The Factorization of $x^{5} \pm x+n$

Stanley Rabinowitz
Alliant Computer Systems Corporation
Littleton, MA 01460

It is a surprising fact that $x^{5}-x+2759640$ factors as the product

$$
\left(x^{2}+12 x+377\right) \times\left(x^{3}-12 x^{2}-233 x+7320\right)
$$

In fact, the quintic,

$$
\begin{equation*}
x^{5} \pm x+n \tag{1}
\end{equation*}
$$

rarely factors at all. It is the purpose of this note to find all n for which (1) is reducible.
Clearly, (1) has the linear factor $x+a$ if and only if n is of the form $a^{5} \pm a$. So we are more interested in the question of when does (1) factor as the product of a quadratic polynomial and a cubic polynomial.

Assuming that we have the factorization

$$
x^{5}+m x+n=\left(x^{2}+a x+b\right)\left(x^{3}+c x^{2}+d x+e\right),
$$

we can equate like powers of x in succession to find:
and

$$
\begin{align*}
c & =-a \\
d & =a^{2}-b \\
e & =a\left(2 b-a^{2}\right) \\
m & =3 a^{2} b-a^{4}-b^{2} \tag{2}\\
n & =a b\left(2 b-a^{2}\right) \tag{3}
\end{align*}
$$

Eliminating b from (2) and (3) yields

$$
n^{2}+\left(4 a m-11 a^{5}\right) n+a^{2}\left(m+a^{4}\right)\left(4 m-a^{4}\right)=0
$$

This is a quadratic in n whose solution is

$$
\begin{equation*}
n=\frac{11 a^{5}-4 a m \pm 5 a^{3} \sqrt{5 a^{4}-4 m}}{2} \tag{4}
\end{equation*}
$$

In order for n to be integral, we must have $5 a^{4}-4 m=z^{2}$ for some integral z. Since we are interested in the cases where $m= \pm 1$, we are looking to solve the Diophantine equation $z^{2}-5 a^{4}= \pm 4$. Let $x=a^{2}$. Note that x and z must have the same parity, so that we may let $y=(x+z) / 2$, where y is also an integer. This puts the equation in the form

$$
(2 y-x)^{2}-5 x^{2}= \pm 4
$$

or equivalently,

$$
\begin{equation*}
y^{2}-x y-x^{2}= \pm 1 \tag{5}
\end{equation*}
$$

where it is desired that x be a perfect square.
Equation (5) brings to mind a known property of Fibonacci numbers, namely that the integer x is a Fibonacci number if and only if there is an integer y such that $y^{2}-x y-x^{2}=$ ± 1. (This is proven in [3] and [4].) Thus we see that $x=a^{2}$ must be a Fibonacci number.

But it is also known that the only square Fibonacci numbers are 0 , 1 , and 144 (see [1] or [2]). If $a^{2}=0$, then $n=0$ and several trivial factorizations are possible. These will be excluded from the following discussion. Let us now consider the two cases, $m=+1$ and $m=-1$.
Case 1: $m=+1$.
If $a^{2}=1$, then $a= \pm 1$ and and using (4) to find n gives $n= \pm 1$ or $n= \pm 6$. If $a^{2}=144$ then $a= \pm 12$, but the values of n obtained do not make $5 a^{4}-4$ a perfect square so are ruled out.

Case 2: $m=-1$.
If $a^{2}=1$, then $a= \pm 1$ and $n=0$ or $n= \pm 15$. If $a^{2}=144$, then $a= \pm 12$ and $n= \pm 22440$ or $n= \pm 2759640$.

We can summarize our results by the following theorems:
Theorem 1: The only integral n for which $x^{5}+x+n$ factors into the product of an irreducible quadratic and an irreducible cubic are $n= \pm 1$ and $n= \pm 6$. The factorizations are

$$
\begin{aligned}
& x^{5}+x \pm 1=\left(x^{2} \pm x+1\right)\left(x^{3} \mp x^{2} \pm 1\right) \\
& x^{5}+x \pm 6=\left(x^{2} \pm x+2\right)\left(x^{3} \mp x^{2}-x \pm 3\right) .
\end{aligned}
$$

Theorem 2: The only integral n for which $x^{5}-x+n$ factors into the product of an irreducible quadratic and an irreducible cubic are $n= \pm 15, n= \pm 22440$, and $n= \pm 2759640$. The factorizations are

$$
\begin{aligned}
x^{5}-x \pm 15 & =\left(x^{2} \pm x+3\right)\left(x^{3} \mp x^{2}-2 x \pm 5\right) \\
x^{5}-x \pm 22440 & =\left(x^{2} \mp 12 x+55\right)\left(x^{3} \pm 12 x^{2}+89 x \pm 408\right) \\
x^{5}-x \pm 2759640 & =\left(x^{2} \pm 12 x+377\right)\left(x^{3} \mp 12 x^{2}-233 x \pm 7320\right) .
\end{aligned}
$$

REFERENCES:

1. J. H. E. Cohn, "On Square Fibonacci Numbers", Proceedings of the London Mathematical Society, 39(1964)537-540.
2. J. H. E. Cohn, "Square Fibonacci Numbers, etc.", The Fibonacci Quarterly, 2(1964)109113.
3. James P. Jones, "Diophantine Representation of the Fibonacci Numbers", The Fibonacci Quarterly, 13(1975)84-88.
4. Solution to Problem 3, "1981 International Mathematical Olympiad", Mathematics Magazine, 55(1982)55.
