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1. Introduction.

There is no known simple form for the following summations:

FN =
NX

n=1

1
Fn

, GN =
NX

n=1

(�1)n

Fn
, and KN =

NX
n=1

1
FnFn+1

. (1)

It is our purpose to show that all other indefinite summations of reciprocals of products
of Fibonacci numbers can be expressed in terms of these forms. More specifically, we will
give an algorithm for expressing

SN (a1, a2, . . . , ar) =
NX

n=1

1
Fn+a1Fn+a2 · · · Fn+ar

(2)

and

TN (a1, a2, . . . , ar) =
NX

n=1

(�1)n

Fn+a1Fn+a2 · · · Fn+ar

(3)

in terms of FN , GN , and KN , where a1, a2, . . . , ar are distinct integers. Since a1, a2, . . . , ar

are constants, these symbols may appear in the limits of the summations, but it is our
objective to find formulas in which N does not appear in any of the summation limits.

Expressions of the form SN (a1, a2, . . . , ar) and TN (a1, a2, . . . , ar) will be called re-
ciprocal sums of order r. Those of the second form are also called alternating reciprocal
sums.

Without loss of generality, we may assume that the ai are ordered so that a1 < a2 <
· · · < ar. Furthermore, we may assume that a1 = 0, because a change of the index of
summation allows us to compute those sums where a1 6= 0. For example, if a1 > 0, then
we have

SN (a1, a2, . . . , ar) = SN+a1(0, a2 � a1, . . . , ar � a1)� Sa1(0, a2 � a1, . . . , ar � a1).

2. Reduction Formulas.

We start by showing that reciprocal sums of order r can be expressed in terms of
reciprocal sums of order r � 2 for all integers r > 2.

The following identity is straightforward to prove (for example, by using algorithm
FibSimplify from [8]):
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Theorem 1 (The Partial Fraction Decomposition Formula).
Let a, b, and c be distinct integers. Then for all integers n,

(�1)n

Fn+aFn+bFn+c
=

A

Fn+a
+

B

Fn+b
+

C

Fn+c
(4)

where

A =
(�1)a

Fb�aFc�a
, B =

(�1)b

Fc�bFa�b
, and C =

(�1)c

Fa�cFb�c
. (5)

Theorem 2 (The Reduction Algorithm). If r > 2, then any reciprocal sum of order
r can be expressed in terms of reciprocal sums of order r � 2.

Proof: If f(n) is any expression involving n, we see from Theorem 1 that

NX
n=1

1
f(n)Fn+aFn+bFn+c

=
NX

n=1

A(�1)n

f(n)Fn+a
+

NX
n=1

B(�1)n

f(n)Fn+b
+

NX
n=1

C(�1)n

f(n)Fn+c
, (6)

with A, B, and C as given in equation (5). If f(n) is the product of r � 3 factors, each of
the form Fn+c, then this shows that a reciprocal sum of order r can be expressed in terms
of reciprocal sums of order r � 2, for any integer r > 2. (If r = 3, then f(n) = 1.) Note
that f(n) may contain (�1)n as a factor to allow us to handle alternating reciprocal sums.

Since we can repeatedly reduce the order of any reciprocal sum by 2, this shows that
any reciprocal sum can be expressed in terms of reciprocal sums of orders 1 and 2.

3. Reciprocal Sums of Order 1.

Any reciprocal sum of order 1 di↵ers by a constant from expressions of the form FN+c

or GN+c. Specifically, if a > 0, then

NX
n=1

1
Fn+a

=
a+NX
n=1

1
Fn
�

aX
n=1

1
Fn

= FN+a � Fa (7)

and
NX

n=1

(�1)n

Fn+a
=

a+NX
n=1

(�1)n

Fn
�

aX
n=1

(�1)n

Fn
= GN+a �Ga. (8)

Thus, reciprocal sums of order 1 are readily computed in terms of F’s and G’s.
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4. Alternating Reciprocal Sums of Order 2.

As has been pointed out, for reciprocal sums of order 2, we may assume that the
denominator is of the form FnFn+a with a > 0 for if not, the reciprocal sum di↵ers by
only a finite number of terms from one of this form.

There are two cases to consider, depending on whether the reciprocal sum is alternat-
ing or not.

In the alternating case, an explicit closed form can be found. The following result was
proven by Brousseau [3] and Carlitz [5].

Theorem 3 (Computation of Alternating Reciprocal Sums of Order 2).
If a > 0, then

NX
n=1

(�1)n

FnFn+a
=

1
Fa

2
4 aX

j=1

Fj�1

Fj
�

aX
j=1

Fj+N�1

Fj+N

3
5 . (9)

Good [6] has found a di↵erent, but equivalent, expression for this reciprocal sum. He
has shown that for a > 0,

NX
n=1

(�1)n

FnFn+a
=

FN

Fa

aX
n=1

(�1)n

FnFn+N
. (10)

Another equivalent formulation is the following. We omit the proof.

NX
n=1

(�1)n

FnFn+a
=

1
Fa

2
4 aX

j=1

Fj+1

Fj
�

aX
j=1

Fj+N+1

Fj+N

3
5 . (11)

5. Non-alternating Reciprocal Sums of Order 2.

We start with a preliminary result.

Theorem 4. Let Hn be any sequence of nonzero terms that satisfies the recurrence
Hn+2 = Hn+1 + Hn. If b � 0, then

NX
n=1

1
Hn+bHn+b+2

=
1

Hb+1Hb+2
� 1

HN+b+1HN+b+2
. (12)
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Proof: We have

1
Hn+bHn+b+2

=
Hn+b+1

Hn+bHn+b+1Hn+b+2
=

Hn+b+2 �Hn+b

Hn+bHn+b+1Hn+b+2

=
1

Hn+bHn+b+1
� 1

Hn+b+1Hn+b+2
.

Summing from 1 to N , we find that the right-hand side telescopes, and we get the desired
result.

Theorem 5. For a > 0, let

FN (a) =
NX

n=1

1
FnFn+a

. (13)

If we can find a closed form expression for FN (a� 2), then we can also find a closed form
expression for FN (a).

Proof: The following identity is well known (see equation (9) in [3]):

FaFn+a�2 � Fa�2Fn+a = (�1)aFn. (14)

Thus, we find that
Fa

FnFn+a
� Fa�2

FnFn+a�2
=

(�1)a

Fn+a�2Fn+a
.

If we now sum as n goes from 1 to N , we get

FaFN (a)� Fa�2FN (a� 2) = (�1)a
NX

n=1

1
Fn+a�2Fn+a

.

Applying Theorem 4 gives

FaFN (a)� Fa�2FN (a� 2) = (�1)a


1

Fa�1Fa
� 1

FN+a�1FN+a

�
. (15)

Solving for FN (a) gives

FN (a) =
Fa�2

Fa
FN (a� 2) +

(�1)a

Fa


1

Fa�1Fa
� 1

FN+a�1FN+a

�
(16)

which shows that we can find FN (a) if we know FN (a� 2).

By induction, we see that any expression of the form

NX
n=1

1
FnFn+a
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with a > 0, can be expressed in terms of either

NX
n=1

1
FnFn+1

or
NX

n=1

1
FnFn+2

.

The first form is known as KN . The second form is easily evaluated by setting b = 0 in
Theorem 4 to get

NX
n=1

1
FnFn+2

= 1� 1
FN+1FN+2

. (17).

We have just shown how to find a formula for any reciprocal sum of order 2 in terms
of Kn.

We can also find a more explicit formula. If we let a = 2c + 1 in formula (15), we get

F2c+1FN (2c + 1)� F2c�1FN (2c� 1) = (�1)2c+1


1

F2cF2c+1
� 1

FN+2cFN+2c+1

�
. (18)

Now sum as c goes from 1 to a. The left side telescopes, and we get

F2a+1FN (2a + 1)�KN =
aX

c=1


1

FN+2cFN+2c+1
� 1

F2cF2c+1

�

so that

NX
n=1

1
FnFn+2a+1

=
1

F2a+1

(
KN +

aX
c=1


1

FN+2cFN+2c+1
� 1

F2cF2c+1

�)
. (19)

Similarly, if a = 2c, we can sum as c goes from 1 to a to get

NX
n=1

1
FnFn+2a

=
1

F2a

aX
c=1


1

F2c�1F2c
� 1

FN+2c�1FN+2c

�
. (20)

We can summarize these results with the following theorem.

Theorem 6. If a is a positive integer, then

NX
n=1

1
FnFn+a

=

8>>>>><
>>>>>:

1
Fa

ba/2cX
i=1

✓
1

FN+2iFN+2i+1
� 1

F2iF2i+1

◆
+

KN

Fa
, if a is odd,

1
Fa

a/2X
i=1

✓
1

F2i�1F2i
� 1

FN+2i�1FN+2i

◆
, if a is even.

(21)
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These formulas give us the following values for FN (a) for small a:

NX
n=1

1
FnFn+3

=
1
2


KN +

1
FN+2FN+3

� 1
2

�
(22)

NX
n=1

1
FnFn+4

=
1
3


7
6
� 1

FN+1FN+2
� 1

FN+3FN+4

�
(23)

NX
n=1

1
FnFn+5

=
1
5


KN +

1
FN+2FN+3

+
1

FN+4FN+5
� 17

30

�
(24)

NX
n=1

1
FnFn+6

=
1
8


143
120

� 1
FN+1FN+2

� 1
FN+3FN+4

� 1
FN+5FN+6

�
. (25)

As N !1 in formula (21), we get

1X
n=1

1
FnFn+a

=

8>>>>><
>>>>>:

1
Fa

K� 1
Fa

ba/2cX
i=1

1
F2iF2i+1

, if a is odd,

1
Fa

a/2X
i=1

1
F2i�1F2i

, if a is even.

(26)

where K = limn!1 Kn. For small values of a, these formulas yield the results found by
Brousseau in [3].

6. Summary.

We have just shown that any reciprocal sum of order 1 can be expressed in terms of
FN and GN ; and that any reciprocal sum of order 2 can be expressed in terms of KN .
Thus, we can conclude that all reciprocal sums are expressible in terms of FN , GN , and
KN . We also have presented a mechanical algorithm for finding all such representations.

Open Question 1. Is there a simple algebraic relationship between Ln =
NX

n=1

1
Ln

and

any of Fn, Gn, and Kn?

Open Question 2. Can we find the value of
NX

n=1

1
F 2

n

?
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7. Going to Infinity.

If we take the limit as N goes to infinity, we can express many infinite sums in terms
of

F =
1X

n=1

1
Fn

, G =
1X

n=1

(�1)n

Fn
, K =

1X
n=1

1
FnFn+1

,

L =
1X

n=1

1
Ln

, and J =
1X

n=1

(�1)n

Ln
.

(27)

No simple expressions for these infinite sums are known, however, they have been
expressed in terms of Elliptic Functions [4], Theta Series [7], [1], and Lambert Series [2].

For example, we get results of Brousseau [3] such as

1X
n=1

(�1)n

FnFn+a
=

1
Fa

2
4 aX

j=1

Fj�1

Fj
� a

↵

3
5 (28)

and

1X
n=1

1
FnFn+1Fn+2Fn+3Fn+4Fn+5Fn+6Fn+7Fn+8

=
319

16380

✓
F� 46816051

13933920

◆
. (29)

Carlitz has also found some pretty results for certain r-th order reciprocal sums in
terms of Fibonomial coe�cients (see formulas (5.6), (5.7), and (6.7) in [5]).

Open Question 3. Are any of F, G, K, L, J connected by a simple algebraic relation?
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July 7, 2018 Addendum

Nag [9] has pointed out that equation (8) is incorrect. The correct result is the following.

If a > 1, then
NX

n=1

(�1)n

Fn+a
= (�1)a [GN+a �Ga] . (80)

Proof: Letting k = n + a gives

NX
n=1

(�1)n

Fn+a
=

a+NX
k=a+1

(�1)k�a

Fk

= (�1)a
a+NX

k=a+1

(�1)k

Fk

= (�1)a

"
a+NX
k=1

(�1)k

Fk
�

aX
k=1

(�1)k

Fk

#

= (�1)a [GN+a �Ga] .
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