle • Five
AMM 6063 Centers of Two Spheres • Distance Between

the
AMM 6039 Central Idempotents in a Power Series Ring
AMM E2723 Central Limit Theorem • An Insensitive
AMM 5976 Centralizer Groups • Trivial
AMM E2470 Centroid • A Simplex Equality Characterizing

the
TYCMJ 117 Centroid • Least Squares Property of the
AMM E2715 Centroid • Triangle
TYCMJ 148 Centroid of the Boundary of a Triangle
AMM E2646 Certain Chords • Alternating Sum of
AMM 5872 Certain Convex Polytope • Volume of a
AMM E2560 Certain Sums • Non-congruence of
AMM E2453 Certain Trigonometric Values • The Linear

Dependence of
JRM 492 Certainly True
TYCMJ 79 Cevian Triangle • Area of a
AMM 6134 Chain Conditions In Rings
AMM 5540 Chains • Dense
JRM 702 Chains • Power
JRM 566 Chains • Prime
AMM 6220 Chains and Antichains
JRM 679 Chains and Prime Circles • Prime
JRM 339 Challenge • A
FQ B-296 Challenging Problem • A Most
JRM 447 Change • A Dollar’s Worth of
JRM 667 Change • Small
JRM 666 Change • Small
FQ B-401 Change of Pace for F.Q.
AMM E2765 Change of Variable Formula for Definite

Integrals
MM 1019 Characteristic of a Ring
AMM E2711 Characteristic Polynomial • Irreducible
AMM E2635 Characteristic Polynomial of a Matrix
MM 1005 Characterization • A Popular
AMM 6173 Characterization of sinx • A
AMM E2503 Characterization of ζ(4) • A Geometric
AMM E2731 Characterization of a Polynomial
AMM 6166 Characterization of Convexity • Analytic
AMM 6200 Characterization of Integers That Differ by

Two • A
AMM 6161 Characterization of Irrationals by Distribution

of Residues • A
AMM E2661 Characterization of Least Common Multiples •

Functional
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Characterization 1975–1979 Collection

TYCMJ 46 Characterization of Linear Functions • An
Average

AMM E2611 Characterization of Primes • A
TYCMJ 32 Characterization of the Parabola • Diameter
AMM E2583 Characterizing Solutions of a Functional

Equation
AMM E2470 Characterizing the Centroid • A Simplex

Equality
AMM S9 Characterizing the Divisors of 24
MM 943 Charlemagne’s Magic Squares
JRM 166 Chase • The Circular
AMM E2796 Chebyshev Interpolation
AMM E2580 Chebyshev Polynomials
JRM 446 Check • Perpetual
JRM 184 Checker Problem • A Minimum-Move
AMM E2612 Checkerboard • Diamond Packing of a Chinese
TYCMJ 145 Checkerboard • Euler Line on a
AMM E2508 Checkerboard with Dominoes • Tiling a
AMM E2665 Checkerboards • Partial
TYCMJ 78 Checkerboards with Trominos • Tiling
JRM 430 Chess • Alphametic
JRM 493 Chess • Straightjacket
JRM 434 Chess Alphametic • An Amazing
JRM 561 Chess Mystery
JRM 758 Chess Mystery II
JRM 185 Chess Problem • A Minimum-Move
AMM 6211 Chessboard • Coloring a
AMM 6096 Chessboard • Connected Cells of a
AMM E2605 Chessboard • Labels on a
AMM E2732 Chessboard Squares • Labeling
JRM 534 Chick? • Which
JRM 659 Children’s Ages • The
JRM 647 Chili Poker
AMM E2612 Chinese Checkerboard • Diamond Packing of a
AMM E2624 Chinese Remainder Theorem Applied
AMM 5941 Choice • Avoiding the Axiom of
JRM 431 Choice • Take Your
JRM 428 Choice of Games
AMM E2710 Choice Sets • Outer Measures of
MM 1067 Chord sans Calculus • Shortest
AMM E2646 Chords • Alternating Sum of Certain
TYCMJ 33 Chords • Irrational
MM 880 Chords • Semicircular
JRM 370 Christmas Tree Problem • The
AMM E2697 Circle • A Dense Subset of the Unit
MM 981 Circle • An Arc of a
SIAM 78-13 Circle • Expected Values for Random Regions

of a
TYCMJ 53 Circle • Lattice Points on a
JRM 535 Circle • Points on a
JRM 394 Circle • Polygons in a
MM 920 Circle • Radius of Nine-Point
MATYC 93 Circle • The Largest
JRM 679 Circles • Prime Chains and Prime
TYCMJ 22 Circles • Rational
AMM E2746 Circles for a Convex Polygon
JRM 382 Circles in a Square
JRM 354 Circles in a Triangle
AMM E2475 Circles Kissing Precisely • Tritangent
AMM 3887 Circles with Collinear Centers
AMM 3887 Circles with Collinear Centers • Three
AMM E2459 Circuits • Approximating Pi with

Series-Parallel
AMM 5966 Circuits in Maximal Planar Graphs •

Hamiltonian
JRM 120 Circular Billiard Table • The
JRM 121 Circular Billiard Table Revisited • The
JRM 166 Circular Chase • The
AMM E2793 Circumcenter, Nine-points Center • Inversion

of the Incenter,
TYCMJ 27 Circumcircle of a Rectangle • On The

AMM E2512 Circumcircles • Intersecting Triangles and
Their

JRM 466 Circumscribing with a Square
AMM E2641 Class of Convex Polygons • A
AMM 5944 Class of Operators • Weak Sequential Closure

of a
AMM 6113 Class of Stieltjes-Riemann Integrable Functions

• A
AMM E2781 Classes mod n • Distinct Sums of the Residue
AMM 6199 Classes Under a Parabola • Permuted Residue
AMM E2691 Classical Inequalities
AMM 6243 Classical Series

∑
(−1)nn−1 logn • The

JRM 582 Clean-Up • Parisian
AMM E2515 Clerk • The Careless File
AMM E2638 Clique • Leaders of a Maximal
JRM 471 Clock Puzzle • The
MATYC 80 Close • Let’s Get
FQ B-341 Close Factoring
FQ H-283 Close Ranks!
MATYC 125 Closed • Not
AMM S16 Closed Complex Additive Subsemigroups
MM 1006 Closed Curve • A Simple
AMM 6129 Closed Curve • Distance from a Simple
AMM 6080 Closed Disk • Power Series in a
FQ B-343 Closed Form
AMM 6255 Closed Graph Theorem
AMM 6014 Closed Subsets Countable • Uncountable Sets

with All
JRM 556 Closest Approach • The
MM 1079 Closure is R
AMM 6107 Closure of σ(n+ 1)/σ(n) • The
MM 982 Closure of {f(n+ 1)/f(n)}
AMM 5944 Closure of a Class of Operators • Weak

Sequential
AMM 6260 Closure, Interior, and Union • Sets Formed by

Iterated
MM 1034 Cloverleaves
JRM 523 Coast • Coast to
JRM 522 Coast • Coast to
JRM 522 Coast to Coast
JRM 523 Coast to Coast
JRM 521 Cockney Alphametic • A
TYCMJ 109 Cocyclic Triangles • Areas of
MATYC 115 Coefficient • Spearman
TYCMJ 24 Coefficient Identity • A Binomial
AMM S1 Coefficient Property • Converse and Analogues

of a Binomial
AMM E2384 Coefficient Summation • A Difficult Binomial
AMM E2472 Coefficient Summation • Another Binomial
AMM E2685 Coefficients • A Congruence for a Sum of

Binomial
AMM E2681 Coefficients • An Identity with Binomial
MM 1087 Coefficients • Irrational
AMM E2686 Coefficients • LCM of Binomial
MM 978 Coefficients • Positive
AMM E2640 Coefficients • Powers of Two and Binomial
FQ B-310 Coefficients • Special Binomial
FQ B-394 Coefficients • Triple Products and Binomial
SIAM 74-22 Coefficients of a Function Involving Elliptic

Integrals of the First Kind • Fourier
AMM 6084 Coefficients of Tchebychef Polynomials •

Majorizing Properties of
MATYC 135 Cohen • Happy Birthday, Miss
MM 643 Coin • The Unbiased
JRM 311 Coin Conundrum • A Complicated
JRM 463 Coin Game • A
JRM 217 Coin Game • Another
SIAM 77-11 Coin Tossing Problem • A
JRM 618 Coins • Efficiency of Sets of
JRM 448 Coins • More
JRM 421 Collation • Comprehensive Carbon Carbonate
AMM 6061 Collection of n× n Matrices • A Convex
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Title Index
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AMM 6022 Collection of Sets • Minimal Intersection in a
AMM 3887 Collinear Centers • Circles with
AMM 3887 Collinear Centers • Three Circles with
AMM 5790 Collinearity Preserving Maps in Affine Spaces
AMM 6267 Collineations of Projective Spaces
AMM 6236 Collineations of Projective Spaces
AMM 6211 Coloring a Chessboard
AMM 6215 Coloring Maps • Linear Systems for
AMM 6034 Coloring the Edges of a Graph
AMM E2724 Colors • An Urn With Balls of Three
AMM E2722 Colors • An Urn with Balls of Two
AMM E2794 Column-Sums • (0, 1)-matrices with Prescribed

Row- and
SIAM 79-9 Combination of Jacobian Elliptic Functions •

Fourier Series for a
AMM 6118 Combinations of Entire Functions without

Zeros • Linear
SIAM 75-4 Combinatorial Identity • A
AMM E2454 Combinatorial Identity • A
AMM E2602 Combinatorial Identity • A
AMM 6010 Combinatorial Identity • A
SIAM 79-13 Combinatorial Identity • A
SIAM 78-6 Combinatorial Identity • A
SIAM 79-13 Combinatorial identity • A
SIAM 75-10 Combinatorial Problem • A
FQ B-292 Combinatorial Problem • A
AMM 6252 Combinatorial Sum • Limit of a
AMM 6060 Combinatorics in Finite Sets
MATYC 79 Coming and Going
JRM 378 Coming United States Bicentennial • A Tribute

to the
JRM 397 Coming! • Bicentennial
JRM 439 Coming, Ready or Not • It’s
JRM 638 Commentary • Political
JRM 688 Commentary – 1
JRM 689 Commentary – 2
MATYC 102 Common • Something in
AMM 6086 Common Divisors and Square Free Integers
AMM E2570 Common Multiple • Lattice Points and Least
AMM 5413 Common Multiple of Consecutive Terms in a

Sequence • Least
AMM E2661 Common Multiples • Functional

Characterization of Least
AMM 5940 Commutative Rings • Ideals in
TYCMJ 40 Commutativity Problem • A
AMM 5969 Commutators • The Subring of
AMM 6277 Commuting Automorphisms
AMM E2742 Commuting Matrices • Rarely
AMM 6122 Compact Set • The Nearest Point in a
AMM E2614 Compact Set • Union of an Open and a
AMM 5959 Compact Topological Groups • Locally
JRM 554 Company Problem • The Fire
AMM 6046 Comparing Decompositions of Polynomials
TYCMJ 63 Comparison of Series
JRM 505 Compass • Watson’s Rusty
FQ B-376 Complementary Primes
AMM 6188 Complementary Subsets of the Irrationals
AMM E2700 Complemented Finite Lattices
AMM 5965 Complements of Kernels
TYCMJ 42 Complete Bichromatic Hexagons
AMM 6272 Complete Categorical Theories
AMM E2672 Complete Graphs • Orientation and

Vertex-Coloring of
AMM 5773 Complete Linear Spaces
MM 948 Complete Residue Systems
AMM 5933 Complete Subgraph of a Random Graph •

Infinite
AMM 5957 Completeness Criterion of Orthonormal

Systems in L2

MM 1036 Complex • Real Not
AMM S16 Complex Additive Subsemigroups • Closed
AMM 6191 Complex Polynomial • Location of a Zero of a

SIAM 75-14 Complex Polynomial • Simultaneous Iteration
towards All Roots of a

MATYC 68 Complex Problem • A
JRM 251 Complex Rationals
MATYC 88 Complex Route to Real Solution
JRM 311 Complicated Coin Conundrum • A
JRM 401 Composer • Rewards For Alphametics
JRM 402 Composer • Rewards For Alphametics
FQ B-358 Composite • Almost Always
FQ B-302 Composite Fibonacci Neighbors
JRM 319 Composite Generator • A
AMM E2679 Composite Number • A
AMM E2800 Composite Numbers • A Test for
AMM 6208 Composite of Polynomials • Condition for a
AMM E2489 Composition • Arc Length and Functional
AMM 6244 Composition of Functions
AMM 6117 Compositions of Two Entire Functions • Linear
JRM 421 Comprehensive Carbon Carbonate Collation
AMM E2588 Computation of a Determinant
MM 1029 Computer • Erdős and the
JRM 609 Computer Buffs • For
AMM E2650 Computing a Galois Group
FQ H-308 Con-Vergent
JRM 596 Concatenation Problem • A
AMM 6261 Concentrated Sets of Reals
MATYC 57 Concern • An Analytic
FQ H-264 Conclusion • Sum-ary
MM 1028 Concurrent Perpendiculars
TYCMJ 132 Concurrent Planes
SIAM 77-7 Condition • A Boundedness
MM 1032 Condition • A Muntz-like
MM 951 Condition • A Trace
AMM E2631 Condition • Prime Satisfying Mirimanoff’s
AMM 6266 Condition f(x, y) ≤ g(x)g(y) • The
AMM 6033 Condition for |f(z)| < 1, |z| < 1
AMM 6208 Condition for a Composite of Polynomials
AMM 5880 Condition for a Quadratic
AMM E435 Condition for Primeness • A Necessary but not

Sufficient
TYCMJ 144 Condition of Order 1 + ε • Hölder
AMM 6279 Condition on Entire Functions • A
AMM 6167 Condition to Be Constant
AMM 6264 Conditions for Unique Factorization
AMM 6134 Conditions In Rings • Chain
MM 971 Conduits • Efficient
AMM E2593 Configuration • Counting Points in a
JRM 198 Configurations • Some
AMM 6047 Conformal Maps of Ellipses onto Ellipses
JRM 352 Confounded Age Problem! • Another
MM 1044 Congruence • A
AMM E2497 Congruence • A Fibonacci-type
FQ B-277 Congruence • A Lucas-Fibonacci
FQ H-265 Congruence • Another
FQ B-278 Congruence • Another Lucas-Fibonacci
FQ B-324 Congruence • Fibonacci
FQ B-366 Congruence • Lucas
FQ B-403 Congruence • Lucas
FQ H-221 Congruence for Fn and Ln
AMM E2685 Congruence for a Sum of Binomial Coefficients

• A
FQ B-378 Congruence Mod 3
FQ B-379 Congruence Mod 5
AMM E2461 Congruence Modulo n! • A
AMM E2763 Congruence with Nine Solutions • A Third

Degree
FQ B-368 Congruences • Convoluting for

AMM E2773 Congruences xk ≡ x,
∏

(x − ai) ≡ 0 • The
Polynomial

AMM E570 Congruent Conics • Six
AMM 6210 Congruent to I • Integral Matrices
FQ B-365 Congruent to a G. P.
JRM 595 Congruent Triangles • Almost
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Title Index
Conic 1975–1979 Cotangents

AMM E2751 Conic • Orthogonal Triad Meeting a
AMM E2625 Conics • A Property of
AMM E570 Conics • Six Congruent
JRM 262 Conjecture • N -Space
JRM 600 Conjecture • A Pentomino
JRM 391 Conjecture • A Pentomino
JRM 445 Conjecture • A Topological
JRM 306 Conjecture • A Triangle
SIAM 76-5 Conjecture • An Arithmetic
JRM 388 Conjecture • The Heterogeneous Tiling
JRM 497 Conjecture • The Quadrilateral
SIAM 76-16 Conjecture on a Finite and an Infinite Product
SIAM 78-3 Conjecture on Determinants • A
JRM 512 Conjecture Regarding the Harmonic Series • A
SIAM 77-5 Conjectured Increasing Infinite Series • A
SIAM 77-12 Conjectured Inequalities
SIAM 77-15 Conjectured Minimum Valuation Tree • A
SIAM 79-14 Conjectured Property of Legendre Functions •

A
AMM 5931 Conjugates of Algebraic Integers • The
AMM 6096 Connected Cells of a Chessboard
MM 932 Connected Sets
JRM 767 Consecutive Integers
TYCMJ 21 Consecutive Integers • Sets of n
AMM E2786 Consecutive Integers 2x2 − 1, 2x2 • The Two
JRM 654 Consecutive Primes
AMM 6058 Consecutive Quadratic Nonresidues
AMM 5413 Consecutive Terms in a Sequence • Least

Common Multiple of
AMM E2480 Consequence of Jensen’s Inequality • A
AMM E2463 Consequence of Wolstenholme’s Theorem • A
FQ H-289 Consideration • Series
AMM 6167 Constant • Condition to Be
TYCMJ 122 Constant • Euler’s
AMM E2748 Constant as a Limit • Euler’s
MM 952 Constant Bound • A
AMM E2535 Constant Direction • Acceleration with
MM 883 Constant Sequence
MM 942 Constant Sum • A
MATYC 129 Constant Volume
MM 986 Constant? • The Best
AMM 5935 Constrained Equality • A
SIAM 74-18 Constrained Minimization of an Integral

Functional
AMM 6017 Constructing ‘Smaller’ Norms
JRM 562 Construction • A Difficult
TYCMJ 86 Construction • Integer Calculus Box
MATYC 99 Construction • Triangle
AMM 6180 Construction for Ideals • A
MM 1054 Constructions • Two Euclidean
MM 1068 Contemplation • Navel
AMM E2541 Continuation of −−+−−+ · · ·
FQ H-278 Continue
MATYC 89 Continued Fraction • Derivative of a
MATYC 103 Continued Fraction Derivative
AMM 5897 Continued Fraction for e1/z

AMM 6273 Continuity • A False Criterion for
TYCMJ 92 Continuity • Infectious
AMM 5888 Continuity of Functions with Partial

Derivatives
MM 907 Continuous • Nowhere
AMM 6100 Continuous Bijections on R
AMM 6027 Continuous Function • Smoothing a
AMM 6000 Continuous Functional • A
AMM 6184 Continuous Functions • Bases for Piecewise
AMM 6140 Continuous Functions • Derivatives of
AMM E2610 Continuous Functions • Separately
AMM 6093 Continuous Linear Functionals
AMM 6133 Continuous Map • Iteration of a
AMM 5978 Continuous Mapping R→ R • One-One
AMM 6081 Continuous, Quasi-continuous Functions •

Nowhere

JRM 527 Continuum • Cab on a
AMM S8 Contraction Maps • Weak
AMM 5986 Contractive Self Maps • Triangle
JRM 337 Contradiction • A
JRM 408 Contradiction • No
JRM 311 Conundrum • A Complicated Coin
JRM 751 Conundrum • Culinary
JRM 622 Convergence Inquiry • A
TYCMJ 60 Convergence of (xn/nε)
AMM E2784 Convergence on (0,∞) • Uniform
SIAM 77-14 Convergence Problem • A Matrix
AMM E2626 Convergent and Divergent Series
MM 958 Convergent and Periodic
MM 913 Convergent Angles
MM 938 Convergent Example • A
AMM E2591 Convergent Series • Null Sequences and
MM 1025 Convergent Subseries
MM 922 Converges • The Series
MM 972 Converges to One
MM 1021 Converges to One
AMM E2808 Converging to a Root • Iterations
MATYC 137 Converse • A Theorem But Not Its
AMM S1 Converse and Analogues of a Binomial

Coefficient Property
AMM 6174 Converses to Uniform Integrability • More on
SIAM 75-1 Conversion • Idealized Optical Fibre Mode
AMM E2714 Convex Bodies • Intersection of Moving
AMM 6098 Convex Bodies • Maximally Symmetric
AMM 6089 Convex Bodies in n-space
AMM E2617 Convex Body • Three Parallel Sections of a
AMM 6061 Convex Collection of n× n Matrices • A
AMM 6071 Convex Domain • Analytic Mappings of the

Unit Disk on a
MM 1062 Convex Hexagon • Ellipse and
AMM E2514 Convex Polygon • Area of a
AMM E2746 Convex Polygon • Circles for a
AMM E2641 Convex Polygons • A Class of
AMM 5872 Convex Polytope • Volume of a Certain
MM 963 Convex Quadrilaterals
AMM 6166 Convexity • Analytic Characterization of
TYCMJ 149 Convexity of (x+ 1/x)α

AMM E2694 Convexity of a Polyhedron
AMM 5297 Convexity Under Multiplication • Preservation

of
FQ B-290 Convoluted F2n
FQ B-368 Convoluting for Congruences
FQ B-300 Convolution • Another
FQ B-380 Convolution • Binomial
FQ B-346 Convolution • Triangular
FQ B-299 Convolution Formula • A
AMM 5984 Convolution of Null Sequences
FQ B-295 Convolution or Double Sum
AMM 6145 Convolution Products on Functions N→ C
JRM 673 Coolest Sequence • The
MM 916 Coordinates • Trilinear
MM 962 Coplanar Points
JRM 242 Corners • Turning
AMM E2452 Corners is not so Easy • Cutting
JRM 458 Correct Alphametics • Arithmetically
JRM 459 Correct Alphametics • Arithmetically
FQ H-225 Corrected Oldie • A
JRM 551 Correspondence • Camp
JRM 552 Correspondence • Camp
JRM 553 Correspondence • Camp
FQ B-283 cosπ/6 and sinπ/6 • Rational Approximation

of
FQ B-373 Cosine • Golden
TYCMJ 47 Cosines • A Law of Sines and
MM 1033 cosines • Signs and
TYCMJ 128 Cosines • Sum of a Progression of
TYCMJ 143 Cotangent • Inner Product Formula for
MM 928 Cotangents • Limit of
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Title Index
Count 1975–1979 Definite

FQ B-357 Count • Golden Ratio Inequality
AMM 6014 Countable • Uncountable Sets with All Closed

Subsets
AMM 6274 Countable Local Bases • Disjoint

Neighborhoods and
AMM E2806 Countable Local Bases • Disjoint

Neighborhoods and
AMM 6168 Counterexample
AMM E2797 Counterexample • An Easy
MATYC 94 Counterexample • Palindromic
JRM 740 Countermeasures • Cryptological
AMM E2546 Counting • Hilbert Function and
AMM 6070 Counting b for which φ(n)/n = a/b
MM 924 Counting n-Tuples
FQ B-413 Counting Equilateral Triangles
MM 939 Counting in Cubes
FQ B-377 Counting Lattice Points
AMM E2593 Counting Points in a Configuration
JRM 294 Counting Problem • A
TYCMJ 54 Counting Problem • A
MM 1077 Counting Pythagorean Triangles
FQ B-385 Counting Some Triangluar Numbers
MM 960 Counting Squares and Cubes
JRM 406 Couple • The Odd
JRM 405 Couple • The Odd
AMM 6114 Covariance Distribution • The
AMM E2654 Cover of a Finite Set • Minimum Subcover of a
MM 969 Covering • Cube
AMM E2785 Covering V − {0} with Hyperplanes in Fq
AMM 5998 Covering a Set of Integers
AMM E2564 Covering Vertices of Four-valent Graphs
AMM E585 Cracked • Miquel Point — A Tough Nut has

been
JRM 246 Craps • Game Theoretic
SIAM 79-10 Credibility Functions
AMM E2582 Crisscrossing Partitions of a Finite Set
AMM 6273 Criterion for Continuity • A False
AMM 5957 Criterion of Orthonormal Systems in L2 •

Completeness
JRM 678 Cross-Number
JRM 349 Cross-Number Puzzle
AMM E1298 Cross-Section of a Tetrahedron • Largest
JRM 704 Crossnumber • Decimal-Octal
JRM 798 Crossnumber • Square
JRM 473 Crossnumber Puzzle • A
JRM 664 Crowd Pleaser
JRM 375 Cruise of the Sidewinder, or How to Tack in a

Tin Can
JRM 438 Cruising Down The River
JRM 548 Crusaders • Caped
MM 894 Cryptarithm • A
MATYC 64 Cryptarithm • A Unique
MM 903 Cryptarithm • Unique
JRM 740 Cryptological Countermeasures
SIAM 74-8 Crystal Growth • An Integral Equation for
SIAM 78-8 Cube • Average Distance in a Unit
SIAM 79-16 Cube • Resistances in an n-Dimensional
JRM 733 Cube and Spheres
MM 969 Cube Covering
JRM 783 Cube Cutting
JRM 764 Cube Endings
AMM E2349 Cube in a Tetrahedron • Fitting a
JRM 628 Cube Pattern Puzzle • A
JRM C2 Cube Roots • Square Roots and
AMM E2446 Cube Roots Modulo m • Unique
MM 939 Cubes • Counting in
MM 960 Cubes • Counting Squares and
FQ B-342 Cubes • Perfect
FQ H-291 Cubes • Square Your
TYCMJ 80 Cubes • Sum of
FQ B-350 Cubes and Triple Sums of Squares
JRM 787 Cubes into Tori • Cutting

AMM 6179 Cubes with Integral Vertices
MM 1074 Cubic • Smallest Root of a
MM 905 Cubic • Tangent Lines to a
FQ B-355 Cubic Identity
SIAM 74-3 Cubic Interpolation • Davidon’s
TYCMJ 97 Cubic Quandary
AMM 5895 Cubic Trees
AMM 5979 Cubics on |z| < 1 • Schlicht
JRM 751 Culinary Conundrum
AMM E2636 Culture • Microbe
JRM 668 Current Events
MM 1006 Curve • A Simple Closed
AMM E2456 Curve • Area Enclosed by a Jordan
AMM 6129 Curve • Distance from a Simple Closed
MM 884 Curve • Frequency of a Sine
AMM E2647 Curve Theorem • An Elementary Case of the

Jordan
AMM 6223 Curves • Isoptic
MATYC 114 Curves • Orthogonal
JRM 351 Curves and Four Problems • Two
TYCMJ 17 Cut by a Parabola • Line Segments
JRM 247 Cutie Pie • A
JRM 783 Cutting • Cube
AMM E2452 Cutting Corners is not so Easy
JRM 787 Cutting Cubes into Tori
MM 1059 Cyclic Extrema
AMM 6205 Cyclic Groups • Torsion-Free Finite Extensions

of
AMM 4603 Cyclic Inequality • Shapiro’s
AMM E2683 Cyclic Matrix • Determinant of a
AMM S6 Cyclic Power Inequality • A
AMM E2557 Cyclic Quadrilaterals • ‘Perfect’
AMM E2660 Cyclic Quadrilaterals of Given Perimeter •

Integral
AMM 6059 Cyclic Sylow Subgroups of Metacyclic Groups
JRM 629 Cylinder • The Sphere in the
AMM E2728 Cylinders • Mutually Tangent
AMM E2465 d(A+B) = 1 • d(A) = d(B) = 0, yet
AMM E2465 d(A) = d(B) = 0, yet d(A+B) = 1
AMM E2466 d(A) = d(B) = 0, yet d(AB) = 1
AMM E2466 d(AB) = 1 • d(A) = d(B) = 0, yet

AMM 5968 Dkf(0) • The Set of Zeros of Entire Functions
with Integral

TYCMJ 147 Dance • Square
JRM 597 Dangerous Hand • The
AMM 6132 “Darboux Property” • A Function with the
SIAM 74-3 Davidon’s Cubic Interpolation
FQ H-294 Dawn • ∆
FQ H-211 Dead • Return from the
JRM 300 Dear Watson” • “My
JRM 669 Deceiving • Appearances are
MATYC 87 Decimal • Repeating
TYCMJ 29 Decimal Digit Shifting
MM 1046 Decimal Divisibility
JRM 704 Decimal-Octal Crossnumber
JRM 761 Declaration Signers
AMM E2768 Decomposing an Interval into Homeomorphic

Subsets
TYCMJ 82 Decomposition • Partial Fractions
AMM 6015 Decomposition of Integers • Prime
AMM 6046 Decompositions of Polynomials • Comparing
AMM 5963 Decreasing Joint Densities • Expectations in
JRM 296 Deep Water • In
TYCMJ 87 Deficient Means • Application of the Method of
AMM 5967 Deficient Odd Numbers • Density of
AMM E2716 Defined by a Point Interior to a Triangle • Six

Segments
AMM E2536 Defines Boolean Rings • When xm = x
AMM 6072 Definite Hermitian Matrix • Positive
SIAM 78-19 Definite Integral • A
SIAM 77-8 Definite Integral • A
SIAM 77-3 Definite Integral of N. Bohr • A
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Title Index
Definite 1975–1979 Dini

AMM E2765 Definite Integrals • Change of Variable
Formula for

AMM 6095 Definite Matrices • Positive
JRM 454 Definitely Non-Canadian Alphametics
JRM 455 Definitely Non-Canadian Alphametics
AMM E2763 Degree Congruence with Nine Solutions • A

Third
AMM 6043 Degrees of Irreducible Polynomials over a Field
JRM 632 Deluge • A Diophantine
SIAM 76-19 Demagnetizing Fields • A Double Integral from
AMM 5540 Dense Chains
AMM E2598 Dense Rational Set with Irrational Distances
AMM E2788 Dense Sequences in [0, 1]

AMM 6131 Dense Set in L1(−∞,∞) • A
AMM E2697 Dense Subset of the Unit Circle • A
AMM 5963 Densities • Expectations in Decreasing Joint
TYCMJ 111 Densities of Subsets of the Natural Numbers
AMM 5949 Density of σ(n)/n
AMM 6053 Density of Arguments of Powers of Gaussian

Integers
AMM 5967 Density of Deficient Odd Numbers
AMM 5735 Density of Pairs with Same Prime Factors
AMM 6065 Density of the Sum of Divisors Function • The
MATYC 112 Denumerable vs Divergent
AMM 6021 Dependence in lp • Linear
AMM E2453 Dependence of Certain Trigonometric Values •

The Linear
AMM 6234 Derangement Number to Ménage Number •

Ratio of
MATYC 83 Derivative • An Nth Order
MATYC 103 Derivative • Continued Fraction
AMM E2572 Derivative be Differentiable at a Limit Point of

its Discontinuities? • Can a
MATYC 89 Derivative of a Continued Fraction
AMM 6185 Derivative of a Function • Inequality of Lp

Norms of a
SIAM 77-20 Derivative? • When is the Modified Bessel

Function Equal to its
AMM E2767 Derivatives • A Determinant Involving
AMM 5888 Derivatives • Continuity of Functions with

Partial
AMM E2550 Derivatives • Signs of Successive
AMM E2756 Derivatives • Zeros of Successive
AMM E2755 Derivatives of a Fading Function • Zeros of
AMM 6140 Derivatives of Continuous Functions
JRM 163 Desperate Straits

AMM E2729 Det[C
im+j−1
j ]

JRM 610 Detective Work
SIAM 79-3 Determinant • A
SIAM 74-14 Determinant • A Generalization of the

Vandermonde
AMM E2589 Determinant • Another
AMM E2588 Determinant • Computation of a
AMM E2703 Determinant • Evaluation of a
SIAM 78-14 Determinant • Evaluation of a
AMM E2709 Determinant • Hankel
MM 1020 Determinant Equation
AMM E2767 Determinant Involving Derivatives • A
AMM E2683 Determinant of a Cyclic Matrix
AMM E2747 Determinant with Reciprocal Factorials • A
SIAM 78-3 Determinants • A Conjecture on
FQ B-411 Determinants • Tridiagonal
SIAM 78-15 Determinants • Two Equal
AMM 6057 Determinants of Matrices
FQ H-302 Determined
AMM 6224 Determining Heavy and Light Balls by

Weighings
AMM E2741 Diagonal of a Matrix • Similarity and the
FQ B-388 Diagonals • Partitioning Squares Near the
AMM E2372 Diagonals in a 0-1 Matrix
FQ B-390 Diagonals of Pascal’s Triangle • Generating
JRM 531 Dial • Priming the Telephone

TYCMJ 107 Diameter a + b − c of Pythagorean Triplets •
The

TYCMJ 32 Diameter Characterization of the Parabola
AMM E2612 Diamond Packing of a Chinese Checkerboard
MM 1071 Dice • A Problem with
JRM 588 Dice • Loaded
MM 1071 Dice Again • Roll the
MM 1011 Dice Problem • An Old
AMM 6146 Did Bacon Write Shakespeare’s Plays?
MATYC 122 Did You Expect It
MM 911 Die • Vertices of a
AMM 6200 Differ by Two • A Characterization of Integers

That
JRM 645 Difference • A Limiting
FQ H-301 Difference • Sum
TYCMJ 56 Difference Equation
FQ B-370 Difference Equation • Nonhomogeneous
TYCMJ 77 Difference Equation • Polynomial Solution of a
AMM E2609 Difference Equation in Two Variables • A
FQ B-338 Difference of Binomial Expansions
TYCMJ 37 Difference of Squares • A
MATYC 76 Difference Way To Do It • A
SIAM 74-4 Difference-Differential Equations • A System of
MM 1041 Differences • Divisible
AMM S5 Differences • Intersecting Sets of
AMM E2506 Differences of Square Roots • Limits of
AMM 6137 Differences of the Partition Function • The
MM 983 Different Number of Prime Divisors
MM 1085 Different Zeros • Four
AMM E2572 Differentiable at a Limit Point of its

Discontinuities? • Can a Derivative be
AMM 5955 Differentiable Functions • On Q→ Q
AMM 6018 Differentiable functions in R2

MM 1050 Differential Equation
SIAM 79-20 Differential Equation • A
AMM E2568 Differential Equation • A Bernoulli
SIAM 77-16 Differential Equation • A First Order

Nonlinear
SIAM 79-11 Differential Equation • A Non-Linear
SIAM 79-11 Differential Equation • A Nonlinear
SIAM 76-6 Differential Equation • An nth Order Linear
FQ H-235 Differential Equation! • Sum
SIAM 77-17 Differential Equations • A System of Second

Order
SIAM 76-12 Differential Equations • An Infinite System of

Nonlinear
SIAM 77-4 Differential Equations Involving Arbitrary

Functions • Solutions to Linear Partial
FQ B-279 Differentiating Fibonacci Generating Function
AMM 5961 Differentiation Operator • The Twice
AMM E2384 Difficult Binomial Coefficient Summation • A
JRM 562 Difficult Construction • A
AMM E2504 Difficult Triangle Inequality • A
FQ B-382 Digit • Lucky L Units
JRM 786 Digit Distribution
MM 1075 Digit out of 35,660 • 2500th
TYCMJ 29 Digit Shifting • Decimal
JRM 677 Digit Sums
TYCMJ 93 Digits • Blocks of
JRM 756 Digits • Identical
FQ B-364 Digits • Incontiguous Zero
MM 908 Digits • Interchanged
MATYC 56 Digits • Repetitive
JRM 676 Digits • Sums of Repeated
FQ B-280 Digits • The Editor’s
AMM 6077 Digits in Kn • Sum of the
AMM E2667 Digits in a Dyadic Expansion
AMM E2738 Digits of a Real Number • Permuting the
TYCMJ 50 Digits of Squares
JRM 735 Dilemma • The Housespouse’s
AMM 6126 Dimension • Union of Sets of Zero
AMM E2558 Dini • A Theorem of
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JRM 632 Diophantine Deluge • A
JRM 496 Diophantine Equation • A
JRM 81a Diophantine Equations • A Pair of
AMM E2664 Diophantine Equations • Minimal Solution of a

System of
AMM E2532 Diophantine Equations • Simple
AMM E2464 Diophantine Equations • Two Serendipitous
AMM E2511 Diophantine Equations x2 + 1 = 2r5s • The
JRM 591 Diophantine Search • A
JRM 315 Diophantine Triangles
AMM E2562 Directed Monochromatic Paths
AMM E2535 Direction • Acceleration with Constant
SIAM 78-9 Directors Problem • A Variant of Silverman’s

Board of
JRM C4 Directors’ Problem • The Board of
AMM E2457 Dirichlet-Like Product • A
SIAM 78-1 Disc Averages • Approximate Invariance of
AMM 6142 Discontinuities • Functions with Prescribed
AMM E2572 Discontinuities? • Can a Derivative be

Differentiable at a Limit Point of its
AMM E2632 Discrepancy • Minimizing
SIAM 74-21 Discrete Probability Distributions •

Two-Dimensional
AMM E2539 Disguise • A Known Unsolved Problem in
AMM E2606 Disguise • Pell’s Equation in
JRM 457 Disguise • Satan in
JRM 503 Disharmonic Series • A
AMM 6274 Disjoint Neighborhoods and Countable Local

Bases
AMM E2806 Disjoint Neighborhoods and Countable Local

Bases
AMM 6198 Disk • Harmonic in the Unit
AMM E2469 Disk • Hide and Seek in the Unit
AMM S19 Disk • Isoperimetric Problem in a
AMM 6080 Disk • Power Series in a Closed
AMM 6071 Disk on a Convex Domain • Analytic Mappings

of the Unit
TYCMJ 115 Disparity in a Vibrating System
SIAM 75-12 Distance • An Average
AMM E2392 Distance • The Knight’s
AMM E2769 Distance Between Lines in R3

AMM 6063 Distance Between the Centers of Two Spheres
AMM E2629 Distance between Two Points in a Box •

Average
AMM 6129 Distance from a Simple Closed Curve
SIAM 78-8 Distance in a Unit Cube • Average
AMM 6025 Distance to the Boundary of a Set
AMM E2598 Distances • Dense Rational Set with Irrational
MM 966 Distances • Seven Integral
TYCMJ 155 Distinct Elements with Equal Means
AMM S20 Distinct Posets • Same Enumerator for
AMM E2805 Distinct Prime Divisors of 2k − 1
AMM E2781 Distinct Sums of the Residue Classes mod n
AMM 6030 Distributed Random Variables • Identically
MM 1055 Distribution • Binomial
JRM 786 Distribution • Digit
TYCMJ 136 Distribution • Mean of the Geometric
SIAM 77-1 Distribution • Percentiles for the Gamma
JRM 442 Distribution • Suit
AMM 6114 Distribution • The Covariance
AMM 6024 Distribution • Uniform
AMM 6207 Distribution of Inner Product of Two Random

Vectors
AMM 6161 Distribution of Residues • A Characterization

of Irrationals by
AMM 5942 Distributions • Independent Normal
SIAM 74-21 Distributions • Two-Dimensional Discrete

Probability
AMM 6115 Distributions with Given Marginals •

n-Dimensional
AMM 6032 Distributive Lattices
MATYC 112 Divergent • Denumerable vs

AMM E2744 Divergent Partial Sum • A
TYCMJ 44 Divergent Series • A
TYCMJ 23 Divergent Series • An Unusual
AMM E2626 Divergent Series • Convergent and
AMM S21 Divided by LCM • Product
AMM E2468 divides 3m − 3n • When 2m − 2n

AMM 6143 Dividing the Pie Fairly
TYCMJ 31 Divisibility
MM 1046 Divisibility • Decimal
MATYC 101 Divisibility • Double
TYCMJ 135 Divisibility • Probability of
AMM E2772 Divisibility of a2m + b2m by a+ b
JRM 467 Divisibility Problem • A
MATYC 78 Divisibility Problem • A
TYCMJ 25 Divisibility Problem • A
TYCMJ 67 Divisibility Test • A
MM 1041 Divisible Differences
TYCMJ 36 Division Problem • A
FQ B-409 Divisor • Exact
FQ B-317 Divisor • Lucas
AMM 6064 Divisor Function • An Iterated
AMM E2491 Divisor of n? • When is

[√
n
]

a

MM 983 Divisors • Different Number of Prime
AMM 5964 Divisors • Mean Powers of Prime
FQ B-326 Divisors • On the Sum of
AMM E2780 Divisors

∑
d(k), k ≤ n • Sum of Number of

AMM 6086 Divisors and Square Free Integers • Common
AMM 6069 Divisors and Units in a Group Ring • Zero
AMM 6065 Divisors Function • The Density of the Sum of
TYCMJ 65 Divisors in Finite Rings • Zero

AMM E2805 Divisors of 2k − 1 • Distinct Prime
AMM 6160 Divisors of φ(m)
MM 964 Divisors of n!
AMM S9 Divisors of 24 • Characterizing the
MATYC 76 Do It • A Difference Way To
JRM 385 Do Pentacles Exist?
AMM 6149 Dodecahedron • Walk on the Edges of a
AMM 6251 Does AB = C Imply BA = D? • When
AMM E2542 Does the Job • A Bigger Group
MM 1051 Does X or Y know (x, y)?
JRM 447 Dollar’s Worth of Change • A
AMM 6071 Domain • Analytic Mappings of the Unit Disk

on a Convex
AMM 6177 Domain • Noetherian Integral
AMM 6116 Domains • Principal Ideal
SIAM 71-19 Dominoes • Falling
AMM E2508 Dominoes • Tiling a Checkerboard with
JRM 472 Door • The Garage
MATYC 101 Double Divisibility
SIAM 76-19 Double Integral from Demagnetizing Fields • A
JRM 615 Double Play
AMM E2743 Double Series
FQ B-295 Double Sum • Convolution or
JRM 117 Double Torus • Packing a
FQ H-255 Double Your Fun
JRM 626 Double-Angle Triangles
AMM E2648 Doubled Primes • Nearly
JRM 725 Doublement Vrai
JRM 470 Doublets • Pentomino
JRM 665-1 Doubly True
JRM 665-3 Doubly True
JRM 665-2 Doubly True
JRM 544 Doubly True
JRM 543 Doubly True
JRM 331 Doubly True
JRM 335 Doubly True
JRM 726 Doubly True
JRM 297 Doubly True • Also
JRM 640 Doubly True – 1
JRM 641 Doubly True – 2
JRM 693 Doubly True – Dutch
JRM 691 Doubly True – English
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Doubly 1975–1979 Equation

JRM 611 Doubly True – English
JRM 613 Doubly True – Greek
JRM 692 Doubly True – Latin
JRM 612 Doubly True – Spanish
JRM 437 Doubly True Alphametic With A Twist • A
JRM 399 Doubly True Alphametics
JRM 400 Doubly True Alphametics
JRM 398 Doubly True Alphametics
JRM 526 Doubly True Alphametics • Two
JRM 525 Doubly True Alphametics • Two
JRM 583 Doubly True and Ideal, Too
FQ B-312 Doubly-True Fibonacci Alphametic
FQ B-367 Down • Rounding
JRM 438 Down The River • Cruising
JRM C1 Down to the Basics
JRM 690 Drag Racer’s Lament
AMM E2696 Draws • Expected Number of
JRM 580 Dream • An Astronaut’s
JRM 341 Drop Me a Line
JRM 357 Dual Alphametic • A
AMM E2692 Duplication Formula • A Transcendental

Function Satisfying a
FQ H-152 Dust Off • Brush the
JRM 693 Dutch • Doubly True –
AMM E2667 Dyadic Expansion • Digits in a
FQ H-240 E-Gad
FQ B-392 (E2 − E − 1)2 • Half-Way Application of

AMM 6003 eAeA
∗
• The Spectral Radius of

AMM 6271 en and n! • Asymptotic Behavior of Sequences
Involving

AMM 4052 ez in an Annulus • Bound for
AMM 5897 e1/z • Continued Fraction for
JRM C9 Easter Problem • The
AMM E2452 Easy • Cutting Corners is not so
JRM 299 Easy • Not Too
AMM E2797 Easy Counterexample • An
JRM 542 Easy for Some
JRM 435 Easy One For the Lazy Ones • An
MATYC 117 Easy Statistics
FQ B-352 Easy To See • C Is
JRM 482 Easy? • Is This Alphametic Really So
JRM 490 Eden? • A Paradisaic Triptych — Even in
AMM E2513 Edge • A View of an
JRM 796 Edge • The Racer’s
SIAM 78-11 Edge Three-Coloring of Tournaments
MM 919 Edges • A Simplex with Orthogonal
AMM 6159 Edges in a Graph Without Triangles • The

Maximum Number of
AMM 6149 Edges of a Dodecahedron • Walk on the
AMM 6034 Edges of a Graph • Coloring the
AMM E2549 Edges to Get an Euler Path • Adding
FQ B-280 Editor’s Digits • The
JRM 742 Effects • Special
JRM 618 Efficiency of Sets of Coins
MM 971 Efficient Conduits
AMM E2509 Efficiently • Using a Calculator
JRM 746 Eggs-actly Right!
AMM E2689 Egyptian Fractions
SIAM 79-2 Eigenvalue Problem • A Matrix
SIAM 75-15 Eigenvalue Problem • An
AMM E2490 Eigenvalues of a Matrix • The
SIAM 76-20 Eigenvalues of an n × n Matrix • On the

Extreme
JRM 576 “Eighty Three” Problem • The
JRM 520 Elementary
JRM 519 Elementary
AMM E2647 Elementary Case of the Jordan Curve Theorem

• An
MATYC 86 Elementary Set Theory
AMM 6052 Elements • Torsion Groups Generated by Two
AMM E2704 Elements in Z/nZ • Idempotent

AMM 6026 Elements in a Group Inverted by an
Automorphism • Number of

AMM 6162 Elements of the Inverse of a Matrix • The Sum
of the

TYCMJ 155 Elements with Equal Means • Distinct
JRM 50 Elevator Problem • An
JRM 593 Eleven Match Problem • The
AMM E2682 Ellipse • Integer Points on an
FQ B-337 Ellipse • Rational Points on an
MM 1062 Ellipse and Convex Hexagon
AMM 6047 Ellipses • Conformal Maps of Ellipses onto
AMM 6047 Ellipses onto Ellipses • Conformal Maps of
AMM E2576 Ellipsoid • Area of a Projection of an
SIAM 78-10 Elliptic Function • An Integral of an
SIAM 79-9 Elliptic Functions • Fourier Series for a

Combination of Jacobian
SIAM 74-22 Elliptic Integrals of the First Kind • Fourier

Coefficients of a Function Involving
FQ B-386 Elusive Generalization
MATYC 138 ’em Up • Line
AMM E2456 Enclosed by a Jordan Curve • Area
MATYC 77 Encore!
JRM 424 Endgame
AMM E2486 Ending in Ones • Squares
FQ B-314 Ending in Three • Lucas Numbers
JRM 764 Endings • Cube
JRM 691 English • Doubly True –
JRM 611 English • Doubly True –
JRM 656 English • Integers in
JRM 330 Enigma • Still an
AMM 6279 Entire Functions • A Condition on
AMM 6117 Entire Functions • Linear Compositions of Two

AMM 5968 Entire Functions with Integral Dkf(0) • The
Set of Zeros of

AMM 6118 Entire Functions without Zeros • Linear
Combinations of

AMM S13 Entries • Matrix with Non-negative
FQ H-226 Enumeration
JRM 511 Enumeration Problem • An
AMM S20 Enumerator for Distinct Posets • Same
MATYC 134 Equal Areas
SIAM 78-15 Equal Determinants • Two
AMM S4 Equal Folds • Approaching
TYCMJ 155 Equal Means • Distinct Elements with
AMM 6011 Equal Sum Partitions in an Abelian Group
AMM E2749 Equal Sums of Powers of Primes
AMM E2762 Equal to a Kronecker Product • A Block

Matrix
AMM E2762 Equal to a Kronecker Product • A Block

Matrix Not
SIAM 77-20 Equal to its Derivative? • When is the

Modified Bessel Function
TYCMJ 55 Equal to its Logarithm? • Can a Number be
AMM E2548 Equal Volumes • Simplices of
AMM 5935 Equality • A Constrained
TYCMJ 72 Equality • A Triangle
MM 915 Equality • Bracket Function
AMM E2470 Equality Characterizing the Centroid • A

Simplex
AMM 6242 Equality of Measures
MM 1061 Equals Maxmin • Minmax
AMM E2568 Equation • A Bernoulli Differential
SIAM 79-20 Equation • A Differential
JRM 496 Equation • A Diophantine
SIAM 77-16 Equation • A First Order Nonlinear

Differential
AMM E2607 Equation • A Functional
AMM 6106 Equation • A Functional
SIAM 79-6 Equation • A Functional
AMM 6226 Equation • A Functional
SIAM 79-11 Equation • A Non-Linear Differential
SIAM 79-11 Equation • A Nonlinear Differential
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SIAM 75-18 Equation • A Nonlinear Integral
SIAM 75-9 Equation • A Singular Integral
MATYC 120 Equation • A Trig
SIAM 76-6 Equation • An nth Order Linear Differential
AMM E2537 Equation • An Ambiguous Functional
AMM E2583 Equation • Characterizing Solutions of a

Functional
MM 1020 Equation • Determinant
TYCMJ 56 Equation • Difference
MM 1050 Equation • Differential
FQ B-325 Equation • Impossible Functional
FQ B-370 Equation • Nonhomogeneous Difference
TYCMJ 77 Equation • Polynomial Solution of a Difference
AMM 5794 Equation • Solution to Bessel
JRM 343 Equation • The Universal
AMM 6193 Equation • Totient
MATYC 106 Equation • Triangle
TYCMJ 125 Equation • Trigonometric
AMM E2752 Equation [an] + [bn] = [cn] + [dn] • The
AMM 5871 Equation ∂f/∂x = ∂f/∂y • The

AMM E2783 Equation φ(z2) = φ(z)2 • The Functional

AMM 6088 Equation f−1 = f ′ • The
TYCMJ 106 Equation for 1/x • Functional
SIAM 74-8 Equation for Crystal Growth • An Integral
AMM E2606 Equation in Disguise • Pell’s
AMM E2609 Equation in Two Variables • A Difference
AMM E2479 Equation with only Obvious Solutions • A

Functional
TYCMJ 114 Equation with Unique Solution
FQ H-235 Equation! • Sum Differential
JRM 81a Equations • A Pair of Diophantine
MM 930 Equations • A System of
SIAM 74-4 Equations • A System of Difference-Differential
SIAM 77-17 Equations • A System of Second Order

Differential
SIAM 76-12 Equations • An Infinite System of Nonlinear

Differential
AMM E2664 Equations • Minimal Solution of a System of

Diophantine
AMM E2532 Equations • Simple Diophantine
AMM E2464 Equations • Two Serendipitous Diophantine
AMM E2511 Equations x2 + 1 = 2r5s • The Diophantine
SIAM 77-4 Equations Involving Arbitrary Functions •

Solutions to Linear Partial Differential
JRM 757 Equi-Spaced Cards
AMM E2498 Equiareal Faces • Tetrahedron with Three
FQ B-413 Equilateral Triangles • Counting
AMM E2516 Equivalence • Permutation
AMM E2727 Equivalence of Triangles
AMM E2727 Equivalence of Two Triangles
AMM 5932 Equivalence Relation in the Symmetric Group
MM 1039 Equivalent • Tangentially
AMM E2289 Equivalent Sets of Axioms
MM 1029 Erdős and the Computer
AMM S23 Erdős-Mordell Geometric Inequality • Variation

on the
AMM E2462 Erdős-Mordell Inequality • The Extended
SIAM 77-13 Erlang Function • A Property of the First
FQ H-280 Ern • Mod
AMM E2599 Erratic Behavior of the Totient Function
TYCMJ 119 Error Analysis of an Approximate Trisection
AMM 6163 Escaping from an Infinite Maze
AMM E2666 Estimate for the Cardinality of a Set of Subsets

• An
FQ H-246 Et Al • Fib, Luc,
MM 1054 Euclidean Constructions • Two
JRM 474 Euler θ Function Again • The
TYCMJ 145 Euler Line on a Checkerboard
AMM E2553 Euler Lines • Simson and
AMM E2549 Euler Path • Adding Edges to Get an
TYCMJ 122 Euler’s Constant
AMM E2748 Euler’s Constant as a Limit

MM 921 Euler’s Phi
AMM E2703 Evaluation of a Determinant
SIAM 78-14 Evaluation of a Determinant
AMM 5608 Evaluation of an Integral
SIAM 78-5 Evaluation of Weierstrass Zeta Functions
AMM 6241 Evaluations of Trigonometric Series
AMM E2771 Even Exponents • Fermat’s Last Theorem for
JRM 490 — Even in Eden? • A Paradisaic Triptych
JRM 490 Even in Eden? • A Paradisaic Triptych —
JRM 776 Even More Simple Addition
AMM 6036 Even Perfect Numbers
JRM 668 Events • Current
TYCMJ 152 Events • Probability of Simultaneously

Occurring
AMM E2578 Every Prime • Polynomials Reducible Modulo
JRM 403 EVE/DID = .TALKTALKTALK . . . • A Sequel to
FQ B-409 Exact Divisor
MM 938 Example • A Convergent
TYCMJ 124 Example of Finite Integration
MM 992 Exceptional Hexagons
JRM 779 Exchange • Monetary
TYCMJ 116 Exclusion Applied to Occupancy • Inclusion

and
MATYC 60 Exercise • An Irrational
AMM E2663 Exercise • An Old
MATYC 119 Exercise • Trig
JRM 261 Exercises • Isometric
JRM 555 Exercises • Some Prime
JRM 385 Exist? • Do Pentacles
FQ H-248 Existence • The Very
SIAM 75-6 Existence of a Transition Solution
AMM 6253 exp[i cos(θ − θj)] • Linear Independence of

Functions
SIAM 75-3 Expansion • A Power Series
AMM E2667 Expansion • Digits in a Dyadic
AMM 6001 Expansion • The Remainder Term in

Maclaurin’s
AMM 6170 Expansion Modulo a Prime • The Number of

Terms in a Binomial
FQ B-338 Expansions • Difference of Binomial
AMM 5958 Expansions and Function Values • Truncated

Taylor
MATYC 122 Expect It • Did You
AMM 6195 Expectation
AMM 6155 Expectation of the Width of a Set
AMM 5963 Expectations in Decreasing Joint Densities
MM 946 Expected Length
AMM E2696 Expected Number of Draws
AMM E2705 Expected Number of Trials
AMM 6230 Expected Perimeter Length
AMM 6245 Expected Value • A Formula for
AMM 6187 Expected Value • A Known
SIAM 78-13 Expected Values for Random Regions of a

Circle
AMM 6282 Explicit Map (0, 1) ∩Q ' [0, 1] ∩Q • An
TYCMJ 91 Exponent Parity • Partition by
SIAM 74-5 Exponential • On the Norm of a Matrix
AMM E2467 Exponential Functions • Polynomial

Approximations to
AMM E2734 Exponential of a Matrix
MATYC 61 Exponential Solution • An
MATYC 110 Exponential Solution • An
AMM 6056 Exponential-type Series • Truncated
FQ B-313 Exponentiating Lucas Into Fibonacci
TYCMJ 41 Exponentiation • Repetitious
AMM E2771 Exponents • Fermat’s Last Theorem for Even
MM 989 Expression • A Stirling
AMM 6121 Expression • An Integer
AMM E2462 Extended Erdős-Mordell Inequality • The
AMM E2505 Extended Medians of a Triangle
AMM 6051 Extending a Sublinear Map
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AMM 6205 Extensions of Cyclic Groups • Torsion-Free
Finite

MM 1059 Extrema • Cyclic
SIAM 76-20 Extreme Eigenvalues of an n × n Matrix • On

the
AMM 6266 f(x, y) ≤ g(x)g(y) • The Condition
FQ B-347 F ’s • A Third-Order Analogue of the
MM 982 {f(n+ 1)/f(n)} • Closure of
AMM 6206 f(t) = t+ tan t • Function
FQ B-401 F.Q. • Change of Pace for
FQ B-384 F4

2n+1 • A Recursion for F4
2n or

FQ B-384 F4
2n or F4

2n+1 • A Recursion for

AMM 6088 f−1 = f ′ • The Equation
AMM 6007 f ′ = 0 a.e. • Arc Length when
AMM 6038 f ′(r) > 0 • Power Series for which
FQ H-221 Fn and Ln • Congruence for
AMM E2785 Fq • Covering V − {0} with Hyperplanes in
FQ B-290 F2n • Convoluted
MM 917 Faces • Rotating
AMM E2498 Faces • Tetrahedron with Three Equiareal
SIAM 76-7 Facility Location Problem • A
FQ B-354 Factor • A Vanishing
AMM 6016 Factorial • A Large Modified
MM 999 Factorial Factors
TYCMJ 137 Factorial Fantasy
JRM 762 Factorial Series • Reciprocal
AMM E2747 Factorials • A Determinant with Reciprocal
AMM E2520 Factorials • Odd
FQ B-393 Factorials • Triangle of Triangular
JRM 321 Factorian Fractions
JRM 320 Factorian Numbers
JRM 598 Factorian Numbers • More on
FQ B-341 Factoring • Close
AMM 6264 Factorization • Conditions for Unique
AMM 5735 Factors • Density of Pairs with Same Prime
MM 999 Factors • Factorial
AMM E2725 Factors for Terms in an Arithmetic Sequence •

Bounded Prime
JRM 722 Facts of Life • The
AMM E2755 Fading Function • Zeros of Derivatives of a
AMM 6143 Fairly • Dividing the Pie
SIAM 71-19 Falling Dominoes
AMM 6273 False Criterion for Continuity • A
JRM 792 Falsehood • Truth and
AMM 6109 Families • Sylvester Series and Normal
AMM 6085 Families of Uniformly Integrable Functions •

Majorants for
MM 1064 Famous Formula
JRM 547 Fantastica
TYCMJ 137 Fantasy • Factorial
JRM 752 Fantasy • Peter Pan
TYCMJ 19 Far • An Analogy Carried Too
JRM 660 Fare • Bill of
JRM 614 Farewell • Looney Tunes
JRM 633 Fashion Forecast
MM 1004 Fastest and Slowest Trip
JRM 212 Felix vs Rover
AMM E2455 Fermat Numbers, a Result of Legendre, and

Two Identities
TYCMJ 121 Fermat Primes Puzzler
FQ H-239 Fermat’s Inequality
AMM 6066 Fermat’s Last Theorem • A Strong
AMM E2771 Fermat’s Last Theorem for Even Exponents
JRM 350 Ferry and the Launch • The
MATYC 92 Fewer Than You Want • Sometimes It’s
FQ H-246 Fib, Luc, Et Al
FQ B-313 Fibonacci • Exponentiating Lucas Into
FQ H-247 Fibonacci • Unity With
FQ B-316 Fibonacci Alphametic • A
FQ B-312 Fibonacci Alphametic • Doubly-True
FQ H-310 Fibonacci and Lucas Are the Greatest Integers
JRM 728 Fibonacci Calculations

FQ B-324 Fibonacci Congruence
FQ B-279 Fibonacci Generating Function •

Differentiating
MM 1013 Fibonacci Holes
FQ B-374 Fibonacci in Trigonometric Form
FQ B-302 Fibonacci Neighbors • Composite
TYCMJ 48 Fibonacci Number • The Best
AMM E2581 Fibonacci Numbers • A Property of
FQ B-375 Fibonacci or Nil
JRM 738 Fibonacci Primes
JRM 112 Fibonacci Primes
JRM 766 Fibonacci Sequence • Generalized
JRM 674 Fibonacci Series • A Reciprocal
MM 1037 Fibonacci Sets
JRM 567 Fibonacci Split • The
FQ B-318 Fibonacci Square
FQ B-331 Fibonacci Squares Mod 24 • Some
FQ B-293 Fibonacci Terms • The First Six
FQ H-305 Fibonacci-like Sum • Like
FQ B-335 Fibonacci-Lucas Sum
AMM E2497 Fibonacci-type Congruence • A
AMM E2544 Fibonaccian Juxtaposition
SIAM 75-1 Fibre Mode Conversion • Idealized Optical
AMM 6043 Field • Degrees of Irreducible Polynomials over

a
AMM 5861 Field • Increasing Polynomials in an Ordered
AMM 5861 Field • Increasing Polynomials on an Ordered
AMM 5938 Field • On Order-Preserving Automorphisms in

a
AMM E2540 Field • Sums of Reciprocals in a Finite
SIAM 76-19 Fields • A Double Integral from Demagnetizing
AMM 6201 Fields • Power Sums in Finite
AMM 6268 Fields • Relative Integral Bases in Towers of
AMM 6101 Fields with Rolle’s Theorem • Sums of Squares

in
AMM 5993 Fields, the Sum of Two Proper Subfields
AMM E2515 File Clerk • The Careless
AMM E2790 Filling an Open Set with Squares of Specified

Areas
AMM E2499 — Final Appearance • A Problem of Pappus
AMM E2499 Final Appearance • A Problem of Pappus —
JRM 644 Final Reward
JRM 568 Finalists • The
JRM 653 Find the X-ponent
FQ B-330 Finding a G. C. D.
FQ B-327 Finishing Touches on a Lucas Identity
SIAM 76-16 Finite and an Infinite Product • Conjecture on

a
AMM 6205 Finite Extensions of Cyclic Groups •

Torsion-Free
AMM E2540 Finite Field • Sums of Reciprocals in a
AMM 6201 Finite Fields • Power Sums in
AMM 6202 Finite Groups • Inequality for
TYCMJ 124 Finite Integration • Example of
AMM E2700 Finite Lattices • Complemented
AMM 6284 Finite Rings • Structure of
TYCMJ 65 Finite Rings • Zero Divisors in
AMM E2582 Finite Set • Crisscrossing Partitions of a
AMM E2654 Finite Set • Minimum Subcover of a Cover of a
AMM 6060 Finite Sets • Combinatorics in
AMM 6151 Finite Sets • Partitions of
AMM E2730 Finite Sets and Arithmetic Progressions
AMM 6139 Finitely Axiomatizable Properties in a

First-Order Predicate Calculus
AMM 5946 Finitely Generated Groups • Intersection of
JRM 554 Fire Company Problem • The
SIAM 77-13 First Erlang Function • A Property of the
SIAM 74-22 First Kind • Fourier Coefficients of a Function

Involving Elliptic Integrals of the
SIAM 77-16 First Order Nonlinear Differential Equation •

A
FQ B-293 First Six Fibonacci Terms • The
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First 1975–1979 Function

FQ B-406 First Term as GCD
AMM 6139 First-Order Predicate Calculus • Finitely

Axiomatizable Properties in a
TYCMJ 104 Fiscal Folly
AMM E2349 Fitting a Cube in a Tetrahedron
FQ B-391 Five • Approximations to Root
FQ H-285 Five • One or
MM 898 Five Centers in a Triangle
JRM 427 Five-Circle Packing Problem • The
AMM E2587 Fixed Point Theorem • An Application of

Brouwer’s
AMM S14 Fixed Points • Permutations with f
MM 993 Fixed Points of Iterates
AMM 6262 Fixed Points of Trees
AMM S22 Fixed Scalar Multiple • Linear Transformation
JRM 260 Flip Function • The FORTRAN
JRM 697 Flower Power
AMM S4 Folds • Approaching Equal
FQ H-249 Folk-Laurin
TYCMJ 104 Folly • Fiscal
JRM C8 Force Problem? • A Brute
JRM 477 Force Program • A Brute
AMM E2659 Forcing a Quasigroup to Be a Group
JRM 633 Forecast • Fashion
SIAM 75-5 Form • A Nonnegative
FQ B-343 Form • Closed
FQ B-374 Form • Fibonacci in Trigonometric
FQ B-397 Form • Semi-Closed

AMM 6247 Form
∑

αk
[
m
√
k
]
• Sum of the

AMM 6138 Form pipi+1pi+2 . . . pi+n • Abundant
Numbers of the

AMM E2555 Form on a Box • Indefinite Quadratic
FQ H-211 Form To The Right
AMM 6260 Formed by Iterated Closure, Interior, and

Union • Sets
FQ B-299 Formula • A Convolution
AMM E2692 Formula • A Transcendental Function

Satisfying a Duplication
AMM 5974 Formula • An n-tuple Integral
MM 1064 Formula • Famous
MM 927 Formula • Pick’s
TYCMJ 94 Formula • Sufficiency of Newton’s
AMM E2604 Formula for a Function • A
TYCMJ 143 Formula for Cotangent • Inner Product
AMM E2765 Formula for Definite Integrals • Change of

Variable
AMM 6245 Formula for Expected Value • A
TYCMJ 99 Formula Integers • Quadratic

AMM E2770 Formula Involving Sk =
∑

mk • A
FQ B-294 Formula Symmetric in k and n • A
FQ B-298 Formulas • An Application of the Binet
JRM 410 Forth And Multiply • Go
JRM 260 FORTRAN Flip Function • The
TYCMJ 102 Found • Functions
MM 1085 Four Different Zeros
JRM 782 Four Hearts
JRM 351 Four Problems • Two Curves and
JRM 323 Four Theoretical Triangles
AMM E2527 Four-Color Theorem for Touching Pennies •

The
JRM 759 Four-Cube Calendar • The
JRM 620 Four-Point Problem • The
AMM E2564 Four-valent Graphs • Covering Vertices of
AMM 6111 Fourier and Probability Integral • A
SIAM 74-22 Fourier Coefficients of a Function Involving

Elliptic Integrals of the First Kind
SIAM 79-9 Fourier Series for a Combination of Jacobian

Elliptic Functions
AMM 6075 Fourier Transform • Integrable Functions with

Positive
AMM 5643 Fourier Transform • Representing the Square

Root of a

AMM 6055 Fourier Transform in Rn • A
MATYC 89 Fraction • Derivative of a Continued
MATYC 103 Fraction Derivative • Continued
AMM 5897 Fraction for e1/z • Continued
AMM 5988 Fractional Calculus • Zeros in the
JRM 681 Fractional Parts
JRM 608 Fractionally True Alphametic • A
AMM E2689 Fractions • Egyptian
JRM 321 Fractions • Factorian
AMM E2623 Fractions • Integrality of Some
FQ B-297 Fractions • Partial
TYCMJ 73 Fractions • Unit
TYCMJ 82 Fractions Decomposition • Partial
JRM 586 Fractured Representation • A Square
JRM 356 Franciscan Order
AMM 6086 Free Integers • Common Divisors and Square
JRM 227 French Matrix • The
MM 884 Frequency of a Sine Curve
JRM 456 Friend • Man’s Best
AMM 6020 Friendly Integers
FQ B-322 Front Page Alphametic
FQ H-255 Fun • Double Your
MATYC 65 Fun • Number
AMM E2604 Function • A Formula for a
AMM E2575 Function • A Non-symmetric
SIAM 77-13 Function • A Property of the First Erlang
FQ B-361 Function • A Rational
JRM 705 Function • A Recursive
AMM E2458 Function • An n-ary Sheffer
MATYC 97 Function • An Increasing
MATYC 133 Function • An Increasing
AMM E2677 Function • An Integer-Valued
SIAM 78-10 Function • An Integral of an Elliptic
AMM E984 Function • An Iterated
AMM 6064 Function • An Iterated Divisor
FQ B-279 Function • Differentiating Fibonacci

Generating
AMM E2599 Function • Erratic Behavior of the Totient
FQ B-381 Function • Generating
SIAM 75-11 Function • Inequalities for the Gamma
AMM 6269 Function • Inequality Involving the Γ
AMM 6185 Function • Inequality of Lp Norms of a

Derivative of a
AMM 5960 Function • Integrals of the Rademacher
AMM 6074 Function • Length of Arc of a Monotonic
MM 1060 Function • No Such
FQ B-417 Function • Not a Bracket
TYCMJ 28 Function • Real Zeros of a Monotone
AMM 6027 Function • Smoothing a Continuous
AMM 6235 Function • Sum of Sums of the Möbius
AMM 6065 Function • The Density of the Sum of Divisors
AMM 6137 Function • The Differences of the Partition
JRM 260 Function • The FORTRAN Flip
JRM 732 Function • The Poly-Power
JRM 513 Function • The Survivor
AMM E2755 Function • Zeros of Derivatives of a Fading
AMM 6206 Function f(t) = t+ tan t
JRM 474 Function Again • The Euler θ
AMM E2546 Function and Counting • Hilbert
SIAM 77-20 Function Equal to its Derivative? • When is

the Modified Bessel
MM 915 Function Equality • Bracket
SIAM 77-2 Function Identity • A Gaussian

Hypergeometric
TYCMJ 69 Function Identity • Greatest Integer
AMM 5936 Function in |z| < 1 • Range of a Holomorphic
FQ B-303 Function Inequality • A Sigma
SIAM 74-22 Function Involving Elliptic Integrals of the

First Kind • Fourier Coefficients of a
AMM E2473 Function of a Polynomial • Rational Function

of a Rational
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Title Index
Function 1975–1979 Generated

AMM E2473 Function of a Rational Function of a
Polynomial • Rational

AMM E2554 Function Restricted to Rationals • Polynomial
AMM E2692 Function Satisfying a Duplication Formula • A

Transcendental
SIAM 76-10 Function Series • A Bessel
AMM 6082 Function Solutions of xn − y2 = 1 • Rational
SIAM 76-11 Function Summation • A Bessel
AMM 5958 Function Values • Truncated Taylor

Expansions and
AMM 6132 Function with the “Darboux Property” • A
AMM 6000 Functional • A Continuous
AMM S15 Functional • Beckenbach’s Monotonic Integral
SIAM 74-18 Functional • Constrained Minimization of an

Integral
AMM E2661 Functional Characterization of Least Common

Multiples
AMM E2489 Functional Composition • Arc Length and
AMM 6226 Functional Equation • A
AMM 6106 Functional Equation • A
SIAM 79-6 Functional Equation • A
AMM E2607 Functional Equation • A
AMM E2537 Functional Equation • An Ambiguous
AMM E2583 Functional Equation • Characterizing Solutions

of a
FQ B-325 Functional Equation • Impossible
AMM E2783 Functional Equation φ(z2) = φ(z)2 • The
TYCMJ 106 Functional Equation for 1/x
AMM E2479 Functional Equation with only Obvious

Solutions • A
MATYC 72 Functional Identity • A
AMM E2720 Functional Inequality • A
AMM 5934 Functional Inequality • A
AMM 6093 Functionals • Continuous Linear
AMM 6078 Functionals in Normed Spaces • Linear
AMM 6113 Functions • A Class of Stieltjes-Riemann

Integrable
AMM 6279 Functions • A Condition on Entire
SIAM 79-14 Functions • A Conjectured Property of

Legendre
SIAM 75-17 Functions • A Series of Hypergeometric
AMM 5945 Functions • A Subgroup of Multiplicative
SIAM 79-18 Functions • A Sum of Bessel
TYCMJ 46 Functions • An Average Characterization of

Linear
AMM 6045 Functions • Analytic
AMM 6184 Functions • Bases for Piecewise Continuous
AMM 6244 Functions • Composition of
SIAM 79-10 Functions • Credibility
AMM 6140 Functions • Derivatives of Continuous
SIAM 78-5 Functions • Evaluation of Weierstrass Zeta
SIAM 79-9 Functions • Fourier Series for a Combination of

Jacobian Elliptic
AMM 6218 Functions • Images of Monotone
AMM E2573 Functions • Inequalities for Symmetric
AMM 6013 Functions • Integrals of Haar
AMM 6280 Functions • Integrals of Harmonic
AMM E2803 Functions • Integrals of Trigonometric
AMM 6117 Functions • Linear Compositions of Two Entire
AMM 6085 Functions • Majorants for Families of

Uniformly Integrable
AMM 6081 Functions • Nowhere Continuous,

Quasi-continuous
AMM 5955 Functions • On Q→ Q Differentiable
SIAM 74-19 Functions • One-sided Approximation to

Special
AMM 6097 Functions • Polynomial Algebra Generated by

Symmetric
AMM E2467 Functions • Polynomial Approximations to

Exponential
AMM E2610 Functions • Separately Continuous
AMM E2478 Functions • Similar

AMM 6073 Functions • Singular Monotonic
SIAM 77-4 Functions • Solutions to Linear Partial

Differential Equations Involving Arbitrary
AMM E2487 Functions • Symmetric
AMM 6253 Functions exp[i cos(θ − θj)] • Linear

Independence of

AMM 6083 Functions Σrp/r(p+r),Σr(−1)r−1
(
p
r

)
/r • The

AMM 6145 Functions N→ C • Convolution Products on
AMM 6165 Functions Approximated by Their Mean Values
TYCMJ 102 Functions Found
AMM 6018 functions in R2 • Differentiable
AMM 5995 Functions of Bounded Operators • Analytic
AMM 6256 Functions of Bounded Variation • Additive Set
AMM 6257 Functions of Length Less Than 2 • Sets of
AMM 6042 Functions Vanishing Outside [0, 1] • C∞
AMM 5968 Functions with Integral Dkf(0) • The Set of

Zeros of Entire
AMM 5888 Functions with Partial Derivatives • Continuity

of
AMM 6075 Functions with Positive Fourier Transform •

Integrable
AMM 6142 Functions with Prescribed Discontinuities
AMM 6118 Functions without Zeros • Linear Combinations

of Entire
FQ B-330 G. C. D. • Finding a
FQ B-365 G. P. • Congruent to a
FQ B-344 G. P.’s • Averaging Gives
AMM E2650 Galois Group • Computing a
JRM 463 Game • A Coin
JRM 217 Game • Another Coin
JRM 658 Game • GCD
JRM 499 Game • Recursive
JRM 214 Game • The Game of the
JRM 558 Game • The Prime
JRM 675 Game • The St. Petersburg
JRM 288 Game • The Switching
SIAM 76-1 Game of Slash • The
JRM 214 Game of the Game • The
JRM 246 Game Theoretic Craps
JRM 428 Games • Choice of
MM 1024 Games Behind • Percentage vs.
SIAM 77-1 Gamma Distribution • Percentiles for the
SIAM 75-11 Gamma Function • Inequalities for the
JRM 563 Gandalf’s Problem
AMM E2522 Gaps • Arithmetic Progressions in Sequences

with Bounded
JRM 472 Garage Door • The
FQ B-308 Garbled Hint • A
SIAM 77-2 Gaussian Hypergeometric Function Identity •

A
AMM E2642 Gaussian Integers • An Application of
AMM 6053 Gaussian Integers • Density of Arguments of

Powers of
FQ B-406 GCD • First Term as
JRM 658 GCD Game
FQ B-412 GCD Not LCM
FQ H-233 General-ize
FQ B-386 Generalization • Elusive
TYCMJ 140 Generalization of a Property of the Symmedian

Point
SIAM 74-14 Generalization of the Vandermonde

Determinant • A
MATYC 111 — Generalized • Pascal’s Triangle
MATYC 111 Generalized • Pascal’s Triangle —
JRM 766 Generalized Fibonacci Sequence
SIAM 73-2 Generalized Inverse of a Matrix • Integral

Representation for the Moore–Penrose
MM 1040 Generalized Inverses
AMM E2708 Generated by n-Cycles • Groups
AMM 6276 Generated by Screw Motions • Groups
AMM 6097 Generated by Symmetric Functions •

Polynomial Algebra

372



Title Index
Generated 1975–1979 Harmonic

AMM 6052 Generated by Two Elements • Torsion Groups
AMM E2802 Generated from a Triangle • A Parallelogram
AMM 5946 Generated Groups • Intersection of Finitely
FQ B-390 Generating Diagonals of Pascal’s Triangle
FQ B-381 Generating Function
FQ B-279 Generating Function • Differentiating

Fibonacci
JRM 737 Generating Integers
AMM 5670 Generating Subsets of the Plane
FQ B-349 Generating Twins
JRM 319 Generator • A Composite
FQ H-232 Generator • Using Your
FQ B-407 Generator of Pascal Triangle
AMM 5982 Generators • Algebra
AMM 6052 Generators • Torsion Group with Two
AMM 6099 Generators for some Non-Abelian Groups
JRM 498 Geodesics on a Baseball
JRM 483 Geographical Alphametic
JRM 579 Geography Lesson
MM 961 Geometric and Arithmetic
AMM E2503 Geometric Characterization of ζ(4) • A
TYCMJ 136 Geometric Distribution • Mean of the
MM 959 Geometric Inequality • A
AMM S23 Geometric Inequality • Variation on the

Erdős-Mordell
JRM 739 Geometric Mean • The
TYCMJ 52 Geometric Mean Value Theorem • A
SIAM 76-4 Geometric Probability
TYCMJ 133 Geometric Progressions • Paired
AMM E2549 Get an Euler Path • Adding Edges to
MATYC 80 Get Close • Let’s
JRM 631 Get Richer • The Rich
FQ H-292 Get the Point
FQ H-125 Ghost from the Past
JRM 313 Girl Revisited • The Calendar
AMM 6115 Given Marginals • n-Dimensional Distributions

with
AMM E2660 Given Perimeter • Integral Cyclic

Quadrilaterals of
FQ B-344 Gives G. P.’s • Averaging
JRM 410 Go Forth And Multiply
MATYC 118 Go to the Principal, Please
JRM 717 Goin’ Green
MATYC 79 Going • Coming and
FQ B-404 Golden Approximations
FQ B-373 Golden Cosine
FQ B-410 Golden Limit
FQ B-274 Golden Mean • 3 Symbol
FQ B-395 Golden Powers • Reciprocals of
FQ B-286 Golden Powers of 2
FQ B-357 Golden Ratio Inequality Count
FQ B-405 Good Rational Approximations
AMM E2651 Grötsch • A Theorem of
JRM 794 Grandfather’s Age
JRM 646 Grapefruit Juice Cans • Packing Grapefruits

and
JRM 646 Grapefruits and Grapefruit Juice Cans •

Packing
JRM 616 Grapes • Sour
AMM 5385 Graph • A Planar
AMM 6034 Graph • Coloring the Edges of a
AMM 6037 Graph • Imbedding of a
AMM 5933 Graph • Infinite Complete Subgraph of a

Random
AMM E2565 Graph • Regularizing a Bipartite
AMM 5953 Graph • Sum of Valencies for a Plane
AMM 6255 Graph Theorem • Closed
AMM 6159 Graph Without Triangles • The Maximum

Number of Edges in a
AMM 6079 Graphs • Bipartite
AMM E2564 Graphs • Covering Vertices of Four-valent

AMM 5966 Graphs • Hamiltonian Circuits in Maximal
Planar

AMM E2672 Graphs • Orientation and Vertex-Coloring of
Complete

AMM E2795 Graphs • Properties of Regular Bipartite
AMM 6182 Graphs • Rectangular
SIAM 74-20 Gravitational Attraction
JRM 476 Grazing Problem • A
JRM 710 Grazing Problem • Another
TYCMJ 69 Greatest Integer Function Identity
FQ B-301 Greatest Integer Identity
MM 994 Greatest Integer Integral • A
FQ H-310 Greatest Integers • Fibonacci and Lucas Are

the
JRM 613 Greek • Doubly True –
JRM 717 Green • Goin’
JRM 210 Grid
JRM 637 Ground • On Solid
AMM E2650 Group • Computing a Galois
AMM 6011 Group • Equal Sum Partitions in an Abelian
AMM 5932 Group • Equivalence Relation in the

Symmetric
AMM E2659 Group • Forcing a Quasigroup to Be a
AMM 6049 Group • Subgroups of the Symmetric
AMM E2753 Group Zp • Multiplicative
AMM E2542 Group Does the Job • A Bigger
AMM 6246 Group Homomorphism • A
AMM 6026 Group Inverted by an Automorphism •

Number of Elements in a
MM 1086 Group of Transformations
AMM E2574 Group Operation on Natural Numbers • A

Special
JRM 578 Group Project
AMM 6069 Group Ring • Zero Divisors and Units in a
AMM 6052 Group with Two Generators • Torsion
AMM 6059 Groups • Cyclic Sylow Subgroups of Metacyclic
AMM 6099 Groups • Generators for some Non-Abelian
AMM 6202 Groups • Inequality for Finite
AMM 5946 Groups • Intersection of Finitely Generated
AMM 6275 Groups • Isometry
AMM 5959 Groups • Locally Compact Topological
MATYC 109 Groups • Loops &
AMM 5990 Groups • Substitution
AMM 5977 Groups • Topological
AMM 6205 Groups • Torsion-Free Finite Extensions of

Cyclic
AMM 5976 Groups • Trivial Centralizer
AMM 6221 Groups and Cardinal Numbers
AMM E2708 Groups Generated by n-Cycles
AMM 6276 Groups Generated by Screw Motions
AMM 6052 Groups Generated by Two Elements • Torsion
AMM 6176 Groups of Square Order • Simple
SIAM 74-8 Growth • An Integral Equation for Crystal
AMM 6239 Growth of xy − yx
FQ H-250 Growth Rate
TYCMJ 144 Hölder Condition of Order 1 + ε
AMM 6013 Haar Functions • Integrals of
AMM E2761 Half Planes • Polynomial with Zeros in Upper

and Lower
TYCMJ 131 Half the Inradius of an Isosceles Triangle

Prime? • When is
FQ B-392 Half-Way Application of (E2 − E − 1)2

TYCMJ 18 Halves and Square Roots
AMM 6278 Hamel Basis • Translation Invariance
AMM 5966 Hamiltonian Circuits in Maximal Planar

Graphs
JRM 597 Hand • The Dangerous
AMM E2709 Hankel Determinant
MATYC 135 Happy Birthday, Miss Cohen
JRM 387 Hard vs. Soft
FQ H-241 Harmonic
AMM 6280 Harmonic Functions • Integrals of
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Title Index
Harmonic 1975–1979 Increasing

AMM 6198 Harmonic in the Unit Disk
AMM E2484 Harmonic Limit • A
SIAM 75-21 Harmonic Motion • n-dimensional Simple
AMM 6048 Harmonic Numbers
JRM 512 Harmonic Series • A Conjecture Regarding the
AMM 5989 Harmonic Series • An Integer Sequence from

the
AMM E585 has been Cracked • Miquel Point — A Tough

Nut
AMM 5962 Hausdorff Space not σ-compact • A Separable
JRM 291 Head-On Poker Variants
JRM 745 Hear The Mikado • To
JRM 782 Hearts • Four
JRM 724 Heavenly Bodies
AMM 6224 Heavy and Light Balls by Weighings •

Determining
JRM 462 Heck • Mental
AMM E2533 Helping Professor Umbugio
JRM 338 Here • No Slimming
FQ H-293 Hermite • The Old
SIAM 78-2 Hermite Basis Polynomials • Two Recurrence

Relations for
AMM 6072 Hermitian Matrix • Positive Definite
AMM 5992 Hermitian Matrix • Sum of Blocks in a
TYCMJ 130 Heron’s Inequality • Sharpening of
JRM 731 Heterodoxy • The Temple of
JRM 388 Heterogeneous Tiling Conjecture • The
MM 1084 Hex • Kriegspiel
MM 1062 Hexagon • Ellipse and Convex
MATYC 121 Hexagon • Radius of an Inscribed
AMM E2531 Hexagon Theorem • A
TYCMJ 42 Hexagons • Complete Bichromatic
MM 992 Hexagons • Exceptional
MM 975 Hexagons • Number of
MM 1057 Heximating a Pentagon
AMM E2469 Hide and Seek in the Unit Disk
JRM 489 Hiding • A Paradisaic Triptych — The Snake is
JRM 754 High Hopes
JRM 484 High Hopes Society • The American
JRM 328 High Tension
JRM 670 High-Powered Alphametic
JRM 741 High-Powered Problem • A
AMM E2546 Hilbert Function and Counting
FQ B-308 Hint • A Garbled
MM 1013 Holes • Fibonacci
AMM 5936 Holomorphic Function in |z| < 1 • Range of a
AMM E2768 Homeomorphic Subsets • Decomposing an

Interval into
AMM 6246 Homomorphism • A Group
JRM 754 Hopes • High
JRM 484 Hopes Society • The American High
JRM 412 Horn • Blowing Our Own
AMM 6041 Horse Race • A Random
JRM 461 Hot Alphametic • A
JRM 720 House • Specialty of the
JRM 735 Housespouse’s Dilemma • The
JRM 375 How to Tack in a Tin Can • Cruise of the

Sidewinder, or
JRM 332 Hungry? • Who’s
AMM 5939 Hurwitz Polynomials • On
JRM 529 Hyper-resistance
AMM E2680 Hyperbolic Plane • A Quadrilateral in the
SIAM 79-8 Hyperbolic Series Identity • A
SIAM 77-2 Hypergeometric Function Identity • A

Gaussian
SIAM 75-17 Hypergeometric Functions • A Series of
AMM 5950 Hypergeometric Series • A Well-Poised
AMM E2785 Hyperplanes in Fq • Covering V − {0} with
TYCMJ 64 Hypotenuse • The Inscribed Square On the
AMM 6116 Ideal Domains • Principal
JRM 583 Ideal, Too • Doubly True and
SIAM 75-1 Idealized Optical Fibre Mode Conversion

AMM 6180 Ideals • A Construction for
AMM 6152 Ideals • Products of
AMM 5970 Ideals • Spanning
AMM 5940 Ideals in Commutative Rings
AMM E2676 Ideals in Matrix Rings
AMM E2528 Ideals of a Matrix Ring
TYCMJ 139 Idempotent • Spectrum of a Proper
AMM E2704 Idempotent Elements in Z/nZ
AMM 6183 Idempotents • The Number of
AMM 6039 Idempotents in a Power Series Ring • Central
FQ H-290 Identical
JRM 756 Identical Digits
AMM 6030 Identically Distributed Random Variables
AMM 6196 Identified • Limits
FQ H-266 Identify!
MM 912 Identities • Binomial
AMM E2455 Identities • Fermat Numbers, a Result of

Legendre, and Two
FQ H-295 Identities • More
FQ H-288 Identities • More
AMM 6150 Identities • Near
SIAM 74-12 Identities • The Rogers-Ramanujan
AMM 6108 Identities for τ(n) • Multiplicative
AMM E2735 Identities for Matrices • Jacobi’s
TYCMJ 24 Identity • A Binomial Coefficient
SIAM 79-13 identity • A Combinatorial
SIAM 79-13 Identity • A Combinatorial
SIAM 78-6 Identity • A Combinatorial
SIAM 75-4 Identity • A Combinatorial
AMM E2454 Identity • A Combinatorial
AMM E2602 Identity • A Combinatorial
AMM 6010 Identity • A Combinatorial
MATYC 72 Identity • A Functional
SIAM 77-2 Identity • A Gaussian Hypergeometric

Function
SIAM 79-8 Identity • A Hyperbolic Series
MM 965 Identity • A Polynomial
AMM E2652 Identity • A Simple
MATYC 67 Identity • A Triangular
MATYC 132 Identity • A Trig
SIAM 79-15 Identity • An
FQ B-355 Identity • Cubic
FQ B-327 Identity • Finishing Touches on a Lucas
FQ B-301 Identity • Greatest Integer
TYCMJ 69 Identity • Greatest Integer Function
FQ B-339 Identity • Operational
FQ H-245 Identity • Productive
FQ B-329 Identity • Unveiling an
MM 991 Identity in a Ring • An
AMM E2681 Identity with Binomial Coefficients • An
MATYC 95 If Only
AMM 6218 Images of Monotone Functions
AMM 6037 Imbedding of a Graph
JRM 605 Immodesty
JRM 303 Imperfect Information • Two Levels of
AMM 6251 Imply BA = D? • When Does AB = C
FQ B-325 Impossible Functional Equation
AMM E2613 Impossible Partition • An
AMM E2687 Impossible Triangle • An
JRM 594 Imposter • Another
JRM 316 Imposter • The
JRM 374 Ina’s Repeater
AMM E2793 Incenter, Circumcenter, Nine-points Center •

Inversion of the
AMM E2690 Incidence Matrix • An Invertible
JRM 366 Incident at Sea
TYCMJ 116 Inclusion and Exclusion Applied to Occupancy
TYCMJ 126 Inconsistent Quadratic System
FQ B-364 Incontiguous Zero Digits
MM 1027 Increasing • Strictly
MATYC 97 Increasing Function • An
MATYC 133 Increasing Function • An
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Title Index
Increasing 1975–1979 Integer-Valued

SIAM 77-5 Increasing Infinite Series • A Conjectured
AMM 5861 Increasing Polynomials in an Ordered Field
AMM 5861 Increasing Polynomials on an Ordered Field
JRM 336 Indeed! • “Mania,”
AMM E2555 Indefinite Quadratic Form on a Box
AMM E2699 Independence Modulo Zero Sequences • Linear
AMM 6253 Independence of Functions exp[i cos(θ − θj)] •

Linear
AMM 5942 Independent Normal Distributions
AMM 5884 Independent Random Variables • Sequences of
AMM E2474 Independent Random Variables • The

Maximum of
AMM 6103 Independent Random Variables in a Vector

Space • Sequences of
AMM E2545 Indices of Subgroups of SLn(Z)
FQ H-276 Indifferent
AMM 6054 Induced by a Permutation • Mapping
AMM E2597 Induced in a Symmetric Power •

Transformation
AMM E2691 Inequalities • Classical
SIAM 77-12 Inequalities • Conjectured
TYCMJ 98 Inequalities • Triangle
SIAM 77-19 Inequalities • Two
AMM E2471 Inequalities • Two New Triangle
AMM 6019 Inequalities for π • Algebraic
MM 910 Inequalities for a Triangle
AMM E2649 Inequalities for Non-obtuse Triangles
AMM E2573 Inequalities for Symmetric Functions
SIAM 75-11 Inequalities for the Gamma Function
AMM 5997 Inequality • A Γ-function
AMM E2480 Inequality • A Consequence of Jensen’s
AMM S6 Inequality • A Cyclic Power
AMM E2504 Inequality • A Difficult Triangle
AMM 5934 Inequality • A Functional
AMM E2720 Inequality • A Functional
MM 959 Inequality • A Geometric
SIAM 76-8 Inequality • A Matrix
TYCMJ 39 Inequality • A Mean
AMM E2519 Inequality • A Polynomial
AMM E2655 Inequality • A Polynomial
SIAM 75-19 Inequality • A Polynomial
MM 937 Inequality • A Popular
SIAM 74-13 Inequality • A Probabilistic
SIAM 78-16 Inequality • A Probabilistic
MM 897 Inequality • A Relative
FQ B-303 Inequality • A Sigma Function
AMM E2603 Inequality • A Symmetric Sum
TYCMJ 45 Inequality • A Symmetrical
TYCMJ 30 Inequality • A Triangle
SIAM 79-19 Inequality • A Triangle
SIAM 77-9 Inequality • A Triangle
AMM E2634 Inequality • A Triangle
MM 1082 Inequality • A Trigonometric
SIAM 77-10 Inequality • A Two Point Triangle
AMM E2695 Inequality • An
AMM E2547 Inequality • An
TYCMJ 20 Inequality • An
SIAM 79-1 Inequality • An
SIAM 74-10 Inequality • An Integral
SIAM 78-18 Inequality • An Integral
SIAM 75-16 Inequality • An Integral
SIAM 77-6 Inequality • An Integral
TYCMJ 123 Inequality • Another Arithmetic Mean
AMM E2517 Inequality • Another Triangle
FQ H-239 Inequality • Fermat’s
AMM 6227 Inequality • Legendre Polynomial Integral
AMM 4603 Inequality • Shapiro’s Cyclic
TYCMJ 130 Inequality • Sharpening of Heron’s
AMM S12 Inequality • Tetrahedron
AMM E2462 Inequality • The Extended Erdős-Mordell
AMM E2739 Inequality • Trigonometric

AMM S23 Inequality • Variation on the Erdős-Mordell
Geometric

AMM E2807 Inequality (n+ a)k ≤ rnk
FQ B-357 Inequality Count • Golden Ratio

AMM E2670 Inequality for
(
xe−x − ye−y

)
/
(
e−x − e−y

)
•

An
SIAM 78-20 Inequality for a Pair of Associated Simplexes •

A Volume
AMM 6202 Inequality for Finite Groups
AMM E2656 Inequality for Positive Real Numbers • An
TYCMJ 85 Inequality for the Radii of a Triangle
MM 936 Inequality for Triangles • An
TYCMJ 154 Inequality for Triangles and for Trace AB
MM 1043 Inequality for Two Triangles
AMM 6269 Inequality Involving the Γ Function
AMM 6185 Inequality of Lp Norms of a Derivative of a

Function
AMM 6254 Inequality of Products • An
AMM E2428 Inequality of Statistical Interest • An
AMM E2483 Inequality with Many Verifications • An
AMM E2707 inf • The sup of an
TYCMJ 92 Infectious Continuity
AMM E2518 Infimum for Polynomials • An
AMM E2584 Infinite 2-complex in 3-space
AMM 5933 Infinite Complete Subgraph of a Random

Graph
AMM 6163 Infinite Maze • Escaping from an
SIAM 76-16 Infinite Product • Conjecture on a Finite and

an
AMM 6233 Infinite Product • Irrationality of an
AMM 6012 Infinite Product over a Set of Primes
SIAM 77-5 Infinite Series • A Conjectured Increasing
MATYC 66 Infinite Sum • An
SIAM 76-2 Infinite Sum • An
SIAM 77-18 Infinite Summation • An
SIAM 79-12 Infinite Sums • Two
SIAM 76-12 Infinite System of Nonlinear Differential

Equations • An
AMM E2733 Infinitely Many Subsets of [0, 1] With the

Same Non-zero Length and Small Pairwise
Intersections

FQ B-387 Infinitude • One’s Own
JRM 303 Information • Two Levels of Imperfect
FQ B-398 Ingredient • The Added
AMM 6169 Injective Lie Algebras
AMM 6004 Injective Map of R×R • An
TYCMJ 143 Inner Product Formula for Cotangent
AMM 6207 Inner Product of Two Random Vectors •

Distribution of
JRM 622 Inquiry • A Convergence
TYCMJ 131 Inradius of an Isosceles Triangle Prime? •

When is Half the
MM 1076 Inscribed n-gons
MATYC 121 Inscribed Hexagon • Radius of an
AMM E2674 Inscribed in Another • One Regular n-simplex
MM 925 Inscribed Octagons
TYCMJ 64 Inscribed Square On the Hypotenuse • The
TYCMJ 118 Inscribed Triangles • Perimeters of
AMM E2723 Insensitive Central Limit Theorem • An
JRM 564 Instant Replay
MM 1080 Int and sgn
TYCMJ 68 Integer • The Least Triangular Multiple of an
TYCMJ 86 Integer Calculus Box Construction
AMM 6121 Integer Expression • An
TYCMJ 69 Integer Function Identity • Greatest
FQ B-301 Integer Identity • Greatest
MM 994 Integer Integral • A Greatest
AMM E2682 Integer Points on an Ellipse
AMM 5989 Integer Sequence from the Harmonic Series •

An
TYCMJ 58 Integer Zeros of a Polynomial
AMM E2677 Integer-Valued Function • An
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Title Index
Integers 1975–1979 Invitation

AMM E966 Integers • A Representation for
MM 934 Integers • A Subset of
AMM E2642 Integers • An Application of Gaussian
AMM E2616 Integers • Approximation by Algebraic
AMM 6086 Integers • Common Divisors and Square Free
JRM 767 Integers • Consecutive
AMM 5998 Integers • Covering a Set of
AMM 6053 Integers • Density of Arguments of Powers of

Gaussian
FQ H-310 Integers • Fibonacci and Lucas Are the

Greatest
AMM 6020 Integers • Friendly
JRM 737 Integers • Generating
MM 1063 Integers • Matrix of
AMM E2621 Integers • No Solutions in Positive
JRM 651 Integers • Partitioning the Positive
AMM E2510 Integers • Power to the
AMM 6015 Integers • Prime Decomposition of
TYCMJ 99 Integers • Quadratic Formula
TYCMJ 21 Integers • Sets of n Consecutive
AMM 5931 Integers • The Conjugates of Algebraic
AMM E2485 Integers • Triangles from Random
TYCMJ 113 Integers • Tricolored Sets of
AMM E2786 Integers 2x2 − 1, 2x2 • The Two Consecutive
JRM 656 Integers in English
AMM E2460 Integers in Pythagorean Triples • Appearance

of
AMM E2777 Integers Relatively Prime to b in [nb/a]
AMM 6200 Integers That Differ by Two • A

Characterization of
AMM 6174 Integrability • More on Converses to Uniform
AMM 6113 Integrable Functions • A Class of

Stieltjes-Riemann
AMM 6085 Integrable Functions • Majorants for Families

of Uniformly
AMM 6075 Integrable Functions with Positive Fourier

Transform
SIAM 78-19 Integral • A Definite
SIAM 77-8 Integral • A Definite
AMM 6111 Integral • A Fourier and Probability
MM 994 Integral • A Greatest Integer
AMM E2523 Integral • A Logarithmic
AMM 5687 Integral • A Probability
AMM 6008 Integral • A Vanishing
MM 895 Integral • An
AMM E2706 Integral • An Unbounded
AMM E2622 Integral • An Upper Bound for an
AMM 5608 Integral • Evaluation of an
SIAM 75-20 Integral • Limit of an
SIAM 78-4 Integral • Minimizing an

AMM 5968 Integral Dkf(0) • The Set of Zeros of Entire
Functions with

AMM 6153 Integral n/π(n)
AMM 6268 Integral Bases in Towers of Fields • Relative
AMM E2660 Integral Cyclic Quadrilaterals of Given

Perimeter
MM 966 Integral Distances • Seven
AMM 6177 Integral Domain • Noetherian
SIAM 75-18 Integral Equation • A Nonlinear
SIAM 75-9 Integral Equation • A Singular
SIAM 74-8 Integral Equation for Crystal Growth • An
AMM 5974 Integral Formula • An n-tuple
SIAM 76-19 Integral from Demagnetizing Fields • A Double
AMM S15 Integral Functional • Beckenbach’s Monotonic
SIAM 74-18 Integral Functional • Constrained Minimization

of an
SIAM 74-10 Integral Inequality • An
SIAM 77-6 Integral Inequality • An
SIAM 75-16 Integral Inequality • An
SIAM 78-18 Integral Inequality • An
AMM 6227 Integral Inequality • Legendre Polynomial
AMM 6210 Integral Matrices Congruent to I

AMM 5314 Integral of sinx/x • A Multiple
AMM 6040 Integral of a Jacobian
SIAM 78-10 Integral of an Elliptic Function • An
SIAM 77-3 Integral of N. Bohr • A Definite
AMM E2726 Integral Parts of na+ b • Sequence of
MATYC 82 Integral Relation • An
SIAM 73-2 Integral Representation for the Moore–Penrose

Generalized Inverse of a Matrix
MATYC 71 Integral Solution • An
AMM 6179 Integral Vertices • Cubes with
AMM E2623 Integrality of Some Fractions
AMM E2765 Integrals • Change of Variable Formula for

Definite
AMM 5951 Integrals • Some Trigonometric
AMM 6013 Integrals of Haar Functions
AMM 6280 Integrals of Harmonic Functions
SIAM 74-22 Integrals of the First Kind • Fourier

Coefficients of a Function Involving Elliptic
AMM 5960 Integrals of the Rademacher Function
AMM E2803 Integrals of Trigonometric Functions
TYCMJ 124 Integration • Example of Finite
AMM 5994 Integration by Parts
TYCMJ 83 Integration of a Series
AMM 6154 Integrations • Iterating Reflections and
AMM 5589 Interchange of Limits
MM 908 Interchanged Digits
AMM E2428 Interest • An Inequality of Statistical
AMM E2716 Interior to a Triangle • Six Segments Defined

by a Point
AMM 6260 Interior, and Union • Sets Formed by Iterated

Closure,
MM 1053 Intermediate Value Properties • Mean and
JRM 777 International Affair
JRM 436 International Alphametic • An

TYCMJ 134 Interpolating ((ab + bc + ca)/3)1/2 Between

(a+ b+ c)/3 and (abc)1/3

AMM E2796 Interpolation • Chebyshev
SIAM 74-3 Interpolation • Davidon’s Cubic
AMM 5427 Intersecting Line • Three Balls and an
AMM S5 Intersecting Sets of Differences
AMM E2512 Intersecting Triangles and Their Circumcircles
AMM 6022 Intersection in a Collection of Sets • Minimal
AMM 5946 Intersection of Finitely Generated Groups
AMM E2754 Intersection of Lines • Pattern of
AMM E2714 Intersection of Moving Convex Bodies
AMM E2733 Intersections • Infinitely Many Subsets of [0, 1]

With the Same Non-zero Length and Small
Pairwise

AMM E2764 Intersections and Unions of Subsets
AMM E2792 Intersections of Point Sets • Odd
AMM E2768 Interval into Homeomorphic Subsets •

Decomposing an
AMM 6278 Invariance Hamel Basis • Translation
SIAM 78-1 Invariance of Disc Averages • Approximate
JRM 778 Invasion of Privacy
JRM 604 Inventory Numbers
MATYC 100 Inverse • Polynomial
SIAM 76-3 Inverse Laplace Transforms • Three
SIAM 73-2 Inverse of a Matrix • Integral Representation

for the Moore–Penrose Generalized
AMM 6162 Inverse of a Matrix • The Sum of the Elements

of the
MM 1040 Inverses • Generalized
AMM E2793 Inversion of the Incenter, Circumcenter,

Nine-points Center
AMM 6026 Inverted by an Automorphism • Number of

Elements in a Group
TYCMJ 150 Invertibility of Matrices in Q[M ]
AMM E2690 Invertible Incidence Matrix • An
AMM 6259 Invertible Laurent Polynomials
JRM 743 Invitation • An
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Title Index
Involving 1975–1979 Lattice

AMM 6271 Involving en and n! • Asymptotic Behavior of
Sequences

AMM E2770 Involving Sk =
∑

mk • A Formula
SIAM 77-4 Involving Arbitrary Functions • Solutions to

Linear Partial Differential Equations
AMM E2767 Involving Derivatives • A Determinant
SIAM 74-22 Involving Elliptic Integrals of the First Kind •

Fourier Coefficients of a Function
AMM 6269 Involving the Γ Function • Inequality
MM 1048 Irrational
MATYC 108 Irrational • Rational &
TYCMJ 33 Irrational Chords
MM 1087 Irrational Coefficients
AMM E2598 Irrational Distances • Dense Rational Set with
MATYC 60 Irrational Exercise • An
MM 901 Irrational Sides
AMM 6233 Irrationality of an Infinite Product
AMM 6188 Irrationals • Complementary Subsets of the
AMM 6161 Irrationals by Distribution of Residues • A

Characterization of
AMM E2711 Irreducible Characteristic Polynomial
AMM 6043 Irreducible Polynomials over a Field • Degrees

of
JRM 708 Isolated Primes
JRM 261 Isometric Exercises
AMM 6009 Isometry • A Non-Linear
AMM 6275 Isometry Groups
MM 1052 Isomorphic Boolean Rings
AMM 6076 Isoperimetric Problem • An
AMM S19 Isoperimetric Problem in a Disk
AMM 6223 Isoptic Curves
TYCMJ 131 Isosceles Triangle Prime? • When is Half the

Inradius of an
JRM 429 Issue of JRM • Madachy’s Last
JRM 439 It’s Coming, Ready or Not
MATYC 92 It’s Fewer Than You Want • Sometimes
MATYC 90 It’s Not • A Power of 2
JRM 318 It? • Why Prolong
AMM 6260 Iterated Closure, Interior, and Union • Sets

Formed by
AMM 6064 Iterated Divisor Function • An
AMM E984 Iterated Function • An
AMM E2451 Iterated Sine • The
MM 1069 Iterates
AMM 6112 Iterates • A Series of
MM 993 Iterates • Fixed Points of
AMM 5405 Iterates of the Zeta-function
AMM 6154 Iterating Reflections and Integrations
AMM 6133 Iteration of a Continuous Map
SIAM 75-14 Iteration towards All Roots of a Complex

Polynomial • Simultaneous
AMM E2808 Iterations Converging to a Root
FQ H-270 Its’s a Sinh
MM 940 Itself • Time Repeats

AMM E2534
(
j+k
k

)
+
(
j+k−1
k−1

)
AMM E2735 Jacobi’s Identities for Matrices
AMM 6040 Jacobian • Integral of a
SIAM 79-9 Jacobian Elliptic Functions • Fourier Series for

a Combination of
AMM 6068 Jacobson Radicals • On the
JRM 325 Jam Session
AMM E2480 Jensen’s Inequality • A Consequence of
AMM E2542 Job • A Bigger Group Does the
AMM 5963 Joint Densities • Expectations in Decreasing
AMM E2456 Jordan Curve • Area Enclosed by a
AMM E2647 Jordan Curve Theorem • An Elementary Case

of the
JRM 429 JRM • Madachy’s Last Issue of
JRM 648 JRM Nim
JRM 646 Juice Cans • Packing Grapefruits and

Grapefruit
JRM 326 Just Beans!

AMM E2544 Juxtaposition • Fibonaccian
AMM E2798 k = (q − 1)/p, and 2orb is a kth Power mod q

AMM E2780 k ≤ n • Sum of Number of Divisors
∑

d(k),
AMM E2447 k-Satisfactory Sequences • Bounds for
AMM E2798 kth Power mod q • k = (q − 1)/p, and 2orb is a
AMM 6077 Kn • Sum of the Digits in
AMM 5965 Kernels • Complements of
JRM 729 Keys • The Blind Man’s
JRM 536 Kibitzer • The
SIAM 74-22 Kind • Fourier Coefficients of a Function

Involving Elliptic Integrals of the First
JRM 404 King • Salute To The
AMM E2476 Kissing Precisely • Tetratangent Spheres
AMM E2475 Kissing Precisely • Tritangent Circles
JRM 416 Knew It All Along • We
JRM 540 Knight • Rook vs.
AMM E2392 Knight’s Distance • The
JRM 216 Knight-life
JRM 164 Knights • The 13
MM 1051 know (x, y)? • Does X or Y
AMM 6187 Known Expected Value • A
AMM E2539 Known Unsolved Problem in Disguise • A
JRM 788 Koolest Sequence • The
MM 1084 Kriegspiel Hex
JRM 465 Kriegspiel Tic-Tac-Toe
AMM E2762 Kronecker Product • A Block Matrix Equal to

a
AMM E2762 Kronecker Product • A Block Matrix Not

Equal to a
AMM 5996 Kuratowski Sets
JRM 324 L-Shaped Properties • The
AMM 6131 L1(−∞,∞) • A Dense Set in

AMM 5957 L2 • Completeness Criterion of Orthonormal
Systems in

AMM 6021 lp • Linear Dependence in
FQ H-221 Ln • Congruence for Fn and
AMM 6185 Lp Norms of a Derivative of a Function •

Inequality of
FQ B-289 L2n+1 • A Multiple of
FQ B-288 L2n • A Multiple of
AMM E2732 Labeling Chessboard Squares
AMM 6192 Labeling Lattice Points
AMM E2671 Labelings of Binary Trees
AMM E2605 Labels on a Chessboard
JRM 530 Labor • The Thirteenth
MM 1083 Lacing a Lattice
JRM 793 Ladders • The Two
JRM 690 Lament • Drag Racer’s
JRM 753 Lament • Napoleon’s
JRM 662 Lament • Non-Smoker’s
JRM 661 Lament • Non-Smoker’s
JRM 415 Languages • Two True Alphametics In Two
JRM 414 Languages • Two True Alphametics In Two
SIAM 76-3 Laplace Transforms • Three Inverse
AMM 6016 Large Modified Factorial • A
MATYC 93 Largest Circle • The
AMM E1298 Largest Cross-Section of a Tetrahedron
FQ H-215 Last • At
MM 1066 last 1 • The
JRM 429 Last Issue of JRM • Madachy’s
AMM 6066 Last Theorem • A Strong Fermat’s
AMM E2771 Last Theorem for Even Exponents • Fermat’s
MATYC 123 Late for Supper
JRM 692 Latin • Doubly True –
MM 1083 Lattice • Lacing a
TYCMJ 129 Lattice Point Principle
FQ B-377 Lattice Points • Counting
AMM 6192 Lattice Points • Labeling
AMM E2633 Lattice Points • Permutable Sets of
AMM E2653 Lattice Points • Visible
AMM E2570 Lattice Points and Least Common Multiple
TYCMJ 53 Lattice Points on a Circle
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Title Index
Lattices 1975–1979 Lots

AMM E2700 Lattices • Complemented Finite
AMM 6032 Lattices • Distributive
JRM 350 Launch • The Ferry and the
AMM 6259 Laurent Polynomials • Invertible
TYCMJ 47 Law of Sines and Cosines • A
TYCMJ 120 Laws • Trigonometric Addition
TYCMJ 71 Laws Property • Addition
JRM 435 Lazy Ones • An Easy One For the
FQ B-412 LCM • GCD Not
AMM S21 LCM • Product Divided by
AMM E2686 LCM of Binomial Coefficients
AMM E2638 Leaders of a Maximal Clique
JRM 478 Learning Program • A
TYCMJ 146 Least Area Property of Medial n-gons
AMM E2570 Least Common Multiple • Lattice Points and
AMM 5413 Least Common Multiple of Consecutive Terms

in a Sequence
AMM E2661 Least Common Multiples • Functional

Characterization of
TYCMJ 117 Least Squares Property of the Centroid
TYCMJ 68 Least Triangular Multiple of an Integer • The
MATYC 124 Leg • Is a Side a
FQ H-227 Legendre • Sum
SIAM 79-14 Legendre Functions • A Conjectured Property

of
MM 941 Legendre Polynomial
AMM 6227 Legendre Polynomial Integral Inequality
AMM E2601 Legendre Polynomials • Binomial Sum and
AMM E2658 Legendre Polynomials Again
AMM E2760 Legendre Symbols • A Sum of
AMM E2455 Legendre, and Two Identities • Fermat

Numbers, a Result of
MM 946 Length • Expected
AMM 6230 Length • Expected Perimeter
AMM E2489 Length and Functional Composition • Arc
AMM E2733 Length and Small Pairwise Intersections •

Infinitely Many Subsets of [0, 1] With the
Same Non-zero

AMM 6257 Length Less Than 2 • Sets of Functions of
AMM 6074 Length of Arc of a Monotonic Function
AMM 6007 Length when f ′ = 0 a.e. • Arc
AMM 6257 Less Than 2 • Sets of Functions of Length
JRM 719 Lesson • Arithmetic
JRM 579 Lesson • Geography
MATYC 80 Let’s Get Close
JRM 303 Levels of Imperfect Information • Two
JRM 392 Liar Problem • A Variation on the
JRM 695 Libation • Liquid
AMM 6169 Lie Algebras • Injective
JRM 722 Life • The Facts of
JRM 730 Light • The Traffic
AMM 6224 Light Balls by Weighings • Determining Heavy

and
AMM S17 Light Switches • Switching the Stairway
FQ H-305 Like Fibonacci-like Sum
AMM E2484 Limit • A Harmonic
SIAM 75-13 Limit • A Matrix
TYCMJ 26 Limit • A Popular
FQ B-345 Limit • Another
AMM E2748 Limit • Euler’s Constant as a
FQ B-410 Limit • Golden
FQ H-297 Limit • The
AMM E2495 Limit • This is the
AMM E2125 Limit • Variations on a Well-known
MM 933 Limit is e • The
MM 974 Limit is One • The
AMM 6252 Limit of a Combinatorial Sum
SIAM 75-20 Limit of an Integral
MM 928 Limit of Cotangents
AMM 6209 Limit of Matrices • A
AMM E2572 Limit Point of its Discontinuities? • Can a

Derivative be Differentiable at a

AMM E2723 Limit Theorem • An Insensitive Central
JRM 645 Limiting Difference • A
AMM 5589 Limits • Interchange of
AMM 6196 Limits Identified
AMM E2506 Limits of Differences of Square Roots
JRM 341 Line • Drop Me a
AMM 5427 Line • Three Balls and an Intersecting
MATYC 138 Line ’em Up
TYCMJ 145 Line on a Checkerboard • Euler
TYCMJ 96 Line Segment • Random Points on a
TYCMJ 17 Line Segments Cut by a Parabola
AMM 6118 Linear Combinations of Entire Functions

without Zeros
AMM 6117 Linear Compositions of Two Entire Functions
AMM 6021 Linear Dependence in lp

AMM E2453 Linear Dependence of Certain Trigonometric
Values • The

SIAM 76-6 Linear Differential Equation • An nth Order
AMM 6093 Linear Functionals • Continuous
AMM 6078 Linear Functionals in Normed Spaces
TYCMJ 46 Linear Functions • An Average

Characterization of
AMM E2699 Linear Independence Modulo Zero Sequences
AMM 6253 Linear Independence of Functions exp[i cos(θ −

θj)]
SIAM 77-4 Linear Partial Differential Equations Involving

Arbitrary Functions • Solutions to
TYCMJ 38 Linear Polynomials
AMM 5723 Linear Programming with Random Selections
AMM 5773 Linear Spaces • Complete
AMM 6215 Linear Systems for Coloring Maps
AMM S22 Linear Transformation Fixed Scalar Multiple
AMM S7 Linearization of Product of q-Appell

Polynomials
AMM E2608 Linearly Ordered Sets • Traversing
AMM E2754 Lines • Pattern of Intersection of
AMM E2553 Lines • Simson and Euler
AMM E2639 Lines • Two Perpendicular
AMM E2769 Lines in R3 • Distance Between
MM 905 Lines to a Cubic • Tangent
JRM 367 Lining • Look For the Silver
JRM 695 Liquid Libation
JRM 663 Literary Topper
JRM 359 Lo-o-ong Addition • A
JRM 588 Loaded Dice
AMM 6274 Local Bases • Disjoint Neighborhoods and

Countable
AMM E2806 Local Bases • Disjoint Neighborhoods and

Countable
AMM 5959 Locally Compact Topological Groups
MM 1008 Locating Perfect Squares
AMM 6191 Location of a Zero of a Complex Polynomial
SIAM 76-7 Location Problem • A Facility
JRM 701 Locus • A Scottian
AMM E1822 Locus Associated with Two Segments • A
TYCMJ 55 Logarithm? • Can a Number be Equal to its
JRM 785 Logarithmetic
AMM E2523 Logarithmic Integral • A
MATYC 139 Logarithmic Solution
MM 931 Logically Speaking
JRM 560 Long Auctions
AMM E2344 Long Lost Problem • A
AMM E1075 Long Products • Squares in
JRM 333 Longer One • No
FQ B-369 Longer Unsolved • No
MM 926 Longest Swim • The
JRM 367 Look For the Silver Lining
FQ H-251 Look-Series
JRM 614 Looney Tunes Farewell
MATYC 109 Loops & Groups
AMM E2344 Lost Problem • A Long
JRM 500 Lots of Sons
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Title Index
Lott’s 1975–1979 Maximum

MM 997 Lott’s Problem
AMM E2761 Lower Half Planes • Polynomial with Zeros in

Upper and
AMM 6087 Loxodromes on a Torus
FQ H-246 Luc, Et Al • Fib,
FQ H-273 Lucas • A Ray of
FQ H-310 Lucas Are the Greatest Integers • Fibonacci

and
FQ B-403 Lucas Congruence
FQ B-366 Lucas Congruence
FQ B-317 Lucas Divisor
FQ B-327 Lucas Identity • Finishing Touches on a
FQ B-313 Lucas Into Fibonacci • Exponentiating
FQ B-314 Lucas Numbers Ending in Three
FQ B-282 Lucas Right Triangles
FQ H-263 Lucas the Square is Now Mod!
TYCMJ 35 Lucas’ Theorem • An Application of
FQ B-277 Lucas-Fibonacci Congruence • A
FQ B-278 Lucas-Fibonacci Congruence • Another
FQ B-382 Lucky L Units Digit
AMM 6235 Möbius Function • Sum of Sums of the
AMM 6234 Ménage Number • Ratio of Derangement

Number to
AMM E2577 Ménage Numbers • Restricted
JRM 487 (Macbeth) • Shakespearean Alphametic
AMM 6001 Maclaurin’s Expansion • The Remainder Term

in
JRM 429 Madachy’s Last Issue of JRM
TYCMJ 89 Magic Card
MM 882 Magic Square • A Prime
MM 943 Magic Squares • Charlemagne’s
JRM 569 Magic Talisman Squares
AMM 6085 Majorants for Families of Uniformly Integrable

Functions
AMM 6084 Majorizing Properties of Coefficients of

Tchebychef Polynomials
JRM 456 Man’s Best Friend
JRM 729 Man’s Keys • The Blind
JRM 336 “Mania,” Indeed!
FUNCT 3.5.2 Manikato and the TV Camera
AMM E2733 Many Subsets of [0, 1] With the Same Non-zero

Length and Small Pairwise Intersections •
Infinitely

MM 1023 Many Superheros
AMM E2483 Many Verifications • An Inequality with
AMM E2712 Map • A Multiplicative
AMM 6051 Map • Extending a Sublinear
AMM 6133 Map • Iteration of a Continuous
AMM 6282 Map (0, 1) ∩Q ' [0, 1] ∩Q • An Explicit
AMM 6004 Map of R×R • An Injective
AMM 5978 Mapping R→ R • One-One Continuous
AMM 6091 Mapping from Γn to Cm
AMM 6054 Mapping Induced by a Permutation
AMM 6225 Mapping the 3-Sphere onto the 2-Sphere
AMM 6071 Mappings of the Unit Disk on a Convex

Domain • Analytic
AMM 6215 Maps • Linear Systems for Coloring
AMM 5986 Maps • Triangle Contractive Self
AMM S8 Maps • Weak Contraction
AMM 5790 Maps in Affine Spaces • Collinearity Preserving
AMM 6047 Maps of Ellipses onto Ellipses • Conformal
AMM 6115 Marginals • n-Dimensional Distributions with

Given
JRM 537 Marvin Sequence • The
JRM 772 Mastermind
JRM 593 Match Problem • The Eleven
JRM 621 Matching Socks
JRM 639 Mate • Castle
JRM 481 Math • New Alphametic — Old
AMM 6061 Matrices • A Convex Collection of n× n
AMM 6209 Matrices • A Limit of
SIAM 79-4 Matrices • A Maximum Number of

AMM 6057 Matrices • Determinants of
AMM E2735 Matrices • Jacobi’s Identities for
AMM 6095 Matrices • Positive Definite
MM 995 Matrices • R-Symmetric
AMM E2742 Matrices • Rarely Commuting
AMM 6006 Matrices • Relatively Prime
AMM 6057 Matrices • Singular
AMM 6171 Matrices • Trace of a Product of
AMM 6210 Matrices Congruent to I • Integral
TYCMJ 150 Matrices in Q[M ] • Invertibility of
AMM E2496 Matrix • A Nonsingular
AMM E2559 Matrix • A Nonsingular
FQ H-274 Matrix • A Soft
AMM E2690 Matrix • An Invertible Incidence
AMM 6125 Matrix • Best Rank-k Approximation for a
AMM E2635 Matrix • Characteristic Polynomial of a
AMM E2683 Matrix • Determinant of a Cyclic
AMM E2372 Matrix • Diagonals in a 0-1
AMM E2734 Matrix • Exponential of a
SIAM 73-2 Matrix • Integral Representation for the

Moore–Penrose Generalized Inverse of a
AMM 6249 Matrix • Norm of a
SIAM 76-20 Matrix • On the Extreme Eigenvalues of an

n× n
AMM 6072 Matrix • Positive Definite Hermitian
AMM E2741 Matrix • Similarity and the Diagonal of a
SIAM 78-12 Matrix • Spectral Analysis of a
AMM 5992 Matrix • Sum of Blocks in a Hermitian
AMM E2490 Matrix • The Eigenvalues of a
JRM 227 Matrix • The French
SIAM 75-7 Matrix • The Spectral Radius of a
AMM 6162 Matrix • The Sum of the Elements of the

Inverse of a
AMM 6222 Matrix and Its Adjoint • Relations Between a
AMM E2448 Matrix and its Matrix of Reciprocals Both

Positive Semi-definite • A
JRM 768 Matrix Arithmetic
SIAM 77-14 Matrix Convergence Problem • A
SIAM 79-2 Matrix Eigenvalue Problem • A
AMM E2762 Matrix Equal to a Kronecker Product • A

Block
SIAM 74-5 Matrix Exponential • On the Norm of a
SIAM 76-8 Matrix Inequality • A
SIAM 75-13 Matrix Limit • A
AMM E2762 Matrix Not Equal to a Kronecker Product • A

Block
MM 1063 Matrix of Integers
AMM E2448 Matrix of Reciprocals Both Positive

Semi-definite • A Matrix and its
SIAM 74-16 Matrix Problem • A
MATYC 91 Matrix Property • A
MATYC 58 Matrix Property • A
AMM E2528 Matrix Ring • Ideals of a
AMM E2676 Matrix Rings • Ideals in
AMM E2586 Matrix Squared • A
SIAM 76-9 Matrix Stability Problem • A
AMM S13 Matrix with Non-negative Entries
JRM 545 Matter • What’s the
JRM 380 Matter of Squares • A
FQ B-307 Maverick • Modularly Moving
AMM E2638 Maximal Clique • Leaders of a
AMM 5966 Maximal Planar Graphs • Hamiltonian Circuits

in
MM 935 Maximal Subgroups
AMM 6098 Maximally Symmetric Convex Bodies
AMM E2662 Maximization Problem for (0, 1)-Matrices • A
TYCMJ 51 Maximum • Sum and
JRM 464 Maximum Area Problem • A
MM 955 Maximum Area Triangle
AMM 6050 Maximum in Random Samples • The
SIAM 76-22 Maximum Multiplicity • A Zero of
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Title Index
Maximum 1975–1979 Multinomial

AMM 6159 Maximum Number of Edges in a Graph
Without Triangles • The

SIAM 79-4 Maximum Number of Matrices • A
JRM 89 Maximum Number of Moves • The
AMM E2474 Maximum of Independent Random Variables •

The
AMM E2538 Maximum Problem for the Triangle • A
MM 1061 Maxmin • Minmax Equals
AMM 6163 Maze • Escaping from an Infinite
JRM 341 Me a Line • Drop
FQ B-274 Mean • 3 Symbol Golden
JRM 739 Mean • The Geometric
MM 1053 Mean and Intermediate Value Properties
TYCMJ 39 Mean Inequality • A
TYCMJ 123 Mean Inequality • Another Arithmetic
TYCMJ 136 Mean of the Geometric Distribution
AMM 5964 Mean Powers of Prime Divisors
MM 899 Mean Triangular Twins
MM 987 Mean Value • A
TYCMJ 52 Mean Value Theorem • A Geometric
TYCMJ 101 Mean Value Theorem • Quadratic
AMM 6165 Mean Values • Functions Approximated by

Their
AMM 6265 Mean, Median, and Mode
TYCMJ 87 Means • Application of the Method of Deficient
TYCMJ 155 Means • Distinct Elements with Equal
MM 1056 Measure • Measure for
MM 1056 Measure for Measure
AMM 5999 Measure in Rn • A
AMM 6242 Measures • Equality of
AMM E2710 Measures of Choice Sets • Outer
TYCMJ 146 Medial n-gons • Least Area Property of
AMM 6265 Median, and Mode • Mean,
AMM E2505 Medians of a Triangle • Extended
AMM E2751 Meeting a Conic • Orthogonal Triad
FQ H-275 Mell • Pell
JRM 462 Mental Heck
AMM 6059 Metacyclic Groups • Cyclic Sylow Subgroups of
JRM 347 Metalworker’s Assistant • The
TYCMJ 87 Method of Deficient Means • Application of the
AMM E2636 Microbe Culture
FQ H-306 Middle Aged
JRM 745 Mikado • To Hear The
MM 1000 Milliquery
SIAM 79-17 Min-Max Problem • A
JRM 601 Mini-Concentration
AMM E2507 Minima • Summing
AMM 6022 Minimal Intersection in a Collection of Sets
AMM E2664 Minimal Solution of a System of Diophantine

Equations
SIAM 74-18 Minimization of an Integral Functional •

Constrained
SIAM 78-4 Minimizing an Integral
AMM E2632 Minimizing Discrepancy
AMM 5972 Minimum n, xn = x for all x in a Ring
AMM E2600 Minimum Modulus for a Polynomial
MM 947 Minimum Perimeter
AMM E2654 Minimum Subcover of a Cover of a Finite Set
SIAM 77-15 Minimum Valuation Tree • A Conjectured
JRM 184 Minimum-Move Checker Problem • A
JRM 185 Minimum-Move Chess Problem • A
MM 1061 Minmax Equals Maxmin
AMM E585 Miquel Point — A Tough Nut has been

Cracked
AMM E2631 Mirimanoff’s Condition • Prime Satisfying
MATYC 135 Miss Cohen • Happy Birthday,
JRM 440 Misunderstanding • A Basic
JRM 345 Mixing Spares and Strikes
FQ H-279 Mixture • A Rare
FQ H-262 Mod • Modern
FQ H-286 Mod • Power
MATYC 116 Mod • Winning is

AMM E2798 mod q • k = (q − 1)/p, and 2orb is a kth Power
AMM E2482 mod 2 • xn + x+ 1 is Usually Reducible
FQ B-331 Mod 24 • Some Fibonacci Squares
FQ B-378 Mod 3 • Congruence
FQ B-379 Mod 5 • Congruence
AMM E2781 mod n • Distinct Sums of the Residue Classes
FQ H-280 Mod Ern
AMM 6148 (mod n) • Sum of Squares
AMM E2488 mod p Relatively Prime to p − 1 • Primitive

Roots
FQ H-263 Mod! • Lucas the Square is Now
AMM 6265 Mode • Mean, Median, and
SIAM 75-1 Mode Conversion • Idealized Optical Fibre
AMM E2630 Models • Polyhedral
FQ H-262 Modern Mod
SIAM 77-20 Modified Bessel Function Equal to its

Derivative? • When is the
AMM 6016 Modified Factorial • A Large
FQ B-307 Modularly Moving Maverick
AMM E2552 modulo 2 • Reducing
AMM E2446 Modulo m • Unique Cube Roots
AMM E2461 Modulo n! • A Congruence
AMM E2488 Modulo p • Primitive Roots
AMM 6170 Modulo a Prime • The Number of Terms in a

Binomial Expansion
AMM E2775 Modulo a Prime • The Pascal Triangle
AMM E2673 Modulo a Prime 6n+ 1 • n-Residues
AMM E2578 Modulo Every Prime • Polynomials Reducible
AMM E2699 Modulo Zero Sequences • Linear Independence
AMM E2600 Modulus for a Polynomial • Minimum
SIAM 76-18 Moments • A Monotonicity Property for
JRM 779 Monetary Exchange
AMM E2562 Monochromatic Paths • Directed
TYCMJ 28 Monotone Function • Real Zeros of a
AMM 6218 Monotone Functions • Images of
SIAM 76-15 Monotone Submatrices
AMM 6074 Monotonic Function • Length of Arc of a
AMM 6073 Monotonic Functions • Singular
AMM S15 Monotonic Integral Functional • Beckenbach’s
SIAM 76-18 Monotonicity Property for Moments • A
JRM 480 Monte Carlo Problem • A
JRM C7 Monte Carlo Problem • A
SIAM 73-2 Moore–Penrose Generalized Inverse of a Matrix

• Integral Representation for the
JRM 448 More Coins
FQ H-288 More Identities
FQ H-295 More Identities
AMM S10 More in a Row • 8 or
AMM 6174 More on Converses to Uniform Integrability
JRM 598 More on Factorian Numbers
JRM 775 More Simple Addition
JRM 776 More Simple Addition • Even
MATYC 85 More Than One Way
JRM 486 More True Alphametics • Two
JRM 485 More True Alphametics • Two
AMM E1030 Morley Polygons
JRM 706 Morley’s Theorem
FQ B-296 Most Challenging Problem • A
SIAM 75-21 Motion • n-dimensional Simple Harmonic
AMM 6276 Motions • Groups Generated by Screw
JRM 524 Motto • A Worthwhile
JRM 574 Motto • A Worthy
JRM 89 Moves • The Maximum Number of
AMM E2714 Moving Convex Bodies • Intersection of
FQ B-307 Moving Maverick • Modularly
MM 977 Mr. P. and Ms. S
MM 977 Ms. S • Mr. P. and
MATYC 104 Much, Really • Not
JRM 298 Mud Bath • The
JRM 371 Multidivisible Numbers
TYCMJ 34 Multimodularity
MM 1070 Multinomial Trials
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AMM E2570 Multiple • Lattice Points and Least Common
AMM S22 Multiple • Linear Transformation Fixed Scalar
AMM 5314 Multiple Integral of sinx/x • A
FQ B-289 Multiple of L2n+1 • A
FQ B-288 Multiple of L2n • A
TYCMJ 68 Multiple of an Integer • The Least Triangular
AMM 5413 Multiple of Consecutive Terms in a Sequence •

Least Common
SIAM 76-14 Multiple Summations • Three
AMM E2661 Multiples • Functional Characterization of

Least Common
FQ B-400 Multiples of Some Triangular Numbers
FQ B-396 Multiples of Ten
AMM 5297 Multiplication • Preservation of Convexity

Under
JRM 417 Multiplication Alphametic • A
JRM 369 Multiplication Test
AMM 5945 Multiplicative Functions • A Subgroup of
AMM E2753 Multiplicative Group Zp
AMM 6108 Multiplicative Identities for τ(n)
AMM E2712 Multiplicative Map • A
SIAM 76-22 Multiplicity • A Zero of Maximum
JRM 410 Multiply • Go Forth And
MM 1032 Muntz-like Condition • A
AMM E2728 Mutually Tangent Cylinders
JRM 300 “My Dear Watson”
JRM 561 Mystery • Chess
JRM 758 Mystery II • Chess

AMM E2807 (n+ a)k ≤ rnk • Inequality
AMM 6061 n× n Matrices • A Convex Collection of
SIAM 76-20 n × n Matrix • On the Extreme Eigenvalues of

an
AMM E2461 n! • A Congruence Modulo
AMM 6271 n! • Asymptotic Behavior of Sequences

Involving en and
MM 964 n! • Divisors of
TYCMJ 70 n! • Rational Number Approximation of
AMM 5972 n, xn = x for all x in a Ring • Minimum
AMM E2458 n-ary Sheffer Function • An
AMM E2708 n-Cycles • Groups Generated by
SIAM 79-16 n-Dimensional Cube • Resistances in an
AMM 6115 n-Dimensional Distributions with Given

Marginals
SIAM 75-21 n-dimensional Simple Harmonic Motion
MM 1076 n-gons • Inscribed
TYCMJ 146 n-gons • Least Area Property of Medial
AMM 6062 n-gons • Nesting Regular
AMM E2698 n-Queens Problem • Toroidal
AMM E2673 n-Residues Modulo a Prime 6n+ 1
AMM E2674 n-simplex Inscribed in Another • One Regular
AMM 6089 n-space • Convex Bodies in
JRM 262 N -Space Conjecture
SIAM 76-6 nth Order Linear Differential Equation • An
AMM 5974 n-tuple Integral Formula • An
MM 924 n-Tuples • Counting

AMM E2491 n? • When is
[√

n
]

a Divisor of

MATYC 83 Nth Order Derivative • An
SIAM 77-3 N. Bohr • A Definite Integral of
AMM 6153 n/π(n) • Integral
AMM E2776 ne ≡ n(mod b)

MM 973 N−1 • The Period of
AMM E2726 na+ b • Sequence of Integral Parts of
JRM 753 Napoleon’s Lament
AMM E2574 Natural Numbers • A Special Group Operation

on
TYCMJ 111 Natural Numbers • Densities of Subsets of the
MM 1068 Navel Contemplation
AMM E2777 [nb/a] • Integers Relatively Prime to b in
AMM 6150 Near Identities
FQ B-388 Near the Diagonals • Partitioning Squares
AMM 6122 Nearest Point in a Compact Set • The
AMM E2648 Nearly Doubled Primes

MATYC 107 Necessarily So • It Ain’t
MATYC 74 Necessarily So! • It Ain’t
AMM E435 Necessary but not Sufficient Condition for

Primeness • A
AMM 6067 Negative Values of Γ(z)
AMM 6274 Neighborhoods and Countable Local Bases •

Disjoint
AMM E2806 Neighborhoods and Countable Local Bases •

Disjoint
FQ B-302 Neighbors • Composite Fibonacci
FQ H-223 Nest of Subsets • A
JRM 390 Nesting • Two-Way Box
AMM 6062 Nesting Regular n-gons
AMM E2620 Networks with One-Ohm Resistors •

Symmetrical
JRM 481 New Alphametic — Old Math
AMM E2477 New Perspective • A
AMM E2471 New Triangle Inequalities • Two
JRM 353 New Variations on the Old “True” Theme
JRM 348 New Wrinkle on the Old Billiard Table Theme

• A
TYCMJ 94 Newton’s Formula • Sufficiency of
JRM 703 Nightmare • The Typesetter’s
FQ B-375 Nil • Fibonacci or
JRM 648 Nim • JRM
AMM S18 Nim • Triangle from Wythoff’s
JRM 372 Nim I • Spite
JRM 373 Nim II • Spite
JRM 533 Nimbi
JRM 517 Nine • A Pair in Base
JRM 516 Nine • A Pair in Base
AMM E2763 Nine Solutions • A Third Degree Congruence

with
MM 920 Nine-Point Circle • Radius of
AMM E2793 Nine-points Center • Inversion of the Incenter,

Circumcenter,
FQ B-372 No • Still
JRM 408 No Contradiction
JRM 333 No Longer One
FQ B-369 No Longer Unsolved
MM 990 No Polynomials
JRM 502 No Sequence is Best
JRM 338 No Slimming Here
AMM E2621 No Solutions in Positive Integers
MM 1060 No Such Function
JRM 98 No Sums Allowed
FQ B-371 No, No, Not Always
FQ B-371 No, Not Always • No,
AMM 6177 Noetherian Integral Domain
AMM 6099 Non-Abelian Groups • Generators for some
JRM 455 Non-Canadian Alphametics • Definitely
JRM 454 Non-Canadian Alphametics • Definitely
AMM E2560 Non-congruence of Certain Sums
JRM 422 Non-Factors • Prime
FQ B-351 Non-Fibonacci Primes
AMM E2668 Non-isosceles Triangles • Special
SIAM 79-11 Non-Linear Differential Equation • A
AMM 6009 Non-Linear Isometry • A
AMM S13 Non-negative Entries • Matrix with
AMM E2649 Non-obtuse Triangles • Inequalities for
JRM 662 Non-Smoker’s Lament
JRM 661 Non-Smoker’s Lament
AMM E2575 Non-symmetric Function • A
AMM E2733 Non-zero Length and Small Pairwise

Intersections • Infinitely Many Subsets of
[0, 1] With the Same

TYCMJ 141 Nonarithmetic Sequences
TYCMJ 43 Noncommutative Binary Operation • A
FQ B-370 Nonhomogeneous Difference Equation
FQ B-311 Nonhomogeneous Recurrence • A
SIAM 79-11 Nonlinear Differential Equation • A

381



Title Index
Nonlinear 1975–1979 Off

SIAM 77-16 Nonlinear Differential Equation • A First
Order

SIAM 76-12 Nonlinear Differential Equations • An Infinite
System of

SIAM 75-18 Nonlinear Integral Equation • A
SIAM 75-5 Nonnegative Form • A
AMM 6219 Nonnormal Numbers
AMM E2745 Nonoverlapping Pennies
AMM 6058 Nonresidues • Consecutive Quadratic
AMM E2559 Nonsingular Matrix • A
AMM E2496 Nonsingular Matrix • A
AMM 6249 Norm of a Matrix
SIAM 74-5 Norm of a Matrix Exponential • On the
AMM 6104 Normal • The Random Variable X/Y , X, Y
AMM 5942 Normal Distributions • Independent
AMM 6109 Normal Families • Sylvester Series and
AMM 6147 Normal, Separable Space • Subspaces of a
AMM 6078 Normed Spaces • Linear Functionals in
FQ B-360 Norms • Applying Quaternion
AMM 6017 Norms • Constructing ‘Smaller’
AMM 5937 Norms in a Barreled Space
AMM 6185 Norms of a Derivative of a Function •

Inequality of Lp
MATYC 90 Not • A Power of 2 It’s
JRM 439 Not • It’s Coming, Ready or
AMM 5962 not σ-compact • A Separable Hausdorff Space
FQ B-417 Not a Bracket Function
MM 900 Not a Centerfold
FQ B-371 Not Always • No, No,
JRM 491 Not Always Appreciated
MATYC 125 Not Closed
MM 1036 Not Complex • Real
AMM E2762 Not Equal to a Kronecker Product • A Block

Matrix
MATYC 137 Not Its Converse • A Theorem But
FQ B-412 Not LCM • GCD
MATYC 104 Not Much, Really
FQ B-399 Not Quite Tribonacci
AMM E2452 not so Easy • Cutting Corners is
JRM 450 Not So Tasty
AMM E435 not Sufficient Condition for Primeness • A

Necessary but
JRM 299 Not Too Easy
MATYC 70 Not Too Often • Bingo – But
FQ H-263 Now Mod! • Lucas the Square is
MM 907 Nowhere Continuous
AMM 6081 Nowhere Continuous, Quasi-continuous

Functions
TYCMJ 62 Null Sequence
AMM 6240 Null Sequence • Approximation by Terms of a
AMM 5984 Null Sequences • Convolution of
AMM E2591 Null Sequences and Convergent Series
AMM E2679 Number • A Composite
AMM E2738 Number • Permuting the Digits of a Real
AMM 6234 Number • Ratio of Derangement Number to

Ménage
AMM E2778 Number • Sums of Powers of a
TYCMJ 48 Number • The Best Fibonacci
AMM E1243 Number and its Reverse • Product of a
TYCMJ 70 Number Approximation of n! • Rational
TYCMJ 55 Number be Equal to its Logarithm? • Can a
MATYC 65 Number Fun
AMM E2780 Number of Divisors

∑
d(k), k ≤ n • Sum of

AMM E2696 Number of Draws • Expected
AMM 6159 Number of Edges in a Graph Without

Triangles • The Maximum
AMM 6026 Number of Elements in a Group Inverted by an

Automorphism
MM 975 Number of Hexagons
AMM 6183 Number of Idempotents • The
SIAM 79-4 Number of Matrices • A Maximum
JRM 89 Number of Moves • The Maximum

MM 979 Number of Permutations • The
MM 983 Number of Prime Divisors • Different
AMM 6170 Number of Terms in a Binomial Expansion

Modulo a Prime • The
AMM E2705 Number of Trials • Expected
AMM E2500 Number Puzzle • A Perfect
FQ B-362 Number Residues • Triangular
MATYC 75 Number Theory
MATYC 131 Number Theory
MATYC 62 Number Theory Revisited
MATYC 73 Number Theory Revisited
AMM 6234 Number to Ménage Number • Ratio of

Derangement
AMM E2581 Numbers • A Property of Fibonacci
AMM E2574 Numbers • A Special Group Operation on

Natural
AMM E2800 Numbers • A Test for Composite
AMM E2656 Numbers • An Inequality for Positive Real
JRM 494 Numbers • APT
JRM 495 Numbers • Artful
TYCMJ 81 Numbers • Binary Operations on Rational
MM 1049 Numbers • Catalan
FQ B-385 Numbers • Counting Some Triangluar
TYCMJ 111 Numbers • Densities of Subsets of the Natural
AMM 5967 Numbers • Density of Deficient Odd
AMM 6036 Numbers • Even Perfect
JRM 320 Numbers • Factorian
AMM 6221 Numbers • Groups and Cardinal
AMM 6048 Numbers • Harmonic
JRM 604 Numbers • Inventory
JRM 598 Numbers • More on Factorian
JRM 371 Numbers • Multidivisible
FQ B-400 Numbers • Multiples of Some Triangular
AMM 6219 Numbers • Nonnormal
JRM 571 Numbers • Pandigital
JRM 791 Numbers • Perfect
AMM E2571 Numbers • Perfect-plus-two
AMM E2577 Numbers • Restricted Ménage
AMM E2590 Numbers • Subadditive and Superadditive
MM 954 Numbers • Sum of Perfect
AMM E2799 Numbers • Superfactorials and Catalan
AMM E2618 Numbers • Triangular-Square-Pentagonal
JRM 657 Numbers • Two-Digit Reflective
FQ B-314 Numbers Ending in Three • Lucas
JRM 760 Numbers II • Reflective
AMM 6138 Numbers of the Form pipi+1pi+2 . . . pi+n •

Abundant
AMM E2455 Numbers, a Result of Legendre, and Two

Identities • Fermat
JRM 755 Numerals • Roman
JRM 346 Numiphobic Caterer • The
AMM E585 Nut has been Cracked • Miquel Point — A

Tough
AMM 6145 N→ C • Convolution Products on Functions
AMM E2566 Obtuse Pythagorean Triplets
AMM E2479 Obvious Solutions • A Functional Equation

with only
TYCMJ 116 Occupancy • Inclusion and Exclusion Applied

to
TYCMJ 152 Occurring Events • Probability of

Simultaneously
MM 925 Octagons • Inscribed
MM 929 Octahedrons • Two
JRM 406 Odd Couple • The
JRM 405 Odd Couple • The
AMM E2520 Odd Factorials
AMM E2792 Odd Intersections of Point Sets
AMM 5967 Odd Numbers • Density of Deficient
TYCMJ 105 Odd-gons • Rational Vertices of Regular
JRM 317 Odometers • The Two
JRM 671 Odometers • Two
FQ H-152 Off • Brush the Dust
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MATYC 70 Often • Bingo – But Not Too
JRM 353 Old “True” Theme • New Variations on the
JRM 348 Old Billiard Table Theme • A New Wrinkle on

the
MM 944 Old Bridge Problem • An
MM 1011 Old Dice Problem • An
AMM E2663 Old Exercise • An
FQ H-293 Old Hermite • The
JRM 481 — Old Math • New Alphametic
JRM 481 Old Math • New Alphametic —
AMM E2637 Old Result • An
FQ B-323 Old Theme • Variations on an
FQ H-277 Old Timer
FQ H-91 Old-Timer • An
FQ H-225 Oldie • A Corrected
FQ H-256 Oldie! • An
FQ H-213 One • Another Ancient
MM 1021 One • Converges to
MM 972 One • Converges to
JRM 333 One • No Longer
MM 974 One • The Limit is
FQ B-275 One • Two in
MATYC 96 One and Only
JRM 435 One For the Lazy Ones • An Easy
JRM 364 One of Those True Alphametics Again
FQ H-285 One or Five
JRM 683 One Point in a Square
AMM E2674 One Regular n-simplex Inscribed in Another
FQ B-332 One Single and One Triple Part
FQ B-332 One Triple Part • One Single and
MATYC 85 One Way • More Than
FQ B-387 One’s Own Infinitude
AMM E2620 One-Ohm Resistors • Symmetrical Networks

with
AMM 5978 One-One Continuous Mapping R→ R
SIAM 74-19 One-sided Approximation to Special Functions
JRM 435 Ones • An Easy One For the Lazy
AMM E2486 Ones • Squares Ending in
MM 1065 Ones • Zero and
FQ B-281 Ones for Tee
AMM E2615 Only • A System with Trivial Solutions
MATYC 95 Only • If
MATYC 96 Only • One and
AMM E2479 only Obvious Solutions • A Functional

Equation with
FQ B-276 Only Two Solutions
AMM 6047 onto Ellipses • Conformal Maps of Ellipses
AMM 6225 onto the 2-Sphere • Mapping the 3-Sphere
AMM E2614 Open and a Compact Set • Union of an
AMM E2790 Open Set with Squares of Specified Areas •

Filling an
TYCMJ 43 Operation • A Noncommutative Binary
AMM E2579 Operation in the Plane • A Binary
AMM E2574 Operation on Natural Numbers • A Special

Group
FQ B-339 Operational Identity
TYCMJ 81 Operations on Rational Numbers • Binary
AMM 5961 Operator • The Twice Differentiation
AMM 5995 Operators • Analytic Functions of Bounded
AMM 5575 Operators • Some Bernstein-type
AMM 5944 Operators • Weak Sequential Closure of a Class

of
SIAM 75-1 Optical Fibre Mode Conversion • Idealized
SIAM 63-9 Optimal Search • An
JRM 356 Order • Franciscan
AMM 6176 Order • Simple Groups of Square
TYCMJ 144 Order 1 + ε • Hölder Condition of
MATYC 83 Order Derivative • An Nth
SIAM 77-17 Order Differential Equations • A System of

Second
SIAM 76-6 Order Linear Differential Equation • An n-th

SIAM 77-16 Order Nonlinear Differential Equation • A
First

AMM 5938 Order-Preserving Automorphisms in a Field •
On

AMM 5861 Ordered Field • Increasing Polynomials in an
AMM 5861 Ordered Field • Increasing Polynomials on an
AMM E2608 Ordered Sets • Traversing Linearly
MM 1022 Ordering Cards
AMM 5975 Ordinal Types Thick and Thin
AMM E2672 Orientation and Vertex-Coloring of Complete

Graphs
TYCMJ 110 Ortho-incentric Triangles
MM 1035 Orthogonal • Really
MM 984 Orthogonal Basis
MATYC 114 Orthogonal Curves
MM 919 Orthogonal Edges • A Simplex with
MM 988 Orthogonal Projection
AMM E2751 Orthogonal Triad Meeting a Conic
AMM 5957 Orthonormal Systems in L2 • Completeness

Criterion of
AMM E2551 Oscillation of Partial Sums
JRM 412 Our Own Horn • Blowing
FQ B-334 Out • The Primes Peter
MM 1075 out of 35,660 • 2500th Digit
AMM E2710 Outer Measures of Choice Sets
AMM 6042 Outside [0, 1] • C∞ Functions Vanishing
AMM E2669 Oval of Rademacher • Roundest
AMM 6043 over a Field • Degrees of Irreducible

Polynomials
AMM 6012 over a Set of Primes • Infinite Product
FQ B-363 Overlapping Palindromic Blocks
JRM 412 Own Horn • Blowing Our
FQ B-387 Own Infinitude • One’s
AMM E2488 p−1 • Primitive Roots mod p Relatively Prime

to
TYCMJ 95 px + 1 = yp • Solution of
AMM 6138 pipi+1pi+2 . . . pi+n • Abundant Numbers of

the Form
FQ B-401 Pace for F.Q. • Change of
JRM 309 Packing • Pentagon
JRM 117 Packing a Double Torus
JRM 646 Packing Grapefruits and Grapefruit Juice Cans
AMM E2612 Packing of a Chinese Checkerboard • Diamond
AMM E2524 Packing Problem • A Brick
JRM 427 Packing Problem • The Five-Circle
FQ B-322 Page Alphametic • Front
JRM 517 Pair in Base Nine • A
JRM 516 Pair in Base Nine • A
SIAM 78-20 Pair of Associated Simplexes • A Volume

Inequality for a
JRM 81a Pair of Diophantine Equations • A
FQ H-269 Pair of Sum Sequences • A
TYCMJ 133 Paired Geometric Progressions
JRM 249 Pairing • Polynomial
AMM 5735 Pairs with Same Prime Factors • Density of
AMM E2733 Pairwise Intersections • Infinitely Many

Subsets of [0, 1] With the Same Non-zero
Length and Small

FQ B-363 Palindromic Blocks • Overlapping
MATYC 94 Palindromic Counterexample
MM 1026 Palindromic Sums
JRM 752 Pan Fantasy • Peter
AMM E2569 Pancakes • Stack of
JRM 571 Pandigital Numbers
JRM 649 Pandigital Primes
JRM 769 Panel • Stump the
JRM 314 Papaya Pies • Partitioning
JRM 538 Paper Stretcher • The
AMM E2499 Pappus — Final Appearance • A Problem of
TYCMJ 32 Parabola • Diameter Characterization of the
TYCMJ 17 Parabola • Line Segments Cut by a
AMM 6199 Parabola • Permuted Residue Classes Under a

383



Title Index
Paradisaic 1975–1979 Plane

JRM 490 Paradisaic Triptych — Even in Eden? • A
JRM 488 Paradisaic Triptych — Revenge • A
JRM 489 Paradisaic Triptych — The Snake is Hiding • A
JRM 177 Paradox • A Penny-Ante
MATYC 98 Paradox • Bertrand’s
AMM E2617 Parallel Sections of a Convex Body • Three
MM 950 Parallel Tangents
TYCMJ 153 Parallelogram • Squaring a
AMM E2802 Parallelogram Generated from a Triangle • A
MM 1001 Parallelograms
JRM 582 Parisian Clean-Up
TYCMJ 91 Parity • Partition by Exponent
FQ B-332 Part • One Single and One Triple
AMM E2665 Partial Checkerboards
AMM 5888 Partial Derivatives • Continuity of Functions

with
SIAM 77-4 Partial Differential Equations Involving

Arbitrary Functions • Solutions to Linear
FQ B-297 Partial Fractions
TYCMJ 82 Partial Fractions Decomposition
AMM E2744 Partial Sum • A Divergent
AMM E2551 Partial Sums • Oscillation of
AMM E2613 Partition • An Impossible
TYCMJ 91 Partition by Exponent Parity
AMM 6137 Partition Function • The Differences of the
AMM 6130 Partition of the Rational Points of the Plane •

A
JRM 71 Partition Problem • A
AMM 5971 Partitioning R+
JRM 314 Partitioning Papaya Pies
FQ B-388 Partitioning Squares Near the Diagonals
MM 957 Partitioning the Plane
JRM 651 Partitioning the Positive Integers
JRM 711 Partitions
AMM 6011 Partitions in an Abelian Group • Equal Sum
AMM E2582 Partitions of a Finite Set • Crisscrossing
AMM 6151 Partitions of Finite Sets
JRM 681 Parts • Fractional
AMM 5994 Parts • Integration by
AMM E2726 Parts of na+ b • Sequence of Integral
JRM 699 Party • The Anniversary
FQ H-213 Pascal • An Adjusted
FQ H-218 Pascal • Staggering
FQ B-407 Pascal Triangle • Generator of
AMM E2775 Pascal Triangle Modulo a Prime • The
FQ B-390 Pascal’s Triangle • Generating Diagonals of
MATYC 111 Pascal’s Triangle — Generalized
FQ H-307 Past • A Wind From the
FQ H-125 Past • Ghost from the
JRM 514 Pastoral Puzzle • A
AMM E2549 Path • Adding Edges to Get an Euler
AMM E1255 Paths • Broken-Line Brachistochrone
AMM E2562 Paths • Directed Monochromatic
AMM E2754 Pattern of Intersection of Lines
JRM 322 Pattern Problem • A
JRM 628 Pattern Puzzle • A Cube
JRM C6 Pattern Recognition Problem • A
JRM 479 Pattern Recognition Program • A
JRM 707 Patterns • Alphametic
AMM E2719 Patterns of Signs • Periodic
SIAM 78-17 Paul Bunyan’s Washline
JRM 603 Pedestrian • The Unwilling
FQ H-275 Pell Mell
FQ B-336 Pell Squares
AMM E2606 Pell’s Equation in Disguise
FQ H-243 Pell-Mell
JRM 96 Penney-Ante • Blind
AMM E2745 Pennies • Nonoverlapping
AMM E2527 Pennies • The Four-Color Theorem for

Touching
JRM 177 Penny-Ante Paradox • A
JRM 385 Pentacles Exist? • Do

MM 1057 Pentagon • Heximating a
JRM 309 Pentagon Packing
JRM 175 Pentagon Problem • A
FQ B-348 Pentagon Ratio
JRM 600 Pentomino Conjecture • A
JRM 391 Pentomino Conjecture • A
JRM 470 Pentomino Doublets
JRM 426 Pentomino Query • A
MM 1024 Percentage vs. Games Behind
SIAM 77-1 Percentiles for the Gamma Distribution
FQ B-342 Perfect Cubes
AMM E2500 Perfect Number Puzzle • A
JRM 791 Perfect Numbers
AMM 6036 Perfect Numbers • Even
MM 954 Perfect Numbers • Sum of
MATYC 63 Perfect Squares
MM 1045 Perfect Squares • Absolute
MM 1008 Perfect Squares • Locating
AMM E2557 ‘Perfect’ Cyclic Quadrilaterals
AMM E2571 Perfect-plus-two Numbers
AMM E2660 Perimeter • Integral Cyclic Quadrilaterals of

Given
MM 947 Perimeter • Minimum
MATYC 126 Perimeter and Area
AMM 6230 Perimeter Length • Expected
JRM 565 Perimeter Problem • The
TYCMJ 118 Perimeters of Inscribed Triangles
MM 973 Period of N−1 • The
MM 958 Periodic • Convergent and
AMM E2719 Periodic Patterns of Signs
AMM E2567 Periodic Recurrence • A
AMM E2633 Permutable Sets of Lattice Points
AMM 6054 Permutation • Mapping Induced by a
AMM E2516 Permutation Equivalence
MM 1002 Permutation Preserving Sum
JRM 625 Permutation? • Is It a
JRM 734 Permutations
MM 885 Permutations • A Sum of
AMM E2440 Permutations • A.P.-Free
MM 979 Permutations • The Number of
AMM S14 Permutations with f Fixed Points
AMM 6199 Permuted Residue Classes Under a Parabola
AMM E2738 Permuting the Digits of a Real Number
AMM E2639 Perpendicular Lines • Two
MM 1028 Perpendiculars • Concurrent
JRM 446 Perpetual Check
TYCMJ 138 Persistent Powers
AMM E2477 Perspective • A New
FQ B-334 Peter Out • The Primes
JRM 752 Peter Pan Fantasy
JRM 675 Petersburg Game • The St.
MM 921 Phi • Euler’s
JRM 396 Philatelist’s Problem • A
AMM E2459 Pi with Series-Parallel Circuits •

Approximating
MM 927 Pick’s Formula
JRM 247 Pie • A Cutie
AMM 6143 Pie Fairly • Dividing the
AMM 6184 Piecewise Continuous Functions • Bases for
JRM 355 Pierre Vindicated?
JRM 314 Pies • Partitioning Papaya
JRM 180 Pillow Problem • The
AMM 5385 Planar Graph • A
AMM 5966 Planar Graphs • Hamiltonian Circuits in

Maximal
AMM E2579 Plane • A Binary Operation in the
AMM 6130 Plane • A Partition of the Rational Points of

the
AMM E2680 Plane • A Quadrilateral in the Hyperbolic
AMM E2736 Plane • A Recurring Sequence of Points in the

Affine
AMM 5670 Plane • Generating Subsets of the
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Title Index
Plane 1975–1979 Popular

MM 957 Plane • Partitioning the
AMM 5985 Plane • Subsets of the
AMM 6250 Plane • Triods in the
AMM 5953 Plane Graph • Sum of Valencies for a
TYCMJ 132 Planes • Concurrent
AMM E2761 Planes • Polynomial with Zeros in Upper and

Lower Half
TYCMJ 90 Plateau Squares
JRM 528 Platonic Solids • Tagging the
JRM 615 Play • Double
JRM 232 Play • Three-Point
FQ H-253 Play • Triple
FQ H-238 Play • Triple
FQ H-261 Player Rep • A
AMM 6146 Plays? • Did Bacon Write Shakespeare’s
MATYC 118 Please • Go to the Principal,
JRM 365 Please Ponder This Puzzle
JRM 664 Pleaser • Crowd
TYCMJ 140 Point • Generalization of a Property of the

Symmedian
FQ H-292 Point • Get the
JRM 504 Point • The Best Vantage
AMM E585 Point — A Tough Nut has been Cracked •

Miquel
AMM 6122 Point in a Compact Set • The Nearest
AMM E1073 Point in a Spiral • A
JRM 683 Point in a Square • One
AMM E2716 Point Interior to a Triangle • Six Segments

Defined by a
AMM E2572 Point of its Discontinuities? • Can a Derivative

be Differentiable at a Limit
TYCMJ 129 Point Principle • Lattice
AMM E2792 Point Sets • Odd Intersections of
AMM E2587 Point Theorem • An Application of Brouwer’s

Fixed
SIAM 77-10 Point Triangle Inequality • A Two
JRM 201 Point-Placement Problem • A
JRM 258 Pointless Problem • A
MM 962 Points • Coplanar
FQ B-377 Points • Counting Lattice
AMM 6192 Points • Labeling Lattice
AMM E2633 Points • Permutable Sets of Lattice
AMM S14 Points • Permutations with f Fixed
JRM 765 Points • Rational
MM 968 Points • Rational
AMM E2653 Points • Visible Lattice
AMM E2570 Points and Least Common Multiple • Lattice
AMM E2629 Points in a Box • Average Distance between

Two
AMM E2593 Points in a Configuration • Counting
AMM E2736 Points in the Affine Plane • A Recurring

Sequence of
MM 993 Points of Iterates • Fixed
AMM 6130 Points of the Plane • A Partition of the

Rational
AMM 6262 Points of Trees • Fixed
JRM 535 Points on a Circle
TYCMJ 53 Points on a Circle • Lattice
TYCMJ 96 Points on a Line Segment • Random
AMM E2682 Points on an Ellipse • Integer
FQ B-337 Points on an Ellipse • Rational
SIAM 78-7 Poisson Process • On a
JRM 647 Poker • Chili
JRM 291 Poker Variants • Head-On
JRM 638 Political Commentary
JRM 362 Political Problem • A
JRM 732 Poly-Power Function • The
AMM E2644 Polya • A Theorem of
AMM E2514 Polygon • Area of a Convex
AMM E2746 Polygon • Circles for a Convex
MM 1018 Polygon • Rotating a
AMM E2641 Polygons • A Class of Convex

AMM E1030 Polygons • Morley
AMM E2401 Polygons • Sequence of
JRM 394 Polygons in a Circle
AMM E2630 Polyhedral Models
AMM E2740 Polyhedron • A Square in a
AMM E2694 Polyhedron • Convexity of a
MM 1072 Polynomial • A Tailored
AMM 6237 Polynomial • Bound on Zeros of a
SIAM 74-9 Polynomial • Bounds for the Zero of a
AMM E2731 Polynomial • Characterization of a
TYCMJ 58 Polynomial • Integer Zeros of a
AMM E2711 Polynomial • Irreducible Characteristic
MM 941 Polynomial • Legendre
AMM 6191 Polynomial • Location of a Zero of a Complex
AMM E2600 Polynomial • Minimum Modulus for a
SIAM 76-21 Polynomial • On the Zeros of a
AMM E2473 Polynomial • Rational Function of a Rational

Function of a
SIAM 75-14 Polynomial • Simultaneous Iteration towards

All Roots of a Complex
AMM 6097 Polynomial Algebra Generated by Symmetric

Functions
AMM E2467 Polynomial Approximations to Exponential

Functions
AMM E2773 Polynomial Congruences xk ≡ x,

∏
(x−ai) ≡ 0

• The
AMM E2554 Polynomial Function Restricted to Rationals
MM 965 Polynomial Identity • A
AMM E2519 Polynomial Inequality • A
AMM E2655 Polynomial Inequality • A
SIAM 75-19 Polynomial Inequality • A
AMM 6227 Polynomial Integral Inequality • Legendre
MATYC 100 Polynomial Inverse
AMM E2635 Polynomial of a Matrix • Characteristic
JRM 249 Polynomial Pairing
AMM E2450 Polynomial Quotients
TYCMJ 77 Polynomial Solution of a Difference Equation
AMM E2761 Polynomial with Zeros in Upper and Lower

Half Planes
AMM E2518 Polynomials • An Infimum for
AMM E2601 Polynomials • Binomial Sum and Legendre
AMM E2580 Polynomials • Chebyshev
AMM 6046 Polynomials • Comparing Decompositions of
AMM 6208 Polynomials • Condition for a Composite of
AMM 6259 Polynomials • Invertible Laurent
TYCMJ 38 Polynomials • Linear
AMM S7 Polynomials • Linearization of Product of

q-Appell
AMM 6084 Polynomials • Majorizing Properties of

Coefficients of Tchebychef
MM 990 Polynomials • No
AMM 5939 Polynomials • On Hurwitz
TYCMJ 59 Polynomials • Positive
AMM 6175 Polynomials • Random
AMM E2737 Polynomials • Sequence of
SIAM 78-2 Polynomials • Two Recurrence Relations for

Hermite Basis
AMM E2658 Polynomials Again • Legendre
AMM 5861 Polynomials in an Ordered Field • Increasing
AMM 6136 Polynomials in Two Variables
AMM 5861 Polynomials on an Ordered Field • Increasing
AMM 6043 Polynomials over a Field • Degrees of

Irreducible
AMM E2578 Polynomials Reducible Modulo Every Prime
AMM E2701 Polytope • Volume of a
AMM 5872 Polytope • Volume of a Certain Convex
JRM 585 Pompom • A Problem with a
JRM 365 Ponder This Puzzle • Please
MM 1005 Popular Characterization • A
MM 937 Popular Inequality • A
TYCMJ 26 Popular Limit • A
MM 896 Popular Pythagorean Problem • A
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Title Index
Population 1975–1979 Probability

JRM 655 Population Problem • A
JRM 634 Port of Call
AMM S20 Posets • Same Enumerator for Distinct
MM 978 Positive Coefficients
AMM 6072 Positive Definite Hermitian Matrix
AMM 6095 Positive Definite Matrices
AMM 6075 Positive Fourier Transform • Integrable

Functions with
AMM E2621 Positive Integers • No Solutions in
JRM 651 Positive Integers • Partitioning the
TYCMJ 59 Positive Polynomials
AMM E2656 Positive Real Numbers • An Inequality for
AMM E2448 Positive Semi-definite • A Matrix and its

Matrix of Reciprocals Both
FQ H-259 Positively!
JRM 748 Post-Election
JRM 697 Power • Flower
AMM E2597 Power • Transformation Induced in a

Symmetric
MATYC 69 Power • Uncountable
JRM 702 Power Chains
AMM S6 Power Inequality • A Cyclic
FQ H-286 Power Mod
AMM E2798 Power mod q • k = (q − 1)/p, and 2orb is a kth
MATYC 90 Power of 2 It’s Not • A
MM 1016 Power of Ten
SIAM 75-3 Power Series Expansion • A
AMM 6038 Power Series for which f ′(r) > 0
AMM 6080 Power Series in a Closed Disk
AMM 6039 Power Series Ring • Central Idempotents in a
AMM 6201 Power Sums in Finite Fields
AMM E2510 Power to the Integers
JRM 577 Power-Packed
TYCMJ 138 Powers • Persistent
FQ B-395 Powers • Reciprocals of Golden
FQ B-286 Powers of 2 • Golden
AMM E2778 Powers of a Number • Sums of
AMM E2434 Powers of a Weighted Sequential Sum
AMM 6053 Powers of Gaussian Integers • Density of

Arguments of
AMM 5964 Powers of Prime Divisors • Mean
AMM E2749 Powers of Primes • Equal Sums of
AMM E2750 Powers of Primes • Sum of
MM 923 Powers of Roots
AMM 5947 Powers of Roots • Sums of
AMM E2640 Powers of Two and Binomial Coefficients
JRM 747 Pre-Election
AMM E2476 Precisely • Tetratangent Spheres Kissing
AMM E2475 Precisely • Tritangent Circles Kissing
AMM 6139 Predicate Calculus • Finitely Axiomatizable

Properties in a First-Order
AMM 6142 Prescribed Discontinuities • Functions with
AMM E2794 Prescribed Row- and Column-Sums •

(0, 1)-matrices with
AMM 6231 Prescribed Set • Squares with Vertices in a
AMM 5297 Preservation of Convexity Under Multiplication
AMM 5790 Preserving Maps in Affine Spaces • Collinearity
MM 1002 Preserving Sum • Permutation
JRM 635 Presidential Address
FQ B-285 Previous Problem • Very Slight Variation on a
JRM 383 Prime • All Sums
AMM E2578 Prime • Polynomials Reducible Modulo Every
MM 909 Prime • Relatively
AMM 6170 Prime • The Number of Terms in a Binomial

Expansion Modulo a
AMM E2775 Prime • The Pascal Triangle Modulo a
AMM E2673 Prime 6n+ 1 • n-Residues Modulo a
AMM 5948 Prime Additive Sequences • Relatively
FQ H-217 Prime Assumption
JRM 566 Prime Chains
JRM 679 Prime Chains and Prime Circles
JRM 679 Prime Circles • Prime Chains and

AMM 6015 Prime Decomposition of Integers
MM 983 Prime Divisors • Different Number of
AMM 5964 Prime Divisors • Mean Powers of
AMM E2805 Prime Divisors of 2k − 1 • Distinct
JRM 555 Prime Exercises • Some
AMM 5735 Prime Factors • Density of Pairs with Same
AMM E2725 Prime Factors for Terms in an Arithmetic

Sequence • Bounded
JRM 558 Prime Game • The
MM 882 Prime Magic Square • A
AMM 6006 Prime Matrices • Relatively
JRM 422 Prime Non-Factors
JRM 672 Prime Residue Systems
AMM E2631 Prime Satisfying Mirimanoff’s Condition
JRM 75 Prime Sums
AMM E2777 Prime to b in [nb/a] • Integers Relatively
AMM E2488 Prime to p − 1 • Primitive Roots mod p

Relatively
AMM E2561 Prime Triplets
TYCMJ 131 Prime? • When is Half the Inradius of an

Isosceles Triangle
AMM E435 Primeness • A Necessary but not Sufficient

Condition for
AMM 6094 Primes • “Acquainted”
AMM E2611 Primes • A Characterization of
AMM E2718 Primes • A Subclass of the Absolute
MM 953 Primes • Absolute
FQ B-376 Primes • Complementary
JRM 654 Primes • Consecutive
AMM E2749 Primes • Equal Sums of Powers of
JRM 112 Primes • Fibonacci
JRM 738 Primes • Fibonacci
AMM 6012 Primes • Infinite Product over a Set of
JRM 708 Primes • Isolated
AMM E2648 Primes • Nearly Doubled
FQ B-351 Primes • Non-Fibonacci
JRM 649 Primes • Pandigital
MM 956 Primes • Product of
JRM 700 Primes • Reversible
AMM E2750 Primes • Sum of Powers of
JRM 797 Primes • Twin
AMM E2766 Primes in an Arithmetic Progression
JRM 627 Primes in Arithmetic Progression
JRM 712 Primes in Arithmetic Progression II
FQ B-334 Primes Peter Out • The
TYCMJ 121 Primes Puzzler • Fermat
JRM 531 Priming the Telephone Dial
AMM E2488 Primitive Roots mod p Relatively Prime to

p− 1
AMM E2488 Primitive Roots Modulo p
AMM 6116 Principal Ideal Domains
MATYC 118 Principal, Please • Go to the
TYCMJ 129 Principle • Lattice Point
JRM 778 Privacy • Invasion of
SIAM 74-13 Probabilistic Inequality • A
SIAM 78-16 Probabilistic Inequality • A
JRM 43 Probability • A Problem in
SIAM 75-8 Probability • Accident
JRM 441 Probability • Baseball
SIAM 76-4 Probability • Geometric
SIAM 74-21 Probability Distributions • Two-Dimensional

Discrete
AMM 5687 Probability Integral • A
AMM 6111 Probability Integral • A Fourier and
AMM 6248 Probability of k Runs
TYCMJ 135 Probability of Divisibility
TYCMJ 57 Probability of Quasi-inverses
TYCMJ 152 Probability of Simultaneously Occurring Events
MM 970 Probability of Sums
JRM 592 Probability Problem • A
JRM C3 Probability Problem • A
JRM 559 Probability Problem • A
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Title Index
Problem 1975–1979 Progression

JRM 573 Problem • A Baseball
AMM E2524 Problem • A Brick Packing
JRM 419 Problem • A Calendar
SIAM 77-11 Problem • A Coin Tossing
FQ B-292 Problem • A Combinatorial
SIAM 75-10 Problem • A Combinatorial
TYCMJ 40 Problem • A Commutativity
MATYC 68 Problem • A Complex
JRM 596 Problem • A Concatenation
JRM 294 Problem • A Counting
TYCMJ 54 Problem • A Counting
JRM 467 Problem • A Divisibility
MATYC 78 Problem • A Divisibility
TYCMJ 25 Problem • A Divisibility
TYCMJ 36 Problem • A Division
SIAM 76-7 Problem • A Facility Location
JRM 476 Problem • A Grazing
JRM 741 Problem • A High-Powered
AMM E2344 Problem • A Long Lost
SIAM 74-16 Problem • A Matrix
SIAM 77-14 Problem • A Matrix Convergence
SIAM 79-2 Problem • A Matrix Eigenvalue
SIAM 76-9 Problem • A Matrix Stability
JRM 464 Problem • A Maximum Area
SIAM 79-17 Problem • A Min-Max
JRM 184 Problem • A Minimum-Move Checker
JRM 185 Problem • A Minimum-Move Chess
JRM 480 Problem • A Monte Carlo
JRM C7 Problem • A Monte Carlo
FQ B-296 Problem • A Most Challenging
JRM 71 Problem • A Partition
JRM 322 Problem • A Pattern
JRM C6 Problem • A Pattern Recognition
JRM 175 Problem • A Pentagon
JRM 396 Problem • A Philatelist’s
JRM 201 Problem • A Point-Placement
JRM 258 Problem • A Pointless
JRM 362 Problem • A Political
MM 896 Problem • A Popular Pythagorean
JRM 655 Problem • A Population
JRM C3 Problem • A Probability
JRM 559 Problem • A Probability
JRM 592 Problem • A Probability
JRM C5 Problem • A Pursuit
JRM 532 Problem • A Pyramid
JRM 623 Problem • A Sampling
JRM 624 Problem • A Scoring
JRM 570 Problem • A Search
JRM 377 Problem • A Sequence
SIAM 74-17 Problem • A Stability
MM 1031 Problem • A Standing
JRM 386 Problem • A Tromino Search
SIAM 78-9 Problem • A Variant of Silverman’s Board of

Directors
JRM 392 Problem • A Variation on the Liar
MATYC 127 Problem • A Weighty
SIAM 75-15 Problem • An Eigenvalue
JRM 50 Problem • An Elevator
JRM 511 Problem • An Enumeration
AMM 6076 Problem • An Isoperimetric
MM 944 Problem • An Old Bridge
MM 1011 Problem • An Old Dice
MM 949 Problem • Another Butterfly
JRM 710 Problem • Another Grazing
JRM 563 Problem • Gandalf’s
MM 997 Problem • Lott’s
JRM 393 Problem • Still Another Age
JRM 576 Problem • The “Eighty Three”
JRM 509 Problem • The Angler’s
JRM C4 Problem • The Board of Directors’
JRM 370 Problem • The Christmas Tree
JRM C9 Problem • The Easter

JRM 593 Problem • The Eleven Match
JRM 554 Problem • The Fire Company
JRM 427 Problem • The Five-Circle Packing
JRM 620 Problem • The Four-Point
JRM 565 Problem • The Perimeter
JRM 180 Problem • The Pillow
JRM 685 Problem • The Silverbeard
JRM 381 Problem • The Stonemason’s
JRM 443 Problem • The Three Suit
CRUX 140 Problem • The Veness
AMM E2698 Problem • Toroidal n-Queens
FQ B-285 Problem • Very Slight Variation on a Previous
AMM E2662 Problem for (0, 1)-Matrices • A Maximization
AMM E2538 Problem for the Triangle • A Maximum
AMM S19 Problem in a Disk • Isoperimetric
AMM E2539 Problem in Disguise • A Known Unsolved
JRM 43 Problem in Probability • A
AMM E2499 Problem of Pappus — Final Appearance • A
SIAM 75-2 Problem Revisited • The Regiment
JRM 585 Problem with a Pompom • A
MM 1071 Problem with Dice • A
JRM 352 Problem! • Another Confounded Age
JRM C8 Problem? • A Brute Force
JRM 351 Problems • Two Curves and Four
SIAM 78-7 Process • On a Poisson
MM 906 Product • A
AMM E2762 Product • A Block Matrix Equal to a

Kronecker
AMM E2762 Product • A Block Matrix Not Equal to a

Kronecker
AMM E2457 Product • A Dirichlet-Like
AMM 5987 Product • A Trigonometric
SIAM 76-16 Product • Conjecture on a Finite and an

Infinite
AMM 6233 Product • Irrationality of an Infinite
TYCMJ 76 Product • Riemann
FQ H-252 Product • Sub
AMM S21 Product Divided by LCM
TYCMJ 143 Product Formula for Cotangent • Inner
AMM S7 Product of q-Appell Polynomials •

Linearization of
AMM E1243 Product of a Number and its Reverse
AMM 6171 Product of Matrices • Trace of a
MM 956 Product of Primes
AMM 6207 Product of Two Random Vectors • Distribution

of Inner
AMM 6012 Product over a Set of Primes • Infinite
AMM 6023 Product Space • Borel Sets in a
AMM 6023 Product Space • Borel Subsets of a
AMM 6023 Product Space • Borel Subsets of a
FQ H-236 Product! • Sum
FQ H-245 Productive Identity
JRM 636 Productivity
AMM 6254 Products • An Inequality of
AMM E1075 Products • Squares in Long
FQ B-394 Products and Binomial Coefficients • Triple
AMM 6152 Products of Ideals
AMM 6145 Products on Functions N→ C • Convolution
AMM E2533 Professor Umbugio • Helping
JRM 477 Program • A Brute Force
JRM 478 Program • A Learning
JRM 479 Program • A Pattern Recognition
JRM 202 Programming Puzzle • A
AMM 5723 Programming with Random Selections • Linear
AMM E2766 Progression • Primes in an Arithmetic
JRM 627 Progression • Primes in Arithmetic
MM 1010 Progression • Roots in
AMM E2628 Progression • Roots in Arithmetic
FQ B-389 Progression • Transformed Arithmetic
AMM E2684 Progression • Units of Z/(n) in Arithmetic
JRM 712 Progression II • Primes in Arithmetic
TYCMJ 128 Progression of Cosines • Sum of a
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Title Index
Progression 1975–1979 Random

MATYC 128 Progression of Zeros • A
AMM E2730 Progressions • Finite Sets and Arithmetic
TYCMJ 133 Progressions • Paired Geometric
AMM E2522 Progressions in Sequences with Bounded Gaps

• Arithmetic
JRM 578 Project • Group
MM 988 Projection • Orthogonal
AMM E2576 Projection of an Ellipsoid • Area of a
AMM 6228 Projections • Supremum of
AMM 6267 Projective Spaces • Collineations of
AMM 6236 Projective Spaces • Collineations of
JRM 318 Prolong It? • Why
TYCMJ 139 Proper Idempotent • Spectrum of a
AMM 5993 Proper Subfields • Fields, the Sum of Two
MM 1053 Properties • Mean and Intermediate Value
JRM 324 Properties • The L-Shaped
AMM 6139 Properties in a First-Order Predicate Calculus

• Finitely Axiomatizable
AMM 6084 Properties of Coefficients of Tchebychef

Polynomials • Majorizing
AMM E2795 Properties of Regular Bipartite Graphs
MATYC 58 Property • A Matrix
MATYC 91 Property • A Matrix
TYCMJ 71 Property • Addition Laws
AMM S1 Property • Converse and Analogues of a

Binomial Coefficient
SIAM 76-18 Property for Moments • A Monotonicity
AMM E2625 Property of Conics • A
AMM E2581 Property of Fibonacci Numbers • A
SIAM 79-14 Property of Legendre Functions • A

Conjectured
TYCMJ 146 Property of Medial n-gons • Least Area
TYCMJ 117 Property of the Centroid • Least Squares
SIAM 77-13 Property of the First Erlang Function • A
TYCMJ 140 Property of the Symmedian Point •

Generalization of a
AMM 6132 Property” • A Function with the “Darboux
JRM 507 Prott • The Riss and the
JRM 606 Proverb • A
JRM C5 Pursuit Problem • A
JRM 473 Puzzle • A Crossnumber
JRM 628 Puzzle • A Cube Pattern
JRM 514 Puzzle • A Pastoral
AMM E2500 Puzzle • A Perfect Number
JRM 202 Puzzle • A Programming
JRM 349 Puzzle • Cross-Number
JRM 365 Puzzle • Please Ponder This
JRM 344 Puzzle • The Bibliopegist’s
JRM 471 Puzzle • The Clock
TYCMJ 121 Puzzler • Fermat Primes
JRM 532 Pyramid Problem • A
MM 896 Pythagorean Problem • A Popular
JRM 789 Pythagorean Spiral • The
MM 1088 Pythagorean Triangles
MM 1077 Pythagorean Triangles • Counting
FQ B-402 Pythagorean Triple
AMM E2460 Pythagorean Triples • Appearance of Integers

in
JRM 795 Pythagorean Triples • Reciprocal
AMM E2566 Pythagorean Triplets • Obtuse
TYCMJ 107 Pythagorean Triplets • The Diameter a + b − c

of
FQ H-220 Q • On
AMM S7 q-Appell Polynomials • Linearization of

Product of
TYCMJ 150 Q[M ] • Invertibility of Matrices in
JRM 475 Quadraphage • 3-D
AMM 5880 Quadratic • Condition for a
AMM E2555 Quadratic Form on a Box • Indefinite
TYCMJ 99 Quadratic Formula Integers
TYCMJ 101 Quadratic Mean Value Theorem
AMM 6058 Quadratic Nonresidues • Consecutive

AMM E2643 Quadratic Reciprocity • An Application of
AMM 6156 Quadratic Residues
AMM E2627 Quadratic Residues and Squares
TYCMJ 126 Quadratic System • Inconsistent
JRM 497 Quadrilateral Conjecture • The
AMM E2680 Quadrilateral in the Hyperbolic Plane • A
AMM E2557 Quadrilaterals • ‘Perfect’ Cyclic
MM 963 Quadrilaterals • Convex
AMM E2660 Quadrilaterals of Given Perimeter • Integral

Cyclic
TYCMJ 97 Quandary • Cubic
TYCMJ 142 Quartet Uncoupled
AMM 6081 Quasi-continuous Functions • Nowhere

Continuous,
TYCMJ 57 Quasi-inverses • Probability of
AMM E2659 Quasigroup to Be a Group • Forcing a
FQ B-360 Quaternion Norms • Applying
JRM 426 Query • A Pentomino
JRM 716 Question Answered
FQ B-399 Quite Tribonacci • Not
JRM 642 Quite Unique
AMM E2450 Quotients • Polynomial
MM 1079 R • Closure is
AMM 5978 R→ R • One-One Continuous Mapping
AMM 6004 R×R • An Injective Map of
AMM 6100 R • Continuous Bijections on
MM 995 R-Symmetric Matrices
AMM 6120 R2 • A Uniqueness Theorem in
AMM 6018 R2 • Differentiable functions in
AMM E2769 R3 • Distance Between Lines in
AMM 6102 R3 • Some Rotations of
AMM 6055 Rn • A Fourier Transform in
AMM 5999 Rn • A Measure in
AMM 5981 Rn • Separating Spheres in
AMM 5971 R+ • Partitioning
AMM 6041 Race • A Random Horse
JRM 796 Racer’s Edge • The
JRM 690 Racer’s Lament • Drag
AMM E2669 Rademacher • Roundest Oval of
AMM 5960 Rademacher Function • Integrals of the
TYCMJ 112 Radical Ratios
AMM 6068 Radicals • On the Jacobson
TYCMJ 49 Radii • A Ratio of
TYCMJ 85 Radii of a Triangle • Inequality for the

AMM 6003 Radius of eAeA
∗
• The Spectral

SIAM 75-7 Radius of a Matrix • The Spectral
MATYC 121 Radius of an Inscribed Hexagon
MM 920 Radius of Nine-Point Circle
AMM 5933 Random Graph • Infinite Complete Subgraph

of a
AMM 6041 Random Horse Race • A
AMM E2485 Random Integers • Triangles from
TYCMJ 96 Random Points on a Line Segment
AMM 6175 Random Polynomials
JRM 713 Random Rectangles
SIAM 78-13 Random Regions of a Circle • Expected Values

for
AMM 6050 Random Samples • The Maximum in
AMM 5723 Random Selections • Linear Programming with
JRM 425 Random Springers • The
AMM 6104 Random Variable X/Y , X, Y Normal • The
AMM 6092 Random Variables • Addition of ‘Student’
AMM 6164 Random Variables • Cauchy
AMM 6030 Random Variables • Identically Distributed
AMM 5884 Random Variables • Sequences of Independent
AMM E2474 Random Variables • The Maximum of

Independent
AMM 6103 Random Variables in a Vector Space •

Sequences of Independent
AMM 6207 Random Vectors • Distribution of Inner

Product of Two
AMM 6031 Random Walk Application • A

388



Title Index
Random 1975–1979 Representation

JRM 736 Random Warehouse • The
AMM 5936 Range of a Holomorphic Function in |z| < 1
AMM 6203 Ranges in Banach Spaces
AMM E2556 Rank Argument • A
AMM 6125 Rank-k Approximation for a Matrix • Best
FQ H-283 Ranks! • Close
FQ H-279 Rare Mixture • A
AMM E2742 Rarely Commuting Matrices
FQ H-250 Rate • Growth
FQ B-348 Ratio • Pentagon
FQ B-357 Ratio Inequality Count • Golden
AMM 6234 Ratio of Derangement Number to Ménage

Number
TYCMJ 49 Ratio of Radii • A
AMM E2657 Ratio of Some Simplices • Similarity
AMM 6127 rational •

∑
ζ(n)xn for x

MM 985 Rational • Transcendental or
MATYC 108 Rational & Irrational
FQ B-283 Rational Approximation of cosπ/6 and sinπ/6
AMM E2693 Rational Approximation to Arctan • A
FQ B-405 Rational Approximations • Good
AMM 5983 Rational Approximations to

√
2 and π

TYCMJ 22 Rational Circles
FQ B-361 Rational Function • A
AMM E2473 Rational Function of a Polynomial • Rational

Function of a
AMM E2473 Rational Function of a Rational Function of a

Polynomial
AMM 6082 Rational Function Solutions of xn − y2 = 1
TYCMJ 70 Rational Number Approximation of n!
TYCMJ 81 Rational Numbers • Binary Operations on
MM 968 Rational Points
JRM 765 Rational Points
AMM 6130 Rational Points of the Plane • A Partition of

the
FQ B-337 Rational Points on an Ellipse
AMM E2598 Rational Set with Irrational Distances • Dense
TYCMJ 127 Rational Solutions of yx = xy
AMM 5499 Rational Triangles
TYCMJ 105 Rational Vertices of Regular Odd-gons
AMM E2481 Rationals • Another Solution in
JRM 251 Rationals • Complex
AMM E2554 Rationals • Polynomial Function Restricted to
TYCMJ 112 Ratios • Radical
FQ H-273 Ray of Lucas • A
JRM 439 Ready or Not • It’s Coming,
MATYC 105 Real ’Rithmatic
MM 1036 Real Not Complex
AMM E2738 Real Number • Permuting the Digits of a
AMM E2656 Real Numbers • An Inequality for Positive
AMM E2721 Real Sequence • A Recursive
MATYC 88 Real Solution • Complex Route to
TYCMJ 28 Real Zeros of a Monotone Function
MATYC 104 Really • Not Much,
MM 1035 Really Orthogonal
JRM 482 Really So Easy? • Is This Alphametic
JRM 694 Really Sum-Thing!
AMM 6261 Reals • Concentrated Sets of
FQ B-383 Reappearance
JRM 762 Reciprocal Factorial Series
AMM E2747 Reciprocal Factorials • A Determinant with
JRM 674 Reciprocal Fibonacci Series • A
JRM 795 Reciprocal Pythagorean Triples
FQ H-237 Reciprocal! • Sum
AMM 6194 Reciprocals • Sums of
AMM E2448 Reciprocals Both Positive Semi-definite • A

Matrix and its Matrix of
AMM E2540 Reciprocals in a Finite Field • Sums of
FQ B-395 Reciprocals of Golden Powers
AMM E2643 Reciprocity • An Application of Quadratic
JRM C6 Recognition Problem • A Pattern
JRM 479 Recognition Program • A Pattern

TYCMJ 27 Rectangle • On The Circumcircle of a
AMM 6178 Rectangle with Squares • Tiling a
JRM 713 Rectangles • Random
AMM 6182 Rectangular Graphs
FQ B-311 Recurrence • A Nonhomogeneous
AMM E2567 Recurrence • A Periodic
MM 918 Recurrence Relation • A
SIAM 78-2 Recurrence Relations for Hermite Basis

Polynomials • Two
FQ H-231 Recurrent Theme
AMM E2736 Recurring Sequence of Points in the Affine

Plane • A
FQ B-291 Recursion • Translated
FQ B-384 Recursion for F4

2n or F4
2n+1 • A

JRM 705 Recursive Function • A
JRM 499 Recursive Game
AMM E2721 Recursive Real Sequence • A
AMM E2619 Recursive Sequence • Squares in a
JRM 784 Recursive Sequences
FQ B-353 Recursive Sums
AMM E2482 Reducible mod 2 • xn + x+ 1 is Usually
AMM E2578 Reducible Modulo Every Prime • Polynomials
AMM E2552 Reducing modulo 2
MM 1003 Reflections
AMM 6154 Reflections and Integrations • Iterating
JRM 657 Reflective Numbers • Two-Digit
JRM 760 Reflective Numbers II
JRM 512 Regarding the Harmonic Series • A Conjecture
SIAM 75-2 Regiment Problem Revisited • The
SIAM 78-13 Regions of a Circle • Expected Values for

Random
AMM 6062 Regular n-gons • Nesting
AMM E2674 Regular n-simplex Inscribed in Another • One
AMM E2795 Regular Bipartite Graphs • Properties of
TYCMJ 105 Regular Odd-gons • Rational Vertices of
AMM E2565 Regularizing a Bipartite Graph
FQ B-321 Related Sum • A
MM 918 Relation • A Recurrence
MATYC 82 Relation • An Integral
AMM 5932 Relation in the Symmetric Group •

Equivalence
AMM 6222 Relations Between a Matrix and Its Adjoint
SIAM 78-2 Relations for Hermite Basis Polynomials • Two

Recurrence
MM 897 Relative Inequality • A
AMM 6268 Relative Integral Bases in Towers of Fields
SIAM 76-13 Relative Speed Approximation • An Average
MM 909 Relatively Prime
AMM 5948 Relatively Prime Additive Sequences
AMM 6006 Relatively Prime Matrices
AMM E2777 Relatively Prime to b in [nb/a] • Integers
AMM E2488 Relatively Prime to p − 1 • Primitive Roots

mod p
JRM 518 Relativity • Theory of
AMM 6001 Remainder Term in Maclaurin’s Expansion •

The
AMM E2624 Remainder Theorem Applied • Chinese
FQ H-261 Rep • A Player
JRM 676 Repeated Digits • Sums of
JRM 643 Repeater • Another
JRM 374 Repeater • Ina’s
MATYC 87 Repeating Decimal
MM 940 Repeats Itself • Time
TYCMJ 41 Repetitious Exponentiation
MATYC 56 Repetitive Digits
JRM 564 Replay • Instant
JRM 329 Report • Weather
JRM 586 Representation • A Square Fractured
AMM E966 Representation for Integers • A
SIAM 73-2 Representation for the Moore–Penrose

Generalized Inverse of a Matrix • Integral
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Title Index
Representing 1975–1979 Second

AMM 5643 Representing the Square Root of a Fourier
Transform

JRM 652 Representing Unity with Semiprimes
JRM 698 Requested • Appropriate Sentiment
FQ B-319 Rerun
AMM E2781 Residue Classes mod n • Distinct Sums of the
AMM 6199 Residue Classes Under a Parabola • Permuted
MM 948 Residue Systems • Complete
JRM 672 Residue Systems • Prime
AMM 6161 Residues • A Characterization of Irrationals by

Distribution of
AMM 6156 Residues • Quadratic
FQ B-362 Residues • Triangular Number
AMM E2627 Residues and Squares • Quadratic
SIAM 79-16 Resistances in an n-Dimensional Cube
AMM E2620 Resistors • Symmetrical Networks with

One-Ohm
AMM E2577 Restricted Ménage Numbers
AMM E2554 Restricted to Rationals • Polynomial Function
MM 1009 Result • A True
AMM E2637 Result • An Old
AMM E2455 Result of Legendre, and Two Identities •

Fermat Numbers, a
JRM 170 Retrograde Analysis
JRM 599 Retrograde Tic-Tac-Toe
FQ H-211 Return from the Dead
JRM 488 — Revenge • A Paradisaic Triptych
JRM 488 Revenge • A Paradisaic Triptych —
AMM E1243 Reverse • Product of a Number and its
SIAM 76-17 Reverse Card Shuffle • A
JRM 700 Reversible Primes
MATYC 73 Revisited • Number Theory
MATYC 62 Revisited • Number Theory
JRM 313 Revisited • The Calendar Girl
JRM 121 Revisited • The Circular Billiard Table
SIAM 75-2 Revisited • The Regiment Problem
JRM 379 Revisited • The Wit-Man Sampler
JRM 644 Reward • Final
JRM 402 Rewards For Alphametics Composer
JRM 401 Rewards For Alphametics Composer
JRM 631 Rich Get Richer • The
JRM 631 Richer • The Rich Get
TYCMJ 76 Riemann Product
FQ H-211 Right • Form To The
MATYC 59 Right • When Wrong is
MATYC 81 Right — Again • When Wrong is
MM 980 Right Track • The
AMM E2501 Right Triangle • A Right Triangle in a
AMM E2501 Right Triangle in a Right Triangle • A
FQ B-282 Right Triangles • Lucas
JRM 746 Right! • Eggs-actly
MM 991 Ring • An Identity in a
AMM 6263 Ring • Associativity in a
AMM 6039 Ring • Central Idempotents in a Power Series
MM 1019 Ring • Characteristic of a
AMM E2528 Ring • Ideals of a Matrix
AMM 5972 Ring • Minimum n, xn = x for all x in a
AMM 6069 Ring • Zero Divisors and Units in a Group
AMM 6134 Rings • Chain Conditions In
AMM 5940 Rings • Ideals in Commutative
AMM E2676 Rings • Ideals in Matrix
MM 1052 Rings • Isomorphic Boolean
AMM 6284 Rings • Structure of Finite
AMM E2536 Rings • When xm = x Defines Boolean
TYCMJ 65 Rings • Zero Divisors in Finite
JRM 507 Riss and the Prott • The
MATYC 105 ’Rithmatic • Real
JRM 438 River • Cruising Down The
MM 976 Road • Shortest
SIAM 74-12 Rogers-Ramanujan Identities • The
MM 1071 Roll the Dice Again

AMM 6101 Rolle’s Theorem • Sums of Squares in Fields
with

JRM 755 Roman Numerals
JRM 540 Rook vs. Knight
AMM E2808 Root • Iterations Converging to a
JRM 696 Root • Skeleton Square
FQ B-391 Root Five • Approximations to
MM 1074 Root of a Cubic • Smallest
AMM 5643 Root of a Fourier Transform • Representing the

Square
MM 881 Root Series • A
TYCMJ 18 Roots • Halves and Square
AMM E2506 Roots • Limits of Differences of Square
MM 923 Roots • Powers of
JRM C2 Roots • Square Roots and Cube
AMM 5947 Roots • Sums of Powers of
AMM E2488 Roots mod p Relatively Prime to p − 1 •

Primitive
JRM C2 Roots and Cube Roots • Square
AMM E2628 Roots in Arithmetic Progression
MM 1010 Roots in Progression
AMM E2446 Roots Modulo m • Unique Cube
AMM E2488 Roots Modulo p • Primitive
SIAM 75-14 Roots of a Complex Polynomial • Simultaneous

Iteration towards All
AMM E2789 Roots of Unity ζk • Triangles with Vertices at
JRM 541 Rope Trick • The
MM 1018 Rotating a Polygon
MM 917 Rotating Faces
TYCMJ 74 Rotations in a Trirectangular Tetrahedron
AMM 6102 Rotations of R3 • Some
JRM 715 Round-Robin Soccer
AMM E2669 Roundest Oval of Rademacher
FQ B-367 Rounding Down
MATYC 88 Route to Real Solution • Complex
JRM 212 Rover • Felix vs
AMM S10 Row • 8 or More in a
AMM E2645 Row • Shuffling Along a
AMM E2794 Row- and Column-Sums • (0, 1)-matrices with

Prescribed
JRM 444 Rubber Wrapper • The
AMM 6248 Runs • Probability of k
JRM 505 Rusty Compass • Watson’s

AMM E2770 Sk =
∑

mk • A Formula Involving
JRM 411 Sad Story • A
JRM 404 Salute To The King
AMM S20 Same Enumerator for Distinct Posets
AMM E2733 Same Non-zero Length and Small Pairwise

Intersections • Infinitely Many Subsets of
[0, 1] With the

AMM 5735 Same Prime Factors • Density of Pairs with
JRM 379 Sampler Revisited • The Wit-Man
AMM 6050 Samples • The Maximum in Random
JRM 623 Sampling Problem • A
MM 1067 sans Calculus • Shortest Chord
JRM 457 Satan in Disguise
AMM E2692 Satisfying a Duplication Formula • A

Transcendental Function
AMM E2631 Satisfying Mirimanoff’s Condition • Prime
AMM S22 Scalar Multiple • Linear Transformation Fixed
AMM 5979 Schlicht Cubics on |z| < 1
JRM 624 Scoring Problem • A
JRM 701 Scottian Locus • A
JRM 557 Scottian Sets
AMM 6276 Screw Motions • Groups Generated by
JRM 366 Sea • Incident at
JRM 591 Search • A Diophantine
SIAM 63-9 Search • An Optimal
JRM 570 Search Problem • A
JRM 386 Search Problem • A Tromino
SIAM 77-17 Second Order Differential Equations • A

System of
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Title Index
Secret 1975–1979 Sets

JRM 469 Secret Word • The
AMM E2617 Sections of a Convex Body • Three Parallel
FQ B-352 See • C Is Easy To
AMM E2469 Seek in the Unit Disk • Hide and
TYCMJ 96 Segment • Random Points on a Line
AMM E1822 Segments • A Locus Associated with Two
TYCMJ 17 Segments Cut by a Parabola • Line
AMM E2716 Segments Defined by a Point Interior to a

Triangle • Six
AMM 5723 Selections • Linear Programming with Random
AMM 5986 Self Maps • Triangle Contractive
FQ B-397 Semi-Closed Form
AMM E2448 Semi-definite • A Matrix and its Matrix of

Reciprocals Both Positive
MM 880 Semicircular Chords
JRM 652 Semiprimes • Representing Unity with
JRM 413 Sentiment • Yuletide
JRM 698 Sentiment Requested • Appropriate
AMM 5962 Separable Hausdorff Space not σ-compact • A
AMM 6147 Separable Space • Subspaces of a Normal,
AMM E2610 Separately Continuous Functions
AMM 5981 Separating Spheres in Rn
JRM 771 Separation Without Trial
JRM 403 Sequel to EVE/DID = .TALKTALKTALK . . . • A
JRM 92 Sequence • A Better
AMM E2721 Sequence • A Recursive Real
AMM 6240 Sequence • Approximation by Terms of a Null
SIAM 79-5 Sequence • Asymptotic Behavior of a
FQ B-340 Sequence • Bicentennial
AMM E2725 Sequence • Bounded Prime Factors for Terms

in an Arithmetic
MM 883 Sequence • Constant
JRM 766 Sequence • Generalized Fibonacci
AMM 5413 Sequence • Least Common Multiple of

Consecutive Terms in a
TYCMJ 62 Sequence • Null
AMM E2619 Sequence • Squares in a Recursive
FQ H-216 Sequence • Sum
JRM 673 Sequence • The Coolest
JRM 788 Sequence • The Koolest
JRM 537 Sequence • The Marvin
JRM 602 Sequence • The Tail
JRM 790 Sequence • The Thompson
FQ B-359 Sequence • Tribonacci
AMM 5989 Sequence from the Harmonic Series • An

Integer
JRM 502 Sequence is Best • No
AMM E2726 Sequence of Integral Parts of na+ b
AMM E2736 Sequence of Points in the Affine Plane • A

Recurring
AMM E2401 Sequence of Polygons
AMM E2737 Sequence of Polynomials
MM 1047 Sequence of Sequences
JRM 377 Sequence Problem • A
FQ H-269 Sequences • A Pair of Sum
AMM E2447 Sequences • Bounds for k-Satisfactory
AMM 5984 Sequences • Convolution of Null
AMM E2699 Sequences • Linear Independence Modulo Zero
TYCMJ 141 Sequences • Nonarithmetic
JRM 784 Sequences • Recursive
AMM 5948 Sequences • Relatively Prime Additive
MM 1047 Sequences • Sequence of
AMM E2591 Sequences and Convergent Series • Null
AMM E2788 Sequences in [0, 1] • Dense
AMM 6271 Sequences Involving en and n! • Asymptotic

Behavior of
AMM 5884 Sequences of Independent Random Variables
AMM 6103 Sequences of Independent Random Variables in

a Vector Space
AMM E2522 Sequences with Bounded Gaps • Arithmetic

Progressions in

AMM 5944 Sequential Closure of a Class of Operators •
Weak

AMM E2434 Sequential Sum • Powers of a Weighted
AMM E2464 Serendipitous Diophantine Equations • Two
SIAM 76-10 Series • A Bessel Function
JRM 512 Series • A Conjecture Regarding the Harmonic
SIAM 77-5 Series • A Conjectured Increasing Infinite
JRM 503 Series • A Disharmonic
TYCMJ 44 Series • A Divergent
JRM 674 Series • A Reciprocal Fibonacci
MM 881 Series • A Root
AMM 5950 Series • A Well-Poised Hypergeometric
AMM 5989 Series • An Integer Sequence from the

Harmonic
TYCMJ 23 Series • An Unusual Divergent
AMM E2675 Series • Behavior Of A
TYCMJ 63 Series • Comparison of
AMM E2626 Series • Convergent and Divergent
AMM E2743 Series • Double
AMM 6241 Series • Evaluations of Trigonometric
TYCMJ 83 Series • Integration of a
AMM E2591 Series • Null Sequences and Convergent
JRM 762 Series • Reciprocal Factorial
FQ H-282 Series • Speedy
AMM 6056 Series • Truncated Exponential-type
AMM 6243 Series

∑
(−1)nn−1 logn • The Classical

AMM E2791 Series
∑

an,
∑

a3
n • The

AMM 6109 Series and Normal Families • Sylvester
FQ H-289 Series Consideration
MM 922 Series Converges • The
SIAM 75-3 Series Expansion • A Power
SIAM 79-9 Series for a Combination of Jacobian Elliptic

Functions • Fourier
AMM 6038 Series for which f ′(r) > 0 • Power
SIAM 79-8 Series Identity • A Hyperbolic
AMM 6080 Series in a Closed Disk • Power
TYCMJ 61 Series of Altitudes • Sum of a
SIAM 75-17 Series of Hypergeometric Functions • A
AMM 6112 Series of Iterates • A
AMM 6039 Series Ring • Central Idempotents in a Power
AMM E2459 Series-Parallel Circuits • Approximating Pi

with
JRM 325 Session • Jam
AMM E2582 Set • Crisscrossing Partitions of a Finite
AMM 6025 Set • Distance to the Boundary of a
AMM 6155 Set • Expectation of the Width of a
AMM E2654 Set • Minimum Subcover of a Cover of a Finite
AMM 6231 Set • Squares with Vertices in a Prescribed
AMM 6213 Set • Subsets of the Cantor
AMM 6122 Set • The Nearest Point in a Compact
AMM E2614 Set • Union of an Open and a Compact
AMM 6256 Set Functions of Bounded Variation • Additive
AMM 6131 Set in L1(−∞,∞) • A Dense
AMM 5998 Set of Integers • Covering a
AMM 6012 Set of Primes • Infinite Product over a
AMM E2666 Set of Subsets • An Estimate for the

Cardinality of a
AMM 5968 Set of Zeros of Entire Functions with Integral

Dkf(0) • The
MATYC 86 Set Theory • Elementary
AMM E2598 Set with Irrational Distances • Dense Rational
AMM E2790 Set with Squares of Specified Areas • Filling an

Open
AMM 6060 Sets • Combinatorics in Finite
MM 932 Sets • Connected
MM 1037 Sets • Fibonacci
AMM 5996 Sets • Kuratowski
AMM 6022 Sets • Minimal Intersection in a Collection of
AMM E2792 Sets • Odd Intersections of Point
AMM E2710 Sets • Outer Measures of Choice
AMM 6151 Sets • Partitions of Finite
JRM 557 Sets • Scottian
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Title Index
Sets 1975–1979 Solution

AMM E2526 Sets • Sum-Distinct
AMM E2608 Sets • Traversing Linearly Ordered
AMM E2730 Sets and Arithmetic Progressions • Finite
AMM 6260 Sets Formed by Iterated Closure, Interior, and

Union
AMM 6023 Sets in a Product Space • Borel
TYCMJ 21 Sets of n Consecutive Integers
AMM E2289 Sets of Axioms • Equivalent
JRM 618 Sets of Coins • Efficiency of
AMM S5 Sets of Differences • Intersecting
AMM 6257 Sets of Functions of Length Less Than 2
TYCMJ 113 Sets of Integers • Tricolored
AMM E2633 Sets of Lattice Points • Permutable
AMM 6261 Sets of Reals • Concentrated
AMM 6126 Sets of Zero Dimension • Union of
AMM 6014 Sets with All Closed Subsets Countable •

Uncountable
JRM 617 Seven • The Solitary
MM 966 Seven Integral Distances
MM 1080 sgn • Int and
AMM 6146 Shakespeare’s Plays? • Did Bacon Write
JRM 487 Shakespearean Alphametic (Macbeth)
AMM 4603 Shapiro’s Cyclic Inequality
JRM 340 Shared Taxicab • The
TYCMJ 130 Sharpening of Heron’s Inequality
AMM E2458 Sheffer Function • An n-ary
TYCMJ 29 Shifting • Decimal Digit
MM 1067 Shortest Chord sans Calculus
MM 976 Shortest Road
SIAM 76-17 Shuffle • A Reverse Card
AMM E2645 Shuffling Along a Row
MATYC 124 Side a Leg • Is a
MM 901 Sides • Irrational
JRM 375 Sidewinder, or How to Tack in a Tin Can •

Cruise of the
FQ B-303 Sigma Function Inequality • A
FQ H-258 Sigma Strain • The
JRM 581 Signed by the Artist
JRM 761 Signers • Declaration
AMM E2719 Signs • Periodic Patterns of
MM 1033 Signs and cosines
AMM E2550 Signs of Successive Derivatives
JRM 367 Silver Lining • Look For the
JRM 685 Silverbeard Problem • The
SIAM 78-9 Silverman’s Board of Directors Problem • A

Variant of
AMM E2478 Similar Functions
MM 1058 Similarity • A True
AMM E2741 Similarity and the Diagonal of a Matrix
AMM E2657 Similarity Ratio of Some Simplices
JRM 774 Simple Addition
JRM 776 Simple Addition • Even More
JRM 775 Simple Addition • More
MM 1006 Simple Closed Curve • A
AMM 6129 Simple Closed Curve • Distance from a
AMM E2532 Simple Diophantine Equations
AMM 6176 Simple Groups of Square Order
SIAM 75-21 Simple Harmonic Motion • n-dimensional
AMM E2652 Simple Identity • A
JRM 368 Simple Sum • A
AMM E2470 Simplex Equality Characterizing the Centroid •

A
MM 919 Simplex with Orthogonal Edges • A
SIAM 78-20 Simplexes • A Volume Inequality for a Pair of

Associated
AMM E2657 Simplices • Similarity Ratio of Some
AMM E2548 Simplices of Equal Volumes
FQ B-287 Simplified
AMM E2553 Simson and Euler Lines
SIAM 75-14 Simultaneous Iteration towards All Roots of a

Complex Polynomial

TYCMJ 152 Simultaneously Occurring Events • Probability
of

FQ B-283 sinπ/6 • Rational Approximation of cosπ/6
and

AMM 6173 sinx • A Characterization of
AMM 5314 sinx/x • A Multiple Integral of
AMM E2451 Sine • The Iterated
MM 884 Sine Curve • Frequency of a
AMM E2502 Sines • A Sum of
TYCMJ 47 Sines and Cosines • A Law of
FQ B-332 Single and One Triple Part • One
SIAM 75-9 Singular Integral Equation • A
AMM 6057 Singular Matrices
AMM 6073 Singular Monotonic Functions
JRM 342 Singularly Symmetric Surface • A
FQ H-270 Sinh • Its’s a
TYCMJ 108 Sinusoidal Slide of a 4-Biangle
FQ H-298 Six • The Big
AMM E570 Six Congruent Conics
FQ B-293 Six Fibonacci Terms • The First
AMM E2716 Six Segments Defined by a Point Interior to a

Triangle
JRM 780 Sixteen – 1 • Sweet
JRM 281 Sixteen – 2 • Sweet
JRM 696 Skeleton Square Root
AMM E2545 SLn(Z) • Indices of Subgroups of
SIAM 76-1 Slash • The Game of
TYCMJ 108 Slide of a 4-Biangle • Sinusoidal
FQ B-285 Slight Variation on a Previous Problem • Very
JRM 338 Slimming Here • No
MM 1004 Slowest Trip • Fastest and
JRM 666 Small Change
JRM 667 Small Change
AMM E2733 Small Pairwise Intersections • Infinitely Many

Subsets of [0, 1] With the Same Non-zero
Length and

AMM 6017 ‘Smaller’ Norms • Constructing
MM 1074 Smallest Root of a Cubic
AMM 6027 Smoothing a Continuous Function
JRM 489 Snake is Hiding • A Paradisaic Triptych — The
MATYC 107 So • It Ain’t Necessarily
FQ B-304 So Bee It
AMM E2452 so Easy • Cutting Corners is not
JRM 482 So Easy? • Is This Alphametic Really
JRM 450 So Tasty • Not
MATYC 74 So! • It Ain’t Necessarily
JRM 715 Soccer • Round-Robin
JRM 484 Society • The American High Hopes
JRM 621 Socks • Matching
JRM 387 Soft • Hard vs.
FQ H-274 Soft Matrix • A
JRM 575 Solicitation
AMM E2563 Solid • Volume and Surface Area of a
JRM 637 Solid Ground • On
JRM 528 Solids • Tagging the Platonic
JRM 617 Solitary Seven • The
MATYC 110 Solution • An Exponential
MATYC 61 Solution • An Exponential
MATYC 71 Solution • An Integral
MATYC 88 Solution • Complex Route to Real
TYCMJ 114 Solution • Equation with Unique
SIAM 75-6 Solution • Existence of a Transition
MATYC 139 Solution • Logarithmic
FQ H-267 Solution • Sum
AMM S2 Solution • Wordless
AMM E2481 Solution in Rationals • Another
TYCMJ 95 Solution of px + 1 = yp

TYCMJ 77 Solution of a Difference Equation • Polynomial
AMM E2664 Solution of a System of Diophantine Equations

• Minimal
AMM 5794 Solution to Bessel Equation
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Title Index
Solutions 1975–1979 Squares

AMM E2479 Solutions • A Functional Equation with only
Obvious

AMM E2763 Solutions • A Third Degree Congruence with
Nine

FQ B-276 Solutions • Only Two
FQ B-356 Solutions • Some
MM 1078 Solutions • Symmetric
MM 1030 Solutions • Three
MM 1012 Solutions • Three
MM 1081 Solutions • Two
AMM E2621 Solutions in Positive Integers • No

AMM E2787 Solutions of x = (log x)k

AMM 6082 Solutions of xn − y2 = 1 • Rational Function
TYCMJ 127 Solutions of yx = xy • Rational
AMM E2583 Solutions of a Functional Equation •

Characterizing
AMM E2615 Solutions Only • A System with Trivial
SIAM 77-4 Solutions to Linear Partial Differential

Equations Involving Arbitrary Functions

TYCMJ 151 Solves
∫ x

1
g(t)dt =

∫ xy
y

g(t)dt • The g That

JRM 542 Some • Easy for
AMM 5575 Some Bernstein-type Operators
JRM 198 Some Configurations
FQ B-331 Some Fibonacci Squares Mod 24
AMM E2623 Some Fractions • Integrality of
AMM 6099 some Non-Abelian Groups • Generators for
JRM 555 Some Prime Exercises
AMM 6102 Some Rotations of R3

AMM E2657 Some Simplices • Similarity Ratio of
FQ B-356 Some Solutions
FQ H-230 Some Square
FQ H-219 Some Sum
AMM E2492 Some Sum
FQ B-385 Some Triangluar Numbers • Counting
FQ B-400 Some Triangular Numbers • Multiples of
AMM 5951 Some Trigonometric Integrals
MATYC 102 Something in Common
FQ B-306 Something Special
MATYC 92 Sometimes It’s Fewer Than You Want
JRM 500 Sons • Lots of
JRM 361 Soupy Alphametic • A
JRM 616 Sour Grapes
AMM 6023 Space • Borel Sets in a Product
AMM 6023 Space • Borel Subsets of a Product
AMM 6023 Space • Borel Subsets of a Product
AMM 5937 Space • Norms in a Barreled
AMM 6103 Space • Sequences of Independent Random

Variables in a Vector
AMM 6283 Space • Star-Shaped Subsets of Banach
AMM 6147 Space • Subspaces of a Normal, Separable
AMM 5962 Space not σ-compact • A Separable Hausdorff
AMM 5790 Spaces • Collinearity Preserving Maps in Affine
AMM 6236 Spaces • Collineations of Projective
AMM 6267 Spaces • Collineations of Projective
AMM 5773 Spaces • Complete Linear
AMM 6078 Spaces • Linear Functionals in Normed
AMM 6203 Spaces • Ranges in Banach
JRM 612 Spanish • Doubly True –
AMM 5970 Spanning Ideals
JRM 345 Spares and Strikes • Mixing
MM 931 Speaking • Logically
MATYC 115 Spearman Coefficient
FQ B-306 Special • Something
FQ B-310 Special Binomial Coefficients
JRM 742 Special Effects
SIAM 74-19 Special Functions • One-sided Approximation

to
AMM E2574 Special Group Operation on Natural Numbers

• A
AMM E2668 Special Non-isosceles Triangles
JRM 720 Specialty of the House

AMM E2790 Specified Areas • Filling an Open Set with
Squares of

SIAM 78-12 Spectral Analysis of a Matrix

AMM 6003 Spectral Radius of eAeA
∗
• The

SIAM 75-7 Spectral Radius of a Matrix • The
TYCMJ 139 Spectrum of a Proper Idempotent
SIAM 76-13 Speed Approximation • An Average Relative
FQ H-282 Speedy Series
JRM 629 Sphere in the Cylinder • The
JRM 733 Spheres • Cube and
AMM 6063 Spheres • Distance Between the Centers of

Two
AMM 5981 Spheres in Rn • Separating
AMM E2476 Spheres Kissing Precisely • Tetratangent
AMM E1073 Spiral • A Point in a
JRM 789 Spiral • The Pythagorean
JRM 372 Spite Nim I
JRM 373 Spite Nim II
JRM 567 Split • The Fibonacci
JRM 425 Springers • The Random
MM 882 Square • A Prime Magic
JRM 382 Square • Circles in a
JRM 466 Square • Circumscribing with a
FQ B-318 Square • Fibonacci
JRM 683 Square • One Point in a
FQ H-230 Square • Some
JRM 798 Square Crossnumber
TYCMJ 147 Square Dance
JRM 586 Square Fractured Representation • A
AMM 6086 Square Free Integers • Common Divisors and
AMM E2740 Square in a Polyhedron • A
MM 945 Square in a Triangle
FQ H-263 Square is Now Mod! • Lucas the
TYCMJ 64 Square On the Hypotenuse • The Inscribed
AMM 6176 Square Order • Simple Groups of
JRM 696 Square Root • Skeleton
AMM 5643 Square Root of a Fourier Transform •

Representing the
TYCMJ 18 Square Roots • Halves and
AMM E2506 Square Roots • Limits of Differences of
JRM C2 Square Roots and Cube Roots
FQ H-291 Square Your Cubes
AMM E2586 Squared • A Matrix
TYCMJ 37 Squares • A Difference of
JRM 380 Squares • A Matter of
MM 1045 Squares • Absolute Perfect
MM 943 Squares • Charlemagne’s Magic
FQ B-350 Squares • Cubes and Triple Sums of
TYCMJ 50 Squares • Digits of
AMM E2732 Squares • Labeling Chessboard
MM 1008 Squares • Locating Perfect
JRM 569 Squares • Magic Talisman
FQ B-336 Squares • Pell
MATYC 63 Squares • Perfect
TYCMJ 90 Squares • Plateau
AMM E2627 Squares • Quadratic Residues and
MM 1042 Squares • Sum of Two
JRM 590 Squares • Sums of
AMM 6178 Squares • Tiling a Rectangle with
AMM 6148 Squares (mod n) • Sum of
MM 960 Squares and Cubes • Counting
FQ B-328 Squares as A. P. • Sum of
AMM E2486 Squares Ending in Ones
AMM E2619 Squares in a Recursive Sequence
AMM 6101 Squares in Fields with Rolle’s Theorem • Sums

of
AMM E1075 Squares in Long Products
FQ B-331 Squares Mod 24 • Some Fibonacci
FQ B-388 Squares Near the Diagonals • Partitioning
AMM E2790 Squares of Specified Areas • Filling an Open

Set with
TYCMJ 117 Squares Property of the Centroid • Least
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Title Index
Squares 1975–1979 Sum

AMM 6231 Squares with Vertices in a Prescribed Set
TYCMJ 153 Squaring a Parallelogram
JRM 675 St. Petersburg Game • The
SIAM 74-17 Stability Problem • A
SIAM 76-9 Stability Problem • A Matrix
AMM E2569 Stack of Pancakes
FQ H-218 Staggering Pascal
FQ H-257 Staggering Sum
AMM S17 Stairway Light Switches • Switching the
MM 1031 Standing Problem • A
AMM 6283 Star-Shaped Subsets of Banach Space
JRM 378 States Bicentennial • A Tribute to the Coming

United
JRM 607 Station • Station to
JRM 607 Station to Station
AMM E2428 Statistical Interest • An Inequality of
MATYC 117 Statistics • Easy
AMM 6113 Stieltjes-Riemann Integrable Functions • A

Class of
JRM 330 Still an Enigma
JRM 393 Still Another Age Problem
FQ B-372 Still No
MM 989 Stirling Expression • A
JRM 381 Stonemason’s Problem • The
JRM 411 Story • A Sad
JRM 493 Straightjacket Chess
FQ H-258 Strain • The Sigma
JRM 163 Straits • Desperate
JRM 538 Stretcher • The Paper
MM 1027 Strictly Increasing
JRM 345 Strikes • Mixing Spares and
AMM 5973 Strip • The
AMM 6066 Strong Fermat’s Last Theorem • A
AMM 6284 Structure of Finite Rings
AMM 6092 ‘Student’ Random Variables • Addition of
JRM 769 Stump the Panel
FQ H-252 Sub Product
AMM E2590 Subadditive and Superadditive Numbers
AMM E2718 Subclass of the Absolute Primes • A
AMM E2654 Subcover of a Cover of a Finite Set • Minimum
AMM 5993 Subfields • Fields, the Sum of Two Proper
AMM 5933 Subgraph of a Random Graph • Infinite

Complete
AMM 5945 Subgroup of Multiplicative Functions • A
MM 935 Subgroups • Maximal
AMM E2545 Subgroups of SLn(Z) • Indices of
AMM E2331 Subgroups of Z(pn)⊕ Z(pn)
AMM 6059 Subgroups of Metacyclic Groups • Cyclic Sylow
AMM 6049 Subgroups of the Symmetric Group
AMM 6051 Sublinear Map • Extending a
SIAM 76-15 Submatrices • Monotone
AMM 5969 Subring of Commutators • The
AMM S16 Subsemigroups • Closed Complex Additive
AMM 5437 Subsequences • Undersequences versus
MM 1025 Subseries • Convergent
AMM 6035 Subseries of

∑
µ(n) logn/n • A

MM 934 Subset of Integers • A
AMM E2697 Subset of the Unit Circle • A Dense
FQ H-223 Subsets • A Nest of
AMM E2666 Subsets • An Estimate for the Cardinality of a

Set of
AMM E2768 Subsets • Decomposing an Interval into

Homeomorphic
AMM E2764 Subsets • Intersections and Unions of
AMM 6014 Subsets Countable • Uncountable Sets with All

Closed
AMM E2733 Subsets of [0, 1] With the Same Non-zero

Length and Small Pairwise Intersections •
Infinitely Many

AMM 6023 Subsets of a Product Space • Borel
AMM 6023 Subsets of a Product Space • Borel
AMM 6283 Subsets of Banach Space • Star-Shaped

AMM 6213 Subsets of the Cantor Set
AMM 6188 Subsets of the Irrationals • Complementary
TYCMJ 111 Subsets of the Natural Numbers • Densities of
AMM 5985 Subsets of the Plane
AMM 5670 Subsets of the Plane • Generating
AMM 6147 Subspaces of a Normal, Separable Space
AMM 5990 Substitution Groups
TYCMJ 103 Successful Toss • The Superfluous
AMM E2550 Successive Derivatives • Signs of
AMM E2756 Successive Derivatives • Zeros of
MM 1060 Such Function • No
TYCMJ 94 Sufficiency of Newton’s Formula
AMM E435 Sufficient Condition for Primeness • A

Necessary but not
JRM 442 Suit Distribution
JRM 443 Suit Problem • The Three
JRM 682 Sulucrus
FQ B-320 Sum • A
MM 942 Sum • A Constant
AMM E2744 Sum • A Divergent Partial
FQ B-321 Sum • A Related
JRM 368 Sum • A Simple
FQ B-305 Sum • A Telescoping
SIAM 76-2 Sum • An Infinite
MATYC 66 Sum • An Infinite
FQ B-295 Sum • Convolution or Double
FQ B-335 Sum • Fibonacci-Lucas
FQ H-305 Sum • Like Fibonacci-like
AMM 6252 Sum • Limit of a Combinatorial
MM 1002 Sum • Permutation Preserving
AMM E2434 Sum • Powers of a Weighted Sequential
AMM E2492 Sum • Some
FQ H-219 Sum • Some
FQ H-257 Sum • Staggering
FQ H-272 Sum • Symmetric
AMM E2601 Sum and Legendre Polynomials • Binomial
TYCMJ 51 Sum and Maximum
FQ H-301 Sum Difference
FQ H-235 Sum Differential Equation!
AMM E2603 Sum Inequality • A Symmetric
FQ H-227 Sum Legendre
AMM E2758 Sum of 1’s and −1’s • A
TYCMJ 128 Sum of a Progression of Cosines
TYCMJ 61 Sum of a Series of Altitudes
SIAM 79-18 Sum of Bessel Functions • A
AMM E2685 Sum of Binomial Coefficients • A Congruence

for a
AMM 5992 Sum of Blocks in a Hermitian Matrix
AMM E2646 Sum of Certain Chords • Alternating
TYCMJ 80 Sum of Cubes
FQ B-326 Sum of Divisors • On the
AMM 6065 Sum of Divisors Function • The Density of the
AMM E2760 Sum of Legendre Symbols • A
AMM E2780 Sum of Number of Divisors

∑
d(k), k ≤ n

MM 954 Sum of Perfect Numbers
MM 885 Sum of Permutations • A
AMM E2750 Sum of Powers of Primes
AMM E2502 Sum of Sines • A
AMM 6148 Sum of Squares (mod n)
FQ B-328 Sum of Squares as A. P.
AMM 6235 Sum of Sums of the Möbius Function
AMM 6077 Sum of the Digits in Kn

AMM 6162 Sum of the Elements of the Inverse of a Matrix
• The

AMM 6247 Sum of the Form
∑

αk
[
m
√
k
]

AMM 5993 Sum of Two Proper Subfields • Fields, the
MM 1042 Sum of Two Squares
AMM 5953 Sum of Valencies for a Plane Graph
AMM 6011 Sum Partitions in an Abelian Group • Equal
FQ H-236 Sum Product!
FQ H-237 Sum Reciprocal!
FQ H-216 Sum Sequence
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Sum 1975–1979 Tetrahedron

FQ H-269 Sum Sequences • A Pair of
FQ H-267 Sum Solution
JRM 363 ‘Sum’ Alphametic! • This is
FQ H-264 Sum-ary Conclusion
AMM E2526 Sum-Distinct Sets
JRM 694 Sum-Thing! • Really
TYCMJ 66 Summation
SIAM 76-11 Summation • A Bessel Function
AMM E2384 Summation • A Difficult Binomial Coefficient
SIAM 77-18 Summation • An Infinite
AMM E2472 Summation • Another Binomial Coefficient
SIAM 76-14 Summations • Three Multiple
AMM E2507 Summing Minima
JRM 515 Summitry
JRM 420 Sums • Calculator
JRM 677 Sums • Digit
AMM E2560 Sums • Non-congruence of Certain
AMM E2551 Sums • Oscillation of Partial
MM 1026 Sums • Palindromic
JRM 75 Sums • Prime
MM 970 Sums • Probability of
FQ B-353 Sums • Recursive
SIAM 79-12 Sums • Two Infinite
JRM 98 Sums Allowed • No
AMM 6201 Sums in Finite Fields • Power
AMM E2778 Sums of Powers of a Number
AMM E2749 Sums of Powers of Primes • Equal
AMM 5947 Sums of Powers of Roots
AMM 6194 Sums of Reciprocals
AMM E2540 Sums of Reciprocals in a Finite Field
JRM 676 Sums of Repeated Digits
JRM 590 Sums of Squares
FQ B-350 Sums of Squares • Cubes and Triple
AMM 6101 Sums of Squares in Fields with Rolle’s

Theorem
AMM 6235 Sums of the Möbius Function • Sum of
AMM E2781 Sums of the Residue Classes mod n • Distinct
JRM 383 Sums Prime • All
AMM E2707 sup of an inf • The
SIAM 79-7 Super-Controllability
AMM E2590 Superadditive Numbers • Subadditive and
AMM E2799 Superfactorials and Catalan Numbers
TYCMJ 103 Superfluous Successful Toss • The
MM 1023 Superheros • Many
MATYC 123 Supper • Late for
AMM 6228 Supremum of Projections
JRM 342 Surface • A Singularly Symmetric
AMM E2563 Surface Area of a Solid • Volume and
AMM E2585 Surfaces • Average Vertex-Degree for

Triangulated
JRM 513 Survivor Function • The
JRM 780 Sweet Sixteen – 1
JRM 281 Sweet Sixteen – 2
JRM 358 Sweets • “Bread” for the
MM 926 Swim • The Longest
AMM S17 Switches • Switching the Stairway Light
JRM 288 Switching Game • The
AMM S17 Switching the Stairway Light Switches
AMM 6059 Sylow Subgroups of Metacyclic Groups • Cyclic
AMM 6109 Sylvester Series and Normal Families
FQ B-274 Symbol Golden Mean • 3
AMM E2760 Symbols • A Sum of Legendre
TYCMJ 140 Symmedian Point • Generalization of a

Property of the
AMM 6098 Symmetric Convex Bodies • Maximally
AMM E2487 Symmetric Functions
AMM E2573 Symmetric Functions • Inequalities for
AMM 6097 Symmetric Functions • Polynomial Algebra

Generated by
AMM 5932 Symmetric Group • Equivalence Relation in

the
AMM 6049 Symmetric Group • Subgroups of the

FQ B-294 Symmetric in k and n • A Formula
AMM E2597 Symmetric Power • Transformation Induced in

a
MM 1078 Symmetric Solutions
FQ H-272 Symmetric Sum
AMM E2603 Symmetric Sum Inequality • A
JRM 342 Symmetric Surface • A Singularly
TYCMJ 45 Symmetrical Inequality • A
AMM E2620 Symmetrical Networks with One-Ohm

Resistors
TYCMJ 115 System • Disparity in a Vibrating
TYCMJ 126 System • Inconsistent Quadratic
SIAM 74-4 System of Difference-Differential Equations • A
AMM E2664 System of Diophantine Equations • Minimal

Solution of a
MM 930 System of Equations • A
SIAM 76-12 System of Nonlinear Differential Equations •

An Infinite
SIAM 77-17 System of Second Order Differential Equations

• A
AMM E2615 System with Trivial Solutions Only • A
FQ H-244 Systematic Work
MM 948 Systems • Complete Residue
JRM 672 Systems • Prime Residue
AMM 6215 Systems for Coloring Maps • Linear
AMM 5957 Systems in L2 • Completeness Criterion of

Orthonormal
JRM 120 Table • The Circular Billiard
JRM 121 Table Revisited • The Circular Billiard
JRM 348 Table Theme • A New Wrinkle on the Old

Billiard
JRM 375 Tack in a Tin Can • Cruise of the Sidewinder,

or How to
JRM 528 Tagging the Platonic Solids
JRM 602 Tail Sequence • The
MM 1072 Tailored Polynomial • A
JRM 431 Take Your Choice
JRM 569 Talisman Squares • Magic
MATYC 84 Tangent • On a
AMM E2728 Tangent Cylinders • Mutually
MM 905 Tangent Lines to a Cubic
MM 1039 Tangentially Equivalent
MM 950 Tangents • Parallel
JRM 450 Tasty • Not So
JRM 340 Taxicab • The Shared
AMM 5958 Taylor Expansions and Function Values •

Truncated
AMM 6084 Tchebychef Polynomials • Majorizing

Properties of Coefficients of
FQ B-281 Tee • Ones for
JRM 531 Telephone Dial • Priming the
FQ B-305 Telescoping Sum • A
AMM S11 Temperatures • Tetrahedron
JRM 731 Temple of Heterodoxy • The
FQ B-396 Ten • Multiples of
MM 1016 Ten • Power of
JRM 328 Tension • High
FQ B-406 Term as GCD • First
AMM 6001 Term in Maclaurin’s Expansion • The

Remainder
FQ B-293 Terms • The First Six Fibonacci
AMM 6170 Terms in a Binomial Expansion Modulo a

Prime • The Number of
AMM 5413 Terms in a Sequence • Least Common Multiple

of Consecutive
AMM E2725 Terms in an Arithmetic Sequence • Bounded

Prime Factors for
AMM 6240 Terms of a Null Sequence • Approximation by
TYCMJ 67 Test • A Divisibility
JRM 369 Test • Multiplication
AMM E2800 Test for Composite Numbers • A
AMM E2349 Tetrahedron • Fitting a Cube in a
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Tetrahedron 1975–1979 Tree

AMM E1298 Tetrahedron • Largest Cross-Section of a
TYCMJ 74 Tetrahedron • Rotations in a Trirectangular
AMM S12 Tetrahedron Inequality
AMM S11 Tetrahedron Temperatures
AMM E2498 Tetrahedron with Three Equiareal Faces
AMM E2476 Tetratangent Spheres Kissing Precisely
JRM 489 — The Snake is Hiding • A Paradisaic Triptych
AMM E2512 Their Circumcircles • Intersecting Triangles

and
AMM 6165 Their Mean Values • Functions Approximated

by
JRM 348 Theme • A New Wrinkle on the Old Billiard

Table
JRM 353 Theme • New Variations on the Old “True”
FQ H-231 Theme • Recurrent
FQ B-323 Theme • Variations on an Old
AMM E2463 Theorem • A Consequence of Wolstenholme’s
TYCMJ 52 Theorem • A Geometric Mean Value
AMM E2531 Theorem • A Hexagon
AMM 6066 Theorem • A Strong Fermat’s Last
AMM E2587 Theorem • An Application of Brouwer’s Fixed

Point
AMM E2592 Theorem • An Application of Cayley’s
TYCMJ 35 Theorem • An Application of Lucas’
AMM E2647 Theorem • An Elementary Case of the Jordan

Curve
AMM E2723 Theorem • An Insensitive Central Limit
TYCMJ 84 Theorem • Application of Wilson’s
AMM 6255 Theorem • Closed Graph
JRM 706 Theorem • Morley’s
TYCMJ 101 Theorem • Quadratic Mean Value
AMM 6101 Theorem • Sums of Squares in Fields with

Rolle’s
AMM E2624 Theorem Applied • Chinese Remainder
MATYC 137 Theorem But Not Its Converse • A
AMM E2771 Theorem for Even Exponents • Fermat’s Last
AMM E2527 Theorem for Touching Pennies • The

Four-Color
AMM 6120 Theorem in R2 • A Uniqueness
AMM E2558 Theorem of Dini • A
AMM E2651 Theorem of Grötsch • A
AMM E2644 Theorem of Polya • A
JRM 246 Theoretic Craps • Game
JRM 323 Theoretical Triangles • Four
AMM 6272 Theories • Complete Categorical
MATYC 86 Theory • Elementary Set
MATYC 75 Theory • Number
MATYC 131 Theory • Number
JRM 518 Theory of Relativity
MATYC 73 Theory Revisited • Number
MATYC 62 Theory Revisited • Number
AMM 5975 Thick and Thin • Ordinal Types
AMM 5975 Thin • Ordinal Types Thick and
AMM E2763 Third Degree Congruence with Nine Solutions

• A
FQ B-347 Third-Order Analogue of the F ’s • A
JRM 530 Thirteenth Labor • The
JRM 790 Thompson Sequence • The
FQ B-314 Three • Lucas Numbers Ending in
JRM 630 Three Apprentices • The
AMM 5427 Three Balls and an Intersecting Line
AMM 3887 Three Circles with Collinear Centers
AMM E2724 Three Colors • An Urn With Balls of
AMM E2498 Three Equiareal Faces • Tetrahedron with
SIAM 76-3 Three Inverse Laplace Transforms
SIAM 76-14 Three Multiple Summations
AMM E2617 Three Parallel Sections of a Convex Body
MM 1012 Three Solutions
MM 1030 Three Solutions
JRM 443 Three Suit Problem • The
JRM 576 Three” Problem • The “Eighty
SIAM 78-11 Three-Coloring of Tournaments • Edge

JRM 232 Three-Point Play
MM 996 Thumbtacks
JRM 389 Tic-Tac-Incognito
JRM 465 Tic-Tac-Toe • Kriegspiel
JRM 599 Tic-Tac-Toe • Retrograde
AMM E2508 Tiling a Checkerboard with Dominoes
AMM 6178 Tiling a Rectangle with Squares
AMM E2595 Tiling by Trominoes
TYCMJ 78 Tiling Checkerboards with Trominos
JRM 388 Tiling Conjecture • The Heterogeneous
MM 940 Time Repeats Itself
FQ H-277 Timer • Old
JRM 375 Tin Can • Cruise of the Sidewinder, or How to

Tack in a
JRM 546 Tintinnabulation
JRM 549 Tongue Twister • A
JRM 550 Tongue Twister • Another
JRM 583 Too • Doubly True and Ideal,
JRM 299 Too Easy • Not
TYCMJ 19 Too Far • An Analogy Carried
MATYC 70 Too Often • Bingo – But Not
JRM 445 Topological Conjecture • A
AMM 5977 Topological Groups
AMM 5959 Topological Groups • Locally Compact
JRM 663 Topper • Literary
JRM 787 Tori • Cutting Cubes into
AMM E2698 Toroidal n-Queens Problem
AMM 6052 Torsion Group with Two Generators
AMM 6052 Torsion Groups Generated by Two Elements
AMM 6205 Torsion-Free Finite Extensions of Cyclic

Groups
AMM 6087 Torus • Loxodromes on a
JRM 117 Torus • Packing a Double
TYCMJ 103 Toss • The Superfluous Successful
SIAM 77-11 Tossing Problem • A Coin
AMM 6193 Totient Equation
AMM E2599 Totient Function • Erratic Behavior of the
FQ B-327 Touches on a Lucas Identity • Finishing
AMM E2527 Touching Pennies • The Four-Color Theorem

for
AMM E585 Tough Nut has been Cracked • Miquel Point —

A
SIAM 78-11 Tournaments • Edge Three-Coloring of
SIAM 75-14 towards All Roots of a Complex Polynomial •

Simultaneous Iteration
AMM 6268 Towers of Fields • Relative Integral Bases in
TYCMJ 154 Trace AB • Inequality for Triangles and for
MM 951 Trace Condition • A
AMM 6171 Trace of a Product of Matrices
JRM 727 Trace the Base
MM 1038 Traces
MM 980 Track • The Right
JRM 730 Traffic Light • The
AMM E2692 Transcendental Function Satisfying a

Duplication Formula • A
MM 985 Transcendental or Rational
AMM 6075 Transform • Integrable Functions with Positive

Fourier
AMM 5643 Transform • Representing the Square Root of a

Fourier
AMM 6055 Transform in Rn • A Fourier
AMM S22 Transformation Fixed Scalar Multiple • Linear
AMM E2597 Transformation Induced in a Symmetric Power
MM 1086 Transformations • Group of
FQ B-389 Transformed Arithmetic Progression
SIAM 76-3 Transforms • Three Inverse Laplace
SIAM 75-6 Transition Solution • Existence of a
AMM 5943 Transitive Automorphisms
FQ B-291 Translated Recursion
AMM 6278 Translation Invariance Hamel Basis
AMM E2608 Traversing Linearly Ordered Sets
SIAM 77-15 Tree • A Conjectured Minimum Valuation
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JRM 370 Tree Problem • The Christmas
AMM 5895 Trees • Cubic
AMM 6262 Trees • Fixed Points of
AMM E2671 Trees • Labelings of Binary
JRM 709 Tri-N
AMM E2751 Triad Meeting a Conic • Orthogonal
JRM 771 Trial • Separation Without
AMM E2705 Trials • Expected Number of
MM 1070 Trials • Multinomial
MM 998 Triangle • A 120◦
AMM E2538 Triangle • A Maximum Problem for the
AMM E2802 Triangle • A Parallelogram Generated from a
AMM E2501 Triangle • A Right Triangle in a Right
AMM E2687 Triangle • An Impossible
TYCMJ 79 Triangle • Area of a Cevian
TYCMJ 148 Triangle • Centroid of the Boundary of a
JRM 354 Triangle • Circles in a
AMM E2505 Triangle • Extended Medians of a
MM 898 Triangle • Five Centers in a
FQ B-390 Triangle • Generating Diagonals of Pascal’s
FQ B-407 Triangle • Generator of Pascal
MM 910 Triangle • Inequalities for a
TYCMJ 85 Triangle • Inequality for the Radii of a
MM 955 Triangle • Maximum Area
AMM E2716 Triangle • Six Segments Defined by a Point

Interior to a
MM 945 Triangle • Square in a
MATYC 111 Triangle — Generalized • Pascal’s
AMM E2715 Triangle Centroid
JRM 306 Triangle Conjecture • A
MATYC 99 Triangle Construction
AMM 5986 Triangle Contractive Self Maps
TYCMJ 72 Triangle Equality • A
MATYC 106 Triangle Equation
AMM S18 Triangle from Wythoff’s Nim
AMM E2501 Triangle in a Right Triangle • A Right
TYCMJ 98 Triangle Inequalities
AMM E2471 Triangle Inequalities • Two New
AMM E2634 Triangle Inequality • A
SIAM 79-19 Triangle Inequality • A
TYCMJ 30 Triangle Inequality • A
SIAM 77-9 Triangle Inequality • A
AMM E2504 Triangle Inequality • A Difficult
SIAM 77-10 Triangle Inequality • A Two Point
AMM E2517 Triangle Inequality • Another
AMM E2775 Triangle Modulo a Prime • The Pascal
FQ B-393 Triangle of Triangular Factorials
TYCMJ 131 Triangle Prime? • When is Half the Inradius of

an Isosceles
JRM 595 Triangles • Almost Congruent
MM 936 Triangles • An Inequality for
TYCMJ 109 Triangles • Areas of Cocyclic
FQ B-413 Triangles • Counting Equilateral
MM 1077 Triangles • Counting Pythagorean
JRM 315 Triangles • Diophantine
JRM 626 Triangles • Double-Angle
AMM E2727 Triangles • Equivalence of
AMM E2727 Triangles • Equivalence of Two
JRM 323 Triangles • Four Theoretical
AMM E2649 Triangles • Inequalities for Non-obtuse
MM 1043 Triangles • Inequality for Two
FQ B-282 Triangles • Lucas Right
TYCMJ 110 Triangles • Ortho-incentric
TYCMJ 118 Triangles • Perimeters of Inscribed
MM 1088 Triangles • Pythagorean
AMM 5499 Triangles • Rational
AMM E2668 Triangles • Special Non-isosceles
AMM 6159 Triangles • The Maximum Number of Edges in

a Graph Without
MM 1014 Triangles • Two
TYCMJ 154 Triangles and for Trace AB • Inequality for

AMM E2512 Triangles and Their Circumcircles •
Intersecting

AMM E2485 Triangles from Random Integers

AMM E2789 Triangles with Vertices at Roots of Unity ζk

FQ B-385 Triangluar Numbers • Counting Some
FQ H-229 Triangular Array • A
FQ B-346 Triangular Convolution
FQ B-393 Triangular Factorials • Triangle of
MATYC 67 Triangular Identity • A
TYCMJ 68 Triangular Multiple of an Integer • The Least
FQ B-362 Triangular Number Residues
FQ B-400 Triangular Numbers • Multiples of Some
MM 899 Triangular Twins • Mean
AMM E2618 Triangular-Square-Pentagonal Numbers
AMM E2585 Triangulated Surfaces • Average Vertex-Degree

for
FQ B-399 Tribonacci • Not Quite
FQ B-359 Tribonacci Sequence
JRM 378 Tribute to the Coming United States

Bicentennial • A
JRM 541 Trick • The Rope
TYCMJ 100 Trickery • Brickery
JRM 211 Tricks With Bricks
TYCMJ 113 Tricolored Sets of Integers
FQ B-411 Tridiagonal Determinants
MATYC 120 Trig Equation • A
MATYC 119 Trig Exercise
MATYC 132 Trig Identity • A
TYCMJ 120 Trigonometric Addition Laws
TYCMJ 125 Trigonometric Equation
FQ B-374 Trigonometric Form • Fibonacci in
AMM E2803 Trigonometric Functions • Integrals of
AMM E2739 Trigonometric Inequality
MM 1082 Trigonometric Inequality • A
AMM 5951 Trigonometric Integrals • Some
AMM 5987 Trigonometric Product • A
AMM 6241 Trigonometric Series • Evaluations of
AMM E2453 Trigonometric Values • The Linear Dependence

of Certain
MM 916 Trilinear Coordinates
AMM 6250 Triods in the Plane
MM 1004 Trip • Fastest and Slowest
FQ B-402 Triple • Pythagorean
FQ B-332 Triple Part • One Single and One
FQ H-253 Triple Play
FQ H-238 Triple Play
FQ B-394 Triple Products and Binomial Coefficients
FQ B-350 Triple Sums of Squares • Cubes and
AMM E2460 Triples • Appearance of Integers in

Pythagorean
JRM 795 Triples • Reciprocal Pythagorean
AMM E2566 Triplets • Obtuse Pythagorean
AMM E2561 Triplets • Prime
TYCMJ 107 Triplets • The Diameter a+b−c of Pythagorean
JRM 490 Triptych — Even in Eden? • A Paradisaic
JRM 488 Triptych — Revenge • A Paradisaic
JRM 489 Triptych — The Snake is Hiding • A Paradisaic
TYCMJ 74 Trirectangular Tetrahedron • Rotations in a
TYCMJ 75 Trisected • Angles That Can Be
TYCMJ 119 Trisection • Error Analysis of an Approximate
AMM E2475 Tritangent Circles Kissing Precisely
AMM 5976 Trivial Centralizer Groups
AMM E2615 Trivial Solutions Only • A System with
JRM 386 Tromino Search Problem • A
AMM E2595 Trominoes • Tiling by
TYCMJ 78 Trominos • Tiling Checkerboards with
JRM 334 True • Also
JRM 297 True • Also Doubly
JRM 492 True • Certainly
JRM 665-3 True • Doubly
JRM 726 True • Doubly
JRM 543 True • Doubly
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JRM 665-1 True • Doubly
JRM 665-2 True • Doubly
JRM 335 True • Doubly
JRM 544 True • Doubly
JRM 331 True • Doubly
JRM 640 True – 1 • Doubly
JRM 641 True – 2 • Doubly
JRM 693 True – Dutch • Doubly
JRM 691 True – English • Doubly
JRM 611 True – English • Doubly
JRM 613 True – Greek • Doubly
JRM 692 True – Latin • Doubly
JRM 612 True – Spanish • Doubly
JRM 608 True Alphametic • A Fractionally
JRM 418 True Alphametic • Another
JRM 437 True Alphametic With A Twist • A Doubly
JRM 400 True Alphametics • Doubly
JRM 398 True Alphametics • Doubly
JRM 399 True Alphametics • Doubly
JRM 432 True Alphametics • Two
JRM 433 True Alphametics • Two
JRM 526 True Alphametics • Two Doubly
JRM 525 True Alphametics • Two Doubly
JRM 485 True Alphametics • Two More
JRM 486 True Alphametics • Two More
JRM 364 True Alphametics Again • One of Those
JRM 415 True Alphametics In Two Languages • Two
JRM 414 True Alphametics In Two Languages • Two
JRM 583 True and Ideal, Too • Doubly
MM 1009 True Result • A
MM 1058 True Similarity • A
JRM 353 “True” Theme • New Variations on the Old
AMM 6056 Truncated Exponential-type Series
AMM 5958 Truncated Taylor Expansions and Function

Values
JRM 792 Truth and Falsehood
JRM 614 Tunes Farewell • Looney
JRM 242 Turning Corners
FUNCT 3.5.2 TV Camera • Manikato and the
AMM 5961 Twice Differentiation Operator • The
JRM 797 Twin Primes
FQ B-349 Twins • Generating
MM 899 Twins • Mean Triangular
JRM 437 Twist • A Doubly True Alphametic With A
JRM 549 Twister • A Tongue
JRM 550 Twister • Another Tongue
AMM 6200 Two • A Characterization of Integers That

Differ by
AMM E2640 Two and Binomial Coefficients • Powers of
AMM E2722 Two Colors • An Urn with Balls of
AMM E2786 Two Consecutive Integers 2x2 − 1, 2x2 • The
JRM 351 Two Curves and Four Problems
JRM 526 Two Doubly True Alphametics
JRM 525 Two Doubly True Alphametics
AMM 6052 Two Elements • Torsion Groups Generated by
AMM 6117 Two Entire Functions • Linear Compositions of
SIAM 78-15 Two Equal Determinants
MM 1054 Two Euclidean Constructions
AMM 6052 Two Generators • Torsion Group with
AMM E2455 Two Identities • Fermat Numbers, a Result of

Legendre, and
FQ B-275 Two in One
SIAM 77-19 Two Inequalities
SIAM 79-12 Two Infinite Sums
MATYC 136 Two Is Unique
JRM 793 Two Ladders • The
JRM 415 Two Languages • Two True Alphametics In
JRM 414 Two Languages • Two True Alphametics In
JRM 303 Two Levels of Imperfect Information
JRM 485 Two More True Alphametics
JRM 486 Two More True Alphametics
AMM E2471 Two New Triangle Inequalities

MM 929 Two Octahedrons
JRM 671 Two Odometers
JRM 317 Two Odometers • The
AMM E2639 Two Perpendicular Lines
SIAM 77-10 Two Point Triangle Inequality • A
AMM E2629 Two Points in a Box • Average Distance

between
AMM 5993 Two Proper Subfields • Fields, the Sum of
AMM 6207 Two Random Vectors • Distribution of Inner

Product of
SIAM 78-2 Two Recurrence Relations for Hermite Basis

Polynomials
AMM E1822 Two Segments • A Locus Associated with
AMM E2464 Two Serendipitous Diophantine Equations
MM 1081 Two Solutions
FQ B-276 Two Solutions • Only
AMM 6063 Two Spheres • Distance Between the Centers

of
MM 1042 Two Squares • Sum of
MM 1014 Two Triangles
AMM E2727 Two Triangles • Equivalence of
MM 1043 Two Triangles • Inequality for
JRM 432 Two True Alphametics
JRM 433 Two True Alphametics
JRM 414 Two True Alphametics In Two Languages
JRM 415 Two True Alphametics In Two Languages
JRM 452 Two U.S.A.’s
JRM 451 Two U.S.A.’s
AMM E2609 Two Variables • A Difference Equation in
AMM 6136 Two Variables • Polynomials in
JRM 657 Two-Digit Reflective Numbers
SIAM 74-21 Two-Dimensional Discrete Probability

Distributions
JRM 409 Two-True Alphametic • A
JRM 390 Two-Way Box Nesting
AMM 5975 Types Thick and Thin • Ordinal
JRM 703 Typesetter’s Nightmare • The
JRM 452 U.S.A.’s • Two
JRM 451 U.S.A.’s • Two
FQ H-284 Umbral-a
FQ H-268 Umbral-ah • Use Your
AMM E2533 Umbugio • Helping Professor
MM 643 Unbiased Coin • The
AMM E2706 Unbounded Integral • An
MATYC 69 Uncountable Power
AMM 6014 Uncountable Sets with All Closed Subsets

Countable
TYCMJ 142 Uncoupled • Quartet
AMM 6199 Under a Parabola • Permuted Residue Classes
AMM 5297 Under Multiplication • Preservation of

Convexity
AMM 5437 Undersequences versus Subsequences
AMM E2784 Uniform Convergence on (0,∞)
AMM 6024 Uniform Distribution
AMM 6174 Uniform Integrability • More on Converses to
AMM 6085 Uniformly Integrable Functions • Majorants for

Families of
AMM 6260 Union • Sets Formed by Iterated Closure,

Interior, and
AMM E2614 Union of an Open and a Compact Set
AMM 6126 Union of Sets of Zero Dimension
AMM E2764 Unions of Subsets • Intersections and
JRM 642 Unique • Quite
MATYC 136 Unique • Two Is
MM 903 Unique Cryptarithm
MATYC 64 Unique Cryptarithm • A
AMM E2446 Unique Cube Roots Modulo m
AMM 6264 Unique Factorization • Conditions for
TYCMJ 114 Unique Solution • Equation with
AMM 6120 Uniqueness Theorem in R2 • A
AMM E2697 Unit Circle • A Dense Subset of the
SIAM 78-8 Unit Cube • Average Distance in a
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AMM 6198 Unit Disk • Harmonic in the
AMM E2469 Unit Disk • Hide and Seek in the
AMM 6071 Unit Disk on a Convex Domain • Analytic

Mappings of the
TYCMJ 73 Unit Fractions
JRM 378 United States Bicentennial • A Tribute to the

Coming
FQ B-382 Units Digit • Lucky L
AMM 6069 Units in a Group Ring • Zero Divisors and
AMM E2684 Units of Z/(n) in Arithmetic Progression

AMM E2789 Unity ζk • Triangles with Vertices at Roots of
FQ H-247 Unity With Fibonacci
JRM 652 Unity with Semiprimes • Representing
JRM 343 Universal Equation • The
FQ B-369 Unsolved • No Longer
AMM E2539 Unsolved Problem in Disguise • A Known
TYCMJ 23 Unusual Divergent Series • An
FQ B-329 Unveiling an Identity
JRM 603 Unwilling Pedestrian • The
MATYC 138 Up • Line ’em
AMM E2761 Upper and Lower Half Planes • Polynomial

with Zeros in
AMM E2622 Upper Bound for an Integral • An
AMM E2724 Urn With Balls of Three Colors • An
AMM E2722 Urn with Balls of Two Colors • An
FQ H-268 Use Your Umbral-ah
AMM E2509 Using a Calculator Efficiently
FQ H-232 Using Your Generator
AMM E2482 Usually Reducible mod 2 • xn + x+ 1 is
AMM E2785 V − {0} with Hyperplanes in Fq • Covering
AMM 5953 Valencies for a Plane Graph • Sum of
SIAM 77-15 Valuation Tree • A Conjectured Minimum
AMM 6245 Value • A Formula for Expected
AMM 6187 Value • A Known Expected
MM 987 Value • A Mean
MM 1053 Value Properties • Mean and Intermediate
TYCMJ 52 Value Theorem • A Geometric Mean
TYCMJ 101 Value Theorem • Quadratic Mean
AMM 6165 Values • Functions Approximated by Their

Mean
AMM E2453 Values • The Linear Dependence of Certain

Trigonometric
AMM 5958 Values • Truncated Taylor Expansions and

Function
SIAM 78-13 Values for Random Regions of a Circle •

Expected
AMM 6067 Values of Γ(z) • Negative
FQ H-299 Vandermonde
SIAM 74-14 Vandermonde Determinant • A Generalization

of the
FQ B-354 Vanishing Factor • A
AMM 6008 Vanishing Integral • A
AMM 6042 Vanishing Outside [0, 1] • C∞ Functions
JRM 504 Vantage Point • The Best
AMM 6104 Variable X/Y , X, Y Normal • The Random
AMM E2765 Variable Formula for Definite Integrals •

Change of
AMM E2609 Variables • A Difference Equation in Two
AMM 6092 Variables • Addition of ‘Student’ Random
AMM 6164 Variables • Cauchy Random
AMM 6030 Variables • Identically Distributed Random
AMM 6136 Variables • Polynomials in Two
AMM 5884 Variables • Sequences of Independent Random
AMM E2474 Variables • The Maximum of Independent

Random
AMM 6103 Variables in a Vector Space • Sequences of

Independent Random
SIAM 78-9 Variant of Silverman’s Board of Directors

Problem • A
JRM 291 Variants • Head-On Poker
AMM 6256 Variation • Additive Set Functions of Bounded
FQ B-285 Variation on a Previous Problem • Very Slight

AMM S23 Variation on the Erdős-Mordell Geometric
Inequality

JRM 392 Variation on the Liar Problem • A
AMM E2125 Variations on a Well-known Limit
FQ B-323 Variations on an Old Theme
JRM 353 Variations on the Old “True” Theme • New
AMM 6103 Vector Space • Sequences of Independent

Random Variables in a
AMM 6207 Vectors • Distribution of Inner Product of Two

Random
CRUX 140 Veness Problem • The
AMM E2483 Verifications • An Inequality with Many
AMM 6238 Verifying Associativity
AMM E2543 versus τ(n) • σ(n)/n
AMM 5437 versus Subsequences • Undersequences
AMM E2672 Vertex-Coloring of Complete Graphs •

Orientation and
AMM E2585 Vertex-Degree for Triangulated Surfaces •

Average
AMM 6179 Vertices • Cubes with Integral

AMM E2789 Vertices at Roots of Unity ζk • Triangles with
AMM 6231 Vertices in a Prescribed Set • Squares with
MM 911 Vertices of a Die
AMM E2564 Vertices of Four-valent Graphs • Covering
TYCMJ 105 Vertices of Regular Odd-gons • Rational
FQ H-248 Very Existence • The
FQ B-285 Very Slight Variation on a Previous Problem
TYCMJ 115 Vibrating System • Disparity in a
AMM E2513 View of an Edge • A
JRM 355 Vindicated? • Pierre
AMM E2653 Visible Lattice Points
TYCMJ 88 Volcanic Addition
MATYC 129 Volume • Constant
AMM E2563 Volume and Surface Area of a Solid
SIAM 78-20 Volume Inequality for a Pair of Associated

Simplexes • A
AMM 5872 Volume of a Certain Convex Polytope
AMM E2701 Volume of a Polytope
AMM E2548 Volumes • Simplices of Equal
JRM 725 Vrai • Doublement
MATYC 112 vs Divergent • Denumerable
JRM 212 vs Rover • Felix
JRM 423 vs. Cautious • Bold
MM 1024 vs. Games Behind • Percentage
JRM 540 vs. Knight • Rook
JRM 387 vs. Soft • Hard
AMM 6031 Walk Application • A Random
AMM 6149 Walk on the Edges of a Dodecahedron
MATYC 92 Want • Sometimes It’s Fewer Than You
JRM 736 Warehouse • The Random
JRM 449 Warm Welcome • A
JRM 327 Warned! • Be
JRM 453 Warning
SIAM 78-17 Washline • Paul Bunyan’s
AMM E2003 Watched Birds
JRM 296 Water • In Deep
JRM 300 Watson” • “My Dear
JRM 505 Watson’s Rusty Compass
MATYC 85 Way • More Than One
MATYC 76 Way To Do It • A Difference
JRM 416 We Knew It All Along
AMM S8 Weak Contraction Maps
AMM 5944 Weak Sequential Closure of a Class of

Operators
JRM 329 Weather Report
SIAM 78-5 Weierstrass Zeta Functions • Evaluation of
AMM 6224 Weighings • Determining Heavy and Light

Balls by
AMM E2434 Weighted Sequential Sum • Powers of a
MM 914 Weights • Balancing
MATYC 127 Weighty Problem • A
JRM 449 Welcome • A Warm
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Title Index
Well-known 1975–1979 |z| < 1

AMM E2125 Well-known Limit • Variations on a
AMM 5950 Well-Poised Hypergeometric Series • A
FQ H-234 WFFLE!
JRM 545 What’s the Matter
AMM E2468 When 2m − 2n divides 3m − 3n

AMM 6007 when f ′ = 0 a.e. • Arc Length
AMM E2536 When xm = x Defines Boolean Rings
AMM 6251 When Does AB = C Imply BA = D?

AMM E2491 When is
[√

n
]

a Divisor of n?

TYCMJ 131 When is Half the Inradius of an Isosceles
Triangle Prime?

SIAM 77-20 When is the Modified Bessel Function Equal to
its Derivative?

MATYC 59 When Wrong is Right
MATYC 81 When Wrong is Right — Again
JRM 332 Who’s Hungry?
FQ H-281 Who’s Who?
FQ H-281 Who? • Who’s
JRM 318 Why Prolong It?
AMM 6155 Width of a Set • Expectation of the
TYCMJ 84 Wilson’s Theorem • Application of
FQ H-307 Wind From the Past • A
MATYC 116 Winning is Mod
JRM 650 Wire • Birds on a
JRM 379 Wit-Man Sampler Revisited • The
JRM 360 Witch? • Which
JRM 771 Without Trial • Separation
AMM 6159 Without Triangles • The Maximum Number of

Edges in a Graph
AMM 6118 without Zeros • Linear Combinations of Entire

Functions
AMM E2463 Wolstenholme’s Theorem • A Consequence of
JRM 469 Word • The Secret
AMM S2 Wordless Solution
JRM 610 Work • Detective
FQ H-244 Work • Systematic
JRM 447 Worth of Change • A Dollar’s
JRM 524 Worthwhile Motto • A
JRM 574 Worthy Motto • A
JRM 444 Wrapper • The Rubber
JRM 348 Wrinkle on the Old Billiard Table Theme • A

New
AMM 6146 Write Shakespeare’s Plays? • Did Bacon
MATYC 59 Wrong is Right • When
MATYC 81 Wrong is Right — Again • When
AMM S18 Wythoff’s Nim • Triangle from

AMM E2787 x = (log x)k • Solutions of
MM 1051 X or Y know (x, y)? • Does
AMM 6104 X, Y Normal • The Random Variable X/Y ,
TYCMJ 149 (x+ 1/x)α • Convexity of
MM 1051 (x, y)? • Does X or Y know
JRM 653 X-ponent • Find the
AMM 6104 X/Y , X, Y Normal • The Random Variable

AMM E2511 x2 + 1 = 2r5s • The Diophantine Equations

AMM E2773 xk ≡ x,
∏

(x − ai) ≡ 0 • The Polynomial
Congruences

AMM E2536 xm = x Defines Boolean Rings • When
AMM E2482 xn + x+ 1 is Usually Reducible mod 2
AMM 6082 xn − y2 = 1 • Rational Function Solutions of
AMM 5972 xn = x for all x in a Ring • Minimum n,
AMM 6239 xy − yx • Growth of
TYCMJ 60 (xn/nε) • Convergence of
MM 1051 Y know (x, y)? • Does X or
TYCMJ 127 yx = xy • Rational Solutions of
JRM 501 Yashima
AMM E2465 yet d(A+B) = 1 • d(A) = d(B) = 0,
AMM E2466 yet d(AB) = 1 • d(A) = d(B) = 0,
MATYC 122 You Expect It • Did
MATYC 92 You Want • Sometimes It’s Fewer Than
FQ H-296 Your Answer • Bracket
JRM 431 Your Choice • Take
FQ H-291 Your Cubes • Square
FQ H-255 Your Fun • Double
FQ H-232 Your Generator • Using
FQ H-268 Your Umbral-ah • Use
JRM 413 Yuletide Sentiment
AMM E2331 Z(pn)⊕ Z(pn) • Subgroups of
AMM E2684 Z/(n) in Arithmetic Progression • Units of

FQ B-333 Z+ × Z+ • Bijection in
AMM E2753 Zp • Multiplicative Group
MM 1065 Zero and Ones
FQ B-364 Zero Digits • Incontiguous
AMM 6126 Zero Dimension • Union of Sets of
AMM 6069 Zero Divisors and Units in a Group Ring
TYCMJ 65 Zero Divisors in Finite Rings
AMM 6191 Zero of a Complex Polynomial • Location of a
SIAM 74-9 Zero of a Polynomial • Bounds for the
SIAM 76-22 Zero of Maximum Multiplicity • A
AMM E2699 Zero Sequences • Linear Independence Modulo
MATYC 128 Zeros • A Progression of
MM 1085 Zeros • Four Different
AMM 6118 Zeros • Linear Combinations of Entire

Functions without
AMM 5988 Zeros in the Fractional Calculus
AMM E2761 Zeros in Upper and Lower Half Planes •

Polynomial with
TYCMJ 28 Zeros of a Monotone Function • Real
AMM 6237 Zeros of a Polynomial • Bound on
TYCMJ 58 Zeros of a Polynomial • Integer
SIAM 76-21 Zeros of a Polynomial • On the
AMM E2755 Zeros of Derivatives of a Fading Function

AMM 5968 Zeros of Entire Functions with Integral Dkf(0)
• The Set of

AMM E2756 Zeros of Successive Derivatives
FQ H-303 Zeta
SIAM 78-5 Zeta Functions • Evaluation of Weierstrass
AMM 5405 Zeta-function • Iterates of the
JRM 718 Zoo • From Blackpool
JRM 721 Zugzwang
AMM 6033 |f(z)| < 1, |z| < 1 • Condition for
AMM 6033 |z| < 1 • Condition for |f(z)| < 1,
AMM 5936 |z| < 1 • Range of a Holomorphic Function in
AMM 5979 |z| < 1 • Schlicht Cubics on
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Use this section to

• determine which journals are being indexed in this book
• determine which problem columns in those journals have been indexed
• find the name of the problem column editor during the years 1975–1979
• find the name of the publisher of the journal
• obtain the page numbers and issue numbers where the problem column appeared
• find out which problems were proposed in each issue

This issue checklist lists all the mathematical journals that contained problem columns (1975–1979) that have
been indexed in this volume.

Each entry begins with a bullet and the abbreviation of the journal that is used in this index.  For example, the
abbreviation “AMM” is used to represent  “The American Mathematical Monthly”. Abbreviations were chosen to 
be about 2 to 6 characters in length and to be mnemonic for the journal in question.  These abbreviations are 
used when forming the name of a problem. For example, “AMM 6048” refers to problem 6048 from the American
Mathematical Monthly.

To the right of the abbreviation for the journal is the ISSN number for the journal.  This is the International 
Standard Serial Number, assigned to most journals in the world.  The ISSN given is the ISSN that the journal had 
during the years covered by this index (i.e. 1975–1979) and could be different from the current ISSN if the journal 
has changed name or publisher since 1979. For the current ISSN number (if different) consult the Journal 
Information section of Volume 1, which begins on page 435 of that volume. In that section, you will find all the 
information about current issues of this journal (i.e. the current publisher and current subscription information).  In 
this checklist, you will only find information about the journal at the time the problems covered by this index were 
published.

On the line following the abbreviation is the full name of the journal.  After that is the name of the publisher (for the 
period covered by this index).  See the Journal Information section for the name of the current publisher (if different).

If the problem column has many editors or associate editors, they are all listed next. This list represents the 
names of the editors during the period covered by this index. For the name of the current problem column editor, 
see the Journal Information section (page 435, Volume 1).  If there was only one editor for the problem column 
(the usual case), then his name is listed to the right of the name of the problem column.
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Next follows detailed information about each issue of the journal that contains a problem column.  If a journal 
contains more than one problem column, then each problem column is listed. If the problem column does not 
have a formal name, it is listed merely as “problem column”. To the right of the name of the problem column is 
the name of the problem column editor. Following the name of the problem column is a listing of each issue of the 
journal published in the years 1975–1979. For each issue, we give the page numbers of the problem column from 
that issue. We also give the date, volume number, and issue number for that issue.  Thus, this checklist lets you 
confirm which journals and problem columns have been indexed. We also give the problem numbers of the new 
problems proposed in each issue.  In a few cases, we have chosen to give the checklist for a journal’s problem 
column, but have not indexed the problems therein. In that case, the notation “problem column not indexed” is 
given.  This is usually because the majority of the problems in that column are research-level problems or are 
otherwise dissimilar from the majority of the problems covered by this index.  In general, physics problems, chess 
problems, puzzles, and non-mathematical problems have not been indexed.  Also, some journals publish a lot of 
problems and/or short notes that are not part of any formal problem column. In that case, the problems have not 
been included in this index. In general, a problem column is a regular feature that has consecutively numbered 
problems spanning across many issues of the journal and contains solutions submitted by readers. If you are not 
sure if a particular column in a journal has been included in this index, consult this checklist.

If the name of the problem editor changed during the year, then the list of editors is given along with their terms of 
editorship.

If a journal normally has a problem column, but no problems or solutions were published in the years 1975-1979, 
then that journal will not be listed in this checklist.

Following the list of issues and problem columns are notes about standard columns that run in the specified 
journal but which have not been indexed. A statement of the form “column not indexed” means that we have no 
intention of indexing this column. If the journal has changed name since 1979, this is also noted. Additional notes 
of interest may also be given.

Problems from articles in these journals are not normally indexed.  An article that reports about the problems 
given in a national or international mathematical competition or olympiad might have these problems indexed if 
the competition was held in 1975–1979 (not that the article about it appeared during these years). The Citation 
Index (page 423) lists those articles that reference problems covered by this index.

Although only problems published in the years 1975-1979 have been indexed, solutions to the problems proposed 
in these years (or earlier) are indexed if these solutions were published in 1975 or later. We have attempted to 
check all issues through August 1992 to find solutions to problems originally published in 1979 or earlier.  In those 
cases, the solution has been indexed, in the sense that the names of the original featured solvers are listed in the 
Author Index (page 316) and the dates and page numbers where the solutions can be found are given in 
the Problem Chronology (page 282).
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ISSN 0002-9890
The American Mathematical Monthly
Publisher:. . . . . . . . . . . . . . . . . . . . . . Taylor & Francis, Ltd.

Overall Problem Column Editors:
1975 - 1978. . . . . . . . . . . . . . . . . . . . . . . . Emory P. Starke
1979. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. P. Hillman

Associate and Collaborating Editors:  Joshua Barlaz, Eric S.
Langford, Leonard Carlitz, Gulbank D. Chakerian, Haskell Cohen,
S. Ashby Foote, Israel N. Herstein, Murray S. Klamkin, Daniel J.
Kleitman, Roger C. Lyndon, Marvin Marcus, Christoph
Neugebauer, W. C. Waterhouse, Albert Wilansky, and University
of Maine Problems Group:  Earl M. L. Beard, George S.
Cunningham, Clayton W. Dodge, Oskar Feichtinger, William R.
Geiger, Ramesh Gupta, Philip M. Locke, John C. Mairhuber, Curtis
S. Morse, Grattan P. Murphy, Edward S. Northam and William L.
Soule, Jr.

∆ Problems dedicated to Emory P. Starke
Date Year Vol Issue Pages Proposals
Jan 1979 86 1 54-55 S1-S3
Feb 1979 86 2 127 S4-S5
Mar 1979 86 3 222 S6-S8
Apr 1979 86 4 306 S9-S10
May 1979 86 5 392 S11-S13
Jun/Jul 1979 86 6 503 S14-S15
Aug/Sep 1979 86 7 591-592 S16-S18
Oct 1979 86 8 702 S19-S20
Nov 1979 86 9 784 S21
Dec 1979 86 10  863 S22-S23

E. P. Starke Problem Column Editor:
1979. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. P. Hillman

∆ Elementary Problems
Date Year Vol Issue Pages Proposals
Jan 1975 82 1 72-83 E2510-2515
Feb 1975 82 2 168-182 E2516-2521
Mar 1975 82 3 299-307 E2522-2527
Apr 1975 82 4 399-409 E2528-2533
May 1975 82 5 520-528 E2534-2539
Jun/Jul 1975 82 6 659-671 E2540-2545
Aug/Sep 1975 82 7 755-765 E2546-2551
Oct 1975 82 8 851-856 E2552-2557
Nov 1975 82 9 936-941 E2558-2563
Dec 1975 82 10 1009-1015 E2564-2569
Jan 1976 83 1 53-61 E2570-2574
Feb 1976 83 2 132-140 E2575-2580
Mar 1976 83 3 197-204 E2581-2586
Apr 1976 83 4 284-292 E2587-2592
May 1976 83 5 378-385 E2593-2598
Jun/Jul 1976 83 6 482-489 E2599-2604
Aug/Sep 1976 83 7 566-572 E2605-2610

1976 83 8 656-661 E2611-2616
1976 83 9 740-747 E2617-2622
1976 83 10 812-817 E2623-2628
1977 84 1 57-61 E2629-2634

Oct
Nov
Dec
Jan

Apr 1977 84 4 294-299 E2647-2652
May 1977 84 5 386-391 E2653-2658
Jun/Jul 1977 84 6 486-490 E2659-2664
Aug/Sep 1977 84 7 567-574 E2665-2670
Oct 1977 84 8 651-659 E2671-2676
Nov 1977 84 9 738-743 E2677-2682
Dec 1977 84 10 820-828 E2683-2688
Jan 1978 85 1 47-53 E2689-2694
Feb 1978 85 2 116-121 E2695-2700
Mar 1978 85 3 197-202 E2701-2706
Apr 1978 85 4 276-282 E2707-2712
May 1978 85 5 383-388 E2713-2718
Jun/Jul 1978 85 6 495-499 E2719-2724
Aug/Sep 1978 85 7 593-599 E2725-2730
Oct 1978 85 8 681-686 E2731-2736
Nov 1978 85 9 764-769 E2737-2742
Dec 1978 85 10 823-827 E2743-2748
Jan 1979 86 1 55-59 E2749-2754
Feb 1979 86 2 127-131 E2755-2760
Mar 1979 86 3 222-225 E2761-2766
Apr 1979 86 4 307-311 E2767-2772
May 1979 86 5 393-398 E2773-2778
Jun/Jul 1979 86 6 503-509 E2779-2784
Aug/Sep 1979 86 7 592-596 E2785-2790
Oct 1979 86 8 702-709 E2791-2796
Nov 1979 86 9 784-793 E2797-2802
Dec 1979 86 10 864-869 E2803-2808

Elementary Problem Column Editors:
Jan - Feb 1975. . . . . . . . . . . . U. of Maine Problems Group
Feb 1975 - Jul 1978. . . . . . U. of Waterloo Problems Group
after Jul 1978. . . . . . . . . . . . . . . . . . . . . . . . . . J. L. Brenner

∆ Advanced Problems
Date Year Vol Issue Pages Proposals
Jan 1975 82 1 84-89 6006-6011
Feb 1975 82 2 183-187 6012-6017
Mar 1975 82 3 307-310 6018-6023
Apr 1975 82 4 409-416 6024-6029
May 1975 82 5 528-538 6030-6035
Jun/Jul 1975 82 6 671-681 6036-6041
Aug/Sep 1975 82 7 766-770 6042-6047
Oct 1975 82 8 856-862 6048-6053
Nov 1975 82 9 941-945 6054-6059
Dec 1975 82 10 1016-1021 6060-6065
Jan 1976 83 1 62-67 6066-6071
Feb 1976 83 2 140-145 6072-6077
Mar 1976 83 3 205-210 6078-6083
Apr 1976 83 4 292-297 6084-6089
May 1976 83 5 385-390 6090-6095
Jun/Jul 1976 83 6 489-494 6096-6101
Aug/Sep 1976 83 7 572-576 6102-6107

1976 83 8 661-667 6108-6113
1976 83 9 748-753 6114-6119
1976 83 10 817-821 6120-6125
1977 84 1 61-67 6126-6131

Oct
Nov
Dec
Jan
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1977 84 2 134-140 E2635-2640
1977 84 3 216-221 E2641-2646
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Apr 1977 84 4 299-304 6144-6149
May 1977 84 5 391-397 6150-6155
Jun/Jul 1977 84 6 491-496 6156-6161
Aug/Sep 1977 84 7 575-580 6162-6167
Oct 1977 84 8 659-663 6168-6173
Nov 1977 84 9 743-748 6174-6179
Dec 1977 84 10 828-834 6180-6185
Jan 1978 85 1 53-59 6186-6191
Feb 1978 85 2 121-126 6192-6197
Mar 1978 85 3 203-210 6198-6203
Apr 1978 85 4 282-291 6204-6209
May 1978 85 5 389-393 6210-6215
Jun/Jul 1978 85 6 499-506 6216-6221
Aug/Sep 1978 85 7 599-604 6222-6227
Oct 1978 85 8 686-690 6228-6233
Nov 1978 85 9 770-774 6234-6239
Dec 1978 85 10 828-834 6240-6245
Jan 1979 86 1 59-66 6246-6251
Feb 1979 86 2 131-136 6252-6257
Mar 1979 86 3 226-232 6258-6263
Apr 1979 86 4 311-315 6264-6266
May 1979 86 5 398-401 6267-6269
Jun/Jul 1979 86 6 509-511 6270-6272
Aug/Sep 1979 86 7 596-598 6273-6275
Oct 1979 86 8 709-711 6276-6278
Nov 1979 86 9 793-796 6279-6281
Dec 1979 86 10 869-871 6282-6284

Advanced Problem Column Editors:
1975 - Jul 1978. . . . . . . . . . . . . . . . . . . . . . . . . . . J. Barlaz
after Jul 1978. . . . . . . . . . . . . . . . . . . . . . Roger C. Lyndon

Notes:
•Research problems not indexed
•Unsolved Problem Column not indexed

• CMB ISSN 0008-4395
Canadian Mathematical Bulletin
Publisher: Canadian Mathematical Society

∆ Problems and Solutions
Date Year Vol Issue Pages Proposals

1975 18 1 none none
1975 18 2 none none
1975 18 3 none none
1975 18 4 615-620 P241-245
1976 19 1 121-125 P246-249
1976 19 2 249-253 P250-252
1976 19 3 379-382 P255-258
1976 19 4 none none
1977 20 1 147-150 P257-261
1977 20 2 273-276 P264-266
1977 20 3 none none
1977 20 4 P253,267-269

Mar
Jun
Sep
Oct
Mar
Jun
Sep
Dec
Mar
Jun
Sep
Dec 517-525

Sep 1978 21 3 none none
Dec 1978 21 4 none none
Mar 1979 22 1 121-125 P270-272
Jun 1979 22 2 247-253 P273-276
Sep 1979 22 3 385-389 P277-280
Dec 1979 22 4 519-522 P281

Problem Column Editors:
vol 18 - vol 21. . . . . . . . . . . . . . . . . . . . . . . . . . . E.C. Milner
vol 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  E.J. Barbeau

Notes:
•Problem numbers jumped from 252 to 255 in Volume 19,

numbers 2 and 3.
•Problem numbers 257 and 258 were repeated in Volume

20, number 1.
•Between Volume 20, number 1 and 20, number 2,

problem numbers P262 and P263 were skipped.

• CRUX ISSN 0705-0348
Crux Mathematicorum
Publisher: Algonquin College

∆ Problems - Problèmes Léo Sauvé
Date Year Vol Issue Pages Proposals
Mar 1975 1 1 3-4 1-10
Apr 1975 1 2 7-8 11-20
May 1975 1 3 11-22 21-30
Jun 1975 1 4 25-36 31-40
Jul 1975 1 5 38-46 41-50
Aug 1975 1 6 48-49 51-60
Sep 1975 1 7 56-67 61-70
Oct 1975 1 8 71-81 71-80
Nov 1975 1 9 84-93 81-90
Dec 1975 1 10 97-102 91-100
Jan 1976 2 1 5-17 101-110
Feb 1976 2 2 25-36 111-120
Mar 1976 2 3 41-53 121-130
Apr 1976 2 4 67-88 131-140
May 1976 2 5 93-106 141-150
Jun/Jul 1976 2 6 109-128 151-160
Aug/Sep 1976 2 7 135-159 161-170
Oct 1976 2 8 170-186 171-180
Nov 1976 2 9 193-204 181-190
Dec 1976 2 10 219-234 191-200
Jan 1977 3 1 9-30 201-210
Feb 1977 3 2 42-58 211-220
Mar 1977 3 3 65-87 221-230
Apr 1977 3 4 104-114 231-240
May 1977 3 5 130-146 241-250
Jun/Jul 1977 3 6 154-176 251-260
Aug/Sep 1977 3 7 189-206 261-270

1977 3 8 226-240 271-280
1977 3 9 250-269 281-290
1977 3 10 291-300

Oct
Nov
Dec 297-299
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1978 21 2 nonenoneJun
1978 21 1 nonenoneMar1977 84 2 140-144 6132-6137

1977 84 3 221-226 6138-6143
Feb
Mar



Feb 1978 4 2 35-60 311-320
Mar 1978 4 3 65-89 321-330
Apr 1978 4 4 100-120 331-340
May 1978 4 5 133-150 341-350
Jun/Jul 1978 4 6 159-180 351-360
Aug/Sep 1978 4 7 191-210 361-370
Oct 1978 4 8 224-240 371-380
Nov 1978 4 9 250-270 381-390
Dec 1978 4 10 282-300 391-400
Jan 1979 5 1 14-30 401-410
Feb 1979 5 2 46-60 411-420
Mar 1979 5 3 76-90 421-430
Apr 1979 5 4 107-120 431-440
May 1979 5 5 131-150 441-450
Jun/Jul 1979 5 6 166-180 451-460
Aug/Sep 1979 5 7 199-212 461-470
Oct 1979 5 8 228-244 471-480
Nov 1979 5 9 264-278 481-490
Dec 1979 5 10 291-310 491-500

∆ Olympiad Corner Murray S. Klamkin
Date Year Vol Issue Pages Proposals
Jan 1979 5    1 12-14 PS1-1 to 3-1
Feb 1979 5 2 44-46 PS4-1 to 4-3
Mar 1979 5 3 62-69 PS5-1 to 5-3
Apr 1979 5 4 102-107 PS6-1 to 6-3
May 1979 5 5 128-131 none
Jun/Jul 1979 5 6 160-165 none
Aug/Sep 1979 5 7 193-199 none
Oct 1979 5 8 220-228 none
Nov 1979 5 9 259-264 PS7-1 to 7-3
Dec 1979 5 10 288-291 PS8-1 to 8-3

Columns are numbered through 60.

Notes:
•Puzzle Corner not indexed.
•Only the Practice Sets from the Olympiad Corner are in-

dexed. These are given the prefix “PS”. The Olympiad
Corner has many problems that are not indexed.

•The Olympiad Corner contains problems and solutions
from many competitions.  See the contest list in the ci-
tation index for these references.

• DELTA ISSN 0011-801X

Delta
Publisher: Waukesha Mathematical Society

∆ Problems and Solutions R. S. Luthar
Date Year Vol Issue Pages Proposals
Spr 1975 5 1 45-48 5.1.1-3
Fall 1975 5 2 94-96 5.2.1-3
Spr 1976 6 1 43-45 6.1.1-4
Fall 1976 6 2 92-94 6.2.1-3

• FQ ISSN 0015-0517
The Fibonacci Quarterly
Publisher: The Fibonacci Association

∆ Elementary Problems A. P. Hillman
Date Year Vol Issue Pages Proposals
Feb 1975 13 1 94-96 B298-303
Apr 1975 13 2 190-192 B304-309
Oct 1975 13 3 285-288 B310-314
Dec 1975 13 4 373-377 B316-321
Feb 1976 14 1 93-96 B322-327
Apr 1976 14 2 188-192 B328-333
Oct 1976 14 3 286-288 B334-339
Nov 1976 14 4 none        none
Dec 1976 14 5 470-473 B340-345
Feb 1977 15 1 93-96 B346-351
Apr 1977 15 2 189-192 B352-357
Oct 1977 15 3 285-288 B358-363
Dec 1977 15 4 375-377 B364-369
Feb 1978 16 1 88-91 B370-375
Apr 1978 16 2 184-187 B376-381
Jun 1978 16 3 none        none
Aug 1978 16 4 none        none
Oct 1978 16 5 473-476 B382-387
Dec 1978 16 6 562-565 B388-393
Feb 1979 17 1 90-93 B394-399
Apr 1979 17 2 184-188 B400-405
Oct 1979 17 3 281-285 B406-411
Dec 1979 17 4 369-373 B412-417

Notes:
•There is no problem numbered B–315.

∆ Advanced Problems Raymond E. Whitney
Date Year Vol Issue Pages Proposals
Feb 1975 13 1 89-93 H245-248
Apr 1975 13 2 185-189 H249-251
Oct 1975 13 3 281-284 H252-254
Dec 1975 13 4 369-372 H255-257
Feb 1976 14 1 88-92 H258-260
Apr 1976 14 2 182-187 H261-263
Oct 1976 14 3 282-285 H264-266
Nov 1976 14 4 none        none
Dec 1976 14 5 466-469 H267-268
Feb 1977 15 1 89-92 H269-271
Apr 1977 15 2 185-188 H272-273
Oct 1977 15 3 281-284 H274-275
Dec 1977 15 4 371-374 H276-277
Feb 1978 16 1 92-96 H278-280
Apr 1978 16 2 188-192 H281-284
Jun 1978 16 3 none        none
Aug 1978 16 4 none        none
Oct 1978 16 5 477-480 H285-289
Dec 1978 16 6 566-569 H290-294
Feb 1979 17 1 94-96 H295-298
Apr 1979 17 2 189-192 H299-301
Oct 1979 17 3 286-288 H302-306
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1978 4 1 301-310Jan 11-30

Dec 1979 17 4 374-377 H307-310



• FUNCT
Function
Publisher:

ISSN 0313-6825

Monash University

∆Problem Section
Date Year Vol Issue Pages Proposals
Feb 1977 1 1 23,29-31 1.1.1-10
Apr 1977 1 2 23,29-31 1.2.1-7
Jun 1977 1 3 6,25,27-30 1.3.1-7
Aug 1977 1 4 8-9,11-16, 1.4.1-5

22,31-32
Oct 1977 1 5 27-32 1.5.1-4
Feb 1978 2 1 19-22,28-29,32 2.1.1-4
Apr 1978 2 2 7,27 2.2.1-4
Jun 1978 2 3 11,25,29-32 2.3.1-5
Aug 1978 2 4 31-32 2.4.1-4
Oct 1978 2 5 20,28-32 2.5.1-4
Feb 1979 3 1 28-31 3.1.1-6
Apr 1979 3 2 29-32 3.2.1-8
Jun 1979 3 3 27-32 3.3.1-5
Aug 1979 3 4 27-32 3.4.1-3
Oct 1979 3 5 26-30 3.5.1-4

• ISMJ
Indiana School Mathematics Journal

∆ Problems - Junior Section
Date Year Vol Issue Pages Proposals
Aug 1974 10 1 5-8 J10.1-5
Dec 1974 10 2 4-8 J10.6-10
Feb 1975 10 3 3-8 J10.11-15
Apr 1975 10 4 2-8 J10.16-17
Sep 1975 11 1 6-11 J11.1-5
Dec 1975 11 2 6-12 J11.6-10
Feb 1976 11 3 2-8 J11.11-15
May 1976 11 4 4-8 J11.16-20

∆ Problems - Open Section
Date Year Vol Issue Pages Proposals
Aug 1974 10 1 5-8 10.1-5
Dec 1974 10 2 4-8 10.6-10
Feb 1975 10 3 3-8 10.11-15
Apr 1975 10 4 2-8 10.16-17
Sep 1975 11 1 6-11 11.1-5
Dec 1975 11 2 6-12 11.6-10
Feb 1976 11 3 2-8 11.11-15
May 1976 11 4 4-8 11.16-20

∆ Problems
Date Year Vol Issue Pages Proposals
Sep 1976 12 1 4-7 12.1-10
Nov 1976 12 2 5-12 12.11-18
Feb 1977 12 3 4-8 12.19-27
Apr 1977 12 4 5-8 12.28-32
Sep 1977 13 1 8-11 13.1-8
Dec 1977 13 2 4-8 13.9-18
Feb 1978 13 3 5-8 13.19-23
May 1978 13 4 5-8 13.24-28
Sep 1978 14 1 6-7 14.1-5
Dec 1978 14 2 5-8 14.6-14
Feb 1979 14 3 2-8 14.15-19
Apr 1979 14 4 1-4 14.20-24

• JRM ISSN 0022-412X
Journal of Recreational Mathematics
Publisher: Baywood Publishing Company, Inc.

∆ Problems and Conjectures
Year Vol Issue Pages Proposals
1975-76 8 1 46-73 370-381
1975-76 8 2 136-142,145-158 382-396
1975-76 8 3 229-232 419-427
1975-76 8 4 311-314 440-448
1976-77 9 1 24-29,32-79 462-476
1976-77 9 2 127-135,138-150 81a, 493-507
1976-77 9 3 208-232 527-541
1976-77 9 4 294-320 554-568
1977-78 10 1 51-80 591-604
1977-78 10 2 127-160 623-632
1977-78 10 3 210-240 645-659
1977-78 10 4 283-320 671-685
1978-79 11 1 34-39,47-80 699-715
1978-79 11 2 127-131,145-160 728-741
1978-79 11 3 212-235,238-240 755-770
1978-79 11 4 299-320 782-798

Problem Column Editor:
vol 8/1 - vol 10/1. . . . . . . . . . . . . . . . . . . David L. Silverman
vol 10/2 - vol 11/4. . . . . . . . . . . . . . . Friend H. Kierstead Jr.

Associate Editors:
vol 10/1 - vol 10/2. . . . . . . . . . . . . . . . . . . Harvey J. Hinden
vol 10/4 - vol 11/4. . . . . . . John Brinn and Romae Cormier
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∆ Computer Challenge Corner
Year Vol Issue Pages Proposals
1975-76 8 3 233-234 1-4
1975-76 8 4 305-307 5-9
1976-77 9 1 30-31 477-480
1976-77 9 2 136-137 508-513
1976-77 9 3 233-240 none
1976-77 9 4 286-293 569-573
1977-78 10 1 45-50 586-590
1977-78 10 2 119-126 618-622
1977-78 10 3 none none
1977-78 10 4 279-282 none
1978-79 11 1 43-46 none
1978-79 11 2 132-144 none

Problem Column Editor:
vol 8 - vol 9. . . . . . . . . . . . . . . . . . . . . . . David L. Silverman
vol 10 - vol 11. . . . . . . . . . . . . . . . . . Friend H. Kierstead Jr.

∆ Alphametics
Year Vol Issue Pages Proposals
1975-76 8 1 44-45 364-369
1975-76 8 2 143-144 397-408
1975-76 8 3 227-228 409-418
1975-76 8 4 308-310 428-439
1976-77 9 1 21-23 449-461
1976-77 9 2 125-126 481-492
1976-77 9 3 206-207 514-526
1976-77 9 4 280-285 542-553
1977-78 10 1 40-44 574-585
1977-78 10 2 114-118 605-617
1977-78 10 3 204-209 633-644
1977-78 10 4 274-278 660-670
1978-79 11 1 28-33 686-698
1978-79 11 2 122-126 716-727
1978-79 11 3 207-211 742-754
1978-79 11 4 294-298 770-780

Problem Column Editor:
vol 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . David L. Silverman

vol 9 - vol 11. . . . . . . . . . . . . . . . . . . . . . . . . Steven Kahan

The MATYC Journal

∆ Problem Department. . . . . . . . . . . . . . . . Martin J. Brown
Date Year Vol Issue Pages Proposals
Winter 1975 9 1 49-53 70-73
Spring 1975 9 2 51-53 74-77
Fall 1975 9 3 45-50 78-81
Winter 1976 10 1 43-46 82-85
Spring 1976 10 2 122-124 86-90
Fall 1976 10 3 200-203 91-95
Winter 1977 11 1 63-68 96-100
Spring 1977 11 2 142-145 101-104
Fall 1977 11 3 221-225 105-109
Winter 1978 12 1 78-80 110-114
Spring 1978 12 2 173-176 115-119
Fall 1978 12 3 253-256 120-124
Winter 1979 13 1 64-70 125-129
Spring 1979 13 2 135-139 130-134
Fall 1979 13 3 214-219 135-139

• MENEMUI ISSN 0126-9003
Menemui Matematik

∆ Problems and Solutions
Date Year Vol Issue Pages Proposals

1979 1 1 52-59 1.1.1-3
1979 1 2 46-49 1.2.1-2
1979 1 3 56-60 1.3.1-3
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Notes:
•Hinden was first spelled with an “in”, then changed to an

“en”.
•Problem number 81+ was changed to 81a for consistency.
•There were two problems numbered 770.  The suffixes “a”

and “b”  were attached to distinguish them.

• MATYC ISSN 0300-7650



• MM ISSN  0025-570X
Mathematics Magazine

∆ Problems and Solutions Dan Eustice
Date Year Vol Issue Pages Proposals
Jan 1975 48 1 50-58 922-928
Mar 1975 48 2 115-122 929-936
May 1975 48 3 180-186 937-944
Sep 1975 48 4 238-247 945-953
Nov 1975 48 5 293-302 954-962
Jan 1976 49 1 43-48 963-969
Mar 1976 49 2 95-101 970-977
May 1976 49 3 149-154 978-987
Sep 1976 49 4 211-218 988-995
Nov 1976 49 5 252-258 996-1002
Jan 1977 50 1 46-53 1003-1007
Mar 1977 50 2 99-104 1008-1012
May 1977 50 3 163-169 1013-1020
Sep 1977 50 4 211-216 1021-1024
Nov 1977 50 5 265-271 1025-1028
Jan 1978 51 1 69-72 1029-1032
Mar 1978 51 2 127-132 1033-1038
May 1978 51 3 193-201 1039-1047
Sep 1978 51 4 245-249 1048-1053
Nov 1978 51 5 305-308 1054-1057
Jan 1979 52 1 46-55 1058-1065
Mar 1979 52 2 113-118 1066-1071
May 1979 52 3 179-184 1072-1073
Sep 1979 52 4 258-265 1074-1079
Nov 1979 52 5 316-323 1080-1088

∆ Quickies
Date Year Vol Issue Pages Proposals
Jan 1975 48 1 52,58 Q608-613
Mar 1975 48 2 116-117,122 Q614-619
May 1975 48 3 181-182,186 Q620-624
Sep 1975 48 4 240,248 Q625-627
Nov 1975 48 5 295,302-303 Q628-630
Jan 1976 49 1 44,48 Q631-632
Mar 1976 49 2 96,101 Q633-634
May 1976 49 3 150,154 Q635-637
Sep 1976 49 4 212,218 Q638-639
Nov 1976 49 5 253,258 Q640-642
Jan 1977 50 1 47,53 Q643-644
Mar 1977 50 2 none none
May 1977 50 3 164,169 Q645-648
Sep 1977 50 4 none none
Nov 1977 50 5 266,271 Q649-650
Jan 1978 51 1 none none
Mar 1978 51 2 128,132 Q651-652
May 1978 51 3 194,201 Q653-654
Sep 1978 51 4 246,249 Q655
Nov 1978 51 5 none none
Jan 1979 52 1 47,55 Q656-657
Mar 1979 52 2 114,118 Q658-659
May 1979 52 3 179,184 Q660-661

Sep 1979 52 4 259,265 Q662
Nov 1979 52 5 317,323 Q663-664

*Associate Editor:  J. S. Frame.   Assistant Editors:  Don
Bonar, William McWorter Jr., and L. F. Meyers.
*Starting with the Sep., 1975 issue, (Volume 48, number
4), Leroy F. Meyers becomes Associate Editor.

• MSJ ISSN 0095-7089
The Mathematics Student (Reston)
Publisher: NCTM

∆ Problem Section
Date Year Vol Issue Pages Proposals
Oct 1974 22 1 5-7 416-420
Dec 1974 22 2 5-7 421-425
Feb 1975 22 3 5-7 426-430
Apr 1975 22 4 5-7 none
Oct 1975 23 1 6-8 431-432
Dec 1975 23 2 8 433-434
Feb 1976 23 3 8 435-436
Apr 1976 23 4 8 437-438
Oct 1976 24 1 4 439-440
Dec 1976 24 2 5-6 441-442
Feb 1977 24 3 5 443-444
Apr 1977 24 4 2-3 445-446
Oct 1977 25 1 4 447-448
Nov 1977 25 2 4 449-450
Dec 1977 25 3 4 451-452
Jan 1978 25 4 4 453-454
Feb 1978 25 5 4 455-456
Mar 1978 25 6 4 457-458
Apr 1978 25 7 2 459-460
May 1978 25 8 2 461-462

∆ Competition Corner
Oct 1978 26 1 2-3 463-467
Nov 1978 26 2 2-3 468-472
Dec 1978 26 3 2-4 473-477
Jan 1979 26 4 2-3 478-482
Feb 1979 26 5 2 483-487
Mar 1979 26 6 2-3 488-492
Apr 1979 26 7 2-3 493-497
May 1979 26 8 2-3 498-502

Problem Column Editor:
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vol 22 – vol 25. . . . . . . . . . . . . . . . . . . . . Steven R. Conrad
vol 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . George Berzsenyi

Publisher:. . . . . . . . . . . . . . . . . . . . . .  Taylor & Francis, Ltd.



• NAvW ISSN 0028-9825
Nieuw Archief voor Wiskunde (3rd series)
Publisher: Dutch Mathematical Society

∆ Problem Section J. H. Van Lint
Date Year Vol Issue Pages Proposals
Mar 1975 23 1 79-94 391-400
Jul 1975 23 2 173-194 401-413
Nov 1975 23 3 242-257 414-423
Mar 1976 24 1 77-107 424-435
Jul 1976 24 2 184-214 436-447
Nov 1976 24 3 270-286 448-457
Mar 1977 25 1 86-101 458-467
Jul 1977 25 2 186-204 468-477
Nov 1977 25 3 423-446 478-487
Mar 1978 26 1 231-253 488-500
Jul 1978 26 2 348-366 501-511
Nov 1978 26 3 462-478 512-522
Mar 1979 27 1 132-152 523-533
Jul 1979 27 2 267-285 534-545
Nov 1979 27 3 407-424 546-558

• NYSMTJ ISSN 0545-6584
New York State Mathematics Teachers’ Journal
Publisher: Association of Mathematics

Teachers of New York State

Problem Column Editor:
vol 25 - vol 27/2. . . . . . . . . . . . . . . . . . . . . . . David E. Bock
vol 27/3 - vol 29. . . . . . . . . . . . . . . . . . . . . . Sidney Penner

∆ Problems and Solutions
Date Year Vol Issue Pages Proposals
Jan 1975 25 1 20-22 37-40
Apr 1975 25 2 55-57 41-44
Jun 1975 25 3 124-127 45-47
Oct 1975 25 4 170-173 48-51

1976 26 1
Jan 1976 26 2 18-19 52-54

1976 26 3
May 1976 26 4 96-101 55-58

1976 26 5
Sep 1976 26 6 150-152 59-61
Win 1977 27 1 50-54 62-65
Spr 1977 27 2 98-103 66-70
Fall 1977 27 3 136-138 71-73
Win 1977/78 28 1 52-58 74-77
Spr/Sum 1978 28 2 77-85 78-82
Fall 1978 28 3 150-158 83-86
Win 1978/79 29 1 56-62 87-91
Spr 1979 29 2 83-89 92-95

• OMG ISSN 0030-3011
Ontario Mathematics Gazette
Publisher: Ontario Association

for Mathematics Education

∆ Problems Arn Harris
Date Year Vol Issue Pages Proposals
Mar 1976 14 3 44 14.3.1-3
Sep 1976 15 1 51-52 15.1.1-3
Dec 1976 15 2 66 15.2.1-3
Mar 1977 15 3 59-61 15.3.1-10
Sep 1977 16 1 64-65 16.1.1-10
Dec 1977 16 2 51-53 16.2.1-7
Mar 1978 16 3 none none
Sep 1978 17 1 58-59 17.1.1-9
Dec 1978 17 2 58 17.2.1-9
Mar 1979 17 3 58-61 17.3.1-9
Sep 1979 18 1 55-57,60-61 18.1.1-9
Dec 1979 18 2 61-63,66-67 18.2.1-9
Mar 1980 18 3 65,67-68 18.3.1-9

*Assistant Editor:  (for problems) Tom Griffiths
*McKay and McKnight wrote the problems in Volume 17,
numbers 1 and 2, and Volume 18, numbers 1, 2, and 3.
*Starting with Volume 18, number 1, the editor changes to
R.S. Smith.  (Assistant editor:  Walker Schofield)

• OSSMB ISSN 0380-6235
Ontario Secondary School Mathematics Bulletin
Publisher: University of Waterloo

∆ Problems Section K.D. Fryer
Date Year Vol Issue Pages Proposals
May 1975 11 1 16-24 75.1-6
Sep 1976 12 2 19-24 76.7-12
May 1978 14 1 15-19 78.1-6
Sep 1978 14 2 22-25 78.3-5,78.7-9
Dec 1978 14 3 17-21 78.10-15
May 1979 15 1 20-23 79.1-6
Sep 1979 15 2 17-21 79.7-12
Dec 1979 15 3 23 79.13-18

*Problems editor:  R.A. Honsberger
*Starting with Volume 14, number 1, the Problems editor
changes to:  Professor E.M. Moskal
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Notes:
•We were unable to locate v.11 nos. 2 and 3, v.12 nos. 1

and 3, and all of v.13.  As a result, those issues are
not indexed in this volume.



• PARAB
Parabola
Publisher: University of New South Wales

∆ Problem Section R.K. James
Date Year Vol Issue Pages Proposals
Feb/Mar 1975 11 1 18-25 261-272
May/Jun 1975 11 2 25-34 273-284
Aug/Sep 1975 11 3 18-26 285-296
Feb/Mar 1976 12 1 22-33 297-308
May/Jun 1976 12 2 26-36 309-320
Aug/Sep 1976 12 3 23-32 321-332
Feb/Mar 1977 13 1 24-36 333-344
May/Jun 1977 13 2 34-36 345-356
Aug/Sep 1977 13 3 25-36 357-368
Term 1 1978 14 1 28-36 369-380
Term 2 1978 14 2 30-40 381-392
Term 3 1978 14 3 28-36 393-404
1st Term 1979 15 1 26-36 405-416
2nd Term 1979 15 2 36-44 417-428
3rd Term 1979 15 3 31-40 429-440

Notes:
•Problem editor:  Mr. C.D. Cox
•Volume 14, numbers 1-3, the editor changes to M.

Hirschhorn.
•Volume 15, numbers 1-3, the editor is J.H. Loxton.

• PENT ISSN 0031-4870
The Pentagon
Publisher: Kappa Mu Epsilon

∆ The Problem Corner Kenneth M. Wilke
Date Year Vol Issue Pages Proposals
Spring 1975 34 2 103-111 272-276
Fall 1975 35 1 33-39 277-281
Spring 1976 35 2 97-103 282-286
Fall 1976 36 1 31-35 287-290
Spring 1977 36 2 93-98 292-296
Fall 1977 37 1 26-34 297-301
Spring 1978 37 2 82-88 302-306
Fall 1978 38 1 26-32 307-311
Spring 1979 38 2 78-83 312-316
Fall 1979 39 1 30-39 317-321

Notes:
•Volume numbers for Spring/Fall 1979 have been

corrected from those printed in the journal.
•There are two problems numbered 289. (Fall 1976)

• PME ISSN 0031-952X
Pi Mu Epsilon Journal
Publisher: Pi Mu Epsilon Fraternity

∆ Problem Department Leon Bankoff
Date Year Vol Issue Pages Proposals
Spr 1975 6 2 104-122 338-349
Fall 1975 6 3 177-193 350-361
Spr 1976 6 4 226-244 362-373
Fall 1976 6 5 306-324 374-385
Spr 1977 6 6 364-381 386-398
Fall 1977 6 7 417-437 399-411
Spr 1978 6 8 481-501 412-424
Fall 1978 6 9 539-559 425-437
Spr 1979 6 10 615-633 438-448
Fall 1979 7 1 57-76 449-461

• SIAM ISSN 0036-1445
SIAM Review
Publisher: Society for Industrial

and Applied Mathematics

∆ Problems and Solutions Murray S. Klamkin
Date Year Vol Issue Pages Proposals
Jan 1975 17 1 167-175 75-1 to 75-7
Apr 1975 17 2 none none
Jul 1975 17 3 565-567 75-8 to 75a-15
Oct 1975 17 4 685-695 75-16 to 75-21
Jan 1976 18 1 117-130 76-1 to 76-6
Apr 1976 18 2 294-306 76-7 to 76-12
Jul 1976 18 3 489-503 76-13 to 76-17
Oct 1976 18 4 762-773 76-18 to 76-22
Jan 1977 19 1 146-155 77-1 to 77-5
Apr 1977 19 2 328-335 77-6 to 77-10
Jul 1977 19 3 563-568 77-11 to 77-15
Oct 1977 19 4 736-744 77-16 to 77-20
Jan 1978 20 1 181-190 78-1 to 78-5
Apr 1978 20 2 394-400 78-6 to 78-9
Jul 1978 20 3 593-604 78-10 to 78-15
Oct 1978 20 4 855-863 78-16 to 78-20
Jan 1979 21 1 139-146 79-1 to 79-5
Apr 1979 21 2 256-263 79-6 to 79-10
Jul 1979 21 3 395-401 79-11 to 79-15
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Oct 1979 21 4 559-569 79-16 to 79-20



• SPECT ISSN 0025-5653
Mathematical Spectrum
Publisher: Applied Probability Trust

∆ Problems and Solutions David W. Sharpe
Year Vol Issue Pages Proposals
1974/75 7 1 31 7.1-3
1974/75 7 2 67-70 7.4-6
1974/75 7 3 102-103 7.7-9
1975/76 8 1 33-34 8.1-3
1975/76 8 2 64-65 8.4-6
1975/76 8 3 91-95 8.7-9
1976/77 9 1 32-34 9.1-3
1976/77 9 2 64-65 9.4-6
1976/77 9 3 97-99 9.7-9
1977/78 10 1 31-34 10.1-3
1977/78 10 2 63-65 10.4-6
1977/78 10 3 97-99 10.7-9
1978/79 11 1 28-29 11.1-3
1978/79 11 2 61-65 11.4-6
1978/79 11 3 100-101 11.7-9

• SSM ISSN 0036-6803
School Science and Mathematics

Wiley Blackwell Publishers

Margaret F. Willerding

Publisher:

Problem Column Editors:
Jan 1975 to Jun 1976
Oct 1976 to Dec 1979 N. J. Kuenzi

and Bob Prielipp

∆ Problem Department
Date Year Vol Issue Pages Proposals
Jan 1975 75 1 none none
Feb 1975 75 2 199-204 3568-3573
Mar 1975 75 3 293-298 3574-3579
Apr 1975 75 4 381-387 3580-3585
May/Jun1975 75 5 473-478 3586-3591
Oct 1975 75 6 563-568 3592-3596
Nov 1975 75 7 653-658 3597-3603
Dec 1975 75 8 743-748 3606-3611
Jan 1976 76 1 82-86 3612-3617
Feb 1976 76 2 170-175 3618-3623
Mar 1976 76 3 261-266 3624-3629
Apr 1976 76 4 none none
May/Jun1976 76 5 439-446 3630-3641
Oct 1976 76 6 527-534 3642-3647
Nov 1976 76 7 621-627 3648-3653
Dec 1976 76 8 714-718 3654-3659
Jan 1977 77 1 77-82 3660-3665
Feb 1977 77 2 169-174 3666-3671
Mar 1977 77 3 263-268 3672-3677
Apr 1977 77 4 353-358 3678-3683
May/Jun1977 77 5 443-449 3684-3689
Oct 1977 77 6 530-536 3690-3695
Nov 1977 77 7 620-627 3696-3701
Dec 1977 77 8 712-717 3702-3707
Jan 1978 78 1 81-87 3708-3713
Feb 1978 78 2 170-177 3714-3719
Mar 1978 78 3 none none
Apr 1978 78 4 353-358 3720-3725
May/Jun1978 78 5 443-449 3726-3731
Oct 1978 78 6 532-537 3732-3737
Nov 1978 78 7 620-627 3738-3743
Dec 1978 78 8 712-718 3744-3749
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Jan 1979 79 1 79-87 3750-3755
Feb 1979 79 2 172-176 3756-3761
Mar 1979 79 3 259-264 3762-3767
Apr 1979 79 4 355-361 3768-3773
May/Jun1979 79 5 444-450 3774-3779
Oct 1979 79 6 3780-3785
Nov 1979 79 7

527-534
none none

Dec 1979 79 8 711-717 3786-3791

Notes:
•There were no problems numbered 3604 or 3605.



• TYCMJ ISSN 0049-4925 
The Two Year College Mathematics Journal

Erwin Just
Samuel A. Greenspan

Problem column editor:
Associate editor:
Assistant editor: Stanley Friedlander

∆ Problems and Solutions Erwin Just
Date Year Vol Issue Pages Proposals
Feb 1975 6 1 32-34 33-36
May 1975 6 2 31-35 37-41
Sep 1975 6 3 34-37 42-46
Dec 1975 6 4 24-28 47-53
Feb 1976 7 1 28-32 54-60
May 1976 7 2 49-53 61-66
Sep 1976 7 3 47-50 67-72
Dec 1976 7 4 33-37 73-78
Jan 1977 8 1 42-46 79-83
Mar 1977 8 2 95-100 84-89
Jun 1977 8 3 177-181 90-95
Sep 1977 8 4 240-243 96-100
Nov 1977 8 5 292-295 101-105
Jan 1978 9 1 40-45 106-110
Mar 1978 9 2 95-100 111-115
Jun 1978 9 3 176-181 116-120
Sep 1978 9 4 236-242 121-125
Nov 1978 9 5 297-302 126-130
Jan 1979 10 1 52-57 131-135
Mar 1979 10 2 127-131 136-140
Jun 1979 10 3 210-217 141-145
Sep 1979 10 4 293-299 146-150
Nov 1979 10 5 359-367 151-155

Notes:
•Associate Editor:  Samuel A. Greenspan
•Added Stanley Friedlander as the Assistant Editor starting

with the Jan., 1978 issue, (Volume 9, number 1).
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Publisher:. . . . . . . . . . . . . . . . . . . . . .  Taylor & Francis, Ltd.



UNSOLVED  PROBLEMS
Use this section to

• locate problems that are still unsolved
• determine the names of proposers who have submitted unsolved problems.

This section lists those problems that were proposed during the years 1975–1979 in one of the journals covered
by this index but whose complete solution has not been published as of May 1992.

An index of the proposers of these unsolved problems follows the statements of the problems (see page 422).

A problem is not listed as unsolved if
• the journal ceased publication before the solution could be printed
• the problem column indicates that it is a practice problem whose solution they do not intend to publish
• the problem was withdrawn
• the solution to the problem has appeared in an article listed in the citation index.

If the original problem consisted of several parts, only those parts that remain unsolved are listed.

Readers making progress on these problems should correspond with the problem column editor of the problem
column in which the problem appeared. Do not send comments to the editors or publisher of this index. The
names and addresses of the current problem column editors can be found in the Current Journal Information sec-
tion of this index. If the solution to one of these problems appears as a journal article that you think we might miss
when we prepare the citation index for our next volume, then MathPro Press would be pleased to receive a refer-
ence to the paper containing a solution or partial solution.

If the Problem Chronology in this index shows a problem to be unsolved but it is not listed in this section, then you
should also consult the Citation Index (beginning on page 423) to see if an article has been published that
contains the solution to that problem.
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Unsolved Problems
AMM 6016 1975–1979 AMM 6158

AMM 6016. by C. J. Moreno
Let D(n) =

∏
p, where the product runs over those

primes p such that p − 1 divides 2n. Find an asymptotic
formula for ∑

n≤x
D(n).

AMM 6020. by C. W. Anderson
and Dean Hickerson

A pair of distinct numbers (k,m) is called a friendly
pair (k is a friend of m) if Σ(k) = Σ(m), where Σ(n) =
σ(n)/n, where σ(n) is the sum of the divisors of n. Show
that the density of solitary numbers (numbers without
friends) is zero.

AMM 6028. by F. D. Hammer
Is there a polynomial in two variables with integral

coefficients which is a bijection from Z × Z onto Z? If so,
how many such polynomials are there?

AMM 6029. by P. P. Carreras
Let E[t] be a linear space provided with a separated

locally convex topology t. Show that E[t] is bornological
if and only if every absolutely convex bornivorous and al-
gebraically closed subset of E[t] is a t-neighborhood of the
origin.

AMM 6048. by H. M. Edgar
A positive integer n is said to be harmonic if the ratio

nτ(n)

σ(n)

is again integral.
(a) Are there any harmonic numbers other than 1 that

are perfect squares?
(b) Do there exist infinitely many harmonic numbers?

AMM 6051. by Jochem Zowe
Let X be a real vector space, Y an ordered vector space

and p a sublinear map of X into Y , i.e., p(λx) = λp(x) and
p(x + x′) ≤ p(x) + p(x′) for all x, x′ ∈ X and all real non-
negative λ. Does there always exist a linear map T of X
into Y such that Tx ≤ p(x) for all x ∈ X?

AMM 6060. by Daniel Sokolowsky
For fixed k ≥ 2, Ai, Bi (i = 1, 2, . . . , k) are 2k subsets

of a finite set S. What is the largest possible value of
n = |S| such that the following three conditions can hold
simultaneously for i = 1, 2, . . . , k?

(i) Ai ∩Bi = ∅
(ii) |Ai ∪Bi| = n− 1
(iii) For each x ∈ S, {x} is the intersection of an ap-

propriate subcollection of the 2k sets Ai, Bi (i = 1, 2, . . . , k).

AMM 6089. by E. Ehrhart
Let K be a convex body in Rn of Jordan content

V (K) >
(n+ 1)n

n!

with n > 2 and with centroid at the origin. Does K ∪ (−K)
contain a convex body C, symmetric in the origin, for which
V (C) > 2n?

AMM 6110. by David M. Battany
Let p and q be primes; not both even. Let m, n and

v be integers; m,n ≥ 2; v ≥ 0. For each value of v, prove
that there exists at most one pair of powers (pm, qn) such
that pm − qn = 2v.

AMM 6119. by M. J. Pelling

AMM 6216. by M. J. Pelling
Are there any algebraic number fields A with the prop-

erty that A = A1 +A2 (qua abelian groups), where A1, A2
are proper subfields of A?

AMM 6123. by E. G. Kundert
Let s be any integer larger than 1 and let εi be the

following function defined on the integers:

εi =





0 if i ≡ 0, 6

1 if i ≡ 2, 4, 7, 11

−1 if i ≡ 1, 5, 8, 10 (mod 12)

2 if i ≡ 9

−2 if i ≡ 3

Show that the following identity holds:

∑

1≤i,j≤s
εiεj

(
j + 1

s− i

)(
s+ 1

j + 1

)
3bi/2c+bj/2c−b(s−2)/2c = −3εs.

AMM 6124. by Thomas E. Elsner
Let Y be a compactification of a completely regular

space X. Is there a base B for Y such that the smallest
algebra of sets containing B has no element in Y −X?

AMM 6135. by Paul Erdős
Denote by P (n) the greatest prime factor of n and put

A(x, y) =
∏

1≤i≤y−x
(x+ i).

An integer n is called exceptional if for some x ≤ n ≤ y,

(P (A(x, y)))2 divides A(x, y).
Prove that the density of exceptional numbers is 0 and

estimate the number E(x) not exceeding x as well as you
can.

AMM 6141. by Dennis Johnson
and Herbert Taylor

Can the Borromean Rings be drawn without crossing
on a surface of genus 2?

AMM 6144. by Carl Pomerance
If n is a natural number, denote by A(n) the arithmetic

mean of the divisors of n.
(a) Prove that the asymptotic density of the set of n,

for which A(n) is an integer, is 1.
(b) Show that for any N there is an integer m such

that A(n) = m has at least N solutions.
(c) If it exists, find the asymptotic density of the set

of integers m for which A(n) = m has a solution.

AMM 6157. by C. C. Chen and D. E. Daykin
(a) Find integers ∆, p with the following property:

Whenever the lines of the complete graph Kp are colored so
that every vertex is on at most ∆ lines of each color, there
is a triangle whose lines have different colors.

(b) Find integers δ, p, n with the following property:
Whenever the lines of a complete graph Kp are colored with
n colors so that every vertex is on at least δ lines of each
color, there is a triangle whose lines have different colors.

AMM 6158. by M. J. Pelling
Prove that if R is a bounded convex region of the plane

of area 1 then there is a d > 0 independent of R such that R
is equivalent under an area preserving affine transformation
to a region of diameter at most d. What is the best possible
value of d?
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AMM 6172. by Doug Hensley
Give an example, if possible, of two planar lattices of

unit determinant that do not possess a common bounded
measurable fundamental domain. Do any two distinct lat-
tices possess a common fundamental domain?

AMM 6181. by J. M. Arnaudies
Let n be an integer with n ≥ 3, and let A0, A1, . . . , An

be n single-valued real functions defined and continuous on
a given topological Hausdorff space T . Suppose that for all
t ∈ T , the 2-form

A0x
n +A1x

n−1y + . . .+Any
n

(where the Ai take their values for t) defines n real distinct
lines in the 2-dimensional real projective space.

Characterize spaces T such that, for any choice of the
Ai, there exists a system of continuous functions (P1, Q1,
P2, Q2, . . . , Pn, Qn), real-valued, defined on T , satisfying
the formal equality,

A0x
n +A1x

n−1y + · · ·+Any
n

= (P1x+Q1y)(P2x+Q2y) · · · (Pnx+Qny).

AMM 6186. by Ronald Evans
Let r, k ∈ N, where r is fixed. Fix β > 1. Let

Fr(k) =
∑

(j1j2 · · · jr)β−1 ,

where the sum is over all vectors (j1, j2, . . . , jr) ∈ Nr for
which j1 + j2 + · · ·+ jr = k. Prove that

Fr(k) ∼ Γr(β)

Γ(rβ)
kβr−1 as k →∞.

AMM 6189. by Edward T. H. Wang
Prove or disprove that for each natural number n ≥ 2,

one can arrange the numbers 1, 2, . . . , n in a sequence such
that the sum of any two adjacent terms is a prime.

AMM 6190. by D. E. Daykin and D. J. Kleitman
Let n be a square free integer that is not prime. Let

F be a set of divisors of n such that neither the product of
two elements of F nor n2 divided by such a product is in F .
What is the maximal proportion of the divisors of n that
may lie in F?

AMM 6197. by Manuel Scarowsky
Let p be a prime; a and b positive integers; and let

(x0, y0) be a solution of ax + by = p in positive integers
with x0 minimal, if such exists (otherwise take x0 = 0).
Find an estimate for

∑
a,b x0.

AMM 6204. by F. David Hammer
(a) If all proper subgroups of an infinite abelian group

are free (as abelian groups), then the group is free.
(b) Find a weaker hypothesis for (a).
(c) Delete abelian in (a).

AMM 6211. by Alvin J. Paullay
and Sidney Penner

Suppose that each square of an n × n chessboard is
colored either black or white. A square, formed by the
horizontal and vertical lines of the board, will be called
chromatic if its four distinct corner squares are all of the
same color.

Find the smallest n such that, with any such coloring,
every n× n board must contain a chromatic square.

AMM 6212. by A. A. Mullin
Prove that bπnc is prime for only finitely many positive

integers n.

AMM 6214. by Leonard Carlitz
Let k and t be fixed integers, k ≥ 2, t ≥ 0 and let

Ak(kn+ t) denote the number of permutations of

Zkn+t = {1, 2, 3, . . . , kn+ t}
such that

akj+1 < akj+2 < · · · < akj+k,

akj+k > akj+k+1 (j = 0, 1, . . . , n− 1)

akn+1 < akn+2 < · · · < akn+t.

It has recently been proved as a corollary of a general
result that A4(2n+1) = 2−nA2(2n+1). Prove this identity
by a direct combinatorial argument.

AMM 6217. by M. J. Pelling
Let B be a subset of the nonnegative integers having

positive density. Is it always true that there is an infinite
subset X of B and an infinite sequence k1 < k2 < · · · of
integers such that all the translates X + ki ⊆ B?

AMM 6229. by David W. Erbach
Suppose that the plane is tiled with regular hexagons

in the customary manner. Color each black or white inde-
pendently with probability 1/2. What is the expected size
of a connected monochromatic component? What is the
probability that there is an infinite component?

AMM 6232. by Allan Wm. Johnson, Jr.
Prove or disprove: Given any integer G > 13, there

exist distinct integers xi > 0 such that

G3 =

5∑

i=1

x3i .

AMM 6258. by John S. Lew
Let X = (xjk) be an m× n matrix, where 1 < m < n

and the xjk are algebraically independent indeterminates

over the field C of complex numbers. Let X ′ be the trans-
pose of X. Prove that det(XX ′) is an irreducible polyno-
mial over C.

AMM 6270. by Kenneth S. Williams
Let p be a prime congruent to 1 modulo 8. Let ε2p

denote the fundamental unit of the real quadratic field
Q
(√

2p
)

and let h(−2p) denote the class number of the

imaginary quadratic field Q
(√−2p

)
. Prove that if the

norm of ε2p is −1, then

h(−2p) ≡
{

0 (mod 8), if p ≡ 1 (mod 16)

4 (mod 8), if p ≡ 9 (mod 16).

AMM 6281. by Clark Kimberling
If A = (1, a1, a2, . . .) is a sequence of 1’s and 2’s, let

B = (1, b1, b2, . . .) where bn is the length of the nth maximal
string of identical symbols in A. If B = A, then A must
be (1, 2, 2, 1, 1, 2, 1, 2, 2, 1, . . .). By a run is meant a finite
subsequence of consecutive terms of A. Its complement is
obtained by interchanging all 1’s and 2’s.

Prove or disprove:
(a) The complement of every run is also a run;
(b) Every run occurs infinitely many times.
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AMM E2521. by John A. Cross

An instructor has a file of p questions of equal diag-
nostic value in testing students on a certain topic. He gives
q-question tests repeatedly (q < p). How many test forms
can he compose if any n-size subset, 1 ≤ n < q, of the p
questions may appear on at most two tests, and no subset of
size m > n may appear on more than one test? Determine
an algorithm for composing the set of possible tests, for any
allowable p, q, n.

AMM E2530. by F. Loupekine

(a) Show that it is possible to partition the natural
numbers into three classes so that if (x, y, z) is a primitive
Pythagorean triple, then x, y, z are in different classes.

(b) Can such a partition be made if the above is to
hold for all Pythagorean triples, not just primitive ones?

AMM E2539. by A. Vince

Let Fn denote the nth Fibonacci number. Prove or
disprove: If m2 |Fn, then m |n.

AMM E2569. by Harry Dweighter

The chef in our place is sloppy, and when he prepares
a stack of pancakes they come out all different sizes. There-
fore, when I deliver them to a customer, on the way to the
table I rearrange them (so that the smallest winds up on
top, and so on, down to the largest on the bottom) by grab-
bing several from the top and flipping them over, repeating
this (varying the number I flip) as many times as necessary.
If there are n pancakes, what is the maximum number of
flips (as a function of n) that I will ever have to use to
rearrange them?

AMM E2571. by Sidney Kravitz

Find all numbers n for which σ(n) = 2n− 2.

AMM E2594. by David P. Robbins

Suppose that a1, a2, . . . , an are vectors corresponding
to the edges of an oriented regular polygon. Since their sum
is 0, an object undergoing displacements by each of these
vectors in some order traces out a closed polygon. If this
order is chosen at random, what is the probability that the
polygon does not intersect itself?

AMM E2596. by Mark A. Spikell

Suppose one is supplied with a collection of Cuisenaire
rods having dimension 1×1×a, where the length a belongs
to a finite set A of positive integers and the number of rods
of length a ∈ A may be supposed to be unlimited. For which
s can one build a 1× s× s square from one’s collection?

AMM E2688. by David Jackson

Let {fi} and {gi} (i = 0, 1, 2, . . .) be the solutions of
the recurrence equation

um+1 = −um −m(m+ 1)xum−1

satisfying the initial conditions f0 = 0, f1 = 1 and g0 = 1,
g1 = −1, respectively. Show that the coefficient of xn−1 in
the Maclaurin expansion of −fn/gn is t2n−1 where

tanx =
∑

n≥1
t2n−1

x2n−1

(2n− 1)!
.

AMM E2702. by David Jackson
Let a = (a1, a2, . . . , a2m) be a non-decreasing se-

quence of positive integers. Let S denote the set of se-
quences obtained from a by permuting its terms. Let A,
B, C be the subsets of S consisting of those sequences
s = (s1, s2, . . . , s2m) that satisfy

s1 < s2 ≥ s3 < s4 ≥ · · · ≥ s2m−1 < s2m,

2m∏

i=1

(si − ai) > 0,

2m∏

i=1

(si − ai) < 0,

respectively. Show that |A| is equal to the absolute value of
|B| − |C|.

AMM E2713. by Saul Singer
A stack of x rings is given, decreasing in size from

the bottom up. In addition, y empty stacks are provided
(y ≥ 2). Let N(x, y) be the minimum number of moves
necessary to transfer the rings to one of the empty stacks
subject to the following two rules:

(1) Move just one ring at a time,
(2) at no time can a larger ring be placed atop a smaller

one.
It is conjectured that

N(x, y) =

m∑

k=1

2k−1
(
k + y − 3

y − 2

)
+2m

[
x−

(
m+ y − 2

y − 1

)]
,

where m is the largest integer such that the expression in
the brackets is nonnegative.

AMM E2717. by E. Ehrhart
Find the number of symmetric 4 × 4 matrices whose

entries are all the integers from 1 to 10 and whose row-sums
are all equal.

AMM E2722. by Clark Kimberling
A ball is drawn from an urn containing one red ball

and one green ball. If it is red it is returned to the urn with
one additional red ball and one additional green ball, but
if it is green no balls are put into the urn. After the first
drawing, subsequent drawings take place following the same
rules. Find the probability that the urn contains at least
one green ball at all times.

AMM E2740. by Victor Pambuccian
Show that if P is a convex polyhedron, one can find a

square all of whose vertices are on four different faces of P .

AMM E2757. by Harry D. Ruderman

Let a, b, c be three lines in R3. Find points A, B, C on
a, b, c, respectively, such that AB+BC+CA is a minimum.

AMM E2759. by Hugh L. Montgomery

Suppose that a−1 ≤ f ′′(x) ≤ 2a−1 for 0 ≤ x ≤ a,
where a ≥ 8. Prove that there exists a lattice point (m,n)

such that 0 ≤ m ≤ a and |f(m)− n| ≤ 2a−1/2.

AMM E2774. by James Propp
Prove or disprove that, given a convex two-dimensional

figure S, six translates of S can fit inside a homothetic figure
three times as large as S in linear dimensions.
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AMM E2779. by H. Schwerdtfeger

(a) Let A =
(
a(1)a(2) . . . a(n)

)
be a non-singular ma-

trix, over a field F , whose columns a(j) represent points in
the n-dimensional affine space Sn. Let π be the hyperplane

passing through the points a(1), . . . , a(n). Let b ∈ Sn, b 6= 0,
and B be the matrix (b b . . . b). Show that the determinant
|A−B| = 0 if and only if b ∈ π.

(b) Generalize statement (a) to a more general matrix
of rank one, namely B = (γ1bγ2b . . . γnb), γ1γ2 . . . γn 6= 0,
γj ∈ F .

(c) If A is singular and Σ is the subspace of Sn gener-
ated by the columns of A, show that there is no b in Σ such
that |A−B| 6= 0, with B = (b b . . . b).

AMM E2794. by Robert A. Leslie
Let m, n, r, and c be positive integers with rm = cn.

How many m× n matrices are there with each entry either
0 or 1 and where every row sum is r and every column sum
is c?

AMM E2804. by Harry D. Ruderman
Let k be a positive integer and Sk be the set of integers

j expressible in the form

j = k|ab|+ a+ b,

where a, b, run through the nonzero integers. Find the
cardinality of the set of positive integers not in Sk.

AMM S21. by Paul Erdős
Let

A(n, k) = (n+ 1)(n+ 2) · · · (n+ k),

B(n, k) = lcm [n+ 1, n+ 2, . . . , n+ k] ,

and

α(n, k) =
A(n, k)

B(n, k)
.

Do m, n, and k exist with m > n+k−1 and α(m, k) =
α(n, k)?

CMB P268. by P. Erdős and E. C. Milner
A graph G = (V,E) is said to be realized if there is

a family of sets {Ax : x ∈ V } associated with the vertices
of G such that Ax ⊂ {0, 1, 2 . . .} and such that {x, y} is an
edge of G if and only if Ax ∩ Ay = ∅. Is it true that any

bipartite graph on 2ℵ0 vertices is realizable?

CMB P277. by Allan M. Krall and D. J. Allwright
Let R(z) be a rational function of the complex variable

z, and let Γ be the locus of R(ix) for x real. Prove that Γ
partitions the plane into finitely many regions.

CRUX 133. submitted by Kenneth S. Williams
Let f be the operation that takes a positive integer n

to n/2 (if n even) and to 3n+1 (if n odd). Prove or disprove
that any positive integer can be reduced to 1 by successively
applying f to it.

CRUX 154. by Kenneth S. Williams
Let pn denote the nth prime. Prove or disprove that

the following method finds pn+1 given p1, p2, . . . , pn.
In a row list the integers from 1 to pn − 1. Corre-

sponding to each r (1 ≤ r ≤ pn − 1) in this list, say
r = pa11 . . . p

an−1

n−1 , put pa12 . . . p
an−1
n in a second row. Let

l be the smallest odd integer not appearing in the second
row. The claim is that l = pn+1.

CRUX 250. by Gilbert W. Kessler
For integers m and n, if |3m − 2n| 6= 1, is there always

a prime between 3m and 2n?

CRUX 266. by Daniel Rokhsar
Let dn be the first digit in the decimal representation

of n!. Find expressions for dn and
∑n
i=0 di.

CRUX 339. by Steven R. Conrad

Is
(
37
2

)
= 666 the only binomial coefficient

(
n
r

)
whose

decimal representation consists of a single digit repeated k
times with k ≥ 3?

CRUX 342. by James Gary Propp
For fixed even n with n > 2, the set of all positive inte-

gers is partitioned into the (disjoint) subsets S1, S2, . . . , Sn
as follows: for each positive integer m, we have m ∈ Sk
if and only if k is the largest integer such that m can be
written as the sum of k distinct elements from one of the n
subsets.

Prove that m ∈ Sn for all sufficiently large m.

CRUX 343. by Steven R. Conrad
It is known that the greatest integer function satisfies

the functional equation

f(nx) =

n−1∑

k=0

f
(
x+

k

n

)

for all real x and positive intrgers n. Are there other func-
tions which satisfy this equation? Find as many as possible.

CRUX 355. by James Gary Propp
Given a finite sequence A = (an) of positive integers,

we define the family of sequences

A0 = A; Ai = (br), i = 1, 2, 3, . . . ,

where br is the number of times that the rth lowest term of
Ai−1 occurs in Ai−1.

For example, if A = A0 = (2, 4, 2, 2, 4, 5), then A1 =
(3, 2, 1), A2 = (1, 1, 1), A3 = (3), and A4 = (1) = A5 =
A6 = . . ..

The degree of a sequence A is the smallest i such that
Ai = (1).

Let A(d) be the length of the shortest sequence of
degree d. Find a formula, recurrence relation, or asymptotic
approximation for A(d).

Given sequences A and B, define C as the concatena-
tion of A and B. Find sharp upper and lower bounds on
the degree of C in terms of the degrees of A and B.

CRUX 410. by James Gary Propp
Are there only finitely many powers of 2 that have no

zeros in their decimal expansions?

CRUX 434. by Harold N. Shapiro
It is known that all the solutions in positive integers

x, y,m, n of the equation

(m!)x = (n!)y

are given by m = n = 1; and m = n, x = y.
Prove this result without using Bertrand’s Postulate

or equivalent results from number theory.

CRUX 443. by Allan Wm. Johnson Jr.
Does there exist a set of more than seven consecutive

squares with the property that each has its decimal digits
summing to a square?
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CRUX 473. by A. Liu
The set of all positlve integers is partitioned into the

disjoint subsets T1, T2, T3, . . . as follows: for each positive
integer m, we have m ∈ Tk if and only if k is the largest
integer such that m can be written as the sum of k distinct
elements from one of the subsets. Prove that each Tk is
finite.

CRUX 490. by Michael W. Ecker
Are there infinitely many palindromic primes?

CRUX 493. by R. C. Lyness
Let A, B, C be the angles of a triangle. It is known that

there are positive x, y, z, each less than 1
2 , simultaneously

satisfying

y2 cot
B

2
+ 2yz + z2 cot

C

2
= sinA,

z2 cot
C

2
+ 2zx+ x2 cot

A

2
= sinB,

x2 cot
A

2
+ 2xy + y2 cot

B

2
= sinC.

In fact, 1
2 may be replaced by a smaller k > 0.4. What

is the least value of k?

CRUX 494. by Rufus Isaacs
Let rj , j = 1, . . . , k, be the roots of a polynomial with

integral coefficients and leading coefficient 1.
Prove or disprove: for any positive integer n,

n

∣∣∣
∑

j

(∑

d|n
rdjµ(n/d)

)
,

where µ is the Möbius function.

FQ B-408. by Lawrence Somer
Let d ∈ {2, 3, . . .} and Gn = Fdn/Fn. Let p be an

odd prime and z = z(p) be the least positive integer n with
Fn ≡ 0 (mod p). For d = 2 and z(p) an even integer 2k, it
is known that

Fn+1Gn+k ≡ FnGn+k+1 (mod p).

Establish a generalization for d ≥ 2.

FQ B-416. by Gene Jakubowski
and V. E. Hoggatt, Jr.

Let Fn be the Fibonacci sequence (defined for all in-
tegers n). Prove that every positive integer m has at least
one representation of the form

m =

N∑

j=−N
αjFj ,

with each αj in {0, 1} and αj = 0 when j is an integral
multiple of 3.

FQ H-254. by R. Whitney
Evaluate

n∑

k=0

F(nk).

.

FQ H-260. by H. Edgar
Are there infinitely many subscripts, n, for which Fn

or Ln are prime?

FQ H-271. by R. Whitney
Define the binary dual, D, as follows:

D =

{
t

∣∣∣ t =

n∏

i=0

(ai + 2i); ai ∈ {0, 1}; n ≥ 0

}

Let D̄ denote the complement of D, with respect to the
set of positive integers. Form a sequence, {Sn}∞n=1, by
arranging D̄ in increasing order. Find a formula for Sn.

FQ H-296. by C. Kimberling
Suppose x and y are positive real numbers with y > 1.

Find the least positive integer n for which
⌊

x

n+ y

⌋
=
⌊
x

n

⌋
.

FQ H-300. by James L. Murphy
Given two relatively prime positive integers A and B,

form a multiplicative Fibonacci sequence {Ai} with A1 = A,
A2 = B, and Ai+2 = A× Ai+1. Now form the sequence of
partial sums {Sn} where

Sn =

n∑

i=1

Ai.

{Sn} is a subsequence of the arithmetic sequence {Yn}
where Tn = A + nB, and by Dirichlet’s theorem we know
that infinitely many of the Tn are prime. The question is:
Does such a sparse subsequence {Sn} of the arithmetic se-
quence A+ nB also contain infinitely many primes?

FQ H-304. by V. E. Hoggatt, Jr.
(a) Show that there is a unique partition of the positive

integers, N, into two sets, A1 and A2, such that

A1 ∪A2 = N, A1 ∩A2 = ∅,

and no two distinct elements from the same set add up to
a Lucas number.

(b) Show that every positive integer, M , which is not
a Lucas number is the sum of two distinct elements of the
same set.

FQ H-305. by Martin Schechter
For fixed positive integers, m, n, define a Fibonacci-

like sequence as follows:

S1 = 1, S2 = m, Sk =

{
mSk−1 + Sk−2 if k is even

nSk−1 + Sk−2 if k is odd

Show that the sequence obtained when [m = 1, n =
4] and when [m = 1, n = 8], respectively, have only the
element 1 in common.

FQ H-309. by David Singmaster
Let f be a permutation of {1, 2, . . . ,m − 1} such that

the terms i + f(i) are all distinct (mod m). Characterize
and/or enumerate such f .

MENEMUI 1.1.1. by T. N. T. Goodman
For n = 1, 2, 3, . . . , show that

n∑

j=1

∫ π

0

{cos θ(u− π) sec θπ − 1} csc
u

2
du = 2n logn.

where

θ =
1

2
− 2j − 1

2n
.
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MENEMUI 1.3.3. by S. L. Lee
If f is continuously differentiable up to derivatives of

4th order and f(−1) = f(1) = 0, find the least constant A
such that ∣∣∣∣∣

∫ √3

−
√
3

f(x) dx

∣∣∣∣∣ ≤ A.

MM 1007. by Thomas E. Elsner
It is known that given a nonnegative integer n, there is

a positive integer k, such that k occurs in exactly n distinct
Pythagorean triples (x, y, z), x < y < z, x2 + y2 = z2.
For each n, determine mn = min{k : k occurs in exactly n
Pythagorean triples}.
MM 1015. by Allan W. Johnson, Jr.

Show that for n ≥ 5 there are 2n+ 1 distinct, positive,
odd, square-free integers whose reciprocals add to one.

MM 1021. by Peter Ørno
Prove or disprove that a countably infinite set of posi-

tive real numbers with a finite nonzero cluster point can be

arranged in a sequence, {an}, so that {(an)1/n} is conver-
gent.

MM 1068. by James Propp
Given a simple closed curve S, let the “navel” of S

denote the envelope of the family of lines that bisect the
area within S.

If S is arbitrary (or bounds a convex set), find a sharp
upper bound for the ratio of the area within the navel of S
to the area within S.

MM 1073. by James Propp
Let A and B be the unique nondecreasing sequences of

odd integers and even integers, respectively, such that for
all n ≥ 1, the number of integers i satisfying Ai = 2n − 1
is An and the number of integers i satisfying Bi = 2n
is Bn. That is, A = (1, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 9, 9, . . .)
and B = (2, 2, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, . . .). Is the difference
|An −Bn| bounded?

MM 1088. by Alan Wayne
For each positive integer m, how many triangles with

integer sides are there that have an area equal to m times
the perimeter?

PME 389. by Paul Erdős
Find a sequence of positive integers 1 ≤ a1 < a2 < · · ·

that omits infinitely many integers from every arithmetic
progression (in fact it has density 0) but which contains all
but a finite number of terms of every geometric progression.
Prove also that there is a set S of real numbers which
omits infinitely many terms of any arithmetic progression
but contains every geometric progression (disregarding a
finite number of terms).

SIAM 75-6. by P. C. T. de Boer
and G. S. S. Ludford

Show that there exists a continuous solution of

y′′ =
(
2yα − x

)
y, α > 0,

for −∞ < x <∞ such that

y ∼ (x/2)1/α
[
1 + (1− α)/α3x3 + · · ·

]

as x → +∞; and that, for some k(α), y ∼ kAi(−x) as
x→ −∞.

SIAM 75-13. by M. Golberg
Let P denote an n × n primitive stochastic ma-

trix and let R denote a diagonal matrix with diagonal
(r1, r2, . . . , rn), where 0 ≤ ri ≤ 1. Determine

lim
N→∞

1

N

{
N∑

k=1

(P + R)k

(
1 +

∑n
i=1

ri
n

)k

}
.

SIAM 75-14. by M. W. Green, A. J. Korsak,
and M. C. Pease

It has been found in practice that the following very
simple (but very effective) procedure always converges for
any n starting trial roots:

x′i =
xi − P (xi)∏
j 6=i
(
xi − xj

) , i = 1, 2, . . . , n,

where P (x) is an arbitrary (complex coefficient) monic poly-
nomial in x of degree n. In fact, even when P (x) has multi-
ple roots, the above procedure still converges, but only lin-
early (as opposed to quadratically in the distinct root case).
Show that this procedure is globally convergent outside of
a set of measure zero in the starting space and describe this
set for n > 2.

SIAM 76-3. by S. A. Rice
Determine the inverse Laplace transforms, or at least

asymptotic formulas for large time t, of the following three
functions:

Iv(x)

Iv(y)
,

Iv(x)Iv(z)Kv(y)

Iv(y)
,

Iv(z)Kv(x).

Here Iv(x) and Kv(x) are modified Bessel’s functions of the
first and second kind, respectively, and v =

√
as, where s

is the Laplace transform parameter, a is a constant, and
x 6= y 6= z.

SIAM 76-7. by R. D. Spinetto
Suppose a company wants to locate k service centers

that will service n communities and suppose that the com-
pany wants to locate these k centers in k of the communities
so that the total population distance traveled by the people
in the n − k communities without service centers to those
communities with service centers is minimized. This prob-
lem can be set up as a 0-1 integer programming problem as
follows. Let

xjj =

{
1 if community j gets a service center,

0 otherwise,

and let

xij =

{
1 if community i is to be serviced by a center

in community j,

0 otherwise.

Let pi be the population of community i and let dij be the
distance from community i to community j. The problem
then is to minimize

n∑

i=1

n∑

j=1

pidijxij ,

subject to constraints

n∑

j=1

xij = 1 for i = 1, 2, 3, . . . , n;
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xij − xjj ≤ 0 for i = 1, 2, 3, . . . , n, and

for j = 1, 2, 3, . . . , n;
n∑

j=1

xjj = k,

and with the added condition that each of the variables xii
and xij takes on only the values of 0 or 1.

If one ignores this last 0-1 condition and solves the
problem as though it were a linear programming problem,
then one will find that very often (but not always) an opti-
mal extreme point solution to this linear programming prob-
lem will in fact be a 0-1 extreme point. Perhaps this is due
to the fact that most of the extreme points of the polyhe-
dron determined by the constraints shown above are in fact
0-1 extreme points, but it cannot be proven. This, in turn,
suggests the following problems:

(a) What are the smallest n and k for which there exists
a linear programming problem of the above form which will
have only non-0-1 optimal extreme point solutions?

(b) Can the non-0-1 extreme points of polyhedrons
determined by the constraints shown above be characterized
in any set theoretic way that would be useful in developing
more efficient algorithms for solving this facility location
problem?

SIAM 76-10. by L. Wijnberg and M. L. Glasser
If α > 1, v ≥ 0, and

Sv(x) ≡
∞∑

m=0

∞∑

n=0

(
m+ n

m

)
(2α)mJv+m+2n+1(x),

it is known that

Sv(x) =
1

2




eαx

[
(1 + α2)1/2 − α

]v

(1 + α2)1/2 −Gv(α, x)



 ,

where

Gv(α, x) =

∞∑

k=0

α−k−1J(k)
v (x).

Can a similar result be found for 0 < α < 1?
Also, is there a closed form for Gv(α, x)?

SIAM 76-12. by A. S. Perelson and C. Delisi
The following system of nonlinear differential equations

dxn
dt

= 2k

n−1∑

m=1

xn−mym − 2xn(kS + k′n)

+k′
∞∑

m=n

(2xm + ym), n = 1, 2, . . . ,

dyn
dt

= 4k

n∑

m=1

zn−mxm

+k

n−1∑

m=1

yn−mym − yn
[
k(S + L) + (2n− 1)k′

]

+2k′
[ ∞∑

m=n+1

xm +

∞∑

m=n+1

yn +

∞∑

m=n

zm

]
,

n = 1, 2, . . . ,

dzn
dt

= 2k

n∑

m=1

zn−mym − 2zn(kL+ k′n)

+k′
∞∑

m=n+1

(2zm + ym), n = 0, 1, 2, . . . ,

where

S =

∞∑

m=1

ym + 2

∞∑

m=0

zm

and

L =

∞∑

m=1

(ym + 2xm) ,

subject to the initial conditions x1(0) = a, xn(0) = 0
(n = 2, 3, . . .), yn(0) = 0 = zn(0) (n = 1, 2, . . .), z0 = b,
with k and k′ being nonnegative constants, can be solved
by a combinatorial method.

The problem we pose is to generate the combina-
toric solution via direct methods applied to equations one
through three.

SIAM 76-14. by L. Carlitz
The following formulas appear in an earlier paper:

m∑

i=0

n∑

j=0

(−1)i+j

(
m
i

)2(n
j

)2
(
m+n
i+j

) = δmn,

min(i,j,k)∑

r=0

(
i
r

)(
j
r

)(
k
r

)
(
i+j+k
r

) =
(j + k)!(k + i)!(i+ j)!

i!j!k!(i+ j + k)!
.

Simpler proofs of these would be desirable.

SIAM 76-21. by P. Barrucand
Define the polynomials {pn(x,m, γ)} by the generating

function
∑

pn(x,m, γ)tn =
exp(xt)

[Γ(1 + γ + t)]m
,

m positive integer, γ > −1.
Prove that for every n, all the zeros of pn(x) are real

and give an asymptotic formula for the lesser-in-modulus
(i.e., the greater) negative zeros.

SIAM 77-5. by M. L. Glasser
Let

S(r) =

∞∑

k=1

(−1)k+1 sinh y csch ky
(
y = cosh−1 r

)
.

Prove whether or not S(r) is monotone between S(1) = log 2
and S(∞) = 1.

SIAM 77-14. by G. K. Kristiansen
Let P = {prs} be a symmetric matrix having
(1) prs = 0 for |r − s| > 1 and prs > 0 otherwise,
(2) spectral radius 1, and
(3) ps−1,s + ps+1,s ≤ 1 for all s.

Denote by eT the 1× n matrix with all entries 1, and let

I = {δrs}
be the n × n unit matrix. Let c be a nonnegative n × 1

matrix with eT c = 1. Prove or disprove that the matrix

F =
(
I − ceT

)
P

has spectral radius at most equal to 1. If a counterexample
is found, try to minimize the order n.
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SIAM 78-1. by J. S. Lew
Let (x, y) be an arbitrary point of the Euclidean unit

disc D, let a(p;x, y) denote the average lp distance to a ran-
dom disc point (u, v), and let b(p; r) denote the rotational
average of this function a(p;x, y):

D =
{

(x, y) : x2 + y2 ≤ 1
}
,

a(p;x, y) =

∫ ∫

D

{
|x− u|p + |y − v|p

}1/p
du dv/π,

b(p; r) =

∫ 2π

0

a(p; r cos θ, r sin θ) dθ/(2π).

To measure the deviation from this average, we introduce
the ratio of these quantities and we consider its extrema on
the disc:

c(p;x, y) = a(p;x, y)/
[
b
(
p;
√
x2 + y2

)]
,

λ(p) = inf {c(p;x, y) : (x, y) ∈ D} ,
µ(p) = sup {c(p;x, y) : (x, y) ∈ D} .

Conjecture: λ(p) ↑ 1 and µ(p) ↓ 1 as either p ↑ 2 or
p ↓ 2.

SIAM 78-4. by C. L. Mallows
Find the symmetric cumulative distribution function

G(x) satisfying dG(0) = α, 0 < α < 1 that minimizes the
integral

If =

∫ ∞

−∞

(
f ′(x)

)2
f(x)

dx,

where f(x) is the convolution

f(x) =

∫ ∞

−∞
φ(x− u) dG(u),

with φ(u) the standard Gaussian density

φ(u) = (2π)−1/2 exp
[
−1

2
u2
]
.

It is believed that G is a step function, so that

f(x) =
∑

pjφ
(
x− gj

)
,

with g−j = −gj , p−j = pj > 0, p0 = α.

SIAM 78-9. by W. Aiello and T. V. Narayana
Suppose we assign positive integer weights to the vote

of each member of a board of directors that consists of n
members so that the following conditions apply:

(1) Different subsets of the board always have differ-
ent total weights so that there are no ties in voting (tie-
avoiding).

(2) Any subset of size k will always have more weight
than any subset of size k− 1 (k = 1, . . . , n) so that any ma-
jority carries the vote, abstentions allowed (nondistorting).

A solution is given in Table 1 below for n = 1, . . . , 7
that can be extended very easily from any n to n + 1. It
is conjectured that this is a minimal dominance solution.
Here, an increasing sequence (y1, . . . , yn) is said to dominate
another increasing sequence (x1, . . . , xn) if yi ≥ xi (i =
1, . . . , n). So a solution (x1, . . . , xn) is minimal dominant
if no other solution (y1, . . . , yn) exists such that xi ≥ yi
(i = 1, . . . , n). The underlined values along the diagonal of
vector elements are the In values, where:

I1 = I2 = 1 and I2n+1 = 2In,

I2n+2 = 2I2n+1 − In.

SIAM 78-13. by T. D. Rogers

Given n points distributed uniformly in the unit circle,
with n > 2, associate with each such point the region in
the circle whose points are closer to it than the remaining
n − 1 a priori given points. If A1 ≤ A2 ≤ · · · ≤ An is the
ordered enumeration of the areas of these regions, what are
the expected values of the Ai’s?

SIAM 79-1. by I. Lux

Let V be an arbitrary three-dimensional spatial region.
Let P = (r, ω), a six-dimensional phase space point, where
r ∈ V and ω is a directional unit vector. Define a function
Mλ(P ) through the following integral equation

Mλ(P ) = 1− e−D +
λ

4π

∫ D

0

e−λx dx
∫
Mλ

(
P ′
)
dω′

where P ′ =
(
r + xω, ω′

)
, λ is an arbitrary but positive

parameter, D is the distance between the point r and the
boundary of V along the direction ω and the integral over
dω′ is a double integral over the surface of a unit sphere.
Prove or disprove that

d

dλ
Mλ(P )

]
λ=1
≥ 0.

SIAM 79-4. by K. L. McAvaney

For positive integer n, maximize the number of n × n
matrices each containing all of 1, 2, . . . , n2 such that any
two entries appear simultaneously in at most one row of all
the matrices.

SIAM 79-6. by L. B. Klebanov

Let f(x), g(x) be two probability densities on R1 with
g(x) > 0. Suppose that the condition

∫ ∞

−∞
(u− c)

n∏

j=1

f
(
xj − u

)
g(u) du = 0

holds for all x1, x2, . . . , xn such that
∑n
j=1 xj = 0 where

n ≥ 3 and c is some constant. Prove that

f(x) =
1√
2πσ

exp

{
− (x− a)2

2σ2

}
.

SIAM 79-16. by D. Singmaster

Determine the resistances R(n, i) between two nodes a
distance i apart in an n-cubical network if all of the edges
are of unit resistance.

SIAM 79-17. by W. R. Utz

Determine an algorithm, better than complete enumer-
ation, for the following problem: Given a nonnegative in-
teger matrix, permute the entries in each column indepen-
dently so as to minimize the largest row sum.

421



Unsolved Problems
Aiello, W. 1975–1979 Zowe, Jochem

AUTHOR INDEXTO
UNSOLVEDPROBLEMS
Proposer Unsolved Problems Proposed
W. Aiello SIAM 78–9
D. J. Allwright CMB P277
C. W. Anderson AMM 6020
J. M. Arnaudies AMM 6181
P. Barrucand SIAM 76–21
David M. Battany AMM 6110
Leonard Carlitz AMM 6214, SIAM 76–14
P. P. Carreras AMM 6029
C. C. Chen AMM 6157
Steven R. Conrad CRUX 339, CRUX 343
John A. Cross AMM E2521
D. E. Daykin AMM 6157, AMM 6190
C. Delisi SIAM 76–12
P. C. T. de Boer SIAM 75–6
Harry Dweighter AMM E2569
Michael W. Ecker CRUX 490
H. M. Edgar AMM 6048, FQ H–260
E. Ehrhart AMM 6089, AMM E2717
Thomas E. Elsner AMM 6124, MM 1007
David W. Erbach AMM 6229
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Glossary
abundant number 1975–1979 magic square

[See also the Notation section beginning on page 3.]

abundant number A positive integer, n, such that
σ(n) > 2n.

alphametic A cryptarithm in which the letters, which
represent distinct digits, form related
words or meaningful phrases.

amicable numbers Two numbers are said to be amicable if
each is equal to the sum of the proper
divisors of the other.

ball A sphere together with its interior.

bijection A one-to-one function.

Caliban puzzle A logic puzzle in which one is asked to
infer one or more facts from a set of given
facts.

Catalan number A member of the sequence 1, 1, 2, 5, 14,
42, 132, . . ., where the nth term Cn equals(

2n
n

)
/(n+ 1).

ceiling function dxe denotes the smallest integer greater
than or equal to x.

centroid The center of mass of a figure. The
centroid of a triangle is the intersection
of the medians.

cevian A line segment extending from a vertex of
a triangle to the opposite side.

Chebyshev polynomials
Tn(x) = cos(n arccosx) and Un(x) =
sin[(n+ 1) arccosx]/ sin(arccosx).

circumcenter The circumcenter of a triangle is the center
of the circumscribed circle.

circumcircle The circle circumscribed about a figure.

coprime Integers m and n are coprime if
gcd(m,n) = 1.

cryptarithm A number puzzle in which an indicated
arithmetical operation has some or all of
its digits replaced by letters or symbols
and where the restoration of the original
digits is required. Each letter represents a
unique digit.

cyclic polygon A polygon whose vertices lie on a circle.

deficient number A positive integer, n, such that
σ(n) < 2n.

digimetic A cryptarithm in which digits represent
other digits.

disc A circle together with its interior.

Diophantine equation
An equation that is to be solved in
integers.

dodecahedral number
A number of the form
n(27n2 − 27n+ 6)/6.

domino Two congruent squares joined along an
edge.

escribed circle An escribed circle of a triangle is a circle
tangent to one side of the triangle and to
the extensions of the other sides.

excenter The center of an excircle.

excircle An escribed circle of a triangle.

exradius An exradius of a triangle is the radius of
an escribed circle.

Farey sequence The sequence obtained by arranging in
numerical order all the proper fractions
having denominators not greater than a
given integer.

Fermat number A number of the form 22n + 1.

Fibonacci number A member of the sequence 0, 1, 1, 2, 3,
5 . . . where each number is the sum of the
previous two numbers.

floor function bxc denotes the largest integer less than or
equal to x.

focal radius A line segment from the focus of an ellipse
to a point on the perimeter of the ellipse.

geoboard A flat board into which nails have been
driven in a regular rectangular pattern.
These nails represent the lattice points in
the plane.

Gergonne point In a triangle, the lines from the vertices to
the points of contact of the opposite sides
with the inscribed circle meet in a point
called the Gergonne point.

gnomon magic square
A 3× 3 array in which the elements in each
2× 2 corner have the same sum.

golden ratio (1 +
√

5)/2.

golden rectangle A rectangle whose sides are in the golden
ratio.

harmonic mean The harmonic mean of two numbers a and
b is 2ab

a+b .

hexagonal number A number of the form n(2n− 1).

hexomino A six-square polyomino.

Heronian triangle A triangle with integer sides and integer
area.

homeomorphism A one-to-one continuous transformation
that preserves open and closed sets.

homomorphism A function that preserves the operators
associated with the specified structure.

incenter The incenter of a triangle is the center of
its inscribed circle.

incircle The circle inscribed in a given figure.

isogonal conjugate Isogonal lines of a triangle are cevians
that are symmetric with respect to the
angle bisector. Two points are isogonal
conjugates if the corresponding lines to the
vertices are isogonal.

isotomic conjugate Two points on the side of a triangle are
isotomic if they are equidistant from the
midpoint of that side. Two points inside
a triangle are isotomic conjugates if the
corresponding cevians through these points
meet the opposite sides in isotomic points.

L-tetromino A tetromino in the shape of the letter L.

lattice point A point with integer coordinates.

Legendre polynomials
Pn(x) = 1

2nn!
dn

dxn (x2 − 1)n.

Lucas number A member of the sequence 2, 1, 3, 4, 7 . . .
where each number is the sum of the
previous two numbers.

magic square A square array of n numbers such that the
sum of the n numbers in any row, column,
or main diagonal is a constant (known as
the magic sum).
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Glossary
Malfatti circles 1975–1979 zeta function

Malfatti circles Three equal circles that are mutually
tangent and each tangent to two sides of
a given triangle.

medial triangle The triangle whose vertices are the
midpoints of the sides of a given triangle.

Mersenne number A number of the form 2n − 1.

Mersenne prime A Mersenne number that is prime.

monic polynomial A polynomial in which the coefficient of
the term of highest degree is 1.

monochromatic triangle
A triangle whose vertices are all colored
the same.

Nagel point In a triangle, the lines from the vertices to
the points of contact of the opposite sides
with the excircles to those sides meet in a
point called the Nagel point.

nine point center In a triangle, the circumcenter of the
medial triangle is called the nine point
center.

nonagonal number A number of the form n(7n− 5)/2.

orthic triangle The triangle whose vertices are the feet of
the altitudes of a given triangle.

orthocenter The point of intersection of the altitudes of
a triangle.

palindrome A positive integer whose digits read the
same forward and backwards.

palindromic A positive integer is said to be
palindromic with respect to a base b if its
representation in base b reads the same
forward and backwards.

pandiagonal magic square
A magic square in which all the broken
diagonals as well as the main diagonals add
up to the magic constant.

pandigital A decimal integer is called pandigital if it
contains each of the digits from 0 to 9.

Pascal’s triangle A triangular array of binomial coefficients.

pedal triangle The pedal triangle of a point P with
respect to a triangle ABC is the triangle
whose vertices are the feet of the
perpendiculars dropped from P to the sides
of 4ABC.

Pell number The nth term in the sequence 0, 1, 2, 5,
12, . . . defined by the recurrence: P0 = 0,
P1 = 1, and
Pn = 2Pn−1 + Pn−2.

pentagonal number A number of the form n(3n− 1)/2.

pentomino A five-square polyomino. (The name
pentomino is a registered trademark of
Solomon W. Golomb.)

perfect number A positive integer, n, such that
σ(n) = 2n.

polyomino A planar figure consisting of congruent
squares joined edge-to-edge.

primitive Pythagorean triangle
A right triangle whose sides are relatively
prime integers.

pronic number A number of the form n(n+ 1).

Pythagorean triangle
A right triangle whose sides are integers.

Pythagorean triple An ordered set of three positive integers
(a, b, c) such that a2 + b2 = c2.

repdigit An integer all of whose digits are the same.

repunit An integer consisting only of 1’s.

rusty compass A pair of compasses that are fixed open in
a given position.

skeleton division A long division in which most or all of the
digits have been replaced by asterisks to
form a cryptarithm.

square number A number of the form n2.

Stirling numbers
{
n
k

}
are Stirling numbers of the second

kind.
[
n
k

]
are Stirling numbers of the first

kind.
xn =

∑
k

[
n
k

]
xk and xn =

∑
k

{
n
k

}
xk.

symmedian Reflection of a median of a triangle about
the corresponding angle bisector.

symmetric function Function of n variables whose value given n
arguments does not depend on the order of
the arguments.

tetrahedral number A number of the form n(n2 + 3n+ 2)/6.

tetration Multiplication is iterated addition,
exponentiation is iterated multiplication,
and tetration is iterated exponentiation.

tetromino A four-square polyomino.

trapezium A quadrilateral in which no sides are
parallel.

trapezoid A quadrilateral in which two sides are
parallel.

triangular number A number of the form n(n+ 1)/2.

tromino A three-square polyomino.

unimodal A finite sequence is unimodal if it first
increases and then decreases.

unimodular A square matrix is unimodular if its
determinant is 1.

unitary divisor A divisor d of c is called unitary if
gcd(d, c/d) = 1.

unit fraction A fraction 1/d with d an integer.

X-pentomino A pentomino in the shape of the letter X.

zeta function ζ(s) stands for the Riemann Zeta Function:
ζ(s) =

∑∞
n=1 1/ns.
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KEYWORD  INDEX
Use this section to

• find problems that contain a specific word or phrase
• locate problems related to a given topic.

This section lists most words and two-word phrases that appear in the problems covered by this book, and also
lists all words used to classify these problems.  Look up a word or phrase and then you will find the references to
those problems or classifications that contain this word or phrase.

The problem references look like

or

where

JNL
CONTEST
year

and
number

JNL number

CONTEST year/number

is the journal abbreviation
is the abbreviation for the contest
is the year of the contest

is the problem number.

If several consecutive problem references are from the same journal, the journal (or contest) abbreviation is listed
just once, followed by the list of problem numbers.

The classification references look like

where

SUB is the abbreviation for the primary subject in the classification containing the keyword
subject 2 is the second subject in the classification containing the keyword, if such precedes

the keyword in that classification
subject 3 is the third subject in the classification containing the keyword, if such precedes

the keyword in that classification
and

[x] is the number of problems having this particular classification, when that number is
greater than one.  (The case [1] is suppressed.)

To find the text for problems referenced by classification, look up the appropriate subsection in the Subject
Index (beginning on page 15) pertaining to that classification.  Here are the primary subject abbreviations:

RM = Recreational Mathematics
ST = Set Theory
SG = Solid Geometry
T = Topology
TR = Trigonometry

AL = Algebra
AN = Analysis
AM = Applied Mathematics 
C = Combinatorics
G = Geometry

GT = Game Theory
HA = Higher Algebra
LA = Linear Algebra
NT = Number Theory
P = Probability
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Each problem appearing in this book is listed just once in the subject index under its primary classification. The
keyword index can help you locate a problem from a given topic when that topic is a secondary classification for
the problem. Pick a keyword that is either likely to occur in the problem or accurately describes a particular aspect
of that problem, and then look it up in this keyword index.

Uninteresting words such as “the”, “like”, “of”, “that”, “each”, “is”, etc. have been suppressed from the listing.
Important mathematical words that occur more than 50 times are listed in the keyword index but the references
are suppressed. For example, it would serve no purpose to list all 693 problems that contain the word “triangle”.
You should consult a narrower term such as “scalene triangle”.

To save space, two-word phrases are usually listed only under the first word. Thus “regular pentagon” is listed
under “regular” but not under “pentagon”. Thus, you should look up the narrowest term first associated with a topic
you are interested in. If that does not occur, then try a broader term.

See also:

• the Subject Index to find problems concerning a given topic
• the Title Index to search for keywords in the title of a problem.
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Keyword Index
0 1975–1979 9

0 INT/digit problems/consecutive digits [4]
0-1 matrices IC/arrays

IC/sets/determinants
ILA/matrices
INT/determinants

0-1 numbers INT/digit problems/multiples
INT/digit problems/squares
INT/forms of numbers/

decimal representations
INT/irrational numbers
INT/palindromes

0-dimensional sets
IT/metric spaces/Hausdorff metric

1 INT/twin primes/digit problems
1-dimensional board

IGT/board games
1 parameter IAL/functional equations
1 person IAL/age problems/different times [4]
1 pile IGT/nim variants
1 urn IC/urns
1 variable IAL/exponential equations

IAL/polynomial divisibility [2]
IAL/polynomial divisibility/degree 4
IAL/polynomial divisibility/degree 5
IAL/polynomial divisibility/degree 81

2 IRM/alphametics/doubly true
2 balls IG/billiards/rectangles

IG/billiards/triangles
2 boxes IP/game theory/selection games
2 circles IG/analytic geometry/circles [3]

IG/circles
IG/circles/chords
IG/constructions/circles

2 coins IP/game theory/coin tossing
2-digit numbers INT/arithmetic progressions/primes

INT/base systems/digit reversals [2]
2-dimensional IP/stochastic processes
2 ladders IG/ladders
2 parameters IAL/functional equations
2 people IAL/age problems/different times [7]
2 points IG/triangle inequalities/sides

IP/geometry/point spacing
2 quarries IAN/pursuit problems
2-sphere IAN/curves/simple closed curves
2 squares IG/squares
2 triangles IG/triangles

IG/triangles/area
ISG/triangles/n-dimensional geometry [3]

2 urns IC/urns
2 variables IAL/exponential equations

IAL/polynomial divisibility
IAL/polynomials/complex polynomials
IAL/systems of equations [2]
IAN/power series
INT/Diophantine equations/degree 2 [2]
INT/Diophantine equations/degree 3
INT/Diophantine equations/exponential
INT/divisibility/polynomials [4]
INT/equations
INT/polynomials
INT/sets/polynomials

3 INT/continued fractions/radicals
INT/polygonal numbers/octagonal numbers

3 circles IG/analytic geometry/circles
IG/circles
IG/locus/circles
ISG/paper folding/circles

3 classes IC/configurations/mutual acquaintances
3 coins IP/coin tossing [2]
3-digit numbers INT/base systems/digit reversals
3 factors INT/factorizations
3 lines IG/points in plane/parallel lines

ISG/maxima and minima/lines [6]
3 parameters IAL/functional equations

3 people IAL/age problems/different times
IAL/age problems/sum and product
IP/birthdays
IP/jury decisions

3 piles IGT/nim variants
3 players IP/gambler’s ruin [2]
3 points IG/analytic geometry/ellipses

IG/parabolas
IG/triangles/circles [3]

3 sets IG/dissection problems/
partitions of the plane

3-sphere IAN/curves/simple closed curves
3 triangles IG/dissection problems/right triangles

IG/triangles [9]
3 variables IAL/exponential equations

IAL/systems of equations
INT/polynomials

3x1 trominoes IRM/polyominoes/maxima and minima
IRM/polyominoes/tiling

3x3 arrays INT/arrays
3x3 board IRM/chessboard problems/probability
3x3 magic squares

IRM/magic configurations/magic squares
3x3 matrices ILA/eigenvalues/diagonal matrices

IP/number theory/divisibility
4 IRM/alphametics/doubly true
4 circles IG/circles

IG/squares/circles
4 couples IC/configurations/mutual acquaintances
4-cube IG/n-dimensional geometry/4-space
4 cylinders ISG/cylinders/cubes
4-digit numbers INT/base systems/digit reversals
4 digits INT/digit problems/digit reversals
4 items IAL/weights/balance scales
4 numbers INT/divisibility/consecutive integers

INT/greatest common divisor [2]
4 planes IG/combinatorial geometry/planes
4 points IG/points in plane/distances

IG/simple closed curves/distance [3]
ISG/points in space/angles
ISG/points in space/inequalities

4-space IG/n-dimensional geometry
4 squares INT/forms of numbers/sum of squares
4 variables IAL/systems of equations
4x4 arrays IC/arrays/symmetric arrays

IRM/puzzles/sliding tile puzzles
4x4 board IGT/tic-tac-toe variants
4x4 determinants

ILA/determinants/evaluations
INT/determinants/solution of equations [2]

4x4 magic squares
IRM/magic configurations/magic squares

4x4 matrices IHA/groups/transformations
INT/digit problems/matrices

5 INT/sum of powers/divisibility
IRM/alphametics/doubly true

5 items IAL/weights/balance scales
5 planes IG/combinatorial geometry/planes
5 points IC/geometry/concyclic points [2]

IG/points in plane/distances
IG/point spacing/distance [2]

5 variables IAL/systems of equations
5x5 arrays IC/arrays/binary arrays

IC/arrays/maxima and minima
6 discs IG/discs
6 people IAL/age problems/different times
6 variables IAL/systems of equations
7 INT/digit problems/digital roots

IRM/alphametics/doubly true
7 points IG/point spacing/distance
8 INT/polygonal numbers/octagonal numbers

IRM/alphametics/doubly true
9 INT/composite numbers/geometric series [3]

IRM/alphametics/doubly true
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9 people 1975–1979 adjacency matrix

9 people IG/cake cutting
10 IRM/alphametics/doubly true
10-digit numbers

INT/factorizations
10 numbers INT/divisibility/consecutive integers
10 squares IG/tiling/squares
11 IRM/alphametics/doubly true
11-digit numbers

INT/factorizations
12 IRM/alphametics/doubly true
13-gons IG/polygons
13 items IAL/weights/balance scales
13 variables IAL/systems of equations
17 degree angle IG/dissection problems/angles
17-gons IG/polygons
17 items IAL/weights/balance scales
17 people IC/configurations/mutual acquaintances
18 INT/twin primes/sums
20 IRM/alphametics/doubly true
20 degree angle IG/triangles/isosceles triangles
24 IRM/alphametics/doubly true
25 INT/forms of numbers/unit fractions
28-digit numbers

INT/factorizations
30 IRM/alphametics/doubly true [2]
30 degree angle IG/triangles

IG/triangles/isosceles triangles
36 IAL/age problems/sum and product
41 IRM/alphametics/doubly true
49 IRM/alphametics/doubly true
50 IRM/alphametics/doubly true
51 INT/sets/divisibility
52 INT/sets/divisibility
56 IRM/alphametics/doubly true
60 IRM/alphametics/doubly true [3]
60 degree angle IG/constructions/angles

IG/triangles
INT/triangles

61 IRM/alphametics/doubly true
64 IRM/alphametics/doubly true
70 IRM/alphametics/doubly true
75 numbers IP/bingo
80 IRM/alphametics/doubly true
90 IRM/alphametics/doubly true
100 IRM/alphametics/doubly true
100 degree angle

IG/triangles/isosceles triangles
120 degree angle

IG/triangles
INT/triangles

777 INT/base systems/maxima and minima
1000 INT/forms of numbers/

sum of consecutive integers
1000! INT/digit problems/terminal digits
1978 INT/digit problems/terminal digits

INT/square roots/sum of square roots
1979 INT/partitions/maxima and minima

INT/sequences/monotone sequences
IRM/magic configurations/magic squares

4444 INT/digit problems/sum of digits
8888 INT/digit problems/terminal digits
10000! INT/digit problems/factorials
abelian group AMM 6011 6119 6204 6216 6221 E2574

MM Q612
IHA/binary operations/inequalities
IHA/groups

Abel’s theorem IAN/power series
absent-minded PARAB 363
absolute AMM 6249 E2702 FQ B-361 JRM 376

MM 953 1045 PUTNAM 1979/B.6
SIAM 77-15 SSM 3737

absolute differences
IAN/series/monotone sequences
IC/permutations/finite sums
INT/arrays/3x3 arrays

absolute value IAL [2]
IAL/complex numbers/inequalities
IAL/inequalities
IAL/inequalities/finite sums
IAL/inequalities/logarithms
IAN/integral inequalities/

complex variables [3]
absolutely AMM 6029 E2591
absorb AMM E2636
abundant number AMM 6138

INT
accelerate JRM 730 C5 PARAB 353
acceleration AMM E2535 FUNCT 3.5.2 NAvW 450 468

PME 343 SPECT 8.2
acceptance PME 403
accessible AMM S4 CRUX 334 PME 382
accident AMM 6146
accidental CRUX 433 JRM 715
accommodate CRUX 282 429
accomplished PME 460
according AMM 6031 6032 6151 6196 E2645 CRUX 16

JRM 469 554 656 C4 PARAB 292 325
PENT 278 300 SSM 3783

account JRM 510 703 C9
accountant OMG 18.2.3
accuracy AMM E2533 JRM 530 C7
accurate MM Q627 OMG 18.3.5 PUTNAM 1975/A.2
ace JRM 443 601 PARAB 427 USA 1975/5
achieve FUNCT 2.2.2 JRM 389 425 680 737
Ackermann function

INT/recurrences/modular arithmetic
acoustics IAM
acquainted AMM 6094 PARAB 278
acre CRUX 1
acronym PME 350
across CMB P244 CRUX 193 244 JRM 473 529

704 793 MM 1086 OSSMB 75-15 PENT 314
TYCMJ 89

acute CRUX 18 29 322 PS4-3 MSJ 494 NAvW 472
OSSMB 79-4 G76.1-6 G79.2-5 PME 351
SSM 3703

acute angle OSSMB G79.2-8
acute triangle CRUX 270 MM Q654 NAvW 425 480

PARAB 435 PUTNAM 1975/A.6 SSM 3669
TYCMJ 74

IG/dissection problems/triangles [6]
IG/triangles/altitudes
INT/triangles/60 degree angle
IP/selection problems/points
ISG/plane figures/triangles

addictive JRM 453
addition AMM 6068 E2713 JRM 557 684

MM 927 Q619 NAvW 477 OSSMB 77-1
79-8 PENT 311 PME 348 402
PUTNAM 1975/B.1 SSM 3575 3576 3591
3593 3670 3691 3723 3780 3783 TYCMJ 43
81

INT/arithmetic operations
IRM/cryptarithms/skeletons [6]

additive AMM 6113 6256 6263 CRUX 359 ISMJ 13.9
MM 935 MSJ 430 PUTNAM 1975/B.1

additive functions
ILA/vector spaces

address PENT 314
addressed FUNCT 3.4.3
adjacency AMM E2795
adjacency matrix NAvW 527
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adjacent 1975–1979 angle

adjacent AMM 6189 6192 E2612 E2795
AUSTRALIA 1979/3 CRUX PS3-2
IMO 1979/6 JRM 480 501 531 566 569
572 679 702 709 C3 C6 MM 952 Q654
NAvW 527 NYSMTJ 79 OMG 15.2.2
OSSMB 75-2 G78.2-5 PARAB 311 406
PME 434 SIAM 75-12 TYCMJ 147

adjacent cards IP/cards

adjacent entries IRM/magic configurations/magic squares

adjectives IRM/words

adjoin CRUX 495 JRM 396 587 MSJ 468
PARAB 431

adjoint AMM 6222 CMB P246 P272

IAN/Banach spaces/
continuous linear operators

ILA/matrices [2]

admissible NAvW 509 PUTNAM 1978/B.6

admission JRM 675

adult CRUX 409

adventitious triangles
IG/triangles

affine AMM 6098 6158 E2779

affine spaces ILA

affine transformations
IG

Africa IRM/alphametics/places [2]

aft JRM 375

afternoon PARAB 266

age CRUX 329 452 FUNCT 3.1.6 JRM 393 500
655 659 699 794 MATYC 135 MSJ 437
OMG 17.3.4 OSSMB 78-10 PARAB 262 309
332 PENT 314

age problems IAL

INT/polynomials

air PARAB 295 SPECT 7.1

airplane PARAB 305

alarm JRM 770a

Albert IRM/alphametics/names [4]

algebra AMM 6068 6097 6124 6169 6228 6256 6277
CMB P253 NAvW 534 PENT 281 283

IAN/functional analysis/Hilbert spaces

IHA

algebraic AMM 6029 6043 6066 6119 6258 6268 E2616
CRUX 300 NAvW 435 PENT 285

algebraic extensions
IHA/fields/extension fields

algebraic number fields
IHA/fields/subfield chains

IHA/fields/subfields

algebraic numbers
IAN/functions/transcendental functions

algorithm AMM 6163 CRUX 231 355 FUNCT 3.3.3
JRM 513 739 MATYC 85 OSSMB 79-6
SIAM 76-7 79-17 SPECT 10.9 SSM 3700
3703

IAL

IAM/navigation/rivers

IC [2]

IG/paper folding

IG/triangles/circumcircles

IHA/groups/finite groups

INT

INT/Fibonacci numbers

IRM/mazes

alive JRM 655

Alladi IRM/alphametics/names [24]

alley JRM 793 PME 413

almost perfect numbers
INT/sum of divisors

alphabet AMM 6146 JRM 740 PARAB 341
IRM/cryptarithms

alphametic [238 references]
IGT/Mastermind/cryptarithms
IRM
IRM/words/anagrams

alternate CANADA 1978/5 CRUX 345 FUNCT 2.1.1
ISMJ 14.5 JRM 372 373 390 501 539 558 572
648 682 709 MM 925 1051 Q647 MSJ 448
NAvW 404 405 OSSMB 75-2 78-15 79-15
79-17 PARAB 281 PME 342 379 438 461

alternating AMM 6137 FQ H-297 OMG 17.2.4
SIAM 76-1

alternating groups
IHA/groups

alternating series
IAL/finite sums/fractions
INT/series
INT/series/binomial coefficients
INT/series/divisibility
INT/series/sum of squares
INT/series/unit fractions

altitude AMM E2687 CRUX 46 192 218 394 JRM 504
562 MM 936 MSJ 456 NAvW 424 513 525
NYSMTJ 50 92 PARAB 289 PME 351 425
SSM 3652 3733 TYCMJ 61 74 110

IG/constructions/triangles
IG/triangle inequalities
IG/triangles
IG/triangles/30 degree angle
IG/triangles/isosceles triangles
IG/triangles/line segments
ISG/tetrahedra

amazed JRM 563
ambiguous MM 940
ambulance SIAM 75-8

IP/transportation
America IRM/alphametics/places
amidship JRM 375
anagram JRM 751

IRM/alphametics/words
IRM/words

analogy AMM 6092 CRUX 464 MM 1043 PME 448
SSM 3699

analytic AMM 6045 6071 6166 CRUX 60 NAvW 534
OSSMB G75.2-2

analytic functions
IAN/complex variables
IAN/complex variables/inequalities
IAN/functional analysis/Banach algebras [3]
IAN/location of zeros/complex variables

analytic geometry
IG
ISG [4]

analytical CRUX 119 JRM 786
analyze SIAM 76-16
ancestors FQ B-304

INT/Fibonacci numbers
anchored MM 1056
ancient ISMJ J10.17
Angkor JRM 396
angle [192 references]

IAL/clock problems/time computation
IAN/rate problems/maxima and minima
IG/constructions
IG/constructions/lines [13]
IG/dissection problems
IG/locus
IG/maxima and minima
IG/non-Euclidean geometry/locus
IG/points in plane/triangles
IG/polygons/equilateral polygons
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angle 1975–1979 area

IG/squares
IG/triangle inequalities
IG/triangle inequalities/centroids
IG/triangles/special triangles
ISG/maxima and minima
ISG/paper folding
ISG/points in space

angle between diagonals
IG/parallelograms/trigonometry

angle bisector AMM E2538 S23 CRUX 141 168 423 454
MM 936 998 1054 Q646 MSJ 434 PME 346
374 421 USA 1979/2

IG/circles/2 circles [2]
IG/constructions
IG/constructions/triangles
IG/quadrilaterals
IG/triangles [16]
IG/triangles/60 degree angle
IG/triangles/circumcircles
IG/triangles/isosceles triangles
ITR/triangles/sin

angle bisectors and medians
IG/triangle inequalities

angle bisectors extended
IG/triangle inequalities

angle measures IG
IG/ladders
IG/paper folding/squares
IG/right triangles
IG/triangles
IG/triangles/erected figures
IG/triangles/isosceles triangles

angle relations IG/triangles/special triangles
angle trisectors IG/triangles
angles and radii IG/triangle inequalities
angles and sides IG/triangle inequalities [2]
angular MM 955 MSJ 501 OSSMB G76.3-3
angular velocity NAvW 468 PME 436

IAM/physics/solid geometry [11]
animal OMG 17.1.9 18.1.9

IRM/alphametics
anniversary JRM 699
annulus AMM E2616 CRUX 130 405

IG/point spacing/containing figures
IP/geometry/point spacing

ant CRUX 499 SSM 3781
antichain AMM 6220
anticommutative AMM 6263
antifreeze ISMJ 12.7 OMG 17.3.1
antiprism SSM 3693
Anton IRM/alphametics/names
apex AMM E2694 SPECT 10.2
Apollonian triples

IG/analytic geometry/circles
appetite PME 382
apple CRUX 11 12 MSJ 432 PARAB 376
application JRM 505 737 NAvW 527
apprentice JRM 630
approach AMM 6053 E2585 E2692 DELTA 5.2-1 6.1-1

JRM 445 730 766 OSSMB G79.1-1
approximate CRUX 202 436 FUNCT 1.2.7 JRM 786

MM 955 NAvW 425 OMG 15.3.6 16.1.2
PME 375 460 SSM 3690 TYCMJ 119

approximation AMM 6125 E2693 S4 CRUX 207 355 436
FQ B-404 B-405 FUNCT 1.1.10 JRM 786
PME 460 SIAM 78-17 SSM 3690

IAL/metric conversions/miles and kilometers
IAL/radicals
IAN/complex variables/polynomials
IAN/sequences/convergence
IG/triangles/circumcircles
ILA/eigenvalues
ILA/matrices/norms
INT [3]

INT/digit problems/leading digits
INT/irrational numbers
INT/least common multiple/

consecutive integers
INT/powers/radicals
INT/series/digit problems
ISG/paper folding/angles
ITR

arbitrary signs IAN/series/pairs of sequences
arc AMM 6007 6074 6280 E2564 E2565

E2646 S19 CANADA 1975/5 CRUX 141
220 225 284 386 420 428 466 FQ B-415
ISMJ 13.10 J10.14 JRM 562 MATYC 134
MM 926 981 MSJ 451 NAvW 558
OSSMB 75-5 PARAB 340 PENT 317
PME 362 SIAM 78-17 SSM 3695 3710 3724
USA 1979/2

IAN/measure theory
IAN/sets/plane sets
IC/coloring problems
IG/circles

arch SSM 3695
architecture IAM/engineering
arclength IAN/functions/monotone functions

IAN/rate problems/maxima and minima
ISG/curves

arcsin ITR/numerical evaluations/cos
arcsin and arccos

ITR/calculator problems/arctan [3]
ITR/identities/

inverse trigonometric functions
arctan IAN/integrals/evaluations

ITR/approximations [41]
ITR/calculator problems
ITR/identities/constraints
ITR/infinite series
ITR/solution of equations

area [183 references]
IAN/integrals
IG/analytic geometry/polar curves
IG/circles
IG/circles/2 circles
IG/circles/4 circles
IG/circles/arcs
IG/constructions/rectangles
IG/convexity
IG/convexity/inequalities
IG/cyclic quadrilaterals
IG/dissection problems/squares
IG/envelopes
IG/equilateral triangles/interior point
IG/hexagons/circumscribed decagon
IG/hyperbolas/tangents
IG/inequalities
IG/isosceles right triangles/squares
IG/lattice points/ellipses
IG/maxima and minima/isosceles triangles
IG/maxima and minima/line segments
IG/maxima and minima/quadrilaterals
IG/maxima and minima/rectangles
IG/maxima and minima/triangles
IG/octagons/cyclic octagons
IG/octagons/equiangular octagons
IG/parallelograms
IG/pentagons
IG/point spacing/nearest point
IG/polygons/convex polygons
IG/quadrilaterals
IG/quadrilaterals/diagonals
IG/quadrilaterals/maxima and minima
IG/quadrilaterals/triangles
IG/rectangles
IG/regular octagons/diagonals
IG/regular polygons/limits [2]
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area 1975–1979 automated warehouse

IG/right triangles/erected figures
IG/simple closed curves/maxima and minima
IG/squares/erected figures
IG/squares/limits
IG/stars [4]
IG/triangle inequalities/sides
IG/triangles
IG/triangles/3 triangles
IG/triangles/escribed circles [2]
IG/triangles/inscribed triangles
IG/triangles/line segments [4]
IG/triangles/trisected sides
INT/Pythagorean triples
INT/triangles
INT/triangles/counting problems
ISG/analytic geometry/ellipsoids

area and perimeter
IG/maxima and minima/triangles
IG/rectangles [14]
IG/triangle inequalities/sides
INT/Pythagorean triples
INT/triangles
INT/triangles/isosceles triangles
INT/triangles/obtuse triangles
IP/geometry/rectangles
ITR/triangles/csc and cot

area equals perimeter
INT/geometry/cyclic quadrilaterals
INT/rectangles

arena CANADA 1979/4 JRM 395
Argand plane IG/combinatorial geometry/

equilateral triangles
arithmetic [54 references]
arithmetic mean

IAN/limits
INT/divisors
INT/forms of numbers/sum of two squares
INT/recurrences/inequalities
INT/recurrences/limits
INT/sets [3]
INT/twin primes
ITR/inequalities/sin

arithmetic operations
INT

arithmetic progressions
IAL/finite sums
IAL/functional equations/1 parameter
IAL/radicals
IAL/sequences
IAL/theory of equations/roots [5]
IC/sequences/binary sequences
IG/perspective drawings/railroad tracks
IG/triangles/special triangles
INT
INT/algorithms [2]
INT/binomial coefficients
INT/continued fractions/evaluations
INT/digit problems
INT/digit problems/primes
INT/Diophantine equations/degree 3 [3]
INT/forms of numbers/difference of squares
INT/primes
INT/Pythagorean triples [2]
INT/rational numbers/finite sequences
INT/series [2]
INT/sets
INT/sets/partitions [2]
INT/sets/sum of elements
IRM/magic configurations/magic squares [2]
ITR/triangles/tan and cot

arithmetical AMM S3 NAvW 558
armies IAL/uniform growth
arms CRUX 387

Armstrong number
INT/digit problems/sum of powers

army CRUX 402
arrange AMM 6189 E2595 S4 CRUX 326 328

FUNCT 3.1.5 ISMJ 12.31 14.17 JRM 391
426 427 443 513 531 533 566 593 751 768
KURSCHAK 1979/3 MM 972 999 1021
1061 MSJ 426 OMG 18.1.3 OSSMB 76-13
76-14 76-16 77-11 79-13 PARAB 301 339 420
PME 434 SPECT 11.8 SSM 3630 3650

arrangement AMM S14 CRUX 328 JRM 391 421 468 769
C6 MM 996 MSJ 482 OSSMB 76-3 76-14
76-16 77-11 79-13 SSM 3662

array AMM 6151 E2534 E2612 CRUX 345
FQ H-254 H-257 H-273 H-275
FUNCT 1.5.2 ISMJ 14.23 JRM 372 373 703
KURSCHAK 1979/3 MM 1061 MSJ 430
OSSMB 76-16 PARAB 329 SSM 3629 3632
TYCMJ 89

IAN/series
IC [4]
IC/algorithms
IC/cards
IC/lattice points/labeled lattice points
IGT/selection games
INT [34]
INT/Fibonacci and Lucas numbers
INT/Pell numbers
INT/recurrences
INT/recurrences/

generalized Fibonacci sequences
IP
IRM

arrow ISMJ 13.18 13.23 OMG 16.1.1
arsenal JRM 387
ascending AMM 6134
assemble TYCMJ 89
assembly PME 416
associative AMM 6039 6145 6238 6263
associativity IAN/complex variables/convolutions

IHA/binary operations/finite sets
IHA/groups

asterisk CRUX 401 JRM 669
astounded PENT 311
astrology IRM/alphametics/words
astronaut NYSMTJ 50
astronomical JRM C9
astronomy IAM
asymptote OSSMB G78.3-4 G79.3-3
asymptotic AMM 6016 6020 6144 S3 CRUX 355

FQ B-411 H-287 SIAM 76-3 76-21
asymptotic analysis

IAL/recurrences
IAN/differential equations/order 2
IAN/gamma function
IAN/sequences/inequalities
IAN/sequences/recurrences
INT/Möbius function/series
INT/series/primes

asymptotic expansion
NAvW 456

IAN/integrals
athletic MM 1024 SSM 3617
attached CRUX 181
attack JRM 424 SIAM 75-8
attendance MSJ 431 OMG 18.2.4
attendant ISMJ 11.18 SPECT 9.2
auction JRM 560 MM 944
auditor OMG 18.2.3
auto OSSMB G79.1-1
autological CRUX 61
automated JRM 736
automated warehouse

JRM 736
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automobile 1975–1979 binary relations

automobile CRUX 354 NYSMTJ 81 OSSMB 78-6
G79.1-1

IC/configurations/concyclic points

automorphism AMM 6026 6037 6262 6277 NAvW 435

IC/graph theory/trees

IHA/fields/finite fields

IHA/groups/finite groups

*-automorphisms
IAN/functional analysis/Hilbert spaces

available moves IGT/chess problems/maxima and minima

avenue JRM 796

average AMM E2585 E2636 CRUX 28 373
FUNCT 2.3.5 JRM 419 480 499 509 683
730 MM 1027 NAvW 410 483 OMG 18.1.2
SIAM 75-8 75-12 78-1 TYCMJ 46
USA 1975/5

average distance
IG/ellipses

IG/regular polygons/limits

awake FUNCT 1.3.1 OMG 18.3.1

axiomatizable properties
AMM 6139

IST/symbolic logic

axis AMM 6102 6276 E2542 E2728 CRUX 119
129 233 374 394 FUNCT 1.2.1 JRM 564 603
729 MATYC 104 MM 947 1056 NYSMTJ 46
64 OSSMB G75.2-4 G78.1-3 G78.1-4
G78.2-3 G79.1-3 G79.2-8 PARAB 374
PENT 312 SSM 3706

axis of symmetry
IG/symmetry/center of symmetry

backward JRM 753

bacon AMM 6146

bag FUNCT 3.2.4 JRM 379 OMG 18.2.7 18.3.5

Bain IRM/alphametics/names

baker PME 357 370

balance AMM 6224 CANADA 1976/1 CRUX 123
JRM 448 OMG 17.1.5 TYCMJ 104

balance scales IAL/weights

balanced OSSMB 76-15 PUTNAM 1977/B.3

ball AMM 6091 6224 E2722 E2724 CRUX 117
137 FUNCT 1.2.2 1.2.3 3.2.4 JRM 564 573
MSJ 426 NAvW 440 475 476 OMG 17.2.1
PARAB 295 307 PME 419 SSM 3648

IRM/alphametics/phrases

Banach algebras
IAN/functional analysis

Banach space IAN

IAN/functional analysis

IT

band JRM 444 PARAB 313

Bangkor JRM 396

bank FUNCT 2.1.2 JRM 478 MATYC 123
MM 976 OMG 17.1.5 18.2.3 OSSMB G75.1-5
PARAB 363 427 PME 350 TYCMJ 104

banker JRM 675

bankrupt SPECT 7.4

base 2 INT/digit problems/consecutive digits [3]

base 7 INT/base systems/square roots

base 8 INT/base systems/palindromes

INT/base systems/pandigital numbers

INT/base systems/squares

INT/base systems/triangular numbers

base 11 INT/base systems/squares

base 50 INT/base systems/cubes

base and altitude
INT/triangles

base system INT
INT/digit problems
INT/digit problems/squares
INT/digit problems/sum of cubes [2]
INT/normal numbers
INT/series/digit problems
IP/digit problems
IRM/puzzles/crossnumber puzzles

baseball JRM 441 498
IP/sports

bases AMM E2802 JRM 598 604 616 649 657 677
760 NYSMTJ 59 PME 390 SSM 3618 3743

IAN/functional analysis
IRM/alphametics/phrases
IT/compactifications/

completely regular spaces
bases and diagonals

IG/constructions/trapezoids
basis AMM 6268 6278 E2633 ISMJ 13.9 MM 984

NAvW 486 SIAM 78-2
basis-independent NAvW 486
basket CRUX 11 12
basketball OMG 18.2.3
batman JRM 770a
Batman IRM/alphametics/names [2]
battle CRUX 402 JRM 395
beach FUNCT 2.4.1
beads ISMJ 12.4 JRM 740 PARAB 406
bear AMM E2527 E2651 PME 447
beau JRM 697
bed PME 343
bedroom CRUX 122
bee FQ B-304
beer NYSMTJ 53
Beiler IRM/alphametics/names
Bell numbers INT/binomial coefficients/finite sums
Bernoulli equation

IAN/differential equations
Bernoulli trials IP/independent trials
Bertrand’s postulate

INT/Diophantine equations/factorials
Bessel functions IAN

IAN/differential equations
IAN/integrals/evaluations
IAN/Laplace transforms

bet JRM 782 PME 350
betting JRM 647
betting games IGT
betting strategies

IP/gambler’s ruin
bicycle pedals FUNCT 1.4.5
bigraph AMM 6159
bijection AMM 6028 6098 6100 6128 6236 E2633

E2671 FQ B-333
IG/lattice points/mappings
INT/polynomials/2 variables
IST/mappings

bill CRUX 297 329 MSJ 459 OMG 17.1.5
PENT 314 PME 433

IRM/alphametics/phrases
billiard CRUX 137 NAvW 475 476

IG [2]
bimedian CRUX 245

ISG/regular tetrahedra
bin JRM 736
binary AMM 6099 6146 6238 E2574 E2588

E2671 FQ H-271 JRM 598 NAvW 432 477
SIAM 75-1 77-15 TYCMJ 43 81

binary arrays IC/arrays
binary expansion AMM E2667 CMB P269
binary operations

IHA [7]
binary relations IST/relations
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binary representations 1975–1979 boundary and interior

binary representations
IAL/inequalities/radicals
IAN/functions/digit problems
INT/determinants/0-1 matrices

binary sequences
IC/sequences
INT/sequences
IP/sequences
IST/mappings/bijections

binary trees IC/graph theory/trees
INT/sequences/trees [2]

bingo IP
binomial FQ H-261 OSSMB G78.2-2
binomial coefficient

AMM S1 CRUX 90 339 FQ B-310 B-388
NAvW 396 PARAB 414 SPECT 8.8
SSM 3721

IAL/finite sums
IAL/finite sums/exponentials
IAL/inequalities/finite sums
IAL/recurrences [3]
IAL/solution of equations
IAN/Bessel functions/infinite series
IAN/limits
IAN/limits/elementary symmetric functions
IAN/Riemann zeta function/infinite series [2]
IAN/series
ILA/matrix equations
INT
INT/determinants
INT/Fibonacci and Lucas numbers/

finite sums [2]
INT/Fibonacci numbers/finite sums
INT/Fibonacci numbers/identities
INT/inequalities
INT/least common multiple [2]
INT/Lucas numbers
INT/permutations/derangements
INT/recurrences/finite sums
INT/recurrences/

generalized Fibonacci sequences
INT/repdigits
INT/sequences
INT/series
INT/series/arithmetic progressions
INT/series/geometric series
INT/series/Stirling numbers
INT/triangular numbers/identities
INT/triangular numbers/series
IP/Cauchy distribution

binomial expansion
FQ B-339

IHA/rings/integral domains [2]
biology OMG 17.1.2

IP
bipartite AMM 6079 E2565 CMB P268
bipartite graphs IC/graph theory
biquadratic forms

IAN/functions/continuous functions
birational NAvW 482
bird JRM 650
birth FUNCT 1.1.9 JRM 374 643
birthdate JRM 722
birthday CRUX 195 ISMJ J10.1 MATYC 135

OSSMB 78-10 PARAB 262 PME 449
IAL/calendar problems/day of week
IP

biscuit JRM 563
bisect CMB P244 CRUX 270 ISMJ 10.6 JRM 370

MM 1068 Q637 NYSMTJ 74 OBG3
OSSMB 79-16 PME 380 SPECT 7.2
SSM 3685 TYCMJ 119

bisected numbers
INT/digit problems/squares [2]

bisection IG/parallelograms

IG/triangles/centroids

bisector CRUX 148 309 379 483 PS1-2 ISMJ 11.2
14.18 MM 967 NAvW 544 NYSMTJ 43
OMG 18.3.4 OSSMB 78-12 79-5 G77.1-4
PME 346 TYCMJ 110 119

bishop JRM 680

IRM/chessboard problems/paths

bishopwise JRM C6

bit PARAB 372 SIAM 75-1

blackboard CRUX 452 FUNCT 1.1.6 OSSMB 78-10
PARAB 419

blank JRM 656

blind JRM 729

block AMM 6222 CANADA 1977/7 CRUX PS3-2
FQ B-362 MSJ 498 OMG 16.2.7 PARAB 338
356 361 SIAM 76-9 76-17 TYCMJ 93

block matrices AMM E2762

ILA/determinants [3]

ILA/matrices

ILA/matrices/0-1 matrices

ILA/matrices/spectral radius

block puzzles IRM/puzzles

board AMM 6211 E2612 E2665 S10
CANADA 1978/5 CRUX 276 282 325 429
FUNCT 2.4.2 JRM 465 508 540 C4 C6
MM 952 996 1084 MSJ 477 NYSMTJ 68
77 OMG 14.2.2 15.1.3 PARAB 336 419
PME 358 SIAM 76-1 78-9 TYCMJ 78
USA 1976/1

board games IGT

boat JRM 513 MM 1004 OMG 15.2.1

bold versus cautious
IP/gambler’s ruin/betting strategies

bonus OSSMB 78-3

book CRUX 414 OSSMB 76-11 SSM 3574

Boolean rings IHA/rings

bordered NAvW 451

Borel sets IAN/measure theory

IT/product spaces/unit interval

born ISMJ J10.1 PARAB 262 PME 449

bornivorous AMM 6029

bornological spaces
AMM 6029

IT/locally convex spaces [2]

Borromean rings
IT/surfaces/embeddings

bottle PARAB 297

bottom AMM E2713 AUSTRALIA 1979/1
CRUX 122 400 FUNCT 2.1.1 IMO 1979/2
JRM 472 MM 1086 MSJ 464 NAvW 432
OSSMB G79.1-1 PARAB 315 361
SPECT 11.3 TYCMJ 89 USA 1979/3

bound AMM 6115 6138 6191 CRUX 355 JRM 376
445 C7 MM 952 1006 1063 1068 NAvW 514
PUTNAM 1975/B.3 SSM 3585 TYCMJ 152

IAN/functions/differentiable functions

IAN/integral inequalities

IAN/limits/infinite series

IAN/maxima and minima

IAN/sequences/tetration [4]

boundary AMM 6025 6040 6080 6192 6213 6250 S19
CMB P260 JRM 445 684 MM 927 946 1003
MSJ 444 PUTNAM 1975/A.2 SIAM 75-21
79-1

IT/Cantor set/subsets

boundary and interior
IG/triangles/centroids
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boundary conditions 1975–1979 Cat Woman

boundary conditions
IAN/differential equations/

functional equations
IAN/differential equations/Laplacian [3]
IAN/integral inequalities/bounds

bounded AMM 6078 6113 6158 6172 6256 6277 6278
E2522 E2563 E2712 E2714 CMB P256
P260 CRUX 58 248 374 380 495 MM 1073
MSJ 451 NAvW 517 549 554 PME 362
SIAM 79-20 TYCMJ 148 USA 1977/5

bounded functions
IAN/location of zeros/complex variables

bounded linear operators
IAN/functional analysis/Hilbert spaces

bounded variation
IAN/functions [7]

bounding AMM S2
bounding radii CRUX 436
bowl JRM 624
box AMM E2524 E2555 E2629 CRUX 122 375

FUNCT 1.4.5 IMO 1976/3 ISMJ 12.4 13.22
14.5 J11.4 JRM 390 444 448 499 646 735
MM 1066 OMG 17.2.1 PARAB 319 PME 367
SSM 3783 TYCMJ 86

IG/packing problems/bricks
IP/geometry
IP/geometry/point spacing
ISG
ISG/analytic geometry
IT/knots

boy ISMJ 13.7 MSJ 431 PARAB 264 326 331
SSM 3577

bracelet JRM 531
brackets AMM E2713 CRUX 320 PME 396
braid JRM 541
brake JRM 730
branch AMM S2 JRM 785 SSM 3630
bread SSM 3577
breadth JRM 390
breed FUNCT 1.1.9 JRM 410
brick AMM E2524 ISMJ 11.1

IG/packing problems
bride JRM 406
bridge CRUX 68 JRM 442 MM 976 MSJ 432

OMG 18.2.3
IGT
IRM/alphametics/phrases

bridge crossings IP/transportation
bridgekeeper MSJ 432
broken PARAB 383
broken lines IG/points in plane [2]
brother ISMJ 13.7 JRM 785 OMG 16.1.10
brown OMG 18.2.3 PARAB 363
Brownian motion

IP/geometry/convex hull
bug AMM 6149 PME 439
building FUNCT 2.4.4 JRM 793 PENT 314 PME 413
bulletin MM 996
bureau JRM 376
burr JRM 785
business CRUX PS8-1 MM 1056
butter CRUX 308
butterfly problem

IG
button CRUX 280
buyer TYCMJ 104
bypass PUTNAM 1978/A.4
C∞ IAN/functions
C∗-algebras IHA/algebras [2]
cable OMG 16.1.3
Cairo IRM/alphametics/places
cake JRM 751 PARAB 381

cake cutting IG
calculating FUNCT 1.2.7 JRM 728
calculator FUNCT 1.1.8 1.2.7 2.1.4 JRM 420 659

MM 1080 NYSMTJ 55 PENT 311 SSM 3690
calculator problems

ITR
calculus AMM 6139 MM 1072 SSM 3683 3684
calendar FUNCT 2.3.1 JRM 419 C9 PARAB 273

SSM 3769
calendar cycles IAL/age problems/different times

IAL/calendar problems [2]
calendar problems

IAL
Caliban puzzles IRM/logic puzzles
camera FUNCT 3.5.2
Canada IRM/alphametics/places
cancelling PME 365
cancellation ISMJ 14.11 MM Q612 NYSMTJ 62

IHA/groups/abelian groups
INT/digit problems
INT/rational expressions [8]

candidate JRM 469
cane MATYC 123
canonical AMM E2633
Cantor set IAN

IT
captain CRUX 400
capture JRM 425 540 PARAB 313
car AMM E2608 CRUX 31 354 479 PS8-1

FUNCT 1.3.2 ISMJ J10.11 JRM 671
730 MSJ 501 NAvW 450 NYSMTJ 81
OMG 16.1.5 PENT 294 TYCMJ 104

IAL/rate problems
IAM/physics

card AMM E2645 CRUX 338 PS2-3 PS5-1
FUNCT 2.1.1 2.4.2 JRM 443 510 536
601 647 757 782 C3 MM 1022 1066
OSSMB 77-14 PARAB 327 343 427
SIAM 76-17 SPECT 11.3 11.6 TYCMJ 89
USA 1975/5

IC
IC/permutations
IP
IRM/arrays [3]

card games IGT
IP/game theory

card shuffles IC
IP/cards

cardboard AMM E2630 CRUX 135 375 ISMJ 14.2 14.22
SSM 3683

cardinal AMM 6266 PME 457 SSM 3738
cardinality AMM 6036 6218 6221 6272 E2804 S5

NAvW 439
IC/sets
IC/sets/differences
IHA/groups/subgroups
IST/chains [13]
IST/mappings/inequalities
IST/power set
IST/symbolic logic
IT/Cantor set/subsets
IT/sets/real numbers

carpenter square NYSMTJ 60
carpet CRUX 244
carries INT/arithmetic operations/addition
carry AMM S11 JRM 527 OSSMB 77-1

PARAB 266 348 SIAM 75-1
Carter IRM/alphametics/names
Cartesian plane IT/metric spaces
carton JRM 736
cashier OMG 17.1.5
casing OMG 17.1.3
castling JRM 639
Cat Woman JRM 770a PARAB 362
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Catalan numbers 1975–1979 chord

Catalan numbers
INT/recurrences/second order

categorical AMM 6272
category AMM 6081 6113 6169
category theory IHA
catenary SIAM 78-17
cattle OMG 18.1.9
Cauchy distribution

IP
IP/random vectors/polynomials [5]

cautious JRM 423
Cayley cubic surfaces

ISG/projective geometry/tetrahedra
celebrate JRM 699
cell AMM 6096 E2605 JRM 465 471 475

PENT 286 SSM 3629 3666
cement post MM 1056
cent JRM 463 OMG 15.3.2 18.2.4 PARAB 322 363

PME 350 SSM 3662
center [109 references]

IHA/groups/finite groups
IHA/rings/commutative rings

center of gravity
IAM/physics

center of population
IAM/demographics

center of symmetry
IG/symmetry [2]

centered ISMJ 14.22 JRM 787 MM 1062 PME 338
408 PUTNAM 1977/A.6

centimeter MM 1056
central idempotents

IHA/rings/power series
centroid AMM 6089 E2674 E2715 CMB P244

CRUX 260 313 334 383 PS5-3 ISMJ J10.4
MM 1028 MSJ 438 NAvW 402 436
SIAM 78-20 TYCMJ 148

IG/lattice points/triangles [5]
IG/n-dimensional geometry/simplexes
IG/triangle inequalities
IG/triangles
IG/triangles/medians
IG/triangles/special triangles
ISG/regular tetrahedra/equilateral triangles

century MATYC 135 PME 342
Ceva’s theorem IG/triangles
cevian CRUX 456 NAvW 478

IG/triangles
chain AMM 6134 6220 6268 JRM 566 679 702

PARAB 267 SPECT 9.7
IC/configurations [2]
IST

chain conditions
IHA/rings/subrings [2]

chancellor JRM 379
change IAL/money problems

IC/configurations/money problems
character AMM 6202 FQ H-307 JRM 656 PENT 302

IHA/groups/finite groups
characteristic AMM 6031 6082 6170 6177 E2578 E2635

CMB P253 CRUX 48 484 JRM 500
MM 1019

IHA/rings
characteristic functions

IP/random variables
characteristic polynomial

AMM E2635 E2711 MATYC 91
ILA/matrices

characterization AMM 6166 6181 MM 962 995 1051
NAvW 430

IAN/Bessel functions
IHA/binary operations
INT/composite numbers

characterize AMM 6098 E2641 E2728 E2731 E2792 S16
CMB P241 CRUX 110 289 334 FQ B-340
H-309 JRM 657 738 764 MATYC 100
MM 935 955 963 967 998 1005 1066
MSJ 419 498 NAvW 430 SIAM 76-7
SSM 3648

charged JRM 675
chase JRM 534
chasm SPECT 7.5
Chebyshev polynomial

IAL/polynomials
IAN/inequalities [2]

checkerboard AMM E2612 CANADA 1978/5 CRUX 276
MM Q624 PME 358 SSM 3640 3655
TYCMJ 78 145

checkers CANADA 1978/5 JRM C6
checkmate JRM 434
cheese JRM 416
chef AMM E2569
chemistry OMG 17.1.2
chess JRM 434 446 493 561 639 680 703 721 758

OMG 14.2.2 PARAB 357 PENT 278
IRM/alphametics/words

chess moves IRM/alphametics
IRM/cryptarithms

chess problems IGT
chess set PME 449
chess tournament CANADA 1976/3 OMG 17.2.5 PARAB 323

IC/tournaments
chess tours IRM
chessboard AMM 6096 6211 E2605 E2665 E2698 E2732

CRUX 446 ISMJ 14.5 JRM 424 475 540 703
C7 MSJ 477 NYSMTJ 68 OMG 14.2.2 15.1.3
PARAB 281 283 292 336 415 USA 1976/1

chessboard games
IGT/board games [9]

chessboard problems
IRM

chest CRUX 400
chi-square distribution

SSM 3783
IP/geometry/boxes

chick JRM 534
child AMM E2608 CRUX 11 12 329 409 ISMJ 13.7

JRM 413 659 699 MM 1066 MSJ 431 437
OMG 17.3.2 18.2.4 PARAB 309 PENT 276
314

chili JRM 647
chimes IAL/clock problems
chip JRM 423 631 648 682
choice AMM 6181 E2645 E2710 E2764 E2808

CRUX 165 173 280 374 JRM 373 450 493
682 MM 1032 MSJ 487 OSSMB 76-3
PENT 277 SIAM 76-5

IRM/alphametics/phrases
choke IRM/alphametics/phrases
chord AMM 6120 E2646 CRUX 63 75 110 168 180

199 220 225 270 MATYC 98 MM 949 1067
Q646 NYSMTJ 73 OSSMB 75-5 76-4 79-11
G79.1-2 PARAB 289 PENT 321 PME 362
SSM 3688 3730 TYCMJ 105 USA 1979/4

IG/butterfly problem/inequalities
IG/circles [2]
IG/circles/2 circles
IG/circles/arcs
IG/circles/mixtilinear triangles
IG/constructions [2]
IG/ellipses
IG/parabolas
IG/regular hexagons/point on circumcircle
IG/regular polygons/point on circumcircle [3]
IG/semicircles
IG/triangles/interior point
IP/geometry/circles [4]

450



Keyword Index
Christmas 1975–1979 closed form expressions

Christmas IAL/calendar problems/calendar cycles
IRM/alphametics

chromatic AMM 6211 CMB P268
church FUNCT 2.4.2 OSSMB 79-1
cipher JRM 740

INT/arrays [2]
circle [287 references]

IAN/pursuit problems
IAM/physics/rolling objects
IG [3]
IG/analytic geometry
IG/billiards
IG/butterfly problem/inequalities
IG/combinatorial geometry/

counting problems
IG/constructions [16]
IG/constructions/squares
IG/ellipses
IG/ellipses/tangents
IG/grazing goat
IG/hexagons
IG/hyperbolas
IG/lattice points
IG/locus
IG/maxima and minima/convex hull
IG/maxima and minima/rectangles
IG/maxima and minima/regular polygons
IG/packing problems/discs
IG/parallelograms
IG/points in plane
IG/point spacing/nearest point
IG/quadrilaterals/

circumscribed quadrilateral [2]
IG/quadrilaterals/maxima and minima
IG/right triangles [2]
IG/rolling/right circular cones
IG/simple closed curves/distance
IG/squares
IG/squares/limits
IG/triangles
IG/triangles/altitudes
IG/triangles/angle bisectors
IG/triangles/erected figures [2]
IG/triangles/isogonal conjugates
IG/triangles/isosceles triangles
IP/geometry
ISG/paper folding
IT/metric spaces/Hausdorff metric

circle and line IG/locus/equal distances
circuit CRUX 182 NAvW 453 PARAB 283 308

IC/counting problems/paths
IC/graph theory/directed graphs [2]
IRM/chess tours

circular AMM E2728 CANADA 1977/5 1979/4
CRUX 354 436 ISMJ J10.6 JRM 395 729
MM 1003 1022 1056 NYSMTJ 46 50 56 81
OMG 16.2.5 PARAB 266 328 PENT 282
SSM 3684

circular arc ISMJ 14.22 J10.14 MM 976 SSM 3695 3724
IG/maxima and minima
ISG/space curves/principal normals

circular arrays IC/algorithms/arrays
IC/arrays
IC/configurations
INT/digit problems/primes
IP/arrays

circular field CRUX 89 MSJ 447
circular motion IAN/rate problems

IAM/navigation
circumcenter AMM E2793 CRUX 260 288 388 472 478

PS5-3 ISMJ J10.4 OSSMB G78.1-5 G78.2-4
PME 442

IG/triangles/orthocenter
ISG/regular tetrahedra/equilateral triangles

circumcenter and incenter
IG/constructions/triangles
IG/triangle inequalities [3]

circumcircle AMM E2512 E2538 S23 CRUX 330 423
456 478 IMO 1978/4 NAvW 402 490 494
OMG 17.3.9 OSSMB G76.3-4 PME 374
SIAM 77-9 SPECT 7.2 SSM 3678 TYCMJ 85

IG/locus/angles
IG/stars/area
IG/triangles
IG/triangles/2 triangles
IG/triangles/angle bisectors
IG/triangles/circles
IG/triangles/orthocenter [3]
ISG/tetrahedra/faces

circumcircle and incircle
IG/triangles/relations among parts

circumference CANADA 1975/5 1976/4 1977/2 1977/5
CRUX 89 FQ B-415 IMO 1975/5
ISMJ J10.14 JRM 394 509 535 557
MENEMUI 1.2.1 OMG 16.2.2 16.2.5 17.1.3
18.1.4 OSSMB 76-6 G76.1-6 PENT 282
PME 338 447 453

circumference and diameter
IG/circles [2]

circumradius CRUX 248 472 MM 959 1043 NAvW 425
OSSMB G78.1-5 PME 450 TYCMJ 109

IG/inequalities/triangles
IG/triangle inequalities [15]
IG/triangle inequalities/interior point

circumscribe CRUX 168 189 199 248 MM Q646
NAvW 475 476 488 490 OSSMB 75-10
PME 417 SPECT 10.9 SSM 3656

circumscribed decagon
IG/hexagons

circumscribed parallelogram
IG/convexity/points of symmetry

circumscribed quadrilateral
IG/quadrilaterals

circumscribed semicircle
IG/trapezoids

circumscribed triangle
IG/squares

circumsphere PME 352 SIAM 78-20
city CANADA 1977/7 CRUX PS8-1 JRM 770a

MSJ 436 OMG 16.2.7 SIAM 75-8
class number INT/quadratic fields/congruences
classic PARAB 266
classify PARAB 439
classroom PARAB 311
clerk AMM E2515 CRUX 297 PARAB 363
cliff SPECT 7.5 8.2
clique AMM E2638
clock FUNCT 3.3.2 ISMJ 14.24 J10.2 J10.9

MM 940 1066 OMG 15.3.8 18.1.8 18.3.1
PENT 278

Clock SPECT 11.3
IP/game theory/card games

clock problems IAL
clockwise PARAB 266
closed [63 references]
closed form expressions

FQ B-411
IAN/power series
IAN/series
INT/binomial coefficients/

generating functions
INT/Fibonacci and Lucas numbers/

finite sums
INT/Fibonacci numbers/finite sums
INT/recurrences/

generalized Fibonacci sequences
INT/series/binomial coefficients
INT/series/factorials
INT/series/floor function
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closed sets 1975–1979 complement

closed sets IT/graph of a function/connected sets
IT/sets/real numbers [7]
IT/sets/unit circle

closed system OMG 15.3.4
closed under product

INT/sets
closure AMM 6107 6260 CMB P272 MM 982 1079

INT/sum of divisors/sets
closure-interior-union

IT/composed operations
cloud OSSMB 75-15
cloverleaf interchanges

IP/transportation
club CRUX 263 JRM 597 OMG 18.1.1
clubhouse FUNCT 1.2.4
clue JRM 488 489 490 704
cluster AMM 6208 MM 1021 NAvW 542
cluster points IAN/sequences

IAN/sequences/rearrangements
coat PARAB 384
code CRUX 105 JRM 772
codebreaker JRM 772
coefficient AMM 6010 6259 E2518 E2688 S7

CANADA 1977/4 CRUX 90 198 372 494
PS7-3 FQ H-249 H-268 H-269 H-297
IMO 1976/5 MATYC 115 NAvW 496
OMG 16.2.4 OSSMB 77-17 G75.2-6 G75.3-5
G77.1-6 G79.1-6 G79.2-7 PARAB 282
PUTNAM 1978/B.5 SIAM 75-14 76-22 77-4
79-9 SPECT 9.1 TYCMJ 35

IAL/polynomials
INT/polynomials/products
INT/series/polynomials [2]

cofactor AMM 6222
coin CRUX 265 FUNCT 3.1.1 3.2.6 JRM 379

447 448 463 675 OMG 15.3.2 PME 370
SIAM 77-11 SPECT 7.4 TYCMJ 103

IAL/money problems
coin tossing IP

IP/game theory
coincident hands

IAL/clock problems/time computation [2]
Collatz problem INT
college CRUX 431 PENT 283
collinear CRUX 145 279 320 408 PS2-3 FUNCT 3.1.3

MSJ 434 NAvW 504 OSSMB 79-8 G75.2-4
PARAB 437 PENT 312 PUTNAM 1975/A.6
1979/A.4

collinear points IG/conics
IG/lattice points [6]
IG/maxima and minima

collineation AMM 6267
IG/projective geometry

collision JRM 564
colony JRM 761
color AMM 6034 6157 6211 6229 E2527

E2562 E2651 E2672 E2724 E2745
AUSTRALIA 1979/1 CANADA 1978/5
FQ B-415 IMO 1979/2 ISMJ 11.13
12.4 13.18 JRM 392 680 757 MM 952
NYSMTJ 68 OMG 15.1.3 18.2.7
OSSMB 79-14 PARAB 292 362 387
PUTNAM 1979/A.4 SIAM 78-11 SSM 3648
TYCMJ 113 USA 1976/1

colored AMM 6034 6157 6211 E2745
AUSTRALIA 1979/1 CANADA 1976/8
IMO 1979/2 ISMJ 13.18 14.5
NYSMTJ 68 OMG 15.1.3 PARAB 292
339 PUTNAM 1979/A.4 TYCMJ 113
USA 1976/1

colored pegs IRM/puzzles/peg solitaire
coloring AMM 6211 FQ B-415 NYSMTJ 68

OMG 15.1.3 PARAB 292 SIAM 78-11
USA 1976/1

coloring problems
IC
IC/geometry
IC/graph theory/complete graphs
IC/graph theory/directed graphs
IP [7]
IRM/chessboard problems
IRM/polyominoes

column AMM 6192 E2516 E2555 E2556 E2595
E2698 E2779 E2794 CANADA 1978/5
CRUX 2 43 345 399 FQ H-257 H-273
FUNCT 1.5.2 ISMJ 14.23 JRM 389 508 768
KURSCHAK 1979/3 MATYC 113 MM 1086
NAvW 432 OMG 18.1.3 OSSMB 76-16 77-6
PARAB 263 301 326 339 415 PME 377 434
SIAM 75-2 78-3 78-14 79-17 SSM 3632 3676
TYCMJ 89

column blocks ILA/determinants/block matrices
column vector MM Q644 NAvW 547
combination AMM 6264 CRUX 409 JRM 386 447

MATYC 127 SSM 3662
IAL/money problems
IAL/weights

combinatorial AMM 6214 FQ B-411 SIAM 76-12
combinatorial geometry

IG
ISG/polyhedra

combine FUNCT 1.1.5 3.1.6 ISMJ 11.16 13.17
PARAB 332 PME 454 SSM 3663

committee OMG 17.2.5 USA 1979/5
IC/configurations

common divisors
INT/determinants/counting problems

common members
IC/configurations/committees

common tangents
IG/analytic geometry/circles

common vertex IG/squares/2 squares
community SIAM 76-7
commutative AMM 6068 6180 6183 6238 6259 E2586

MATYC 109 NYSMTJ 51 TYCMJ 40 81
commutative rings

IHA/rings
commutativity IAL/functions/composition of functions

IAN/complex variables/convolutions [2]
commutator subgroup

NAvW 501
IHA/groups/finite groups

commute AMM 6222 6277 E2742 NYSMTJ 51
commuting AMM 6039
compact AMM 6023 6071 6093 6098 6113 6122 6126

6246 6274 E2613 E2806 S8 NAvW 440 554
compact metric space

IT/function spaces/first category
compact sets IT/Euclidean plane [4]

IT/function spaces/
continuous linear functionals

IT/metric spaces/Hausdorff metric
IT/sets/real numbers

compactification AMM 6124
IT

compactness DELTA 5.2-2 6.1-2
company SIAM 76-7
compass only IG/constructions
compasses CRUX 125 284 288 308 420 428 ISMJ 11.11

13.24 J10.12 JRM 562 MATYC 99 MM 1054
NAvW 402 432 PARAB 399 PME 412 460
TYCMJ 75

competitor OMG 17.2.5
complement AMM 6025 6281 E2700 FQ H-271

NAvW 459 PENT 285
IC/graph theory/isomorphic graphs
IT/unit interval/homeomorphisms [2]
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complementary 1975–1979 confocal

complementary AMM 6188 E2662 MM 925 PENT 285
SSM 3789

complementary angles
IG/quadrilaterals/area

complete elliptic integrals
IAN/elliptic integrals [2]
IAN/integral equations/elliptic integrals

complete graphs
IC/coloring problems/graphs
IC/graph theory

complete residue system
IHA/quaternions
INT/base systems/modular arithmetic
INT/modular arithmetic
INT/modular arithmetic/coprime integers
INT/permutations/modular arithmetic
INT/primes [14]
INT/sets/irrational numbers

completely regular Hausdorff spaces
IT/function spaces/

continuous linear functionals [3]
completely regular spaces

IT/compactifications
complex [55 references]

ISG
complex coefficients

AMM 6191 E2761 E2801 CRUX PS8-2
MATYC 100 SPECT 8.9

complex conjugate
AMM 6061 E2525

ILA/determinants/complex numbers
complex matrices

IAN/integrals/multiple integrals
complex number AMM 6033 6047 6072 6091 6145 6253 6258

E2600 E2616 E2778 E2808 S16 CRUX 40
143 FQ H-253 MM 1036 Q659 Q662
PME 353 SPECT 9.6

IAL
IAL/polynomials/roots and coefficients
IAL/sum of powers
IAN/maxima and minima
IAN/sequences
IAN/series
IHA/fields
ILA/determinants
INT/quadratic fields/congruences
INT/series/binomial coefficients [6]

complex plane AMM 6045 6047 6109 6175 E2542 S16
CRUX 237 318 JRM 556 NAvW 464
PUTNAM 1975/A.2

IT/metric spaces/inequalities
complex polynomials

IAL/polynomials
IAN/location of zeros

complex-valued AMM 6055 6250 MM 1030
complex-valued functions

IAN/functions/infinite series
complex variable

IAN
IAN/functions/polynomials
IAN/integral inequalities
IAN/integrals/improper integrals
IAN/integrals/multiple integrals
IAN/location of zeros [2]

component AMM 6129 6215 6229 E2587 CRUX 467
JRM 445 684 NAvW 393 403 PME 342

componentwise AMM 6068 PUTNAM 1975/B.1
componentwise continuous

IAN/functions/real-valued functions

composed operations
INT
IT

composite AMM 6194 E2510 E2679 E2800 S1
CRUX 142 296 378 389 FQ B-302
ISMJ 14.20 JRM 479 558 708 738 MM 1029
Q634 MSJ 481 NYSMTJ 93 OSSMB 75-11
76-15 SSM 3624

composite numbers
INT
INT/digit problems/

arithmetic progressions [5]
INT/Fibonacci numbers
INT/forms of numbers/sum of squares
INT/palindromes/0-1 numbers
INT/primes/forms of numbers
INT/primes/generators [24]
INT/series/unit fractions

composition AMM 6244 CMB P278 JRM 392
NYSMTJ 51

IC
composition of functions

IAL/functions
IAN/functions

compound FUNCT 2.1.2 PME 386
compounded TYCMJ 104
computer CRUX 390 FUNCT 1.1.8 1.1.10 1.2.7 2.1.4

JRM 509 739 SIAM 78-3
concatenation CRUX 355

INT/sequences/binary sequences
concave TYCMJ 151
concentration MENEMUI 1.3.2
Concentration JRM 601

IGT/card games
concentric MM 976 NYSMTJ 60 OSSMB 76-14
concentric circles NYSMTJ 45 SSM 3730

IG/circles/2 circles
concurrent CRUX 132 199 206 363 370 476 MM 1028

NAvW 478 NYSMTJ 47 OSSMB 79-8
PME 354 438

concurrent cevians
CRUX 485

concurrent circles
IG/triangles/circles

concurrent lines IG/conics
concurrent perpendiculars

IG/triangles/circles
concurrent planes

ISG/analytic geometry/family of planes
ISG/projective geometry/tetrahedra

concyclic points IC/coloring problems
IC/configurations
IC/geometry
IG
IG/analytic geometry
IG/combinatorial geometry
IG/point spacing/distance
IP/geometry

conditional convergence
IAN/series/differentiable functions
IAN/series/evaluations

conditional probability
IP
IP/independent trials/Bernoulli trials
IP/inequalities/random variables
IP/tournaments

conditionally AMM 6243
cone CANADA 1977/5 CRUX 140 FUNCT 1.1.3

NAvW 554 NYSMTJ 56 OMG 16.2.5
OSSMB G79.1-1 PARAB 410

conference USA 1978/5
configuration AMM 6267

IC [2]
confocal NAvW 475 476
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conformal mapping 1975–1979 construction

conformal mapping
IAN/complex variables

confronted JRM 372 373
confusion JRM 530
congruence AMM E2660 E2763 FQ B-368 H-280 H-286

MM 1044 NAvW 431 TYCMJ 57
IC/permutations/cycles
INT/binomial coefficients [13]
INT/determinants
INT/divisibility/powers of 2
INT/Fibonacci and Lucas numbers
INT/Fibonacci and Lucas numbers/

finite sums
INT/Fibonacci numbers
INT/inequalities
INT/Lucas numbers
INT/matrices/order
INT/permutations/derangements
INT/polygonal numbers/heptagonal numbers
INT/polynomials
INT/primes
INT/quadratic fields
INT/recurrences/arrays
INT/recurrences/

generalized Fibonacci sequences
INT/recurrences/square roots
INT/sequences/finite sequences [2]
INT/series
INT/series/binomial coefficients
INT/sum of divisors/perfect numbers
INT/triangular numbers/series
IP/number theory [3]
IRM/alphametics

congruent AMM 6178 6210 6270 E2584 E2630 E2657
E2673 E2797 CMB P249 P274 CRUX 155
182 330 363 478 FQ B-351 B-372 ISMJ 10.2
JRM 391 426 445 498 595 684 MM 969 996
Q616 MSJ 416 NAvW 508 NYSMTJ 47 48
OSSMB 75-16 PARAB 292 339 PENT 275
PME 435 SSM 3683 USA 1977/4 1978/4

congruent angles
IG/cyclic polygons

congruent faces ISG/tetrahedra/faces
congruent triangles

IG/triangles/2 triangles
conic AMM E2751 CRUX 279 370 442 469 485

MATYC 114 NAvW 460 484 490 504 525
IG
IG/analytic geometry
IG/analytic geometry/curves
IG/constructions [12]
IG/locus
IG/locus/triangles
IG/triangles/altitudes
IG/triangles/cevians
ISG/projective geometry/tetrahedra

conjecture AMM 6030 6121 6235 6239 6275 E2611
E2695 E2713 CRUX 6 346 JRM 475
NAvW 463 505 SIAM 75-19 76-5 76-16 77-15
77-19 78-1 78-3 78-18 SSM 3651

conjugate AMM E2616 E2793 CRUX 315 NAvW 415
484 506 527

conjugate points
IG/analytic geometry/circles

conjugate subgroups
IHA/groups/matrices
IHA/groups/subgroups

conjugate transpose
MM Q644

connected AMM 6096 6163 6229 6255 E2549 E2795
CRUX 186 408 JRM 391 421 426 445 684
MM 932 MSJ 472 OMG 14.3.1 PARAB 308
PENT 282 SSM 3693 TYCMJ 42

connected graphs
IC/graph theory/covering problems

connected sets IT
IT/graph of a function

connecting AMM 6079 CANADA 1976/8 ISMJ 13.18
JRM 554 709 MM 976 NYSMTJ 79
PARAB 383 SSM 3743

consecutive [101 references]
consecutive digits

INT/digit problems
consecutive even indices

INT/Fibonacci numbers/forms
consecutive integers

IC/counting problems/subsets
IC/urns/1 urn
IGT/selection games/players select integers
INT/composite numbers/polynomials [2]
INT/digit problems/number of digits
INT/divisibility
INT/factorizations
INT/greatest common divisor
INT/least common multiple
INT/Legendre symbol
INT/means [2]
INT/number of divisors
INT/polygonal numbers
INT/sequences
INT/sequences/partitions
INT/series/factorials
INT/sets/partitions
INT/triangles
INT/triangles/area
IP/sets/partitions

consecutive palindromes
INT/palindromes

consecutive primes
INT/Möbius function/series
INT/primes/sum of primes
INT/sets/sum of elements

consecutive squares
INT/digit problems/squares

consecutive terms
INT/Farey sequences
INT/Pascal’s triangle

consistent AMM 6062
constant speed IAN/rate problems
constitute AMM E2781 JRM 372 557 OSSMB 78-14
constraint AMM 6062 6076 CRUX 358 SIAM 76-5 76-7

IAL/inequalities/exponentials
IAL/inequalities/polynomials
IAL/maxima and minima
IAL/theory of equations [2]
IAN/limits/arithmetic means
IAN/maxima and minima
IAN/maxima and minima/radicals
IG/squares/line segments
INT/Diophantine equations/degree 3
INT/Diophantine equations/

systems of equations
INT/divisibility/polynomials [2]
INT/forms of numbers/sum of squares
INT/maxima and minima/products
ISG/analytic geometry/maxima and minima
ISG/maxima and minima/tetrahedra
ITR/identities

constructible PME 412
construction AMM 6017 CRUX 110 120 158 242 415

420 428 454 492 FUNCT 2.1.4 ISMJ 12.19
JRM 538 562 NAvW 402 NYSMTJ 54
PME 341 SIAM 78-3 TYCMJ 119
USA 1978/2

IAN/Cantor set
IG
IG/circles/chords
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construction 1975–1979 cookie

IG/map problems
IRM/alphametics [2]
ISG/paper folding/angles

container PARAB 297
containing figures

IG/point spacing
contents FUNCT 1.4.5 ISMJ 12.7 JRM 499

NYSMTJ 53 OMG 18.2.7
contest MSJ 483
contestant CANADA 1976/3 PME 355
continued fraction

IAN/derivatives [2]
INT
INT/Fibonacci numbers

continuity AMM 6120 6184
continuous [90 references]
continuous bijections

IT/sets/irrational numbers
continuous derivative

AMM 6076
continuous function

AMM 6007 6074 6076 6080 6093 6120 6181
6184 6188 E2537 E2607 E2622 E2626 E2706
E2707 E2765 CMB P278 P281 MM 993
NAvW 409 416 427 456 PUTNAM 1977/A.6
SIAM 75-16 75-18 TYCMJ 46

IAN/functions
IAN/functions/digits
IAN/integrals/functions
IAN/measure theory/arcs
IAN/partial derivatives/real-valued functions
IAN/power series/Abel’s theorem [2]
IAN/series
IT/functions
IT/graph of a function/connected sets
IT/subspaces [2]

continuous linear functionals
IAN/Banach spaces
IAN/functions/continuous functions
IT/function spaces

continuous linear operators
IAN/Banach spaces [6]

continuous map AMM E2783
continuous second derivatives

IAN/series/differentiable functions
continuum AMM 6218 6266
contour SIAM 79-9
contract JRM 597
contract bridge JRM 536 560 MM 944
contraction AMM 6100 S8

IAN/functions/continuous functions
IT/metric spaces

converge AMM 6035 6080 6096 6105 6112 6196
E2558 E2591 E2712 E2788 E2791 E2808
S4 CRUX 40 69 80 209 377 FQ H-282
H-292 JRM 512 674 770a MM 922 1025
1032 1048 1060 1085 NAvW 423 PME 363
PUTNAM 1975/B.2 SIAM 75-14 SSM 3643
TYCMJ 41 44 60 62 63

convergence AMM 6038 6071 6080 6090 6093 6109 E2784
CRUX 8 9 194 MM 1070 PME 384

IAL/radicals/nested radicals
IAN/sequences
IAN/sequences/complex numbers
IAN/sequences/inequalities
IAN/sequences/pairs of sequences [3]
IAN/sequences/rearrangements
IAN/sequences/recurrences
IAN/sequences/tetration [2]
IAN/series/complex numbers
IAN/series/cubes
IAN/series/differentiable functions
IAN/series/divergent series
IAN/series/inequalities

IAN/series/iterated logarithms
IAN/series/monotone sequences
IAN/series/pairs of sequences
IAN/series/pairs of series
INT/series/digit problems
INT/series/inequalities [2]
INT/series/permutations
INT/series/primes
INT/series/subseries
INT/series/unit fractions [2]
ITR/infinite series/sin
ITR/infinite series/tan

convergent AMM 6090 6243 E2675 E2721 FQ H-308
FUNCT 1.5.2 ISMJ 13.1 13.2 MM 972 1021
1032 NAvW 516 538 SPECT 8.3

INT/continued fractions
converse AMM 6036 6085 6166 6174 CRUX 27 196

309 483 PS5-3 MATYC 137 SPECT 8.1
convex [84 references]
convex function MM 1027

IAN/functions
IP/random variables/finite moments

convex functionals
IAN/derivatives/one-sided derivatives [10]

convex hexagon MM 992 TYCMJ 42
IG/hexagons

convex hull AMM 6071 6230 JRM 427
IG/maxima and minima
IP/geometry

convex octagon PUTNAM 1978/B.1
convex pentagon ISMJ 11.13
convex polygon AMM E2514 E2641 MATYC 126 MSJ 489

PARAB 330 412 PUTNAM 1976/A.5
IC/geometry/dissection problems [2]
IG/combinatorial geometry/

counting problems
IG/polygons
ISG/paper folding [2]

convex polyhedron
AMM E2740 CRUX 93 121 336 453
NAvW 451 PARAB 385

ISG/polyhedra
ISG/tetrahedra/planes [6]

convex polytope AMM E2701
IG/n-dimensional geometry/volume

convex quadrilateral
AMM E2680 CANADA 1978/4 CRUX 37 483
IMO 1976/1 ISMJ 12.25 JRM 620 MSJ 442
443 502 NYSMTJ 52 PARAB 279 PME 346
PUTNAM 1977/B.2 SPECT 11.9 SSM 3747

IG/quadrilaterals/determinants
IP/geometry/squares
ISG/plane figures/parallelograms

convex set AMM 6098 CRUX 495 MM 1068
OSSMB 75-10 PARAB 440
PUTNAM 1979/B.5

IAN/location of zeros/complex polynomials
IG/polygons/visibility

convexity NAvW 452
IAM/physics/equilibrium
IG
IG/affine transformations
IG/lattice points
IG/n-dimensional geometry
IG/packing problems
IG/points in plane/perpendicular bisectors
ILA/matrices/Hermitian matrices
ISG

convolution AMM 6145 SIAM 78-4
IAN/complex variables
IP/distribution functions [6]

cook JRM 751
cookie NYSMTJ 89
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coordinate 1975–1979 counting problems

coordinate AMM E2546 E2563 E2697 E2769 E2795
CRUX 109 119 186 204 480 FUNCT 1.2.1
1.2.2 MM 947 968 MSJ 419 NAvW 481 546
547 NYSMTJ 44 45 OSSMB 77-2 G78.2-3
G79.1-2 PARAB 342 PUTNAM 1979/B.5
SSM 3706 TYCMJ 53 108

coordinate system AMM E2769 NAvW 393 403 481 546
PENT 312

Cootie IP/game theory/dice games
coplanar AMM E2769 MM 976 NYSMTJ 54 75

PARAB 437 SSM 3660
coplanar points MM 962

ISG/points in space/angles
ISG/space curves/powers

copper JRM 379
coprime AMM 6070 E2797
coprime integers

IGT/selection games/players select integers
IHA/groups/finite groups
INT/arithmetic progressions [4]
INT/digit problems/juxtapositions
INT/divisors/vectors
INT/floor function/sequences
INT/forms of numbers/

sum of consecutive integers [3]
INT/limits
INT/maxima and minima
INT/modular arithmetic
INT/rational numbers/finite sequences [2]
INT/recurrences/first order
INT/recurrences/

generalized Fibonacci sequences [2]
INT/Riemann zeta function
INT/sequences/rational numbers
INT/series/floor function [2]
INT/series/inequalities
INT/sets/divisibility
INT/sets/maxima and minima
INT/sets/subsets
INT/sum and product [2]
INT/sum of powers/primes

copy AMM 6023 6275 ISMJ 14.2 MM 1046 1066
OMG 16.1.8 OSSMB 76-14 PARAB 265

cord SIAM 78-17
corn OMG 15.2.1
corner AMM 6151 6211 CANADA 1977/7

CRUX 244 375 427 446 DELTA 6.2-1
FUNCT 3.3.4 ISMJ 14.5 JRM 381 425
540 683 768 C6 C7 MM 996 MSJ 477 501
NYSMTJ 68 95 OMG 14.2.2 15.1.3 16.2.7
OSSMB 76-13 PARAB 281 375 PME 358
439 SSM 3629 3683 3766 TYCMJ 86 145
USA 1976/1

corner squares IRM/chessboard problems/coloring problems
cornfield PARAB 375
cornstalk PARAB 375
corollaries AMM 6214
Corot IRM/alphametics/names
corporation JRM C4
correlation MATYC 115
correlation coefficient

IP/statistics [3]
correspondence NAvW 482
corridor CRUX 427
corroborated SIAM 78-3
cos IAL/polynomials/Chebyshev polynomials

IAN/integrals/evaluations
IAN/limits/trigonometry [2]
IAN/sequences/trigonometry
IAN/series/integrals
ITR/determinants/triangles
ITR/identities
ITR/identities/constraints
ITR/inequalities

ITR/infinite products
ITR/infinite series
ITR/numerical evaluations
ITR/recurrences
ITR/triangles
ITR/triangles/inequalities [2]

cos and tan ITR/identities/tan
coset AMM E2785 NAvW 497

IHA/fields/vector spaces
ILA/vector spaces/subspaces

cosh IAN/integrals/evaluations
IAN/series/hyperbolic functions
ITR/infinite series

cost JRM 728
cot IAN/limits/finite sums

IG/triangle inequalities/angles [2]
ITR/numerical evaluations
ITR/triangles [2]
ITR/triangles/maxima and minima

council JRM 554
count JRM 443 513 MM 1075 OSSMB 75-9

SIAM 76-17 SSM 3700
IC/configurations/mutual acquaintances [2]
INT/sequences
INT/sequences/family of sequences

countable AMM 6014 6142 6213 6220 6274 E2613
E2614 E2806 CRUX 59 129

countable local bases
IT/separation properties/

disjoint neighborhoods
countable set AMM 6266 NAvW 405
countable subset AMM 6261
countably AMM 6139 6150 6163 6250 6256 MM 1021
countdown JRM 682
counter AMM E2698 JRM 372 373 501 539

PARAB 415 PME 379 TYCMJ 57
counterclockwise AMM 6192 E2579 CRUX 170 SPECT 11.5
counterexample AMM E2572 JRM 512 SIAM 76-9 76-15

77-14
IT/locally convex spaces/linear subspaces

counterstrategy PME 403
counting problems

IAL/word problems
IC
IC/arrays/Latin rectangles
IC/cards/weights
IC/card shuffles
IC/graph theory [2]
IC/permutations
IC/sets/sums
IC/urns/2 urns
IGT/bridge [2]
IG/billiards/circles
IG/combinatorial geometry
IG/lattice points
IG/rectangles/diagonals [2]
IHA/groups/group presentations
ILA/linear transformations/eigenvalues
INT/determinants [2]
INT/digit problems
INT/factorizations/3 factors
INT/fractions/lowest terms [2]
INT/maxima and minima/coprime integers
INT/Pythagorean triples
INT/quadratic residues [2]
INT/sets/subsets
INT/triangles
INT/triangular numbers [3]
IRM/chessboard problems
IRM/chessboard problems/

distribution problems
IST/chains [4]
IST/subsets
IST/subsets/family of subsets
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countries 1975–1979 cyclic heptagons

countries IMO 1978/6 JRM 396 USA 1978/2
IRM/alphametics/places

couple JRM 603 769 OMG 18.2.1 OSSMB 78-3
IC/configurations [2]

coupon JRM 735
course CRUX 431 FQ B-307 JRM 442 545 659

PUTNAM 1975/A.1
court JRM 379
covariance AMM 6207
cover AMM E2549 E2564 E2654 E2665 E2790

CRUX 24 429 FUNCT 1.2.1 ISMJ 14.2 14.5
J10.6 MM 969 MSJ 477 502 NAvW 411
OMG 16.1.6 16.1.8 17.2.4 OSSMB 77-2
PARAB 328 336 SPECT 10.7 SSM 3781

covering problems
IC/graph theory
IC/sets/family of subsets
IG
IG/dissection problems/triangles
IRM/chessboard problems [5]
IRM/polyominoes/tiling
ISG

cow CRUX 1 OMG 17.1.9 PME 382
crab JRM 488 489 490
crankcase JRM 603
craps MATYC 92

IP/game theory/dice games
crawl PME 439 SSM 3781
crease CRUX 292 422 MSJ 464 OSSMB 78-2

SSM 3637 3661 3768
create JRM 391 561 MSJ 447
credit FUNCT 2.1.2 ISMJ 14.11
crew JRM 513
cribbage JRM 510

IGT
cricket PARAB 264 295
criterion JRM 373 539
croaks IRM/alphametics/phrases
crooked MM 1056
cross CRUX 68 FUNCT 1.2.1 MM 969 MSJ 432

OMG 15.1.1 17.2.4 OSSMB 75-14
G79.1-1 G79.2-8 PARAB 283 383 395
PUTNAM 1977/B.4

cross ratio NAvW 513
ISG/tetrahedra/altitudes

cross section MENEMUI 1.3.2
crossed PARAB 362 PME 413
crossing AMM 6141
crossnumber puzzle

JRM 473
IRM/puzzles

cruise CRUX 31 JRM 682 MM 1004 SIAM 76-13
cryptarithm ISMJ 14.6 JRM 707 NYSMTJ 37 70

PENT 280 SSM 3618
IGT/Mastermind
IRM [2]

cryptarithmic system
SSM 3607

csc and cot ITR/triangles
ITR/triangles/sin

cube [55 references]
IAL/complex numbers/identities
IAN/series
IC/counting problems/geometric figures
IG/dissection problems/triangles [2]
IG/paper folding
INT/base systems
INT/digit problems
INT/digit problems/terminal digits [2]
INT/Fibonacci and Lucas numbers/identities
INT/forms of numbers/difference of squares
INT/forms of numbers/powers of 2
INT/forms of numbers/

product of consecutive integers

INT/forms of numbers/sum of cubes
INT/geometry
INT/Lucas numbers
IP/geometry/point spacing
IRM/alphametics
IRM/puzzles/block puzzles
ISG
ISG/analytic geometry [5]
ISG/curves/arclength
ISG/cylinders
ISG/dissection problems
ISG/dissection problems/cube
ISG/locus
ISG/locus/surface area [5]
ISG/maxima and minima/

rectangular parallelepipeds
ISG/packing problems
ISG/packing problems/

rectangular parallelepipeds
ISG/rectangular parallelepipeds

cube root CRUX 4 JRM C2 OSSMB G79.2-3
SSM 3581

IAL/algorithms
IAL/complex numbers [2]
IAN/maxima and minima/radicals
INT/divisibility [2]
INT/floor function/finite sums
INT/fractional parts/maxima and minima

cubic AMM 6179 CRUX 318 372 ISMJ J11.4
MM 1072 1074 Q626 NAvW 536
OSSMB G79.1-1 SIAM 79-16 SSM 3598

cubic curve NAvW 415 481
cubic equation NAvW 503 OSSMB G79.1-5
culture AMM E2636
current CRUX 193 JRM 372 529 539 631 648

PARAB 341 SPECT 11.4
IAL/rate problems/rivers

curvature CRUX 417
IG/analytic geometry/folium of Descartes [9]

curve AMM 6008 6074 6087 6129 6223 6225
E2647 S2 CRUX 140 367 380 FUNCT 1.2.1
ISMJ 14.22 JRM 472 498 MATYC 114 126
MM 962 981 1006 1068 NAvW 403 415
436 512 549 NYSMTJ 86 OSSMB G75.2-2
G77.2-5 PUTNAM 1975/A.2 1977/B.4
SIAM 75-21 SPECT 10.8

IAN
IAN/Banach spaces/function spaces
IG/analytic geometry
IG/locus/triangles
IG/n-dimensional geometry
ISG
ISG/analytic geometry/paraboloids
ISG/paper folding/right circular cones

curve tracing IAN/curves
curvilinear motion

IAN/pursuit problems [2]
cushion PARAB 266
customer CRUX 280 FUNCT 1.4.5
cycle AMM 6171 6192 E2708 JRM 374 419 446

730 MATYC 87 NAvW 543 OMG 18.3.3
OSSMB 78-15 79-17 PME 366 SIAM 78-11

IC/permutations
IHA/groups/permutation groups

cyclic AMM 6049 6059 6205 E2514 E2557 E2635
E2660 E2683 CRUX 383 483 FQ H-278
JRM 479 601 MM 925 1086 NAvW 543
PENT 291 PME 370 SPECT 11.3

cyclic groups IHA/groups/finite groups
IHA/groups/subgroups

cyclic heptagons
IG/heptagons
IG/regular heptagons [2]
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cyclic octagons 1975–1979 degree 13

cyclic octagons IG/octagons
cyclic permutation

AMM E2698 MM 1000
cyclic points AMM E2553
cyclic polygon IG [2]

IG/regular polygons
cyclic quadrilateral

CRUX 483 DELTA 5.1-2 OSSMB G75.2-3
IG
IG/inequalities [10]
INT/geometry

cyclic shift IAL/means/inequalities
INT/digit problems

cycloid NAvW 438
IG

cyclotomic polynomial
NAvW 496

INT/polynomials
cylinder AMM E2617 E2728 MM 1056 NAvW 430

NYSMTJ 46 OMG 17.1.3
IAM/physics/cars
ISG
ISG/convexity/dissection problems
ISG/packing problems/

rectangular parallelepipeds
cylindrical AMM E2563 ISMJ 10.15 JRM 646
cylindrical coordinates

ISG/analytic geometry/volume [6]
daily CRUX 356 FUNCT 2.3.1 SSM 3577
dance CRUX 387 OMG 18.2.1
Darboux property

IAN/functions/real-valued functions
dash JRM 639 721 NYSMTJ 79
data JRM 440
date CRUX 231 JRM 374 391 643 PME 342

IGT/selection games
IRM/alphametics/story problems

daughter JRM 541 PARAB 356
day of week IAL/age problems/different times

IAL/calendar problems
De Bruijn graph

IC/graph theory/maxima and minima
deal JRM 510 647 757 C3 PARAB 427

SPECT 11.3 11.6 SSM 3574 TYCMJ 89
dealer OMG 18.1.9
decagon ISMJ 12.28
decimal [72 references]
decimal alphametic

CRUX 431 NYSMTJ 99
decimal digit CRUX 430 443 470 JRM 678 MM 953

NYSMTJ 70 PENT 320 SSM 3576 3593 3607
3622 TYCMJ 93

decimal expansion AMM E2738 CRUX 410 DELTA 6.1-4
MSJ 498

decimal integer CRUX 164 378 407 JRM 755 MM 1046
SSM 3639 3665

decimal point DELTA 6.1-4 MATYC 87
decimal representations

IGT/selection games/players select digits
INT
INT/forms of numbers
INT/powers/powers of 2
INT/recurrences/third order
INT/series/unit fractions

decimal system AMM E2776 CRUX 385 JRM 704 MSJ 417
NYSMTJ 76 OBG9 PENT 296 297
SSM 3570 3573 3586 3610 3614 3624 3691
3697 3739

decision FUNCT 3.1.1 JRM 372 373
deck AMM E2645 JRM 782 MM 1022

OSSMB 77-14 PARAB 343 SIAM 76-17
TYCMJ 89 USA 1975/5

declare CRUX 105 MM 1084

decomino IRM/polyominoes/pentominoes
decompose AMM 6046 CRUX 64
decomposition AMM 6015 6046 MM 1026 NAvW 395 543
decorate SSM 3662
decrease FUNCT 1.1.2
decreasing AMM 6131 E2713 E2714 JRM 512

NAvW 399 400 422 434 OSSMB 76-16
PARAB 331 SPECT 9.9 TYCMJ 151

decree JRM 373 379
deduction JRM 536
defective AMM S17
defense JRM 572
definable JRM 464
defining AMM 6087 PME 457
definition AMM 6249 FQ B-405
degenerate MATYC 114 SIAM 77-9
degree AMM 6043 6066 6084 6092 6202 E2519

E2549 E2564 E2565 E2668 E2693 E2761
E2796 E2801 CRUX 7 355 453 FQ B-309
JRM 589 MM 997 1010 1056 1072 Q623
OSSMB 79-18 PME 441 SIAM 75-14 78-2
SSM 3715 3783 USA 1975/3

degree 1 IAL/systems of equations/5 variables
INT/sets/polynomials

degree 2 IAL/inequalities
IAL/polynomials/roots and coefficients
IAL/solution of equations
IAL/systems of equations/3 variables
INT/composite numbers/polynomials
INT/Diophantine equations
INT/Diophantine equations/

solution in rationals [2]
INT/divisibility/polynomials
INT/Fibonacci and Lucas numbers/

divisibility
INT/polynomials
INT/primes/polynomials
INT/recurrences/floor function
INT/sets/polynomials [9]

degree 3 IAL/geometry of zeros/polynomials
IAL/inequalities
IAL/systems of equations/3 variables
IAL/systems of equations/6 variables
IAN/curves/curve tracing
IAN/infinite products/rational functions
IAN/integrals/area
IG/analytic geometry/tangents
INT/Diophantine equations
INT/Diophantine equations/

solution in rationals
INT/divisibility/polynomials
INT/floor function/sequences
INT/modular arithmetic/

solution of equations
INT/primes/polynomials
IP/number theory/polynomials

degree 4 IAL/inequalities
IAL/polynomial divisibility [3]
IAL/polynomials
IAL/solution of equations
IC/graph theory/covering problems [2]
INT/Diophantine equations
INT/Diophantine equations/

solution in rationals [3]
INT/divisibility/polynomials
INT/primes/polynomials

degree 5 IAL/polynomial divisibility
INT/Diophantine equations [3]
INT/divisibility/polynomials
INT/polynomials

degree 6 INT/Diophantine equations
degree 8 INT/divisibility/polynomials
degree 9 IHA/Galois theory/equations
degree 13 INT/divisibility/polynomials [2]
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degree 20 1975–1979 diagonal matrices

degree 20 IAL/solution of equations
degree 36 IAL/inequalities/polynomials
degree 81 IAL/polynomial divisibility
degree-measure MSJ 452
degree n INT/Diophantine equations
delay JRM 730
delete AMM 6204 6226 E2595 E2665 CRUX 276

JRM 503 632 KURSCHAK 1979/3
NAvW 527 NYSMTJ 41 OSSMB 75-12 75-18
PME 358 434 TYCMJ 78

deleted column IC/arrays/distinct rows
deleted squares IRM/chessboard problems [3]

IRM/polyominoes/maxima and minima
IRM/polyominoes/tiling

deleted terms INT/harmonic series [7]
deleted vertices IC/graph theory/bipartite graphs

IC/graph theory/isomorphic graphs
deliver JRM 534 697
demographic IAM
denomination JRM 396 SSM 3662

IAL/money problems
denominator AMM 6168 FQ B-404 ISMJ 13.2 14.11

JRM 477 503 511 586 652 OSSMB G77.1-6
PENT 281 SSM 3636 3744

dense AMM 6087 6113 6130 6131 6142 6213 E2598
E2610 E2697 CMB P257 P280 CRUX 109
300 360 MM 957

dense sets IAN/functions/transcendental functions
IAN/measure theory/function spaces
IAN/measure theory/Lebesgue outer measure
IAN/point sets
INT/fractional parts/square roots

dense subspaces IT/Hilbert spaces
density AMM 6020 6065 6092 6104 6114 6135 6144

6164 6217 FUNCT 1.5.1 NAvW 473 539
SIAM 78-4 78-8 79-6 SSM 3598 TYCMJ 111
148

INT/divisors/arithmetic means [3]
INT/primes/greatest prime factor
INT/primes/sequences
INT/sequences
INT/sets [8]
INT/sum of divisors

density functions
IP
IP/random variables/products
IP/random variables/quotients
IP/Student’s t-distribution

denumerable CRUX 174 MATYC 112
dependent CRUX 299 MM 1003 1087

PUTNAM 1976/B.3
depending AMM S22 MSJ 468 NAvW 472
deposit FUNCT 2.1.2 JRM 697 TYCMJ 104
depreciation IAL/interest problems
depression OSSMB G79.3-2
depth PME 426
derangement AMM 6234 NYSMTJ 49 OSSMB 76-5

INT/permutations [3]
derivative AMM 6018 6038 6097 6166 E2767

CRUX 176 237 MATYC 89 103
MENEMUI 1.3.3 MM 926 1010 OSSMB 79-9
SPECT 8.9 SSM 3731 TYCMJ 122 151

IAL/functional equations
IAL/geometry of zeros
IAL/polynomial divisibility/degree 4
IAL/polynomials
IAN
IAN/exponential function/infinite series
IAN/location of zeros/

complex polynomials [4]
IAN/maxima and minima
IAN/power series
IHA/algebras/polynomials
IHA/fields/polynomials [2]

derived group AMM 6059
descending AMM 6134
descent FUNCT 1.5.1
desert OMG 17.2.2 17.2.4 PARAB 348
design MM 971 SIAM 77-11
destination CRUX PS8-1 OMG 17.2.6 PARAB 306
destroyer JRM 375
detective JRM 562
detergent JRM 735
determinant AMM 6040 6086 6151 6172 E2545 E2588

E2747 E2767 E2779 CRUX 324 MM 1020
SIAM 75-11 78-3 78-14 79-3 SSM 3747

IAL
IAL/solution of equations [8]
IAN/differential equations
IAN/gamma function
IAN/Legendre polynomials
IC/sets
IG/circles/orthogonal circles
IG/lattice points/geometry of numbers
IG/quadrilaterals
ILA
ILA/affine spaces
ILA/matrices/maxima and minima
ILA/matrices/polynomials
INT
INT/Fibonacci and Lucas numbers
INT/Fibonacci numbers
INT/recurrences/arrays
ITR

determination SSM 3683
determines AMM 6080 CRUX 120 MM 1003
determining AMM 6236 6267 E2777 CRUX 242

SSM 3637 3769
deux CRUX 481
devaluation FUNCT 1.1.5

IAL/money problems
develop FUNCT 1.2.6 JRM 709 OMG 17.3.2

SIAM 76-7
deviation SIAM 76-16 78-1 SSM 3783
device ISMJ 14.22
devise AMM 6163 CRUX 158 FUNCT 2.3.3

JRM 478 509 510 513 C6 PENT 299
diabetes PENT 301
diagonal [92 references]

IG/analytic geometry/Euclidean geometry [3]
IG/combinatorial geometry/

counting problems
IG/combinatorial geometry/polygons
IG/hexagons/convex hexagons
IG/parallelograms/circles
IG/polygons/convex polygons
IG/quadrilaterals
IG/quadrilaterals/area
IG/rectangles
IG/regular octagons
IG/regular pentagons [4]
IG/regular polygons
IG/trapezoids
ILA/eigenvalues/evaluations
ISG/analytic geometry/boxes
ISG/cubes
ISG/cylinders/cubes [6]
ISG/rectangular parallelepipeds
ISG/skew quadrilaterals

diagonal matrices AMM E2635 SIAM 75-13 75-15
ILA/eigenvalues
ILA/matrices/characteristic polynomial
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diagonal sequences 1975–1979 dimension

diagonal sequences
INT/recurrences/

generalized Fibonacci sequences
diagonalizable matrices

AMM 6168 6222
ILA/eigenvalues/limits

diagonally CRUX 244 446 IMO 1978/2 JRM 390 425
MSJ 501 OMG 15.2.2 PARAB 281 PME 439
TYCMJ 145

diagonally inscribed
IG/rectangles

diagram JRM 382 391 537 566 587 703 798
MENEMUI 1.3.2 OMG 16.1.1 16.1.10 17.1.7
17.3.7

dialogue FUNCT 1.2.6 ISMJ 13.19
diameter AMM 6158 CANADA 1976/4 CRUX 62 177

220 225 248 386 423 436 444 FUNCT 1.1.3
ISMJ 10.17 11.3 JRM 646 785 MM 925
1056 MSJ 502 OMG 18.1.5 OSSMB 77-2
78-13 G75.3-3 G78.3-3 G79.1-1 G79.3-4
PARAB 279 400 401 PME 352 362 398
SSM 3656 3688 TYCMJ 119 USA 1976/2

IG/circles/2 circles
IG/locus/circles [2]
IG/right triangles/incircle
IG/simple closed curves/

maxima and minima [2]
diametric TYCMJ 119
diamond AMM E2595 E2612 JRM 443 MSJ 447

PME 434
IG/combinatorial geometry/

packing problems
dice CRUX 118 409 PS4-1 FUNCT 3.3.1 JRM 588

MM 1011 1071 PME 407 SSM 3598
TYCMJ 136 USA 1979/3

dice games IP/game theory
dice problems IP
die IRM/alphametics/phrases
died JRM 500
difference equations

INT
difference of consecutive cubes

INT/forms of numbers
difference of powers

INT/forms of numbers
INT/greatest common divisor [2]
INT/polynomials/roots
INT/primes/powers [3]

difference of square roots
INT/approximations/forms of numbers

difference of squares
INT/divisibility
INT/forms of numbers
INT/forms of numbers/

sum of consecutive cubes [4]
INT/recurrences/

generalized Fibonacci sequences
INT/series/unit fractions

difference of triangular numbers
INT/triangular numbers/forms of numbers

differences FQ H-275 H-291 H-301 MSJ 435 SSM 3571
3748

IAN/functions/C-infinity
IAN/sequences/monotone sequences
IC/sets
INT/arrays/nxn arrays
INT/digit problems/squares [5]
INT/fractional parts/maxima and minima
INT/fractional parts/square roots
INT/greatest common divisor
INT/polygonal numbers/formulas
INT/polygonal numbers/pentagonal numbers
INT/powers [3]
INT/powers/powers of 2 and 3

INT/products
INT/sets/partitions
INT/sets/subsets
INT/sum of consecutive odd integers/

even integers
different times IAL/age problems
differentiable AMM 6018 6027 6040 6050 E2572 E2622

E2663 E2738 CMB P280 CRUX 129 174
FQ H-292 MATYC 137 MENEMUI 1.3.3
MM 987 1053 NAvW 394 474 OSSMB 79-9
PUTNAM 1976/A.6 SIAM 75-16 77-7
TYCMJ 52

differentiable function
AMM 6112 CRUX 176 MATYC 81 129
MM 950 1005 1030 SIAM 77-4

IAN/functions [2]
IAN/functions/real-valued functions
IAN/series
IP/inequalities/random variables

differential SIAM 77-4
differential equation

MM 1050 Q631 NAvW 447
PUTNAM 1975/A.5 1979/B.4 SIAM 76-6
76-12 77-4 77-16 77-17 79-11

IAN
IAN/functional analysis/Hilbert spaces

differential operators
IAN

difficult SIAM 76-17
digit [329 references]

IAL/age problems
IAN/functions [2]
INT/palindromes/primes
INT/sequences

digit frequencies
INT/digit problems/leading digits

digit permutations
INT/base systems
INT/primes

digit problems INT
INT/arithmetic progressions/primes
INT/Fibonacci numbers [4]
INT/Lucas numbers
INT/Pythagorean triples
INT/sequences/law of formation
INT/series
INT/triangular numbers/counting problems
INT/twin primes
IP
IRM/cryptarithms/powers
IRM/magic configurations/magic squares [2]
IRM/puzzles/crossnumber puzzles

digit reversals INT/arithmetic progressions/primes
INT/base systems [2]
INT/digit problems
INT/primes [7]

digital JRM 746 PENT 302 SIAM 78-3
digital displays IC/configurations

INT/digit problems/counting problems [2]
digital root CRUX 203 SSM 3674 3779

INT/digit problems
digraph NAvW 453 487 SIAM 78-11
dihedral angle CANADA 1979/2 MM Q621 NAvW 513

PME 460 USA 1978/4
ISG/regular tetrahedra
ISG/tetrahedra
ISG/tetrahedra/altitudes

dimension AMM 6103 E2555 E2596 E2774 E2785
CRUX 394 IMO 1976/3 ISMJ J11.4 JRM 381
540 646 783 MM 960 MSJ 424 NAvW 541
OSSMB G79.1-6 PARAB 338 361 SSM 3637
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dimensional 1975–1979 divergent series

dimensional AMM 6009 6115 6175 6207 6215 E2620
E2779 CMB P244 CRUX 224 ISMJ 12.20
12.22 JRM 475 528 NAvW 497 PARAB 374
SIAM 75-21

Diophantine equation
IHA/fields/rational functions

INT

diphage AMM E2636

dipyramid MM Q616

direct sums IHA/rings/finite rings

directed AMM E2514 CRUX 485 MM 1066
NAvW 437 487 PARAB 308 SIAM 78-11

directed area AMM E2531

IG/points in plane/triangles

directed distances
IP/selection problems/points [2]

directed graph IC/graph theory

directed path AMM E2562 E2672

directed perpendicular
AMM E2694

director JRM C4 SIAM 78-9

directrix NYSMTJ 94

disadvantage CRUX 409 JRM 424

disc AMM 6080 6203 6250 S19 CMB P276
CRUX 60 196 FUNCT 1.5.1 ISMJ J10.6
MENEMUI 1.2.1 MM 1003 OSSMB 77-2
PARAB 328 PUTNAM 1975/A.2 SIAM 78-1

IAN/power series/Abel’s theorem [2]

IG

IG/covering problems

IG/packing problems [10]

IG/point spacing/containing figures

IG/rolling

IP/geometry

discard JRM 782

disclosed PME 388

disconnect AMM E2630

discontinuities IAN/functions/differentiable functions

discontinuous CMB P280 CRUX 174

discover AMM E2636 CRUX 16 JRM 391 395 591 599
643 PARAB 363 384 SSM 3769 USA 1978/5

discrepancy AMM E2632 CRUX 495 JRM 588

discrete AMM 6147 6208 6276

discrete sequences
IAN/functions/polynomials

discrete subspaces
IT/subspaces

discrete subsystem
SPECT 10.7

discriminant PME 414

IAL

IAN/functions/continuous functions

discussion FUNCT 1.2.1

disjoint AMM 6274 E2564 E2733 E2806 CMB P279
CRUX 59 155 PS2-3 MM 1037

disjoint neighborhoods
IT/separation properties

disjoint sets AMM 6143 CRUX 3 226 280 342 473
IMO 1978/3 JRM 567 651 OSSMB 78-14

dismiss IRM/alphametics/phrases [6]

displaced JRM C5

displacement AMM E2594

display JRM 569 759 PARAB 308 PENT 302

disposal AMM 6178

disprove [86 references]

dissect CRUX 200 256 MM 1057 NAvW 544
PARAB 330 334 339

dissection problems
IC/geometry
IG
ISG
ISG/convexity

distance [104 references]
IAL/measuring problems
IAL/rate problems
IAN/integrals/improper double integrals [2]
IC/geometry/concyclic points
IC/geometry/points in plane
IC/geometry/points in space
IG/analytic geometry/curves
IG/circles/inscribed rectangles
IG/concyclic points/unit circle
IG/ellipses
IG/equilateral triangles/exterior point
IG/equilateral triangles/interior point
IG/locus/circles
IG/points in plane
IG/points in plane/circles [2]
IG/point spacing
IG/polygons/convex polygons
IG/rectangles/interior point
IG/simple closed curves [2]
IG/triangles/interior point
IP/geometry/point spacing
IP/selection problems/points
IP/selection problems/sets
ISG/points in space/inequalities
ISG/spherical geometry/paths on Earth

distant CRUX 257
distinct digits INT/arithmetic progressions/primes

INT/digit problems
INT/digit problems/primes
INT/series/digit problems
IRM/puzzles/crossnumber puzzles

distinct factors INT/factorizations/maxima and minima
distinct rows IC/arrays
distinct sums INT/sets/sum of elements
distinguish JRM 621 PARAB 307
distribution AMM 6030 6031 6050 6092 6164 6175 6207

E2629 E2696 S11 CRUX 11 117 280 345
JRM 434 442 786 MM 1066 1070 NAvW 480
OSSMB 77-9 PARAB 437 PME 373 402
403 PUTNAM 1979/B.5 SIAM 76-16 78-13
SSM 3598 3670 3783 USA 1975/5

distribution function
SIAM 78-4

IP
distribution modulo 1

INT/fractional parts
INT/sequences/floor function

distribution of suits
IGT/bridge

distribution problems
IC
IP
IP/selection problems
IRM/chessboard problems [2]

distributive AMM 6032 MM Q619 NAvW 477
distributive lattices

IHA/lattices
distributive property

IAL/numerical calculations
IHA/binary operations/rational numbers
IHA/binary operations/real numbers [67]
INT/arithmetic operations

distributor NYSMTJ 89
diverge AMM 6035 6112 E2591 E2788 JRM 503

MATYC 112 MM 938 1032 1060 NAvW 411
SPECT 9.6 SSM 3643 TYCMJ 133

divergence PME 384
divergent series AMM E2558 MM 1032

IAN/series
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divide 1975–1979 dual spaces

divide [88 references]
dividing AMM 6026 6059 E2514 PENT 299 PME 349

SSM 3608 3635
dividing lines IRM/polyominoes/dominoes
divine CRUX 95
divisibility IAL/polynomials/integer coefficients

IHA/fields/polynomials
INT
INT/arithmetic progressions/primes
INT/arrays/recurrences
INT/base systems
INT/binomial coefficients
INT/binomial coefficients/finite sums
INT/digit problems
INT/digit problems/digital roots
INT/digit problems/distinct digits
INT/digit problems/juxtapositions
INT/digit problems/missing digits
INT/digit problems/permutations
INT/Diophantine equations/degree 3
INT/factorials
INT/factorials/fractions
INT/Fibonacci and Lucas numbers
INT/Fibonacci numbers
INT/Fibonacci numbers/Euler totient
INT/Fibonacci numbers/finite sums
INT/Fibonacci numbers/forms
INT/forms of numbers/

sum of consecutive cubes
INT/Lucas numbers
INT/palindromes
INT/polynomials/degree 2
INT/primes/arithmetic progressions
INT/primes/generators
INT/primes/pi function
INT/Pythagorean triples
INT/Pythagorean triples/primes
INT/recurrences/

generalized Fibonacci sequences
INT/repdigits
INT/repdigits/finite sums
INT/sequences
INT/sequences/binomial coefficients
INT/sequences/sum of consecutive terms
INT/series
INT/series/powers
INT/series/powers of 2
INT/series/unit fractions
INT/sets
INT/sets/partitions
INT/sum of divisors
INT/sum of powers
INT/sum of powers/primes
INT/triangular numbers/sum of squares
INT/twin primes/sums
IP/dice problems/n-sided dice
IP/number theory
ISG/polyhedra/combinatorial geometry

divisible [109 references]
division JRM 391 567 MATYC 101 NYSMTJ 47

OMG 14.1.1 17.1.9 OSSMB G78.1-2
SSM 3645 3654 3743

INT/arithmetic operations
INT/digit problems
IRM/alphametics
IRM/cryptarithms/skeletons

divisor AMM 6020 6036 6064 6065 6069 6086
6107 6144 6160 6190 6193 E2540 E2644
E2780 CMB P264 P267 CRUX 243 465
467 FQ B-317 B-330 B-406 B-412 JRM 502
MATYC 73 77 MM 964 982 983 Q614
Q635 NAvW 473 483 499 524 538 PME 360
SSM 3623 TYCMJ 34 65 107

IAN/Riemann zeta function/number theory

INT
INT/Euler totient
INT/sequences/density
INT/series/logarithms

doctor OSSMB 77-9
dodecahedral group

AMM 6099
dodecahedral numbers

INT/polyhedral numbers/
tetrahedral numbers

dodecahedron AMM 6149
IP/geometry/polyhedra

dog CANADA 1979/4 JRM 670
dollar FUNCT 1.1.5 JRM 447 499 675 782 C8

OMG 17.1.9 PARAB 363 PENT 290
PME 388

domain AMM 6045 6069 6071 6116 6170 6172
6177 6180 6226 6264 CMB P246 MM 943
PME 372 SIAM 77-4 TYCMJ 106

domino AMM E2665 CRUX 328 ISMJ 12.31 14.5
PME 358

IRM/chessboard problems/
covering problems [26]

IRM/polyominoes
IRM/polyominoes/tiling

done JRM 505 MM 1083 NYSMTJ 99
OMG 17.2.4 17.3.1 PARAB 376 SSM 3730

door ISMJ J11.15 JRM 472 PARAB 362
doorstep JRM 697
dormouse PARAB 266
dot ISMJ 12.3 JRM 709
Dots and Pairs IGT
double integrals IAN/functions/real-valued functions

IAN/hypergeometric functions/integrals
double series IAN/series/closed form expressions

INT/generating functions
INT/series/binomial coefficients
INT/series/unit fractions

double summation
IAL/inequalities/finite sums
IAN/limits/binomial coefficients
INT/Fibonacci and Lucas numbers/

finite sums
INT/triangular numbers/series

doubles PME 350
doubloon JRM 685
doubly true FQ B-312 SSM 3618

IRM/alphametics
IRM/alphametics/simultaneous alphametics

doubt JRM 392
douze CRUX 481
downhill MSJ 445
downstairs AMM S17
downstream CRUX 193
downward TYCMJ 151
dozen JRM 563 697
draw [90 references]
drill JRM 787 OMG 16.1.9
drink ISMJ 10.15

IRM/alphametics/multiplication
drive JRM 603 OSSMB 75-3 78-6 PME 343
driver CRUX 31 JRM 730
drop AMM 6009 6208 E2694 FUNCT 2.4.4

JRM 534 MATYC 123 NYSMTJ 53
PARAB 413 PME 461

drove OMG 18.1.9
dry PME 426
dryer JRM 621
dual CRUX 414 FQ H-271 SSM 3617
dual spaces ILA/normed spaces
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duck 1975–1979 equal leading terms

duck IRM/alphametics/animals
duodecimal representation

JRM 440
INT/base systems/products

duplicate PARAB 314 SSM 3776
duty MM 1084 SIAM 75-8
e IAL/complex numbers/exponential equations

IAN/sequences/monotone sequences
INT/inequalities/exponential

early AMM 6115 CRUX 333 JRM 437 625
MATYC 123 MM 943 1024 OMG 18.3.3
PARAB 341

earned TYCMJ 104
ears JRM 686
Earth CRUX 373 FUNCT 2.3.2 OMG 16.1.2 17.2.6

PME 343
IRM/alphametics/phrases

east CRUX 356 JRM 597 PARAB 305 PME 343
401

IRM/alphametics/multiplication
Easter IAL/calendar problems/calendar cycles

IAL/calendar problems/significant dates
eat JRM 563 OMG 15.2.1 PME 382
eccentric CRUX 132 PENT 286
eccentricity AMM 6047 PME 447
economical CRUX 394 420 428
edge [83 references]

IC/graph theory/maxima and minima
IG/polygons/visibility

edge-disjoint AMM E2549
edge-sum PME 402
eel SSM 3654
efficiency JRM 736
efficient JRM 598 739 SIAM 76-7
eigenvalue AMM 6006 6008 6168 6210 6222 6236

CMB P251 NAvW 547 SIAM 75-15 76-20
79-2

ILA
ILA/linear transformations
ILA/matrices/adjoints
ILA/matrices/polynomials
INT/matrices/order

eigenvector AMM 6168 CMB P251
eight-digit OMG 14.1.1
elastic JRM 564
Elba IRM/alphametics/phrases [2]
electrical networks

IAM
ISG/pentahedra

elementary symmetric functions
IAN/limits
IAN/maxima and minima/polynomials

elements IRM/alphametics
elevation OSSMB G75.1-5 G76.3-3
elevator SSM 3601

IP/distribution problems [11]
eliminate CRUX 438 JRM 513 631 769 NYSMTJ 44
elimination tournaments

IC/tournaments
ellipse AMM 6047 6223 E2682 CRUX 132 180

189 278 318 325 419 PS2-1 FQ B-337
MENEMUI 1.2.1 MM 1062 Q660 NAvW 475
476 490 NYSMTJ 46 60 OSSMB 78-11
G76.2-2 G77.2-5 G78.3-3 G79.3-4 PME 447
PUTNAM 1976/B.4 SSM 3777

IAN/complex variables/conformal mappings
IG
IG/analytic geometry
IG/billiards
IG/conics
IG/constructions/conics
IG/lattice points
IG/locus
IG/locus/circles

IG/quadrilaterals/circumscribed quadrilateral
IG/regular pentagons
IG/triangles
IG/triangles/medians [3]
ISG/cylinders

ellipsoid AMM E2576 MM 1062
ISG/analytic geometry

elliptic integral NAvW 479 SIAM 75-9 78-10
IAN
IAN/integral equations

emanate JRM 421
embedded JRM 557
embedding IT/surfaces [2]
emerge JRM 631
emergency JRM 562
emperor MM 943
employ OSSMB 78-3 PME 403
empty AMM E2713 CRUX 328 ISMJ 10.15 12.7

JRM 424 499 736 MM 952 1066 MSJ 426
NYSMTJ 53 PARAB 297 376 SPECT 11.3

empty set OSSMB 75-9
encipher JRM 740
encircle MATYC 126
enclose AMM 6008 FUNCT 2.5.3 ISMJ 13.6

JRM 509 MATYC 126 MM 1006 PME 344
346

enclosure FUNCT 1.1.9
encounter PENT 281
encrypted messages

IRM/cryptarithms
encyclopedia OMG 16.1.6
end IRM/alphametics/phrases
endgame JRM 424
ending ISMJ 14.15 JRM 434 SSM 3674 TYCMJ 119
endomorphism AMM 6236
endpoint AMM 6279 S19 CRUX 270 MM 955

MSJ 472 NAvW 424 NYSMTJ 43
PUTNAM 1979/A.4 SIAM 77-15 78-17

enemy PARAB 439
engine JRM 603 NAvW 430

IAM/physics/cars
engineering IAM
entire AMM 6117 6118 6279 E2568 CRUX 354

JRM 373 423 782 MSJ 502 NAvW 450 464
498 520 NYSMTJ 81 SPECT 10.8

entire functions IAN/functions
IAN/location of zeros

entrant CRUX 195 PARAB 323
entry AMM E2735 E2794 FUNCT 1.5.2 JRM C6

SIAM 79-2
enumerate FQ H-309
enumeration JRM 511 SIAM 78-13 79-17

INT/rational numbers
envelope FUNCT 3.4.3 MM 1068 SSM 3662

IG
environment JRM 376
epimorphism AMM 6116
equal angles IG/ellipses/tangents [3]

IG/triangles
equal areas IG/dissection problems/

isosceles right triangles
IG/dissection problems/right triangles
IG/dissection problems/triangles
IG/polygons/interior point
IG/triangles [5]

equal distances IG/constructions/parallel lines
IG/locus
ISG/locus/cube

equal edges ISG/pyramids
equal-facial-sum JRM 528
equal leading terms

INT/arithmetic progressions/
geometric progressions
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equal sides 1975–1979 every second person

equal sides IG/heptagons/cyclic heptagons

IG/triangles/similar triangles

equal volumes ISG/dissection problems/hemispheres [2]

equation [179 references]

IAL/absolute value

IAL/recurrences/polynomials [3]

IG/analytic geometry/triangles

IHA/Galois theory

IHA/rings/finite rings

INT

IRM/alphametics

equator JRM 504 OMG 16.1.2

equiangular octagons
IG/octagons

equiangular polygons
IG/cyclic polygons

equidistant ISMJ 12.10 14.19 OSSMB G76.1-2
PENT 307 USA 1979/2

equidistant curve AMM S2

equifacial NAvW 460

equilateral [69 references]

equilateral polygons
IG/polygons [2]

equilateral triangle
AMM 6062 CRUX 39 256 422 463 492 PS5-3
DELTA 5.2-2 6.1-2 FQ B-413 FUNCT 3.2.8
IMO 1977/1 ISMJ 10.4 J10.14 JRM 706
709 MATYC 98 MM 988 Q616 Q632
NYSMTJ 54 OBG6 OSSMB 75-7 78-2
G77.2-6 G78.2-5 PARAB 330 398 399
PME 352 354 387 SPECT 11.5 SSM 3682
3700 3714 3766 3772

IG

IG/combinatorial geometry [15]

IG/constructions

IG/constructions/rusty compass

IG/dissection problems

IG/hexagons/circles

IG/lattice points

IG/limiting figures

IG/locus

IG/maxima and minima

IG/paper folding

IG/regular polygons/limits

IG/squares/erected figures

IG/triangles/angle trisectors

IG/triangles/erected figures

IP/geometry/circles

ISG/octahedra

ISG/polyhedra/spheres

ISG/regular tetrahedra

ITR/triangles/cos

equilibrium IAM/physics [2]

equinox JRM C9

equipped NAvW 443

equivalence AMM E2727 JRM 656 NAvW 439 527

equivalent sentences
IST/symbolic logic

equivalently NAvW 476

erase JRM 501 PARAB 419

erect CRUX 141 PME 387

erected PME 408 422

erected figures IG/quadrilaterals

IG/right triangles [3]

IG/squares

IG/triangles

Erlang function IAN/maxima and minima/limits

error AMM 6178 E2529 MM Q627 NAvW 425
TYCMJ 119

escape AMM 6163 CRUX 28 PENT 286

escribed CRUX 370 445 OSSMB G76.1-6

escribed circle OSSMB G77.2-3 PME 437

IG/triangles

estimate AMM 6096 6105 6135 6197 E2529 JRM 376
480 510 MSJ 467 OSSMB 76-11 SIAM 76-20
77-13

IP/statistics

Euclidean 4-space
IAM/physics/force fields

Euclidean geometry
IG/analytic geometry

Euclidean n-space
IT/connected sets

IT/sets

Euclidean plane IT

Euler line IG/triangles

Euler paths IC/graph theory/maxima and minima

Euler totient IAN/sequences/convergence

IHA/groups/finite groups

INT

INT/Fibonacci numbers

INT/sum of divisors/density

Euler’s constant IAN/limits/finite sums [5]

INT/Riemann zeta function/coprime integers

Euler’s formula ISG/polyhedra/combinatorial geometry

evaluated AMM 6097 SIAM 79-9

evaluations IAL/logarithms

IAN/hypergeometric functions [2]

IAN/integrals

IAN/series

IHA/binary operations/real numbers [14]

ILA/determinants

ILA/eigenvalues

INT/continued fractions

INT/Fibonacci numbers/finite sums

INT/infinite products

INT/polynomials

INT/series/alternating series

INT/series/factorials

INT/series/floor function

INT/series/unit fractions

INT/sum of divisors

evasion JRM C5

even digits INT/harmonic series/deleted terms

even functions IAN/functions/differentiable functions

even integers INT/sum of consecutive odd integers

even order IHA/groups/finite groups

even perfect numbers
INT/number representations/

perfect numbers

INT/perfect numbers [10]

INT/sum of divisors/perfect numbers

INT/triangles/scalene triangles

even quadratic residues
INT/quadratic residues

evening MATYC 70 PARAB 362

event AMM 6174 CRUX 484 JRM 463 573
MM 1070 PUTNAM 1976/B.3 SIAM 77-11
TYCMJ 103 152

every second person
IC/Josephus problem
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examinations 1975–1979 factorial

examinations IP
IP/statistics
IRM/logic puzzles/Caliban puzzles

excenter NAvW 436
exchange JRM 463
exchequer JRM 379
execution FUNCT 1.3.7
executioner OMG 17.2.1
exhaust PME 439
exit AMM 6163 SSM 3601
exotic JRM 392
expansion AMM 6170 E2688 E2738 CRUX 90 198

346 FQ B-313 H-268 H-269 ISMJ 13.4
NAvW 449 OSSMB G75.3-5 G79.1-6
G79.2-7 SIAM 78-3

expected areas IG/point spacing/nearest point
expected distance

IP/geometry/point spacing
IP/geometry/squares

expected length IP/geometry/convex hull
expected number of moves

IRM/chessboard problems/probability
expected number of points

IP/geometry/concyclic points
expected number of trials

IP/independent trials/runs
expected relative speed

IP/relative motion/random directions
expected sum of distances

IP/selection problems/points [11]
expected value AMM 6195 JRM 510 573 NAvW 489 556

IAL/money problems/denominations
IP/biology/population problems
IP/cards
IP/cards/card shuffles
IP/coin tossing
IP/coloring problems
IP/game theory/dice games
IP/selection problems/sets
IP/selection problems/socks
IP/selection problems/sum of squares
IP/selection problems/sums
IP/selection problems/unit interval [2]
IP/selection problems/urns
IP/sequences/first occurrence
IP/transportation/ambulances [9]

expected winnings
IP/game theory/selection games
IP/game theory/TV game shows

experiment AMM E2705 JRM 379 MM 1070 PME 395
exponent AMM 6031 6135 6152 E2797 SSM 3568
exponential CRUX 293 373 JRM 739 SPECT 9.1

IAL/finite sums
IAL/inequalities
IAL/monotone functions
IAL/systems of equations/2 variables
IAL/systems of equations/3 variables
IAN/complex variables/number theory
IAN/functions
IAN/inequalities [25]
IAN/integrals/multiple integrals
IAN/limits
IAN/limits/finite sums
IAN/series/evaluations
IG/analytic geometry
INT/Diophantine equations
INT/Diophantine equations/factorials
INT/divisibility
INT/factorials/inequalities
INT/Fibonacci and Lucas numbers/

congruences
INT/Fibonacci and Lucas numbers/identities
INT/floor function
INT/inequalities

INT/maxima and minima
INT/products
INT/rational expressions/cancellation

exponential equations
IAL
IAL/complex numbers
IAL/solution of equations

exponential function
IAN
IAN/power series
IAN/series
ILA/matrices/power series

exponential growth
IAL/rate problems

expressing JRM 555
extended complex plane

IHA/groups/transformations
extending AMM E2584 JRM 504 793
extension AMM 6043 6046 E2738 CMB P252 P253

NAvW 501
extension fields IHA/fields
exterior AMM E2513 FUNCT 2.5.3 MATYC 93

MM 925 NYSMTJ 43 73 OSSMB G79.2-8
SSM 3714

exterior line segment
IG/triangles/isosceles triangles [7]

exterior point IG/constructions/chords
IG/equilateral triangles
IG/maxima and minima/solid geometry
IG/regular polygons

external ISMJ 14.18
extra JRM 573
extrema MM 1072 SIAM 78-1
extremity JRM 464 PME 402
eye CRUX 333 OMG 18.2.7
f (xy) = f (x) + f (y)

IAL/functional equations/2 parameters
face AMM 6215 E2657 E2674 E2694 E2740

AUSTRALIA 1979/1 CMB P244
CRUX 73 181 224 291 330 367 453 478
497 IMO 1979/2 ISMJ 12.21 J10.13
JRM 444 506 528 588 601 733 759
763 KURSCHAK 1979/1 MM 927 929
Q616 Q621 NAvW 469 491 526 536 546
OSSMB 75-8 76-14 PARAB 296 327 385
PME 352 413 SSM 3598 3719 USA 1979/3

ISG/tetrahedra
face-down JRM 757 782
face-up JRM 757
facility SIAM 76-7
factor AMM 6059 6264 CANADA 1976/7

CRUX 64 298 IMO 1977/3 ISMJ 11.4 14.20
JRM 371 422 473 559 570 604 643 712
MENEMUI 1.3.2 MM 1032 1072 MSJ 486
NAvW 392 502 PARAB 366 PENT 281
288 PME 446 SPECT 10.5 SSM 3578
USA 1976/5

factored CRUX 298 PARAB 366
factorial JRM 737 MSJ 478 PARAB 432

IAL/recurrences/binomial coefficients
IAN/limits
IAN/power series/closed form expressions
INT
INT/base systems [2]
INT/determinants
INT/determinants/identities
INT/digit problems
INT/digit problems/leading digits [2]
INT/digit problems/terminal digits
INT/Diophantine equations
INT/divisibility
INT/floor function/inequalities
INT/forms of numbers/sum of divisors [2]
INT/inequalities/logarithms
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factorial 1975–1979 finite sums

INT/inequalities/powers
INT/least common multiple
INT/number of divisors
INT/permutations/derangements
INT/recurrences/arrays
INT/series
INT/series/binomial coefficients
INT/series/polynomials

factorial-floor-root
INT/composed operations

factorian representation
JRM 598

factorization AMM 6152 6264 CMB P253 CRUX 390
NAvW 392 PARAB 321 PME 446
SPECT 11.1

IHA/rings/ideals
INT [6]
INT/factorials
INT/least common multiple/

consecutive integers
INT/repdigits
INT/sets/closed under product
INT/sets/divisibility

fail AMM 6017 6150 6266 JRM 445 699
MM 1008

failure PME 395
fair division IAL
fair games IP/game theory/coin tossing
fallacy FUNCT 2.3.4 MATYC 72

IAL/functional equations [2]
IG
IG/regular pentagons [16]
INT/Diophantine equations/mediants
ITR

falling bodies IAM/physics
family AMM 6006 6085 6087 6174 6220 E2614

E2654 CMB P268 P279 CRUX 355 445
ISMJ 13.7 JRM 376 591 659 MM 932 1047
1068 NAvW 475 PARAB 309 362 PENT 314
SSM 3630

family of lines IG
IG/analytic geometry

family of open sets
IT/sets/Euclidean n-space

family of planes ISG/analytic geometry
ISG/covering problems

family of sequences
INT/sequences

family of sets IAN/measure theory/Lebesgue outer measure
INT/sets

family of subsets
IC/sets
IST/subsets

family of tetrahedra
ISG/tetrahedra

family trees IC/graph theory
fan JRM 686 MM 1024
fantastica IRM/alphametics/phrases [3]
fares IAL/fair division
Farey sequence INT
farmer JRM 395 534 710 PARAB 375 PENT 282
farthing ISMJ 11.16
fashion JRM 539 SIAM 76-1
fast FQ H-282 ISMJ J10.11 JRM 534 770a

OSSMB G79.1-1 PENT 294
father FUNCT 3.1.6 JRM 794 MSJ 431 PARAB 332
fathom PME 343
fee JRM 675
female AMM E2636 FQ B-304 MSJ 431
fence CRUX 71 ISMJ 13.6 JRM 395 PME 382
Fermat number INT [20]

INT/repunits
Fermat point IG/triangles/erected figures
Fermat primes INT/Fermat numbers

Fermat-Torricelli point
IG/triangles/interior point

Fermat’s Last Theorem
INT

Fermat’s Little Theorem
INT

Fibonacci and Lucas numbers
INT
INT/Pythagorean triples

Fibonacci number
IAL/inequalities/logarithms
INT
INT/arrays/triangular arrays
INT/difference equations/linear
INT/number representations
INT/sets/partitions

fiction IRM/alphametics/phrases
field AMM 6046 6082 6101 6119 6169 6171 6177

6201 6216 6222 6251 6258 6268 6270 6284
E2540 E2578 E2635 E2711 E2762 E2779
E2785 S22 CMB P252 P253 P274 CRUX 89
DELTA 6.2-1 JRM 395 533 MSJ 447
NAvW 393 403 435 437 486 497 PARAB 375
PUTNAM 1979/B.3

IHA
INT/modular arithmetic

fifth powers INT/Fermat numbers/Fermat primes
fight JRM 395
file AMM E2515 E2521 JRM 680
filing IP/distribution problems
finance TYCMJ 104
finish AMM 6041 JRM 562 MM 926
finite [83 references]
finite differences

INT/partitions/number of partitions
finite-dimensional subspace

NAvW 395
IAN/Banach spaces/subspaces

finite families IAN/measure theory/probability measures
INT/sets/family of sets

finite fields IHA/fields
finite graphs IC/graph theory/directed graphs

IC/graph theory/isomorphic graphs [5]
IC/graph theory/map problems

finite groups IHA/groups
finite lattices IHA/lattices
finite moments IP/random variables [3]
finite products IAL

IAL/inequalities
IAL/inequalities/fractions
IAN/derivatives
IAN/limits [4]
INT

finite rings IHA/rings
finite sequences IAL/inequalities/exponentials

IAL/sequences
INT/rational numbers
INT/sequences
INT/sequences/law of formation

finite sets IHA/binary operations [18]
finite sums IAL

IAL/complex numbers/inequalities
IAL/functional equations/1 parameter
IAL/inequalities
IAL/inequalities/degree 2
IAL/inequalities/finite products
IAL/inequalities/fractions
IAL/maxima and minima
IAL/sequences
IAN/derivatives
IAN/Haar functions
IAN/integrals/trigonometry
IAN/limits
IAN/maxima and minima/constraints
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finite sums 1975–1979 Fourier series

IC/permutations
IC/sequences
IHA/fields/finite fields
INT/binomial coefficients
INT/Fibonacci and Lucas numbers
INT/Fibonacci numbers
INT/Fibonacci numbers/identities
INT/Fibonacci numbers/triangular numbers
INT/floor function [2]
INT/floor function/identities
INT/floor function/inequalities [2]
INT/forms of numbers/unit fractions
INT/greatest common divisor/quotients
INT/inequalities/fractional parts [2]
INT/Legendre symbol
INT/Lucas numbers/binomial coefficients
INT/multinomial coefficients/

trinomial coefficients [2]
INT/number of divisors
INT/permutations/derangements
INT/recurrences
INT/recurrences/arrays [2]
INT/recurrences/

generalized Fibonacci sequences
INT/recurrences/

multiplicative Fibonacci sequences
INT/recurrences/second order
INT/repdigits
INT/sequences/finite sequences
INT/sequences/monotone sequences
INT/series/unit fractions
INT/sets/unit fractions [2]
IP/number theory

finite system SPECT 10.7
finitely AMM 6113 6139 6212 6239 E2738

CMB P277 P279 CRUX 410 DELTA 5.1-3
PARAB 387

fire JRM 554 SPECT 7.1 7.5 8.2
fire alarm PARAB 384
first category IT/function spaces [2]

IT/metric spaces
first nonzero digit

INT/digit problems/products
first occurrence IP/coin tossing/expected value [10]

IP/dice problems/independent trials
IP/game theory/dice games
IP/selection problems/sum of squares
IP/selection problems/sums
IP/sequences

first-order AMM 6139 6272 NAvW 391
IAN/differential equations
INT/recurrences
IST/symbolic logic

fish FUNCT 1.3.1 JRM 376 MATYC 123
five-digit number OMG 14.1.1 SSM 3639
fixed points IAL/polynomials

IAL/recurrences/polynomials
IAN/functions/continuous functions
IC/arrays/transformations
IC/graph theory/trees
IC/permutations [7]
INT/Euler totient/solution of equations
INT/permutations
IT/metric spaces/contractions

flaps SSM 3683
flat AMM E2527 E2630 E2651 E2785

FUNCT 1.4.1 ISMJ J10.13 MSJ 445
PARAB 315 387 SSM 3598 3661

fleet OMG 17.2.6
flexible SIAM 78-17
flight SPECT 7.1
flip FUNCT 3.1.1 TYCMJ 103
floor CRUX 244 ISMJ 13.21 JRM 737 NAvW 450

OMG 18.2.1

floor function IAL
IAL/functional equations/1 parameter
IAN/limits
IG/analytic geometry [3]
INT
INT/binomial coefficients/divisibility
INT/digit problems/fractions
INT/divisibility
INT/divisibility/cube roots
INT/Fibonacci and Lucas numbers/

golden ratio
INT/Fibonacci numbers/identities
INT/fractional parts/distribution modulo 1
INT/recurrences [3]
INT/recurrences/first order
INT/sequences
INT/sequences/binary sequences
INT/series
INT/series/binomial coefficients [2]
INT/series/inequalities
INT/series/unit fractions

flow problems IAL/rate problems
flower PARAB 340
fluid IAM/physics
fly FUNCT 2.2.1
focal NAvW 415
foci AMM 6047 CRUX 242 279 318 353 419

NAvW 415 NYSMTJ 94 OSSMB G77.2-5
G78.3-3 G78.3-4 G79.3-4 PME 447
PUTNAM 1976/B.4 SSM 3777

fog JRM 478
fold AMM 6134 E2630 S4 CRUX 292 350 375

422 PS2-3 ISMJ J10.13 JRM 628 MSJ 464
PARAB 399 PME 460 SIAM 75-12 SSM 3637
3661

folium of Descartes
CRUX 417

IG/analytic geometry
folks IRM/alphametics/phrases
food IRM/alphametics
football FUNCT 3.5.1 JRM 624 MENEMUI 1.1.3

NYSMTJ 57
IAL/sports

force AMM S10 NAvW 393 403 437 461
IAM/physics/particles [7]

force fields IAM/physics
Ford IRM/alphametics/names
fore JRM 375
forinth ISMJ 11.16
formation AMM 6260 CRUX 16 MM 961 OMG 14.1.2

PARAB 326 329
forms INT/Fibonacci numbers
forms of numbers

INT
INT/approximations
INT/digit problems/digital roots
INT/least common multiple/

greatest common divisor
INT/Lucas numbers/binomial coefficients [2]
INT/primes
INT/Pythagorean triples/primes
INT/sequences/monotone sequences
INT/triangular numbers

formula [72 references]
IC/compositions
IC/counting problems/subsets
INT/permutations/derangements [2]
INT/polygonal numbers

formulate CRUX 367
fort MM 943
fortune JRM 423
forward JRM 753 PARAB 331
four-term SSM 3697
Fourier series IAN
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Fourier transform 1975–1979 generalized Fibonacci sequences

Fourier transform
IAN/integral inequalities

fourth-order CRUX 482
fourth powers INT/base systems/maxima and minima

INT/digit problems/powers
INT/Fibonacci and Lucas numbers/identities
INT/Fibonacci numbers/identities

fox OMG 15.2.1
fraction AMM E2692 E2777 CRUX 91 92 346

349 430 447 FQ H-278 H-308 ISMJ 13.1
13.2 13.4 13.28 14.11 J10.16 J11.9
J11.16 JRM 374 643 652 MATYC 89 103
MSJ 498 NYSMTJ 50 62 OSSMB G79.2-7
PARAB 271 272 393 429 PENT 277
PME 365 371 SSM 3636 3744

IAL/age problems/different times [2]
IAL/finite sums
IAL/identities [3]
IAL/inequalities
IAL/inequalities/exponentials
IAL/inequalities/finite sums
IAL/infinite series [2]
IAL/means/inequalities
IAL/numerical calculations
IAL/solution of equations/linear
IAN/Bessel functions/infinite series
IAN/infinite products
IAN/integrals/evaluations
IAN/integrals/improper integrals
IAN/limits/factorials [2]
IAN/limits/finite sums
IC/graph theory/family trees
INT
INT/decimal representations [4]
INT/digit problems
INT/digit problems/squares
INT/digit problems/terminal digits
INT/Euler totient
INT/factorials
INT/floor function/finite sums
INT/floor function/iterated functions
INT/floor function/maxima and minima
INT/floor function/solution of equations
INT/least common multiple/

consecutive integers
INT/maxima and minima
INT/multiplication tables [2]
INT/number representations
INT/recurrences

fractional part AMM 6199 CRUX 269 JRM 681 C2
INT
INT/harmonic series/partial sums
INT/inequalities [2]

frame NAvW 468 503
free OMG 17.1.3 OSSMB G78.1-4
free group AMM 6204

IHA/groups/subgroups
freedom AMM 6092 SSM 3783
freeze IRM/alphametics/phrases [2]
French IRM/alphametics/phrases
frequency JRM 588 NAvW 455
frequently JRM 680 OMG 18.1.2
frictionless PME 343
Friday the 13th IAL/calendar problems
friend AMM 6020 CRUX 263 FUNCT 2.1.2

3.2.3 3.2.6 JRM 643 MM 1056 MSJ 437
PARAB 297 306 314 439 PENT 278

friendly AMM 6020 JRM 395

friends and strangers
IC/graph theory

frog AUSTRALIA 1979/3 IMO 1979/6
frosting PARAB 381
frustum FUNCT 1.1.3 NYSMTJ 56

ISG/right circular cones
fun JRM 780
function [223 references]

IAL
IAN
IAN/integrals
IAN/limits
IT

function spaces IAN/Banach spaces
IAN/measure theory
IT

functional AMM 6078 6093 6166 6173 S15 CRUX 299
314

functional analysis
IAN

functional equation
AMM 6106 E2575 E2607 S3 CRUX 343
FQ H-287 ISMJ 13.13

IAL
IAN/differential equations
INT [2]

functional inequalities
IAL/inequalities
IAN/limits

functionally CRUX 299
fundamental AMM 6172 6270 CMB P274 NAvW 546
fundamental domain

IG/lattice points/geometry of numbers
fundamental unit

INT/modular arithmetic/fields
further AMM 6260 E2789 CMB P253 FQ H-308

JRM 591 770a PUTNAM 1976/B.3
furthermore AMM E2795 FQ H-248 MSJ 417 NAvW 536

PARAB 283
furthest MATYC 119 PARAB 295
gain CANADA 1976/3
gallon ISMJ 12.7 NYSMTJ 96
Galois theory IHA [2]
gambit OMG 17.2.5
gambler AMM 6041 JRM 423 SPECT 7.4
gambler’s ruin IP
game [83 references]
game theory IP
gamma function

IAN
IAN/Bessel functions/infinite series
IAN/functions/monotone functions
IAN/hypergeometric functions
IAN/integrals
IAN/integrals/limits
IAN/series/hyperbolic functions

gap AMM E2522 JRM 680
INT/primes

gasoline CRUX 354 NYSMTJ 81
gather PARAB 439
Gauss IRM/alphametics/names [2]
Gaussian integers

INT
generalization AMM S10 CRUX 363 FQ B-408 SSM 3690

INT/Fermat’s little theorem
generalized binomial theorem

IAL
generalized Fibonacci sequences

INT/recurrences [37]
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generating functions 1975–1979 guest

generating functions
IAN/gamma function
IC/counting problems/ordered pairs
INT
INT/binomial coefficients
INT/Fibonacci numbers
INT/Pell numbers/arrays
INT/sequences/floor function
IP/geometry/polyhedra

generation FQ B-304 JRM 737
generator AMM 6202 CRUX 140 NAvW 491 513

PUTNAM 1975/B.1
IHA/groups/subgroups
IHA/groups/transformations
INT/primes
INT/Pythagorean triples

genus AMM 6141
geography IAM
geometric AMM E2632 CANADA 1975/4 1976/1

1979/1 CRUX 77 110 213 242 332
395 FQ B-382 ISMJ 10.15 11.7 12.18
JRM 739 MATYC 85 MM 961 1062
Q615 OSSMB G78.1-3 G79.1-5 PME 454
SPECT 7.2 8.8 9.7 10.9 SSM 3585 3613 3713
3747 3755

geometric figures
IC/counting problems

geometric mean IG/regular polygons/exterior point
INT/algorithms
INT/recurrences/inequalities

geometric progressions
IAL/finite sums/arithmetic progressions
IAL/theory of equations/roots
IG/triangles/interior point
INT/arithmetic progressions
INT/binomial coefficients/

arithmetic progressions
INT/decimal representations
INT/sets/arithmetic progressions
INT/triangles

geometric series INT/composite numbers
INT/series

geometry CRUX 291 MSJ 456 OSSMB G75.2-2
IAN/measure theory
IC
INT
INT/divisibility
IP

geometry of complex plane
IAN/complex variables/rational functions

geometry of zeros
IAL

Gergonne point IG/triangle inequalities
German IRM/alphametics/doubly true [5]
girl CANADA 1978/5 ISMJ J10.1 MSJ 431

PENT 314
glass NYSMTJ 56

IRM/alphametics/phrases
gnomon magic square

SSM 3629
IRM/magic configurations

Go Moku IGT/tic-tac-toe variants
goal FUNCT 3.5.1 OMG 18.2.6 PME 373
goat CRUX 89 JRM 395 PENT 282
goblet FUNCT 2.2.3
gold coin JRM 379
golden ratio FUNCT 3.2.5 PME 435

IAL/functional equations/1 parameter
IG/regular pentagons/diagonals
IG/semicircles/inscribed squares
INT/Fibonacci and Lucas numbers
INT/Fibonacci numbers/identities
INT/Gaussian integers/powers
INT/sequences/binary sequences [9]
INT/series/infinite series

golfer FUNCT 1.2.4
goose OMG 15.2.1
gossip PARAB 372
governorship JRM 392
grab PARAB 384
grade CANADA 1976/3 OMG 18.3.2
gradients IAN/derivatives
graduate assistant SSM 3579

IC/configurations/people
grandfather JRM 794
graph AMM 6034 6037 6079 6157 6159 6255

E2549 E2562 E2565 E2620 E2672 E2795
CANADA 1978/6 CMB P268 CRUX 374 380
417 JRM 501 NAvW 453 459 487 495 527
NYSMTJ 67 PME 441 PUTNAM 1975/A.2
1977/A.1 1979/B.1 SSM 3756 TYCMJ 151

IC/coloring problems
graph of a function

IT
graph theory IC

IC/sequences/binary sequences
grass CRUX 1 JRM 488 489 490

IRM/alphametics/phrases
gravitational field AMM E2535 SIAM 78-17
gravity ISMJ 10.15 NAvW 450 468 NYSMTJ 53

PARAB 392 PME 343 SPECT 8.2
IAM/physics [2]

grazing IAL/uniform growth
grazing goat CRUX 1 89 JRM 395 476 PENT 282

PME 382
IG

great circles ISG/dissection problems/spheres [3]
ISG/spherical geometry/spherical triangles

greatest common divisor
IHA/fields/number fields
INT
INT/Fibonacci numbers
INT/floor function/finite sums [2]
INT/Gaussian integers
INT/least common multiple
INT/Lucas numbers/sequences
INT/maxima and minima/sequences
INT/primes/generators
INT/Pythagorean triples/inradius [2]
INT/recurrences/

generalized Fibonacci sequences
INT/sequences/consecutive integers

greatest prime factor
INT/primes [2]

greed IRM/alphametics/phrases
green AMM E2722 AUSTRALIA 1979/1

IMO 1979/2 JRM 416 623 730 OMG 17.2.1
grid JRM 391 426 572
ground CRUX 122 FUNCT 2.4.4 JRM 782 MM 1004

OMG 17.2.2 PARAB 263 PME 413
IRM/alphametics/phrases

group [55 references]
IHA [3]
IHA/binary operations/inequalities
IHA/loops
IHA/rings/integral domains
INT/modular arithmetic
IT/metric spaces/isometries

group presentations
IHA/groups

groupoid AMM 6150
IHA

grow SSM 3585
growth JRM 376
guarantee AMM 6191 MM 1051 NAvW 443 PENT 313
guess CRUX 417 FUNCT 2.5.2 JRM 379 469 512

769 785 NYSMTJ 72
guest PARAB 278
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Haar functions 1975–1979 husband

Haar functions IAN
hair JRM 541
half angles IG/triangle inequalities
half-domino ISMJ 14.5
half-plane AMM E2761 E2801 S2
half-year FUNCT 2.1.2
Hamel bases ILA/vector spaces
Hamiltonian graphs

IC/graph theory/maxima and minima [3]
hand codes IRM/cryptarithms
hand sizes IGT/bridge/maxima and minima
handle JRM 729
hands IAL/clock problems

IAL/clock problems/time computation
Hankel function IAN
Hankel matrices INT/determinants/binomial coefficients
hard CRUX 434 JRM 387 MM 1056
hare PARAB 266
harmonic AMM 6048 6165 6198 6280 CRUX 77

395 JRM 503 NAvW 514 OSSMB 75-12
PME 354 SIAM 75-21 SSM 3613 3652 3713
3759

harmonic functions
IAN
IAN/complex variables [2]
IAN/integrals/multiple integrals

harmonic mean IG/squares/circumscribed triangle
INT/means [2]

harmonic oscillator
SIAM 79-7

harmonic series IAN/functions/monotone functions
INT

harmonic tetrahedra
ISG/tetrahedra/family of tetrahedra

harmonical NAvW 436
hat CRUX 471 MATYC 123 MSJ 426

SPECT 11.4
Hausdorff metric

IT/metric spaces
headquarters OMG 17.2.6
heart JRM 443 782 SIAM 75-8
heat OMG 17.2.2
heaven JRM 644
heavier PARAB 307
heaviest CANADA 1976/1
heavy AMM 6224 JRM 448
heifer PME 382
height CANADA 1977/5 CRUX 24 375

FUNCT 1.1.3 JRM 646 NYSMTJ 56
OMG 16.1.2 16.2.5 OSSMB G78.3-5
PENT 302 PME 413 SSM 3783

help CRUX 34 JRM 482 MM 1056 1072
hemisphere SSM 3672

ISG/dissection problems
heptagon DELTA 6.2-3 PARAB 422

IG
heptagonal number

PME 340 SSM 3764
INT/polygonal numbers
INT/twin primes/arithmetic means

herd OMG 17.1.9
Hermite interpolation

IAN/numerical analysis
Hermitian matrices

ILA/matrices
Hermitian operators

IT/Hilbert spaces
hex MM 1084
hexagon AMM 6229 E2595 E2612 CRUX 155

ISMJ 12.28 MATYC 107 121 MM 975
NYSMTJ 79 PARAB 265 340 PME 434 438
SSM 3677 3746

IC/coloring problems
IG

IG/tiling
IRM/magic configurations
IRM/polyominoes/tiling

hexagonal CRUX 155 JRM 533 SSM 3621
hexagonal arrays

IGT/selection games/arrays
hexagonal number

PME 359 415 SSM 3609 3621
INT/base systems/polygonal numbers [2]
INT/polygonal numbers
INT/polygonal numbers/consecutive integers
INT/polygonal numbers/pentagonal numbers

hexahedron MM Q616
ISG/tetrahedra/inscribed spheres

hidden AMM 6146
hidden moves IGT/board games

IGT/tic-tac-toe variants
higher AMM E2555 JRM 528 739 MATYC 117

MM 960 1071 PME 403 SIAM 75-11
higher derivatives

IAN/derivatives
highest ISMJ 11.4 JRM 658 MM 1071 PME 349 403
highway CRUX 31 OSSMB 75-3
hike JRM 603 MSJ 445
hilarious CRUX 333
Hilbert space IAN/functional analysis

IT [3]
hill OSSMB G79.3-2
hinged JRM 472
history JRM C5 PARAB 335
hitting MENEMUI 1.3.2 SIAM 75-8
hockey OMG 17.1.1 PME 373

IP/sports
holdings JRM 463 631
hole AMM E2612 JRM 391 426 445 787

MM 1013 OMG 16.1.9
IRM/polyominoes/pentominoes
ISG/spheres

holiday FUNCT 2.4.1
Holmes IRM/alphametics/names
homeomorphic AMM 6188 E2768
homeomorphism AMM 6282

IT/unit interval [6]
homogeneous CRUX 424 FQ B-411 NAvW 547

OSSMB G79.1-6 PUTNAM 1979/B.4
homomorphism AMM 6246

IT/topological groups
homothetic figure AMM E2774

IG/packing problems/convexity
homotopically AMM 6225
hoop FUNCT 1.5.1
horizon CRUX 356
horizontal AMM 6182 6211 CRUX 427 436

FUNCT 1.2.1 JRM 533 572 678 NAvW 450
NYSMTJ 68 OMG 15.1.3 PARAB 283 410
SPECT 8.2 SSM 3598 USA 1976/1

horizontally PARAB 295 TYCMJ 147
horse FUNCT 3.1.4 3.5.2
horse race AMM 6041

IP/selection problems
hospital SIAM 75-8
host JRM 699
house CRUX 95 122 ISMJ J11.15 MSJ 432 437

OMG 18.3.3 PARAB 362 PENT 278
housespouse JRM 735
hull JRM 375
human CRUX 373 JRM 655
Hunter and Trigg

IRM/alphametics/names
husband JRM 769 MSJ 431 OSSMB 78-3
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Huygens 1975–1979 income tax

Huygens ITR/inequalities
hymn FUNCT 2.4.2
hyperbola CRUX 15 OSSMB G77.2-5 G78.3-4 G79.3-3

IG
IG/ellipses

hyperbolic AMM E2680 S2 NAvW 526
hyperbolic functions

IAN/series
hyperboloid NAvW 491 513

ISG/projective geometry/tetrahedra
ISG/tetrahedra/altitudes

hypercenter NAvW 501
hypercube MM 996
hypercycle AMM S2
hypergeometric function

SIAM 76-19
IAN [5]

hyperplane AMM E2548 E2779 CRUX 224
IG/n-dimensional geometry/simplexes
ILA/affine spaces

hypotenuse CRUX 33 218 437 FUNCT 2.2.4 2.5.3
ISMJ 10.17 J11.6 MSJ 480 OMG 18.1.5
PARAB 400 PENT 298 PME 431 461
SSM 3592 3633 3771 TYCMJ 64

INT/Pythagorean triples
hypothesis AMM 6080 6204 6266 E2680 SSM 3719
icosahedron SSM 3693
idea AMM 6163 MSJ 447
ideal AMM 6116 6134 6152 6180 E2528 E2676

CMB P258 DELTA 5.1-3 NAvW 541
SSM 3666

IHA/rings
IHA/rings/matrices

idempotent AMM 6039 6150 6183 MM 1052 TYCMJ 139
idempotent matrices

ILA/matrices/identity matrix
identical AMM 6281 E2544 CRUX 354 JRM 733

756 KURSCHAK 1979/3 NYSMTJ 81
OMG 17.2.1 18.2.7 18.3.5 PARAB 291 307
PME 382 USA 1979/3 1979/5

identically AMM 6117 6120 6145 6263 FQ B-309
MM 1030 NAvW 532 OSSMB 79-9
PUTNAM 1977/A.6 1979/B.4 USA 1979/3

identically distributed
AMM 6030 6031 6103 6114 SIAM 78-7

identified CRUX 263 JRM 539
identifying AMM E2698
identity AMM 6083 6102 6116 6123 6134 6150

6214 6226 6238 6263 E2525 E2676 E2742
FQ B-339 B-384 B-411 H-245 H-251 H-266
H-288 H-295 FUNCT 3.2.2 MM 951 990
1018 1058 MSJ 469 NAvW 534 NYSMTJ 51
OMG 18.1.6 PENT 273 PUTNAM 1975/A.4
1977/B.6 SIAM 76-9 77-2 SPECT 7.8
TYCMJ 139

IAL [2]
IAL/complex numbers
IAL/determinants
IAL/finite sums/binomial coefficients [2]
IAL/finite sums/fractions
IAL/infinite series/fractions
IAL/logarithms
IAN
IAN/Bessel functions/infinite series [2]
IAN/derivatives/higher derivatives
IAN/functions/differentiable functions
IAN/hypergeometric functions/

gamma function
IAN/integrals/functions
IAN/Legendre polynomials [3]
IAN/power series
IAN/series/binomial coefficients
IAN/series/exponential function [3]
IC/permutations/counting problems

IHA/groups/subgroups
ILA/determinants
ILA/determinants/recurrences
ILA/matrices/stochastic matrices
ILA/matrix equations/binomial coefficients
INT/binomial coefficients/finite sums
INT/continued fractions [2]
INT/determinants
INT/determinants/binomial coefficients
INT/Fibonacci and Lucas numbers
INT/Fibonacci and Lucas numbers/

finite sums
INT/Fibonacci numbers
INT/Fibonacci numbers/finite sums
INT/floor function [6]
INT/infinite products
INT/series
INT/series/binomial coefficients
INT/series/infinite series
INT/triangular numbers
INT/triangular numbers/series
ITR

identity function
IAL/inequalities/functional inequalities [3]

identity matrix ILA/matrices
ILA/matrices/powers
ILA/matrices/similar matrices [5]

ignition sequence NAvW 430
ignore AMM 6173 PARAB 295
illegible OMG 18.3.9
illustrate PME 446
image AMM 6250 E2548 MATYC 80 MM 980

NAvW 549
imaginary AMM 6270 E2542 CMB P252 CRUX 128 396

NAvW 444 503 TYCMJ 35
imbedded CRUX 286 MM 939
immediate JRM 621 MATYC 87 123 OSSMB 76-3

PENT 314 SIAM 76-1
immortal PARAB 332
immortal ant SSM 3781
impact NAvW 450
improper double integrals

IAN/integrals
improper integrals

IAN/integrals
IAN/integrals/evaluations

incenter AMM S23 CRUX 260 288 386 388 397
472 478 483 PS5-3 PS7-2 NAvW 402 436
OSSMB G78.1-5 PME 417 442 SSM 3678
TYCMJ 110

IG/cyclic quadrilaterals
IG/inequalities/triangles
IG/triangle inequalities/

angle bisectors extended [5]
IG/triangles/altitudes
ISG/regular tetrahedra/equilateral triangles
ISG/tetrahedra
ITR/triangles/sin

incidence NAvW 475 476
incircle CRUX 330 397 415 450 IMO 1978/4

OSSMB G77.2-3 PARAB 400 PME 417
SSM 3772

IG/inequalities/triangles
IG/regular polygons/limits [10]
IG/right triangles
IG/triangle inequalities/radii
IG/triangles/escribed circles
ISG/tetrahedra/faces

inclination MENEMUI 1.3.2 OSSMB G79.3-2
SPECT 8.2

inclined OSSMB G75.2-2 SSM 3754
inclined plane FUNCT 1.5.1
inclusion map IT/Hilbert spaces/dense subspaces
income tax PENT 279
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incomplete game 1975–1979 infinite series

incomplete game
IGT/tic-tac-toe variants

incomplete information
IC/tournaments
IRM/logic puzzles

incongruent AMM E2789
incorrect DELTA 6.2-3 FUNCT 1.1.6 NYSMTJ 62

PME 414 SSM 3725
incorrect methods

IAL/solution of equations/degree 2
increased CRUX 470 FUNCT 1.1.2 ISMJ J11.4

SPECT 8.2 SSM 3577 3611
increasing sequence

IAN/functions/C-infinity [2]
indecomposable IMO 1977/3 PARAB 366
indefinite CRUX 88
independent [54 references]
independent events

IP/coin tossing
IP/inequalities

independent trials
IP
IP/dice problems

indeterminate AMM 6039 6170 6258
index AMM 6023 6205 E2545 E2592 E2735

JRM 592 MM 1000 1059 NAvW 448
indicated JRM 434
indicator digits INT/digit problems/number of digits
indistinguishable AMM 6224 CRUX 117 ISMJ 14.24 MM 940
indistinguishable hands

IAL/clock problems/hands [27]
indistinguishable urns

IP/selection problems/urns
individual matchups

IGT/chess problems
induced metric AMM 6063
induced subgraph AMM 6037
induction JRM 728
inductive CRUX 416 NAvW 477 PME 376 TYCMJ 133
inequality AMM 6227 E2551 E2582 S12 CRUX 17 115

304 306 362 395 458 KURSCHAK 1979/2
MM 936 1043 Q615 MSJ 421 NAvW 458
488 PARAB 368 SIAM 76-5 77-10 77-12
TYCMJ 144

IAL
IAL/complex numbers
IAL/means
IAL/recurrences
IAL/theory of equations
IAN
IAN/complex variables
IAN/complex variables/harmonic functions
IAN/curves
IAN/derivatives
IAN/functions/differentiable functions
IAN/gamma function
IAN/gamma function/determinants
IAN/intervals
IAN/limits/finite products
IAN/limits/logarithms
IAN/measure theory/integrals
IAN/measure theory/probability measures
IAN/power series/exponential function
IAN/sequences
IAN/series
IC/arrays
IC/compositions
IC/sets/partitions
IG
IG/butterfly problem
IG/convexity [2]
IG/n-dimensional geometry
IG/triangles/relations among parts
IHA/binary operations

ILA/linear transformations [2]
ILA/matrices/Hermitian matrices
ILA/matrices/norms [2]
ILA/vector spaces/subspaces
INT [2]
INT/binomial coefficients/

number representations
INT/composite numbers/characterizations
INT/Euler totient
INT/factorials
INT/factorizations
INT/Fibonacci numbers [7]
INT/floor function
INT/geometry/lattice points
INT/geometry/right triangles
INT/harmonic series
INT/least common multiple
INT/limits/maxima and minima
INT/means
INT/permutations [21]
INT/polynomials
INT/powers/tetration
INT/primes/products
INT/Pythagorean triples
INT/recurrences
INT/recurrences/

generalized Fibonacci sequences
INT/sequences
INT/series
INT/sum of divisors/iterated functions
INT/sum of divisors/number of divisors
IP
IP/permutations
IP/random variables/uniform integrability
IP/selection problems/unit interval
IST/mappings
IST/subsets/family of subsets
ISG/analytic geometry/boxes
ISG/points in space
ISG/polyhedra/convex polyhedra
ISG/rectangular parallelepipeds/

relations among parts
ISG/tetrahedra/opposite edges
IT/metric spaces
IT/metric spaces/Hausdorff metric [2]
ITR
ITR/triangles [2]

infinite 3-dimensional board
IGT/board games/chessboard games

infinite board IRM/chessboard problems/
coloring problems [3]

infinite-dimensional
NAvW 395

infinite order IHA/groups/group presentations
infinite product IAN

INT
ITR

infinite series IAL
IAL/determinants/identities
IAN/Bessel functions
IAN/complex variables/number theory
IAN/exponential function
IAN/functions
IAN/functions/digit problems
IAN/functions/entire functions
IAN/gamma function
IAN/hypergeometric functions
IAN/inequalities
IAN/limits
IAN/Riemann zeta function
INT/Fibonacci and Lucas numbers
INT/Fibonacci numbers
INT/infinite products/identities
INT/series [10]
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infinite series 1975–1979 integral inequalities

INT/series/binomial coefficients
IP/independent trials/runs
ITR
ITR/inequalities/cos

infinite sets INT/composite numbers/polynomials
INT/Fibonacci numbers/

greatest common divisor
INT/greatest common divisor
INT/sets/density
INT/sets/prime divisors
IST/subsets/family of subsets

infinitely [55 references]
infinitude PME 359 SSM 3670
infinity AMM 6056 E2585 CRUX 442 DELTA 5.2-1

6.1-1 JRM 765 766 NAvW 460 SPECT 7.3
inflection point MM 1072 NAvW 403

IAN/curves [5]
influence NAvW 450 461
information FUNCT 1.3.7 JRM 536 699 MSJ 437

PENT 314 USA 1978/3
inhabitant CRUX 28
initial value problems

IAN/differential equations
injections INT/polynomials
injective AMM 6169
inner product ILA/matrices/Hermitian matrices

IP/random vectors/
variance-covariance matrices

inning JRM 573
input JRM 478
inradius AMM E2632 CRUX 450 MM 1043

OSSMB G78.1-5 PME 410 450
IG/inequalities/triangles
IG/triangle inequalities/interior point
IG/triangles/altitudes
IG/triangles/medians
INT/Pythagorean triples

inscribe [85 references]
inscribed circle AMM E2634 CRUX 46 126 144 NAvW 472

OSSMB G78.1-5 PME 368 SSM 3695 3766
TYCMJ 85

IG/circles/isosceles right triangles [3]
IG/quadrilaterals
IG/regular octagons
IG/squares [3]
IG/triangles

inscribed cubes ISG/packing problems/spheres
inscribed ellipse CRUX 318
inscribed octahedra

ISG/spheres/inscribed polyhedra
inscribed polygons

IG/regular polygons
IP/geometry/concyclic points [3]

inscribed polyhedra
ISG/spheres

inscribed prisms
ISG/spheres/inscribed polyhedra

inscribed quadrilaterals
INT/geometry/semicircles

inscribed rectangles
IG/analytic geometry/circles
IG/circles
IG/ellipses/maxima and minima [2]

inscribed sphere MM Q616 NAvW 526
ISG/tetrahedra

inscribed square NYSMTJ 85 OBG8
IC/geometry/concyclic points
IG/maxima and minima/isosceles triangles
IG/maxima and minima/triangles [2]
IG/semicircles
INT/Pythagorean triples [3]

inscribed triangle
IG/triangles

inseparable NAvW 435
insert CRUX 26 182 ISMJ 11.8 MM Q642

PARAB 327
instance AMM 6238 JRM 740 PME 451 SSM 3727
instant FUNCT 2.1.2 MM 940 OMG 17.3.3 PME 401
instantaneous OMG 17.2.6
instrument PARAB 291
integer [1064 references]

IHA/groups/abelian groups
INT/powers
IT/topological groups/homomorphisms [2]

integer coefficients
AMM E2554 CANADA 1977/4 CRUX 254
FQ B-309 FUNCT 2.5.4 JRM 589 MSJ 475
OMG 16.2.4 OSSMB 78-10 PME 360
PUTNAM 1975/A.4 1976/A.2 TYCMJ 115

IAL/polynomials
IAL/theory of equations/inequalities
IAL/theory of equations/roots
ITR/systems of equations [2]

integer programming
IAM/operations research/linear programming

integer roots IAL/theory of equations
ITR/solution of equations/arctan
ITR/solution of equations/sin and cos

integer-sided TYCMJ 64 75
integrable AMM 6030 6085 6113 6174 E2738 MM Q622

NAvW 412 SIAM 78-18
integral [95 references]

IAL/functional equations [2]
IAN
IAN/Bessel functions
IAN/functions/continuous functions
IAN/functions/differentiable functions
IAN/functions/monotone functions
IAN/gamma function
IAN/Hankel function [8]
IAN/hypergeometric functions
IAN/identities
IAN/Jacobians
IAN/Legendre polynomials
IAN/limits
IAN/limits/exponential
IAN/limits/sequences
IAN/maxima and minima [2]
IAN/maxima and minima/constraints
IAN/measure theory [2]
IAN/series
INT/floor function
IP/density functions
IP/distribution functions/convolutions

integral area MM 1023
integral coefficients

AMM 6028 E2693 CRUX 30 452 494
ISMJ 13.1 MM Q623 PME 397

integral coordinates
CRUX 495

integral divisor AMM E2753 E2780 FQ B-329 B-356
PUTNAM 1976/B.6

integral domains
IHA/rings

integral equations
IAN

integral inequalities
IAN
IAN/Bessel functions [29]
IAN/functions/continuous functions
IAN/functions/differentiable functions
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integral transforms 1975–1979 isosceles

integral transforms
IAN/integrals/functions

integration SIAM 79-9
intercept CRUX 488 PS1-2 OSSMB G75.2-2 G76.2-2

SSM 3730 TYCMJ 132
interchange AMM 6281 E2645 CRUX 273 JRM 736

MM 952 995 1034 1086 NAvW 439
interchanged digits

IAL/money problems
INT/digit problems/primes

interest FUNCT 2.1.2 JRM 413 MM 1056 PME 343
SIAM 76-16 TYCMJ 104

interest problems
IAL

interesting AMM E2630 OSSMB 79-8 SSM 3685
interior AMM 6038 6047 6098 6260 E2513 E2517

E2682 E2716 CANADA 1977/2 CRUX 39
155 224 DELTA 5.2-2 6.1-2 ISMJ 13.16
JRM 554 MATYC 93 MM 925 927 959
960 966 1003 1006 MSJ 422 451 489 494
502 NYSMTJ 74 95 OBG3 OMG 16.2.2
OSSMB 75-15 79-14 G77.1-4 PME 405 410
448 PUTNAM 1976/A.1 1977/A.6 SSM 3660
3682 TYCMJ 140

interior point IG/circles
IG/equilateral triangles
IG/inequalities/rectangles
IG/inequalities/triangles
IG/maxima and minima/angles
IG/maxima and minima/triangles
IG/n-dimensional geometry/simplexes
IG/polygons
IG/polygons/convex polygons
IG/rectangles
IG/simple closed curves
IG/squares
IG/triangle inequalities
IG/triangles
IG/triangles/isosceles triangles
IP/geometry/squares
IRM/mazes

intermediate AMM 6268 JRM 737 SSM 3653
internal AMM E2538 S23 CRUX 379 423 454 483

MM 967 998 PME 346 421 TYCMJ 110
internally IMO 1978/4 JRM 733 MATYC 93 PME 408

447
international IMO 1978/6 USA 1978/5
interpolation SIAM 78-2

IAL/polynomials
IAN/functions/polynomials

interpret AMM 6146 JRM 471 MM 1062 NAvW 497
SSM 3568 3691

interpretation JRM 471
intersect [68 references]
intersection AMM 6060 6130 E2634 E2754 E2793 S23

AUSTRALIA 1979/2 CANADA 1977/7
CRUX 136 145 374 386 436 FQ B-348
FUNCT 3.1.3 3.3.4 IMO 1979/3 JRM 538
730 MM 992 NAvW 415 490 501
NYSMTJ 38 43 46 OBG5 OMG 15.3.1
15.3.10 16.2.7 OSSMB G78.2-5 G78.3-4
G79.1-1 PARAB 412 PENT 312 PME 436
437 SSM 3684 TYCMJ 74 117 119
USA 1976/2

IAN/curves/unit square
IG/analytic geometry/lines
IP/inequalities
IST/subsets/family of subsets [5]

interval AMM 6038 6050 6080 6161 6184 6188 6242
E2551 E2561 E2700 E2733 CMB P278
P279 P280 CRUX 48 59 283 347 JRM 586
708 713 786 MATYC 122 NAvW 446
452 458 493 PARAB 272 284 PME 429

PUTNAM 1975/A.5 SIAM 75-16 77-4 78-7
SSM 3698 3756 TYCMJ 46

IAN
IG/combinatorial geometry

invariant AMM 6009 6267 FQ H-276
inventory JRM 604
inverse AMM 6026 E2793 CMB P278 CRUX 448

MM 1063 NYSMTJ 67 SIAM 76-3 76-15
78-17

inverse function CRUX 283 SIAM 77-7
IAN/functions/differentiable functions
IAN/integral inequalities/bounds

inverse matrices ILA/matrices/identity matrix
INT/matrices [2]

inverse trigonometric functions
ITR/identities

invertible AMM 6228 6259 E2545 E2762 MM 1040
TYCMJ 139

invertible matrices
ILA/matrices/identity matrix [2]

invoice OMG 18.3.9
involve ISMJ 13.21 PUTNAM 1976/A.4 SPECT 11.1
Ireland IRM/alphametics/places
irradiate AMM E2636
irrational AMM 6024 6161 6188 6233 E2598

CMB P243 CRUX 104 109 186 FQ B-405
MM 1048 NAvW 530 551 PARAB 287
PME 360 414 452 PUTNAM 1977/B.3

irrational number DELTA 6.1-4 FQ B-404 MM 1087
IAL/algorithms
IAL/radicals [5]
IAN/infinite products
IGT/selection games/players select digits
INT
INT/floor function/finite sums
INT/series/infinite series
INT/series/least common multiple
INT/sets
INT/square roots/sum and difference [2]
IT/connected sets/plane sets
IT/sets
ITR/recurrences/cos

irreducible AMM 6046 6202 E2711 CRUX 91 92 447
PUTNAM 1976/A.4 1979/B.3

irreducible polynomial
AMM 6046 6258 PUTNAM 1979/B.3

IAL/polynomials/integer coefficients
IHA/fields/polynomials [2]
ILA/determinants/complex numbers
ILA/matrices/characteristic polynomial

irregular polygons
IG/constructions/rulers

island CRUX 400 JRM 392 OMG 15.1.1
isodynamic NAvW 514
isogonal conjugate

AMM E2793 NAvW 415 436 535
IG/locus/triangles
IG/triangles

isolate AMM 6081 JRM 708
isometry AMM 6009 6275

IT/metric spaces
IT/topological vector spaces

isomorphic AMM 6037 6099 6116 6275 CMB P252 P253
JRM 479 NAvW 459 495 527

isomorphic graphs
IC/graph theory

isomorphism AMM 6043
IHA/groups/group presentations
IHA/rings/Boolean rings
IT/metric spaces/isometries

isosceles CRUX 33 141 181 271 330 363 476 JRM 370
706 OMG 17.3.7 PENT 308 PME 416
SSM 3649 3700
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isosceles right triangles 1975–1979 lattice point

isosceles right triangles
IG
IG/circles
IG/constructions/triangles [2]
IG/dissection problems
IG/quadrilaterals/erected figures

isosceles trapezoid CRUX 394
isosceles triangle AMM E2584 E2802 CRUX 134 144 175 200

256 363 376 ISMJ 12.32 J11.17 MSJ 434
456 NYSMTJ 48 85 OSSMB 79-5 PENT 284
SSM 3693 3700 3703 3733 3767 TYCMJ 131

IG/analytic geometry/Euclidean geometry
IG/dissection problems/equilateral triangles
IG/dissection problems/triangles
IG/equilateral triangles
IG/maxima and minima
IG/triangles [2]
IG/triangles/erected figures
INT/triangles
INT/triangles/counting problems
IP/geometry/triangles [2]
ISG/complexes

isotropic NAvW 415 436 460
issue AMM E2538 ISMJ 12.4 JRM C4 PME 351
italic AMM 6146
item CRUX 297
iterate AMM 6133 6260 E2808 MM 993 1069

NAvW 499
iterated functions

IAL
IAL/functional equations/1 parameter
IAL/inequalities
IAN/functions
IAN/functions/continuous functions [2]
IAN/functions/differentiable functions
IAN/sequences/recurrences
IAN/series
IAN/series/differentiable functions
INT/floor function
INT/number of divisors [3]
INT/sum of divisors

iterated logarithms
IAN/series
INT/series/logarithms

iterative SSM 3690
jacks JRM 601 PARAB 427
Jacobi symbols INT/quadratic reciprocity [2]
Jacobian IAN
Jacobson radical AMM 6068
jailer FUNCT 1.3.7 PENT 286
Jeeves IRM/alphametics/names
jester JRM 379
jetty JRM 392
job JRM 444 562 OMG 18.2.3
jog CRUX 356
joint distribution

IP/random variables/sum and difference [2]
joke SSM 3694
joker JRM 462 770a
Jordan form ILA/linear transformations/eigenvalues

ILA/matrices/adjoints [6]
Josephus problem

IC
journey MSJ 432 NAvW 450 OMG 17.2.4 17.2.6
jug NYSMTJ 96 SSM 3645
jukebox CRUX 280

IC/counting problems
jump AUSTRALIA 1979/3 CRUX 71 IMO 1979/6

MM 952
jury decision FUNCT 3.1.1

IP

Just IRM/alphametics/names
juxtaposition AMM E2544 CRUX 457 SSM 3723

INT/digit problems
keel JRM 375
keg NYSMTJ 96
kernel AMM 6145
key JRM 499 729 772 MM 1080 PENT 286

SSM 3690
IC/configurations/circular arrays

kibitzer JRM 536
kidney PENT 301
king FUNCT 2.2.3 JRM 379 424 446 475 541 597

601 680 703 PARAB 283 313 356 420 427
IRM/chess tours/circuits

kingdom PENT 309
kite CRUX PS7-2
knife CRUX 308
knight AMM E2605 CRUX 446 FUNCT 2.2.3

JRM 425 540 C7 OMG 14.2.2 PARAB 420
IRM/chessboard problems/

maxima and minima
IRM/chessboard problems/probability
IRM/chess tours

knockout OMG 17.1.4
knot JRM 444

IT [3]
knothole PME 382
knowledge OSSMB 79-10
Kronecker delta IAL/solution of equations/determinants
label AMM 6192 E2605 E2645 E2732

FUNCT 1.4.5 JRM 385 392 793 MM 1066
NAvW 405 487 SIAM 77-15 SPECT 11.3
TYCMJ 119

labeled boxes IRM/logic puzzles
labeled lattice points

IC/lattice points [3]
labeling JRM 528 SIAM 77-15
labor JRM 530
ladder CRUX 122 JRM 793 PME 413

IG
lady JRM 697
Lagrange interpolation

IAL/finite sums/fractions
lake CRUX 193 JRM 376
lamb OMG 17.1.9
land JRM 387 500 650 MSJ 445 OMG 14.2.2

SPECT 8.2
land-locked JRM 376
landmark CRUX 356
language NAvW 391 PARAB 341 USA 1978/5

IST/symbolic logic
Laplace transform

IAN
Laplacian IAN/differential equations
largest summand

INT/partitions/number of summands [2]
late OMG 18.3.3
lateral KURSCHAK 1979/1
Latin crosses IRM/polyominoes/tiling
Latin rectangle IC/arrays
Latin square IC
latitude JRM 504 PARAB 305 PME 343
latter JRM 379 682
lattice AMM 6032 6172 6179 E2700 JRM 480 557

MM 1083
IHA
ILA

lattice point AMM 6179 6192 E2570 E2653 E2759
CRUX 155 275 408 495 MM 927 1083
MSJ 419 OMG 15.1.2 OSSMB 77-2
PARAB 392 398 PME 456 TYCMJ 53 129

IAN/derivatives/inequalities
IC
IC/counting problems/geometric figures
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lattice point 1975–1979 line graphs

IG [2]
IG/family of lines
IG/maxima and minima/shortest paths
INT/divisibility/geometry [4]
INT/geometry
IP/geometry/discs
ISG

latus rectum OSSMB G78.3-4
launch IRM/alphametics/phrases
Laurent polynomials

IHA/rings/polynomials [3]
Laurent series IAN
law AMM 6238 CMB P249 CRUX 16

FUNCT 2.5.2 MM 961 PARAB 329
law of formation

INT/sequences
INT/series/factorials

leader AMM E2638 MM 1024
leading digits INT/digit problems [6]

INT/digit problems/squares
INT/Pythagorean triples/digit problems
INT/twin primes/digit problems

league MM 1024 SSM 3617
IAL/sports

leak OSSMB G79.1-1
lean CRUX 122 PME 413
leap FUNCT 3.1.4 JRM 419
least common multiple

INT
INT/geometry/lattice points [4]
INT/series
INT/series/infinite series

Lebesgue measure
IAN/intervals/inequalities
IAN/measure theory/Borel sets [2]

Lebesgue outer measure
IAN/maxima and minima/integrals
IAN/measure theory

left-continuous AMM 6142
left-distributive TYCMJ 43 81
left-hand FUNCT 1.1.4 1.2.5 2.2.3 OSSMB 79-2

PARAB 327 TYCMJ 145
leg CRUX 333 428 ISMJ 10.17 J11.6 JRM 527

706 PARAB 400 PENT 298 PME 390 461
SSM 3633 3733 3771 TYCMJ 61

Legendre polynomials
IAN

Legendre symbol
INT

legitimate JRM 703
Lemoine point IG/triangles/altitudes
length 2 IP/coin tossing/runs
length 3 IP/coin tossing/runs
letter AMM 6146 CRUX 164 238 239 324 401

433 FUNCT 3.4.3 JRM 374 392 431 469
704 740 751 755 KURSCHAK 1979/3
MENEMUI 1.1.3 NYSMTJ 70 OSSMB 77-8
77-15 G79.1-6 PARAB 306 341 PENT 297
SIAM 78-3 SSM 3593 3607 3618 3622 3650
3691 3739 3780

IRM/alphametics
liars and truthtellers

IRM/logic puzzles [2]
library OSSMB 76-11
lie [69 references]
Lie algebras IHA/category theory
life CRUX 117
lifejacket JRM 513
light AMM 6224 S17 CRUX 289 JRM 448 530 730

MENEMUI 1.3.2 MM 1003 1056 PARAB 304
310

lightning JRM 659
likelihood JRM 441
lim inf INT/maxima and minima/coprime integers

lim inf and lim sup
INT/sequences/monotone sequences

INT/sets/triples

limerick CRUX 215

IRM/cryptarithms/encrypted messages

limit AMM 6062 6096 6133 6167 6209 E2585
E2692 E2721 E2807 CMB P264 P280
CRUX 130 194 258 273 FQ H-303 NAvW 434
542 OSSMB 78-9 G76.3-6 PME 430
SPECT 7.3 TYCMJ 111

IAN

IAN/Bessel functions/infinite series

IAN/Bessel functions/integrals

IAN/functions/real-valued functions

IAN/gamma function/integrals

IAN/integrals

IAN/integrals/improper integrals

IAN/integrals/multiple integrals

IAN/location of zeros

IAN/maxima and minima [9]

IAN/sequences/monotone sequences

IAN/sequences/recurrences

IAN/series/pairs of series

IC/graph theory/trees

IG/projective geometry/quartics

IG/rectangles/squares

IG/regular polygons

IG/squares

ILA/eigenvalues

ILA/matrices/spectral radius [2]

ILA/matrices/stochastic matrices

ILA/vector spaces/systems of equations [2]

INT

INT/base systems

INT/digit problems/sum of digits

INT/Diophantine equations/degree 2 [5]

INT/factorizations/maxima and minima

INT/Fibonacci numbers/recurrences

INT/means/consecutive integers

INT/number of divisors

INT/number of divisors/factorials

INT/number of divisors/iterated functions

INT/permutations/derangements

INT/recurrences

INT/recurrences/
generalized Fibonacci sequences

INT/recurrences/second order [2]

INT/sequences

INT/sequences/rational numbers

INT/series [3]

IP/arrays/circular arrays

IP/geometry/point spacing

IP/random variables

IP/selection problems [2]

IRM/chessboard problems/counting problems

IT/surfaces/triangulations [2]

limit distribution AMM 6031

limit point JRM 622

IAN/functions/continuous functions

INT/Euler totient/solution of equations

INT/Gaussian integers/powers

limiting distribution
IP/random variables/characteristic functions

limiting figures IG [3]

line graphs IC/graph theory/isomorphic graphs
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line segments 1975–1979 machine

line segments IC/coloring problems/points in plane
IG/circles
IG/constructions
IG/dissection problems
IG/locus/circles
IG/maxima and minima [41]
IG/simple closed curves/interior point
IG/squares
IG/triangles
ISG/lines

line through focus
IG/parabolas

linear AMM 6009 6029 6051 6071 6078 6093
6103 6203 6264 6277 E2712 E2774 S22
CMB P272 FQ B-329 B-411 JRM 386
MATYC 85 MM 952 1022 NAvW 395 471
497 549 PUTNAM 1979/B.4 SIAM 76-7 77-4
TYCMJ 46

IAL/solution of equations
IAN/differential equations/first order
INT/difference equations [3]
INT/Diophantine equations
INT/divisibility/polynomials
INT/recurrences/first order
INT/recurrences/third order

linear combinations
IP/Student’s t-distribution/

density functions [8]
linear forms IP/random variables/limits
linear independence

IAN/functions
linear programming

IAM/operations research
linear subspaces IT/locally convex spaces
linear system AMM 6215
linear transformations

ILA
linearly AMM 6253 CMB P243 MM 1087

PUTNAM 1975/A.5 SIAM 75-14
lines IG/analytic geometry

IG/analytic geometry/conics
IG/constructions
IG/constructions/circles
IG/constructions/rusty compass [3]
IG/lattice points/counting problems
IG/locus
IG/parallelograms
IG/points in plane/partitions
IG/squares [6]
IG/triangles
ISG
ISG/maxima and minima

lines in plane IG/combinatorial geometry
link JRM 531 PARAB 267
linkage IG/locus
liquid ISMJ 10.15 OMG 17.3.1

IAL/measuring problems
live CANADA 1977/7 JRM 393 643 655

OMG 16.2.7 PARAB 309 PENT 309
loaded dice JRM 588

IP/dice problems
loaded pistol SPECT 7.5
loading JRM 588
local AMM 6029 6071 6163 6274 E2806

NAvW 471 554 OMG 18.1.1 18.2.3 18.2.4
locally convex spaces

IT
locate CRUX 338 ISMJ J10.4 MSJ 447 PME 405

PUTNAM 1975/A.6 1976/A.1 1977/B.2
SIAM 76-7 SSM 3624 TYCMJ 140

location AMM E2665 CRUX 224 JRM 534 757
SIAM 76-7

location of zeros
IAN

lock CRUX 387 ISMJ 11.18 13.22 JRM 499
PENT 286 SPECT 9.2

locker ISMJ 11.18 SPECT 9.2
locking boxes IP/game theory/selection games
locks and keys IC/configurations/maxima and minima
locomotive PARAB 275
locus AMM S2 CANADA 1976/4 CMB P277

CRUX 177 370 450 479 IMO 1978/2
JRM 701 MENEMUI 1.2.1 NAvW 414 415
436 504 535 547 OSSMB G75.1-4 G75.3-3
G76.1-1 G76.1-2 G76.3-4 G77.2-6 G78.1-4
PME 436 SPECT 7.7 SSM 3788 USA 1976/2

IAM/physics/force fields
IG
IG/analytic geometry
IG/non-Euclidean geometry
IG/projective geometry
IG/rolling/discs
ISG

logarithm CRUX 332 JRM 739 MM 1032
IAL
IAL/inequalities
IAL/solution of equations
IAL/systems of equations
IAL/theory of equations/roots
IAN/derivatives/higher derivatives
IAN/functions/monotone functions
IAN/integrals/evaluations
IAN/integrals/trigonometry
IAN/limits
IAN/limits/binomial coefficients
IAN/limits/floor function
IAN/series/evaluations
IAN/series/integrals
INT/inequalities
INT/Riemann zeta function/coprime integers
INT/series
INT/series/digit problems
INT/series/floor function
ITR/infinite series/cos

logarithmic MM 1032 SIAM 76-16
logarithmic distribution

IP/digit problems/base systems
logic AMM 6272
logic puzzles IRM [2]
loop CRUX 325 MATYC 109 NAvW 459 495

IHA
loose JRM 444
lose JRM 533 587 658 682 OSSMB 79-15

PME 350 388
loser JRM 501 PME 350 388 SPECT 7.4
loss CANADA 1976/3 JRM 715 PARAB 323

SIAM 75-21
lost AMM 6163 CRUX 446 MM 1024 PME 350
lottery CRUX 195
low JRM 573 PME 413
lowest terms INT/continued fractions/convergents

INT/fractions
INT/rational expressions

loxodrome AMM 6087
ISG/space curves

Lucas number INT [3]
INT/number representations

luck MM 943
lucky MM Q619 SSM 3568
lunch CRUX 263 OMG 18.2.3 PENT 313

IC/configurations/people
lying AMM E2593 E2617 E2639 CRUX 386

PARAB 296 328 PME 374 398
PUTNAM 1975/B.2 SSM 3744

machine MSJ 464 NAvW 489
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Maclaurin series 1975–1979 maxima and minima

Maclaurin series
IAN
INT/Fibonacci numbers/generating functions

Madachy IRM/alphametics/names
magazine JRM 703 SSM 3694
magic CRUX 145 359 399 JRM 385 563 569

PENT 319 PME 364 SSM 3629 3632
magic configurations

IRM
magic pentagrams

IRM/magic configurations
magic square CRUX 359 399 482 ISMJ 14.23 JRM 524

MSJ 430 PARAB 301 PENT 319 PME 364
SSM 3629

IRM/magic configurations
maiden MSJ 432
mail IP/conditional probability
main AMM E2528 E2552 CRUX 399 JRM 508 537

MM 1038 1086 PARAB 319
major OSSMB 75-5 PME 438 SSM 3584
major axis OSSMB G78.3-3 G79.2-8 G79.3-4
majority FUNCT 3.1.1 JRM 423
male AMM E2636 FQ B-304 MSJ 431

OSSMB 78-3
manager OMG 18.2.3
maneuver PARAB 266
manipulation PENT 285
map AMM 6040 6047 6051 6071 6078 6091 6182

6215 6236 6250 E2647 E2712 S8 CMB P257
ISMJ 12.20 12.21 JRM 554 NAvW 503
USA 1978/2

map problems IC/graph theory [2]
IG
IG/n-dimensional geometry/4-space

mapping AMM 6047 6188 6225 6267 CMB P272 P280
FQ H-292 NAvW 549 PUTNAM 1978/A.4

IG/lattice points
IST

marble AMM E2612 FUNCT 2.4.4 JRM 623
OMG 18.2.7

marching SIAM 75-2
marginals AMM 6115

IP/distribution functions
mark CRUX 175 409 FUNCT 1.3.7 2.3.1 2.5.1

ISMJ 14.24 J10.2 JRM 501 508 572 MSJ 487
NAvW 405 PARAB 335 PME 341 387
TYCMJ 89

marked card IC/cards/arrays
marry JRM 699 OSSMB 78-3 PARAB 356

PME 449
mass ISMJ 10.15 MATYC 127 NAvW 393 403 437

450 461
master MM 1084
Mastermind IGT
match FUNCT 2.3.3 JRM 511 593 601 621 715 769

MENEMUI 1.1.3 NAvW 527 OMG 18.2.6
PME 355 407 SSM 3617

matching problems
IP/dice problems

mate JRM 621
math IRM/alphametics/phrases

IRM/alphametics/words
mathematically JRM 472
mathematician AMM 6264 CRUX 414 JRM 699 759

MATYC 123 MSJ 437 USA 1978/5
IC/configurations/people

mathematics CRUX 95 215 361 371 431 ISMJ 14.11
MM 1056 MSJ 483 487 OMG 18.3.2
PARAB 335 PENT 311

mathematics professor
CRUX 452

mating IP/biology
matrix [105 references]

IAM/physics/
systems of differential equations [2]

IC/algorithms
IHA/groups
IHA/groups/transformations [2]
IHA/rings
ILA
INT [2]
INT/digit problems
INT/Pythagorean triples/generators
IP/number theory/divisibility [5]

matrix equation FQ H-281
ILA

matrix sequences
ILA

maxima and minima
MM 1072 SIAM 79-14

IAL
IAL/calendar problems/calendar cycles
IAL/rate problems/rivers
IAL/sports/football
IAN
IAN/derivatives
IAN/inequalities/exponentials [11]
IAN/rate problems
IAN/series/closed form expressions
IAM/navigation/circular motion
IAM/physics/temperature
IC/algorithms
IC/algorithms/matrices
IC/arrays
IC/configurations
IC/configurations/digital displays
IC/geometry/points in plane
IC/geometry/points in space
IC/graph theory
IC/graph theory/trees
IC/paths
IC/sets/cardinality
IC/sorting
IC/tournaments
IC/tower of Hanoi
IGT/bridge
IGT/chess problems
IGT/yes or no questions [2]
IG
IG/analytic geometry/circles
IG/analytic geometry/folium of Descartes
IG/analytic geometry/triangles
IG/circles/area
IG/circles/chords
IG/circles/interior point
IG/combinatorial geometry/polygons [2]
IG/constructions/chords
IG/constructions/circles
IG/constructions/rulers
IG/constructions/triangles
IG/convexity/points of symmetry [2]
IG/dissection problems/triangles
IG/ellipses
IG/hexagons/circumscribed decagon
IG/lattice points
IG/locus/triangles [7]
IG/n-dimensional geometry/convexity
IG/n-dimensional geometry/curves
IG/n-dimensional geometry/simplexes
IG/parabolas/chords
IG/points in plane/circles
IG/point spacing/distance
IG/quadrilaterals [2]
IG/quadrilaterals/triangles
IG/regular polygons/inscribed polygons [4]
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maxima and minima 1975–1979 meteorology

IG/right triangles/incircle
IG/simple closed curves
IG/triangles/circumcircles
IG/triangles/ellipses [3]
IG/triangles/inscribed circles
IG/triangles/interior point
IG/triangles/medians
IG/triangles/special triangles
IHA/binary operations
IHA/groups/permutation groups
ILA/matrices
ILA/matrices/0-1 matrices [4]
ILA/matrices/Hermitian matrices
INT
INT/arithmetic progressions
INT/arithmetic progressions/primes
INT/arrays/nxn arrays
INT/base systems
INT/base systems/squares
INT/binomial coefficients [5]
INT/composed operations/factorial-floor-root
INT/digit problems
INT/digit problems/pandigital numbers
INT/digit problems/squares
INT/Diophantine equations/exponential
INT/divisibility/polynomials [11]
INT/divisibility/triangular numbers
INT/equations/2 variables
INT/factorizations
INT/Fibonacci numbers/algorithms
INT/floor function
INT/fractional parts
INT/geometry/rectangular parallelepipeds
INT/inequalities/logarithms
INT/inequalities/simultaneous inequalities
INT/limits
INT/limits/coprime integers
INT/matrices/inverse matrices
INT/modular arithmetic/sum of squares
INT/partitions [3]
INT/permutations/order
INT/primes/recurrences
INT/Pythagorean triples/area
INT/Pythagorean triples/counting problems
INT/Pythagorean triples/inscribed squares
INT/repdigits/factorizations [2]
INT/repunits
INT/sequences/finite sequences
INT/sequences/monotone sequences
INT/sequences/sum of consecutive terms [2]
INT/series/unit fractions
INT/sets
INT/sets/partitions
INT/sets/subsets [24]
INT/sets/sum of elements
INT/triangles/area
INT/triangles/perimeter
INT/triangles/right triangles
IP/distribution functions/marginals
IP/random variables/limits
IP/selection problems/distribution problems
IP/selection problems/socks
IRM/arrays
IRM/arrays/polygonal arrays
IRM/chessboard problems
IRM/polyominoes
IRM/polyominoes/pentominoes
IST/relations/binary relations
ISG
ISG/analytic geometry
ISG/curves/arclength
ISG/cylinders/spheres
ISG/lines/line segments
ISG/right circular cones/paths

ISG/tetrahedra
ITR/solution of equations/sin and cos
ITR/triangles

maximal extension
IHA/fields/extension fields

maximal subgroup
IHA/groups/subgroups [4]

maximized FUNCT 3.5.2 TYCMJ 86
maze AMM 6163 OMG 14.3.1

IRM
meager set AMM 6257

IT/function spaces/first category
mean proportional

IG/circles/2 circles
IG/circles/tangents
IG/right triangles

mean value theorem
IAN/derivatives/higher derivatives [2]
IAN/functions/continuous functions
IAN/functions/differentiable functions [2]

means IAL
INT

meant AMM 6281
measurability AMM 6120
measurable AMM 6172 CMB P256 NAvW 443
measurable function

NAvW 443
measure AMM 6073 6140 6143 6218 6231 6242

CMB P256 P269 P279 CRUX 141 175
255 260 394 FUNCT 3.5.2 JRM 445 684
MATYC 99 MM 1056 MSJ 464 NAvW 443
558 NYSMTJ 85 PENT 317 SIAM 78-1
SSM 3715 3722 3786

measure theory IAN
IAN/functions/digit problems

measure zero IAN/sets/plane sets
measured AMM E2668 ISMJ 14.18 JRM 500
measurement CRUX 495 PARAB 265 297
measuring MM 1056 PARAB 399
measuring problems

IAL
medal IRM/alphametics/phrases [11]
median AMM E2538 CMB P244 CRUX 56 144

218 278 309 383 423 ISMJ 12.6 12.14
MATYC 99 MM 936 1054 Q638 MSJ 458
480 NYSMTJ 47 PME 341 351 421 448
SIAM 79-19 SSM 3733 TYCMJ 143

IG/constructions/triangles
IG/triangles
IG/triangles/30 degree angle
IG/triangles/angle bisectors
IG/triangles/area
IG/triangles/isosceles triangles

medians and sides
IG/triangle inequalities

mediant IAL/inequalities/fractions
INT/Diophantine equations

medication OSSMB 77-9
memory JRM 715
ménage number INT/permutations/derangements
Menelaus’ theorem

IG/triangles/Ceva’s theorem
mental JRM 462
Mental Heck IGT/card games
meridian AMM 6087
Mersenne number

INT
message AMM 6146
metacyclic group AMM 6059 NAvW 502

IHA/groups/group presentations
metal JRM 379 PARAB 291
meteorology MM 1056

IAM
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metric 1975–1979 monotonically

metric AMM 6009 6025 6063 6081 6113 6126
6275 6282 S8 FUNCT 1.2.2 1.2.3 MSJ 501
NAvW 460

IG/analytic geometry/locus [5]
IRM/alphametics/phrases

metric conversions
IAL

metric space IT
microbe AMM E2636

IP/biology/population problems
midnight CRUX PS8-1 FUNCT 2.2.3 3.3.2
midpoint [51 references]

IG/equilateral triangles
IG/locus
IG/triangles/equal areas [4]
IG/triangles/squares

mileage JRM 671
miles and kilometers

IAL/metric conversions
million CRUX 34 JRM 371 C9 OSSMB 76-11
mini-Concentration

JRM 601
mini-deck JRM 601
minimal moves to reach position

IGT/chess problems/maxima and minima
IRM/chessboard problems/

maxima and minima
minimal subset IST/subsets/family of subsets
minimize AMM 6076 JRM 427 499 C5 MM 1059

PME 354 367 SIAM 76-7 77-14 78-4 79-17
minor NYSMTJ 79
minus AMM E2541 CRUX 26 JRM 625 MM 970

1024
mirror CRUX 291 MENEMUI 1.3.2 MM 1003

PARAB 304
IAM/optics

missing JRM 751 MSJ 430
missing digit JRM 437 SSM 3741

INT/digit problems
missing entries IRM/magic configurations/magic squares
mistake MATYC 123 MSJ 467
mixed ISMJ 12.7 NYSMTJ 96
mixtilinear triangle

CRUX 248 NYSMTJ OBG5 PME 362
IG/circles
IG/circles/2 circles [2]

mixture ISMJ 12.7 OMG 17.3.1
mixture problems

IAL/measuring problems
moat OMG 15.1.1

IG/squares
mode SIAM 75-1
model AMM 6272 E2630 S2

IST/symbolic logic
modest JRM 476
modified CMB P253 JRM 675 NAvW 419 SIAM 76-3

79-15
modular arithmetic

INT
INT/base systems
INT/permutations
INT/polygonal numbers
INT/recurrences [2]
INT/squares

module AMM 6116
modulo AMM 6161 6196 6210 6270 E2560 E2627

E2704 E2753 E2775 E2781 E2797 E2798
CMB P274 FQ B-348 B-351 B-363 B-368
B-372 H-307 JRM 672 MM 948 961 1002
NAvW 432 OMG 15.3.7 OSSMB 75-16

modulo 2 INT/Pascal’s triangle [3]
modulo 3 INT/Fibonacci numbers/congruences
modulo 4 INT/Fibonacci numbers/congruences [3]

INT/sequences/finite sequences

modulo 5 INT/Fibonacci and Lucas numbers/
finite sums

INT/Fibonacci numbers/congruences
INT/Lucas numbers/congruences [2]
INT/series/congruences

modulo 7 INT/squares/modular arithmetic [2]
modulo 10 INT/Fibonacci and Lucas numbers/

finite sums [2]
INT/Fibonacci numbers/congruences
INT/Lucas numbers/congruences

modulo 12 INT/Pythagorean triples/hypotenuse
modulo 24 INT/Fibonacci numbers/congruences
modulo 210 INT/primes/congruences
modulo 757 INT/determinants/congruences
modulo p INT/binomial coefficients/congruences [2]

INT/determinants/congruences
INT/Fibonacci and Lucas numbers/

congruences
INT/Fibonacci numbers/congruences

modulo powers of 3
INT/Fibonacci numbers/congruences
INT/polynomials/congruences

modulo powers of 5
INT/Fibonacci numbers/congruences

modulo prime powers
INT/modular arithmetic/

quadratic congruences
modulus AMM 6091 6279 E2600 E2808 SIAM 75-9
Möbius function

INT
INT/Fermat’s little theorem/generalizations

mold JRM 703
moment JRM 782 C7 MSJ 437 NAvW 450

SIAM 77-10 SPECT 7.5
IAN/integral inequalities
IAN/integrals/multiple integrals

money CRUX 195 ISMJ 11.16 OMG 17.1.9
TYCMJ 104

IRM/alphametics [3]
IRM/alphametics/phrases
IRM/alphametics/simultaneous alphametics

money problems
IAL
IC/algorithms/maxima and minima [11]
IC/configurations

monic polynomial AMM 6046 6191 E2801 CRUX 452
SIAM 75-14

IHA/fields/polynomials
INT/divisibility/polynomials

monkey FUNCT 3.1.6
monochromatic AMM 6229 E2562
monotone AMM 6218 E2714 CRUX 474 MATYC 133

NAvW 465 510 SIAM 76-15 TYCMJ 112
monotone functions

IAL
IAN/functions
IAN/functions/convex functions
IAN/functions/differentiable functions
IAN/measure theory
IAN/measure theory/arcs
IP/inequalities/random variables
IP/random variables/finite moments
IT/function spaces/first category

monotone sequences
IAN/sequences [20]
IAN/series
IAN/series/pairs of sequences
INT/sequences
INT/sequences/products
INT/sequences/subsequences

monotonically AMM 6234 CMB P248 JRM 512
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Keyword Index
Monte’s dilemma 1975–1979 niphometer

Monte’s dilemma
IP/conditional probability

month CRUX 231 FUNCT 1.1.1 1.1.9 2.1.2 JRM 374
643 759 C9 PARAB 273 PME 342 449
TYCMJ 104

moon JRM 416 C9
Moore-Penrose inverse

ILA/matrices
morning CRUX 402 OSSMB 79-1 PARAB 362
morphism AMM 6032

IHA/lattices/distributive lattices
mother FQ B-304 MSJ 431 PARAB 332
motion AMM 6230 6276 E2727 JRM C5 NAvW 393

437 438 450 461 547 PARAB 424
SIAM 75-21 SSM 3777

motorboat MM 1004
movement JRM 446 OMG 16.1.1
moving AMM 6096 CRUX 22 408 479 JRM 446 564

NAvW 547 OSSMB G77.2-6 PARAB 266 301
SIAM 76-1

moving points IG/circles/2 circles
multinomial coefficient

INT
INT/series

multinomial distribution
IP/independent trials/runs

multiple angles ITR/identities
multiple-choice test

CRUX 357
IRM/logic puzzles/incomplete information

multiple integrals
IAN/integrals
IAN/integrals/evaluations

multiples IAL/age problems/different times
INT/digit problems
INT/forms of numbers/squares
INT/pandigital numbers
INT/Pythagorean triples/area
INT/series
INT/sets/maxima and minima

multiplex JRM 740
multiplication AMM 6068 E2753 JRM 456 786 MM Q619

OMG 15.3.4 15.3.9 OSSMB 79-6 SSM 3632
3670 3739

IAL/algorithms
INT/digit problems/primes [3]
IP/slide rules
IRM/alphametics
IRM/cryptarithms/skeletons [2]

multiplication rules
INT/digit problems/terminal digits

multiplication tables
INT

multiplicative AMM 6108 6183 FQ H-300 MM 935
NAvW 392

multiplicative Fibonacci sequences
INT/recurrences

multiplicative functions
INT/Möbius function

multiplicative magic squares
IRM/magic configurations/magic squares

multiplicative semigroups
IHA/rings/Boolean rings

multiplicative sequences
INT/sequences/finite sequences

multiplicity AMM 6222
multiplier PME 461 SSM 3568
multiply CRUX 297 439 PS5-2 FQ H-257 H-273

FUNCT 1.1.3 3.3.3 3.5.1 JRM 592 728 760
MM Q619 MSJ 468 OMG 17.2.3 18.3.7
PARAB 301 SSM 3612 3631 3765

music IAM/acoustics
musical FUNCT 1.3.6
mutual JRM 423 PARAB 439
mutual strangers PARAB 439
muzzle PME 382
n× 1 polyominoes

IRM/polyominoes/maxima and minima
n× n arrays INT/arrays
n× n determinants

INT/determinants/solution of equations
n-dimensional cube

IP/geometry/point spacing [4]
n-dimensional geometry

IG
IG/lattice points
ISG/triangles

n items IAL/weights/balance scales
n people IC/configurations/mutual acquaintances
n queens problem

IRM/chessboard problems
n-sided dice IP/dice problems
n-tuples INT/sets
n variables IAL/systems of equations
name CRUX 105 333 FUNCT 1.3.7 IMO 1978/6

JRM 374 392 643 PARAB 323 341
IRM/alphametics

nation IRM/alphametics/phrases
natural logarithms

IAN/series/iterated functions
INT/series/floor function [2]

nature AMM 6223 FUNCT 1.2.1 JRM 379
navel MM 1068
navigation IAM
near-identity AMM 6150
nearest integer function

IAN/functions [24]
nearest neighbor

IC/configurations/people
nearest point IG/point spacing
necklace PARAB 406
needs IRM/alphametics/phrases
neighbor AMM E2633 E2732 FUNCT 2.2.3 JRM 650

MSJ 472 PARAB 292
neighborhood AMM 6029 6274 E2572 E2806 NAvW 534

554
neighboring AMM E2732 JRM 569 KURSCHAK 1979/1

PARAB 266 281
Nelson IRM/alphametics/names
nest JRM 390
nested boxes ISG/boxes
nested radicals IAL/radicals

IAL/systems of equations/2 variables
network JRM 607 MENEMUI 1.1.2 1.2.2 PARAB 308

SIAM 79-16
IRM/alphametics/words

Nevada IRM/alphametics/states
new year IRM/alphametics/phrases
newspaper FUNCT 1.1.5 PARAB 363
nickel JRM 463 PENT 290
night CRUX 402 FUNCT 1.3.1 OMG 17.2.2 17.2.6

18.3.1
nilpotent element AMM 6284
nilpotent group NAvW 502

IHA/groups/group presentations
nim ISMJ 12.1 12.2 JRM 372 373 539
nim-addition NAvW 477
nim variants IGT
nine IRM/alphametics/phrases
nine-digit PENT 319
nine-point center AMM E2793
nine-point circle CRUX 260 353

IG/triangles
nines PARAB 396
niphometer PME 426

481



Keyword Index
no 0’s 1975–1979 number of nearest points

no 0’s INT/factorizations/10-digit numbers
no self-intersections

IP/stochastic processes/random walks
node AMM 6163 NAvW 436 SIAM 79-16
non-Euclidean geometry

IG
non-self-intersecting

AMM E2513 MM 925
nonabelian group AMM 6026 6099
nonassociative ring

IHA/rings
noncollinear points

AMM E2746 CRUX 334 JRM 765
OMG 15.1.2

noncommutative TYCMJ 43
noncongruent CRUX 223 PME 435 SSM 3716
nonconstant AMM 6046 6082 6118 CRUX 138

FUNCT 2.5.4 MATYC 81 MM Q623
TYCMJ 46 71 144

nondecreasing AMM 6007 6257 E2702 MM 999 1047 1073
SIAM 76-18

nondegenerate CRUX 469
nonequilateral triangle

NAvW 514
nonhomogeneous PUTNAM 1979/B.4
nonidentity AMM 6267
nonintersecting CRUX 63 PENT 302
nonisomorphic AMM 6262
nonisosceles triangle

AMM E2668 NYSMTJ 48
INT/triangles

nonlinear SIAM 76-12 79-11 SSM 3709
IAN/differential equations/first order
IAN/differential equations/order 2
INT/recurrences/first order
INT/recurrences/second order

nonmonotone sequences
INT/arrays/3x3 arrays [6]

nonnegative [61 references]
nonnegative functions

IAN/functions/C∞
nonnegative summands

INT/partitions
nonoverlapping AMM E2527 E2745 CRUX 436 JRM 500
nonparallel AMM 6276 CRUX 480
nonreflexive Banach space

NAvW 440
IT/Banach spaces

nonresidue AMM 6058 6094 FQ H-277
nonseparable NAvW 471
nonsingular NAvW 469
nonsingular matrix

AMM 6222 E2552 E2555 E2559 E2690
E2779 MATYC 91 MM 951 NAvW 547
SIAM 76-15

nonsquare CRUX 204 FQ H-247 SSM 3624
nonsymmetric PME 379
nonterminating AMM 6109 CMB P269 PARAB 271
nontrivial AMM 6102 6205 E2520 CRUX 66

MATYC 139 SSM 3596 3742
nonzero AMM 6093 6116 6145 6152 6168 6206

6231 6284 E2540 E2804 CRUX 40 113 156
294 345 401 407 486 ISMJ 14.15 JRM 676
678 681 MM 935 984 1021 1042 1058
Q644 NAvW 485 545 OSSMB G75.1-1
G75.3-6 PME 402 444 PUTNAM 1979/A.3
SIAM 76-9 SPECT 9.6 SSM 3670 TYCMJ 93
132 150

noon CRUX 68 FUNCT 3.3.2 ISMJ J10.11
OSSMB 75-3 PENT 313 PME 439

norm AMM 6017 6078 6249 6270 CMB P272
NAvW 394 431 486 549 554

IAN/functional analysis/Banach spaces
ILA/matrices

normal AMM 6104 6114 6125 6147 6207 6219
6236 CRUX 57 132 JRM 730 MM 981 1067
NAvW 448 PUTNAM 1979/B.1 SSM 3783

IAN/curves
IG/analytic geometry/curves
IG/ellipses

normal distribution
IP/density functions/integrals [5]
IP/distribution functions/convolutions
IP/geometry/boxes
IP/random variables/products
IP/random variables/quotients
IP/random vectors/

variance-covariance matrices [2]
normal matrices ILA/matrices/norms
normal numbers

INT [2]
normal spaces IT/subspaces/discrete subspaces
normal subgroups

IHA/groups/finite groups [49]
IHA/groups/finite groups

normalized SIAM 76-16
normalizer CMB P266
normed spaces ILA
nose CRUX 333 FUNCT 2.2.1
noted JRM 630 PENT 278 314 SIAM 77-10
notorious CRUX 400
nowhere AMM 6113 E2568 CMB P280 CRUX 129
nowhere continuous function

AMM 6081
IT/metric spaces/first category

nowhere differentiable functions
IAN/derivatives/one-sided derivatives

nth differences INT/series/power series
nth occurrence IP/cards/expected value
nth roots IAL/roots of unity
nth term IAL/sequences/finite sums
nuclear NAvW 554
null SIAM 76-9
number [1072 references]

IRM/alphametics
IRM/cryptarithms/hand codes

number fields IHA/fields
number of 0’s INT/series/digit problems
number of auctions

IGT/bridge/counting problems
number of calls IGT/bridge/counting problems
number of digits

INT/base systems
INT/digit problems
INT/digit problems/factorials
INT/Fermat numbers
INT/Fibonacci numbers/digit problems
INT/palindromes/divisibility
INT/palindromes/squares
INT/series/digit problems
IRM/cryptarithms/powers

number of divisors
INT
INT/Euler totient/divisors
INT/series/infinite series
INT/sum of divisors

number of elements
IST/relations/binary relations

number of holes IRM/polyominoes/pentominoes
number of idempotents

IHA/rings
number of matches

IP/dice problems/matching problems
number of mistakes

IP/statistics
number of nearest points

IT/Euclidean plane/compact sets
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Keyword Index
number of occurrences 1975–1979 open sets

number of occurrences
IP/dice problems

number of odd entries
INT/matrices/inverse matrices

number of operations
INT/Collatz problem

number of partitions
INT/partitions
INT/partitions/nonnegative summands

number of points
IG/lattice points/collinear points

number of roots IAL/theory of equations/roots
INT/modular arithmetic/

quadratic congruences [3]
ITR/series/trigonometric series
ITR/solution of equations/sin and cos

number of summands
INT/partitions

number of terms
IAL/polynomials

number representations
INT
INT/binomial coefficients
INT/recurrences/

generalized Fibonacci sequences
INT/series/geometric series

number system AMM E2776 SSM 3574
number theory IAN/complex variables [2]

IAN/Riemann zeta function
IP

number words IRM/word problems
numbered CRUX 495 FUNCT 1.3.4 IMO 1978/6

ISMJ 11.18 JRM 736 759 MM 1022 1031
1066 MSJ 426 NAvW 430 PARAB 266 308
343 406 PENT 286 PME 419 SIAM 76-17
77-11 SPECT 9.2 TYCMJ 57 USA 1979/3

numbered faces IRM/puzzles/block puzzles
numbered squares

IRM/arrays
numbered vertices

INT/geometry/cubes
numeration JRM 511 NYSMTJ 88 SSM 3590 3600 3765
numerator AMM E2753 ISMJ 13.2 14.11 JRM 511

PENT 281
numerical analysis

IAN
numerical approximations

IAN
numerical calculations

IAL
numerical evaluations

INT/inequalities/powers [27]
ITR

numerical inequalities
IAL
IAL/inequalities

numerically AMM E2557 MM 1074 MSJ 424
NYSMTJ 82 SIAM 77-13 78-3

object AMM 6169 E2594 CRUX 424 JRM 540 734
MM 952 NYSMTJ 56 OSSMB 76-5

obtainable JRM 555
obtuse AMM E2566 JRM 557 NAvW 472

OSSMB 79-4 79-5 SSM 3703 3767
obtuse triangle SSM 3727

INT/triangles
IP/geometry/triangles

occupy FUNCT 3.1.5 JRM 465 NYSMTJ 49
OSSMB 75-2 PENT 286 SIAM 76-1

ocean JRM 682 SIAM 76-13
octagon AUSTRALIA 1979/3 IMO 1979/6 MM 925

MSJ 448 PME 352 SSM 3653
IC/counting problems/paths
IG

octagonal PME 352 SSM 3586 3745

octagonal number PENT 285 SSM 3745
INT/polygonal numbers
INT/polygonal numbers/pentagonal numbers

octahedral dice SSM 3598
IP/dice problems

octahedron MM 929 Q632 PENT 303 PME 386
SSM 3598 3693

ISG
ISG/tetrahedra

octal representations
JRM 440 704 SSM 3626

INT/base systems/products
octant NYSMTJ 86
octasected JRM 554
odd and even IC/Latin squares/permutations

IC/sequences/finite sums
IC/sets/differences
IG/combinatorial geometry/

counting problems
IG/tiling/regular polygons
IHA/lattices/finite lattices
ILA/determinants/evaluations
INT/binomial coefficients
INT/finite products
INT/floor function/exponential [85]
INT/forms of numbers/difference of powers
INT/forms of numbers/squares
INT/forms of numbers/unit fractions
INT/palindromes/divisibility
INT/palindromes/primes
INT/palindromes/squares
INT/polynomials/products
INT/Pythagorean triples
INT/sequences/monotone sequences
INT/series/floor function
INT/triangles/counting problems
IP/dice problems/number of occurrences
IST/subsets/family of subsets
ISG/polyhedra/combinatorial geometry

odd digits INT/digit problems/squares
odd integers IG/lattice points/collinear points

INT/series/unit fractions
odds CRUX 195 JRM 782 OSSMB G76.1-6
odometer CRUX 31 JRM 671

INT/digit problems/distinct digits
offer CRUX 182 JRM 423 680 682
official JRM 715 MM 1024
offspring FUNCT 1.1.9
ohm CRUX 182 JRM 529
oil JRM 603 SSM 3654
older OMG 18.2.3 PARAB 309
oldest JRM 659 MSJ 437
Omar IRM/alphametics/names
one IRM/alphametics/phrases
one-sided derivatives

IAN/derivatives
one-to-one correspondence

NYSMTJ 48
IG/triangles/isosceles triangles

one-to-one function
AMM 6188 6250 E2554 E2783 CMB P280
FQ H-292

Ontario IRM/alphametics/places
opaque OSSMB 75-14
open balls IT/metric spaces/Cartesian planes
open dense sets IT/Cantor set/subsets
open sets IG/covering problems/squares

IT/sets/real numbers
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Keyword Index
operas 1975–1979 palindrome

operas IRM/alphametics/phrases
operation AMM 6238 E2574 CRUX 133 420 428

ISMJ 13.17 13.21 JRM 739 MM 1080
NAvW 477 527 OSSMB 77-15 78-15 79-17
PARAB 301 327 PUTNAM 1978/A.4
SIAM 76-17 78-3 SPECT 8.2 9.2 SSM 3573
3608 TYCMJ 43 81

INT/digit problems
operations research

IAM
operator AMM 6277 CMB P246 P272 MM 1000

NAvW 554 SIAM 77-4 SSM 3723
opponent CRUX 418 JRM 372 373 387 424 463 465

469 475 597 682 772 C5 MM 1084 PME 342
379 403 SIAM 76-1

opponent decrees
IGT/nim variants

opportunity JRM 482 599
opposite [70 references]
opposite directions

IAL/clock problems/time computation
opposite edges ISG/tetrahedra
optics SIAM 77-6

IAM
optimal JRM 372 373 379 387 PME 342 388

SIAM 76-7
optimal play IGT/chess problems
oracle JRM 530
orbit NYSMTJ 50
order [116 references]

IHA/groups/torsion groups
INT/matrices
INT/permutations

order 2 IAN/differential equations
INT/recurrences

order 3 INT/recurrences
order 4 IAN/differential equations
order 100 INT/Farey sequences/consecutive terms
order n IAN/differential equations
order of elements

IHA/groups/finite groups
order of operations

IAL/numerical calculations
order-preserving transformations

IC/arrays/transformations
order statistics IP
ordered AMM 6032 6046 6051 6101 E2638 E2772

S20 CMB P258 CRUX 72 FQ B-332 B-333
B-387 MM 943 1026 1051 NAvW 429
NYSMTJ 66 83 OMG 15.2.3 OSSMB 77-14
79-7 G75.2-1 PUTNAM 1975/A.2 1975/B.1
1977/B.3 1978/B.6 SIAM 76-1 78-3 78-13

ordered pairs IC/counting problems
IRM/logic puzzles/incomplete information
IST/mappings/bijections

ordering JRM 539 PARAB 404 408
ordinal AMM 6220
ordinary AMM E2775 E2808 FQ B-407 MM 992

SIAM 76-11 79-11
organization USA 1979/5
orientation CRUX 464 MM 988 1004 PARAB 308
oriented AMM 6008 6192 E2594
origin AMM 6029 6089 E2570 CRUX 408

FUNCT 1.2.1 MM 1062 OSSMB G75.1-4
G75.2-4 G76.2-2 G78.1-4 G79.3-3 G79.3-4
PARAB 424 SSM 3756 3761 TYCMJ 108

original problem
INT/Collatz problem

originally CRUX 140 ISMJ 11.18 12.7 PARAB 330

Orono IRM/alphametics/places
orthocenter AMM E2793 CRUX 15 260 NAvW 402 436

494 OSSMB G78.2-4
IG/hyperbolas/rectangular hyperbolas
IG/triangles

orthocentric NAvW 460
orthogonal AMM E2741 CRUX 94 MM 984 1020 1035

NAvW 393 403
orthogonal bases

ILA/vector spaces
orthogonal circles

IG/analytic geometry/circles
IG/circles

orthogonal curves
IG/analytic geometry/curves
IG/ellipses/hyperbolas

orthogonal edges
ISG/tetrahedra/opposite edges

orthogonal matrix MM 1035
ILA/matrices

orthogonal projection
AMM E2576

IG/equilateral triangles
ISG/analytic geometry/ellipsoids

orthogonally MM 976 988 OSSMB G76.3-2
orthonormal AMM 6013
orthonormal basis NAvW 542
orthonormal system

AMM 6184
oscillate AMM 6035
outcome AMM E2705 JRM 675 MM 1070
outline CRUX 291 NYSMTJ 86
outs JRM 573
oval CRUX 436
overheat JRM 603
overlap AMM E2612 E2651 E2790 ISMJ 14.2 14.17

J10.6 MM 969 996 NAvW 411 OSSMB 75-15
PARAB 318 387 PME 416

overtake CANADA 1979/4
ovoid ISG/solids of revolution
owes MSJ 459
oxen OMG 18.1.9
pace PARAB 331
pack AMM E2524 E2612 CMB P276 CRUX PS5-1

FUNCT 2.1.1 JRM 443 646 OSSMB 75-15
PARAB 327 427 SPECT 11.3 TYCMJ 100

packing problems
IG
IG/combinatorial geometry
ISG

pad CRUX 333
page FUNCT 1.3.4 OMG 16.1.6 OSSMB 76-11
paint AMM E2527 E2651 CRUX 122 OMG 16.1.8

PARAB 387
paired SIAM 75-2
pairing FUNCT 3.1.5
pairs of consecutive integers

INT/factorizations/consecutive integers
pairs of sequences

IAN/sequences
IAN/series

pairs of series IAN/series
pairwise AMM 6143 CMB P279 JRM 736 MM 1037

NAvW 485 PARAB 388
palindrome JRM 473 MATYC 79 94 MM 1026 MSJ 425

SSM 3572 3573 3609 3651
IC/compositions
INT
INT/base systems
INT/digit problems/digit reversals
INT/digit problems/sum of digits
INT/polygonal numbers/hexagonal numbers
INT/triangular numbers
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palindromic number 1975–1979 payment

palindromic number
CRUX 31 439 PME 348 SSM 3575 3591

palindromic prime
CRUX 490 SSM 3662

pandigital number
JRM 571

INT
INT/base systems
INT/digit problems
IP/digit problems

panelist JRM 769 PME 355
paper AMM S4 CRUX 24 140 204 292 350 390 422

ISMJ 13.14 13.20 JRM 538 628 MM 996
MSJ 420 OSSMB 78-2 PARAB 335 399 435
PME 375 460 SSM 3637 3661 3768

paper folding IG
ISG

paperback SSM 3574
papers PARAB 335
parabola CRUX 242 353 370 374 445 MM 1067

NYSMTJ 94 OSSMB G78.1-3 G79.1-2
IAN/curves/normals
IG [2]
IG/constructions/conics
IG/triangles/nine-point circle [5]

parabolic NAvW 546
paraboloid NAvW 468 NYSMTJ 86

IAM/physics/solid geometry
ISG/analytic geometry

parade PARAB 263 SSM 3694
paradox PME 345

IAL/complex numbers/radicals
parallel [62 references]
parallel bases SSM 3693
parallel chords IG/circles/chords
parallel diameters

IG/circles/2 circles
parallel lines IC/geometry/points in space

IG/circles/tangents
IG/constructions [13]
IG/constructions/equilateral triangles
IG/constructions/line segments
IG/points in plane
IG/trapezoids

parallel planes ISG/convexity/dissection problems
ISG/covering problems/family of planes

parallelepiped IMO 1978/2 PARAB 296
IC/counting problems/geometric figures
ISG/locus/sphere

parallelism AMM S2
parallelogram AMM E2802 CRUX 139 322 ISMJ 13.24

MM 1001 NAvW 476 NYSMTJ 43 74 OBG1
OBG3 OSSMB 75-10 PARAB 296 PME 420
PUTNAM 1977/B.2 SSM 3754 TYCMJ 117
153

IC/counting problems/geometric figures
IG
IG/constructions/rectangles
ISG/plane figures

parallels AMM 6087
parameter CRUX 299 JRM 478 NAvW 475 PME 373

SIAM 76-3 79-1
parchment CRUX 400
parenthesizations

IHA/groups/associativity
parents FQ B-304 MSJ 431
parity AMM E2758 NAvW 439 PENT 298

SSM 3597
parking lot IG/maxima and minima/shortest paths
Parseval’s identity

IAN/functions/real-valued functions
partial deck IP/cards [50]
partial derivative

IAN

partial fractions IAL
partial result INT/Fermat’s last theorem
partial sum IAN/series/divergent series

INT/harmonic series
INT/series/alternating series
INT/series/factorials

participant FUNCT 3.1.5 MSJ 487
particle AMM E2636 JRM 545 NAvW 461 468

IAM/physics
partition AMM 6130 6137 6151 6248 E2530 E2555

E2556 E2582 E2613 CMB P277 CRUX 170
342 344 473 FQ B-415 H-304 ISMJ 10.2
14.21 JRM 557 651 701 711 MM 940 957
MSJ 460 461 NAvW 539 NYSMTJ 41
OSSMB 79-4 PENT 272 PME 419
SIAM 76-9 SPECT 8.4 TYCMJ 113

IAN/complex variables/number theory
IAN/gamma function/asymptotic analysis
IC/geometry/points in plane
IC/sets
IC/sets/sums
IG/points in plane
INT
INT/Lucas numbers/sets
INT/palindromes/primes
INT/Pythagorean triples
INT/recurrences/arrays
INT/sequences
INT/sequences/law of formation
INT/sets
INT/sets/sum of elements
IP/sets
IT/sets/irrational numbers
IT/sets/real numbers

partitioned sides
IG/inequalities/triangles

partitions of the plane
IG/dissection problems

partitions of unity
IAL/inequalities/finite sums

partnership JRM 560
party JRM 699 PARAB 266 278
Pascal’s triangle

INT
passenger JRM 527
pasture CRUX 1 JRM 476 PME 382
path AMM E2549 CANADA 1977/5 1977/7

1979/4 CRUX 356 408 ISMJ 13.23 JRM 421
MM 926 1003 1004 1083 NAvW 424 453 475
476 487 547 OMG 14.3.1 16.1.1 16.2.5 16.2.7
PARAB 283 410 PME 439 456 SIAM 75-1
76-13

IC
IC/counting problems
IC/graph theory/complete graphs
IC/graph theory/covering problems
IC/graph theory/directed graphs
IGT/board games/chessboard games
IG/billiards/circles
IG/maxima and minima
IG/rectangles
INT/geometry/lattice points
IRM/chessboard problems
ISG/right circular cones

paths on Earth ISG/spherical geometry
patience JRM 379 SPECT 11.3
patient OSSMB 77-9
patio JRM 381
pattern AMM E2595 E2754 CRUX 433 FUNCT 1.1.9

JRM 391 628 OSSMB 76-13 PME 434
SSM 3739 3769

pawn JRM 424 680 PARAB 281
payment PARAB 427 PME 388 TYCMJ 104
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peace 1975–1979 permutation

peace IRM/alphametics/phrases

peculiar AMM E2636

pedal FUNCT 1.4.5

pedal triangle AMM E2517 NAvW 436 548

IG/inequalities/triangles

IG/triangles

pedestrian SIAM 75-8

peg JRM 772 MM 952

peg solitaire IRM/puzzles

pegboard PARAB 397

Pell number INT

Pell’s equation INT/Fibonacci numbers

pen NYSMTJ 60

pencil CRUX 325 333 390 PME 375

Penguin JRM 770a

peninsula PME 343

penny AMM E2527 E2651 E2745 JRM 396 463
OSSMB 75-2 79-15 PARAB 387

IC/coloring problems [2]

pentacle JRM 385

pentagon AUSTRALIA 1979/1 CRUX 73 232
DELTA 6.2-3 IMO 1979/2 ISMJ 11.10 11.14
14.2 MM 1057 PME 383 SSM 3650 3661

IC/coloring problems

IC/geometry/coloring problems

IG

IG/constructions [2]

IG/constructions/points

IG/constructions/rectangles [2]

IG/tesselations

IRM/arrays/polygonal arrays

ISG/polyhedra

pentagonal AMM E2618 FQ B-363 MM 943 SSM 3571
3575 3589 3619 3621 3657 3693 3784

pentagonal number
PENT 285 PME 359 SSM 3575 3589 3619
3621 3657 3784

INT/digit problems/digit reversals [7]

INT/number representations/
polygonal numbers

INT/polygonal numbers

INT/polygonal numbers/consecutive integers

INT/polygonal numbers/modular arithmetic

pentagram CRUX 145 JRM 385

pentahedron CRUX 181 182

ISG

pentomino JRM 391 426 470 600

IRM/polyominoes

IRM/polyominoes/tiling

people CRUX 68 387 FUNCT 1.3.7 3.1.1
MATYC 98 MM 1031 MSJ 431 OSSMB 78-3
PARAB 278 281 322 381 439 PENT 279
SIAM 76-7 SSM 3601

IC/configurations

IRM/alphametics/phrases

IRM/alphametics/words

peppers IRM/alphametics/phrases

percent FUNCT 1.1.4 MATYC 98 MM 1024
OSSMB 78-3 PENT 279 TYCMJ 104

percent problems
IAL/measuring problems/mixture problems

IAL/word problems

percolation problems
IP/coloring problems/expected value

perfect [60 references]

perfect cube FQ B-342 JRM 393 SPECT 8.6 SSM 3624

perfect fields IHA/fields

perfect numbers INT
INT/digit problems/sum of digits [4]
INT/forms of numbers
INT/number representations
INT/sum of divisors
INT/triangles/scalene triangles

perfect-plus-one AMM E2571
perimeter AMM 6230 E2517 E2557 E2617

E2660 CRUX 119 120 171 330 345 397
FUNCT 3.2.8 ISMJ 10.9 J11.11 JRM 532
535 565 713 MATYC 107 126 MM 947 1088
MSJ 424 NAvW 424 475 476 NYSMTJ 82
OSSMB G75.2-3 G75.3-2 PARAB 319 350
PME 455 PUTNAM 1976/A.5 SPECT 9.5
SSM 3587 3649 3669 3700 3703 3716 3727
TYCMJ 85 98 118 130 131

IG/convexity/area [2]
IG/inequalities/squares
IG/inequalities/triangles
IG/maxima and minima/right triangles
IG/maxima and minima/triangles
IG/triangle inequalities/angles and radii [3]
IG/triangle inequalities/sides
IG/triangles/2 triangles
INT/triangles
INT/triangles/counting problems

period AMM 6031 E2563 CRUX 231 ISMJ 14.1
JRM 419 C9 MM 940 973 NAvW 529
OMG 18.1.2 OSSMB 77-9 TYCMJ 104

IC/card shuffles
period 1 INT/continued fractions/

periodic continued fractions [2]
period 2 INT/continued fractions/

periodic continued fractions
periodic AMM 6087 CANADA 1975/7 CMB P246

FUNCT 2.1.4 ISMJ 14.1 OSSMB 78-1
PARAB 271 SSM 3667 3709

periodic continued fractions
INT/continued fractions

periodic function AMM 6031 E2563 NAvW 409
IAL/functional equations
IAN/functions
ISG/analytic geometry/volume

periodic sequence
IAN/sequences/recurrences
INT/digit problems/terminal digits

periphery TYCMJ 100
permutable AMM E2633
permutation AMM 6049 6054 6171 6214 E2551 E2738

CRUX 16 66 69 78 FQ H-309 IMO 1975/1
JRM 702 734 C1 MM 948 953 979 984 1002
1016 1045 Q639 MSJ 455 465 NAvW 430
439 451 543 NYSMTJ 49 PENT 320
SSM 3580 3614 3749 USA 1979/1

IAL/finite sums
IAL/inequalities/finite sums [2]
IC
IC/configurations/circular arrays
IC/Latin squares
ILA/matrices
ILA/vector spaces/orthogonal bases
INT
INT/digit problems
INT/digit problems/primes
INT/finite products/odd and even
INT/inequalities/sum of squared differences
INT/modular arithmetic
INT/polynomials/evaluations
INT/sequences/law of formation [2]
INT/series
IP
IRM/logic puzzles/Caliban puzzles
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permutation groups 1975–1979 point on circumcircle

permutation groups
IAN/functions/real-valued functions [3]
IHA/groups

permute AMM E2516 E2702 E2718 ISMJ 10.8 10.13
NAvW 543 PENT 320 SIAM 79-17

permuted coordinates
ISG/maxima and minima/angles

permuted digits IAN/functions/digits
perpendicular [62 references]

IG/analytic geometry/circles
IG/circles/tangents [4]
IG/constructions/rusty compass
IG/isosceles right triangles
IG/triangle inequalities/

angle bisectors extended
IG/triangles
IG/triangles/angle bisectors [2]
IG/triangles/centroids

perpendicular bisector
IG/points in plane

perpendicular chord
IG/circles/chords [2]

perpendicular diagonals
IG/regular polygons/diagonals
ISG/skew quadrilaterals/diagonals

perpendicular hands
IAL/clock problems/hands [2]

perpendicular lines
IG/conics
IG/triangles/60 degree angle
ISG/cubes/diagonals
ISG/plane figures/triangles
ISG/skew quadrilaterals/diagonals

perpendicular medians
IG/constructions/right triangles
IG/triangles/medians

perpendicular rays
IG/parallelograms

perpendicular tangents
IG/locus/ellipses [4]

perpendicularly MATYC 114
persistent number CRUX PS5-2

INT/digit problems/pandigital numbers
perspective NAvW 401 PME 422
perspective drawing

CRUX 406 MM 980
IG

perspectivities IG/right triangles
IG/triangles/inscribed triangles

petal PARAB 340
phase SIAM 79-1
phi function MM Q645
phone number JRM 374
photon SIAM 75-1
phrase IRM/alphametics
physical SIAM 77-6
physics OMG 17.1.2

IAM
pi IAL/numerical calculations

IAN/inequalities
IAN/numerical approximations
INT/continued fractions
INT/floor function/primes [2]
INT/inequalities/binomial coefficients

pi function INT/functional equations
INT/least common multiple/

consecutive integers
INT/primes [2]
INT/products

pi squared IAN/Riemann zeta function
INT/series/inequalities

Pick’s formula ISG/lattice points/polyhedra
pickup JRM 527
picnic OMG 18.2.4
picture ISMJ 12.20 NAvW 543
picture puzzles IRM/puzzles [3]
piecewise continuous function

AMM 6076 6184 MM 926
IAN/functions/real-valued functions

pierce PARAB 361
pig OMG 18.1.9 PARAB 332 PME 401
pile FUNCT 2.3.3 JRM 372 373 539 648 682

NAvW 411 OSSMB 79-15 PME 379
SPECT 11.3 11.6

pill OSSMB 77-9
pillar OSSMB G78.3-5
pipe MM 971 NYSMTJ OBG4

IAL/rate problems/flow problems [5]
pipeline JRM 603
pirate CRUX 400
pistol SPECT 7.5
pitcher JRM 573 MSJ 447
pivot NAvW 450 OSSMB G78.1-4
pizza PENT 313
places IRM/alphametics
placing AMM E2698 E2790 CANADA 1978/5

DELTA 6.2-3 JRM 391 426 572 596 703 C6
SSM 3677

plain OSSMB G79.3-2
planar AMM 6172 E2513 CRUX PS2-3 SIAM 76-13
planar graph AMM 6182

IC/graph theory/map problems
planar section CRUX 336
plane [179 references]

IG/combinatorial geometry
IG/combinatorial geometry/

counting problems
IG/covering problems/squares
IG/maxima and minima/solid geometry
IG/n-dimensional geometry/4-space [2]
IG/tesselations/squares
ISG/tetrahedra [5]

plane figures ISG
plane of symmetry

IG/symmetry/center of symmetry
plane rotations IG/dissection problems/

partitions of the plane
plane sections ISG/polyhedra/combinatorial geometry

ISG/tetrahedra/maxima and minima [2]
plane sets IAN/sets

IT/connected sets
planet JRM 376 504 NYSMTJ 50

IRM/alphametics [2]
planetary rings IG/maxima and minima/angles
plank FUNCT 1.4.1 OMG 15.1.1
plate CRUX 427
plateau number TYCMJ 90
player [87 references]
players select digits

IGT/selection games [9]
players select integers

IGT/selection games
please IRM/alphametics/phrases
plywood CRUX 325
pocket JRM 379 447 PENT 311
point [691 references]

IG/constructions
IP/selection problems

point-mass JRM 564
point on circumcircle

IG/regular hexagons
IG/regular polygons
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point-set distance 1975–1979 positive definite matrices

point-set distance
IT/Euclidean plane/compact sets
IT/metric spaces
IT/metric spaces/inequalities

point sets IAN [5]
point spacing IG [10]

IP/geometry
points in plane IC/coloring problems

IC/geometry
IG
IG/combinatorial geometry/triangles
IG/inequalities
IG/point spacing/distance
IG/triangles/centroids [2]

points in space IC/geometry
IG/combinatorial geometry
ISG

points of contact
ISG/spheres/tangent spheres

points of symmetry
IG/convexity

pointwise convergence
FQ H-292

IAN/functions/differentiable functions
pointwise product MM 948
Poisson distribution

IP/sports/hockey
Poisson process IP/stochastic processes
poker JRM 647
poker variants IGT/card games
polar MATYC 104 NAvW 436 SIAM 77-10

TYCMJ 108
polar curves IG/analytic geometry
pole MATYC 104 USA 1979/2
police JRM 792
polygon AMM E2513 E2514 E2594 E2641 CRUX 336

375 453 PS3-1 ISMJ 10.9 12.13 12.29
JRM 509 KURSCHAK 1979/1 MM 969
MSJ 416 489 NAvW 398 OSSMB G75.3-1
PARAB 265 395 412 440 PME 390
SPECT 7.2 SSM 3683

IC/geometry/dissection problems
IG
IG/combinatorial geometry
IG/combinatorial geometry/

counting problems
IG/combinatorial geometry/triangulations [2]
IG/dissection problems
IG/inequalities
IP/geometry

polygonal CRUX 375 MM 927 1003 1083
polygonal arrays

IRM/arrays
polygonal curve CRUX 367
polygonal numbers

INT
INT/base systems [2]
INT/number representations

polyhedral numbers
INT [2]

polyhedron AMM E2620 AMM E2630 E2694 CRUX 73
181 453 499 ISMJ 12.21 JRM 528 763
MM 927 OSSMB 75-8 PME 352 SIAM 76-7
SSM 3693

IP/geometry
ISG
ISG/lattice points

polynomial [109 references]
IAL
IAL/determinants
IAL/finite sums/fractions [2]
IAL/functional equations
IAL/functional equations/1 parameter [2]
IAL/functions

IAL/geometry of zeros
IAL/inequalities [7]
IAL/iterated functions
IAL/maxima and minima/constraints
IAL/recurrences
IAL/roots of unity
IAN/complex variables
IAN/curves/curve tracing
IAN/functions [18]
IAN/integrals/area
IAN/location of zeros/complex variables
IAN/maxima and minima
IAN/maxima and minima/constraints
IAN/power series/identities
IAN/sequences/recurrences
IGT/selection games
IG/analytic geometry/family of lines
IG/analytic geometry/tangents
IG/triangles/inscribed triangles
IHA/algebras
IHA/fields
IHA/rings
IHA/rings/ideals
ILA/matrices
INT
INT/composite numbers [2]
INT/divisibility
INT/Fibonacci and Lucas numbers/

divisibility [2]
INT/Fibonacci numbers/congruences
INT/floor function/identities
INT/floor function/sequences [3]
INT/forms of numbers/squares
INT/inequalities/exponential
INT/primes
INT/primes/generators [13]
INT/series
INT/series/identities
INT/sets
INT/sets/n-tuples
INT/triangular numbers
IP/number theory
IP/random vectors

polynomial approximations
IAN/complex variables/rational functions

polynomial divisibility
IAL

polynomial equation
CRUX PS7-3

polynomial expansions
IAL/polynomials/coefficients

polynomial function
AMM E2554 MM Q623 SSM 3756

polyomino CRUX 276 429 MM 969
IRM

pool CRUX 402 NYSMTJ OBG4
popular AMM 6017 JRM 533
population CRUX 28 373 JRM 376 MSJ 436 SIAM 76-7
population estimates

IP/statistics
population problems

IAL/word problems
INT/Fibonacci numbers
IP/biology [2]

port JRM 375
portion AMM E2617 CRUX 276 OSSMB G76.2-2
positioned PARAB 263
positive definite matrices

ILA/matrices
ILA/matrices/Hermitian matrices
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positive semidefinite matrices 1975–1979 prime

positive semidefinite matrices
ILA/matrices/Hermitian matrices [3]

positively AMM 6008 6035
post PARAB 306 PME 382
postage JRM 396 SSM 3662
postpone JRM 530
postulate CRUX 434
potato PARAB 385
power series IAN

IHA/rings
ILA/matrices [4]
INT/series

power set IST
powers IAL/age problems/different times

IAL/complex numbers
IAL/determinants/identities
IAL/inequalities
IAL/inequalities/finite products
IAL/inequalities/finite sums [7]
IAL/inequalities/numerical inequalities
IAL/iterated functions/polynomials
IAL/maxima and minima/constraints
IAN/integral inequalities
IAN/limits/finite products
IAN/series/continuous functions
IAN/series/divergent series
ILA/matrices [2]
ILA/matrices/0-1 matrices
ILA/matrix sequences [6]
INT
INT/approximations/rational numbers
INT/base systems
INT/base systems/number of digits
INT/composite numbers
INT/digit problems
INT/digit problems/terminal digits
INT/forms of numbers/

sum of consecutive odd integers
INT/forms of numbers/sum of squares
INT/fractional parts/square roots [6]
INT/Gaussian integers
INT/geometry/right triangles
INT/inequalities
INT/irrational numbers/0-1 numbers
INT/modular arithmetic
INT/permutations
INT/primes
INT/recurrences/sum of digits
INT/series
INT/series/digit problems [2]
INT/series/inequalities
IP/selection problems/unit interval
IRM/cryptarithms
ISG/space curves [4]
ITR/infinite series/tan

powers of -1 INT/floor function/finite sums
INT/floor function/integrals
INT/series/floor function
INT/series/unit fractions

powers of 2 INT/approximations
INT/binomial coefficients/

maxima and minima
INT/digit problems/divisibility
INT/digit problems/leading digits
INT/digit problems/terminal digits
INT/Diophantine equations/exponential
INT/divisibility
INT/divisibility/exponentials
INT/factorizations
INT/Fibonacci and Lucas numbers/

congruences
INT/Fibonacci numbers/recurrences
INT/forms of numbers

INT/forms of numbers/
sum of consecutive integers [2]

INT/inequalities
INT/inequalities/binomial coefficients [2]
INT/powers
INT/primes/powers [2]
INT/primes/products
INT/quadratic residues/squares
INT/recurrences/floor function
INT/series
INT/sets/divisibility
INT/squares
INT/sum of divisors/almost perfect numbers
INT/sum of divisors/divisibility
INT/sum of divisors/number of divisors
INT/sum of divisors/perfect numbers
IP/digit problems
IST/subsets/family of subsets

powers of 2 and 3
INT/divisibility/exponentials [2]
INT/floor function/inequalities
INT/powers [15]
INT/sequences/law of formation

powers of 3 INT/digit problems/cubes
INT/series/alternating series
INT/series/binomial coefficients
INT/series/factorials

powers of 4 INT/squares
powers of 8 INT/digit problems/sum of digits
powers of 10 INT/series/geometric series
powers of 11 INT/digit problems/terminal digits

INT/sequences/law of formation [2]
practice AMM S4 SIAM 75-14
preceding AMM 6062 FUNCT 1.1.9 MM Q642

OSSMB G77.1-6 PARAB 421 PENT 311
SPECT 9.7 SSM 3739 3780

precise AMM 6041
precocious CRUX 452
predicate calculus AMM 6139

IST/symbolic logic
predicted AMM 6041
prediction JRM 530 SSM 3597
preparation MSJ 483
president IRM/alphametics/names
press CRUX 280
price CRUX 297 JRM 675 735
primality JRM C1
prime [333 references]

IAL/age problems/different times
IAL/sports/football
IGT/selection games/players select integers
INT
INT/arithmetic progressions
INT/arrays/recurrences
INT/base systems/digit permutations [5]
INT/base systems/pandigital numbers
INT/binomial coefficients
INT/digit problems
INT/digit problems/digital roots
INT/digit problems/fractions [2]
INT/digit problems/sum of digits
INT/Diophantine equations/degree 3
INT/Diophantine equations/degree 5 [10]
INT/Diophantine equations/degree 6
INT/Diophantine equations/exponential
INT/divisibility/difference of squares
INT/divisibility/factorials
INT/Euler totient
INT/Fermat’s last theorem/partial results
INT/Fibonacci and Lucas numbers
INT/Fibonacci numbers
INT/Fibonacci numbers/

greatest common divisor [4]
INT/floor function
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prime 1975–1979 progress

INT/forms of numbers/
decimal representations

INT/forms of numbers/
sum of consecutive integers

INT/forms of numbers/sum of squares

INT/geometry/lattice points

INT/infinite products/evaluations

INT/Mersenne numbers

INT/modular arithmetic/powers

INT/modular arithmetic/squares

INT/palindromes

INT/partitions [2]

INT/polynomials/age problems

INT/powers/powers of 2

INT/powers/powers of 2 and 3

INT/products/exponential

INT/Pythagorean triples

INT/recurrences/
multiplicative Fibonacci sequences

INT/series

INT/series/inequalities [2]

INT/series/unit fractions

INT/sets/partitions

INT/sets/sum of elements

INT/sum of divisors/number of divisors

INT/sum of powers

INT/triangles [5]

INT/triangles/isosceles triangles

IRM/alphametics/phrases

IRM/magic configurations/magic squares

prime chains INT/primes

prime characteristic
IHA/fields/perfect fields [6]

prime divisor INT/forms of numbers

INT/forms of numbers/sum of two squares

INT/powers/powers of 2

INT/sets

prime factor AMM 6135 E2679 E2725 E2805 CRUX 390
FUNCT 1.5.3 ISMJ J11-14 JRM 756 767
TYCMJ 34

prime factorization
INT/forms of numbers/difference of powers

INT/harmonic series/deleted terms

INT/primes/generators

INT/sum of divisors

prime ideals IHA/lattices

IHA/rings/regular rings

prime number AMM 6210 E2627 E2648 E2673 E2718
S3 CMB P273 CRUX 131 327 PS1-1
FQ H-287 ISMJ J10.15 MM 953 1029
MSJ 420 NAvW 485 493 OSSMB 76-15
78-10 PARAB 309 PME 423 459
PUTNAM 1976/A.3 SSM 3602 3606 3620
3625 3686 3697 3735 3751 3753 3770 3776

prime number theorem
INT/functional equations

prime order IHA/groups/finite groups

prime powers INT/factorizations/maxima and minima

primitive AMM 6209 E2530 E2566 CRUX 5 223
MM 1088 PENT 298 PUTNAM 1975/A.4
SIAM 75-13 SSM 3569 3587 3592 3633 3638
3752 3771 TYCMJ 82

prince PME 343

princess PARAB 356

principal AMM 6116 6180 E2728 MM 981 NAvW 415
541 TYCMJ 104

principal ideal domains
IHA/rings/integral domains

principal normals
ISG/space curves

print FUNCT 1.1.10 2.4.2 ISMJ 13.14 13.20
JRM 755 C8

printer FUNCT 1.3.4
prism AMM E2694 AUSTRALIA 1979/1

IMO 1979/2 JRM 787 PME 367 SSM 3683
IC/geometry/coloring problems
IG/maxima and minima/solid geometry
ISG/maxima and minima

prismoidal formula
PME 425

ISG/regular tetrahedra/volume
prison PENT 286
prisoner FUNCT 1.3.7 OMG 17.2.1 PENT 286
prize JRM 769
probability [97 references]

IC/graph theory/trees
IG/point spacing/nearest point
IG/triangles/isosceles triangles
ILA/matrices/spectral radius
ILA/vector spaces/systems of equations
INT/primes/gaps
IRM/chessboard problems [2]
ISG/convexity

probability distribution
AMM 6115 JRM 379

probability measures
IAN/measure theory

proboscis CRUX 333
product of consecutive integers

INT/forms of numbers
INT/series/limits

product of consecutive primes
INT/abundant numbers

product rule IAN/derivatives
product spaces IT
products ILA/matrices

ILA/matrix equations
INT
INT/base systems [4]
INT/binomial coefficients/primes
INT/digit problems
INT/digit problems/consecutive digits
INT/digit problems/maxima and minima
INT/digit problems/missing digits [4]
INT/divisibility
INT/inequalities
INT/maxima and minima
INT/modular arithmetic/groups
INT/modular arithmetic/powers
INT/partitions/maxima and minima
INT/polynomials
INT/primes [3]
INT/primes/greatest prime factor
INT/sequences
INT/sequences/digits
INT/series/binomial coefficients
INT/sets/prime divisors
INT/sum of divisors
INT/twin primes
IP/random variables
IP/selection problems/unit interval
IRM/cryptarithms

professor CRUX 452 JRM 699 MM 1072 Q661
OSSMB 78-10 PENT 283

program FUNCT 2.1.4 JRM 478 479 509 510 739 755
C6 C9

programmer JRM 440
progress MM 1024
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Keyword Index
progression 1975–1979 radiating

progression AMM E2522 E2628 E2684 E2730
CANADA 1975/4 1976/1 1979/1
CRUX 114 213 214 268 378 399 FQ B-382
ISMJ 11.7 11.12 12.18 JRM 627 651
712 MATYC 111 128 138 MM 961 1010
MSJ 471 OSSMB 79-3 G75.2-1 G78.1-3
G78.3-1 G79.1-5 G79.2-1 PARAB 414
PENT 296 PME 454 PUTNAM 1978/A.1
SPECT 8.4 8.8 SSM 3585 3641 3663 3697
3776 TYCMJ 37 141

projected AMM E2535 E2548 MM 988 PME 413
projectile SPECT 7.1 8.2

IAM/physics
projection AMM 6228 CRUX 260 NAvW 395 PME 361

IG/triangles/Euler line [2]
IHA/algebras/C∗-algebras

projective AMM 6181 6267 NAvW 460 469 481 491 512
536 546 547

projective geometry
IG
ISG
IT/functions

promptly JRM 563
properly AMM 6098 JRM 530
proportion AMM 6190 FUNCT 3.3.5 JRM 376

MATYC 85 SSM 3574
proportional CRUX 62 148 218 JRM 463 631 739

SSM 3710
propose AMM 6017 JRM 685
proposition CRUX 27 59 SSM 3737
protractor PARAB 265
psi-particle AMM E2636
publish CRUX 431 FUNCT 1.2.7 JRM 437
publisher MSJ 467
pulley FUNCT 3.1.6
punchbowl JRM 699
pupil PARAB 311
purchase CRUX 297 JRM 729 OMG 18.3.9

TYCMJ 104
purchaser JRM 671
pursuer CANADA 1979/4 PME 401
pursuit problems JRM C5

IAN
puzzle JRM 471 473 482 678 704 MM 952 PME 458

SSM 3574
IRM
IRM/alphametics/phrases

pyramid AMM E2694 KURSCHAK 1979/1 MM Q621
PME 367 SPECT 10.2 SSM 3693

ISG
ISG/cubes
ISG/maxima and minima/prisms [2]
ISG/spheres/inscribed polyhedra

pyramidal SSM 3693
Pythagorean triangle

IG/constructions/angles
Pythagorean triples

INT [4]
ISG/rectangular parallelepipeds/diagonals

quadrangle PME 380
IG/dissection problems/squares

quadrant AMM 6191 CRUX 119 FUNCT 3.3.4
ISMJ J10.12 JRM 370 603 MM 947 MSJ 451
PUTNAM 1979/B.5 SSM 3656

IG/circles/isosceles right triangles
IG/constructions/circles
IG/regular octagons/inscribed circles
IG/squares/erected figures

quadratic AMM 6058 6094 6156 6270 E2627 E2765
CMB P249 P252 P274 CRUX 332 FQ H-277
H-307 MM 1072 NAvW 413 486 PME 414
PUTNAM 1975/A.2 SPECT 7.9 9.7
SSM 3755

INT/recurrences/first order [2]

quadratic congruences
INT/modular arithmetic

quadratic fields INT
quadratic forms IAN/functions/continuous functions
quadratic number fields

IHA/fields/number fields
quadratic reciprocity

INT [2]
quadratic residues

INT
quadric NAvW 469

ISG/projective geometry/tetrahedra
quadrilateral AMM E2557 E2660 CANADA 1978/4

CRUX 42 106 189 199 375 383 ISMJ 11.14
12.25 J10.5 JRM 497 535 538 MM 963
Q613 Q630 MSJ 485 NAvW 452 476
488 NYSMTJ 52 OMG 14.2.3 17.3.7
OSSMB G75.2-3 G77.1-3 PARAB 279
347 PENT 291 308 312 PME 346 398 417
SPECT 10.1 11.9 SSM 3789 TYCMJ 153
USA 1977/4

IG
IG/circles/interior point [3]
IG/constructions
IG/constructions/points
IG/covering problems/discs [4]
IG/inequalities
IG/maxima and minima
IG/non-Euclidean geometry
IG/parallelograms/area
IG/polygons/13-gons
IG/squares/circles
INT/geometry
IP/geometry

quadrisection CRUX 420
IG/constructions/angles [2]

quadruple AMM E2728 ISMJ 11.9 JRM 680 NAvW 546
quantity AMM S4 JRM 697 NYSMTJ 96 SIAM 78-1

SSM 3574
quarter JRM 782 OSSMB G79.3-2
quarterly TYCMJ 104
quartic CRUX 442 NAvW 512

IG/projective geometry
quasicontinuous AMM 6081
quasiperfect PUTNAM 1976/B.6
quaternion NAvW 431

IHA
Quebec IRM/alphametics/places
queen AMM E2698 JRM 468 597 601 680

PARAB 427
question IRM/alphametics/phrases
questionnaire ISMJ 13.7
quick JRM 392 512 536 MSJ 437
quintic CRUX 452 NAvW 436
quintuple AMM S20
quizmaster MM 1051
quoted SSM 3694
quotient FQ B-349 IMO 1977/5 JRM 474 OMG 14.1.1

PARAB 316 367 SSM 3597
INT/Euler totient
INT/greatest common divisor
IP/random variables [4]

quotient field AMM 6177
IHA/fields/perfect fields

quotient groups IHA/groups/group presentations
rabbit CANADA 1979/4 FUNCT 1.1.9
race FUNCT 3.1.4 PENT 276
radiating JRM 464
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Keyword Index
radiation detector 1975–1979 rational number

radiation detector
IAL/weights

radiator JRM 603 OMG 17.3.1
radical AMM 6068

IAL
IAL/complex numbers
IAL/finite sums
IAL/inequalities
IAL/inequalities/finite sums
IAL/inequalities/logarithms
IAL/iterated functions
IAL/numerical calculations
IAL/numerical inequalities [2]
IAL/solution of equations
IAN/integrals/evaluations
IAN/limits/finite products
IAN/limits/sequences [9]
IAN/maxima and minima
IAN/sequences/recurrences
IG/triangle inequalities/interior point
IHA/algebras
INT/continued fractions
INT/Diophantine equations
INT/inequalities
INT/powers
INT/quadratic residues
INT/sequences/monotone sequences [4]
IRM/alphametics

radical axis CRUX 225
IG/circles/chords

radical center CRUX 248 PME 408
radioactive PARAB 291
radius [93 references]

IG/circles/3 circles
IG/constructions/circles
IG/hexagons/circles
IG/inequalities/quadrilaterals
IG/triangle inequalities
IG/triangles/escribed circles

railroad track CRUX 406 MM 980
IG/perspective drawings

railway OMG 17.2.2 18.1.8 PARAB 275
rainfall MM 1056

IAM/meteorology
raised JRM 539 OMG 16.1.2
raisin IRM/alphametics/phrases
raising OSSMB 78-15 79-17
ran MATYC 123
random [87 references]
random arrival times

IP/waiting times
random directions

IP/relative motion [2]
random selection JRM 379 MATYC 122
random signs IP/number theory/finite sums
random variable

IP
IP/inequalities

random vectors IP
random walks IP/stochastic processes

IP/geometry/polyhedra
range AMM 6091 E2707 E2778 CMB P272

JRM 371 387 589 658 MM Q623 PME 372
SPECT 7.9 8.2 TYCMJ 111

INT/primes/generators
INT/sets/density [3]

rank AMM 6125 6215 E2556 E2711 E2762 E2779
JRM 424 601 MATYC 115 MM 951 Q644
NAvW 527 SIAM 75-2 76-15

ILA/matrices/block matrices
rankings MATYC 117

IP/statistics
rare JRM 680 697

rate problems IAL
IAN

rates of convergence
INT/sequences/limits [2]

rates of divergence
INT/recurrences

ratio AMM 6048 6178 E2514 E2657 E2658
CANADA 1978/4 CRUX 107 114 344
FQ B-348 FUNCT 1.4.1 3.2.5 IMO 1979/4
ISMJ 11.7 11.17 12.15 JRM 445 537 C5
MM 1057 1068 1076 1077 Q615 Q616 Q660
NYSMTJ 47 85 OBG8 OSSMB G78.2-4
PARAB 320 PENT 303 PME 338 388 435
447 451 454 SIAM 78-1 78-7 SSM 3585 3698
TYCMJ 79

IAL/word problems
IAN/series/pairs of series
IG/circles/2 circles [2]
IG/circles/surrounding chains
IG/quadrilaterals/triangles [8]
IG/regular pentagons
IG/triangles
IG/triangles/area
IG/triangles/orthocenter
IG/triangles/trisected sides
INT/arithmetic progressions
INT/Diophantine equations/degree 2
INT/number representations [3]
INT/Pascal’s triangle/consecutive terms
INT/recurrences/

generalized Fibonacci sequences
INT/triangles/counting problems [6]
ISG/tetrahedra/inscribed spheres

ratio of areas IG/maxima and minima/triangles
ratio of successive terms

INT/recurrences/second order
INT/sum of divisors/sets [7]

rational [114 references]
rational coefficients

AMM 6154 DELTA 5.1-3
rational cube MM Q649
rational distances

IG/analytic geometry/concyclic points
IG/points in plane

rational expressions
INT
INT/forms of numbers/squares
INT/limits

rational function AMM 6082 E2693 CMB P277 CRUX 146
FQ B-361 B-381 B-390 OSSMB G77.1-6
PUTNAM 1977/A.4 SIAM 76-11

IAN/Bessel functions/infinite series
IAN/complex variables
IAN/infinite products [2]
IAN/Maclaurin series
IAN/sequences/monotone sequences [2]
IAN/series/closed form expressions
IHA/fields
INT/factorials
INT/generating functions
IP/Cauchy distribution/binomial coefficients
ITR/approximations/arctan [6]

rational number AMM 6107 6109 6282 E2766 CRUX 101
346 PS2-2 FQ B-417 FUNCT 1.1.2
IMO 1975/5 ISMJ 13.15 JRM 586
MM 935 968 972 982 Q617 Q649 MSJ 450
NYSMTJ 45 OSSMB 78-9 PARAB 314 316
PUTNAM 1976/A.4 1978/B.2 SSM 3627
TYCMJ 81

IAL/algorithms
IAN/sequences/rearrangements
IGT/selection games/players select digits
IG/analytic geometry/circles
IHA/binary operations
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rational number 1975–1979 rectangular parallelepiped

IHA/fields/extension fields [3]
IHA/groups/subgroups
INT
INT/approximations
INT/floor function/primes
INT/forms of numbers/sum of cubes
INT/forms of numbers/

sum of squared reciprocals [3]
INT/irrational numbers/0-1 numbers
INT/polynomials/injections
INT/products [3]
INT/sequences
INT/series/unit fractions
INT/squares [2]
IT/connected sets/plane sets
IT/unit interval/homeomorphisms

rational point AMM 6130 E2598 CRUX 109 JRM 765
MM 957 MSJ 419 NYSMTJ 45

IC/geometry/concyclic points
IC/geometry/points in plane
IG/analytic geometry/circles
IG/combinatorial geometry/lines in plane
IG/lattice points/circles
IG/lattice points/counting problems [2]
IG/points in plane/partitions

rational root CRUX 178 185 OSSMB G75.1-1
IAL/theory of equations/roots

rational sides INT/triangles/right triangles [2]
ray AMM S2 CMB P244 CRUX 136 IMO 1978/2

MM 1003 NYSMTJ 43 OSSMB 77-4
PARAB 304 PUTNAM 1976/A.1
TYCMJ 119

reachable point ISMJ 13.23
IC/graph theory/directed graphs

reaching FUNCT 3.1.1 MATYC 123 SPECT 10.9
reaction JRM 730
readily JRM 686
reading FQ B-363 JRM 704 MM 940 1056 PME 426
real-normed NAvW 549
real numbers IHA/binary operations

IHA/fields/complex numbers
IT/sets

real quadratic fields
INT/modular arithmetic/fields

real roots IAL/theory of equations
IAL/theory of equations/roots

real-valued function
AMM 6018 6042 6073 6084 6093 6140 6165
6181 6184 6198 6256 6273 6278 E2610 S3
CMB P256 FQ H-287 MM 1027 NAvW 442
456 OSSMB 78-1 79-9 PUTNAM 1975/A.5
TYCMJ 46 71 92 102 106

IAN/functions
IAN/functions/continuous functions
IAN/functions/differentiable functions
IAN/integrals/functions [3]
IAN/limits/sequences
IAN/measure theory/monotone functions
IAN/partial derivatives
IT/graph of a function/connected sets
IT/functions
IT/metric spaces/first category [6]

realizable CMB P268 JRM 707
realized CMB P268 MATYC 123
rear CRUX 479 PARAB 311
rearrange FUNCT 2.2.2 ISMJ J10.8 PARAB 312 326

SPECT 10.4 SSM 3629
rearrangement ISMJ 13.11 PARAB 377 SPECT 11.3

TYCMJ 54
IAN/sequences

reason JRM 376 TYCMJ 104
reasonably PUTNAM 1975/A.2
reassemble ISMJ 11.15 MM 1057 PARAB 286 PME 416
rebound CRUX 137

receipt OMG 18.2.4
receive CRUX 11 JRM 463 499 500 769 OMG 17.1.9

PARAB 306 427
receptor AMM E2636
reciprocal AMM E2533 E2573 ISMJ 11.20 JRM 477

586 795 MATYC 104 MM 980 1015
NAvW 538 OMG 15.3.4 15.3.7 SSM 3623
3737 TYCMJ 73 132

IAL/radicals
IAL/sum of powers
IAN/series/monotone sequences
IG/perspective drawings/railroad tracks
INT/digit problems/primes
INT/Fibonacci and Lucas numbers/

infinite series
INT/Fibonacci numbers/inequalities
INT/Fibonacci numbers/infinite series [2]
INT/modular arithmetic
INT/Pythagorean triples
INT/series/binomial coefficients
INT/squares/rational numbers [2]

reciprocity CMB P249
record FUNCT 1.3.6 JRM 376 530 715 MM 1056

OSSMB 76-11
recrease AMM S4
rectangle AMM 6178 E2577 CRUX 204 435 483

ISMJ 10.9 11.10 12.31 13.16 13.24 14.5 J10.8
JRM 600 713 MM 960 966 Q660 MSJ 424
447 NAvW 476 NYSMTJ 68 95 OMG 15.1.3
15.2.2 OSSMB 79-11 G79.2-8 PARAB 320
PME 430 439 455 SSM 3637 3640 3653 3716
TYCMJ 86 USA 1976/1

IC/counting problems/geometric figures
IG
IG/billiards [13]
IG/constructions
IG/dissection problems
IG/dissection problems/squares
IG/inequalities
IG/maxima and minima
IG/packing problems
IG/packing problems/rectangles
IG/paper folding
IG/regular octagons/diagonals
INT
INT/geometry
IP/geometry
IRM/chessboard problems/coloring problems

rectangular CANADA 1977/7 CRUX 135 137 244
IMO 1976/3 ISMJ J11.4 JRM 390 444
480 500 646 787 MSJ 501 NAvW 503
OMG 15.2.2 16.2.7 PARAB 319 326 399
SIAM 76-15 SSM 3637

rectangular area JRM 500
rectangular array AMM 6192 CRUX 2
rectangular coordinates

NAvW 490
rectangular field DELTA 6.2-1
rectangular garden

ISMJ 13.6
rectangular hyperbola

CRUX 15
IG/hyperbolas [2]

rectangular parallelepiped
CRUX 286 367 MM 939 SSM 3761
TYCMJ 100 134

IC/counting problems/geometric figures
INT/geometry
ISG [18]
ISG/analytic geometry/maxima and minima
ISG/curves/arclength
ISG/maxima and minima
ISG/packing problems
ISG/packing problems/cubes
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rectangular plate 1975–1979 requested

rectangular plate CRUX 427
rectangular solid OSSMB 77-13 SSM 3584 3719
rectilinear OSSMB G79.2-8
recurrence AMM E2688 CRUX 191 355 FQ B-391 B-410

MM 1085 PUTNAM 1976/B.3 SIAM 78-2
79-3 TYCMJ 62

IAL
IAN/derivatives/roots
IAN/differential equations/determinants
IAN/exponential function/infinite series
IAN/limits/sequences
IAN/Maclaurin series
IAN/power series
IAN/sequences
IAN/sequences/pairs of sequences
IAN/series/arrays
ILA/determinants
INT
INT/arrays
INT/binomial coefficients/finite sums
INT/digit problems/sum of digits [3]
INT/digit problems/terminal digits
INT/factorials/fractions
INT/Fibonacci and Lucas numbers [11]
INT/Fibonacci numbers
INT/Fibonacci numbers/identities
INT/permutations/fixed points
INT/primes
INT/primes/generators
INT/sequences/binary sequences
INT/sequences/divisibility
INT/sequences/floor function
IP/inequalities/intersections
ITR

recursion AMM E2520 FQ B-349 B-411 JRM 728
recursive inequalities

IAN/sequences/inequalities [5]
redealt SPECT 11.6
redouble JRM 560
reduce AMM E2777 CRUX 133 299 JRM 373 680

728 MM 961 1002 NAvW 432 PENT 277
PME 358

reducible polynomial
AMM E2578

IHA/fields/polynomials
reenter JRM 499
refinement CRUX 395
reflected CMB P244 PARAB 304
reflection CRUX 289 JRM C6 MM 1003 1086

NAvW 475 476 508 OSSMB 77-4
IAM/optics

refolding ISG/paper folding
refraction CRUX 289
refreshments OMG 18.2.4
refuse CRUX 431 OMG 18.2.1
regard AMM E2588 E2608 JRM 389 SSM 3739

3780
regardless AMM E2665 CRUX 418 ISMJ 14.5 JRM 475

557 675 701
regiment SIAM 75-2
region of convergence

IAN/complex variables/number theory
regular [83 references]
regular dodecagon IMO 1977/1 PARAB 364
regular functions

IAN/integral inequalities/bounds
regular graph AMM E2564

IC/graph theory/bipartite graphs
IC/graph theory/covering problems [4]

regular heptagon
IG

regular hexagon NYSMTJ 79 PARAB 340 SSM 3701
IC/counting problems/geometric figures
IG
IG/tesselations
IP/coloring problems/expected value

regular octagon AUSTRALIA 1979/3 IMO 1979/6 SSM 3653
3656

IG
ISG/polyhedra/spheres [2]

regular pentagon CRUX 145 428 PS2-1 FQ B-348
FUNCT 3.2.5 ISMJ J11.7 MM 1057
PME 406 SSM 3661

IG
IG/dissection problems
IG/paper folding [3]

regular polygon AMM E2594 CRUX 173 ISMJ 12.13
KURSCHAK 1979/1 PARAB 315 SSM 3772

IC/geometry/concyclic points
IGT/selection games/arrays
IG
IG/dissection problems
IG/limiting figures [2]
IG/maxima and minima
IG/paper folding [2]
IG/tiling
INT/Pascal’s triangle/modulo 2
IP/geometry/polygons
ISG/pyramids

regular polyhedra
IAM/electrical networks/resistances

regular rings IHA/rings
regular simplex ISMJ 12.22

IG/n-dimensional geometry/simplexes
regular tetrahedron

CRUX 245 367 PS5-3 JRM 532 PME 425
ISG [2]
ISG/curves/arclength

reign MM 943
related OMG 16.1.10 PME 455 SIAM 76-17

SSM 3752 3787
relations IST
relations among parts

IG/triangles
IG/triangles/special triangles
ISG/polyhedra/convex polyhedra
ISG/rectangular parallelepipeds

relationships IRM/logic puzzles
relative motion IAM/physics/particles

IP [5]
released FUNCT 2.4.4 NAvW 393 403 PENT 286
reliability JRM 387
relocate JRM 554
remainder AMM 6011 CRUX 76 375 FQ B-362

FUNCT 1.3.1 IMO 1977/5 ISMJ J11.18
JRM 563 OMG 14.1.1 OSSMB 76-7 G78.1-1
PARAB 367 SSM 3635 3765

remote AMM E2620
removing JRM 533 682
renumbered NAvW 430
repair FUNCT 1.4.5
repdigits INT
repeating fractions

INT/base systems
repetition AMM 6192 CRUX 267 409 PS5-2

PARAB 327 343 PUTNAM 1977/B.3
replacement AMM 6155 E2665 FUNCT 3.2.4 JRM 379

MM 1022 SIAM 78-17
report FUNCT 1.1.5 ISMJ 13.7 MM 1024
repunit PENT 316 320

INT
ITR/solution of equations/tan

requested OMG 17.1.5
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reset 1975–1979 ruler

reset JRM 671 PENT 278
residue AMM 6094 6156 6161 E2627 E2673 E2781

FQ B-363 JRM 672 MM Q653 NAvW 413
431

resistance AMM E2535 E2620 CRUX 182 JRM 529
PARAB 295 SIAM 79-16 SPECT 7.1

IAM/electrical networks
resistor AMM E2620 JRM 529
restaurant CRUX 308 PARAB 384
restriction AMM 6159 JRM 424 446 477 MSJ 426

NAvW 452 OSSMB G76.1-6 PME 342
SIAM 77-13

resultant NYSMTJ 63 TYCMJ 78
return IRM/alphametics/phrases
reversal JRM 531 PME 348 SSM 3575 3591
reverse JRM 393 539 MSJ 417 435 OSSMB G77.2-2

PME 348 461 SSM 3575 3591 3600 3614
3631 3697

reversing ISMJ 13.21 JRM 760
revolution OMG 17.1.3
rhombus SSM 3704

IC/counting problems/geometric figures
IG/analytic geometry/Euclidean geometry

rhyme CRUX 215 JRM 751
riddle CRUX 151

IRM [2]
Riddler JRM 770a
riding AMM E2608
Riemann-Stieltjes integrable functions

IT/function spaces/first category
Riemann zeta function

IAN [4]
INT
INT/series/inequalities

right-angled CRUX 33 428 TYCMJ 145
right angles INT/geometry/quadrilaterals
right circular cones

IG/rolling
ISG
ISG/paper folding

right-continuous AMM 6142
right-foot FUNCT 1.4.5
right-hand AMM E2551 CRUX 436 FUNCT 1.1.4 1.2.5

2.2.3 OSSMB 79-2 PARAB 327
right triangles IG [2]

IG/analytic geometry/Euclidean geometry
IG/constructions [3]
IG/constructions/pentagons
IG/dissection problems
IG/inequalities
IG/inequalities/triangles
IG/maxima and minima [2]
IG/points in plane/partitions
IG/triangles/angle bisectors
IG/triangles/isosceles triangles
INT/geometry [2]
INT/triangles
ITR/triangles/tan

rigid AMM E2727
rim NAvW 475 476 OSSMB G78.1-4
ring AMM 6039 6068 6069 6116 6134 6141 6152

6180 6183 6256 6259 6263 6284 E2528
E2536 E2586 E2676 E2704 E2713 E2742
CMB P258 DELTA 5.1-3 6.2-3 JRM 504 729
MM 948 991 1019 1052 TYCMJ 40 65

IHA
ILA/determinants/evaluations

rise AMM S14 FQ H-257 H-273 H-297
OSSMB G79.1-1

river CRUX 193 JRM 478 603 MM 976 1004
OMG 15.2.1 OSSMB G75.1-5

IAL/rate problems
IAM/navigation
IG/angle measures [2]

road CRUX 354 PS8-1 FUNCT 1.3.2 JRM 534
MM 976 NYSMTJ 81 OSSMB G79.1-1
PARAB 308

Robin JRM 548
rod AMM E2596 CRUX 19 NAvW 450

OSSMB G78.1-4
IAM/physics

roll CRUX 308 333 409 450 FUNCT 1.4.1
1.5.1 JRM 621 MENEMUI 1.2.1 MM 1011
1071 NYSMTJ 56 OMG 17.1.3 PME 407
SSM 3598

roller ISG/cylinders
rolling IG [2]
rolling objects IAM/physics
Roman numerals

IAL/algorithms
roof FUNCT 2.4.4
rook AMM 6096 JRM 540
rook versus knight

IGT/chess problems/individual matchups
rookwise JRM 480 C6
room CRUX 195 244 ISMJ 11.18 J11.15 JRM 499

OSSMB 76-11 PARAB 356 SPECT 9.2
root [61 references]

IAL/polynomials/Chebyshev polynomials
IAL/theory of equations
IAN/derivatives
IAN/sequences/convergence
INT/arithmetic progressions
INT/polyhedral numbers/

tetrahedral numbers
INT/polynomials [2]

roots and coefficients
IAL/polynomials
IGT/selection games/polynomials
INT/polynomials/degree 2 [2]

roots of unity IAL
ILA/eigenvalues/evaluations

rope CRUX 89 FUNCT 3.1.6 JRM 395 541
OMG 16.1.3 PENT 282 PME 382

IAM/physics/equilibrium
ISG/maxima and minima/spooling

roses IRM/alphametics/phrases
rotate AMM 6102 CRUX 170 394 FQ B-415

JRM 729 C6 MM 1018 NYSMTJ 60
OSSMB G78.1-4 PME 436

rotating lines IG/locus
rotation IC/arrays/circular arrays

IC/configurations/circular arrays
IG/polygons/convex polygons

round robin JRM 715
rounds PME 350
route CRUX 289 PS8-1 JRM 498 603 PARAB 308
row [71 references]

INT/Pascal’s triangle/modulo 2
row operations ILA/matrices/symmetric matrices
row-stochastic AMM E2652
row sums IAN/series/arrays

IC/algorithms/matrices
IC/arrays/symmetric arrays
INT/arrays/triangular arrays
INT/Fibonacci and Lucas numbers/arrays

row sums and column sums
IC/arrays/0-1 matrices [2]

rowing SPECT 11.4
rubber JRM 442
rubber band FUNCT 2.5.3 JRM 444
ruin JRM 423
rule AMM 6032 6151 E2777 ISMJ J11.8

JRM 592 594 601 NAvW 477 NYSMTJ 72
OMG 14.1.2 PARAB 292 341 SSM 3612

ruler FUNCT 2.5.1 NAvW 402 432 PARAB 265
399

IG/constructions
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ruler only 1975–1979 set

ruler only IG/constructions/rulers
runner-up IP/order statistics
running IAL/rate problems [22]
runs INT/sequences

IP/coin tossing
IP/independent trials

rusty compass CRUX 492 JRM 505
IG/constructions

sack JRM 563 OMG 15.2.1 PARAB 376
salary PARAB 322

IC/distribution problems
salvo JRM 375
sample CRUX 484 JRM 379 623
sample means IP/random variables/characteristic functions
sampling theory IP/biology/mating
satellite JRM 504
savings TYCMJ 104
scalar AMM 6068 6078 E2586 E2742 S22 MM 951

1058 Q644 NAvW 547
scalar multiples ILA/linear transformations
scale AMM 6219 6224 JRM 448 592 NAvW 455

OMG 18.3.5 SSM 3570 3614 USA 1978/2
IAL/weights
IG/map problems/constructions
ISG/surfaces

scalene triangle CRUX 365 NAvW 553 SSM 3722
INT/triangles

scansion CRUX 215
Schauder decomposition

IAN/Banach spaces/subspaces
schedule OMG 17.1.1 PME 382
schilling ISMJ 11.16
school FUNCT 3.3.3 ISMJ 13.7 OMG 18.2.4 18.2.6

18.3.3 PARAB 335 357 372 PENT 276
scoop NAvW 509
score CANADA 1976/3 FUNCT 3.5.1 JRM 469 573

624 715 MATYC 115 117 MENEMUI 1.1.3
MSJ 487 OMG 17.2.5 18.2.6 PARAB 323
PME 403

scoring JRM 624 715 OMG 18.2.6
scout SSM 3577
screenfold AMM S4
sea SPECT 7.5 8.2
seam JRM 498
season MM 1024 OMG 17.1.1 SSM 3617
seat PARAB 266 311
sech IAN/series/hyperbolic functions
second-best JRM 647
second-order FQ B-411
secret JRM 469
section AMM E2617 E2751 CRUX 140 JRM 472 532

OMG 15.2.2 17.2.2 17.2.5
sector CRUX 284 436

IG/constructions/circles
seeing MM 1084 MSJ 437 SSM 3590
segment [92 references]
selecting JRM 558 SSM 3767
selection CRUX 280 JRM 379 510 MSJ 462

OMG 18.2.7
selection games IGT

IP/game theory
selection problems

IC
IP
IP/number theory/congruences

self-adjoint operators
IAN/functional analysis/Hilbert spaces

self-complementary graph
PME 441

IC/graph theory/maxima and minima

self-intersecting polygons
IP/geometry/polygons [4]

self-polar CRUX 353
semi-definite AMM 6061 MM Q644 NAvW 554
semi-matrix FQ H-252
semi-regular PME 352
semicircle CRUX 386 ISMJ 13.10 13.27 JRM 370

MSJ 470 502 OSSMB 76-4 PME 398
IC/geometry/concyclic points
IG
IG/circles/isosceles right triangles
IG/maxima and minima
IG/squares/inscribed circles [7]
INT/geometry

semicircular arc JRM 562
semigroup AMM 6150

IHA/groupoids
semimonotone SIAM 76-15
semiperimeter MM 936 1043 1077 NAvW 488 PME 450

IG/inequalities/triangles
IG/triangle inequalities/altitudes
IG/triangle inequalities/radii
INT/triangles/counting problems

semiprime JRM 652
sentence AMM 6260

IST/symbolic logic
separable space AMM 6147 NAvW 471 554

IT/locally convex spaces/linear subspaces [2]
IT/subspaces/discrete subspaces

separate AMM 6029 E2513 CRUX 328 JRM C5
MM 952 976 OSSMB G79.1-1 PARAB 267
372 399 PME 382 SIAM 75-2 SPECT 7.5

separation properties
IT

sequence [292 references]
IAL
IAN
IAN/limits
IAN/limits/finite sums
IAN/limits/logarithms
IAN/limits/trigonometry
IC
IC/counting problems
IG/right triangles
INT
INT/digit problems/terminal digits [2]
INT/divisors
INT/floor function
INT/harmonic series/inequalities
INT/inequalities/powers of 2 [2]
INT/Lucas numbers
INT/maxima and minima
INT/primes
INT/primes/products [2]
IP
IRM/chessboard problems/counting problems

sequence spaces ILA/linear transformations
sequences of forced moves

IGT/chess problems/maxima and minima [4]
sequential FQ H-257 H-273 JRM 566
series [52 references]

IAN
IAN/identities/integrals
INT
INT/Möbius function
INT/triangular numbers
ITR

service SIAM 76-7
serving JRM 387 NAvW 509
set [361 references]

IAN [2]
IAN/functions/differentiable functions
IAN/series/divergent series
IC
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set 1975–1979 sin

IC/coloring problems [3]
INT
INT/Lucas numbers
INT/modular arithmetic/

complete residue systems
INT/number representations [2]
INT/sum and product
INT/sum of divisors
IP [2]
IP/selection problems
IT

set functions IAN/functions/bounded variation
set theory IC/graph theory/bipartite graphs [2]

INT/arithmetic progressions/subsequences
sets of divisors INT/divisors

INT/sum of divisors/perfect numbers
setting AMM 6109 CRUX 298 420 428 ISMJ 13.9

JRM 671
settle AMM 6235 6275 PME 413
several players IGT/betting games
several variables

IAN/complex variables
shadow NYSMTJ 64

ISG/analytic geometry/cubes [2]
shape AMM 6178 CRUX 394 ISMJ 14.22 JRM 557

628 729 787 MM 1056 NYSMTJ 56
OSSMB 78-2 PARAB 315 336 PME 416
SIAM 78-17 SSM 3661

shaped AMM 6182 PARAB 410 SSM 3640
share AMM E2732 CRUX 308 FUNCT 1.3.1

JRM 445 502 527 563 684 785 C4
OSSMB 79-14 PARAB 297 SSM 3577
USA 1979/5

IAL/fair division
shareholder JRM C4
sharing JRM 391
sharp CRUX 355 MM 1068
sharp inequalities

IAL/means/inequalities
sheep CRUX 71 JRM 476 OMG 17.1.9 18.1.9

IAL/rate problems
sheet CRUX 140 204 ISMJ 13.14 JRM 538 628

MM 996 PARAB 399 SSM 3637
shelf OMG 16.1.6
shift ISMJ J11.5 MSJ 436
ship OMG 17.2.6 SIAM 76-13
shop FUNCT 1.4.5
shore PME 343 SPECT 8.2
short MSJ 477 PME 430
shortened JRM 395
shortest paths IG/maxima and minima

ISG/dissection problems/spheres
shot PME 373
shoulder-to-shoulder

PARAB 331
shuffle AMM E2645 CRUX PS5-1 FUNCT 2.1.1

JRM 740 C3 MM 1022 OSSMB 77-14
PARAB 327 343 SPECT 11.3 USA 1975/5

shunting problems
IRM

sides IG/equilateral triangles
IG/inequalities/triangles
IG/quadrilaterals
IG/triangle inequalities [2]
IG/triangles
IG/triangles/relations among parts
INT/Pythagorean triples/inradius

sides and angles IG/inequalities/triangles
IG/non-Euclidean geometry/quadrilaterals
IG/regular polygons/cyclic polygons

sides and base IG/triangles/isosceles triangles [21]
sides and diagonals

IG/inequalities/quadrilaterals
siding PARAB 275

sight IRM/alphametics/phrases
sign IAL/polynomials/derivatives

ILA/eigenvalues
INT/sequences/sum of consecutive terms

signed MM 970
significant CRUX 312 FUNCT 3.3.3 JRM 741

PARAB 408
significant dates IAL/calendar problems
silhouette NYSMTJ 86

ISG/analytic geometry/paraboloids
silver JRM 379

IRM/alphametics/phrases
similar matrices ILA/matrices
similar triangles IG/equilateral triangles

IG/inequalities/triangles
IG/locus/triangles
IG/paper folding/equilateral triangles
IG/quadrilaterals/triangles
IG/triangles
IG/triangles/cevians
IG/triangles/inscribed triangles
INT/triangles

similarity AMM E2657 PME 435
simple closed curves

IAN/curves
IG

simple groups IHA/groups/finite groups
simple polyhedra

ISG/polyhedra/combinatorial geometry [2]
simple rings IHA/rings/nonassociative rings
simplest JRM 509
simplex AMM E2548 E2657 E2674 CMB P244

CRUX 224 SIAM 78-20
IG/n-dimensional geometry
IG/n-dimensional geometry/4-space [2]
IG/n-dimensional geometry/inequalities

simplification IAL/finite products
IAL/logarithms [4]
IAL/radicals
IRM/logic puzzles/statements

simplify CANADA 1975/1 FQ B-394 FUNCT 2.4.1
JRM 655 NYSMTJ 57 OSSMB G75.1-2
PARAB 335 SSM 3675 3711

simply connected sets
IT/connected sets/plane sets

simultaneous AMM S20 CRUX 277 JRM 632 666 667
MSJ 421 433 NYSMTJ 37

simultaneous alphametics
IRM/alphametics

simultaneous equations
ISMJ J11.3 PARAB 280

simultaneous inequalities
INT/inequalities [14]

simultaneously AMM 6060 E2618 AUSTRALIA 1979/2
CRUX 493 FQ H-256 FUNCT 1.5.1
IMO 1979/3 JRM 601 PARAB 303
SIAM 79-4 SSM 3621 3648

sin IAN/derivatives/trigonometric functions
IAN/integral inequalities/bounds
IAN/integrals/evaluations
IAN/sequences/trigonometry
IG/analytic geometry/polar curves
IG/triangle inequalities/half-angles
ITR/approximations
ITR/determinants
ITR/identities
ITR/identities/constraints
ITR/inequalities
ITR/infinite products/cos
ITR/infinite series
ITR/triangles
ITR/triangles/maxima and minima [5]
ITR/triangles/special triangles
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sin and cos 1975–1979 spherical

sin and cos IG/triangle inequalities/angles
ITR/fallacies
ITR/identities
ITR/identities/constraints [2]
ITR/inequalities
ITR/infinite series
ITR/numerical evaluations
ITR/solution of equations
ITR/systems of equations/integer coefficients
ITR/triangles [2]

sin and cot ITR/triangles
sin and tan ITR/inequalities

ITR/inequalities/Huygens [20]
sine SSM 3637
singular AMM 6073 E2552 E2559 E2779
sinh IAN/integrals/evaluations

IAN/series/hyperbolic functions
ITR/infinite series

sinh and tanh ITR/inequalities/Huygens
sink JRM 513
situation AMM E2561 E2571 E2753 S4 CRUX 363

JRM 393 MENEMUI 1.1.3 OSSMB 76-14
six-digit number NYSMTJ OBG9 PARAB 431 SSM 3594

3610
six-petaled PARAB 340
skeleton CRUX 371 JRM 410 579 585 617 664 696

698 780 781
IRM/cryptarithms

sketch CANADA 1978/6 CRUX 333 FUNCT 1.2.1
PARAB 308 PME 458

skew CRUX PS6-2 MM Q630 NAvW 414
USA 1977/4

skew lines ISG/spheres
skew quadrilaterals

ISG
skidding IAM/physics/cars
slab PUTNAM 1975/B.2

ISG/covering problems/family of planes
slant CANADA 1977/5 NYSMTJ 56 OMG 16.2.5
slash JRM 785
sleep PME 439
slide FUNCT 2.5.1 JRM 471 472 592
slide rules IP
sliding tile puzzles

IRM/puzzles
slightly MM 996
slipping FUNCT 1.4.1 MENEMUI 1.2.1
slit AMM E2630
slope CRUX 495 FUNCT 1.5.1 OSSMB G78.2-3

PARAB 410 SPECT 10.2
smoke IRM/alphametics/phrases
smooth AMM S19 MATYC 126 MM 981 NAvW 468

NYSMTJ 56
snake JRM 488 489 490

IRM/alphametics/phrases
snow PME 426
snowstorm JRM 472
soap CRUX 291
soccer JRM 715 OMG 18.2.6

IC/tournaments
society IMO 1978/6
sock JRM 621

IP/selection problems
soft ISMJ 10.15 JRM 387
sold OMG 17.1.9 18.1.9
soldier PARAB 263

IC/arrays/maxima and minima
solely AMM 6035
solid AMM E2563 JRM 783 PARAB 296 361

PME 460
solid cube NYSMTJ 64

solid geometry IAM/physics

IG/maxima and minima

IHA/groups/transformations

solid tetrahedron AMM S11

solids of revolution
ISG [2]

solitary AMM 6020

solution in rationals
INT/Diophantine equations

solution of equations
IAL

IAL/logarithms [7]

INT/determinants

INT/Euler totient

INT/floor function

INT/modular arithmetic

ITR

ITR/series/trigonometric series

solvable FQ H-306 SIAM 75-9

solve IRM/alphametics/phrases [4]

son CRUX 122 JRM 393 500 643 659
OSSMB 78-10

sorting JRM 736

IC

sound JRM 546 686 770a SSM 3780

IRM/alphametics/words

south JRM 534 597 OSSMB G76.3-3 PARAB 305

southwest CANADA 1977/7 OMG 16.2.7

space curves ISG

space filling curves
IAN/curves

spaceship IAL/rate problems [8]

spacing JRM 757

spade JRM 443 597 782

span AMM 6131 6168 6184 E2548 CRUX 492

Spanish IRM/alphametics/doubly true

sparse FQ H-300

spatial JRM 421 SIAM 79-1

speak CRUX 419 JRM 539 USA 1978/5

speaker CRUX 151

special triangles IG/triangles

ITR/triangles

specialist JRM 440

species JRM 376

specific AMM 6262 JRM 372 373 PARAB 343

specify NAvW 484

spectral norm SIAM 78-12

ILA/matrices/spectral radius

spectral radius AMM 6209 S13 SIAM 75-7 76-9 77-14

ILA/matrices

spectrum CMB P246 NAvW 534

speed IRM/alphametics/phrases

sphere AMM 6081 E2694 CRUX 453 500 PS2-3
PS6-2 FUNCT 1.5.1 IMO 1978/2 JRM 498
629 646 733 NAvW 461 OMG 16.1.2
16.1.9 PARAB 291 PENT 303 PME 352
SIAM 75-21

IG/n-dimensional geometry/curves

ISG [4]

ISG/cylinders

ISG/dissection problems

ISG/locus

ISG/packing problems

ISG/paper folding/circles [3]

ISG/polyhedra

spherical JRM 498
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Keyword Index
spherical geometry 1975–1979 squares and triangles

spherical geometry
ISG

spherical planet JRM 504 NYSMTJ 50
spherical triangle USA 1979/2

ISG/spherical geometry
spindle JRM 785
spiral MATYC 104
split AMM E2636 JRM 597 785 PARAB 294
spooling OMG 16.1.3

ISG/maxima and minima
sports IAL

IP
spot FUNCT 2.3.4 ISMJ 14.2
spouse OSSMB 78-3
spread JRM 782
square [384 references]

IAL/age problems/different times
IAL/recurrences
IAN/limits/factorials
IAN/measure theory/geometry
IAN/series/evaluations
IC/counting problems/geometric figures
IG
IG/analytic geometry/circles [11]
IG/constructions
IG/covering problems
IG/covering problems/discs
IG/dissection problems
IG/dissection problems/squares
IG/inequalities
IG/inequalities/area
IG/isosceles right triangles
IG/lattice points
IG/paper folding
IG/parallelograms/perpendicular rays
IG/point spacing/distance
IG/point spacing/nearest point
IG/quadrilaterals/erected figures
IG/rectangles
IG/right triangles/erected figures
IG/tesselations
IG/tesselations/regular hexagons
IG/tiling
IG/tiling/squares [2]
IG/triangles
IG/triangles/erected figures
ILA/matrices/0-1 matrices
INT [2]
INT/base systems
INT/base systems/digit permutations
INT/base systems/palindromes
INT/composite numbers/characterizations
INT/digit problems [2]
INT/digit problems/digital roots
INT/digit problems/juxtapositions
INT/digit problems/sum of digits [4]
INT/digit problems/terminal digits
INT/Diophantine equations/exponential
INT/Diophantine equations/factorials
INT/factorials/divisibility
INT/factorials/sums
INT/Fibonacci numbers/divisibility
INT/Fibonacci numbers/forms
INT/Fibonacci numbers/identities
INT/floor function/primes [3]
INT/forms of numbers
INT/forms of numbers/

difference of consecutive cubes
INT/forms of numbers/

product of consecutive integers
INT/forms of numbers/

sum of consecutive integers
INT/Lucas numbers/sets
INT/modular arithmetic

INT/modular arithmetic/coprime integers [3]
INT/palindromes
INT/partitions/number of partitions
INT/polygonal numbers/modular arithmetic
INT/polygonal numbers/

pentagonal numbers [2]
INT/polyhedral numbers/

tetrahedral numbers
INT/Pythagorean triples
INT/quadratic residues
INT/recurrences/

generalized Fibonacci sequences
INT/recurrences/third order
INT/repunits [25]
INT/sequences/monotone sequences
INT/series/factorials
INT/series/inequalities
INT/sets/prime divisors
INT/sets/sum of elements
INT/sum of divisors/almost perfect numbers
INT/sum of divisors/number of divisors
INT/triangular numbers
IP/geometry
IP/geometry/point spacing
IRM/alphametics
IRM/chessboard problems/coloring problems
IRM/puzzles/block puzzles
IRM/puzzles/crossnumber puzzles
ISG/polyhedra

square array CRUX 345 399 JRM 569 PARAB 311
PME 377 SSM 3676 TYCMJ 147

square blocks ILA/determinants/block matrices
square field SIAM 78-17
square-free integers

INT/determinants/counting problems
INT/sequences/density
INT/series/unit fractions
INT/sum of divisors/divisibility

square-integrable AMM 6030
square matrix AMM 6006 6210 E2734 E2735 E2741

MM 951 1038 1058 Q624 SIAM 76-9 76-15
79-7

square number CRUX 197 OSSMB G78.1-1 PARAB 352
PENT 297 SSM 3571

square order IHA/groups/finite groups
square root CRUX 202 FUNCT 1.1.3 JRM 673 737

788 C2 MSJ 417 OSSMB G78.1-1 G78.1-2
PARAB 280 SPECT 9.4

IAL/finite sums/radicals
IAL/solution of equations/radicals
ILA/matrix equations
INT
INT/algorithms
INT/base systems [2]
INT/base systems/digit permutations
INT/Diophantine equations/radicals
INT/Fibonacci numbers/continued fractions
INT/floor function/solution of equations
INT/fractional parts [117]
INT/fractional parts/maxima and minima
INT/recurrences
INT/recurrences/floor function
INT/series/floor function
INT/sum of divisors/products
IRM/alphametics/radicals
IRM/cryptarithms/skeletons

squared deviations
IAL/inequalities/degree 2

squarefree AMM 6035 6086 6190 MM 1015 1019
NAvW 473

squares and triangles
IG/dissection problems/polygons
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Keyword Index
St. Petersburg 1975–1979 subsequence

St. Petersburg IP/game theory/coin tossing
stability JRM 376
stable AMM 6031
stack AMM E2569 E2713 OMG 16.1.6 PME 350

TYCMJ 89
staff JRM 392
stage JRM 423 480 493 C7 PME 379
staggered FQ H-257 H-273
stairway AMM S17
stake JRM 423 631 682 PENT 282 290
stalemate JRM 561 758
stamp JRM 396 SSM 3662

IAL/money problems
stand MENEMUI 1.1.3 SPECT 7.5
standard symbols

INT/number representations
standing CANADA 1979/4 DELTA 6.2-1 MM 1031

OSSMB G78.3-5 PARAB 326 375
standings JRM 715
stands JRM 374 431 639 721 MENEMUI 1.1.3

NAvW 419 OSSMB G75.1-5 PARAB 375
star AMM E2564 CRUX 396 ISMJ 12.1 12.2

OMG 17.3.9
IGT/nim variants
IG

star-shaped sets IT/Banach spaces
starboard JRM 375
starship OMG 17.2.6
state AMM 6080 E2777 FUNCT 1.2.1 JRM 591

624 MM 1084 MSJ 436 PUTNAM 1975/A.5
SIAM 76-11 SSM 3597 3719 3769

IRM/alphametics
statements IRM/logic puzzles
station OMG 18.1.8
stationary CRUX 318 FUNCT 1.2.1
statue OMG 16.1.8 OSSMB G78.3-5
steadily PME 426 SIAM 77-5
steady CRUX 193
Steinhaus triangle

IC/arrays/triangular arrays
stellated PME 386
step functions IP/distribution functions/convolutions
stick OSSMB 76-4
Stirling numbers

INT/sequences/binomial coefficients
INT/series

stochastic matrix SIAM 75-13
ILA/matrices

stochastic processes
IP

stock MM Q632
stocked JRM 376
stone JRM 381 533
stopped clock IAL/clock problems
storage JRM 390
stories IRM/alphametics/phrases
story JRM 686 PARAB 266
story problems IRM/alphametics
stove JRM 785
straddle JRM 375 OSSMB 77-6
straightedge CRUX 284 288 308 ISMJ 11.11 13.14 13.20

13.24 J10.12 JRM 505 MATYC 99 MM 1054
Q637 PME 341 412 460 TYCMJ 75

straightedge only
IG/constructions

stranger JRM 682 PARAB 439
strategy AMM S10 CANADA 1978/5 CRUX 396 418

DELTA 6.1-4 FUNCT 2.3.3 ISMJ 12.1 12.2
12.4 JRM 372 387 510 533 648 658 709
MM 1022 1084 NAvW 405 OSSMB 75-2
79-15 PARAB 281 PME 342 388 403
SIAM 76-1 TYCMJ 104

stream MATYC 123 MM 926
street PENT 314 SIAM 75-8

strength CRUX 402 NAvW 403
strike CRUX 418 420 428 JRM 573 OMG 18.3.1

SIAM 75-8
string AMM 6146 6281 CRUX 325 ISMJ 14.15

JRM 444 OMG 16.1.2
strip CRUX 244 422 MSJ 464 501 OSSMB 75-15

IG/packing problems/discs
IG/paper folding

strong CMB P246 MM 936 NAvW 542
OSSMB 79-3

strong cluster points
IAN/sequences/cluster points

strongly closed sets
IT/Banach spaces/star-shaped sets

structure AMM 6031 6139
student AMM 6092 CANADA 1976/3 CRUX 229 433

FUNCT 1.4.3 2.3.1 ISMJ 14.11 MM 1056
1072 MSJ 483 OMG 15.1.1 17.1.2 18.3.2
PARAB 335 372 391 PENT 275 281 293
SSM 3725

Student’s t-distribution
IP

study OMG 17.1.2
stymie JRM 480
sub-factorial OSSMB 76-5
subadditivity AMM E2590

INT/Euler totient/inequalities
subalgebra CMB P253
subarea PME 448
subatomic particles

IRM/alphametics/words
subcollection AMM 6060
subdivide CRUX 280 MSJ 499
subfield AMM 6119 6216 6268 CMB P252 NAvW 435

497
IHA/fields
IHA/fields/finite fields

subfield chains IHA/fields
subgraph IC/graph theory/isomorphic graphs
subgroup AMM 6059 6098 6204 6205 6221 E2545

E2592 CMB P266 CRUX 57 66 MM 935
NAvW 448 501 506 PUTNAM 1975/B.1
1977/B.6

IHA/groups
IHA/groups/alternating groups
IHA/groups/finite groups
IHA/groups/permutation groups

subinterval INT/sequences/finite sequences
subject AMM 6076 6099 E2535 E2713 CMB P259

CRUX 358 JRM 424 594 MM 996
OMG 18.3.2 OSSMB 77-9 PARAB 335
PME 342 SIAM 76-7 76-12

subjecting JRM 379
sublinear map AMM 6051

ILA/linear transformations/inequalities
submatrix FQ H-252 SIAM 76-15

ILA/matrix equations
subpartitions INT/partitions
subring AMM 6134

IHA/rings
subscript FQ B-339 B-341 B-348 H-260 ISMJ 13.23

SIAM 78-3
subsequence AMM 6281 E2712 FQ H-300 JRM 377

NAvW 539 542
IC/sequences/binary sequences
ILA/linear transformations/sequence spaces
INT/arithmetic progressions
INT/Pascal’s triangle/modulo 2
INT/sequences
IP/sequences/binary sequences
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Keyword Index
subseries 1975–1979 sum of terms

subseries INT/series
subset [95 references]

IC/coloring problems/sets
IC/counting problems
IC/counting problems/tournaments
IC/sets/sums
IHA/rings/ideals
INT/quadratic residues
INT/sets
INT/sets/divisibility
INT/sets/sum of elements
IST
IT/Cantor set

subset relations IST/subsets/counting problems
subspace AMM 6147 6168 E2779 E2785 CMB P257

NAvW 395 471 497
IAN/Banach spaces
ILA/vector spaces
IT

substitute JRM 683 OSSMB 78-10 G78.2-1
substitution IAL
subtend OSSMB G76.2-2 G78.3-5 SSM 3668
subtract JRM 648 728 SSM 3723
subtraction IHA/binary operations/characterizations
succession CRUX 265 JRM 782 PARAB 388 389
successive AMM 6035 CRUX 385 IMO 1977/2

ISMJ 11.7 JRM 467 537 623 737 MM 1003
MSJ 464 468 OSSMB 77-12 PME 370
SIAM 78-7 79-14 SSM 3571 3608 3615

successively AMM E2645 CRUX 133 408 JRM C7
NAvW 489

suit JRM 442 462 560 782 C3
suitor PARAB 356
sultan CRUX 117
sum and difference

INT/polygonal numbers/pentagonal numbers
INT/square roots
IP/random variables

sum and product
IAL/age problems
INT
INT/Diophantine equations/factorials
INT/Diophantine equations/

systems of equations
INT/inequalities
IRM/logic puzzles/incomplete information

sum-distinct AMM E2526
sum equals 1 INT/forms of numbers/unit fractions

INT/series/unit fractions
sum equals 4/n INT/forms of numbers/unit fractions
sum equals 23 INT/forms of numbers/unit fractions
sum equals product

IAL/money problems
sum equals quotient

INT/Diophantine equations/
solution in rationals

sum of angles IG/octagons
sum of areas IC/counting problems/geometric figures

IG/right triangles/sequences
sum of coefficients

IAL/polynomials/coefficients
sum of consecutive cubes

INT/forms of numbers
INT/triangular numbers/polynomials

sum of consecutive integers
INT/forms of numbers
INT/forms of numbers/perfect numbers
INT/forms of numbers/sum of squares

sum of consecutive odd cubes
INT/triangular numbers/series

sum of consecutive odd integers
INT
INT/forms of numbers
INT/series/unit fractions

sum of consecutive odd squares
INT/triangular numbers/series

sum of consecutive squares
INT/forms of numbers

sum of consecutive terms
INT/sequences

sum of coordinates
INT/sets/n-tuples

sum of cubes INT/digit problems
INT/Diophantine equations/

systems of equations
INT/forms of numbers
INT/perfect numbers
IP/number theory/divisibility

sum of digits INT/base systems
INT/base systems/squares
INT/digit problems
INT/digit problems/digit reversals
INT/recurrences

sum of distances
IG/triangles/isosceles triangles

sum of divisors INT
INT/divisors
INT/forms of numbers

sum of edges ISG/maxima and minima/tetrahedra
sum of elements INT/sequences/partitions

INT/sets
INT/sets/divisibility

sum of factorials
INT/forms of numbers

sum of indicator functions
IP/inequalities/independent events

sum of lengths IAN/intervals/inequalities
sum of powers IAL

IAL/identities
IAN/complex variables/several variables
IAN/sequences/monotone sequences
IHA/fields/finite fields
INT
INT/digit problems
INT/sequences/finite sequences

sum of primes INT/primes
sum of reciprocals

IAL/inequalities/fractions
INT/divisors
INT/least common multiple/inequalities

sum of square roots
INT/sequences/inequalities [2]
INT/square roots

sum of squared differences
INT/inequalities

sum of squared digits
INT/base systems/limits

sum of squared distances
IG/locus/lines

sum of squared reciprocals
INT/forms of numbers

sum of squares IG/analytic geometry/floor function [7]
IG/circles/chords
IG/locus/equilateral triangles
INT/digit problems
INT/Diophantine equations/

systems of equations
INT/Fibonacci numbers/primes
INT/forms of numbers
INT/modular arithmetic
INT/series
INT/triangular numbers
IP/number theory/divisibility
IP/selection problems

sum of terms INT/arithmetic progressions [14]
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Keyword Index
sum of two squares 1975–1979 tally

sum of two squares
INT/forms of numbers
INT/square roots
INT/triangular numbers/forms of numbers

summand JRM 678 697 711 PARAB 408
summation FQ H-270 PUTNAM 1978/B.6 SIAM 76-11

SSM 3585
summed CRUX 34
summon JRM 379
sums IAL/age problems/different times

IAL/age problems/digits
IC/sets
IGT/tic-tac-toe variants
IG/polygons/convex polygons
IHA/fields/subfields
ILA/matrices/orthogonal matrices
INT/decimal representations/fractions
INT/digit problems/distinct digits
INT/digit problems/factorials
INT/digit problems/maxima and minima
INT/digit problems/permutations
INT/digit problems/primes
INT/factorials [7]
INT/geometry/cubes
INT/twin primes
IP/selection problems
IRM/puzzles/crossnumber puzzles

sun NYSMTJ 64
sup norm IAN/limits/integrals
super-Heronian MM 1023
superfactorial AMM E2799
superimposable AMM E2698
superimposed USA 1978/2
supersoluble NAvW 502
supper IRM/alphametics/phrases
supplementary angles

NYSMTJ 52
IG/quadrilaterals [6]

support AMM 6235 6278 ISMJ 11.1
supremum AMM 6228 E2707 NAvW 549

PUTNAM 1975/B.3
surface AMM 6087 6141 E2585 E2636 E2698

CRUX 367 FUNCT 1.4.1 2.3.2 JRM 498
MM 969 NAvW 461 468 536 NYSMTJ 56
OMG 16.1.2 PARAB 387 SIAM 79-1
SSM 3598 3693

ISG
IT

surface area AMM E2563 JRM 646 NYSMTJ 50
OSSMB 77-13 PARAB 319 PME 367
TYCMJ 134

ISG/analytic geometry/volume
ISG/locus
ISG/surfaces/scale

surfaces of revolution
ISG/maxima and minima

surgeon JRM 453
surjective AMM 6009
surname JRM 643
surround ISMJ 12.19 OMG 15.1.1 PME 428
surrounding chains

IG/circles [2]
survey OMG 17.1.2
survive JRM 375
suspect JRM 792
suspended SIAM 78-17
swimmer CRUX 193 JRM 478 MM 926

IAN/rate problems/maxima and minima
swimming pool PARAB 315
switch AMM S17 PARAB 363

IAM/electrical networks
IRM/logic puzzles [3]

Sylow subgroups
IHA/groups/finite groups

symmedian CRUX 313 NAvW 402 494
IG/triangles/special triangles

symmetric AMM 6089 6097 6098 6145 E2632 E2652
E2708 E2717 E2793 CRUX 436 FQ H-272
MM 995 NAvW 404 PARAB 416 PME 421
PUTNAM 1975/B.3 SIAM 77-14 78-4
SSM 3756

symmetric arrays
IC/arrays

symmetric difference
IST/subsets/family of subsets

symmetric functions
IHA/algebras/polynomials [2]

symmetric matrices
ILA/determinants
ILA/eigenvalues/approximations
ILA/matrices [20]
ILA/matrices/spectral radius

symmetrical JRM 729 MENEMUI 1.3.2 SSM 3598
symmetry AMM 6079 CRUX 394 DELTA 5.2-2

6.1-2 FQ B-363 OSSMB 75-10 G79.2-8
PARAB 374

IG
IG/n-dimensional geometry/convexity

symmetry groups
IC/graph theory/bipartite graphs

system AMM 6161 6181 6215 E2587 E2615 E2664
CMB P245 CRUX 197 252 272 384 498
FQ H-306 IMO 1976/5 JRM 598 672 770a
MATYC 88 MENEMUI 1.3.2 MM 930
MSJ 417 440 NAvW 428 431 NYSMTJ 71
OMG 17.3.2 OSSMB G79.3-5 PARAB 349
PUTNAM 1977/A.2 SIAM 76-12 77-1 77-17
SSM 3574 3590 3594 3596 3600 3622 3765
TYCMJ 90 115

systematically AMM E2584 PARAB 327 343
systems of congruences

INT/modular arithmetic
systems of differential equations

IAM/physics
systems of equations

IAL
IAL/identities
IAL/theory of equations
IAN/differential equations
ILA/vector spaces
INT/Diophantine equations
INT/Fibonacci numbers
INT/Pythagorean triples
ITR

systems of inequalities
INT/series/inequalities

systems of integral equations
IAN/integrals/gamma function

systems of recurrences
INT/recurrences

table CRUX 137 FUNCT 1.2.7 2.2.3 3.3.3
JRM 601 680 700 782 786 MENEMUI 1.1.3
NAvW 475 476 OMG 15.3.9 16.1.4 18.1.3
OSSMB G75.1-2 G76.3-3 PARAB 266 344
PENT 283 PUTNAM 1978/A.4 SSM 3598

table of values IAL/theory of equations
IHA/binary operations/finite sets

tack MM 996
tag JRM C5
tail CRUX 333 NAvW 489 PME 457
tail series IAN/series
tails FUNCT 3.2.6 PME 370
tall OMG 18.2.3 PARAB 263 PME 413
tally JRM 604 624
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Keyword Index
tan 1975–1979 tiling

tan IAN/integrals/evaluations
IG/paper folding/squares
ITR/approximations
ITR/determinants/triangles [24]
ITR/identities
ITR/identities/constraints
ITR/inequalities
ITR/infinite series
ITR/numerical evaluations
ITR/solution of equations
ITR/solution of equations/sin and cos
ITR/triangles
ITR/triangles/sin and cos

tan and cot ITR/identities/sin and cos
ITR/inequalities
ITR/triangles

tan and sec ITR/inequalities
ITR/solution of equations

tangency NYSMTJ 67 OBG5 OSSMB G76.2-2
SSM 3706

tangent [74 references]
IAN/Banach spaces/function spaces
IAN/curves
IG/analytic geometry
IG/analytic geometry/circles
IG/circles
IG/circles/2 circles
IG/circles/3 circles
IG/constructions/circles
IG/constructions/squares
IG/ellipses
IG/hyperbolas [2]
IG/locus/circles
IG/locus/ellipses [4]
IG/parabolas/3 points
IG/parabolas/line through focus
IG/triangles/circumcircles
IP/geometry/circles

tangent circle PME 447
tangent point NAvW 526
tangent spheres ISG/spheres [14]
tanh IAN/series/hyperbolic functions
tank OSSMB G79.1-1
tape AMM S4 MSJ 464
target JRM 539

IRM/alphametics/phrases
Target Nim IGT/nim variants
task JRM 505 528 597 OMG 15.2.1 PARAB 314

356
IGT/chess problems

taxicab JRM 527 OSSMB 78-11 78-12
taxonomic JRM 376
tea PARAB 266
teach JRM 478
teacher CRUX 95 MSJ 467 PARAB 372 PENT 311

PME 446
team JRM 441 624 715 MENEMUI 1.1.3 MM 1024

OMG 14.2.1 17.1.1 18.2.6 SSM 3617
teenager FUNCT 3.2.3 OMG 18.1.1
telephone call PARAB 372

IC/configurations/maxima and minima
teller OMG 18.2.3
temperature AMM S11

IAM/physics
tennis JRM 387

IC/tournaments
IP/sports

tennis tournament
FUNCT 3.1.5 OMG 17.1.4

terminal digits INT/base systems/polygonal numbers
INT/digit problems
INT/digit problems/multiples
INT/digit problems/squares
INT/Lucas numbers/digit problems
INT/polygonal numbers/octagonal numbers
INT/polygonal numbers/pentagonal numbers

terminate AMM S4 FQ H-248 H-301 JRM 423 601
PENT 289 PME 370 415 SSM 3586 3745

terminating JRM 623 MSJ 490 USA 1975/4
tessellation CRUX 155 JRM 388 SSM 3677

IG
tesseract JRM 529
test CRUX 357 JRM 379 739 MM 1032

OSSMB 77-9 PENT 293 SSM 3590
test-patient OSSMB 77-9
tether CRUX 89 JRM 395 PME 382
tetrad JRM 445 684
tetrahedral number

MATYC 96 SSM 3616
INT/polyhedral numbers
INT/twin primes/arithmetic means

tetrahedron AMM S11 S12 CANADA 1979/2 CRUX 94
330 478 PS4-3 PS5-3 ISMJ J10.13 JRM 528
MATYC 129 MM Q616 Q632 NAvW 451
460 469 491 513 514 526 536 546 PME 386
USA 1976/4 1978/4

IAM/physics/temperature
ISG
ISG/maxima and minima
ISG/octahedra
ISG/paper folding
ISG/projective geometry

tetration IAN/sequences [2]
INT/base systems/number of digits
INT/powers

tetrominoes IRM/polyominoes/tiling
text AMM 6017
textbook FUNCT 1.3.4 MSJ 467 PME 414
that IRM/alphametics/multiplication
theory AMM 6272 CRUX 434 NAvW 498
theory of equations

IAL
thick OMG 16.1.6
thin SIAM 78-17
think AMM 6238 MM 1056 Q624 NAvW 475 476
third-order CRUX 359 PENT 319 PME 364
thirteen AMM 6260 JRM 462 757 761 SPECT 11.3
thirteenth FUNCT 1.1.1 OMG 18.1.2
thoroughfare JRM 501
threaded PME 382
three-coloring SIAM 78-11
three-digit CRUX 43 NYSMTJ 88 OMG 14.1.1

OSSMB 79-6 PARAB 432 PENT 296 304
SSM 3600 3631 3679 3689 3697 3776

three-dimensional NAvW 469 491 547 PUTNAM 1975/A.3
1975/A.6 1975/B.2 SIAM 79-1

three-letter JRM 524
three-space AMM 6276
three-sphere AMM 6225
three-term AMM E2730
throw JRM 573 MATYC 123 PARAB 295

TYCMJ 136
thumbtack CRUX 325 MM 996

IG/maxima and minima [2]
tic-tac-toe variants

AMM S10 JRM 389 465 508 599
IGT

tied JRM 510 PARAB 335
tile JRM 471 NAvW 411 PARAB 315 336

PME 434 461 SSM 3677 TYCMJ 78
tiled AMM 6229 E2595 JRM 381 600 PME 358
tiling PARAB 315

IG
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Keyword Index
tiling 1975–1979 triangle

IG/right triangles/sequences
IRM/polyominoes [2]

tilted MM 1056
time computation

IAL/clock problems
tiny JRM 545
title IRM/alphametics/phrases
today JRM 655 MATYC 135 OSSMB 78-10
tomorrow JRM 530
tongue twisters IRM/alphametics/phrases [12]
topological AMM 6009 6071 6181 6246 6260 6274 E2806

NAvW 554 PME 372
topological groups

IT
topological vector spaces

IT
topologically JRM 421 C6 PUTNAM 1975/B.4
topology AMM 6009 6029 6071 6093 6188 6275

MM 932 NAvW 554 PME 372
IAN/complex variables/analytic functions
IAN/functions/differentiable functions

Toronto IRM/alphametics/places
torsion-free group AMM 6069

IHA/rings/integral domains
torsion group AMM 6052

IHA/groups
torus AMM 6087 E2698 JRM 787

IRM/chessboard problems/n queens problem
ISG/dissection problems/cube
ISG/space curves/loxodromes

tossing CRUX 265 PME 370 SPECT 7.4
total AMM 6260 S14 CANADA 1976/3 CRUX 193

297 354 FQ B-304 FUNCT 3.1.6 3.3.1
ISMJ 10.15 JRM 423 434 443 463 468
527 528 539 558 588 601 697 739 782
MATYC 127 MM 926 944 1026 1071
NYSMTJ 50 81 OMG 17.2.4 17.2.6
18.2.4 OSSMB 77-9 77-13 78-3 G75.2-3
G79.2-8 PARAB 323 412 SIAM 76-7 78-9
SPECT 10.7 SSM 3650 3655 3700 3772
TYCMJ 136

IRM/alphametics/phrases
totally CMB P258
totient AMM 6065 6070 6090 6160 6193 E2590

JRM 474 PME 379
touch AMM E2651 E2669 E2745 E2790 CRUX 62

139 177 244 318 500 ISMJ 14.17 J10.12
OSSMB G75.2-2 G76.2-1 G79.1-3
PARAB 387 401 423 PME 417 447
SPECT 7.7

touchdown JRM 624
tour AMM 6163 TYCMJ 145
tournament FUNCT 3.1.5 JRM 715 OMG 14.2.1

PARAB 357 420 SIAM 78-11
IC
IC/coloring problems [2]
IC/counting problems
IP
IRM/cryptarithms [2]

toward AMM 6196 CRUX 422 436 479 JRM 770a
NAvW 437 PENT 294 PME 401 413

tower OSSMB G75.1-5 G76.3-3
IG/angle measures/rivers

tower of Hanoi IC
town JRM 534 554 MM 976 OSSMB 75-3

PARAB 305 308 PENT 294
toy JRM 413
trace AMM 6061 E2594 CRUX 291 325

MATYC 91 NYSMTJ 60
ILA/matrices/characteristic polynomial
ILA/matrices/permutations
ILA/matrices/polynomials
ILA/matrix sequences

traced JRM 472 NYSMTJ 60 OSSMB G78.1-4

tracing OMG 14.3.1
track CRUX 406 FUNCT 3.5.2 JRM 472 MM 980

NAvW 450 OMG 17.2.2
traffic PARAB 308
traffic light JRM 730

IAL/rate problems
IAN/rate problems/maxima and minima

trailing digits INT/base systems/squares [3]
train AMM E2608 NAvW 450 OMG 17.3.6 18.3.6

PARAB 333 353
IAL/rate problems

transactions IAL/fair division
transcendental functions

IAN/functions
transcendental number

AMM 6102 MM 985
INT/series/factorials

transform AMM 6075 E2542 S22 JRM 679 MM 1086
Q630 SIAM 76-3

transformation AMM 6102 6158 E2542 E2714
IC/arrays
IC/arrays/circular arrays [5]
IHA/groups

transition SIAM 75-1
transitive group AMM 6079

IC/graph theory/bipartite graphs
transitively AMM 6037
translate AMM 6131 6217 E2714 E2774 CRUX 436

PME 458
translation AMM 6278

IAN/functional analysis
IAN/measure theory/function spaces
IG/convexity/area
INT/sets/density

transportation IP
IRM/logic puzzles [2]

transpose AMM 6061 6258 E2516 NAvW 439
NYSMTJ 63

ILA/matrices/permutations
transposition ILA/matrices/symmetric matrices [3]
transversal NAvW 546

ISG/projective geometry/tetrahedra
trapezoid CRUX 394 MSJ 470 NYSMTJ 59 PME 409

SSM 3743
IG
IG/constructions
ISG/maxima and minima/

surfaces of revolution [2]
trapezoidal CRUX 181
travel CRUX 354 499 ISMJ J10.11 MENEMUI 1.1.2

1.2.2 MM 1004 NAvW 450 NYSMTJ 81
OMG 17.2.4 17.2.6 17.3.6 OSSMB 78-6
PARAB 353 SIAM 76-7

traveler OMG 17.2.4
traveling CRUX 479 ISMJ J10.11 OSSMB G79.1-1

PARAB 333 353 SIAM 75-8
traverse AMM E2608 JRM 501 MM 1004
treasure CRUX 400

IRM/logic puzzles/incomplete information
treasury JRM 379
tredian PME 448
tree AMM 6262 E2671 JRM 785 NAvW 527

SIAM 77-15 SSM 3630
IC/graph theory
INT/sequences

trend IRM/alphametics/phrases [2]
trial PARAB 345 SIAM 75-14
trials AMM E2705 E2724 MM 1070 PME 395
triangle [502 references]

IC/coloring problems
IC/coloring problems/concyclic points [6]
IC/coloring problems/hexagons
IC/counting problems/geometric figures
IC/geometry/dissection problems
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IC/geometry/points in space
IC/graph theory/complete graphs
IG
IG/analytic geometry
IG/analytic geometry/Euclidean geometry
IG/analytic geometry/maxima and minima
IG/analytic geometry/polar curves
IG/billiards
IG/circles/3 circles
IG/circles/chords [6]
IG/combinatorial geometry
IG/combinatorial geometry/concyclic points
IG/combinatorial geometry/points in space
IG/conics/ellipses
IG/constructions
IG/constructions/squares
IG/convexity/inequalities
IG/cyclic quadrilaterals
IG/dissection problems
IG/dissection problems/rectangles
IG/dissection problems/squares
IG/dissection problems/triangles
IG/fallacies
IG/hyperbolas/tangents
IG/inequalities
IG/inequalities/squares
IG/lattice points
IG/limiting figures
IG/locus
IG/maxima and minima
IG/parabolas
IG/points in plane
IG/polygons/interior point
IG/quadrilaterals
IG/regular polygons/diagonals
IG/tesselations/regular hexagons [2]
IG/triangles/erected figures
IG/triangles/escribed circles [6]
INT
IP/geometry
IP/geometry/circles
IRM/magic configurations
ISG
ISG/paper folding/tetrahedra
ISG/plane figures
ITR
ITR/determinants

triangle inequalities
IG [16]

triangular AMM E2612 E2618 CRUX 181 271
MM 929 Q616 Q621 OSSMB 76-13
PME 352 SPECT 10.2 SSM 3617 3621 3677
TYCMJ 148

triangular array FQ H-269 SSM 3677
IC/arrays
IGT/selection games/arrays
IG/maxima and minima/shortest paths
INT/arrays

triangular lattice MM 975 1001 SSM 3704 3746
IC/counting problems/geometric figures

triangular matches
IC/tournaments

triangular matrix AMM E2703
triangular number CRUX 274 FQ B-346 B-362 B-371

ISMJ 10.11 OSSMB 76-12 PME 348
PUTNAM 1975/A.1 SSM 3571 3572 3591
3621 3640 3647 3721 3729 3784

INT
INT/base systems
INT/base systems/digit reversals
INT/digit problems
INT/digit problems/digit reversals
INT/digit problems/sum of digits
INT/digit problems/terminal digits

INT/divisibility
INT/Fibonacci numbers
INT/number representations/

polygonal numbers
INT/perfect numbers
INT/polygonal numbers/modular arithmetic
INT/polygonal numbers/pentagonal numbers
INT/sum of powers/divisibility [2]

triangular pyramids
ISG/tetrahedra

triangulation AMM E2585 PARAB 395
IG/combinatorial geometry
IT/surfaces

tribe JRM 392 PARAB 341
trick JRM 462 536
tridiagonal FQ B-411
trigonometric functions

IAN/derivatives
INT/Fibonacci numbers

trigonometric series
ITR/series

trigonometric table
FUNCT 3.3.3 PARAB 344

trigonometry PENT 293
IAL/algorithms/multiplication
IAN/functions/periodic functions
IAN/integrals [2]
IAN/integrals/evaluations
IAN/integrals/functions [7]
IAN/limits
IAN/limits/finite sums
IAN/sequences
IG/ellipses/normals
IG/parallelograms

trilinear NAvW 436
trinomial coefficients

INT/binomial coefficients/finite sums
INT/multinomial coefficients [3]
INT/series/binomial coefficients

trip CANADA 1977/7 CRUX 193 499 JRM 527
671 OMG 16.2.7 18.3.6 PARAB 348
PENT 286

IAL/rate problems
triphage AMM E2636
triple summation

INT/series/factorials
triples INT/sets
triplets AMM E2566
trisect CRUX 320 FUNCT 3.3.2 ISMJ 14.22

NYSMTJ 44 PENT 321 PME 341 448
TYCMJ 75 119

trisected sides IG/dissection problems/triangles
IG/triangles

trisectible PME 412
trisection IG/constructions/angles

IG/constructions/chords
IG/constructions/rulers [3]

trisectors OSSMB G78.2-5
trivial AMM 6149 6225 6246
tromino AMM E2595 CRUX 282 JRM 386

TYCMJ 78
IRM/polyominoes/coloring problems
IRM/polyominoes/maxima and minima
IRM/polyominoes/tiling

troop SSM 3577
trouble CRUX 95 329 PENT 301

IRM/alphametics/phrases [2]
trough MENEMUI 1.3.2
trout JRM 376
truck CRUX PS8-1 OSSMB G79.1-1
trump JRM 560 597
truncated JRM 533 785
trunk JRM 785
truth FUNCT 1.2.4 JRM 392 MM 931 SIAM 77-6
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truth values IRM/logic puzzles/statements
Tuesday IAL/calendar problems/day of week [2]
tunnel JRM 770a PME 343

IAM/physics
tuple AMM E2546 E2778 MM 924 932 1026

PUTNAM 1975/B.3
turkey OMG 18.3.9
turning CRUX PS4-1 MENEMUI 1.1.2 1.2.2

PENT 286 TYCMJ 86
TV game shows IP/game theory
twelve-digit AMM E2776
twin primes AMM 6200 MATYC 78 96 MM Q648

PME 340 SSM 3735
INT
INT/inequalities/congruences [2]

two-diagonal CMB P251
two-digit ISMJ 14.14 JRM 531 768 786 OSSMB 79-6
two-dimensional AMM 6151 6181 E2585 E2774

IP/stochastic processes/random walks
two-pan CRUX 123
two-sided AMM E2528
two-sphere AMM 6225
typesetter JRM 703
uglification NAvW 477
umpire JRM 465 MM 1084
unbeaten OMG 17.2.5
unbiased dice FUNCT 3.3.1
unbounded AMM E2706 JRM 480 MM 1079
unchanged MM 979 PARAB 292
uncountable AMM 6014 6023 6147 6150 6219 6220 6221

6261 6266 MATYC 112
uncountable sets

IAN/series/divergent series
INT/normal numbers/base systems

understood PUTNAM 1975/A.1
undetermined coefficients

CRUX 396
undone IRM/alphametics/phrases [2]
uniform AMM 6071 6080 6093 6174 E2535 E2629

E2696 E2784 CRUX 130 182 FUNCT 1.5.1
3.5.2 ISMJ J10.11 NAvW 480 OMG 17.2.6
PME 382 401 403 SIAM 76-16 78-17
SPECT 11.4 SSM 3598 TYCMJ 148

uniform convergence
INT/series/limits

uniform distribution
IAN/integrals/limits
IP/digit problems/base systems

uniform growth IAL
uniform integrability

IAN/measure theory
IP/random variables

uniformly AMM 6085 6174 JRM 786 NAvW 450 509
PARAB 353 SIAM 76-4 78-13

union IRM/alphametics/phrases
unions and intersections

IC/counting problems/subsets
unique factorization domains

IHA/rings/integral domains
uniqueness AMM E2738 JRM 598
uniqueness conditions

INT/floor function/sequences
INT/Pythagorean triples/counting problems
INT/series/factorials

unit [107 references]
unit ball IAN/derivatives/gradients

IT/Banach spaces/
nonreflexive Banach spaces

unit circle AMM E2697 E2783 CRUX 165 173 JRM 509
NAvW 410 NYSMTJ OBG5 OSSMB 76-4
77-16 PME 438 PUTNAM 1975/B.4
SIAM 78-13 SPECT 9.7

IAN/complex variables/several variables
IAN/location of zeros/complex variables

IAN/maxima and minima
IG/concyclic points
IG/points in plane/circles
IT/sets

unit cube AMM 6040 TYCMJ 100
IAN/Jacobians/integrals

unit disc AMM 6033 6071 6120 6198 6250 S19
SIAM 78-1

unit fractions IAN/Cantor set/constructions
INT/decimal representations/fractions
INT/forms of numbers
INT/limits/coprime integers [2]
INT/number representations
INT/recurrences/first order [8]
INT/series
INT/series/inequalities
INT/sets

unit interval CRUX 360 PME 403
INT/sequences/finite sequences
IP/selection problems
IT
IT/product spaces

unit mass NAvW 393
unit radius AMM E2694 IMO 1975/5 OSSMB 75-15

79-11
unit sphere SIAM 79-1
unit square AMM E2610 E2647 CRUX 276 429 JRM 620

683 MM 946 960 SIAM 75-12
IAN/curves

unit volume PME 367
unitary matrix AMM E2741

ILA/matrices [2]
united MSJ 436
university JRM 624
unknown AMM E2587 IMO 1976/5 NAvW 503

PARAB 288
unlinked JRM 787
unlock ISMJ 11.18 JRM 499 PENT 286 SPECT 9.2
unoccupied JRM 475 703 PARAB 266 SIAM 76-1
unoccupied square

CANADA 1978/5
unoccupied vertex JRM 501
unordered PENT 272
unpaid TYCMJ 104
untraversible JRM 471
uphill MSJ 445
upper and lower matrices

ILA/determinants/identities
upper bounds INT/forms of numbers/prime divisors [3]
upper density INT/primes/sequences
upside down number

MSJ 420
INT/digit problems/primes
IRM/arrays [2]

upstairs AMM S17
upstream CRUX 193 MATYC 123 OSSMB G75.1-5
upward NAvW 468
urn AMM E2722 E2724 CRUX 117 JRM 623

SSM 3648
IC
IP/selection problems [14]

vacant CRUX 282 429 JRM 471
vacant squares IRM/polyominoes/maxima and minima
validity AMM 6025
valuation SIAM 77-15
vanish AMM 6007 6008 6042 6131 6173 CRUX 318

498 SIAM 76-22 77-9
variable point IG/triangles/equal areas
variance AMM 6104 6207 NAvW 489 SIAM 78-8

ILA/matrices/spectral radius
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variance-covariance matrices
IP/random vectors

variant JRM 372 373 379 508 647
variation AMM 6113 6256 JRM 419 SIAM 76-1
variety JRM 396 SSM 3662
vector AMM 6009 6051 6103 6162 6166 6168 6175

6186 6207 6215 6236 6278 E2576 E2594
E2714 E2785 S22 CMB P257 CRUX 113
333 467 ISMJ 13.9 NAvW 477 497 554
OSSMB G76.3-1 SIAM 79-1 79-7

INT/divisors
ISG/maxima and minima/angles

vector space IHA/fields
ILA
IP/random variables/limits

vehicle CRUX 354 NYSMTJ 81 OMG 17.2.6
PME 343

velocity AMM E2535 FUNCT 3.5.2 JRM 564 C5
NAvW 393 403 438 450 OMG 17.2.6

Venn diagrams IAL
verger OSSMB 79-1
verification CRUX 346
vernal equinox JRM C9
version JRM 389 533 558 NYSMTJ 57
vertex [200 references]
vertex angle MSJ 456
vertical AMM 6182 6211 CRUX 374 436 JRM 437

572 678 NAvW 450 468 NYSMTJ 68
OMG 15.1.3 OSSMB G75.1-5 PARAB 283
PME 413 TYCMJ 89 USA 1976/1

vertically CRUX 436 PARAB 295 TYCMJ 147
view OSSMB 76-15 SSM 3693
viewable AMM E2513
viewpoint NYSMTJ 86
visibility IG/polygons

INT/geometry/lattice points
visible AMM E2653 JRM 499 PARAB 440 PME 456
visit AMM 6096 JRM 699 C7 MSJ 432
volume AMM E2548 E2563 E2701 CRUX 181 224

245 373 375 499 FUNCT 1.1.3 IMO 1976/3
ISMJ 12.22 J11.4 JRM 646 785 MATYC 129
MM 927 NAvW 451 531 OMG 16.1.6 16.1.9
OSSMB 77-13 PENT 303 PME 386 425
SIAM 78-20 SSM 3672 3683 3693 3761 3783
TYCMJ 86 134 USA 1976/4

IG/convexity
IG/n-dimensional geometry [2]
IG/n-dimensional geometry/4-space
IG/n-dimensional geometry/inequalities
IP/geometry/boxes
IP/geometry/polyhedra
ISG/analytic geometry [2]
ISG/cylinders/spheres
ISG/lattice points/polyhedra [2]
ISG/octahedra/tetrahedra
ISG/pentahedra [30]
ISG/rectangular parallelepipeds/cubes
ISG/regular tetrahedra
ISG/regular tetrahedra/bimedians
ISG/right circular cones/frustum
ISG/spheres/holes
ISG/spheres/inscribed polyhedra
ISG/tetrahedra/octahedra
ISG/tetrahedra/planes

vote JRM C4 SIAM 78-9
wage PENT 279
wager JRM 423
wagon PARAB 275
wait CRUX 28 PENT 313

waiting times IP
walk CANADA 1977/7 1979/5 FUNCT 1.2.4

2.2.1 JRM 480 MATYC 123 MSJ 445 501
OMG 16.2.7 PARAB 348 PENT 278

wall CANADA 1979/4 CRUX 244 OMG 18.1.8
PARAB 356

war CRUX 333 JRM 375
warehouse JRM 736
waste CRUX 135
water ISMJ 12.7 JRM 603 MATYC 123 MM 926

1056 NYSMTJ 56 96 OMG 17.3.1
OSSMB G79.1-1 PARAB 348

Wayne IRM/alphametics/names
weak AMM 6045 6174 6204 S8 NAvW 542 554
weak cluster points

IAN/sequences/cluster points
weak limits IAN/sequences/cluster points
weak-star closure

IAN/Banach spaces/
continuous linear operators

weakly AMM 6074 6283 NAvW 440
weakly closed sets

IT/Banach spaces/star-shaped sets
weakly compact sets

IT/Banach spaces/
nonreflexive Banach spaces

weather FUNCT 2.3.1 JRM 530
week FUNCT 1.1.1 ISMJ J10.1 MSJ 483

PARAB 356 PME 449
Weierstrass zeta function

IAN
weigh FUNCT 3.1.6 JRM 448
weighing AMM 6224 CRUX 123 JRM 448 OMG 18.3.5
weight AMM 6224 CANADA 1976/1 FUNCT 3.1.6

ISMJ 11.1 JRM 448 MATYC 127
OMG 18.3.5 PARAB 307 PME 426
SIAM 77-15 78-9

IAL
IC/cards

weighted votes JRM C4
IC/configurations/committees

well-shuffled cards JRM 757 MM 1066
west JRM 597 MM 943 OSSMB G76.3-3
wheel CRUX 479 OSSMB G78.1-4
white AMM 6211 6229 E2724 CANADA 1978/5

CRUX 117 FQ B-415 FUNCT 2.2.3 3.2.4
ISMJ 12.4 JRM 386 424 425 434 446 468
493 587 703 MM 952 Q624 NYSMTJ 68
OMG 15.1.3 OSSMB 79-14 PARAB 292
PENT 314 PME 358 TYCMJ 113
USA 1976/1

wholly MM Q623
width AMM 6155 CRUX 427 JRM 500 713

MSJ 501 OSSMB G75.1-5 PENT 302
wife JRM 769 MSJ 431 OSSMB 78-3 PME 449
wind SPECT 8.2
windmill CRUX 356
window CRUX 122 PARAB 310
wine CRUX 95 FUNCT 2.2.3 NYSMTJ 96

PARAB 297
wine glass CRUX 394
winner JRM 372 373 510 539 572 648 682 709

OMG 14.2.1 PARAB 281 PME 342 350 379
388 SIAM 76-1 SPECT 7.4

winning AMM S10 CANADA 1978/5 CRUX 396
418 DELTA 6.1-4 FUNCT 2.3.3 ISMJ 12.1
12.2 JRM 387 441 463 508 533 631 648
658 MM 1024 1066 1084 NAvW 405
OSSMB 75-2 79-15 PARAB 281 PME 403
SIAM 76-1 SPECT 7.4

winnings JRM 499 769
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wins CANADA 1978/5 CRUX 195 396 418
DELTA 6.1-4 FUNCT 2.3.3 3.1.4 JRM 441
463 508 533 540 558 601 MM 1071
OMG 17.1.1 OSSMB 75-2 PME 388 403

wire CRUX 182 JRM 650
wish AMM E2608 JRM 534 MM Q661

OMG 15.1.1 PARAB 297 TYCMJ 104
with replacement

IP/selection problems/urns
withdrawal OSSMB 75-2
withdrawn AMM E2724 FUNCT 3.2.4 MSJ 426
without replacement

IC/selection problems
IP/selection problems/urns

witness PARAB 345
Wizard JRM 630
woman CANADA 1977/7 JRM 770a OMG 16.2.7

18.2.1 18.2.4
won JRM 423 769 MM 1024 1084 OMG 17.1.1
wondered CRUX 356
wood JRM 785
word problems IAL

IAL/money problems
INT/divisibility
INT/recurrences/

generalized Fibonacci sequences
IRM

words IC/counting problems
IRM
IRM/alphametics
IRM/alphametics/multiplication
IRM/logic puzzles/incomplete information

work CANADA 1977/7 ISMJ 12.3 MSJ 467
OMG 16.2.7 17.2.7 OSSMB 78-3 79-17
PARAB 362

worker OMG 17.2.2 OSSMB 78-3
world CRUX 333 FUNCT 3.2.3 JRM 375 441

OSSMB 76-11
worry IRM/alphametics/phrases
worst FUNCT 1.2.4 JRM 647
worth ISMJ 11.16 JRM 447 OMG 15.3.2 SSM 3662
wound OMG 16.1.3 PENT 278
write AMM 6264 E2574 E2703 CMB P250

FUNCT 2.3.1 ISMJ 13.21 14.4 JRM 469
479 739 755 C9 PARAB 419 PME 371 388
PUTNAM 1975/A.1 1976/B.2 SIAM 76-8
SSM 3751 USA 1978/3

writing PARAB 314 341
wrote AMM 6146 CRUX 414 452 OSSMB 78-10

PME 388
yard PENT 276
Yashima IGT/board games
year CRUX 28 231 414 FUNCT 2.1.2 3.1.6

3.2.1 JRM 374 379 393 419 530 643 759
C9 MATYC 135 MSJ 437 NAvW 509
OMG 17.1.2 17.3.5 18.1.2 PARAB 262
273 309 332 335 PME 342 SSM 3769
TYCMJ 104

INT/sequences/law of formation
yellow JRM 730 OMG 18.2.7 PARAB 362
yes or no questions

IGT
IP/examinations [3]
IRM/logic puzzles

young JRM 643 PARAB 309 PENT 283 311
PME 449

young lady CRUX 34 297
zero-dimensional AMM 6126
zero divisors IHA/rings/finite rings
zero-free AMM 6117
zeros AMM 6168 E2552 E2675 E2703 E2801

CRUX 60 237 254 372 377 396 410 425 452
486 JRM 604 716 MATYC 128 MM 997
1046 NAvW 444 454 498 520 OMG 18.3.7
PARAB 396 SIAM 75-1 76-11 76-21
TYCMJ 35 58 93

IAL/polynomials [2]
IAL/polynomials/integer coefficients
IAL/recurrences
IAN/complex variables/polynomials
IAN/derivatives/higher derivatives
IAN/functions/entire functions
IAN/functions/infinite series
IAN/gamma function/generating functions
IAN/Riemann zeta function
INT/digit problems/counting problems

zeros of derivatives
IAN/functions/C∞

zeta function NAvW 429 444 524
zigzag CRUX 408
zinc JRM 379
Zircon PARAB 410
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About the Cover:
The seven coins shown on the cover illustrate an interesting result known as
the Seven Circles Theorem. For more details and additional references, see
reference [Rabinowitz 1987]. Inside the six outer circles are figures associat-
ed with problems indexed in this book:
1. A remarkable property of the least common multiple of binomial coefficients sub-

mitted by Peter L. Montgomery as problem AMM E2686.
2. A magic pentagram containing distinct integers between 1 and 12 associated with

with problem JRM 385 submitted by Vance Revennaugh.
3. A well-known congruence involving binomial coefficients which appeared as

problem PARAB 355.
4. An alphametic puzzle by Sidney Kravitz published as problem JRM 717.
5. A challenging geometry problem by F. David Hammer published as problem

MATYC 121.
6. An unusual variant of the alternating harmonic series submitted by Harry D.

Ruderman as problem AMM 6105.

About the Authors:
Stanley Rabinowitz (right) received his Ph.D. in mathematics from the Poly-
technic University (of New York) working under the direction of Erwin Lutwak 
in the areas of convexity, combinatorics, and number theory. Professionally, 
he is a software engineer and computer consultant, but math problem 
solving has been his hobby most of his life. He has had over 300 prob-
lems published and is a regular contributor, both as solver and proposer, to 
the problem columns of over a dozen journals from around the world. He 
served as editor for a problem column in The Fibonacci Quarterly.

Mark Bowron is an over-the-road mathematrucker who spends most of his
time driving an 18-wheeler throughout the lower 48 states and Canada for
Marten Transport, Ltd. (based in Mondovi, Wisconsin).   He is surprised more
mathematicians do not drive truck for a living: after all, one has ample time to
solve problems on the job, the pay is not bad, and (perhaps best of all), there
are no exams to grade.

About the Publisher:
MathPro Press was founded in 1989 by Stanley Rabinowitz for the purpose 
of publishing indexes to problems from the mathematical literature. It also 
specializes in publishing mathematical problem books, compendiums of 
mathematical results, and books about ways of using computers to help 
solve mathematics problems.

The MathPro logo illustrates a result discovered by Dr. Rabinowitz using the 
Cabri-géomètre computer program and submitted as problem MM 1364 
[Rabinowitz 1991]. The text is set in Computer Modern Bold.
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