A Theorem about Collinear Lattice Points

Stanley Rabinowitz
Polytechnic University, Brooklyn, N.Y.

Abstract

Let S be a set of $m^{n}+1$ lattice points in E^{n}. Then either some two points of S span a hole (have a lattice point not in S between them), or some $m+1$ points of S are collinear.

A lattice point is a point in E^{n} with integer coordinates. The set of all lattice points in E^{n} is denoted by Z^{n}. In this note, we will look at some results that show when there must be m collinear lattice points in a collection of lattice points in Z^{n}.
Definition. Two lattice points, x, and y, are said to span a hole in a set S if there is some lattice point between x and y that is not in S. A set of lattice points, S, contains a hole, if some two points of S span a hole.

We now prove the following Ramsey-like theorem: (For other Ramsey-like theorems in E^{n}, see section 5.6 of [1] or section 21 of [2].)

Theorem 1. Let S be a set of $m^{n}+1$ lattice points in E^{n}. Then either some two points of S span a hole, or some $m+1$ points of S are collinear.

First note that the set S can be a rather complicated looking set. An example is shown in figure 1 consisting of 25 lattice points in the plane that form a set with no holes and no 6 lattice points in a row. Adding any 26th lattice point, however, (without adding any holes) will force some 6 lattice points to be collinear.

```
                . . . . O O O O
                . . o o o o o .
                . . O O O O O .
                . O O O O O . .
                O 0 0 0 0 . . .
                    Figure 1
    25 lattice points forming a
    non-trivial lattice-point set
with no holes and no 6 in a row
```

Proof. Consider the coordinates of the points modulo m. Since there are only m^{n} distinct ordered n-tuples of integers modulo m, some two of these must be congruent $(\bmod m)$. Suppose the two points have coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$. Then $x_{i} \equiv x_{i}^{\prime}$ $(\bmod m)$ for $i=1,2, \ldots, n$. Now consider the points

$$
\left(x_{1}+\frac{x_{1}^{\prime}-x_{1}}{m} k, x_{2}+\frac{x_{2}^{\prime}-x_{2}}{m} k, \ldots, x_{n}+\frac{x_{n}^{\prime}-x_{n}}{m} k\right)
$$

$\overline{\text { Reprinted from Utilitas Mathematica 36(1989)93-95 }}$
as k varies from 0 to m. This is a set of $m+1$ collinear points. Furthermore, each point is a lattice point, since $m \mid\left(x_{i}^{\prime}-x_{i}\right)$ for all i by the congruence condition. Finally, all the $m+1$ points belong to S since the first and last ones do and S contains no holes.

Note that the above proof actually gives an effective (and even efficent) procedure for finding the $m+1$ collinear lattice points; it is not merely an existence proof.

We note that the quantity $m^{n}+1$ is best possible in the above theorem, for we can always find m^{n} lattice points with no holes in which no $m+1$ are collinear. Namely, take the m^{n} lattice points inside and on the n-cube with m lattice points along each edge.

Theorem 1 can be rephrased in a number of ways.
Definition. A set, S, of lattice points is 2-convex, if it does not contain a hole.
Proposition 1a. Let S be a set of $m^{n}+1$ lattice points in E^{n} that is 2-convex. Then S must contain some $m+1$ lattice points that are collinear.

Definition. A set, S, of lattice points is lattice-convex, if any lattice point in the convex hull of S is also in S.

The concept of lattice-convexity differs from 2-convexity as can be seen by figure 2 which shows that 2 -convexity does not imply lattice-convexity.

```
    -. o
    o . .
    . o .
    Figure 2
    A set that is 2-convex
but is not lattice convex
```

However, if x and y are two lattice points in a lattice-convex set S, then any lattice point between x and y must also be a member of S. Thus lattice-convexity implies 2 convexity and we may reformulate Theorem 1 as follows:
Proposition 1b. Let S be a set of $m^{n}+1$ lattice points in E^{n} that is lattice-convex. Then S must contain some $m+1$ lattice points that are collinear.

We can view lattice points in E^{n} as vectors emenating from the origin. Such vectors are called lattice vectors.
Proposition 1c. Let S be a set of $m^{n}+1$ lattice vectors in E^{n}. Then either there is a lattice vector, not in S, that is a convex linear combination of two lattice vectors in S or else some $m+1$ vectors in S form an arithmetic progression.

This formulation of Theorem 1 follows from the observation that if $m+1$ vectors form an arithmetic progression, then their endpoints are collinear.

We can also view Theorem 1 in the light of lattice points inside convex bodies.
Proposition 1d. Let K be a convex body in E^{n} containing at least $m^{n}+1$ lattice points. Then some $m+1$ of these lattice points must be collinear.

This formulation of the theorem follows immediately from the observation that the set of lattice points inside a convex body forms a lattice-convex set.

Acknowledgement.

The author would like to thank the referee whose constructive suggestions have considerably improved the presentation of this paper.

References

1. Ronald L. Graham, Bruce L. Rothschild and Joel H. Spencer, "Ramsey Theory", John Wiley and Sons, New York: 1980.
2. J. Hammer, "Unsolved Problems Concerning Lattice Points", Pitman, London: 1977.
