Sine Product Problem

Stanley Rabinowitz Polytechnic Institute of Brooklyn Brooklyn, New York

Dear Sir,

I have been interested in the problem of finding three angles, the product of whose sines is $\frac{1}{8}$, since the problem concerning one such example appear in the *Journal* (Vol. 11, No. 3 — March, 1964 — Problem 212). Using the IBM 7040 computer in my school, I came up with the following fact which I thought would interest you.

There are exactly eight sets of angles (each of which is a multiple of one degree) which satisfy

 $\sin A^{\circ} \cdot \sin B^{\circ} \cdot \sin C^{\circ} = 1/8.$

They are:

А	В	\mathbf{C}
30	30	30
54	30	18
54	48	12
63	27	18
70	50	10
75	30	15
81	54	9
84	24	18

Actually

 $\sin A^{\circ} \cdot \sin B^{\circ} \cdot \sin C^{\circ} = 0.1250000,$

but I am confident that this is enough accuracy to rule out a coincidence. Each case, though, should be checked by trigonometric means.

Editor's Note: Is the computer accuracy sufficient to rule out a coincidence? The challenge in Stanley's last sentence should be emphasized.