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1. Introduction.

Algorithms for evaluating or simplifying sums of the form

NX
n=1

1
Fn+a1Fn+a2 · · ·Fn+ar

where the Fi are Fibonacci numbers and the ai are integers have been discussed in [13].
It is the goal of this paper to generalize these results to arbitrary second-order linear
recurrences.

Consider the second order linear recurrences defined by

un+2 = Pun+1 � Qun, u0 = 0, u1 = 1, (1)

vn+2 = Pvn+1 � Qvn, v0 = 2, v1 = P, (2)

and
wn+2 = Pwn+1 � Qwn, w0, w1 arbitrary. (3)

Let r1 and r2 denote the roots of the characteristic equation x2 � Px + Q = 0. Let

D = P 2 � 4Q and e = w0w2 � w2
1. (4)

Throughout this paper, we shall assume that D 6= 0, e 6= 0, Q 6= 0, and wn 6= 0 for n > 0.
In the case of the Fibonacci sequence, we showed [13] that all reciprocal sums can be

expressed in closed form in terms of

FN =
NX

n=1

1
Fn

, GN =
NX

n=1

(�1)n

Fn
, and KN =

NX
n=1

1
FnFn+1

. (5)

It is our intent to generalize these results to apply to the sequence hwni.
For the following definitions, let r be a positive integer and let a1, a2,. . . , ar be distinct

nonnegative integers.

Definition 1 (Unit Reciprocal Sum). A unit reciprocal sum of order r is a sum of
the form

NX
n=1

1
wn+a1wn+a2 · · ·wn+ar

.
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Definition 2 (Q-Reciprocal Sum). A Q-reciprocal sum of order r is a sum of the form

NX
n=1

Qkn

wn+a1wn+a2 · · ·wn+ar

where k = br/2c.

Definition 3 (Reciprocal Sum). A reciprocal sum is a unit reciprocal sum or a
Q-reciprocal sum.

Definition 4 (Rational Sum). A rational sum of order r is a sum of the form

NX
n=1

f(x1, x2, . . . , xs)
wn+a1wn+a2 · · ·wn+ar

where f(x1, x2, . . . , xs) is a polynomial with each of the variables xi being of the form
wn+ci or Qn.

In this paper, we will show that all reciprocal sums of orders 1 and 2 can be expressed
in closed form in terms of

XN =
NX

n=1

1
wn

, YN =
NX

n=1

Qn

wn
, and WN =

NX
n=1

1
wnwn+1

. (6)

We will also show that all Q-reciprocal sums (of any order) can be expressed in closed
form in terms of WN , XN , and YN .

Finally, we shall show that if Q = ±1, then all rational sums can be expressed in
terms of UN , VN , WN , XN , and YN , where

UN =
NX

n=1

wn+1

wn
and VN =

NX
n=1

Qnwn+1

wn
.

We shall also present mechanical algorithms for finding these closed forms.

We need the following results.

Theorem 1 (The Representation Theorem). If a, b, and c are integers and ua�b 6= 0,
then

wn+c =
uc�b

ua�b
wn+a +

uc�a

ub�a
wn+b. (7)

(This expresses wn+c in terms of wn+a and wn+b.)

Proof: The identity can be mechanically verified by using algorithm LucasSimplify from
[11].

Theorem 1 can be put into a more symmetrical form:
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Theorem 2. For all integers a, b, and c,

Qcub�cwn+a + Qauc�awn+b + Qbua�bwn+c = 0. (8)

(This gives a symmetric connection between wn+a, wn+b, and wn+c.)

Proof: This follows from the Representation Theorem by making use of the well-known
Negation Formula [11]: u�n = �unQ�n.

Theorem 3. If a, b, and c are integers and ua�b 6= 0, then

1
wn+awn+b

=
A

wn+cwn+a
+

B

wn+cwn+b
(9)

where
A =

uc�a

ub�a
and B =

uc�b

ua�b
.

(This allows one to convert reciprocal sums of order 2 to those in which wn+c occurs as a
factor of the denominator.)

Proof: This is an immediate consequence of the Representation Theorem.

2. Reciprocal Sums of Order 1.

There are no known elementary forms for the reciprocal sums of order 1, so we shall
give them names:

XN =
NX

n=1

1
wn

and YN =
NX

n=1

Qn

wn
. (10)

Strictly speaking, we should write these as XN (w0, w1, P,Q) and YN (w0, w1, P,Q); but we
will simply write XN and YN when w0, w1, P , and Q are fixed.

If a > 0, we have

NX
n=1

1
wn+a

= XN+a � Xa (11)

and
NX

n=1

Qn

wn+a
= YN+a � Ya. (12)

Thus all reciprocal sums of order 1 can be expressed in terms of XN and YN .
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3. Q-Reciprocal Sums of Order 2.

Theorem 4. If a > 0, then

ua

NX
n=1

Qn

wnwn+a
=

Q

e

"
aX

n=1

wn�1

wn
�

aX
n=1

wN+n�1

wN+n

#
. (13)

Proof: We begin with the identity

wn+awn�1 � wnwn+a�1 = Qn�1eua (14)

which comes from d’Ocagne’s Identity (see [12]). Thus, we have

wn�1

wn
� wn+a�1

wn+a
=

Qn�1eua

wnwn+a
.

Summing from 1 to N yields

ua

NX
n=1

Qn�1

wnwn+a
=

1
e

"
NX

n=1

wn�1

wn
�

NX
n=1

wn+a�1

wn+a

#
=

1
e

"
aX

n=1

wn�1

wn
�

aX
n=1

wN+n�1

wN+n

#

which is the desired result.

This can be put into a more symmetrical form. The following theorem is a general-
ization of a result by Good [4] and was proven by André-Jeannin [1].

Theorem 5 (Symmetry Property for Reciprocal Sums). If a > 0, then

ua

NX
n=1

Qn

wnwn+a
= uN

aX
n=1

Qn

wnwn+N
. (15)

Proof: Again we use d’Ocagne’s identity. Putting a = N in formula (14) gives

wn�1wN+n � wnwN+n�1 = Qn�1euN .

Combining the two sums on the right-hand side of Theorem 4 and applying this identity
yields the desired result.

Corollary (letting a = 1).

NX
n=1

Qn

wnwn+1
=

QuN

w1wN+1
=

Q

e


w0

w1
� wN

wN+1

�
. (16)
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4. Unit Reciprocal Sums of Order 2.

For non-alternating reciprocal Fibonacci sums, we had to introduce (in [13]) the sym-
bol

KN =
NX

n=1

1
FnFn+1

(17)

for a sum with no known simple closed form. In a similar manner, we need to do the same
thing for unit reciprocal sums for the sequence hwni.

Let

WN =
NX

n=1

1
wnwn+1

(18)

with the understanding that W0 = 0.
Again, we should really write this as WN (w0, w1, P,Q); but if hwni is a fixed sequence,

we will simply write this as WN .

Theorem 6. If c > 0 and uc 6= 0, then

NX
n=1

1
wnwn+c

=
1
uc

c�1X
i=0

Qi(WN+i � Wi). (19)

Proof: Letting a = i, b = i + 1, and c = 0 in Theorem 3, we get

ui+1

wnwn+i+1
� ui

wnwn+i
=

Qi

wn+iwn+i+1

using the Negation Formula u�n = �unQ�n. Summing as n goes from 1 to N yields

ui+1WN (i + 1) � uiWN (i) = Qi(WN+i � Wi)

where

WN (a) =
NX

n=1

1
wnwn+a

.

Now sum as i goes from 0 to c � 1. The left side telescopes and we get

ucWN (c) =
c�1X
i=0

Qi(WN+i � Wi)

which gives our desired result.

Thus, all reciprocal sums of order 2 can be expressed in terms of WN .
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5. The Reduction Process.

We now show how to simplify certain reciprocal sums with three or more factors in
the denominator.

Theorem 7 (The Partial Fraction Decomposition Formula for w).
For all n,

Qn

wn+awn+bwn+c
=

A

wn+a
+

B

wn+b
+

C

wn+c
(20)

where

A =
�Q�a

eub�auc�a
, B =

�Q�b

euc�bua�b
, and C =

�Q�c

eua�cub�c
. (21)

Proof: This result can be mechanically proven using algorithm LucasSimplify from [11].

Theorem 8 (The Reduction Theorem for w). If r > 2, then any Q-reciprocal sum
of order r can be expressed in terms of Q-reciprocal sums of order r � 2.

Proof: By Theorem 7, we have

Qkn

wn+awn+bwn+c
=

AQ(k�1)n

wn+a
+

BQ(k�1)n

wn+b
+

CQ(k�1)n

wn+c
(22)

where A, B, and C are given in display (21). If r > 2 and k = br/2c, then we can take the
last three factors in the denominator and apply Theorem 7. This breaks the given sum
up into sums with r � 2 factors in the denominator. The numerators have terms that are
constant multiples of Q(k�1)n where k�1 = b(r � 2)/2c, thus making these sums multiples
of Q-reciprocal sums of order r � 2.

Corollary. Any Q-reciprocal sum of order r can be expressed in terms of reciprocal sums
of order 1 or 2. If Q = ±1, then any reciprocal sum of order r can be expressed in terms
of reciprocal sums of order 1 or 2.

Proof: Apply Theorem 8 repeatedly, until the order of the Q-reciprocal sum becomes 1
or 2. If Q = ±1, then formula (20) can be written in the form

1
wn+awn+bwn+c

=
A(�1)n

wn+a
+

B(�1)n

wn+b
+

C(�1)n

wn+c
. (23)

Applying this repeatedly reduces the order of the reciprocal sum to 1 or 2.

By induction, we can state a more general form of the Partial Fraction Decomposition
Theorem.
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Theorem 9 (The Generalized Partial Fraction Decomposition Formula). If r is
a positive integer, then

1
wn1wn2wn3 · · ·wn2r+1

=
2r+1X
i=1

Ai

wni

(24)

where A�1
i = (�eQni)r

Q
j 6=i

unj�ni .

6. The Simplification Algorithm.

We can also handle sums similar to reciprocal sums, but in which the numerators are
polynomials in the w’s. These are called rational sums.

We need to add in two new primitives:

UN =
NX

n=1

wn+1

wn
and VN =

NX
n=1

Qnwn+1

wn
. (25)

Once again, these would more properly be written as UN (w0, w1, P,Q) and VN (w0, w1, P,Q);
but UN and VN will su�ce when the sequence is fixed.

We now show how to evaluate a wide class of reciprocal and rational sums in closed
form in terms of the quantities UN , VN , WN , XN , and YN .

Definition. A w-polynomial in the variable n is any polynomial f(x1, x2, . . . , xr) with
constant coe�cients where each xi is of the form wx or Qx, with each x of the form n+ cj ,
where the cj are integer constants. For purposes of this definition, the quantities P , Q,
w0, w1, and e are to be considered constants.

Theorem 10 (The Simplification Theorem for Q = ±1). Suppose that P , Q,
w0, and w1 are fixed constants, thereby determining the sequence hwni. Let f(n) be any
w-polynomial in the variable n. For r a positive integer, let cj , j = 1, 2, . . . , r be distinct
integers. Assume that wn > 0 and un > 0 for all n > 0. Furthermore, if Q = ±1, then we
can find

NX
n=1

f(n)
wn+c1wn+c2 · · ·wn+cr

in closed form in terms of UN , VN , WN , XN , and YN .

Proof: As proof, we give the following algorithm.

Algorithm WReciprocalSum to evaluate certain reciprocal sums in closed form:

INPUT: A rational sum meeting the conditions of Theorem 9.
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OUTPUT: A closed form for the sum expressed in terms of the quantities UN ,
VN , WN , XN , and YN .

STEP 1: [Reduce the order.] If the denominator consists of three or more terms
of the form wx, choose any three of them, say wn+a, wn+b, and wn+c,
and make the following substitution:

1
wn+awn+bwn+c

=
AQ�n

wn+a
+

BQ�n

wn+b
+

CQ�n

wn+c
(26)

where A, B, and C are given by formula (21). Expand out and make
the transformation

NX
n=1

[f(n) + g(n)] =
NX

n=1

f(n) +
NX

n=1

g(n) (27)

summing each term on the right by this algorithm.
STEP 2: [Normalize subscripts in denominator.] If the denominator is of the

form wn+a or of the form wn+awn+b with a 6= 0 and a < b, then apply
one of the following transformations:

NX
n=1

f(n)
wn+awn+b

=
a+NX

n=a+1

f(n � a)
wnwn+b�a

(28)

NX
n=1

f(n)
wn+a

=
a+NX

n=a+1

f(n � a)
wn

. (29)

STEP 3: [Normalize index of summation.] If the index of summation does not
start at 1, then add or subtract a finite number of terms to make the
index start at 1. Specifically, if n0 is a constant and n0 6= 1, then apply
the transformation

NX
n=n0

f(n) =

8>>>><
>>>>:

NX
n=1

f(n) �
n0�1X
n=1

f(n), if n0 > 1,

NX
n=1

f(n) +
0X

n=n0

f(n), if n0  0.

(30)

STEP 4: [Break up sums.] Expand out the numerator. If the numerator consists
of a sum of terms, then sum each term individually. That is, apply the
transformation

NX
n=1

f(n) + g(n)
d

=
NX

n=1

f(n)
d

+
NX

n=1

g(n)
d

. (31)



9

In each fraction, cancel any factors of the form wn+c common to the
numerator and denominator. Then evaluate each sum recursively using
this algorithm. Return the sum of the results so obtained.

STEP 5: [Normalize numerator.] If the denominator is of the form wnwn+a with
a > 0 and if the numerator contains a subexpression of the form wn+c

where c 6= 0 and c 6= a, then express this subexpression in terms of wn

and wn+a by using the Representation Theorem. Specifically, make the
substitution

wn+c =
Qauc�a

ua
wn +

uc�a

ua
wn+a. (32)

If the numerator contains a subexpression of the form Qn, then express
this subexpression in terms of wn and wn+a by using the formula

Qn =
vawnwn+a � Qaw2

n � w2
n+a

eu2
a

. (33)

Go back to step 4.
STEP 6: [Normalize numerator (continued).] If the denominator is of the form

wn, and if the numerator contains a subexpression of the form wn+c

where c 6= 0 and c 6= 1, then express this subexpression in terms of wn

and wn+1 by using the Representation Theorem. Specifically, make the
substitution

wn+c = ucwn+1 � Quc�1wn. (34)

Go back to step 4.
STEP 7: [Evaluate polynomial sums.] If the summand is a w-polynomial in the

variable n, evaluate the sum by using algorithm LucasSum from [11].
Exit.

STEP 8: [Reduce numerator.] If the denominator is of the form wn and if the
numerator contains a subexpression of the form wr

n+1 with r > 1, then
write wr

n+1 as wr�2
n+1w

2
n+1 and reduce the exponent by 1 by applying

the substitution

w2
n+1 = Pwnwn+1 � Qw2

n � eQn. (35)

Expand the numerator. If Q = �1, replace any terms of the form
Qrn+d by Qd(Qr)n. Repeat this step as long as possible, then go back
to step 4.

STEP 9: [Pull out constants.] Replace any expressions of the form Qn+b where
b is a constant by QbQn. If the numerator is of the form c, cQn,
cQnwx, or cwr

x, where c is a constant (c 6= 0 and c 6= 1), then apply the
transformation

NX
n=1

cf(n) = c
NX

n=1

f(n). (36)
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STEP 10: [Handle sums of order 2.] If the denominator is of the form wnwn+a,
then evaluate the sum by using one of the following formulas:

NX
n=1

Qn

wnwn+a
=

uN

ua

aX
n=1

Qn

wnwn+N
; (37)

NX
n=1

1
wnwn+a

=
1
ua

a�1X
i=0

Qi(WN+i � Wi). (38)

STEP 11: [Handle basic sums.] If the summand is of one of the following forms,
make the substitution shown.

NX
n=1

wn+1

wn
= UN

NX
n=1

Qnwn+1

wn
= VN

NX
n=1

1
wnwn+1

= WN

NX
n=1

1
wn

= XN

NX
n=1

Qn

wn
= YN .

(39)

Proof of Correctness.
Step 1 reduces the order to 1 or 2. This step introduces terms of the form Q�n. If

Q = ±1, then Q�n = Qn. Thus, the numerator will remain a w-polynomial if Q = ±1.
Step 2 guarantees that if there is a denominator, then its first factor will be wn.
Step 3 ensures that the index of summation begins with 1. The upper limit can be

any expression, since N need not be just a variable, but may be any expression.
Step 4 guarantees that there will be no sums (or di↵erences) in the numerator.
Step 5 is justified by the Representation Theorem. Formula (33) comes from [12]. At

the end of step 5, there will be no terms of the form wx in the numerator of any reciprocal
sum of order 2.

Step 6 is justified by the Representation Theorem. After step 4, the numerator consists
only of a product of terms.

Steps 5 and 6 ensure that these terms only involve w’s that cancel with w’s in the
denominator or are of the form wn+1. Thus, by the time we get to step 7, the only w’s left
in the numerator are those of the form wn+1. Of course, if the denominator went away,
then we are left with a w-polynomial and it is easily summed in step 7.
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Step 8 reduces the degree of the variable wn+1 to 0 or 1.
Step 9 removed any constants from the numerator.
Step 10 is justified by Theorems 5 and 6. None of the previous steps introduce terms of

the form Qrn in the numerator (for r > 1). Thus steps 10 and 11 handle all the remaining
cases.

Note. It should be noted that algorithm WReciprocalSum also works in the cases where
r < 3 and deg f(n) < 2 or for any r if f(n) = Qkn where k = br/2c. In step 1, if
f(n) = Qkn, the Q�n term introduced changes Qkn into Q(k�1)n and the order of the sum
decrements by 1 until it reaches 1 or 2. The degree of Qn will increase only if the degree of
f(n) was larger than 1, so if deg f(n) < 2, no terms of the form Qcn are introduced with
c > 1.

This gives us the following two theorems.

Theorem 11 (The Simplification Theorem for Q-reciprocal sums). Let r be a
positive integer and let k = br/2c. Let cj , j = 1, 2, . . . , r be distinct integers. Then we can
find

NX
n=1

Qkn

wn+c1wn+c2 · · ·wn+cr

in closed form in terms of UN , VN , WN , XN , and YN .

Theorem 12 (The Simplification Theorem for Low-Order Reciprocal Sums).
Let f(n) be any w-polynomial in the variable n with deg f(n) < 2. Let a and b be distinct
integers. Then we can find

NX
n=1

f(n)
wn+a

and
NX

n=1

f(n)
wn+awn+b

in closed form in terms of UN , VN , WN , XN , and YN .

7. Some General Formulas.

We have given an algorithm for evaluating certain reciprocal sums. However, in some
special cases, simple explicit formulas can be given.

We can take a formula, such as that given by Theorem 4, which involves expressions
of the form wn+a and turn it into a valid formula involving expressions of the form wk(n+a)

where k is a fixed positive integer. We do this by applying the Dilation Theorem (see [12])
which says we can transform an identity into another identity by replacing all occurrences
of wx by wkx provided that we also replace ux by ukx/uk, vx by vkx, Q by Qk, P by vk,
and e by euk.

Applying the Dilation Theorem to Theorem 4 gives us the following theorem:
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Theorem 13. If a > 0, k > 0, uk 6= 0, and uka 6= 0, then

NX
n=1

Qkn

wknwk(n+a)
=

Qk

eukuka

"
aX

n=1

wk(n�1)

wkn
�

aX
n=1

wk(N+n�1)

wk(N+n)

#

=
1

eukuka

"
aX

n=1

wk(N+n+1)

wk(N+n)
�

aX
n=1

wk(n+1)

wkn

#
.

(40)

The last equality comes from the identity

wn+1

wn
=

Pwn � Qwn�1

wn
= P � Q

wn�1

wn
(41)

which when dilated by k gives

wk(n+1)

wkn
= vk � Qk wk(n�1)

wkn
. (42)

Corollary (letting a = 1). If k > 0 and uk 6= 0, then

NX
n=1

Qkn

wknwk(n+1)
=

Qk

eu2
k


w0

wk
� wkN

wk(N+1)

�
=

1
eu2

k


wk(N+2)

wk(N+1)
� w2k

wk

�
. (43)

This agrees with the result given by Lucas [7] in 1878 for the sequences huni and hvni.
Furthermore, when k = 1, we get the result found by Kappus [6] which generalized the
result of Hillman in [6]. When wn = Fn, this reduces to the results found by Swamy in
[14]. When wn is either the Pell polynomials or the Pell-Lucas polynomials, formula (43)
is equivalent to results found by Mahon and Horadam in [8].

In a similar manner, applying the Dilation Theorem to Theorem 5 yields Theorem 14:

Theorem 14. If a > 0 and k > 0, then

uka

NX
n=1

Qkn

wknwk(n+a)
= ukN

aX
n=1

Qkn

wknwk(n+N)
. (44)

Theorem 15. If a > 0, b > 0, k > 0, and uka 6= 0, then

NX
n=1

Qkn

wkn+bwk(n+a)+b
=

ukN

uka

aX
n=1

Qkn

wkn+bwk(n+N)+b
. (45)
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Proof: Apply the Translation Theorem (see [12]) to Theorem 6 to convert the sequence
hwni into the sequence hwn+bi.

If P = x and Q = �1, Theorems 5, 6, and 14 give results about partial sums of
Fibonacci polynomials that were found by Bergum and Hoggatt [2].

Corollary (letting a = 1). If b > 0, k > 0, and uk 6= 0, then

NX
n=1

Qk(n�1)

wkn+bwk(n+1)+b
=

ukN

ukwk+bwk(N+1)+b
. (46)

This is equivalent (with b = a � k) to the results found by Popov [10] for the sequences
huni and hvni.

Theorem 16. If a < b, k > 0, and uk(b�a) 6= 0, then

NX
n=1

Qkn

wk(n+a)wk(n+b)
=

ukN

uk(b�a)

b�aX
n=1

Qkn

wk(n+a)wk(n+N+a)
. (47)

Proof: Apply the Translation Theorem (see [12]) to change the sequence hwmi in Theorem
6 into the sequence hwm+kai. Then let c = b � a.

Theorem 17. If k > 0, c > 0, and ukc 6= 0, then

NX
n=1

1
wknwk(n+c)

=
uk

ukc

c�1X
i=0

Qki(Wk,N+i � Wk,i). (48)

where

Wk,N =
NX

n=1

1
wknwk(n+1)

.

Proof: Apply the Dilation Theorem to Theorem 5.

Applying the Translation Theorem to Theorem 15 gives us the following result.

Theorem 18. If a < b and uk(b�a) 6= 0, then

NX
n=1

1
wk(n+a)wk(n+b)

=
uk

uk(b�a)

b�a�1X
i=0

Qki(Wk,a+N+i � Wk,a+i). (49)
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8. Special Cases.

Although unit reciprocal sums of order 2 cannot in general be evaluated in closed form
(without involving terms of the form UN , VN , WN , XN , or YN ), a closed form can be
found for some important special cases (such as when Q = ±1).

Theorem 19. If Q = �1, then

NX
n=1

1
wn+awn+a+2

=
1
P


1

wa+1wa+2
� 1

wN+a+1wN+a+2

�
. (50)

Proof: Since Q = �1, we have wm+2 = Pwm+1 + wm. Thus,

P

wn+awn+a+2
=

Pwn+a+1

wn+awn+a+1wn+a+2
=

wn+a+2 � wn+a

wn+awn+a+1wn+a+2

=
1

wn+awn+a+1
� 1

wn+a+1wn+a+2
.

Summing from 1 to N gives the desired result since the right-hand side telescopes.

Lemma. If Q = 1, then

ck =
rk
1wk(n+1) � wkn

rk(n+1)
1

(51)

is independent of n. In particular, ck = (w1 � w0)r2uk.

Proof: Since Q = 1, we have r1r2 = 1. The Binet form for wn is known to be

wn = Arn
1 + Brn

2

where A = w1�w0r2
r1�r2

and B = w0r1�w1
r1�r2

. Then

ckrk(n+1)
1 = rk

1wk(n+1) � wkn = rk
1

h
Ark(n+1)

1 + Brk(n+1)
2

i
�

⇥
Arkn

1 + Brkn
2

⇤
= Arkn+2k

1 � Arkn
1

= Arkn
1 [r2k

1 � 1]

= Arkn
1 [r2k

1 � (r1r2)k]

= Ark(n+1)
1 [rk

1 � rk
2 ]

= Ark(n+1)
1 (r1 � r2)uk.

Therefore ck = A(r1 � r2)uk = (w1 � w0r2)uk.
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Theorem 20. If Q = 1, k 6= 0, and uk 6= 0, then

NX
n=1

1
wknwk(n+1)

=
1

(w1 � w0r2)rk
1uk


1

wk
� 1

rkN
1 wk(N+1)

�
. (52)

Proof: Using the Lemma, we have

1
rkn
1 wkn

� 1

rk(n+1)
1 wk(n+1)

=
rk
1wk(n+1) � wkn

rk(n+1)
1 wknwk(n+1)

=
(w1 � w0r2)uk

wknwk(n+1)
.

Summing as n goes from 1 to N , we find that the left side telescopes and we reach the
stated result.

This theorem generalizes the results found by Melham and Shannon [9]. The idea for
the proof comes from that paper. Alternatively, we could let Q = 1 in formula (43).

Corollary (letting k = 1). If Q = 1, then

NX
n=1

1
wnwn+1

=
1

(w1 � w0r2)r1


1
w1

� 1
rN
1 wN+1

�
. (53)

9. Open Problems.

Query 1. Is there a simple closed form for any of the quantities UN , VN , WN , XN , or
YN?

Query 2. Is there a simple algebraic relationship between any of the quantities UN , VN ,
WN , XN , and YN?

Query 3. Can
NX

n=1

1
w2nw2n+1

be expressed in terms of UN , VN , WN , XN , and YN?

Query 4. Can
NX

n=1

1
w2

n

be expressed in terms of UN , VN , WN , XN , and YN?

Query 5. Can
NX

n=1

1
wnwn+1wn+2

be expressed in terms of UN , VN , WN , XN , and YN?
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Query 6. Can
NX

n=1

1
wn+awn+bwn+c

be expressed in terms of UN , VN , WN , XN , YN , a,

b, and c?
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July 7, 2018 Addendum

Equation (12) is incorrect. The correct result is the following.

If a > 1, then
NX

n=1

Qn

wn+a
=

1
Qa

[YN+a � Ya] . (120)

Proof: Letting k = n + a gives

NX
n=1

Qn

wn+a
=

a+NX
k=a+1

Qk�a

wk

= Q�a
a+NX

k=a+1

Qk

wk

= Q�a

"
a+NX
k=1

Qk

wk
�

aX
k=1

Qk

wk

#

=
1

Qa
[YN+a � Ya] .


