A Note on the Sum $\Sigma 1 / w_{k 2}$ n

Stanley Rabinowitz
MathPro Press
Westford, MA 01886

1. Historical Results.

In 1974, Millin [13] published a problem stating that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{F_{2^{n}}}=\frac{7-\sqrt{5}}{2} . \tag{1}
\end{equation*}
$$

This spurred a flurry of activity: [1], [3], [4], [5], [6], [7], [8], [17]. Most investigators, however, overlooked the fact that Lucas studied such sums back in 1878. He showed in [11], equation (125), that if $k \neq 0$, then

$$
\begin{equation*}
\sum_{n=1}^{N} \frac{Q^{k 2^{n-1}}}{u_{k 2^{n}}}=\frac{Q^{k} u_{k\left(2^{N}-1\right)}}{u_{k} u_{k 2^{N}}} \tag{2}
\end{equation*}
$$

where u_{n} is a second order linear recurrence defined by

$$
u_{n+2}=P u_{n+1}-Q u_{n}, \quad u_{0}=0, \quad u_{1}=1
$$

If we use the identity $Q^{n-1} u_{m-n}=u_{n} u_{m-1}-u_{m} u_{n-1}$, we can express formula (2) in the form

$$
\begin{equation*}
\sum_{n=1}^{N} \frac{Q^{k 2^{n-1}}}{u_{k 2^{n}}}=Q\left[\frac{u_{k 2^{N}-1}}{u_{k 2^{N}}}-\frac{u_{k-1}}{u_{k}}\right] . \tag{3}
\end{equation*}
$$

If $Q=-1$, as is the case for Fibonacci, Lucas, and Pell numbers, then equation (3) becomes

$$
\begin{equation*}
\sum_{n=0}^{N} \frac{1}{u_{k 2^{n}}}=\frac{1+u_{k-1}}{u_{k}}+\frac{1-(-1)^{k}}{u_{2 k}}-\frac{u_{k 2^{N}-1}}{u_{k 2^{N}}} \tag{4}
\end{equation*}
$$

where we have handled the terms when n is 0 and 1 specially. For all subsequent terms, the exponent of Q is even and hence the numerator is 1 . An equivalent formula found by Greig [6] is

$$
\begin{equation*}
\sum_{n=0}^{N} \frac{1}{u_{k 2^{n}}}=\frac{1}{u_{k}}+\frac{1+u_{2 k-1}}{u_{2 k}}-\frac{u_{k 2^{N}-1}}{u_{k 2^{N}}} . \tag{5}
\end{equation*}
$$

When $\left\langle u_{n}\right\rangle$ is the Fibonacci sequence, equation (4) becomes the result found by Greig in [5]. Hoggatt and Bicknell [8] found an equivalent result, expressing their answer in terms of Fibonacci and Lucas numbers. This generalized the result they gave in [7]. Brady [2]
found an equivalent result, expressing his answer in terms of the golden ratio. When $\left\langle u_{n}\right\rangle$ is the Pell sequence, equation (4) becomes the result found by Horadam [10]. In equation (3), if we let $Q=1$, we get the results found by Melham and Shannon [12].

Lucas [11] also found that if $k \neq 0$ and $p \neq 0$, then

$$
\begin{equation*}
\sum_{n=0}^{N} \frac{Q^{k p^{n}} u_{k(p-1) p^{n}}}{u_{k p^{n}} u_{k p^{n+1}}}=\frac{Q^{k} u_{k\left(p^{N+1}-1\right)}}{u_{k} u_{k p^{N+1}}} \tag{6}
\end{equation*}
$$

This, again, was overlooked by later researchers. Formula (6) is equivalent to equation (6) of Bruckman and Good [3]. If we let $P=x$ and $Q=-1$, then we get a result found by Popov [16], equation (4), for the Fibonacci polynomials. This, in turn, generalizes results for Fibonacci numbers found by Bergum and Hoggatt [1]. Brady [2] found an equivalent result for Fibonacci numbers, expressing his answer in terms of the golden ratio.

2. New Results.

Instead of the sequence $\left\langle u_{n}\right\rangle$, we can study the sequence $\left\langle w_{n}\right\rangle$ defined by

$$
w_{n+2}=P w_{n+1}-Q w_{n}, \quad w_{0}, w_{1} \text { arbitrary }
$$

In order that no denominator be 0 , we will make the assumption that $w_{n} \neq 0$ for $n>0$. We also assume that k is a fixed positive integer and that $P^{2} \neq 4 Q$. Finally, we let

$$
\alpha=\frac{P+\sqrt{P^{2}-4 Q}}{2} \quad \text { and } \quad \beta=\frac{P-\sqrt{P^{2}-4 Q}}{2}
$$

and note that $\alpha \beta=Q$.
In [10], a formula for $\sum 1 / w_{k 2^{n}}$ is claimed to be found for the case where $Q=-1$. However, this formula is not correct unless $w_{0}=0$. For $k=1$, the supposed formula is

$$
\sum_{n=0}^{N} \frac{1}{w_{2^{n}}}=\frac{1}{w_{1}}+\frac{1+w_{1}}{w_{2}}-\frac{w_{2^{N}-1}}{w_{2^{N}}}
$$

A counterexample to this claim is the Lucas sequence with $N=2$. Perhaps the author inadvertently omitted the hypothesis $w_{0}=0$, in which case the above formula and the formulas given on page 112 of [10] are valid. These results are then a special case of the following.

Theorem 1. If $w_{0}=0$, then

$$
\begin{equation*}
\sum_{n=1}^{N} \frac{Q^{k 2^{n-1}}}{w_{k 2^{n}}}=\frac{Q^{k} w_{k\left(2^{N}-1\right)}}{w_{k} w_{k 2^{N}}} \tag{7}
\end{equation*}
$$

Proof: We use the identity $w_{n}=w_{1} u_{n}-Q w_{0} u_{n-1}$ which comes from [9]. Letting $w_{0}=0$, we find that $w_{n}=w_{1} u_{n}$ for all n. Substituting $u_{n}=w_{n} / w_{1}$ in equation (2) gives us the desired result.

Corollary 1. If $w_{0}=0$ and $Q=1$, then

$$
\begin{equation*}
\sum_{n=1}^{N} \frac{1}{w_{k 2^{n}}}=\frac{w_{k\left(2^{N}-1\right)}}{w_{k} w_{k 2^{N}}}=w_{1}\left[\frac{w_{k 2^{N}-1}}{w_{k 2^{N}}}-\frac{w_{k-1}}{w_{k}}\right] . \tag{8}
\end{equation*}
$$

Corollary 2. If $w_{0}=0$ and $Q=-1$, then

$$
\begin{equation*}
\sum_{n=1}^{N} \frac{1}{w_{k 2^{n}}}=\frac{1-(-1)^{k}}{w_{2 k}}+\frac{w_{k\left(2^{N}-1\right)}}{w_{k} w_{k 2^{N}}}=\frac{1+w_{2 k-1}}{w_{2 k}}-\frac{w_{k 2^{N}-1}}{w_{k 2^{N}}} \tag{9}
\end{equation*}
$$

In a similar manner, formula (6) continues to hold when u is replaced by w, provided that $w_{0}=0$.

Sums to infinity can also be obtained by letting $N \rightarrow \infty$ in any of the above formulas. We use the following fact, which is taken from [15].

Lemma. For all integers r,

$$
\lim _{N \rightarrow \infty} \frac{u_{N-r}}{u_{N}}= \begin{cases}\alpha^{r}, & \text { if }|\beta / \alpha|<1 \\ \beta^{r}, & \text { if }|\beta / \alpha|>1\end{cases}
$$

When $w_{0}=0$, so that w_{n} is proportional to u_{n}, we may replace u by w in the above lemma. Letting $N \rightarrow \infty$ in formula (7) and recalling that $\alpha \beta=Q$, we get the following.

Theorem 2. If $w_{0}=0$, then

$$
\sum_{n=1}^{\infty} \frac{Q^{k 2^{n-1}}}{w_{k 2^{n}}}= \begin{cases}\beta^{k} / w_{k}, & \text { if }|\beta / \alpha|<1 \tag{10}\\ \alpha^{k} / w_{k}, & \text { if }|\beta / \alpha|>1\end{cases}
$$

If $\left\langle w_{n}\right\rangle$ is the Fibonacci sequence, then formula (10) reduces to formula (1), and this agrees with the value found by Lucas in 1878: formula (127) of [11].

References

[1] G. E. Bergum and V. E. Hoggatt, Jr., "Infinite Series with Fibonacci and Lucas Polynomials", The Fibonacci Quarterly 17.2(1979)147-151.
[2] Wray G. Brady, "Additions to the Summation of Reciprocal Fibonacci and Lucas Series", The Fibonacci Quarterly 9.4(1971)402-404, 412.
[3] P. S. Bruckman and I. J. Good, "A Generalization of a Series of De Morgan with Applications of Fibonacci Type", The Fibonacci Quarterly 14.3(1976)193-196.
[4] I. J. Good, "A Reciprocal Series of Fibonacci Numbers", The Fibonacci Quarterly $12.4(1974) 346$.
[5] W. E. Greig, "Sums of Fibonacci Reciprocals", The Fibonacci Quarterly 15.1(1977)4648.
[6] W. E. Greig, "On Sums of Fibonacci-Type Reciprocals", The Fibonacci Quarterly 15.4(1977)356-358.
[7] V. E. Hoggatt, Jr. and Marjorie Bicknell, "A Primer for the Fibonacci Numbers, Part XV: Variations on Summing a Series of Reciprocals of Fibonacci Numbers", The Fibonacci Quarterly 14.3(1976)272-276.
[8] V. E. Hoggatt, Jr. and Marjorie Bicknell, "A Reciprocal Series of Fibonacci Numbers with Subscripts $2^{n} k "$, The Fibonacci Quarterly 14.5(1976)453-455.
[9] A. F. Horadam, "Basic Properties of a Certain Generalized Sequence of Numbers", The Fibonacci Quarterly 3.3(1965)161-176.
[10] A. F. Horadam, "Elliptic Functions and Lambert Series in the Summation of Reciprocals in Certain Recurrence-Generated Sequences", The Fibonacci Quarterly 26.2(1988)98-114.
[11] Edouard Lucas, "Théorie des Fonctions Numériques Simplement Périodiques", American Journal of Mathematics 1(1878)184-240, 289-321.
[12] R. S. Melham and A. G. Shannon, "On Reciprocal Sums of Chebyshev Related Sequences", The Fibonacci Quarterly 33.3(1995)194-202.
[13] D. A. Millin, "Problem H-237", The Fibonacci Quarterly 12.3(1974)309.
[14] Blagoj S. Popov, "On Certain Series of Reciprocals of Fibonacci Numbers", The Fibonacci Quarterly 22.3(1984)261-265.
[15] Blagoj S. Popov, "Summation of Reciprocal Series of Numerical Functions of Second Order", The Fibonacci Quarterly 24.1(1986)17-21.
[16] Blagoj S. Popov, "A Note on the Sums of Fibonacci and Lucas Polynomials", The Fibonacci Quarterly 23.3(1985)238-239.
[17] A. G. Shannon, "Solution to Problem H-237: Sum Reciprocal!", The Fibonacci Quarterly 14.2(1976)186-187.

