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Graham and Pollak [2] considered the sequence

1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 54, 77, . . .

defined by the recurrence

u1 = 1, un+1 = �
√

2(un +
1
2
)�, n ≥ 1,

where �x� denotes the floor of x, the largest integer not larger than x. They discovered
the unusual property that u2n+1 − 2u2n−1 is just the nth digit in the binary expansion of√

2. In discussing this result, Erdős and Graham [1] say “It seems clear that there must be
similar results for

√
m and other algebraic numbers but we have no idea what they are.”

In this paper, we give a generalization of this result and obtain a recurrence relation
which yields, in a similar manner, the nth digit in the binary expansion of any positive
real number.

We begin by proving some properties of the floor function:
Definition. Let {x} denote the fractional part of x, that is, {x} = x − �x�.
Lemma 1.

⌊
a�x� + c

⌋
= �ax� if and only if �{ax} − a{x} + c� = 0.

Proof. The following equations are equivalent to each other in succession:
⌊
a�x� + c

⌋
= �ax�

�ax − a{x} + c� = �ax�
⌊
{ax} + �ax� − a{x} + c

⌋
= �ax�

�{ax} − a{x} + c� = 0.

Lemma 2. If k is an integer, a is a real number in the range 1 < a < 2, and x = k/(a−1),
then ⌊

a�x� +
a

2

⌋
= �ax�.

Proof. If x = k/(a − 1), then ax = x + k and {ax} = {x}. Thus

f(x) = {ax} − a{x} +
a

2
= {x} − a{x} +

a

2
= {x}(1 − a

2
) + (1 − {x})a

2
.
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Clearly, f(x) ≥ 0 and f(x) < 1(1− a
2 )+1(a

2 ) = 1. Hence �f(x)� = 0 and the result follows
by Lemma 1.
Lemma 3. If k is an integer, a is a real number in the range 0 < a < 2, and x = k/(2−a),
then ⌊

a�x� +
a

2

⌋
= �ax�.

Proof. From x = k/(2 − a) we get 2x = ax + k. Taking the fractional part of both sides
yields {2x} = {ax}. It is easy to show that d = 2{x} − {2x} is always 0 or 1, so we may
write {2x} as 2{x} − d. Thus

f(x) = {ax} − a{x} +
a

2
= {2x} − a

2
({2x} + d) +

a

2
= {2x}(1 − a

2
) +

a

2
(1 − d).

Clearly f(x) ≥ 0 and f(x) < 1(1− a
2 ) + (a

2 )1 = 1. Hence �f(x)� = 0 and the result follows
by Lemma 1.
Theorem. Given a positive real number w, let b = (2m+1 + w)/(2m + w) and a = 2/b,
where m = �log2 w�. Define a sequence un by the recurrence

u1 = 1

un+1 =
{
�a(un + 1/2)�, if n is odd,
�b(un + 1/2)�, if n is even.

Then

u2n = �2n−m−1(2m + w)�(i)
u2n+1 = �2n−m−1(2m+1 + w)�.

(ii) u2n+1 − 2u2n−1 is the nth digit in the binary expansion of w.
(The radix point appears after the (m + 1)st digit.)

(iii) u2n+2 − 2u2n is the (n + 1)st digit of the binary expansion of w.

(iv) u2n+1 − u2n = 2n−1.

Proof. First note that 1 < b < 2 and 1 < a < 2. Also, a little algebra shows that
1 + w/2m = 1/(b − 1) and 2 + w/2m = 2/(2 − a).

We will prove property (i) by induction on the subscript of u. For n = 0, our formula
specifies

u1 = �2−m−1(2m + w)� = �2−1(1 +
w

2m
)�.

But m has been chosen so that 1 ≤ w/2m < 2 which implies that u1 = 1 and our formula
checks for n = 0. There are now two cases, the subscript being even or odd.
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If the result is true for u2n, then we have u2n = �x� where

x = 2n−m−1(2m + w) = 2n−1(1 +
w

2m
) = 2n−1 1

b − 1
.

Then

u2n+1 =
⌊
bu2n +

b

2

⌋
=

⌊
b�x� +

b

2

⌋

= �bx� (by Lemma 2)

=
⌊
2n−1 b

b − 1

⌋
= �2n−m−1(2m+1 + w)�

and the result is true for u2n+1.
If the result is true for u2n+1, then we have u2n+1 = �x� where

x = 2n−m−1(2m+1 + w) = 2n−1(2 +
w

2m
) = 2n 1

2 − a
.

Then

u2n+2 =
⌊
au2n+1 +

a

2

⌋
=

⌊
a�x� +

a

2

⌋

= �ax� (by Lemma 3)

=
⌊
2n a

2 − a

⌋
= �2n−m(2m + w)�

and the result is true for u2n+2. This concludes the induction.
Property (ii) is a direct consequence of property (i). The nth binary digit of the

number w = d1d2d3 . . . dmdm+1.dm+2dm+3dm+4 . . . can be found as follows:

2n−m−1w = d1d2d3 . . . dn.dn+1dn+2dn+3 . . .

and
2n−m−2w = d1d2d3 . . . dn−1.dndn+1dn+2dn+3 . . .

so
u2n+1 − 2u2n−1 = �2n−m−1(2m+1 + w)� − 2�2n−m−2(2m+1 + w)�

= �2n−m−1w� − 2�2n−m−2w�
= d1d2 . . . dn − d1d2 . . . dn−10 = dn.

The proof of property (iii) is similar.
Property (iv) follows from the fact that property (i) may be rewritten as

u2n = 2n−1 + �2n−m−1w�
u2n+1 = 2n + �2n−m−1w�.
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We should note that the result of Graham and Pollak follows from our result when
w =

√
2. In that case, m = 0 and a = b =

√
2. It should also be noted that when we

speak of the nth digit of a number, we start counting at the leftmost non-zero digit. If
m < 0, there will be |m| − 1 zeroes after the radix point before the first non-zero binary
digit occurs.

To avoid having to consider the even and odd cases separately, our theorem may be
rephrased in the following form (by setting vn = u2n−1):
Theorem (alternate formulation). Let w be a positive real number and let a and b
be defined as before. Define a sequence vn by the recurrence

v1 = 1

vn+1 =
⌊
b
⌊
avn +

a

2

⌋
+

b

2

⌋
.

Then vn+1 − 2vn is the nth digit in the binary expansion of w.
If we are only interested in the digits comprising the fractional part of w, we have a

slightly simpler result, not involving the variable m. The proof mimics the proof of the
main theorem and we leave the details as an exercise for the reader.
Theorem. Given a positive real number w, let b = (2 + w)/(1 + w) and a = 2/b. Define
a sequence un by the recurrence

u1 = �2 + w�

un+1 =
{
�a(un + 1/2)�, if n is odd,
�b(un + 1/2)�, if n is even.

Then u2n+2 − 2u2n is the nth digit to the right of the radix point in the binary expansion
of w.

The reader may wonder how the authors came up with the values of a, b, and m in
the main theorem. We found that if we let un+1 = �a(un + 1

2 )� and then tried various
a’s other than

√
2, the quantity u2n+2 − 2u2n did not always yield binary digits (0’s or

1’s). Then we tried changing a to two values, a and b, for the odd and even values of
n. Using a computer, we varied a and b and printed out those cases where u2n+2 − 2u2n

always generated binary digits. We were rewarded by finding that in such cases, ab = 2;
and when 1 < a < 3/2, we found that the value of w that was generated appeared to have
the value 2(a − 1)/(2 − a). This gave us a conjecture on how to get the binary digits for
any w between 1 and 2 by picking a = 2(1 + w)/(2 + w) and b = 2/a. Finally, we realized
that if w was not between 1 and 2, we could multiply it by 2m for some m to bring it into
that range and then apply the simpler version of the theorem.

There are other open questions that the reader might wish to pursue. For example,
suppose we define un+1 in terms of three quantities, a, b, and c, depending upon whether
n is congruent to 0, 1, or 2 (mod 3). For what choices of a, b, and c will u2n+2−2u2n yield
binary digits? Perhaps one should look at u2n+2 − 3u2n instead (or maybe u3n+3 − 3u3n)
and try to get digits in base 3.
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